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The absorption of an intensity modulated laser beam results in a 
modulated temperature profile having the properties of a critically damped 
wave, i.e., a thermal wave [1]. In a semiconductor such as silicon, if the 
energy per photon exceeds the band gap energy, then, in addition to the 
thermal wave, one has a photo-generated electron-hole plasma density that 
can also be characterized as a critically damped propagating wave, i.e., a 
plasma wave [2). In this paper, we present a theoretical description of 
these two phenomena that shows how they can be used to obtain information 
about transport and carrier recombination properties of semiconductors. 
Included in our analysis will be the effects of linear coupling between 
heat and mass transport (i.e., thermodiffusion) on the propagation of 
therma:l waves and plasma waves. 

THEORY 

To begin let's consider qualitatively what happens when a laser beam 
is incident on a semiconductor. If the energy per photon E exceeds the 
band gap energy Es then electrons will be excited from the valence 
band to an energy E-Es above the conduction band edge. These 
photoexcited free carriers will, within a fraction of a picosecond, give 
this excess energy to the lattice through nonradiative transitions to the 
unoccupied states near the bottom of the conduction band. After a much 
longer time, typically on the order of microseconds, these photoexcited 
carriers recombine with holes in the valence band giving up their remaining 
energy Es to the lattice. Prior to this recombination there thus 
exists a plasma of electrons and holes whose density is governed by 
diffusion in a manner analogous to the flow of heat from a thermal source. 
Thus, if an incident laser beam is intensity modulated, we would expect to 
observe, in addition to the thermal wave, a modulated plasma density whose 
spatial profile is that of a critically damped wave, i.e., a plasma wave. 

In order to obtain a quantitative description of these critica! wave 
phenomena, we consider the plasma current density, JN, and heat current 
density, J0, which we assume are linearly driven by the plasma density 
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gradient, VN, and the temperature gradient, VT, according to 

JN = -DVN - AVT 

JQ = -KVT - BVN 

(l) 

(2) 

where D is the ambipolar diffusion coefficient, K is the thermal 
conductivity, and A and B are thermodiffusion coefficients. In the absence 
of any sources, we have the conservation equations 

V·JN + aN/at = -N/~ 

V·J0 + pCaT/at = NE9/~ 

(3) 

(4) 

where p is the density, C is the specific heat, and ~ is the electron-hole 
recombination time, all of which are taken to be constants with respect to 
variations in the temperature and plasma density. In order to keep the 
equations linear in N and T, we further assume that the transport 
coefficients are also independent of N and T. Then, by imposing the 
sinusoidal time dependence, exp(-irot), we obtain the coupled set of wave 
equations 

v2N + p2N + (A/D)v2T O 

vZr + q2T + (B/K)v2N -NEg/K~ 

where p is the plasma wave vector defined by 

p2 = i(ro~ + i)/D~ 

and q is the thermal wave vector defined by 

q2 = iropC/ K 

(5) 

(6) 

(7) 

(8) 

The wave vectors p and q are, respectively, the propagation vectors for 
thermal waves and plasma waves [2) in the absence of any thermodiffusion 
effects. To arrive at a general solution for the coupled thermal/plasma 
wave problem under consideration, we use the plane wave basis functions, 
Nkexp(ik·r) and Tkexp(ik·r), which when substituted into Eqs. (5) and (6) 
yield the homogeneous pair of algebraic equations 

(k2 - p2)Nk 

[(B/K)k2 - Eg/K~)Nk + 

2 
+ (AID)k Tk = O 

2 2 (k - q )Tk = O 

which have nontrivial solutions provided the wave vector k satisfies 
4 2 2 2 22 (1 - t)k - (p + q - (A/D)Eg/K~)k + p q = 0 

where the dimensionless coupling parameter t is defined as 

t = AB/KD 

(9) 

(10) 

(11) 

(12) 

At sufficiently high modulation frequencies where bulk recombination 
effects are negligible (i.e., ro~>> 1), the thermal and plasma waves are 
coupled only if t is nonzero. That is, if either A orB is zero, the wave 
equations, Eqs. (5) and (6), are uncoupled and can be solved independently 
with the appropriate propagation vectors being given by Eqs. (7) and (8). 
However, at low modulation frequencies ( ro~ << 1 ) where the recombination 
term in Eq. (6) becomes significant, the coupling only depends on A being 
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nonzero. In this limit we have p2 = -1/D~ which corresponds to a purely 
diffusive phenomenon that is independent of the modulation frequency. 
Since lql is always a decreasing function of w, then at low enough 
frequencies such that lql << IPI 1 one of the roots of Eq. (11) will also 
correspond to a frequency independent and purely diffusive mode. 

To complete the solution of Eqs. (5) and (6) we note that for any 
given k the corresponding wave amplitudes Nk and Tk are not independent. 
From Eq. (5) we have 

T __ ~[ k2 - (K/B)Eg/K~] 
k - K k2 2 Nk 

- q 
(13) 

or equivalently from Eq. (6) 

(14) 

The solution to any particular prohlem is now straightforward. For 
prohlems in which the thermal and plasma sources are localized at a 
houndary, say z = O for example, then a linear comhination of the hasis 
functions that satisfies the houndary conditions (including the source 
terms) will yield the solution. On the other hand, when the sources are 
spatially extended, one must first find the particular solutions of the 
wave equations (Eqs. (5) and (6) augmented with the proper source terms) 
and then to those particular solutions add the appropriate linear 
comhination of hasis functions needed to satisfy the houndary conditions. 

DISCUSSION 

Before solving any particular examples, let's examine the weak 
coupling limit (t << 1 and AE9/K << 1) where the solutions of 
Eq. (11), k1 and k2, are to a good approximation given hy 

2 2[ k1 = p 1 -

2 2[ k2 = q 1 + 

tp2 - (A/D)Eg/Kt ] 
2 2 

q - p 
(15) 

(16) 

In pure silicon with D = 15 cm2/sec, K = 1.42 V/cm °C, pC= 1.7 J/cm3 0c 
and at sufficiently high modulation frequencies where w~ >> 1, we have 
lql > IPI which means that with increasing t, lk1 1 decreases and lk21 
increases. That is, the spatial extent of the k1 (plasma-like) mode 
~ncreas7s while that of the k2 (thermal-like) mode decreases with 
1ncreas1ng t. 

In the low frequency limit ( w~ << 1 ), the k1 mode is purely 
diffusive and frequency independent as discussed earlier with k1 increasing 
or decreasing in magnitude depending on the sign of A. In this limit we 
have, 

(17) 
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The k2 mode, however, retains its wavelike properties with the magnitude of 
k2 also linearly dependent on A. For k2 we have 

2 2 2 
k2 = q [ 1 + tq D-r - AEq/K ] (18) 

In contrast to the uncoupled problem in which the wave vectors are 
monotonically decreasing with increasing frequency, recombination effects 
in the presence of coupling can lead to dispersion in the wave vectors that 
is non-monotonie with frequency. Of practical importance, however, is the 
effect of coupling on the plasma density and temperature, particularly at 
the surface where the excitation occurs and a measurement is most easily 
made. 

As an example, we consider an infinite half-space with a plasma 
source, P , and a thermal source, Q , both of which we take to be localized 
at the su~face z = O and infinite iR x and y. Then in terms of our plane 
wave hasis functions, we have for this !-dimensional problem 

N(z) = Nleiklz + N2eik2z 

T(z) - T iklz T ik2z - le + 2e 

(19) 

(20) 

with the unknown amplitudes N. and T. determined by applying the boundary 
conditions. For the half-spac~ probl~m the boundary conditions are that 
the currents defined by Eqs. (1) and (2) be equal to the sources, P and 
Q , respectively. That is, JN(z=O)=P and J (z=O)=Q • Applying thgse 
b8undary conditions we obtain for the0 plasma0density0 and temperature at 
z = O, 

where 

(23) 

and where ~ and ~ are dimensionless thermodiffusion coefficients defined by 

~ = AQ /KP o o (24) 

(25) 

Also in Eq. (23), e1 is defined as the numerical factor relating T1 to N1 
in Eq. (13) 

2 
__ ....!!..._[ kl - (K/B)Eq/K-r ] 

el - K k2 2 
1 - q 

(26) 

and e2 is defined as the numerical factor relating N2 to T2 in Eq. (14) 

(27) 

Finally, to be complete, we need to specify the source terms P and Q • 
Assuming, as discussed in the introduction, that an intensity godulatgd 
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laser beam is incident on the sample, then by letting Q denote the total 
energy flux absorbed at the surface, we have 

and 

p = Q/E 
o 

Q = Q(E - Eq)/E o 

(28) 

(29) 

where E is the energy per photon and Eq is the hand ga~ energy. In 
all of the following calculations we will assume an Ar ion laser operating 
ata wavelength A= 0.5 ~m, i.e., E = 2.5 eV, incident on silicon which has 
a band gap energy, Eq = 1.1 eV. Thus, slightly more than half of the 
absorbed energy flux, Q, will go directly into heating the lattice with the 
remaining portion being carried away from the source region by the 
photogenerated electron-hole pairs. 

In Figs. 1, 2 and 3 we show the calculated surface plasma density and 
surface temperature in silicon as functions of the modulation frequency and 
the dimensionless thermodiffusion coefficient, «, for different values of 
the ratio, ~1«, and a fixed bulk recombination time, ~ = 0.1 ~sec. Setting 
~ = O yields the results shown in Fig. 1. 

2.04 

~.25 

~.~~ 

Fig. 1 

~ .1~ ~ . 10 

r~qu~nc~ <MHz) 

Surface temperature T(O) (°C) and plasma density N(O) (lol7/cm3) 
as functiona of a and modulation frequency with B/a = O, 
T = 0.1 ~sec, and Q = 3.2 kW/cm2. 

As one might anticipate for this case, the dependence of T on a 
is weak even at the lowest frequencies where recombination is significant. 
The effects of recombination, incidentally, on the surface temperature 
are evident in the figure as the dependence on frequency is much st:ong~r 
than 1/lw. That is, at the lowest frequency shown, 0.1 MHz, recomb1nat1on 
heating is most significant (raising the temperature from 1.46°C to 
2.04°C) while at the highest frequency shown, recombination heating is 
a negligible effect constituting about 2% of the total heating. More 
interesting, however, are the results for the surface plasma density. As 
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expected in the absence of coupling (i.e., « = 0), the plasma density tends 
toward saturation at the lower frequencies as the recombination becomes 
more significant. The effect of coupling in this frequency regime is quite 
dramatic, reducing the plasma density by nearly a factor of two as « 
increases from O to 0.9. As we go to higher frequencies the coupling 
effect decreases substantially thereby giving rise to a plasma density 
whose dependence on frequency is non-monotonie for fixed non-zero values of 
«· To get some idea of the origin of this latter effect, let's consider 
Eq. (21) assuming that the coupling bas no effect on the wave vectors, 
i.e., set k1 = p and k2 = q, and that the product, e1e?, can be neglected. 
Under these assumptions we obtain for the surface plasMa density 

iP [ ] N(O) = pDo 1 - « [ ~ ) (30) 

At the 0.1 MHz modulation frequency where p = -1/D• and IPI - lql, the 
dependence of N(O) on the coupling is approximately [1 - .5«) which is 
consistent with the results shown in Fig. 1. Going to higher frequencies 
where the recombination effects become negligible, IPI - .2Siql and the 
dependence of N(O) on « predicted by Eq. (30) approaches [1- .2«], which 
is also consistent with the complete calculations shown in Fig. 1. 

In Fig. 2 we show results for N(O) and T(O) obtained with ~/« = 1. 
Here we see that the effect of ~ on N(O) opposes that of « reducing the 
amount by which N(O) decreases with increasing «as compared to the results 
shown in Fig. 1. 

2.04 s.ss 

3.91Q. 
0.10 0 . 00 0. 10 

0 .90 3 . 50 

Fig. 2 Surface temperature T(O) (°C) and plasma density N(O) (lo17fcm3) 
as functions of a and modulation frequency with B/a = l,T = 0.1 ~sec, 
and Q = 3.2 kW/cm2. 

The surface temperature now shows a dependence on 
mos t pronounced a t the higher modulation frequencies. 
increases from O to 0.9, T(O) decrease s from 2.04°C t o 
compared with a drop from 0.25 °C to O.ll°C at 3.5 MHz. 
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increased recombination at the lower frequencies reduces the effect of the 
coupling on T(O) compared with the higher frequency results where the 
recombination is negligible. This is even more significant when we set 
~1« = 10 and allow « to vary from O to 0.09 as shown in Fig. 3. 
Essentially « is no longer playing any role and the effects are due almost 
entirely to ~' which in that figure is varying from O to 0.9. The plasma 
density is unaffected by this coupling while the variation in T(O) with ~ 
is more significant than in the previous figure. 

6. 55 

0.10 0. 00 

(MHz) 

Fig. 3 Surface temperature T(O) (°C) and plasma density N(O) (lo17fcm3) 
as functiona of a and modulation frequency with a/a = 10, 
T = 0.1 ~sec, and Q = 3.2 kW/cm2 . 

To understand the effect of this coupling, we consider Eq.(22) 
in a manner analogous to what we did earlier in obtaining Eq. (30). 
Specifically, we assume k1 = p, kz = q, Cz = O, and E = O. For the 
surface temperature we then obtain 

T(O) = !_o 1 - ~ ( __g__ ] ·o [ J 
qK p + q (31) 

Equation (31) predicts a dependence of T(O) on ~ similar in form to that 
for N(O) on « in Eq. (30) but with a different dependence on the 
wavevectors p and q. At 0.1 MHz we therefore expect the dependence for 
T(O) to be - [1 - .5~] but at higher frequencies becoming stronger and 
approaching the limit [1 - .8~] as recombination becomes insignificant . 
These predictions are consistent with the calculations ~hown in F!g· 3. 
The surface temperature at 0.1 MHz decr8ases from 2.04 C to 1. 45 C and at 
3.5 MHz decreases from 0.~5 °C to 0. 08 C as ~ increases from O to 0.9. 

Although our examples so far have been limited to effects in 
1-dimension, the generalization of the solutions, Eqs. (21) and (22) to 
3-dimensions is eas ily accomplished as described in [3]. Ye should note, 
however, that the theory por tion of this talk, Eqs. (1) through (14), is 
general and valid in 3-dimensions. Thus, the expressions for c1 and c2, 
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Eqs. (26) and (27), are also valid in 3-dimensions. The only changes that 
need to be made are to the wave vectors k and k wherever they explicitly 
appear in Eqs. (21), (22) and (23). As aiscuss~d in [3] these are replaced 
by there respective z-components, klz and k2z' where 

k k2 2 llh 
lz 1 - qr (32) 

(33) 

The new N(O) and T(O) obtained with these replacements are multiplied by 
their respective spatially transformed sources, P and Q , then multiplied 
by exp(iq ·r) and the resulting products integratgd over0 the q plane. In 
Fig. (4) ~e show the surface temperature and plasma density atrthe center 
(r • O) of a source with a 2-dimensional gaussian profile along the 
surface, exp(-r 2/a2 ). In this particular example, recombination plays no 
role whatsoever since D~ >> a2 • However, the arguments are analogous to 
those employed earlier for the !-dimensional case; the plasma wave 
essentially saturates at significantly higher frequencies than does the 
thermal wave since D >> K/pC with the result that the effect of coupling on 
N and T will be frequency dependent. 

1. 11 

0. 30 
0. 00 

0.90 10.00 

0.00 

CMHzl 

0.90 10.00 

Fig. 4 Surface temperature T(O) (°C) and plasma density N(O) (lol7fcm3) 
as functions of a and modulation frequency at the center of a 
qaussian source of radius a = 1 ~m assuming S/n = 1, T = 1 msec 
and 1 mW of total absorbed power. 
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