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Population ecology is the discipline in ecology that deals with the structure and dynamics (e.g. growth and

decline) of biological populations. The focus may be on a single population in isolation, or one of a few interacting

populations. Population ecology is closely related to other ecological disciplines, e.g., physiology and community

ecology, but separate from them. A physiologist might study the mechanisms that enable a plant species to

tolerate a temporarily stressful environment; a population ecologist might estimate the fecundity and survival

rates in that environment, then use those rates to estimate the probability that the population goes extinct

if the stressful conditions continue. A community ecologist might describe the abundance of all the mammal

species in an area and describe the changes in relative abundance over time; a population ecologist might seek

to explain the temporal changes in a few important species by estimating the interactions between those species.

Introductory treatments of population ecology include [2, 23, 51]. More detailed accounts of specific ecological

issues include [7, 27, 53]. The history of population ecology is summarized in [23] and [30, esp. pp 146-192].

A biological population is a collection of individuals of the same species, usually associated with a specific

geographic area [2]. Examples of populations include the mallard ducks in the Central flyway of the United

States, the Daphnia laevis, a zooplankton, in a specific lake, the white footed mice in a specific 0.1 ha patch of

grassland, and the Northern Monkshood, a rare plant, found along a specific 10m long stretch of river bank. The

choice of geographic area is arbitrary, so long as the choice is appropriate for the ecological context. For example,

Northern Monkshood occurs in distinct patches along stream banks. The population can be defined at a small

spatial scale, e.g., the plants in a specific patch, at a larger scale, e.g., all plants along a single stream, or at a very

large spatial scale, e.g., all plants of the species. Small scales definitions of populations are appropriate for site

specific issues, e.g., describing relationships between local population dynamics and environmental conditions

or estimating a site-specific probability of extinction. Larger scale definitions are needed to estimate extinction

probability for a species or when individuals range over large areas.

Population ecology has a long history of using quantitative models to connect theory and data [26]. Some of
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these models are mathematical; they are often used to explore the behavior of populations that follow simplified

mathematical rules. Others are statistical; they are often used to estimate population quantities, e.g. survival

rate, or compare different models. Because the topic is vast, this article only summarizes major uses of statistical

models in population ecology. Details and examples can be found in [31, 59], in cited books and papers, or in

other articles in this encyclopedia. Details on mathematical models can be found in [23, 26, 45].

Many of the major issues in statistical population ecology relate to estimation or model selection of the

quantities in a fundamental equation of population dynamics (1) or (2). In discrete time, this equation is:

Nt+∆t −Nt = Bt −Dt + It − Et, (1)

where Nt is the population size at time t, Bt is the number of births in the interval between t and t + ∆t, Dt

is the number of deaths in that interval, It is the number of immigrants added to the population during that

interval, and Et is the number of emigrants leaving during that interval [1]. The continuous time equivalent is

d N

d t
= b(t)− d(t) + i(t)− e(t), (2)

where b(t), d(t), i(t), and e(t) are the instantaneous rates of birth, death, immigration, and emigration. The

quantities on the right hand side of equations 1 and 2 are usually functions of Nt, but they may also be functions

of numbers of individuals in other patches, population sizes of other species, or environmental conditions. They

may also be constants.

ESTIMATING ABUNDANCE AND RELATED QUANTITIES FOR

A SINGLE POPULATION

One of the first questions about a population is “how many individuals are there?”. This requires estimating the

population size, Nt, which almost always involves sampling. The most appropriate methods depend on certain

aspects of the species biology. For example, if it is possible to observe all individuals in the population, Nt, can be

enumerated. Usually, the population is too large or too widespread to count all individuals, so Nt is estimated

by sampling areas (e.g., quadrats for plants or plankton tows for small aquatic species). It is reasonable for

these species to assume that all individuals in the sampled areas are observed. However, in studies of larger

animals (e.g. mammals, birds, or fish), an individual might be present in the sampled area, but not observed

(i.e. seen or trapped). Estimating the number of individuals that are present, but not observed, can be done

using mark-recapture methods [40, 49, 43], removal sampling [49], distance sampling [5], or a variety of other
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methods that simultaneously estimate the population size and the probability of observing an individual. Closed

population methods [40, 49] assume no births, deaths, immigration or emigration during the study interval.

Open population methods [43, 49] allow turnover of individuals and provide estimates of the population size,

survival rates, and recruitment (birth + immigration) rates.

Estimation of the survival rate, φt = 1−Dt/Nt, and number of births, Bt, is relatively straightforward when

all individuals in the sampled areas are observed. All that is required is some way of distinguishing, at time

t+ ∆t, the individuals that were alive in the population at time t from those that were born into the population.

This might be done from biological knowledge (e.g. the relative size of newborn individuals) or by marking

individuals at time t. Then, births, Bt, during the interval (t, t + ∆t) can be enumerated and survival can be

estimated as φ̂t = (Nt+∆t
−Bt)/Nt. When P[observe] < 1, the Jolly-Seber model, or some other open population

model, can be used to estimate φt and Bt from mark-recapture data [49, 43]. Jolly-Seber estimates of population

size and recruitment are sensitive to the assumption of equal capture probability. More robust estimates can be

obtained from the Pollock’s robust design [42], which combines features of open and closed populations.

Survival and per capita fecundity rates (Bt/Nt) may differ between groups of individuals. For example, in

many bird species, survival of juveniles is less than that of adults [23]. In many mammal species, survival and

fecundity differ among age groups (e.g., 0-1, 1-2, 2-3 year old individuals). In many plant species, survival and

fecundity rates are more influenced by the size of the plant than by its calendar age [51]. Models for structured

populations include this variation in vital rates between groups of individuals.

Age- or size-specific survival and fecundity can be estimated in a variety of ways, depending on what sorts

of data are available [8, pp. 133-175]. Two common approaches include repeated observation of the size (or

age) and fate of marked individuals and using separate open-population models for each age- or size- group of

individuals [49]. Survival and fecundity rates can also be estimated from a time series of population counts using

regression or other methods [8, pp 142-154]. These methods are collectively called inverse methods, because they

are the inverse of projecting population size given survival and fecundity rates. They require data on the number

of individuals in each age or size group at each time and require some variability in survival or fecundity rates

among age or size groups.

Age- or size- specific estimates are less precise than total population estimates because the sample size is

smaller. If fecundity and survival rates vary smoothly with age or size, models can be used to increase the

precision of age- or size-specific estimates. Models may be parametric (e.g. a linear logistic regression on age)

or non-parametric (e.g. a smoothing spline); the appropriate choice depends on biological knowledge about the
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age- or size-related change in rates. When prior information is available, a Bayesian approach can be used [44].

MODELS FOR POPULATION GROWTH

Various well-known models for population growth can be derived from (1) and (2) by specifying the relationship

between births, deaths, and the current population size.

Continuous time models

The simplest population models ignore any differences between individuals and consider only instantaneous

birth and death rates in continuous time. The two most common and simple models are the exponential and

logistic. If per capita instantaneous birth rate, b = b(t)/N(t), and per capita instantaneous death rate, m =

d(t)/N(t) are constant, the population size grows or declines exponentially, N(t) = N(0) exp(t ∗ r), where

r = b −m. If the per capita instantaneous birth rate is constant but the per capita instantaneous death rate

is proportional to the population size, m(t) = (r/K)N(t), the population size follows a logistic growth curve,

N(t) = N(0)K/(1 + (K −N(0)) exp(−tr)) to reach an asymptote at N(∞) = K. K is often called the carrying

capacity of the population. [23].

The difference between the exponential and logistic models is important biologically. If the parameters are

constant over time, there are two possible outcomes from the exponential model: either the population goes

extinct when r < 0 or the population size increases without bound when r > 0. The outcome from the logistic

model is more biologically appealing: the population size approaches the equilibrium population size, K. Because

population sizes rarely appear to go to extreme values (0 or ∞), it would seem that the population dynamics of

most species include some form of negative feedback or density dependence [3]. However, clearly demonstrating

density dependence in a natural population has been difficult.

A variety of statistical tests of density dependence have been proposed [6, 10, 41, 14]. None appears to

be completely satisfactory. Two major problems are lack of power and adequate treatment of measurement

error. Time series of population counts are often short (e.g. less than 15 observations), so the data may be

insufficient to provide a powerful test [52]. Also, density dependence is a general concept; most procedures test

a specific null hypothesis (e.g. lag 1 autocorrelation, ρ(N(t), N(t− 1)), = 0), so a test may lack power to detect

other forms of density dependence. Measurement error complicates the analysis and interpretation of density
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dependence. In natural populations, N(t) is rarely estimated precisely; often the measurement error is quite

large [17]. One realization of a random walk (no density dependence) observed with a large measurement error

may be indistinguishable from a realization of a density-dependent time series. The interpretation of tests of

density dependence has been hotly debated (see [57] for references to one debate); one position is that there is

little justification for using any statistical test because either the type I error is incorrect or the test lacks power

[50].

There are continuous time models for structured populations, using delay-differential equations [38] or partial

differential equations [13]. However, it is easier to construct flexible models for structured populations using

discrete time models, especially matrix population models.

Discrete time models

Matrix population models [8] are a popular discrete time model for structured populations, because of their ease

of construction and analysis and their ability to describe biologically important variability. The population is

subdivided into components, e.g. age groups or size groups, that may have different per capita survival rates or

per capita fecundity. The population size, Nt, is a vector of the number of individuals in each age or size group.

The most commonly used models do not include density dependence, so Nt+∆t
= ANt, where A is the matrix of

age- or size-specific survival or fecundity rates [8]. The long-term growth rate, λ, the age (or size) distribution,

and the reproductive values are given by the dominant eigenvalue and associated eigenvectors of A and AT [8].

The sensitivity of λ to changes in any vital rate can be estimated using these eigenvalues [8, pp. 206-257].

The statistical issues associated with matrix population models include selecting boundaries between age or

size groups [56, 34, 16], estimating the uncertainty in λ or the associated eigenvectors [8, pp. 299-345], and

relating changes in λ to experimental treatments or changes in environmental conditions (Life Table Response

Experiments) [8, pp. 248-278].

The dynamics of the discrete time equivalent of logistic growth, Nt+∆t = rNt(K − Nt)/K are more com-

plicated than those of the continuous time logistic equation. If r is small, i.e. r < 3, the discrete time and

continuous models have similar dynamics; over time, the population size converges to the carrying capacity,

K. If r is larger, 3 < r < 3.57, the population size in the discrete time model jumps between two values. As

r increases further, the population size jumps among an increasingly large number of possible values, until at

r > 3.57, the population size is chaotic [32]. The time series of population sizes appears to be random, even
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though Nt+∆t
is a deterministic function of Nt [32].

When the dynamics are chaotic, Nt is very sensitive to the initial conditions. Consider two time series that

start at almost identical initial values (e.g. one at Na
0 = x and the other at N b

0 = x + δ, where δ is close to 0).

Over time, the difference between the time series, Na
t −N b

t , may decrease to 0 if both series are converging to a

stable point (e.g. the carrying capacity, K), remain constant, or increase exponentially if the system is chaotic

[46]. Exponential divergence, or sensitive dependence to initial conditions, means that small differences in N0

lead to increasingly large change in Nt. The rate of divergence or convergence can be quantified by the Lyapunov

exponents [46]. A positive exponent indicates chaotic dynamics. If the deterministic model for the dynamics is

known, the Lyapunov exponents can be calculated analytically. It is more difficult to identify chaotic dynamics

when the true dynamic model is unknown.

Statistical methods that have been used to identify chaotic dynamics from a time series of population sizes

include fitting linear or non-linear regression models [21, 55], graphical analysis [47], and estimating Lyapunov

exponents [39]. The general idea behind the regression methods is to fit a model of the form Nt = f(Nt−1) + εt

are use the estimated parameters to determine if the series is chaotic. For example, if f(Nt−1 is the discrete

logistic growth function, the dynamics are chaotic if r̂ > 3.57. Although simple to use, the approach is not robust.

Conclusions are sensitive to the choice of model and estimator [35]. Currently, the best approach appears to be

to fit a non-parametric model to the time series, then estimate the largest Lyapunov exponent using that model

[39].

Stochastic growth models and variable environments

All the models in the previous sections are deterministic: two populations with exactly the same vital rates and

initial conditions will have exactly the same N(t) at any time, t. A deterministic model assumes no random

variability in the population growth. This assumption may be violated in three different ways: uncertainty,

demographic stochasticity, and environmental stochasticity. Uncertainty is the sampling variation arising from

parameter estimation. Demographic stochasticity [48] is the variation arising because birth and death are discrete

random events that happen to individuals. A small population (e.g. N=10) with a growth rate, λ, > 1 may still

go extinct if it experiences by chance a few years of lower than expected births or higher than expected deaths.

Demographic stochasticity can be modelled by a stochastic process (e.g. a stochastic birth-death process) or by

including discrete event distributions in a model.
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Environmental stochasticity is the variation arising because demographic parameters are not constant. This

variation can be included in a model either as an extra random component to the change in population size (e.g.

a stochastic differential equation [12]) or as random changes to the vital rates (e.g. a stochastic matrix model).

The most commonly used approach is some form of stochastic matrix model for a structured population. These

models can be setup as a random coefficient model, a mega-matrix model, or a random sequence of matrices [36].

In the random coefficient approach, each coefficient in the transition matrix, A, is considered a random variable

and given a distribution [11]. Pairs of coefficients are usually considered to be independent because of insufficient

data to estimate all the correlations. In the mega-matrix approach, the transition matrix is expanded to describe

transitions between each combination of age- or size-stage and environment [22]. Because this approach includes

different environments in the transition matrix, it models population dynamics in an ensemble of patches with

different environments.

In the random sequence of matrices approach, the environment is assumed to vary between a fixed number

of unique states, each with a population transition matrix [54]. For example, random year-year variation can be

modelled by considering each year-to-year transition as one environmental state and transition matrix [15]. A

random sequence of environments (and corresponding sequence of transition matrices) is modelled by a Markov

chain. One important consequence of environmental variation is that stochasticity reduces the average population

growth rate [54].

One application of stochastic population models is to estimate extinction probabilities, i.e., under a specific

set of conditions, what is the probability that N(t) = 0 at any time in the future. Such information can aid the

evaluation of conservation priorities and management decisions. Conditional on estimates of the vital rates, the

extinction probability and expected time to extinction can be calculated analytically for stochastic birth-death

processes [25] and estimated by simulation for the other stochastic models. Estimates of extinction probability

are often sensitive to the choice of the vital rates, which are uncertain. Uncertainty in the vital rates can be

incorporated using Bayesian methods [29].

OTHER MODELS

The models discussed up to now describe the dynamics of a single species in an isolated population. Real

populations exist in an environment that includes other species and other populations of the target species.
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Multispecies models

Models for multiple species are usually constructed from pairwise interactions between species. These interactions

are one of three general types: competition (both species negatively affected), predation (one species, the prey,

negatively affected, but the other, the predator, positively affected), and mutualism (both species positively

affected. Each type of interaction has different consequences for the population dynamics. At equilibrium,

multiple species may coexist, one species may drive all or most of the others extinct, or abundances may oscillate

in stable limit cycles [23]. In particular, the abundances of boreal mammals (e.g., lemmings, snowshoe hares, lynx,

and foxes) have fluctuated in semi-regular cycles for many generations. Predator-prey dynamics are suspected

of contributing to these cycles, although their ecological causes remain contentious. Mathematical analysis of

multi-species models focuses on estimating the equilibrium dynamics for a species model and parameters.

Estimating the parameters that describe competitive or predator-prey effects is the major statistical issue in

multi-species models. Sometimes, coefficients describing interactions between species are estimated from experi-

mental manipulations of density. More commonly, they are estimated from time series of observed abundance of

each species. Some form of regression (linear or non-linear, depending on the mathematical model) [18, 24] or

time series model (multivariate or non-linear) [20] is used, but the details vary for each study.

Spatial models

The models in the previous sections generally assume that populations are isolated (no immigration and em-

igration) and considered in isolation (the dynamics of a population can be understood without knowledge of

the dynamics in nearby populations). Most biological populations do not exist in isolation; instead they occur

as patches in a spatial landscape. The spatial structure can be described with a variety of statistics (e.g. the

variogram, nearest neighbor methods, or Ripley’s K statistic.

The consequences of spatial dependence between local populations includes three related, but different, sorts

of biological questions and models. One set of questions concern the synchrony of local population dynamics

across large areas. A second set concern the dynamics in a metapopulation (a collection of local populations

connected by dispersal). The last set concern the dynamics of a single spatially distributed population.

When abundances in a local population fluctuate in semi-regular cycles, it is natural to ask whether or not

nearby populations fluctuate in synchrony [4]. Synchrony can arise by dispersal of individuals between local

populations or from spatially correlated environmental change (the Moran effect). The magnitude and spatial
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scale of spatial synchrony can be estimated using spatial cross-correlation functions [4].

A metapopulation is a collection of local populations connected by dispersal [19]. The dynamics and persis-

tence of a metapopulation can be quite different from those of any local population because a local population

that goes extinct can be reestablished by dispersal. Metapopulation models are commonly used when the oc-

cupiable habitat occurs in discrete patches surrounded by unusable habitat (e.g., a collection of islands). Since

immigration and extinction rates are usually small, direct estimation of them is difficult. They can be estimated

indirectly, if it is possible to enumerate presence or absence of the species on a network of patches [19, 33].

When the occupiable habitat is continuous, the population may be considered as a single spatially distribution

population. The dynamics that are observed at any arbitrarily chosen spot depend on both local conditions

and the dynamics at nearby locations [28]. Although mathematically more complicated than single population

models, space-time models can be used to model the spread of invading species into new habitat or to combine

information from spatial replicates to better estimate demographic parameters [28].
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