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A conversation with my dad, circa 1994:

So Brian, what are you going to study when you go to college this year?
I don't know.
Well, you're pretty good at math, how about engineering?
Ok.
What type of engineering would you like to study?
Hmm.
Well, you really like airplanes, how about aerospace engineering?
That sounds good, think I can finish that in four years?

In memory of my dad, Rick Matheis.
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ABSTRACT

Icing codes are playing a role of increasing significance in the design and certification 

of ice protected aircraft surfaces.  However, in the interest of computational efficiency 

certain small scale physics of the icing problem are grossly approximated by the codes.  One 

such small scale phenomena is the effect of ice roughness on the development of the surface 

water film and on the convective heat transfer.  This study uses computational methods to 

study the potential effect of ice roughness on both of these small scale phenomena.

First, a two-dimensional condensed layer code is used to examine the effect of 

roughness on surface water development.  It is found that the Couette approximation within 

the film breaks down as the wall shear goes to zero, depending on the film thickness. 

Roughness elements with initial flow separation in the air induce flow separation in the water 

layer at steady state, causing a trapping of the film.  The amount of trapping for different 

roughness configurations is examined.

Second, a three-dimensional incompressible Navier-Stokes code is developed to 

examine large scale ice roughness on the leading edge.  The effect on the convective heat 

transfer and potential effect on the surface water dynamics is examined for a number of 

distributed roughness parameters including Reynolds number, roughness height, streamwise 

extent, roughness spacing and roughness shape.  In most cases the roughness field increases 

the net average convective heat transfer on the leading edge while narrowing surface shear 

lines, indicating a choking of the surface water flow.  Both effects show significant variation 

on the scale of the ice roughness.  Both the change in heat transfer as well as the potential 

change in surface water dynamics are presented in terms of the development of singularities 
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in the surface shear pattern.  Of particular interest is the effect of the smooth zone upstream 

of the roughness which shows both a relatively large increase in convective heat transfer as 

well as excessive choking of the surface shear lines at the upstream end of the roughness 

field.  A summary of the heat transfer results is presented for both the averaged heat transfer 

as well as the maximum heat transfer over each roughness element, indicating that the 

roughness Reynolds number is the primary parameter which characterizes the behavior of the 

roughness for the problem of interest.
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CHAPTER 1. INTRODUCTION

Aircraft Icing and Icing Codes
Any vehicle which flies through the atmosphere can be subject to icing of the 

vehicle's structure during flight.  In-flight icing occurs when small liquid supercooled water 

droplets are suspended in the atmosphere.  These droplets constitute what is known as an 

icing cloud.  As a flight vehicle or aircraft flies through the icing cloud, the small droplets 

impact on various critical surfaces.  If the temperature of the air is low enough and the 

surface is unprotected/unheated, the droplets may freeze immediately upon impact forming 

what is known as rime ice.  At warmer temperatures the droplets may hit the surface but 

remain in liquid form, at least for a time.  The liquid water may freeze soon after impact, or 

run along the surface for a certain distance before freezing and forming what is known as 

glaze ice.

When significant ice forms on a critical surface the result is typically a loss of aircraft 

performance, i.e. decreased lift, increased drag, an alteration in the aircraft's handling 

characteristics or a combination of all three (see, for example, [1],[2], [3]).  Ice which forms 

on a surface and then sheds due to aerodynamic forces has the potential to be ingested by an 

engine and cause damage or loss of engine performance (see, for example, [4]).  In addition, 

any other flight critical parts which are on the exterior of an aircraft are at potential risk for 

damage or decreased performance due to icing.  As a result, the Federal Aviation 

Administration's (FAA) Federal Air Regulations (FAR) Part 25.1419[5] specify the 

requirements for certification of a commercial transport category airplane with respect to 

aircraft icing and ice protection.  The requirements state that it is the responsibility of the 
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airframe manufacturer to verify that the airplane can safely operate within the icing envelope 

defined in FAR Part 25[5].  In particular, FAR Part 25.1419[5]  requires 1) an analysis be 

performed to show that the ice protection system is adequate and 2) icing or dry air flight or 

wind tunnel tests to verify the analysis and check for anomalies.  The purpose of the analysis 

is to determine if ice will accrete with the ice protection system operative.  Items of interest 

may include size and shape of ice in the protected area or ice further aft on the surface after 

liquid water has run back.  In addition, the analysis may need to assess the size and shape of 

ice that would accrete if the ice protection system were inoperative due to a system 

malfunction.

One of the primary methods for carrying out the ice protection system analysis is the 

use of ice accretion codes.  Many icing codes have been developed and used in the aviation 

industry throughout the world, however the main code used in the U.S. is known as 

LEWICE[6] and was developed by the NASA Glenn (formerly Lewis) Research Center Icing 

Branch.  As with most icing codes, LEWICE is based on the Messinger[7] control volume 

icing model which sets up mass and energy balances on control volumes which are defined 

along the surface of interest.  A significant advantage of using this model is that it allows 

very rapid icing analyses to be performed on modern desktop PC's.  This is important 

because the code can be used to assess performance in a large combination of icing 

conditions, flight conditions and aircraft configurations.  LEWICE and other icing codes 

based on the Messinger[7] model have proved to be very successful in numerically 

reproducing ice shapes generated in icing tunnels and flight tests for rime ice and a number 

of glaze ice conditions.  However, like most other icing codes, the accuracy of LEWICE in 

the cases of warmer temperatures and higher liquid water content (LWC) has not been as 
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successful.  This is likely due to small scale effects of the icing process which must be 

modeled in the control volume approach.

The general time stepping solution procedure of the LEWICE code is shown in 

Figure 1.  The simulation starts with the flow solution over the clean aircraft or component. 

This flow solution is then used as an input to a water droplet trajectory calculation which 

determines where droplets of various sizes impact the surface.  The next step is a heat 

transfer calculation in which the contribution of the various heat transfer modes are 

determined, including convective heat transfer, cooling due to the impacting droplets, various 

latent heats and others.  The heat transfer calculation is combined with a mass balance in the 

next step to determine the amount of ice that accumulates in a given time step in each control 

volume.  This “new” ice is added to the clean airfoil or existing ice shape from the previous 

time step and a modified geometry is created.  The process is then repeated until the total 

icing time has been reached.  There are various small scale processes contained in the blocks 

of Figure 1 which are modeled in a simple manner in the icing code in order to maintain 

computational efficiency.  These effects become more significant at warmer temperatures 

and higher liquid water contents (LWC) and are not completely understood.  As a result 

LEWICE, along with some other icing codes, is not as accurate in predicting ice shapes for 

glaze ice conditions.  In 1999, Potapczuk[8] of NASA Glenn, in an overview of the status of 

the LEWICE code, listed the advances in surface modeling which are required for better 

prediction of glaze ice accretion.  These include:

1. Dynamics of unfrozen water on a rough surface
2. Impact of small scale roughness on convective heat transfer augmentation
3. Effect of droplet splashing on surface water transport

Two of the three advances mentioned by Potapczuk[8] are directly linked to a better 
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understanding of the effects of surface roughness.  This is the focus of the current study.

Ice Roughness
Extensive research has been conducted to examine the effect of roughness on the 

convective heat transfer.  For example Schlichting[9] gives a detailed method for 

determining the augmentation to the convective heat transfer for sand grain roughness. 

However the majority of this research has focused on the scenario of roughness which lies on 

a flat plate and well within the thickness of an approaching turbulent boundary layer.  As the 

next few sub-sections highlight, these conditions are not applicable to ice roughness.

Experimental Evidence
There are currently no broadly accepted mechanisms for the formation of ice 

roughness.  Proposed theories include an instability between the air/water/ice interfaces or a 

reaction of the water film to the air boundary-layer transitioning from laminar to turbulent 

flow.  Tsao & Rothmayer[10] examined the formation of ice roughness in terms of a stability 

problem in the context of the triple-deck boundary-layer structure.  The study showed that in 

the case of wall cooling, which is the typical case for ice formation, instabilities occur which 

permit the formation of initially shallow ice roughness elements on the surface.  A 

subsequent study by Tsao & Rothmayer[11] showed favorable comparisons of the predicted 

roughness element diameters with experimental observations of Anderson et al.[12]. 

Additional studies which have focused on ice layer instability as a mechanism for large ice 

roughness formation near stagnation lines include Rothmayer[13] and Shourya & 

Rothmayer[14].

As a result of the lack of understanding of the ice roughness formation mechanism, 

most icing codes do not include a model for roughness formation even though capturing the 

effects of the roughness is essential for correctly predicting glaze ice shapes.  The alternative, 
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as is done with LEWICE, is to calibrate the code against known experimental shapes (see 

Ruff and Berkowitz[6]).  That is, for a given icing condition, the roughness parameter within 

the LEWICE code is varied until the computational ice shape agrees with the experimental 

one.  The result is a correlation of roughness characteristics (height) as a function of the icing 

condition.  However, this is applicable only to airfoil leading edges and may not allow an 

accurate glaze ice prediction on other shapes without a priori knowledge of the roughness 

characteristics.  Therefore, a better understanding of the formation of ice roughness is 

required.

The main evidence for the character of ice roughness has come from icing 

experiments.  Shin[15] and Anderson et al.[12]  have both characterized ice roughness in 

glaze icing conditions based on icing tests conducted in NASA's Icing Research Tunnel 

(IRT).  Figure 2 from Anderson et al.[12] shows a typical example of ice roughness near the 

leading edge.  The stagnation line is shown as the line in the middle of the figure.  On either 

side of the stagnation line, extending approximately 5-6mm downstream, there is a region of 

smooth, clear ice.  This is simply known as the smooth zone and is typical of glaze ice over 

two-dimensional airfoils.  The size of this zone is dependent on the icing/flight condition and 

may not be present at all for swept wing icing.  At the edge of the smooth zone the 

appearance of ice roughness is sudden.  Shin[15] characterized ice roughness elements such 

as these in terms of the size, shape and location of the roughness elements relative to the 

leading edge.  Subsequently, Kerho[16] used the data obtained by Shin[15] and a boundary-

layer code to determine flow conditions at the location of the roughness without the 

roughness elements present.  The results are shown in Table 1.1 which is taken from 

Winkler[17].
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Rec k/  Rek

2.76x106 2.7 - 4.8 1500 - 3300
3.68x106 3.1 - 5.5 2000 - 4400
4.60x106 3.5 - 6.1 2500 - 5500

Table 1.1: Typical conditions for glaze ice roughness.  From Winkler[17]

The left column gives the three chord Reynolds numbers examined by Shin[15] and 

the other two columns give ranges of 1) ratio of the roughness height, k, to local boundary-

layer thickness,   and 2) the roughness Reynolds number, Rek .  The roughness Reynolds 

number is defined as

Re k=
uk k


, (1.1)

where uk  is the local streamwise velocity at a height k from the surface without the 

roughness present.  The two parameters k /  and Rek  are thought to be the most important 

parameters in terms of characterizing the flow over roughness, and the majority of roughness 

research uses one or both of these parameters when analyzing results.  Because most of this 

research focuses on roughness buried deep within the boundary-layer, the parameter of 

choice has typically been Rek .  However, as Table 1.1 shows, ice roughness on an airfoil 

leading edge is typically three to six times larger than the local boundary-layer thickness.  As 

a result, both of these parameters may play important roles in characterizing ice roughness 

effects for parameters such as the convective heat transfer.

Characteristics of Isolated Roughness
Although the practical application of isolated roughness is limited, it is typically 

studied as a building block to the understanding of distributed roughness fields.  As 

mentioned previously, a large body of work exists for the case of roughness which is 
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contained well within an approaching turbulent boundary-layer.  Instead of focusing on this 

extensive list of literature, the main goal of this and the next section is to examine what has 

been learned from research concerned with roughness which has a height equal to or greater 

than the thickness of an approaching laminar boundary-layer.

Any roughness element with an O(1) aspect ratio will typically lead to premature 

transition, compared to the roughness not being present.  At extremely low Reynolds 

numbers this may not be the case and even at moderately low Reynolds numbers the 

roughness will only begin the amplification of flow instabilities and transition may still occur 

far downstream from the roughness.  As the flow velocity is increased, for example 

increasing Re k , this transition point will begin to move upstream.  At some critical value, 

Re k ,crit , the transition point moves rapidly upstream to approach the roughness, with only 

small changes in the value of Rek .  Extensive studies performed for roughness on a flat plate 

indicate that the value of Re k ,crit  is 600, though it is not clear if this is valid for larger 

roughness elements.  When an isolated roughness element is placed on an airfoil leading 

edge, Bragg et al.[18] has shown that this value could be as high as 1500, owing to the 

favorable pressure gradient.  Below Re k ,crit  the flow in the vicinity of the roughness can be 

considered to be laminar.  Therefore the laminar flow regime is of significant importance for 

flow over ice roughness.

Mason & Morton[19] have conducted Navier-Stokes simulations for flow over O(1) 

aspect ratio roughness in addition to water channel tests with dye visualization.  While the 

presented results are nearly all qualitative, the study serves to highlight the flow structures 

that are generated by this type of roughness in the laminar flow regime.  The flow structures 
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are significant because they determine the potential effect of the roughness on heat transfer 

and surface water flow.  For example, flow structures which tend to move the outer flow 

closer to the surface are likely to lead to increased heat transfer.  Similarly, flow structures 

which have an influence on the surface shear pattern may have an effect on the distribution of 

the surface water film.

Figure 3 and Figure 4 show various flow structures typical of laminar flow over an 

isolated roughness element based on a computation from the current study.  The color 

contours on the surface of the roughness in these figures show the convective heat transfer 

coefficient.  In this case the outer flow is colder than the temperature of the wall and blue 

contours indicate regions of increased cooling while red contours indicate regions of 

decreased cooling, but still cooling nonetheless.  The baseline convective heat transfer that 

would exist without the presence of the roughness is evident from examining the surface 

upstream of the roughness element.  The lines shown on the surface are the surface shear 

lines (or limiting streamlines) which are constructed from the three-dimensional skin friction 

field on the surface.  The color contours on the symmetry plane are the streamwise velocity 

over the roughness element, while the lines on the symmetry plane are the streamlines which 

are determined from the flow velocity components.  The general features of laminar flow 

over a roughness element can be understood by examining Figure 3 and Figure 4.

The surface shear pattern for the flow over the roughness element exhibits a number 

of shear singularities which were first studied by Lighthill[20].  The study of these 

singularities is significant because it can itself reveal a good deal about the flow interior and 

general properties of the flow.  Nodal points are singularities into which all nearby shear 

lines converge.  Focal points are a type of nodal point, however in this case the shear lines 
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converge by spiraling around the singularity.  Nodal points and focal points can either be 

points of separation or points of attachment depending on whether the shear lines are moving 

into or away from the singularity, respectively.  Finally, saddle points are points through 

which only two shear lines pass.  All three of these types of singular points are evident in 

Figure 3 and Figure 4.  Lighthill[20] developed a rule which governs the number of singular 

points which can occur on a surface.  In particular, the number of saddle points on the surface 

must always be equal to the number of nodal and focal points on the surface.  Looking at 

Figure 3a there are three nodal points and two focal points (the symmetric focal point is not 

shown) for a total of five.  There are also five saddle points, again with symmetric saddle 

points not shown.  Therefore Lighthill's[20] rule is satisfied for the roughness element in 

Figure 3.

Nodal or focal points of attachment are locations where the outer fluid is impinging 

on the surface (i.e. stagnation points).  If the outer flow is colder than the wall, this results in 

an increased cooling of the surface at these types of singularities.  This is in fact the case for 

the three nodal points on the roughness center-line in Figure 3a (although the nodal point on 

the downstream top part of the roughness is a nodal point of separation).  Nodal or focal 

points of separation are locations where the fluid is being lifted away from the wall.  This 

tends to move the outer fluid further from the wall, thereby decreasing the heat transfer at the 

singularity.  This is the case for the focal point in Figure 3a which is a focal point of 

separation and shows a decreased cooling of the wall relative to the approaching flow.

Saddle points do not have as direct an effect on the convective heat transfer.  The 

significance of saddle points is that the shear lines which emanate from them act as dividing 

lines on the surface.  These are often separation lines in three-dimensional separated flows. 
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Chapter 2 of this study discusses the role that the surface shear plays in being the 

predominant driver of unfrozen surface water.  As a result, the dividing of the surface shear 

lines due to the presence of saddle points is significant because it acts to determine where the 

surface water generally can or cannot go.  For example, for the shear lines which are 

approaching the roughness element from upstream, none of them will actually reach the 

roughness element due to the saddle point which is just upstream of the roughness.  Half of 

the shear lines move around the roughness element and toward the focal point where they 

terminate after spiraling in.  This is a location at which unfrozen surface water can begin to 

pool since the shear lines are leaving the surface at this location.  The other half move around 

the roughness element and simply continue downstream.

Like the surface shear pattern, the streamlines in the symmetry plane also contain 

singularities.  Each nodal point in the surface shear which lies on the symmetry plane shows 

up as a saddle point in the streamline pattern on the symmetry plane.  Similar to the saddle 

points on the surface, these saddle points also act to split the flow.  Consider, for example, 

the saddle point in the symmetry plane on the upstream face of the roughness.  There is a 

dividing streamline which originates at this saddle point and extends upstream.  Any 

streamlines which originate below this dividing streamline will get caught up in the horse-

shoe vortex structure which sets up at the base of the roughness.  The horse-shoe vortex 

structure is evident in the spiraling streamlines at the upstream base of the roughness.  This 

vortex structure wraps “legs” around the roughness element which extend downstream, 

typically causing downwash along the roughness center-line.  The number of horse-shoe 

vortices in front of a roughness element can vary and typically increase with increasing Rek . 

The behavior of streamlines which enter the horse-shoe vortex structure is shown in Figure
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3b.  The streamline which begins near the dividing streamline in the symmetry plane is 

brought down to the surface by the horse-shoe vortex.  This streamline then follows the 

structure around the side of the roughness and gets caught up in the roughness wake.  The 

horse-shoe vortex structure is primarily fed by the streamlines which originate near the 

dividing streamline in the symmetry plane.  Other streamlines which originate further away 

from the symmetry plane are actually lifted away from the surface by the presence of the 

horse-shoe vortex.  This tends to have an insulating effect on the surface, assuming that the 

freestream air is colder than the wall.  As a result, the cooling at the base of the roughness is 

decreased, as indicated in Figure 3.

A second type of roughness induced vortex structure, first observed experimentally 

by Gregory & Walker[21], typically occurs at higher values of Rek  and/or for “sharper” 

roughness elements, such as that shown in Figure 3.  Gregory & Walker[21]  referred to these 

as chimney vortices as they initially appear just downstream of the roughness, on both sides 

of the center-line, rising vertically from the surface.  These vortices are formed by shear 

layers separating from the sides of the roughness element and rolling up just downstream of 

the roughness.  The on-wall signature of the chimney vortices are the focal points shown in 

Figure 3.  Figure 4a shows a streamline which originates near the wall upstream of the 

roughness element and is captured by the chimney vortex in the roughness wake.  The 

streamline is lifted from the surface in a swirling motion.  As mentioned previously, this 

contributes to the decreased cooling on the surface at the focal point.

Finally, returning to the streamline pattern on the symmetry plane, streamlines which 

originate above the dividing streamline from the upstream saddle point will pass over the top 

of the roughness element.  This is the case for the streamline shown in Figure 4b.  As it 
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passes over the roughness, this streamline is very near the roughness surface and separates 

into the wake as part of the shear layer.  Once in the wake the streamline becomes subject to 

the downward motion of the main wake vortex, then the upward motion of the chimney 

vortices, and so forth until it exits the wake entirely.  Since the majority of the streamlines 

which enter the roughness wake come from near the roughness surface, the convective 

cooling in this region is decreased, as indicated in Figure 4.

The effect of isolated roughness elements in a flat plate laminar boundary-layer on 

the convective heat transfer was examined experimentally by Henry et al.[22].  Heat transfer 

data was obtained by infrared imaging of the surface to determine the mean surface 

temperature.  For all roughness elements tested, a maximum heat transfer enhancement 

occurred about one-half roughness height upstream from the maximum height.  Only the 

smallest roughness element examined in this study was below Re k ,crit .  This case showed a 

factor of two relative increase in the heat transfer over the clean plate value, while 

downstream of the roughness the heat transfer quickly returned to the flat plate value.  For 

the other roughness elements which were above Re k ,crit  the maximum relative heat transfer 

over the roughness element was as high as 8.5 while the relative heat transfer in the 

roughness wake was typically 50% of the maximum value.  The results of Henry et al.[22] 

also indicated a significant k /  effect.  In particular, once the height of the roughness was 

equal to the height of the local boundary-layer or larger, the maximum heat transfer over the 

roughness element began to increase significantly.  This was likely due to the top of the 

roughness element being exposed to the free-stream air.

Poinsatte et al.[23] examined distributed roughness elements on the leading edge of 

an airfoil, however the roughness spacing was quite large such that the roughness elements 
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essentially behaved as isolated roughness elements.  The roughness element sizes and 

Reynolds numbers investigated were consistent with those listed in Table 1.1.  Heat transfer 

data was obtained from heat flux gauges mounted in the surface of the airfoil.  Roughness 

elements placed right at the stagnation point locally increased the heat transfer by about 10% 

but did not significantly alter downstream heat transfer values.  Roughness elements placed 

further downstream had a significant effect in increasing the heat transfer on and 

immediately downstream of the roughness.  However, for the lower Reynolds numbers tested 

the heat transfer returned to the value corresponding to the clean leading edge.  Meanwhile, 

the heat transfer data for some of the higher Reynolds numbers tested indicated that the 

roughness may have initiated transition to turbulent flow.

Other than these two studies there is no other known data which examines the effect 

of heat transfer due to large isolated roughness in a laminar boundary-layer.  Experimental 

studies, such as that by Acarlar & Smith[24] and Winkler[17] for isolated roughness on a flat 

plate well above Re k ,crit  have looked at the unsteady flow-field about isolated roughness. 

For the Winkler[17] study in particular, the purpose was to better understand the flow 

mechanisms on the scale of the roughness which lead to heat transfer augmentation.  In this 

case vortex structures were identified both upstream and downstream of the roughness which 

could affect the convective heat transfer.  However, there were no corresponding heat 

transfer measurements to confirm the resulting hypothesis.

There are no known studies which examine the effect of large isolated roughness 

elements on the development of surface water films.

Characteristics of Distributed Roughness
As multiple isolated roughness elements are moved closer together, the individual 
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vortex structures of the individual elements will begin to interact.  In some cases this leads to 

mutual destruction of certain vortex structures while in other cases it leads to an increase in 

the intensity of a particular vortex structure.  Detailed experimental studies of large 

distributed roughness have been conducted by Winkler[17] for a flat plate and Kerho[16] for 

an airfoil leading edge.  The Kerho[16] study is particularly interesting in that it examined 

the method in which distributed roughness on an airfoil leading edge promotes transition. 

For the lowest chord Reynolds number tested, 750,000, all but the largest distributed 

roughness fields placed approximately three leading edge radii of curvature downstream 

maintained laminar flow.  However, even for the higher Reynolds numbers up to 2.25 

million, the roughness did not initiate an immediate transition to turbulence.  Instead, the 

turbulence intensity values were seen to start small at the trailing edge of the roughness field 

and grow in a linear fashion moving downstream, not reaching fully turbulent levels until 

approximately 40% chord.  Though turbulence intensity values were not obtained directly 

over/in the roughness field itself, trends from downstream of the roughness indicate that the 

levels within the field were low.  As a result, two of Kerho's[16] conclusions regarding the 

implications for convective heat transfer were

“Large increases in local convective heat transfer required by the accretion 

process are not thought to be driven by boundary-layer transition or transitional  

flow”

and

“It is speculated that the ice accretion process is governed by very local effects  

on the scale of the size of individual roughness elements”

Lee[25] used the same experimental setup of Kerho[16] but added infrared imaging 
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of the surface in order to obtain mean surface temperatures and mean relative heat transfer 

coefficients.  For the lowest Reynolds number cases investigated by Kerho[16] in which the 

flow remained laminar, the heat transfer was found to increase by 25-70% depending on the 

height of the roughness.  For the higher Reynolds number cases the heat transfer was 

increased by up to 300%.  In all cases the heat transfer increased with increasing streamwise 

distance immediately over the roughness field.  At the downstream end of the roughness field 

the heat transfer rapidly decreased to a much lower level but this level was typically still 

significantly higher than the clean airfoil value.  A significant question which is left 

unanswered by the Kerho[16] and Lee[25] studies is whether or not the laminar flow over a 

distributed roughness field can account for the large increases seen in the convective heat 

transfer immediately over the roughness field.

Henry et al.[22] also examined the effect of large distributed roughness on a flat plate 

on the convective heat transfer.  However the flow approaching the roughness field was 

purposefully tripped to be turbulent and therefore does not have as direct an application to 

the case of leading edge roughness.

While the Kerho[16] and Lee[25] studies examined regularly spaced hemispherical 

roughness elements on an airfoil leading edge, other studies have examined the effect of 

actual ice roughness on leading edge heat transfer.  Dukhan et al.[26] used castings of 

experimental ice shapes, both with and without the roughness intact, in order to look at the 

effect of real ice roughness.  For the “smooth glaze” type roughness examined in that study 

which is most applicable to the current study, increases of relative heat transfer of 300-500%, 

depending on free-stream velocity, were observed.  In most cases the heat transfer profiles 

were similar to the smooth model heat transfer over the upstream part of the roughness, 
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however moving downstream the heat transfer would either gradually or suddenly increase, 

possibly indicating a transition to turbulent flow.  The start of this “transition” region for the 

smooth glaze roughness occurred at a local Reynolds number based on distance from the 

leading edge of approximately 60,000.  Other roughness shapes examined by Dukhan et  

al.[26] which were more extreme in terms of the roughness height and shape produced even 

larger relative increases in the convective heat transfer.  For the icing conditions investigated 

by Dukhan et al.[26], these more extreme shapes were associated with longer icing exposure 

time.

There is little experimental evidence concerning the effect of large distributed 

roughness on surface water dynamics.  Detailed examinations of the surface physics during 

ice accretion have been performed by Olsen & Walker[27] and Hansman & Turnock[28]. 

The Hansman & Turnock[28] experiments with high resolution video of the ice surface 

showed that the previously mentioned smooth zone appeared to be uniformly wetted by 

liquid water.  A number of theoretical studies have examined modeling the surface water 

dynamics in this smooth wall region.  For example, Nelson et al.[29], Rothmayer & Tsao[30] 

and Timoshin[31] have all developed surface water models in the context of the icing 

problem.  However once the rough zone was reached, the water tended to coalesce into 

stationary hemispherical beads and thus the surface was no longer uniformly wetted.  In this 

case the previously mentioned studies may not be directly applicable.  It was noted by 

Hansman & Turnock[28] that the forward part of this rough zone slowly migrated upstream 

as the icing exposure time continued.  For some cases investigated, downstream of the rough 

zone there appeared water runback in the form of rivulets.  Modeling of the rivulets for the 

icing problem has been addressed by a large number of studies, for example Al-Khalil et  
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al.[32],[33] and Wang & Rothmayer[34],[35].

Purpose of the Current Study
The purpose of the current study is to build on experimental studies which have been 

completed to date.  This is done by examining local effects about the roughness elements, as 

suggested by Kerho[16], and how they affect the convective heat transfer.  In addition, a 

qualitative assessment of the effect of roughness fields on surface shear patterns and surface 

water dynamics is also undertaken.  In both cases it is hoped that understanding these basic 

issues will eventually lead to new models for icing codes which properly account for the 

small scale physics.

The method used in this study to achieve these goals is the numerical solution of the 

Navier-Stokes equations for flow over leading edge roughness, which can provide a complete 

flow map of the roughness field.  There are many different possible parameters which 

collectively define a roughness field, such as roughness height, shape, spacing and extent.  In 

addition, both Rek  and k /  may have independent effects which alter the way in which the 

roughness affects the flow field.  The numerical solution must therefore also be able to 

efficiently analyze the range of these parameters appropriate to aircraft icing and the flow 

regimes which they induce.  In particular, since there are no turbulence models which are 

known to accurately model the transitional flow state caused by large leading edge 

roughness, the code should be capable of directly capturing the range of spatial scales via 

direct computation.  In the present study, while the numerical solution is developed with this 

fact in mind, the focus is on the case of laminar/steady flow over leading edge roughness. 

There are two main reasons for this.  First, computation of the laminar/steady flow is a 

logical first step in understanding the complete flow map for leading edge roughness. 
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Second, the laminar/steady flow case has some practical application to aircraft icing 

calculations.  As indicated by the Kerho[16] experiments, even at chord Reynolds numbers 

up to 2.25 million, the turbulence intensities in the vicinity of the roughness field appear to 

be small enough that the roughness effects may be dominated by the basic steady flow over 

the roughness field.  This is true for roughness on the nominal leading edge with its strong 

favorable pressure gradient.  For ice shapes which have developed glaze ice horns such as 

that shown in Figure 5, this “approximation” is expected to be even more valid for roughness 

elements upstream of the horns which are essentially in a stagnation point/low speed flow. 

Therefore, most of the cases investigated in this study are purposefully chosen to be 

steady/laminar flow cases.  This is assured by computing cases which have Reynolds 

numbers and/or roughness heights well below those cases which produced no transition in 

the Kerho[16] study.  Each of these cases are investigated to assess their effect on the 

convective heat transfer as well as their potential effect on the surface water dynamics.

Layout of the Dissertation
The dissertation is laid out as follows.  In Chapter 2, a two-dimensional asymptotic 

theory is exploited to gain insight into the effects of roughness on surface water dynamics. 

The results for this particular sub-class of roughness problems are analyzed and potential 

implications for large scale three-dimensional roughness are discussed.

In Chapter 3, the numerical method for solving the Navier-Stokes flow field over 

large distributed leading edge roughness is detailed.  The code which has been developed 

based on this method is validated in Chapter 4 using three distinct/separate cases for flow 

over isolated roughness.

Chapter 5 goes through a systematic variation of the various parameters which define 
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a leading edge roughness field and the associated flow conditions in order to investigate the 

effect of each parameter.  The two parameters of interest for this investigation are the 

augmentation to the convective heat transfer and the influence on the surface water 

dynamics.  For this latter case the effects are analyzed in terms of the impact of the roughness 

on the surface shear patterns, based on the implications drawn from Chapter 2.

Finally, Chapter 6 summarizes the significant conclusions from this study and gives 

suggestions for future research.
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CHAPTER 2. IMPACT OF SHALLOW TWO-
DIMENSIONAL ROUGHNESS ON UNFROZEN 

SURFACE WATER DYNAMICS

In the context of the Messinger[7] model for aircraft ice accretion a simple water 

mass balance at the surface gives the following equation for the film thickness, h,

w
∂ h
∂ t
 ∂
∂ s [ṁR ]=ṁw , (2.1)

where ṁR  is the mass flux of water on the surface due to runback along the surface and ṁw  

is the mass flux of water to/from the surface due to droplet impingement, evaporation / 

condensation and freezing / melting.  Clearly there is potential for surface roughness to 

impact ṁw  by affecting water freezing rates through modification of the surface heat 

transfer.  This potential will be addressed in Chapter 5.  In addition there is also significant 

potential for roughness to alter the runback mass flux of the water, ṁR .  Typically, this 

effect of a roughness field on the surface water runback is not addressed in icing codes.

Figure 5a shows the aircraft icing problem on the scale of the airfoil leading edge 

including an assumed thin water film with mass flux ṁR .  The most simplistic model for 

evaluating ṁR  in an icing code is to assume that any unfrozen water runs back to the next 

computational cell at the next time step.  Slightly more sophisticated models assume a 

Couette flow within the film in order to analytically obtain the value of ṁR .  A number of 

different types of flow solvers can be used to calculate the flow over the ice shape to 

determine the wall shear which would be used in a Couette film model.  Figure 5b shows 

local surface effects which may impact ṁR  but are not accounted for in a purely Couette 
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flow film model.  This schematic shows a water film being driven by an air viscous sub-

layer.  There are waves on the surface of the film and initial ice roughness under-lying the 

film.  As the ice roughness grows, experimental evidence suggests that the roughness height 

will become significantly larger than the thickness of the water film.  In this case, not only 

ṁR  may be affected but the general distribution of the water as well.  That is, the film may 

break up or pool and stop flowing downstream altogether.  The goal of this chapter is to 

examine how this larger small scale surface roughness alters the Couette film model.  For 

simplicity and computational efficiency the roughness effects in this chapter are examined in 

terms of a condensed layer structure which has previously been used by Rothmayer & 

Tsao[30] and Matheis & Rothmayer[36] to examine other small scale effects of surface water 

films.

The Condensed Layer Approach
The condensed layer asymptotic structure is derived in Rothmayer & Tsao[30] for 

describing the interaction between an air boundary-layer and dynamic surface water.  In 

particular, the theory describes the scales at which both air shear and air pressure gradients 

are of the same order in driving the water motion, termed Stage II, as well as the scales which 

describe air shear dominated water motion (Stage I) and air pressure gradient dominated 

water motion (Stage III).  Here we will make no assumption about whether the water film is 

being more shear driven or pressure gradient driven and will therefore use the more generally 

applicable Stage II.  Figure 5b shows the relevant spatial scales for the Stage II asymptotic 

structure relative to the various scales of the problem.  Note that Re  is the usual Reynolds 

number while   is a non-dimensional surface tension given by

= *

V ∞∞
, (2.2)
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where *  is the dimensional surface tension.  As it turns out, the range of film thicknesses 

and values of surface tension which can be appropriately examined by the Stage II structure 

are in-between the Navier-Stokes and Triple-Deck scales and are applicable to the aircraft 

icing problem with initial ice roughness.  The main restriction in this regard is that the 

roughness elements must be shallow with aspect ratios of approximately 0.1 for typical icing 

conditions.  For example, if we consider a 100 knot flight condition for a one meter chord 

airfoil at 0°C, then using Figure 5b we get streamwise and vertical scales which are on the 

order of 0.4mm and 0.04mm, respectively.   Increasing the airspeed to 200 knots changes 

these scales to approximately 0.2mm and 0.02mm, respectively.  These streamwise scales are 

on the order of what has been observed for ice roughness from icing tunnel experiments.  The 

vertical scales, while smaller than the typical observed ice roughness may still be 

representative of early roughness formation.  In any case, it should be noted that typical film 

thickness for aircraft icing near the leading edge is only on the order of several microns. 

Therefore the Stage II structure admits realistic icing scenarios in which the ice roughness 

height is significantly larger than the film thickness.  In terms of dimensional variables, the 

Stage II film thickness is given by

h=−1 /7 Re5 /7 L−1 h* . (2.3)

When the scales for Stage II shown in Figure 5b are substituted into the Navier-

Stokes equations and proper considerations are given for matching to the global air flow, the 

result is (in two-dimensions),

U XV Y=0  
RB [U U XV U Y ]=−P Xair U YY

PY=0 ,
(2.4)
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for the air viscous sub-layer.  In (2.4) RB  is the non-dimensional air density at the air/water 

interface and air  is the non-dimensional air viscosity.  A set of equations similar to (2.4) 

also exists in the general Stage II structure for the water layer.  Boundary conditions include 

the no-slip condition at the wall for the water layer and an asymptote to the global air 

solution at large Y in the air viscous sub-layer.  A shearing transformation is introduced into 

the governing equations to account for varying film thickness and under-lying ice roughness. 

These terms show up in the boundary condition at large Y.  A full stress match at the air / 

water interface in Stage II results in

water[ ∂U w

∂Y  X , F water ]=air[ ∂U
∂Y  X , F water ]  

Pw  X , F water =P  X , Fwater −
∂2 F water

∂ X 2 ,
(2.5)

where F water  is the time and space varying film height above the global ice surface.  This 

parameter is found from a kinematic condition

V w  X , Fwater =
∂F water

∂T
U w  X , Fwater 

∂F water

∂ X
. (2.6)

As is often done for thin water films being driven by an air flow, a lubrication 

approximation is made within the water film which results in all of the convective terms 

being neglected.  This results in a Couette-Poeusille flow in the water layer which is being 

driven by the air via (2.5).  The velocities in the water can then be written in terms of the air 

variables in (2.5).  Substituting the resulting solution into (2.6) gives

water

∂F water

∂T
 ∂
∂ X [airwx

F 2

2
− ∂ P
∂ X

−
∂3 F water

∂ X 3  F3

3 ]=0 , (2.7)

where
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wx=∂U
∂Y air

 X , F water  (2.8)

and

F=F water−F ice , (2.9)

with F ice  defining the shape of the ice roughness under the water film.

(2.4) and (2.7) are the governing equations being solved in the current study to 

examine a thin water film being driven by an air layer over ice roughness.  Because of the 

lubrication approximation, the air layer effectively sees the water layer as being stationary so 

that no-slip conditions in the air are sufficient at the air/water interface.  The boundary 

condition in the air at large Y  including a shearing transformation is

U= YFwater−h II   as Y ∞ , (2.10)

where   is the local wall shear from the global air flow solution over the global ice surface.

Numerical Implementation
A set of equations similar to that given here has been solved by Matheis & 

Rothmayer[36] to examine the effect that surface waves have on the water film to increase 

the mass flux within the film.  That study initially looked at a primitive variable form of the 

equations for the numerical implementation, however the combination of the dynamic 

air/water interface, periodic boundary conditions and the continuity equation created 

numerical oscillations in the solution that could not be damped by the numerics.  As a result, 

a streamfunction/vorticity method was used to solve the air layer.  The same approach is 

being used in the current study.  All terms in the equations are second order central 

differenced with the exception of the convective terms in the vorticity transport equation and 

the temporal term in (2.7).  The convective terms in the vorticity transport equation are 
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second order upwind differenced while the temporal term in (2.7) is second order backward 

differenced.  Grid stretching is applied in the vertical direction in order to adequately resolve 

critical regions of the flow and grid independence was periodically checked throughout the 

course of this study.  The reader is referred to Matheis & Rothmayer[36] for full details of 

the numerics.  In addition, the appendix lists the final equations being solved in this study.

Discussion of Thin Films Flowing Over Shallow Roughness
Before presenting the full numerical results for films flowing over ice roughness, the 

equations are examined in order to provide some insight into the impact of the ice roughness 

on very thin films.  First, consider the water height to be some small perturbation from the 

ice roughness surface, that is

F water=F iceh f , (2.11)

where h is the small uniform thickness in Stage II scales.  Examining (2.7) in light of (2.11) 

the order of magnitude of the various terms are

water

∂F water

∂T
 ∂
∂ X [airwx

F 2

2
− ∂ P
∂ X

−
∂3 F water

∂ X 3  F3

3 ]=0 . 

                           Oh                  O h2         O h3     O h4
(2.12)

As h0  the first balance that is picked up is between the first and second terms in (2.12) 

when T~h−1 .  The new form of (2.12) then becomes

water
∂ f
∂T
 ∂
∂ X [airwx

f 2

2 ]=0 . (2.13)

Note that (2.13) is simply the unsteady Couette flow approximation within the film.  That is, 

when the under-lying roughness is “shallow” the Couette flow model may still be valid.  In 

the steady state limit, (2.13) can be solved directly for the film thickness, f .  Figure 6 shows 

a comparison of the solution of the steady form of (2.13) with two full non-linear Stage II 
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calculations for two different values of h.  Recall the example of a one meter chord airfoil in 

a 100 knot air flow.  The vertical Stage II scale in this example is about 0.04mm or 40 

microns.  If we assume that typical film thicknesses are on the order of a few to several 

microns, then h values on the order of 0.1 are reasonable.  Figure 6 shows that for this 

scenario the simple Couette model is as accurate as the full Stage II model which includes 

pressure and surface tension effects.  For the particular example given in Figure 6, the 

roughness changes the film thickness by up to 30%, however the total mass flux of water 

remains constant.

The time scale for the film evolution in Stage II is given by

t~Re−3/7 2/7 M , (2.14)

where M  is the water to air viscosity ratio.  For the example that has been carried through 

this section the film development time scale is about 0.01 seconds for film thicknesses which 

are O(1) in Stage II scales.  However, for the thin film example of h=0.1, the time scale to 

achieve the steady Couette flow is on the order of 0.1 seconds.  Therefore as the film 

thickness becomes smaller the time scale increases to the point where the film may not reach 

steady-state before freeze out.

Returning to (2.12) it is conceivable that the air wall shear, wx , may be small 

enough such that other terms in (2.12) must also be included in the thin film limit.  Indeed, 

using wx =0 in the Couette model would result in an infinite film thickness, which is not 

physically possible.  It is expected that this situation would arise as the roughness height 

increases and the air flow over the roughness separates.  For a single two-dimensional 

separation region this would result in two points on the surface at which the wall shear would 
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be zero.  The question then becomes “at what point does the Couette model for film flow 

over a roughness element actually break down?”.  This question can be answered by 

examining an asymptotic structure for a roughness element which induces a minimum shear 

point on the downstream face of the roughness.  This situation is shown schematically on the 

left side of Figure 7 which actually shows the wall shear going to zero (incipient separation) 

though this is not a requirement for the following discussion.  In particular the goal is to 

examine the film response in the region around the minimum shear point and to find when 

the solution first departs from the Couette model.  The key here is that away from this 

minimum shear point the film must return to a shear driven film.  In other words, the Couette 

model must become valid far from the minimum shear point.  The streamwise length scale is 

set to  , and the wall shear is expanded about the minimum shear point in a Taylor series. 

The result is that

∂U
∂Y

~2 . (2.15)

Maintaining proper balances in the air layer immediately adjacent to the film results in

Y~2 , (2.16)

and matching to the Couette film at large X gives

F~h−1 . (2.17)

Substituting these scales into the Stage II kinematic condition, (2.12), results in the orders of 

magnitude for each term shown in (2.18),

water
∂F water

∂T
 ∂
∂ X [air wx

F 2

2
− ∂P
∂ X

F 3

3
 ∂

3 F
∂ X 3

F 3

3

∂3 F ice

∂ X 3
F 3

3 ]=0 . 

           h−1 T−1             h2−1         h3−4       h4−8        h3−4

(2.18)
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As is typical, some trial and error with the correct balancing is necessary and the result is that 

the air shear term must match the surface tension term (the circled terms in (2.18)).  The 

result of this balance is that

~h2 /7  (2.19)

and the resulting scales in both the air and water film layers are shown in the right of Figure

7.  Note that a Couette-Poiseuille flow governs the air layer adjacent to the film which leads 

to (2.20) for the film thickness,

water
∂ F
∂ T

 ∂
∂ X [air k  X  F

2

2
 ∂

3 F
∂ X 3

F 3

3 ]=0 , (2.20)

where

k  X =∂U
∂Y X 0 ,0 1

2
∂3U
∂ X 2∂Y

X 0 ,0  X 2... . (2.21)

Note that since the water film scale is smaller than the vertical scale in the air layer, it is valid 

to evaluate the derivatives in (2.21) at the ice roughness surface neglecting the presence of 

the film (instead of at the air/water film interface).

Possibly the most critical aspect of this minimum shear structure is that it occurs 

when

∂U
∂Y  X 0 ,0~h4 /7 . (2.22)

This is the point at which the Couette model within the film first breaks down and additional 

terms from the interface stress balance are required in the film equation.  As increased ice 

roughness height leads to lower shear on the downstream face of the roughness, the result is a 

bulging of the film thickness which is maintained by the surface tension.  Solutions for this 

asymptotic structure are shown in Figure 8 for flow over a roughness element which induces 
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incipient separation and has a wall shear curvature of 0.303 in Stage II scales.  Also shown in 

Figure 8 are numerical results for the full Stage II non-linear problem, which compare well 

with the minimum shear structure as h0 .  The Stage II numerical results reveal that the 

mass flux within the water film does not change from the Couette model, however there is a 

small separation region within the film which locally traps water near the minimum shear 

point.  This separation region gets smaller as h0 .  That is, as the minimum shear structure 

is approached by the  full non-linear Stage II solutions, the separation region within the film 

layer gets smaller. This is consistent with the minimum shear structure itself which does not 

admit separation within the film.  In order to continue studying the effect of roughness as the 

air flow changes from incipient separation to full separation a model which admits separation 

within the film is required.  This suggests returning to the full Stage II model and examining 

numerical results of that model.

Results for Thin Films Flowing Over Shallow Roughness
When the ice roughness height becomes larger than that required for incipient 

separation the air flow becomes fully separated behind the roughness.  In this scenario it is 

necessary to resort to the full Stage II model to solve the air/water interaction.  Figure 9a 

shows a typical scenario in which a roughness which induces a full two-dimensional 

separation on its downstream face has an initially thin uniform film over its surface.  The 

film is assumed to have a constant mass flux of water at the upstream boundary.  Since this 

initial film is thin it is primarily driven by the shear from the adjacent air layer.  Upstream of 

the separation point, the film is being driven toward the separation point.  The initial film 

within the air separation region will also be driven toward the separation point, while the part 

of the film which is initially downstream of the air re-attachment point will be driven 
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downstream.  The result is an initial pooling of water at the separation point and a thinning of 

the film at the re-attachment location.  The pooling of the film at the separation point has a 

feedback effect on the air layer, causing the initial separation point to move a little bit 

downstream.  The water then begins to pool at this new separation point which causes the 

separation point to continue to move downstream.  This process continues until eventually a 

condition is reached in which the air flow is completely attached over the roughness element. 

At this point there is an excess of water which has accumulated on the downstream face of 

the roughness and a pocket of water is forced downstream by the air.  However, as shown in 

Figure 9b, even after both the air flow and film have reached a steady state condition, there is 

still a pocket of water within the film which is recirculating on the downstream face of the 

roughness, as evidenced by the streamlines within the film.  Therefore during this process the 

separation region has moved from the air to the water film layer.  This process has previously 

been observed by Timoshin[37].  The water mass flux over the roughness in this steady state 

condition is necessarily equal to the upstream reference mass flux.  However the total mass 

of water which is present on the surface has increased significantly.  For this particular case 

the total amount of water present within the computational domain has increased by about 

130%.

In order to more completely map the effect of roughness on the amount of water that 

locally accumulates on an airfoil surface, a study is performed in which the height of a single 

roughness element is varied while the wavelength/diameter is held nearly fixed.  This is 

accomplished by using a Gaussian roughness shape which is the same as the shape used in 

Figure 9b.  Starting from a very shallow roughness element, the roughness height is gradually 

increased.  For each case, an initially thin uniform film is allowed to reach a steady state 
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condition.  For each solution a water mass trapping factor, G, is found.  G is defined as the 

ratio of water mass with roughness present to water mass without roughness present (i.e. a 

uniform thin film).  The result is shown in Figure 10 for a film thickness of h=0.1.  The 

dashed line in Figure 10 is the value of G for Couette flow which traps no additional water on 

the surface.  The first point in the figure has a roughness height such that the minimum shear 

in the air over the roughness element is h4 /7 .  The previous section indicated that this was 

the point at which the Couette flow approximation first breaks down.  The second point in 

Figure 10 is the incipient separation case where the air flow first separates as the roughness 

height is increased.  All roughness elements with heights greater than this value have fully 

separated air flow and as the roughness height increases the amount of trapped water 

increases.  The solid line in the figure is a parabolic curve fit to the numerical data.  Though 

Figure 10 is generated for a specific roughness shape at a constant wavelength it is expected 

that results would be similar for more general roughness shapes.

The picture for the fully separated roughness remains essentially the same as the film 

thickness is decreased.  That is, all cases tested continue to show a separated region of water 

behind the roughness element and re-attachment of the air flow with no alteration to the 

steady state film mass flux.  The numerical results as well as preliminary asymptotic analysis 

show that time and spatial scales are altered as the film thickness is changed.  For example, 

an order of magnitude decrease in the film thickness corresponds to an order of magnitude 

increase in the time it takes for the steady film to develop.  Since all steady calculations were 

a long time limit of unsteady calculations this means a large increase in computer resources 

is required as the film thickness is decreased.  The amount of water (or percentage change of 

water) trapped by the surface roughness also changes with the film thickness.  Typically, as 
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the film thickness decreases, less water is trapped by a given roughness element.

Effects of Distributed Roughness
When multiple roughness elements are considered the effect on the amount of water 

that is trapped by the elements is cumulative.  That is, if all roughness elements have 

separated air flow, then the film must re-establish the mass flux at the first roughness element 

in a manner similar to that outlined for single roughness elements in the previous section. 

Once this is done the film can re-establish itself at the second roughness element and so on 

until the mass flux is constant over the entire roughness field.  If the spacing between 

roughness elements is large then the total amount of water trapped will be equal to the sum of 

water trapped by each roughness element as if it were considered in isolation.  If the 

roughness elements are moved closer together then the separation region of upstream 

elements is affected by the presence of downstream elements, leading to a change in the 

amount of trapped water.  This is illustrated by the results shown in Figure 11a.  The 

roughness elements which make up the roughness field in Figure 11a correspond to ice =2 

in Figure 10.  Therefore, the isolated roughness element would have a trapping factor of 

G=1.18.  As the distance between roughness elements is increased such that each element 

acts as an individual roughness element then it is expected that G=1 + 3x0.18 = 1.54.  In 

Case A of Figure 11a the roughness elements are moved closer together which results in a 

small increase in the degree of separation behind each roughness element.  As a result, the 

amount of water trapped by each roughness element is also increased and the value of G 

increases slightly to 1.58.  In Case B, the roughness elements are moved closer together, to 

the point where each roughness element now limits the degree of separation of the roughness 

in front of it.  In fact, there is no separation here behind the first two roughness elements and 
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most of the water is trapped by the last element.  The result is a decrease in the value of G to 

1.33.

Figure 11b shows a multiple roughness case similar to Case B in Figure 11a but with 

the roughness height increased.  The air flow over the steady state film between the 

roughness elements is still separated, however the mass flux through the film is still constant. 

Surface tension in the film between the roughness elements allows the water to flow 

downstream even though the shear forcing from the air flow is in the upstream direction. 

Therefore, it is possible for the air flow to remain separated and the film to establish a 

constant mass flux simultaneously when multiple roughness elements are present.

Conclusions for Thin Film with Shallow Two-Dimensional Roughness
In studying the impact of shallow two-dimensional roughness elements on thin films 

in the condensed layer structure the key findings are that:

1. The film distribution can be computed using a Couette flow approximation 

when the roughness elements are sufficiently shallow.  This approximation breaks 

down when the minimum shear stress over the roughness is on the order of h4 /7 , 

where h is the film thickness.

2. When the minimum shear falls below the minimum for which (1) is valid, 

then the film and the air flow interact to maintain a constant mass flux within a steady 

film while the amount of water over the roughness increases. This water is trapped in 

separation bubbles within the film and the amount of trapped water increases as the 

separation over the bare roughness element increases.  The trapped water has a 

feedback effect on the air flow, causing the initial separation region within the air to 

disappear as the air flow re-attaches at steady state.
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3. When multiple roughness elements are present, the amount of water trapped 

by the roughness can increase or decrease depending on the spacing between 

roughness elements.  In addition, it is possible that closely spaced roughness elements 

will still allow separation in the air at steady state.

Implications for Three-Dimensional Roughness
The general trends observed in the previous sections are expected to extend at least to 

some degree to large scale three-dimensional roughness as well.  For example, in the three-

dimensional version of Stage II, spanwise terms appear in the various equations which are 

essentially identical to the corresponding streamwise terms.  The same scalings which take 

the streamwise components from the Navier-Stokes equations to the Stage II equations apply 

to the spanwise components as well.  The three-dimensional counterpart to (2.13) is

water
∂ f
∂T
 ∂
∂ X [airwx

f 2

2 ] ∂
∂Z [air wz

f 2

2 ]=0 , (2.23)

and the Couette approximation still holds.  Similarly, (2.22) is still valid as the rule for 

limiting the Couette approximation and introducing surface tension effects.  However, in the 

three-dimensional case (2.22) is

[ ∂U
∂Y  X 0 ,0,Z 0 ]

2

[ ∂W
∂Y  X 0 ,0,Z 0]

2

~h4 /7  (2.24)

for the limit of the Couette approximation for h4 /7 0 .  In three-dimensional separated 

flows, the magnitude of the surface shear approaching zero occurs only at a finite number of 

points within the flow, which are the singular points (see Tobak & Peake[38]) previously 

mentioned.  Recall that the singular points consist of nodal points, saddle point and focal 

points, and each of these types of singular points can be seen in Figure 3 for flow over an 
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isolated roughness element.  From (2.23) we know that the surface water is going to be 

driven primarily by the surface shear.  That is, the direction of the surface water flow will 

generally be in the direction of the surface shear lines.  Near the surface singularities, (2.23) 

will break down according to (2.24).  At nodal points and focal points of separation, water 

will be continually driven toward the singularity resulting in an increase in the film thickness. 

As with the two-dimensional case, surface tension effects will act to limit the total film 

thickness.

As mentioned previously, the key characteristic of a saddle point is that it divides the 

flow into four parts.  Imagine a surface film which is being driven by the surface shear and 

approaching the roughness element in Figure 3a.  The saddle point which is farthest 

downstream from the roughness acts to split the upstream flow into two regions.  Half of the 

upstream flow is “captured” by the roughness and funneled toward the focal point, while the 

other half of the upstream flow simply moves past the roughness element.  While these types 

of general trends are expected, surface tension would likely alter this picture somewhat.

In summary, it is expected that for initially thin films at early time the surface shear 

will be the primary driver for a three-dimensional film.  At long time, surface tension will 

come into play and the surface water will alter the air flow.  However, this is beyond the 

scope of this study.  Therefore, in analyzing the impact of three-dimensional distributed 

roughness on surface water the surface shear patterns will be investigated in lieu of a full 

multi-phase calculation.  In this regard, the turning and blocking of surface shear lines in the 

shear topology will be interpreted as potential turning and blocking of the early thin surface 

film.
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CHAPTER 3. NUMERICAL SOLUTION OF THE 
NAVIER-STOKES EQUATIONS OVER LARGE 

THREE-DIMENSIONAL ROUGHNESS
The main goal of this study is to obtain numerical solutions to the incompressible 

three-dimensional Navier-Stokes equations for flow over O(1) aspect ratio three-dimensional 

roughness on an airfoil leading edge.  In order to provide a more realistic picture of the 

effects of distributed roughness on the convective heat transfer and the surface water motion, 

the roughness geometries included in this study are closer to typical ice roughness than the 

roughness elements examined in the previous chapter.  The purpose of this chapter is to 

describe the process for obtaining the solution, including geometry setup, grid generation, 

formulation and transformation of the governing equations and differencing strategies.

Geometry Modeling & Grid Generation
The two aspects of the problem that need to be modeled geometrically are a three-

dimensional roughness element and an airfoil leading edge.

The Base Geometry Model
The leading edge is approximated using a parabolic cylinder with a short spanwise 

length (i.e. small spanwise strip).  The parabolic approximation works well for many 

symmetric airfoils within about the first 5% chord of the leading edge, including a NACA 

0012 airfoil (see Abbott & Von Doenhoff[39]).  The parabola is specified via a conformal 

mapping, given by

u=1
2

w2 , (3.1)

where

u=xiy         and             w='i' . (3.2)
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This leads to a relationship between the Cartesian (x,y) and conformal ( ' , ' ) coordinates 

given by

x=1
2
' 2
−'2           and           y='' . (3.3)

Parabolas of varying thickness are accommodated by varying the minimum value of ' , 

min
' .  In particular, the relationship between min

'  and the parabola leading edge radius of 

curvature, R, is

min
' =R1 /2 . (3.4)

Note that R is also used as the reference length when non-dimensionalizing the governing 

equations.  When R = 1, (3.3) gives the standard parabola in non-dimensional coordinates. 

As R→0, (3.3) approximates a flat plate leading edge.  This is useful since a lot of 

experimental roughness work is for roughness on a flat plate and so the basic form of (3.3) 

allows these cases to be approximated as well.  As R→ ∞ , (3.3) approximates a stagnation 

point geometry.

In addition to being an orthogonal transformation, conformal mappings have the 

advantage that harmonic functions remain harmonic under the transformation.  Thus, a 

potential flow which is governed by Laplace's equation, i.e.

∇2=0 , (3.5)

continues to have the same form when the coordinates are transformed via a conformal 

mapping.  This is advantageous in the current study in which the flow is effectively being 

split into viscous and inviscid parts, with the inviscid part being governed by (3.5). 

However, as will be seen later, a conformal mapping also tends to maintain the form of the 
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equations governing the viscous part as well, in particular the vorticity transport equations.  It 

should be noted that the conformal mapping being applied in this study is in two-dimensions 

only, with the third dimension not being transformed conformally.  In this situation, the full 

benefits of using conformal mappings are not realized, however their use still tends to 

decrease the total number of terms to be evaluated and tends to maintain the Cartesian form 

of the governing equations.

The transformation in (3.3) is made three-dimensional in the current study by simply 

adding a third computational coordinate given by

z=' , (3.6)

where z is the Cartesian spanwise coordinate.

Roughness Models

Surface roughness is incorporated into the numerical solution via a shearing 

transformation.  The grid is shifted in the '  direction by applying the equation

='− f ' ,'  , (3.7)

which is known as a Prandtl transposition.  In the new coordinate system, (  ,  ,  ), the no-

slip boundary condition is applied at =min .  In (3.7), f is the equation which gives the 

roughness shape.  The tangential wall coordinates in the new coordinate system are given by

='         and             =' . (3.8)

The purpose of using the shearing transformation to model the roughness is so that a 

structured grid can be maintained for the flow solver while eliminating the need to manually 

generate complex grids for each roughness field to be studied.  In addition, it offers a natural 

extension for a future study to examine the effects of the air flow on the temporal evolution 
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of growing surface ice roughness as well as the dynamics of surface water.

Surface roughness comes in many different shapes and forms.  Therefore, in order to 

examine the effects of surface roughness it is desirable to model a number of idealized 

roughness shapes while maintaining certain properties of the roughness geometry which 

make their integration into the flow solver via a Prandtl transposition possible.  In the present 

work the most important geometrical feature of the roughness model is "smoothness", either 

numerical or analytical.  By analytical smoothness it is meant that the derivatives of the 

roughness are continuous up to a certain order.  By numerical smoothness it is meant that 

regions of significant geometry change have sufficient grid resolution in that region.  The 

strategy used in the present study is to use smooth functions which can approximate a given 

roughness shape and then ensure that the grid resolution is sufficient to properly capture the 

flow effects induced by the roughness.

The four different shapes for individual roughness elements used in this study are 

shown in Figure 13.  The first roughness shape is a simple three-dimensional quartic bump 

given by the equation

f =k[1−2 s−s0

s 
2]

m

[1−2 −0

 
2]

m

, (3.9)

where k is the maximum height of the bump, s is the non-dimensional arc-length along the 

parabola, and the  's are proportional to the streamwise and spanwise wavelengths of the 

bump.  Note that s is directly related to the parabolic streamwise coordinate and the leading 

edge radius of curvature by the equation

s=1
2
[2RR ln 2R ]−1

2
R ln R  . (3.10)
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Equation (3.10) allows (3.9) to be cast in a form suitable for (3.7).  There is a discontinuity in 

the mth derivative where the roughness shape given by (3.9) intersects the flat surface (f=0), 

resulting in a non-smooth function.  By setting the value of m large enough (typically m=10 

in the current study) the intersection of the roughness and the parabola surface is smooth 

enough for purposes of a numerical solution.

A second roughness model which is useful for comparison with older numerical 

studies is a secant bump given by the equation

f =k sech s  s−s0  sech  −0  . (3.11)

In addition, many experimental roughness studies have used hemispheres as the shape 

of the roughness.  Hemispheres pose a challenge numerically because derivatives are not 

finite and they are discontinuous where the hemisphere intersects the surface.  In the present 

study the goal is to approximate a hemisphere with a function which has finite and 

continuous derivatives over the entire surface.  An example is a simple exponential decay 

function,

f r =k exp A1 rA2 r2 ... , (3.12)

where r is a radial coordinate from the center of the roughness being approximated and the 

Ai's are coefficients which are to be determined.  The Taylor series of (3.12) is given by

f r =k 1A1 rA2
1
2

A1
2r 2... . (3.13)

The function in (3.12) is made to approximate a given shape by comparing (3.13) with the 

Taylor series of the desired shape and matching coefficients.  In the case of a hemisphere the 

shape is given by
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f r = k 2−r 2 1/2 , (3.14)
which has a Taylor series

f r =k− 1
2 k

r2− 1
8k 2 r4... . (3.15)

Comparing (3.13) and (3.15) including higher order terms and using induction it is found that 

all Ai's with odd i vanish (since the hemisphere is axially symmetric) and the Ai's for even i 

are given by

Ai=
−1
ik i . (3.16)

The form of (3.12) used to approximate a hemisphere is then

f r =k exp∑i=0

m −r 2i

2 i k2i  , (3.17)

where the coefficients in (3.17) have been modified to account for the fact that all odd terms 

vanish.  The parameter m in (3.17) is used as a trade-off between function smoothness and 

how well (3.17) approximates a hemisphere.  When m is small the shape is very smooth and 

Gaussian-like.  As m becomes large the approximation of the hemisphere improves. 

However, at large m the corners of the shape become sharp and an increasing number of grid 

points are required to adequately resolve the flow in this area.  In addition, because the 

Prandtl transposition is a shearing transformation, increasing the value of m will lead to grids 

with higher skewness.  Figure 12 shows the progression of (3.17) from the Gaussian shape to 

the true hemisphere as m goes to infinity.

The last shape which is incorporated within the code is an approximation of a three-

dimensional cylinder or disk.  For this shape the transition from the roughness to the clean 

surface is made by using hyperbolic tangent functions.  The cylinder shape is given by
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f r = k
4 [1−tanh r−D /2

a ][1tanh rD /2
a ] , (3.18)

where D is the diameter of the cylinder and a is a non-integer smoothness parameter.  As 

a→0 the transition becomes sharper, eventually approaching a 90 degree angle.

The code is capable of placing uniform and non-uniform distributions of roughness 

elements which consist of one or more different types of roughness on the surface.  In 

addition, since all roughness elements are defined analytically, more complex roughness 

shapes can be created by superposition of the basic roughness elements shown in Figure 13. 

An example of the types of roughness shapes that are possible using this technique is shown 

in Figure 14.  The roughness shape in Figure 14 is meant to represent a typical glaze ice 

shape and was constructed using a superposition of two large two-dimensional quartic humps 

and multiple hemispheres which have random size and placement.  Figure 14 shows an iso-

metric view, a two-dimensional view and a close-up of the roughness with a surface mesh.

Grid Stretching

The final step in geometry creation and grid generation is the setup of grids which 

have adequate resolution for viscous flow effects in regions of interest but coarser grids in 

outer regions of the flow.  Many different types of grid stretching can be applied in each 

coordinate direction.  These include uniform grids and stretching about a single point.  For 

example, in the   direction the grid stretching

=0max−0 
sinha
sinh a

, (3.19)

stretches the grid about the point 0  with the degree of stretching given by a .    is the 

computational coordinate in the streamwise direction.  Typically −1≤≤1 , however when 
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using (3.19) the value of min  must be modified so that min=−max  and the parabola is 

symmetric.  The result is that min  must be set to the value

min=
1
a

sinh−1sinh a
−max−0 
max−0  . (3.20)

Grid stretching similar to (3.19) can also be applied in the wall-normal and spanwise 

directions as well, with the exception that the wall-normal grid is typically stretched about 

the surface, =−min .

For Navier-Stokes calculations it is often desirable to have a uniform grid in the wall-

tangential coordinate directions in order to minimize the effect of the grid on the solution. 

However, it would be impractical to cover the entire parabola with a uniform grid in the 

streamwise direction.  One solution is to construct a grid transformation which uses a 

uniform grid over a region of interest and stretches the grid on either side of this uniform grid 

region, to the outer boundaries of the flow domain.  The method for constructing such a grid 

was developed by Bhaskaran[40] and is reviewed here for reference.  The uniform grid 

region, denoted as Region 2, is defined by M1≤≤M2  where   is given by the grid law

=M1M2−M1

M2−M1 −M1  . (3.21)

In the region upstream of Region 2 (Region 1) the grid is stretched to the boundary of the 

flow domain.  This is accomplished using a hyperbolic sine function

M1−
M1−min

=

sinh[a1 M1−
M1−min ]

sinha1

. (3.22)

Similarly in the region downstream from Region 2 (Region 3) the grid law is
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−M2

max−M2
=

sinh[a3 −M2

max−M2 ]
sinh a3

. (3.23)

The stretching factors for these two regions, a1  and a3  are chosen such that the first order 

grid metrics are continuous where Region 1 and Region 3 meet Region 2.  The result is a 

transcendental equation for the stretching factors, for example,

sinha3
a3

=
max−M2

max−M2
 (3.24)

which must be solved numerically for a3 .  A similar grid stretching strategy can be applied 

in the spanwise direction.  A typical three-dimensional viscous grid with a uniform grid 

region in the streamwise direction is shown in Figure 15.  The uniform grid region is the area 

in which the roughness is placed.

An overview of the method of geometry modeling and grid generation which has 

been described in this section is summarized in Figure 16, which is taken from Huebsch[41]. 

Formulation of the Navier-Stokes Equations
The goal of the current study is to develop a robust flow solver for the three-

dimensional Navier-Stokes equations to examine the flow over three-dimensional roughness 

on an airfoil leading edge.  The resulting flow solver should be both accurate and relatively 

free of numerical dissipation.  It is the author's experience in previous numerical studies that 

in two dimensions, streamfunction/vorticity methods can overcome some of the stability 

issues associated with primitive variable solvers and can produce a robust flow solver.  In 

addition, previous studies of Navier-Stokes flow over two-dimensional roughness by 

Huebsch[41] used a streamfunction/vorticity approach.  As a result, this study uses a similar 

approach in three dimensions.  In three dimensions, the velocity/vorticity approach or vector-
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potential/vorticity approach requires the solution of six unknowns compared with the 

customary four for primitive variables.  However, a streamfunction-like/vorticity method was 

developed by Davis et al.[42] to solve the Thin Layer Navier-Stokes (TLNS) equations for 

steady flow over shallow bumps.  The present study starts with this method and modifies it 

slightly to solve for the contravariant vector components of the full Navier-Stokes equations. 

The Prandtl transposition and standard grid stretching are then applied to the governing 

equations.  An incompressible form of the energy equation is also developed in order to study 

the effect of roughness on heat transfer.  A brief review of the derivation of the vorticity 

transport and vector potential equations is given in the next section in order to provide 

context for the remaining discussion.

Streamfunction-Like / Vorticity Formulation in Cartesian Coordinates
The primitive variable form of the continuity equation is given by

∂u i

∂ x i
=0 . (3.25)

In (3.25) and in what follows in this sub-section we use Cartesian tensor notation to illustrate 

the development of the method.  The incompressible form of the Navier-Stokes (momentum) 

equations is given by

∂u i

∂ t
u j

∂u i

∂ x j
=−∂ p

∂ x i
Re−1 ∂

2 ui

∂ x i
2 . (3.26)

Note that (3.26) can also be written as

∂u i

∂ t
 ∂
∂ x i
u j u j

2 −imnnjk um
∂uk

∂ x j
=−∂ p

∂ xi
Re−1 ∂

2 ui

∂ x i
2 , (3.27)

where ijk  is the permutation symbol.  That (3.27) is equal to (3.26) can easily be shown if 

the following property of ijk  is used
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imn jkn=ijmn−ik jm . (3.28)

Taking the curl of (3.27) gives

opi
∂
∂ x p
∂ u i

∂ t −opiimnnjk
∂
∂ x p um

∂uk

∂ x j =Re−1opi
∂
∂ x p  ∂

2u i

∂ xi
2  , (3.29)

where the second and fourth terms in (3.27) have dropped out because the curl of the gradient 

of any scalar quantity is zero (see Karamcheti[43]).  Note that by using continuity (3.29) can 

be rewritten as

∂
∂ t opi

∂ u i

∂ x p −opiimn
∂
∂ x p umnjk

∂ uk

∂ x j =Re−1 ∂2

∂ x i
2 opi

∂ ui

∂ x p  . (3.30)

Introducing the definition of vorticity,

i=ijk

∂ uk

∂ x j
, (3.31)

the above equation can be written as

∂o

∂ t
−opiimn

∂
∂ x p

umn =Re−1 ∂
2o

∂ x i
2 . (3.32)

Once again (3.28) is used to write (3.32) as

∂o

∂ t
− ∂
∂ xn

uon ∂
∂ xm

umo =Re−1 ∂
2o

∂ x i
2 . (3.33)

Expanding the derivatives in (3.33) gives

∂o

∂ t
−n

∂ uo

∂ x n
−uo

∂n

∂ xn
o

∂ um

∂ xm
um

∂o

∂ xm
=Re−1 ∂

2o

∂ x i
2 . (3.34)

The fourth term in (3.34) is zero due to (3.25).  The third term in (3.34) is also zero due to the 

solenoidality condition, which is identical to (3.25) but with i  replacing u i  (this equation 
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is found by taking the curl of (3.31)).  The final form of the vorticity transport equation is 

then

∂i

∂ t
u j

∂i

∂ x j
= j

∂ u i

∂ x j
Re−1 ∂

2i

∂ x j
2 . (3.35)

The three-dimensional vorticity transport equation is identical to its two-dimensional 

counterpart with the exception of the first term on the right-hand-side of (3.35).  These are 

commonly labeled the vortex stretching/turning terms.  Vortex turning is the physical 

mechanism whereby vorticity in one coordinate direction is converted into vorticity in 

another coordinate direction by turning of the flow.  Vortex stretching is the mechanism 

whereby a vortex line, when it is stretched via flow dynamics, increases in vorticity 

magnitude due to conservation of angular momentum.

In two dimensions, the purpose of the streamfunction is to define a function which 

exactly satisfies continuity and then construct a condition which relates streamfunction to 

vorticity.  In three dimensions the idea is the same.  In general, mass conservation can be 

satisfied by writing the velocity vector in terms of a vector potential using the relation (again 

the curl of a gradient field of a scalar is always zero, see Karamcheti[43])

u i=ijk

∂ Ak

∂ x j
. (3.36)

The relationship between the vector potential and the vorticity vector is found using (3.31) 

and (3.36), in which case

m=mniijk
∂2 Ak

∂ xn∂ x j
. (3.37)

Once again, using the identity in (3.28) and doing a bit of rewriting this can be simplified to
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i=
∂
∂ x j ∂ A j

∂ x i
−
∂ Ai

∂ x j  . (3.38)

(3.35) and (3.38) along with appropriate boundary conditions form the general vector 

potential/vorticity method in three dimensions.  This general system requires the solution of 

six equations with six unknowns.  In order for this method to be computationally competitive 

with the primitive variable approach, which solves four equations for four unknowns, the size 

of the system must be reduced.  This is accomplished in the method of Davis et al.[42] by 

assuming the form of the vector potential, Ai , to be

Ai={−0 } . (3.39)

Note that (3.39) is simply a consequence of the gauge invariance of the vector potential, 

which says that Ai  only has two independent components.  At this point it is possible to 

depart from the general method and write the equations in terms of specific components of 

the vorticity vector and the vector Ai  in a Cartesian coordinate system.  Substituting (3.39) 

into (3.38) would result in Poisson equations for each of the streamfunction-like parameters, 

  and  .  However the approach here will be to transform the equations to solve for the 

contravariant vector components.

Transformation to Contravariant Coordinates
The current study extends the method of Davis et al.[42] by transforming the 

governing equations to contravariant coordinates for the full Navier-Stokes equations.  The 

reason for doing this is to maintain a flow solution which, from a computational domain 

perspective, has similarities to a flat plate flow solution.  This generally simplifies the form 

of the governing equations and allows numerical methods applicable to flat plate flow 
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solutions to be used.  At this point it is possible to continue with tensor notation in deriving 

the contravariant form of the governing equations.  However, in dealing with an orthogonal 

coordinate system it is actually simpler and more informative to write the equations using 

vector notation.  The governing equations in vector notation are the vorticity transport 

equation

∂ 
∂ t
V⋅∇ =⋅∇ VRe−1∇2  , (3.40)

which corresponds to (3.35), and the kinematic condition

=∇×∇×A , (3.41)

which corresponds to (3.37).  Breaking these equations into the component equations simply 

involves using the proper relationships for the various vector operations.  For example, in a 

general orthogonal coordinate system

∇= 1
h1

∂
∂ x1

e1
1
h2

∂
∂ x2

e2
1
h3

∂
∂ x3

e3  (3.42)

and

∇⋅= 1
h1 h2 h3 { ∂∂ x1

h2 h31 ∂
∂ x2

h1h32  ∂
∂ x3

h1h23} . (3.43)

It should be noted that when terms are evaluated in this manner, the  's are the vector 

components in the chosen orthogonal coordinate system.  Combining (3.42) and (3.43) gives

∇2=∇⋅∇= 1
h1 h2 h3 { ∂∂ x1 h2 h3

h1

∂
∂ x1  ∂

∂ x2  h1 h3

h2

∂
∂ x2  ∂

∂ x3  h1 h2

h3

∂
∂ x3} , (3.44)

where the h i 's are the grid scale factors, that is, the diagonal components of the Jacobian 

matrix.  For any conformal mapping in two dimensions h1=h2=h .  In addition, since 
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x3=
'=z , h3=1 .  This allows (3.44) to be simplified to

∇2= 1
h2 {∂2

∂ x1
2
∂2
∂ x2

2h2 ∂2
∂ x3

2 } , (3.45)

since h is not a function of x3 .  This example shows the advantage of using a conformal 

coordinate system in that the Laplacian has a form which is very similar to the Laplacian in a 

Cartesian coordinate system and the total number of terms is kept to a minimum.  The 

gradient of a vector is found using the following relation from Karamcheti[43]

∇×A×B =A ∇⋅B B⋅∇  A−B ∇⋅A −A⋅∇  B , (3.46)

or solving for the part of interest

A⋅∇  B−B⋅∇ A=−∇×A×B A ∇⋅B −B ∇⋅A  . (3.47)

Notice that the left side of (3.47) is equivalent to the second and third terms in (3.40) if the 

third term is brought to the left-hand-side and A=V  and B= .  (3.47) then becomes

V⋅∇  −  ⋅∇  V=−∇×V× V ∇⋅− ∇⋅V  . (3.48)

The last two terms in (3.48) are zero because of the solenoidality condition and continuity, 

respectively.  Plugging the remaining term into (3.40) gives an alternative form of the 

vorticity transport equations

∂ 
∂ t
−∇× V×=Re−1∇2  . (3.49)

This equation can easily be evaluated in terms of known vector operations for orthogonal 

coordinate systems and an equation for each of the three vorticity components can be written. 

For example, carrying out the operations and doing some simplifying for the first vorticity 

transport equation gives
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∂ h1
∂ t

 ∂
∂' V 21−V 12  ∂

∂' hV 31−hV 13 
 

=Re−1 ∂
∂' { 1

h2 [ ∂∂' h1 − ∂
∂' h2]} ∂

∂' { 1
h2 [ ∂∂' h1 − ∂

∂' h3 ]}
.

(3.50)

Again, it is noted that these are the components in the contravariant (i.e. conformal) 

coordinate system.  In a similar manner, carrying out the vector operations in (3.41), the 

equation for the third component of the vector potential, A , is

∂2
∂'2

∂2
∂'2

∂2 h 
∂'∂'=−h23 . (3.51)

The system is closed by adding additional equations for 3  and   and substituting for the 

velocity components in (3.50) in terms of   and  , given in the appendix.  These velocity 

components are given by

V=1
h
∂
∂' e1

1
h [−∂ h ∂' −

∂
∂' ] e2

1
h2
∂ h
∂' e3 . (3.52)

There are a couple of additional simplifications which can be made in order to reduce the 

total number of terms in the equations as well as improve convergence.  First, convergence 

rates are often limited by slow convergence of the inviscid part of the flow which requires 

boundary conditions being transferred all the way through the solution domain.  Therefore, 

this study follows the two-dimensional study of Baskharan[40] and splits the flow into a 

viscous part and an inviscid part, with the inviscid solution given by the potential flow 

solution over the base two-dimensional geometry (i.e. without the roughness present).  The 

“viscous” part of the flow is then responsible for capturing both the viscous effects as well as 

any changes in the inviscid flow due to the presence of roughness.  Second, it is noted by 
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examining (3.50) and (3.51) that many of the vector components responsible for the three-

dimensionality of the flow-field are multiplied by the scale factor, h.  Therefore, a 

transformation is used in which the computational components are equal to the physical 

component times the scale factor.  The complete set of transformations being used here is 

then

{

h

h1

h2

3

}={


1

2

3

}{0000} , (3.53)

where the first vector on the right-hand-side is the set of computational components being 

used in this study, and the second vector on the right-hand-side is the potential flow solution 

over the base two-dimensional geometry.  Making these substitutions, (3.50) and (3.51) 

become

∂1

∂ t
 ∂
∂' 1h V 21−

1
h

V 12 ∂
∂' V 31−hV 13 

 

=Re−1 ∂
∂' { 1

h2 [ ∂1

∂ ' −
∂2

∂' ]} 1
h2 [∂21

∂'2 −
∂2 h3
∂'∂' ]

(3.54)

and

∂2
∂'2

∂2
∂'2

∂2
∂' ∂'=h23 , (3.55)

respectively.

The final step before differencing the governing equations is to apply the 

transformations for introduction of the roughness as well as the grid stretching in each 

direction.  This follows the standard chain rule for changing coordinate systems in which a 
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derivative is being evaluated and the details of the derivation will not be given here.  The 

development and listing of the final complete set of equations which are being solved in this 

study are given in the appendix.

Boundary Conditions
Appropriate boundary conditions are necessary in order for the solution in the domain 

interior to simulate the desired physics.  At the parabola surface the usual no-slip boundary 

condition is applied, where all velocity components are set to zero.  At the '  far-field it is 

assumed that both the wall and the roughness have no impact on the flow so that the two-

dimensional inviscid potential solution is recovered there.  Far downstream, on the top and 

bottom of the parabola, an outflow condition must be specified without influencing the flow 

in the region of interest.  In the present study this boundary is placed a large distance away 

from the region of interest where the grid has coarsened significantly moving downstream, 

see Figure 15.  This very coarse grid region acts as built-in numerical dissipation, regardless 

of the differencing scheme, so that as the flow moves from the fine grid region through the 

coarse grid region both the flow three-dimensionality as well as flow unsteadiness are 

gradually dissipated.  As a result, a two-dimensional steady boundary condition can be used 

at the far downstream boundary.  Since the viscous flow over a parabola is known to 

asymptote to a flat plate solution far away from the leading edge, it is possible to apply a 

two-dimensional Blasius solution at this downstream boundary.  Finally, in the spanwise 

direction a number of different boundary conditions can be applied.  These include flow 

periodicity, flow symmetry and a boundary-layer type approximation.

The no-slip boundary condition at the surface requires that all velocity components 

vanish.  In the primitive variable formulation this is trivial.  However, in the current 
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formulation the appropriate conditions on the streamfunction-like components and vorticity 

components must be found.  Specifying values for the velocity components leads to 

conditions on the streamfunctions only.  Appropriate conditions for the vorticity components 

must therefore be derived and this has been the subject of much research over the years, see 

for example Napolitano et al.[44] and Souli[45].  The present study uses the well known 

coupled method in which the boundary conditions for the velocity components are used to 

specify the streamfunction-like components and their derivatives on the surface with the 

Poisson equations solved at the surface to find a kinematically compatible condition for the 

vorticity components.  The goal here is to show that the well known conditions on the 

streamfunction in two-dimensions also hold for the streamfunction-like components in three-

dimensions.

In particular, consider the no-slip boundary condition applied to the surface given by 

' =const.  The continuity equation in contravariant coordinates is solved for the wall-normal 

derivative of the second velocity component

∂
∂' hV 2 =− ∂

∂' hV 1 − ∂
∂' h2 V 3 . (3.56)

From (3.52), the velocity components, written in terms of the vector potential, Ai , are given 

by

hV 1=
∂ A3

∂' −
∂
∂' h A2

,

 hV 2=
∂
∂' h A1 −

∂ A3

∂'

and h2V 3=
∂
∂' h A2 − ∂

∂ ' h A1  .

(3.57)

Substituting (3.57) into (3.56) gives
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∂
∂' hV 2 =−

∂2 A3

∂' ∂'
∂2h A2 
∂' ∂' −

∂2 h A2 
∂'∂' 

∂2 h A1
∂' ∂' . (3.58)

Note that the middle two terms on the right-hand-side cancel each other.  Integrating the 

remaining equation in '  gives an expression for V 2 ,

hV 2=−
∂ A3

∂' 
∂ h A1 
∂ ' g ' ,'  , (3.59)

where g is an arbitrary constant resulting from the integration.  Note that without loss of 

generality (3.59) can be written as

hV 2=−
∂
∂' A3−g 1 ' ,'  ∂

∂' h A1−g 2 ' ,'  . (3.60)

In general, it might be expected that A1  and A3  will be non-zero on the surface, '=R . 

However, if we pick

g2 ' , '=h ' ,R A1 ' ,R ,'   (3.61)
and

g1 ' ,' =A3 ' ,R ,'   (3.62)

then we can define a new vector potential, A' , given by

Ai
'={A1−h ' ,R  A1 ' ,R ,' 

A2

A3−A3 ' ,R ,'  }  (3.63)

which automatically satisfies V 2 =0 on the surface because the first and third components are 

zero on the surface.  The first and third components of (3.63) are analogous to the gauge 

transformation used in the vector potential method.  Note that using A'  in place of A  does 

not change the form of (3.36) so that all of the governing equations in their given forms 
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remain valid when written in terms of A' .  Therefore, dropping the prime we can solve the 

governing equations with A1 = A3 =0 on the surface to satisfy V 2 =0 there.  The other 

condition on the vector potential which is a result of the no-slip condition comes from setting 

the first and third components of (3.36) to zero so that

∂ A3

∂' =
∂ h A2 
∂'  (3.64)

and

∂ h A2
∂' =

∂ h A1
∂'  (3.65)

on the surface.  Applying the specific form of the vector potential given in (3.39) to the 

general no-slip boundary conditions developed here gives

==∂
∂'=

∂ h 
∂' =0  (3.66)

Applying the transformations specified in (3.53), the final no-slip boundary conditions 

specified on the streamfunction-like components are

=−  (3.67)
and

∂
∂
=−∂ 

∂'  (3.68)

for  , and

=0  (3.69)
and

∂
∂
=0  (3.70)

for  .  The value of the vorticity at the surface is calculated by solving the Poisson 



57

equations, (3.41), at the surface.

Far downstream the flow exits to a two-dimensional Blasius condition.  The third 

component of the streamfunction-like vector used here, namely  , is equivalent to the 

traditional two-dimensional streamfunction if  =1 =0.  In a Blasius flow this 

streamfunction is given by

=2 s f b b , (3.71)

where s is the arc length along the parabola, f b  is the Blasius function and b  is the Blasius 

coordinate given by

b=
hww

'

2 s
. (3.72)

Noting that

∂2
∂'2=−h23  (3.73)

in the boundary-layer, we can use (3.71) and differentiate it to find

h23=hw

f b b
2 s

. (3.74)

The non-dimensional arc length along the parabola surface is given by

s=1
2
[2RR ln 2R ]−1

2
R ln R  . (3.75)

To leading order, at large '  the arc length is given by

s~1
2
'2...  (3.76)

and the Blasius coordinate is
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b~hw

w

' ... . (3.77)

Substituting (3.76) into (3.71) gives

~' f b b ... . (3.78)

Differentiating with-respect-to '  gives

∂
∂'~ f b b −

w
'

' f b
' b ... . (3.79)

However in the limit as '∞

∂
∂'~ f b b =


' . (3.80)

Differentiating (3.79) with-respect-to '  and again taking the limit as '∞  results in

∂2
∂'2~0 . (3.81)

A similar analysis can be done for 3  which results in

3~
f b b
'  (3.82)

and

∂3

∂' ~−
3

'  (3.83)

for the first derivative and

∂23

∂'2 ~
23

'2  (3.84)

for the second derivative.  (3.80), (3.81), (3.83) and (3.84) are used to evaluate derivatives at 

the downstream boundaries which are placed at large absolute values of ' .
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At the far-field, the two-dimensional potential flow solution is recovered, since it is 

unaffected by the roughness at the surface.  Therefore, all vorticity components at this 

boundary vanish, i.e.

1=3=0 . (3.85)

In addition, the parts of the streamwise and spanwise velocity components not written in 

terms of the potential flow solution are set to zero, i.e.

∂
∂
=∂
∂
=0 . (3.86)

This procedure recovers the potential flow solution at the far-field, with the exception that 

any flow displacement in the wall-normal direction due to the presence of the roughness is 

allowed because the streamwise and spanwise derivates of   and   which effect the wall-

normal velocity are non-zero.

Finally, the main boundary condition used in this study at the spanwise boundaries is 

a symmetry flow condition.  For this condition, any variables which would exist in a two-

dimensional flow (   and 3 ) have a vanishing first derivative normal to the boundary. 

Meanwhile, any variables which do not exist in a two-dimensional flow (   and 1 ) are 

themselves equal to zero on the spanwise boundary.

The Energy Equation
In Cartesian tensor form, the general form of the non-dimensional compressible 

energy equation is given by

∂T
∂ t
u j

∂T
∂ x j =−−1 [1M ∞

2 P ] ∂ u j

∂ x j
 −1 Re−1 M ∞

2   

Re−1 ∂
∂ x j [ Pr

∂T
∂ x j ] ,

(3.87)
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where the viscous dissipation term is

=−2
3
 ∂u j

∂ x j 
2


∂uk

∂ x j  ∂u j

∂ xk

∂ uk

∂ x j  . (3.88)

In the study of incompressible flows it is customary to assume that fluid properties 

are constant throughout the flow while still allowing temperature variation (see 

Schlichting[9]).  That is, in terms of non-dimensional variables it is assumed that

==k=1 . (3.89)

The form of the energy equation model used in this study is determined by substituting (3.89) 

into (3.87) and (3.88).  In addition, since the focus here is on the effects of the roughness 

fields in incompressible flow, this study sets M ∞ =0 so that the pressure term and the 

dissipation term vanish in (3.87).  Continuity results in the first term on the right side of 

(3.87) vanishing as well.  The final form of the energy equation model being examined in this 

study is then

∂T
∂ t
u j

∂T
∂ x j

=Re−1 Pr−1 ∂2 T
∂ x j

2 . (3.90)

Schlichting[9] has shown that when (3.89) is used the energy equation becomes decoupled 

from the flow field so that the velocity components can be determined first and then these 

values are treated as known quantities in solving for the temperature with (3.90).  This is the 

approach taken in the current study.

Since water exists in both liquid and solid form at the surface during glaze ice 

accretion, the surface temperature is likely the freezing point of water, or 0°C.  Therefore, the 

temperature boundary condition used at the surface in this study is held fixed at this value. 

At the far-field, the temperature should recover to the corresponding inviscid temperature 
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since the grids used in this study do not extend out of the domain of influence of the 

parabola.  In general, for a compressible flow, the inviscid temperature at any given point is 

determined by the equation

T 1−1
2

M 2=T∞1−1
2

M ∞
2  , (3.91)

where M is the local Mach number in the inviscid flow at the point of interest.  Again, this 

study uses M ∞ =0 so that (3.91) simply reduces to

T=T ∞ . (3.92)

This is the boundary condition on the temperature at the far-field used in this study. 

Differencing of the energy equation is done in a manner which is similar to the differencing 

of the main flow equations and is described in the next section.

Differencing of the Governing Equations
This section describes the differencing schemes that are used for discretization of the 

governing equations.  In addition, the method by which the discretized equations are solved 

is also described.

Temporal Integration Schemes
Consider a symbolic form of the vorticity transport equations, (3.40), given by

i
n−i

n−1

 t
C i=S iDi , (3.93)

where the subscript indicates the particular vorticity component and the superscript n denotes 

the current time level during an unsteady solution of the governing equations.  The letters C, 

S and D in (3.93) denote the convection, vortex stretching and diffusion terms, respectively, 

in the governing equations regardless of the spatial differencing scheme used.  The time level 

at which these terms are evaluated determines the method of temporal integration being used 
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and the stability properties of the resulting algorithm.  For example, if all terms are evaluated 

at the current time level,

i
n−i

n−1

 t
C i

n=S i
nDi

n  (3.94)

then the resulting scheme is fully implicit and the algorithm is unconditionally stable for 

linear problems (neglecting the stability issues resulting from applying the boundary 

conditions).  This allows a relatively large time step to be taken during the numerical solution 

to arrive quickly at the final time-averaged quantities or a steady-state solution.  Note that the 

temporal discretization term in (3.94) must be written using values from the n-2 time level in 

order for the solution to be second order accurate in time.  This can be avoided by evaluating 

the other terms in (3.94) as an average of the current time level and the previous time level,

i
n−i

n−1

 t
1

2 C i
nC i

n−1=1
2 S i

nS i
n−11

2 Di
nDi

n−1 . (3.95)

This is the second order accurate Crank-Nicholson scheme.  This scheme is also 

unconditionally stable for linear problems and has the advantage of containing information of 

the time rate of change of vorticity from the previous time level during the solution of the 

vorticity at the current time level.  While both (3.94) and (3.95) allow large time steps to be 

taken, a dis-advantage is that both are computationally expensive per iteration.  This is 

because all terms in (3.93) must be evaluated at each iteration and the non-linear terms 

require more iterations to achieve convergence.  For Direct Numerical Simulation (DNS) 

type calculations the large time step advantage may be lost because such calculations often 

require accuracy over a large range of time scales (see Moin & Mahesh[46]).  However, 

evaluating all terms in (3.93) at the n-1 time level (the fully explicit approach) requires a very 
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large reduction in the time step in order to maintain numerical stability, about three orders of 

magnitude in the experience of the author, with the current problem of interest.  A 

compromise is to evaluate the convection and vortex stretching terms explicitly using the 

Adams-Bashforth method while evaluating the diffusion terms implicitly using the Crank-

Nicholson method, i.e.

i
n−i

n−1

 t
1

2 3C i
n−1−C i

n−2=1
2 3 S i

n−1−S i
n−21

2 Di
nDi

n−1 . (3.96)

This temporal integration scheme is often called the semi-implicit scheme or the implicit-

explicit scheme (see Moin & Mahesh[46]).  Using (3.96) requires a reduction of the time step 

by about one and a half orders of magnitude in comparison to the fully implicit scheme to 

maintain numerical stability.  However this time step reduction is also usually required when 

solving for all possible turbulence time scales in the flow, thus it is often the temporal 

integration method of choice for DNS calculations.  For example, variations of this scheme 

were used by Joslin & Grosch[47] and Tufo et al.[48] for DNS of flow over roughness of 

different scales.  Furthermore, (3.96) can be  modified so that only the wall-normal diffusion 

terms are evaluated implicitly while streamwise and spanwise diffusion terms are evaluated 

explicitly.  Doing so typically does not require a further reduction in the time step to ensure 

stability, and applying this new scheme to the incompressible energy equation model allows 

the temperature field to be solved in a single sweep of the flow domain.

Because of the different advantages of each temporal integration scheme (i.e. fully 

implicit, Crank-Nicholson and semi-implicit) all three schemes are implemented in the code 

that has been written for the current study.  This will allow the code to be extended to study 

flow conditions of varying time scales including vortex shedding, break down to turbulence, 
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leading edge pitching, and dynamic surface water development.

For unsteady calculations, the governing equations are iterated at each time step until 

the changes in the flow variables from one iteration to the next are less than a specified 

convergence criteria.  A satisfactory convergence criteria for the vorticity components is 

found to be 10-2.  Convergence is accelerated at each time step by providing an improved 

initial guess of the flow-field using the solution from the previous time step.  For example, 

before iterating upon the governing equations at time level n+1, an initial guess is made for 

3  using the equation

3
n−1=3

n3
n−3

n−1 . (3.97)

This equation is a first order Taylor series with a discretized first order derivative.  The   

term is used to relax the prediction.  Typically  =1, however sometimes it may be 

advantageous to use a value slightly less than one to avoid “shooting” past the final solution 

at the next time step.  A prediction is made for all four variables, both streamfunction-like 

components and both vorticity components using (3.97), for each time step.  Applying this 

method was found to result in only about 1/3 as many iterations being required per time step 

to converge to the chosen convergence level, compared to no convergence acceleration being 

applied.

Differencing of Non-Convection Terms
The diffusion and vortex stretching terms in the vorticity transport equations and all 

terms in the streamfunction-like Poisson equations are discretized using second order 

accurate central differences, see Tannehill et al.[49].

Differencing of Convection Terms
One of the more critical aspects of any numerical algorithm is the method used to 
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discretize the convective terms.  The differencing scheme which is applied to these terms 

impacts the overall accuracy of the solution, the amount of artificial dissipation present in the 

solution and the scheme's stability properties.  Viewing the current study as an extension of 

the two-dimensional study of Huebsch & Rothmayer[50] to three dimensions, the baseline 

approach is to use central differencing for all convection terms, like that used in Huebsch & 

Rothmayer[50].  This method works for most steady three-dimensional calculations, however 

for some three-dimensional steady calculations and most unsteady calculations the solver 

cannot tolerate oscillations in the solution the way that two-dimensional calculations can. 

One of the primary sources of oscillations in the flow field during iteration is the interaction 

of the Prandtl transposition used to model the roughness and the shear layer downstream of 

the roughness.  Figure 17 shows the vorticity immediately downstream of a single roughness 

element.  Also shown is the grid and a grid line of constant   (dark line).  The shear layer, 

or high gradient region, is clearly visible in Figure 17 between the dark blue and 

yellow/green regions.  Because of the Prandtl transposition, the grid slopes down the back 

side of the roughness instead of remaining parallel to the shear layer.  As a result, the grid in 

the wake of the roughness is skewed relative to the local flow, with high gradients in the 

shear layer.  When central differencing is used for the convective terms in this scenario, 

oscillations can result which may grow during the iterative process and cause the solution to 

become unstable.  To counter this problem, a number of upwinding methods are 

implemented in the code.  Upwinding is chosen because it is a natural way to introduce 

varying levels of numerical dissipation into the solution without requiring extra dissipation 

specific terms or user knowledge of allowable dissipation coefficients.

The second differencing method for the convection terms implemented within the 
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code is the Essentially Non-Oscillatory (ENO) and Weighted ENO (WENO) methods for 

discretization of the convection terms.  Details of the WENO scheme are not given here and 

the reader is referred to more comprehensive sources on the subject such as Liu et al.[51]. 

Both the ENO and WENO schemes consider the three possible third order upwind difference 

stencils about grid point i.  These are


1=

11ijk−18i−1jk9i−2jk−2i−3jk

6 ,

 
2=

2i1jk3ijk−6i−1jki−2jk

6

and 
3=
−i2jk6i1jk−3ijk−2i−1jk

6
,

(3.98)

where i-1 is in the upwind direction.  Note that each successive difference approximation 

becomes more skewed towards the downwind direction.  The stencil which is chosen by the 

ENO scheme is the one whose corresponding polynomial interpolates the function in the 

smoothest manner using a complicated polynomial reconstruction process.  The WENO 

scheme recognizes the fact that, at least in smooth regions of the flow, to pick just one of the 

stencils in (3.98) is overkill.  Rather a weighting of the three different stencils is used.  The 

result is that in smooth regions the scheme can be up to fifth order accurate while in regions 

of high gradients, where one of the stencils is chosen predominantly over the other two in 

order to avoid oscillations, the scheme still remains at least third order accurate.  However, 

the smoothing process employed by the WENO scheme can tend to introduce too much 

artificial dissipation into the flow.

As a compromise between the oscillations of central differencing and the potential for 

excessive dissipation of the WENO scheme, a third method for calculating the convection 

terms is implemented.  This third method for differencing convection terms is a simple blend 
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of a second order central difference and a second order upwind difference given by

=ud1−cd , (3.99)

where “ud” and “cd” denote standard second order upwind and central differences, 

respectively.  The   is included to be able to vary the degree of upwinding and avoid 

excessive numerical dissipation beyond what is required for stability.  Choosing  =1/3 

gives a third order approximation known as the QUICK scheme which is identical to the 

second equation in (3.98).

Figure 18 shows a qualitative comparison of the three convection differencing 

schemes (central, WENO and QUICK) using a particular test case for an unsteady flow 

solution over an isolated two-dimensional roughness element.  The lines in Figure 18 show 

contours of the spanwise vorticity, 3 .  Figure 18a shows the central differencing scheme. 

The advantage of the central difference scheme is low numerical dissipation and low 

computation time.  However, just downstream of the roughness peak oscillations are apparent 

in the solution.  These oscillations can cause the three-dimensional flow solver to become 

unstable.  Figure 18b shows the vorticity contours for the WENO scheme.  Figure 18b is a 

smooth solution.  However, the WENO solutions have a high level of numerical dissipation. 

Finally, Figure 18c shows the QUICK scheme which uses (3.99) with  =1/3.  The shapes of 

the vortices are very similar to Figure 18a which indicates that numerical dissipation is low. 

However, enough dissipation has been introduced so that the oscillations downstream of the 

roughness are avoided.  It should be noted that if   is increased to unity in (3.99), the 

vorticity contours look similar to Figure 18c with a small increase in evident numerical 

dissipation.  The flow upstream of the roughness element in Figure 18, which is periodic and 

unsteady, is not significantly affected by the varying levels of numerical dissipation of the 
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various schemes.

Because of the clear advantages of the QUICK scheme over either second order 

central differencing or the WENO scheme, the QUICK method of convective discretization 

is used for the majority of calculations in this study.  For some higher Rek  flows the WENO 

scheme is used to obtain a qualitative picture of the flow over the roughness.

One important aspect of any upwind differencing scheme is to determine the proper 

upwinding direction.  Typically, the physical velocity is simply used as an indication of the 

local flow direction.  The characteristic (see Tannehill et al.[49]) direction, however, is with 

respect to the grid and not necessarily the physical domain.  It turns out that when the 

shearing transformation is applied the two are not the same in the wall-normal direction.  The 

physical velocity in contravariant coordinates is given by (3.52).  Applying (3.53) and the 

shearing transformation to this equation results in

U=1
h ∂∂ ∂ ∂  , 

V=1
h [−∂ ∂

 f 
∂  
∂

−∂
∂
 f 

∂
∂
−∂ 
∂' ]

and W= 1
h2
∂  
∂ .

(3.100)

Conversely, velocities can be defined with respect to the grid.  Taking guidance from (3.52) 

and starting with the coordinate system after the shearing transformation, the grid-based 

velocity components are found to be
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U=1
h ∂∂  , 

V=1
h [−∂ h ∂

−∂
∂ ]

and W= 1
h2
∂ h
∂ .

(3.101)

Since the inviscid derivatives of the streamfunction are defined with respect to the primed 

coordinates it is necessary to go backwards through the shearing transformation.  Doing this 

gives

U=1
h ∂∂ ∂ ∂'  , 

V=1
h [−∂ ∂

−∂
∂
−∂ 
∂'  f 

∂ 
∂' ]

and W= 1
h2
∂  
∂ .

(3.102)

Comparing (3.100) and (3.102) it can be seen that there is no difference between the grid and 

physical streamwise and spanwise velocities.  Therefore, using the sign of the physical 

velocity will not cause any problems.  For the wall-normal velocity, however, there are 

differences between the terms which are being multiplied by roughness derivatives.  Though 

the differences are small they can lead to a different sign of the grid wall-normal velocity, V

, compared to the physical wall normal velocity, V , in regions where the roughness 

derivatives are large.  If an upwinding scheme is used in the wall normal direction, using the 

physical wall normal velocity to determine differencing direction may lead to an instability in 

the algorithm.  This is consistent with observations that were made using two-dimensional 

calculations from this study.  That is, choosing the upwinding direction of the wall-normal 

velocity using (3.100) resulted in instabilities that originated at the maximum slope of the 

roughness.  This is resolved by using the grid wall normal velocity as defined by (3.102) 
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instead.

It is also worth noting that, as it is written, (3.54) allows a conservative differencing 

approach for both the convection as well as vortex stretching terms (i.e. the nonlinear terms). 

This would be accomplished by defining the differences using the product of the velocity 

components with the respective vorticity component.  If a vorticity-velocity approach were 

being used this would be more feasible.  However, it would require the solution of six 

equations for six unknowns.  In the current streamfunction-like / vorticity framework, the 

conservative differencing approach was attempted but proved to require too much memory 

and was considerably more expensive per iteration.  Instead, the derivatives in (3.54) are 

evaluated using a chain rule to arrive at a non-conservative form of the vorticity transport 

equations (see the appendix for the final form of the equations being used in this study).

Method of Solution
Regardless of the method of temporal integration and the spatial differencing scheme 

used, the basic methodology for solving the resulting system of equations is the same and 

uses an ADI-like iteration procedure.  The discretized equations at each grid point are written 

in the form

Aii−1BiiC ii1=Di . (3.103)

In the current study the ADI scheme is actually a block ADI scheme, and all four equations 

are coupled and solved simultaneously.  Therefore the A, B and C in (3.103) are 4x4 arrays 

and D is a four element vector.  If the indices i,j,k define a given point in the structured grid, 

then for a given j,k (constant vertical and spanwise grid lines) (3.103) is written for each i 

along with appropriate boundary conditions.  This forms a system of linear equations which 

is inverted via a modified Thomas algorithm (see Tannehill et al.[49]).  The iteration then 
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proceeds to grid point j+1,k where the process is repeated.  This procedure is carried out for 

all j,k.  Following inversion in the streamwise direction, the solution is marched for all i,k 

with inversion of (3.103) in the j direction.  This is followed with inversion in the spanwise 

direction as well.  This entire procedure constitutes one iteration of the flow field.  The 

iteration process is repeated until the change in flow variables from one iteration to the next 

is less than a specified tolerance.  Monitoring of the vorticity components was found to be 

the best indicator of whether or not a flow field is converged.  For steady flows, an absolute 

maximum error convergence criterion of 10-4 is typically found to be more than sufficient.  If 

a steady solution is being sought then the solution is complete when this convergence criteria 

is reached, for unsteady flows the solution moves on to the next time step.

For each situation where the convection or vortex stretching terms are being treated 

implicitly, these terms are linearized by applying a Newton linearization.  For example,

∂
∂

∂3

∂
=∂∂ 

g ∂3

∂
∂
∂ ∂3

∂ 
g

−∂∂ 
g∂3

∂ 
g

, (3.104)

where the superscript g indicates that the term is evaluated based on “guessed” values from 

the previous iteration.

The ADI method is an efficient algorithm for the implicit solution of finite difference 

equations.  While it is more efficient than fully coupled methods, it often does not have as 

good a convergence rate.  This is primarily due to the fact that the flow field is only being 

coupled in one direction at a time (the inversion direction).  This can be at least partly 

overcome by employing multi-grid type techniques to communicate boundary condition 

information to the interior of the flow domain more quickly.  In the current study coarse grids 

are used to provide initial solutions for finer grid calculations.  The typical procedure is to 
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start with a grid which has half the resolution of the final grid to be used.  The flow solution 

is fully converged on this coarse grid.  Following this, a second grid is constructed which has 

a resolution which is half way between the coarse grid and the final grid.  The initial 

condition for the second grid is the converged solution from the coarse grid which is linearly 

interpolated onto this second grid.  The solution is also fully converged on the second grid. 

Finally, this second grid solution is linearly interpolated onto the final grid as the starting 

solution for the final grid computation.  While not a true multi-grid method, this simple 

procedure is found to decrease the solution time by about 60% compared to a single grid 

solution.

Parallel Processing
Due to the large computational requirements of three-dimensional solutions, a multi-

processor approach is necessary for efficient computations.  The main consideration in the 

design of the parallel processing capabilities of the code is the ability to run efficiently on 

large clusters of workstations or PC's (so-called Beo-Wulf clusters) which have become 

increasingly available and economical.  Such a design would necessarily be a distributed 

memory architecture where each processor has its own block of data to operate on.  The 

design should also limit message passing between processors as much as possible and instead 

opt for more computation per processor.  This takes advantage of the fast speeds of the newer 

PC processors while avoiding overloading parallel clusters with lower network bandwidth.

When designing a distributed memory parallel code, the most important decision is 

how to divide up the grid among the processors.  To avoid complexity, the code divides the 

grid up in only one coordinate direction instead of multiple coordinate directions.  The desire 

to avoid large gradients along the partitioned direction typically rules out partitioning the grid 
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normal to the wall.  Of the remaining two directions, streamwise and spanwise, the current 

application typically has many more grid points in the streamwise direction, so partitioning 

the grid in this direction will lead to improved scalability for large numbers of processors.  In 

addition, a spanwise partitioning scheme would require extra communication between 

processors due to the periodic boundary conditions being applied in that direction.  Finally, 

partitioning in the spanwise direction also requires passing larger blocks of data between 

processors, for the current application.  A schematic of the streamwise grid partitioning 

scheme is shown in Figure 19a.

Each processor is assigned its own block of data on which to operate.  Locally, each 

processor carries out the method of solution described in the previous section, in which the 

governing equations are inverted in one of the coordinate directions while marching in the 

other two coordinate directions.  After the inversion over the entire grid block is complete, 

each processor passes data to neighboring processors in preparation for inversion in the next 

coordinate direction.  Figure 19b shows the message passing pattern between neighboring 

processors after each sweep of the grid.  Processor i marches/inverts the data between the 

dashed grid lines.  At the edges of each data block is a buffer region of grid points which 

contains data from the neighboring processor.  Figure 19b shows a buffer region containing 

two grid points, which is the minimum required for the QUICK scheme.  Note that because 

each processor effectively operates independently from the neighboring processor, a 

discontinuity can exist in the data between processors which can lead to reduced convergence 

rates.  One method of counter-acting this problem is to add a ghost region for each processor. 

A ghost region is an extension of a processor's grid block into the neighboring processor's 

grid block.  In the case of Figure 19b, when marching in the direction of increasing  , 
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processor i receives the ghost region from processor i-1.  Processor i then starts the sweep in 

  at the beginning of this ghost region before sweeping over its own data.  The ghost region 

effectively provides improved guess values for the data owned by processor i.  After the 

sweep of the grid block is complete, the ghost region is updated with data from processor i-1. 

Even though the computational cost per iteration increases slightly when using ghost regions, 

convergence rates typically increase.  Ghost regions containing a few grid points are typically 

the most efficient.

Keeping data local to each processor minimizes communication between neighboring 

processors and typically leads to good scalability.  Scalability performance of the code was 

measured by running a three-dimensional test case on the Itanium NCSA cluster at the 

University of Illinois.  The cluster consists of 800 MHz Itanium processors running the Linux 

operating system and connected by a Myrinet high speed network.  The calculation was run 

out to 200 iterations on a 1024x101x91 grid with the number of processors increasing for 

each run.  The parallel performance of the code is shown in Figure 20.  The speedup in 

Figure 20 is defined to be

Speedup =
T s

T p
, (3.105)

where T s  is the serial run time on a single processor and T p  is the run time on p processors. 

Since the test problem could not be run on a single processor because of memory limitations, 

the serial run time was obtained by finding T 4  (the run time on four processors) and 

multiplying by four (i.e. assuming a linear relationship for small numbers of processors).  As 

the number of processors was increased, the amount of memory required per processor 

decreased.  This results in a larger portion of the problem residing in the high speed cache 
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and registers.  This leads to super-linear speedup for the current problem below about 32 

processors.  As the number of processors is increased beyond this amount, this effect is 

counter-acted by the increase in inter-processor communication per grid point and the 

resulting speedup is less than the theoretical maximum.  Note that the design of the parallel 

architecture which minimizes inter-processor communication allows good speedup to be 

maintained through 128 processors.  From Figure 20 it can be seen that the speedup for 128 

processors is still about 84% of the theoretical maximum despite the fact that this case has 

just eight streamwise grid points per processor (and larger communication to computation 

ratio).  As the problem size increases the scalability is expected to remain closer to the 

theoretical value for larger numbers of processors.
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CHAPTER 4. VALIDATION OF THE NAVIER-
STOKES FLOW SOLVER

In this chapter the Navier-Stokes code is validated by comparing results with existing 

numerical results, new results from a commercial CFD code and experimental results.  In 

addition, the validation cases cover three different roughness/flow regimes of a) steady flow 

over shallow roughness, b) steady flow over O(1) aspect ratio roughness and c) unsteady 

flow over O(1) aspect ratio roughness.

Comparison with Previous Numerical Results for Shallow Roughness

The logical place to start the code validation is the numerical test case which was 

performed by Davis et al.[42], who developed the numerical method upon which the present 

study is patterned.  It should be noted that because the roughness elements are shallow, Davis 

et al.[42] used a thin-layer Navier-Stokes implementation of the algorithm.  Also, that study 

used a first-order upwinding technique for the convection terms.  Ddue to the relatively 

benign flow conditions the solution is not expected to be affected greatly by the increased 

numerical dissipation.

The 3% bump of Davis et al.[42] is a secant function (see (3.11)) with k=0.03, s =

 =4, s0 =2.5 and 0 =0.

Figure 21 shows the streamwise skin friction down the roughness center-line.  The 

circles are the data from Davis et al.[42] which is for the shallow three-dimensional 

roughness on a flat plate at a freestream Reynolds number of 60,000.  The lines are from the 

present study for the same roughness element placed on parabolas with varying leading edge 

radius of curvature, R.  Recall that as R0  the parabola better approximates a flat plate. 

For each value of R, the roughness position is chosen so that the approaching streamwise skin 
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friction is the same as that seen in the Davis et al.[42] data.  For R=0.1 there are two curves. 

The solid curve uses a coarse grid while the dashed curve uses a fine grid which has 

approximately twice the grid resolution of the coarse grid.  All other calculations use the 

coarse grid.

Figure 21a shows that as R0  the current study compares well with the Davis et  

al.[42] data.  In particular, the R=0.01 data is the only case to capture the negative skin 

friction just downstream of the roughness.  For the typical parabola with R=1, the favorable 

pressure gradient prevents the flow from decelerating to the point where the skin friction 

changes sign.

Figure 21b shows the spanwise skin friction at the spanwise plane  =0.3.  Once 

again, both the coarse grid and fine grid results are shown for R=0.1.  In this case reducing R 

to 0.1 is sufficient to calculate the spanwise skin friction.  Note that the spike in the Davis et  

al.[42] data upstream of the roughness is due to the upstream boundary condition used in that 

study.

A second comparison case with Davis et al.[42] is for a 6% dent which has the same 

geometrical parameters as the 3% bump except that now k=-0.06.  In addition, for this case 

the Reynolds number is reduced to 8,000.  The result is a larger region of separation as well 

as an opposite sign of the spanwise skin friction for a given spanwise plane.  Figure 22a 

shows the streamwise skin friction down the dent center-line.  Over the majority of the dent 

the present study agrees well with the Davis et al.[42] data for R=0.01.  Away from the dent 

the two curves diverge slightly due to the differences in the base geometry (i.e. flat plate vs. 

thin parabola).  Figure 22b shows the spanwise skin friction at the  =0.3 plane.  As 

mentioned, the sign of the spanwise skin friction of the dent is opposite to that of the bump as 



78

the flow is first turned inward toward the plane of symmetry and then turned outward on the 

lee side of the dent.  Once again, the shape of the spanwise skin friction from the current 

study is close to the Davis et al.[42] data with a slight offset between the two curves, likely 

due to the difference in the base geometry.

As a final check, a comparison of two streamwise velocity profiles for the 6% dent 

are shown in Figure 23.  Figure 23a shows a comparison at the dent's maximum depth on the 

roughness center-line.  The separation region clearly shows up as a region of negative 

streamwise velocity.  Figure 23b shows a comparison at the same streamwise location but 

away from the symmetry plane at  =0.3.  In both cases, the comparison between the current 

study and the Davis et al.[42] data is good.

Comparison with Fluent Results
In order to fully validate the code for flow over steady roughness, a more detailed 

comparison for flow over O(1) aspect ratio roughness is required.  Existing numerical studies 

for this type of flow are scarce.  Therefore, the commercial code Fluent is used to generate 

the results for comparison.  In this case, the roughness and base geometries near the 

roughness element are identical.  A quartic roughness element (see (3.9)) is used and placed 

on the R=1 parabola leading edge at s=1 (i.e. one leading edge radius of curvature from the 

stagnation point).  In this case the roughness is defined by k=0.05, s =  =0.2 and m=10. 

These parameters give the roughness on the parabolic leading edge shown in Figure 24. 

This figure includes a close-up of the single roughness element, including the surface mesh 

used.  The surface geometry from the fine mesh region was imported into Gambit, the pre-

processor for Fluent, in order to match the roughness shape as closely as possible between 

the two codes.  Additional surface geometry and boundaries were then added to complete the 
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flow domain to be used by Fluent.

Originally, both codes were used to solve for the flow over half of the roughness, 

with a symmetry boundary condition applied at both spanwise boundaries shown in Figure

24.  However, it was realized that the Fluent calculations did not seem to treat the symmetry 

condition properly, with certain contour lines not approaching the symmetry plane 

perpendicular to the plane itself.  As a result, the spanwise domain of the Fluent calculation 

was doubled so that the symmetry condition at the roughness center plane was not necessary. 

It is not expected that the remaining symmetry conditions at the spanwise boundaries in the 

Fluent calculation have a significant effect on the flow over the roughness element itself.

The total number of grid points and mesh spacing used for the Fluent half domain is 

similar to the grid used in the current study.

In all cases of problem setup, every attempt was made to use the same numerical 

options in the Fluent calculation as are used in the current study.  For example, the QUICK 

scheme was used in the Fluent calculation for differencing the convective terms, while the 

current study also uses the QUICK scheme in the streamwise and spanwise directions. 

However, it is noted that the general approach taken by the two codes in solving the 

incompressible Navier-Stokes equations is different.  Fluent is a finite volume based code 

which solves the primitive variable form of the Navier-Stokes equations in Cartesian 

coordinates.  As detailed in the previous chapter, the current study is a finite difference code 

which solves a streamfunction-like / vorticity form of the Navier-Stokes equations in 

contravariant coordinates.  The effect of the roughness in the current study is captured 

directly via explicit terms which appear in the governing equations.  The effect of the 

roughness in the Fluent code is captured via the shape and boundary condition at the wall and 
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is subsequently propagated into the flow interior.

Figure 25 through Figure 28 show a comparison for the three Cartesian vorticity 

components at various locations over the roughness.  Vorticity is chosen as the variable of 

comparison because it is the basis of the numerical method used in the current study and it 

tends to amplify differences between codes.  At the top of each figure is a slice of the 

roughness at a given spanwise plane.  Contours of the particular component of vorticity are 

shown on this plot as well for both the Fluent calculation and the current study.  For example, 

Figure 25 shows contours of the spanwise vorticity (z-vorticity) at the top of the page.  Other 

figures show the vorticity which is aligned with the Cartesian x-axis (x-vorticity) or with the 

Cartesian y-axis (y-vorticity).  Also shown in each figure are profile comparisons of each 

particular vorticity component at various streamwise locations for the given spanwise plane. 

The location of the profiles relative to the roughness is also shown as the vertical lines in the 

plot at the top of each page.

In most cases, the comparison between the Fluent calculation and the current study 

agree fairly well.  On the roughness center-plane (z=-0.05), Figure 25 shows a comparison of 

the z-vorticity.  Upstream of the roughness the contours from the two codes are identical. 

Downstream of the roughness there is some difference between the two codes for small 

magnitude of the vorticity.  However, the profile shown at x=-0.08 shows a relatively good 

agreement between the codes.  At z=-0.03, Figure 26, the comparison of the z-vorticity is 

actually a little bit better, likely due to the fact that the gradients of the z-vorticity in this 

plane are smaller.

Figure 27 shows the x-vorticity also at the z=-0.03 plane.  There are small differences 

in the outer-most contour in the top plot.  In addition, the profile at x=-0.12 shows a fairly 



81

significant difference between the two codes near the surface.  By examining the plot at the 

top of the figure it can be seen that differences between the codes in this profile are amplified 

due to the fact that this profile is in a high gradient region.  This is demonstrated by also 

plotting a profile from the current study at x=-0.119, that is a profile which is only slightly 

shifted from the nominal profile at x=-0.12.  Both lines are shown in the top plot of Figure 27 

(x=-0.119 is a dotted line) however they are nearly indistinguishable from each other.  The x-

vorticity at x=-0.119, shown as open squares, nearly directly coincides with the x-vorticity at 

x=-0.12 from the Fluent calculation, shown as open circles.  Thus it is concluded that the 

differences between the two codes at x=-0.12 are exaggerated by the large gradients.

Finally, Figure 28 shows the y-vorticity at the z=-0.03 plane.  There are again some 

small differences noted in the contours as well as in the profiles.  In general, however, the 

two codes are in good agreement.

The conclusion from the comparison with Fluent, which is a well validated 

commercial CFD package, is that the code developed for the current study is fully capable of 

accurately simulating flows over O(1) aspect ratio roughness on the leading edge.

Comparison with Experiment for Unsteady Flow Upstream of Roughness
Winkler[17] experimentally examined both isolated and distributed roughness placed 

on a flat plate.  The purpose of the experiments was to identify flow mechanisms which may 

be responsible for the increased convective heat transfer seen just downstream of roughness 

elements, although the corresponding heat transfer data was not obtained.  The data acquired 

included smoke visualization images and velocity profiles obtained with Laser Doppler 

Velocimetry (LDV).  Because of the desire to obtain results applicable to aircraft icing the 

experiments were run at relatively high Rek .  For the isolated roughness experiment, which 
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is the case being simulated here, the value of Re k  is 3700 and the ratio of roughness height 

to boundary layer thickness, k / , is 2.5.  In order to assure that a flow solution can be 

obtained at these conditions without numerical instability the WENO differencing scheme is 

used for the convection terms.  In this situation, in which the WENO scheme is used to 

calculate unsteady flow, the algorithm is similar to a Monotonically Integrated Large Eddy 

Simulation (MILES) approach which is an LES scheme that uses excessive numerical 

dissipation as the filtering scheme.  The goal of applying this scheme is to perform a 

preliminary test of the ability of the algorithm to capture unsteady vortex shedding and 

qualitative flow behavior.

The current study uses a parabola with R=0.1 to approximate the flat plate used by 

Winkler[17].  The roughness height is set at k=0.4 and the freestream Reynolds number is 

ReR =9320.  With the roughness placed at the appropriately scaled distance from the leading 

edge, the ratio of roughness height to boundary layer thickness computed by the code is k /

=2.74 which is close to the value reported by Winkler[17].

The geometry and surface grid used in the calculation are shown in Figure 29.  Note 

that in order to keep the computational grid to a manageable size, the spanwise extent of the 

flow domain is limited to three roughness heights.  The dense grid region used in the 

calculation has a length of 25 roughness heights, with the downstream boundary of the dense 

grid region located 20 roughness heights downstream from the roughness itself.  The dense 

grid uses 615 grid points in the streamwise direction, which is equivalent to 24.6 grid points 

per roughness height in the streamwise direction.  The grid uses 101 grid points in both the 

wall-normal and spanwise directions.

Because of limited computational resources a full three-dimensional grid 
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independence study could not be performed.  However, a series of two-dimensional 

calculations were performed to test the streamwise and wall-normal grid resolution to some 

extent.  Figure 30 shows the effect of increasing the resolution in the wall-normal direction 

using the time-averaged streamwise skin friction.  About 2.5k downstream from the 

roughness, the coarse grid (which is used in the three-dimensional calculation) is slightly out 

of agreement with the other two grids.  Figure 31 shows the impact of increasing the 

resolution in the streamwise direction.  Once again the coarse grid is the one used in the 

three-dimensional calculation.  Note that this grid is not grid independent.  Increasing the 

resolution to 110 grid points per k is still not sufficient for this high Rek  case.  In particular, 

there are differences in the small scale structures 1k downstream from the roughness when 

compared with the finest grid.

Because the three-dimensional calculation is not grid resolved and because the 

WENO scheme causes excessive numerical dissipation, the results should be evaluated 

mostly on a qualitative level.  Figure 30 and Figure 31 show that at least in terms of a two-

dimensional analysis, the grid being used for the three-dimensional calculation is likely 

sufficient in the region upstream of the roughness.  The solution will be compared with 

experiment in this region.

Figure 32 shows a comparison of time-averaged streamlines from the current 

calculation with an instantaneous smoke visualization taken from the experiment of 

Winkler[17] upstream of the roughness.  The smoke visualization shows three primary 

vortices upstream of the roughness, which are labeled as such in the figure.  In the 

experiment the instantaneous number of vortices present changed periodically with time from 

three to two and back to three again.  The streamlines in Figure 32 from the simulation show 
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the existence of three vortices upstream of the roughness along with two secondary vortices. 

Though the secondary vortices are not labeled in the smoke visualization image their 

presence can be inferred.  The shape and size of the vortex structures predicted by the 

computation differs from the experiment and this difference is likely due to a difference in 

the geometry at the roughness-plate juncture as well as the slightly favorable pressure 

gradient which exists on the thin parabola.

Figure 33 shows streamwise velocity contours near the leading edge of the roughness 

taken from both the Winkler[17] experiment and the three-dimensional calculation.  The 

computation is able to predict the separated region upstream of the roughness as well as the 

“bulge” in the streamwise velocity contours on the roughness leading edge.  This bulge is not 

evident in the two-dimensional calculation and appears to be a three-dimensional effect.

Figure 34 shows wall-normal velocity contours near the leading edge of the 

roughness.  Once again the computation does a good job of predicting both the size as well as 

the location of the various structures.

Figure 35 shows a comparison of the time-averaged streamwise and wall-normal 

velocity profiles approaching the roughness element for both the experiment and the 

computation.  Also shown by the dashed lines are the velocity profiles for a two-dimensional 

computation using the same parameters as the three-dimensional computation.  The  x  in 

Figure 35 gives the distance upstream from the reference point, in roughness heights.  Thus 

 x =-1.5 is 1.5k upstream of the reference point, which as shown in Figure 33 is just the 

leading edge of the roughness.  The experimental and computational curves clearly show the 

separation region upstream of the roughness.  The separation region predicted by the two-

dimensional computation is significantly larger, extending further vertically from the wall 
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and further upstream from the roughness.  Near the roughness, however, the magnitude of the 

reversed flow from the three-dimensional computation is larger, indicating a larger skin-

friction magnitude as well.  In general, the comparison between the three-dimensional 

computational profiles and the experimental profiles is good, except very near the roughness. 

The difference in this region is possibly due to differences in the geometry being used. 

Recall that the computations use a filleted hemisphere which has a smooth transition to the 

base geometry, while the experiment used a hemisphere which intersects the flat plate at a 

right angle.  As a result of the fillet used in the computations, the point at which the 

roughness computational model intersects the plate is not the same as in the experiment. 

Changing the reference point used to determine the streamwise location of the profiles from 

the computation to be the location at which the roughness model intersects the plate (or is 

within 1% of the maximum roughness height since it's asymptotic) gives the profiles shown 

in Figure 36.  When the streamwise shift is applied, both the streamwise and the wall-normal 

velocity profiles show an improved agreement with experiment.  In particular, the wall-

normal velocity computed by the code now has the same sign as the experimental data. 

Some profiles are still under-predicted in velocity magnitude and this could again be a result 

of using a hemisphere which has a smooth transition to the flat plate.

As mentioned previously, the flow downstream of the roughness is excessively 

dissipated by the WENO differencing scheme.  Again, the goal here is to demonstrate the 

basic capability of the code to capture unsteady vortex shedding and generating flow 

structures in the wake which at least have a turbulent-like appearance.  This step is viewed as 

a pre-curser to an accurate calculation of unsteady flow in the roughness wake at high Rek .

Figure 37 shows the development of the flow spanwise vorticity over the roughness. 
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Upstream of the roughness element, where a two-dimensional boundary-layer exists, the 

spanwise vorticity varies only with distance outward from the wall, with a maximum at the 

wall and decreasing to zero in the freestream.  Thus, a vorticity iso-surface appears as a two-

dimensional sheet.  The iso-surface shown in Figure 37 is 3 =-1.  As the flow approaches 

the roughness, this sheet is lifted from the surface by the presence of the roughness element. 

Below the sheet and along the side of the roughness there exists smaller scale iso-surfaces for 

3 =-1 which indicates production of vorticity at the surface due to the pressure gradients 

which are generated by the roughness element itself.  The vortex sheet is warped and twisted 

as it passes over the roughness element until shortly after entering the roughness wake it 

becomes mixed with other vorticity layers and the vorticity which is produced at the surface. 

At this point, it is difficult to tell which part of the iso-surfaces are due to the upstream vortex 

sheet and which parts are due to fresh vorticity being produced at the wall.  Also shown in 

Figure 37 is a close-up view of the vorticity in the immediate roughness wake along with a 

grid overlay on the iso-surface.  Though it is recognized that the flow solution is not grid 

independent in the roughness wake, the figure shows that there are a reasonable number of 

grid points within the flow structures shown in the figure.  That is, there are typically several 

grid points per iso-surface structure.

Figure 38 shows two-dimensional slices of the flow at constant spanwise stations, 

again showing spanwise vorticity.  At the roughness center-plane, except for the vortex 

rolling up on the downstream side of the roughness, there is relatively little variation in the 

vorticity.  Moving out from the roughness center-plane an increasing level of mixing can be 

seen, with turbulent-like structures appearing stronger at the spanwise boundary.

Figure 39 shows a comparison of the time-averaged streamwise velocity over the 
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entire roughness element, including the roughness wake.  As expected, the comparison in the 

roughness wake is not good and the excessive dissipation of the WENO scheme in this 

region is evident.  In particular, the nearly vertical contours in the Winkler[17] figure are not 

reproduced by the computation.

The purpose of simulating the Winkler[17] isolated roughness experiment is to 

examine the ability of the code to calculate high Rek  flows over roughness.  To this end the 

WENO scheme was applied in order to maintain numerical stability, despite the high 

numerical dissipation levels.  The flow upstream of the roughness shows that this scheme is 

sufficient to capture the horseshoe flow structures and quantitatively capture the flow 

approaching the roughness element.  Downstream of the roughness the quantitative 

comparison is not good.  However the computational results did show the ability to capture 

unsteady vortex shedding and vorticity breakdown, including the computation of turbulent-

like structure in the roughness wake.
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CHAPTER 5. RESULTS FOR FLOW OVER THREE-
DIMENSIONAL DISTRIBUTED ROUGHNESS
As indicated in Chapter 1, the most significant unknown effects of ice roughness on 

the icing process are the role that roughness plays in the convective heat transfer and its 

effect on surface water dynamics.  The purpose of this chapter is to examine the effect that 

various distributed roughness patterns have on these two items.  In particular, the study 

focuses on distributed roughness and properties such as the Reynolds number and roughness 

height, shape, spacing and streamwise extent.  In all cases, the impact of the roughness on 

heat transfer is examined by comparing the convective heat transfer over the rough surface to 

the clean parabolic leading edge heat transfer.  

For the effect of roughness on surface water dynamics the analysis is more 

qualitative.  The current solutions are single phase and a true assessment of the impact of 

roughness on surface water dynamics requires a full multi-phase solution.  This is the case in 

Chapter 2, which examined the effect of two-dimensional roughness elements on thin water 

films.  The results from that chapter show that thin films are primarily air shear driven, with 

alterations due to pressure gradients and surface tension in areas where the air shear goes to 

zero.  Therefore, to assess the impact of roughness on surface water dynamics the limiting 

streamlines (i.e. wall shear patterns) are examined in order to gain insight into the initial 

motion of very thin films.

Clean Leading Edge Heat Transfer
The next few sections examine the impact of various properties of distributed 

roughness fields on the convective heat transfer and the wall shear patterns.  In examining the 

convective heat transfer, all of the roughness effects are presented relative to the clean 
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leading edge heat transfer.  Therefore, it is worthwhile to briefly examine the clean leading 

edge heat transfer and a comparison of the code with experimental data.

Poinsatte et al.[52] experimentally examined the convective heat transfer in the 

vicinity of the leading edge of a NACA 0012 airfoil.  Both flight and wind tunnel tests were 

performed in order to determine the potential impact that turbulence intensity could have on 

heat transfer.  The results showed that the leading edge convective heat transfer for the airfoil 

was a little higher in the tunnel than in free flight owing to the increased turbulence 

intensities in the tunnel.  However in both cases, the convective heat transfer was 

significantly less than the analytical result for a cylinder found by Frossling[53], which is 

often used in icing codes near the stagnation region of an airfoil.

Figure 40 shows a comparison of the Poinsatte et al.[52] free flight heat transfer data 

with results from the code for various Reynolds numbers.  The results are presented in terms 

of the Frossling number, which is defined as the Nusselt number divided by the square root 

of the Reynolds number.  In this case the reference length is the chord of the NACA 0012 

airfoil.  The figure shows the Reynolds number used in the code based on the leading edge 

radius of curvature.  The value for ReR  of 15000 corresponds to a chord Reynolds number 

of 943,000, which is a little lower than the minimum Reynolds number tested by Poinsatte et  

al.[52] of 1.2 million.  Analysis of the flight test method used indicates that the Mach number 

for these low Reynolds number tests was approximately 0.1 to 0.15.  This is sufficiently low 

to be considered incompressible and using M ∞ =0 in the code is justified.  A freestream-to-

wall temperature difference of 10ºC was used for all cases and studies of the effect of the 

temperature difference show that the heat transfer is not significantly affected by this 

parameter.
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All of the curves for the various Reynolds numbers essentially collapse to a single 

curve when plotted as a Frossling number.  This is consistent with the flight test data and it is 

the main reason for presenting the heat transfer data in this manner.  Near the stagnation 

point, the code tends to under-predict the heat transfer, whereas further aft of the leading 

edge the code slightly over-predicts the heat transfer.  Poinsatte et al.[52] did not have an 

explanation for the discontinuity in the flight test data.  It is worth pointing out that the last 

three points in Figure 40 agree very well with laminar flat plate theory, as would be expected 

on an airfoil away from the stagnation point.

In the sections to follow, the effect of various roughness parameters on the convective 

heat transfer are examined.  In all cases the augmentation of the heat transfer is assessed. 

The purpose of Figure 40 is to show that the clean leading edge heat transfer predicted by the 

code is representative of actual airfoil leading edge heat transfer.  Though the flow is being 

solved over a parabolic leading edge and not a complete airfoil, the heat transfer data will 

continue to be presented as a Frossling number based on airfoil chord length.  This is done by 

using the ratio of leading edge radius of curvature, R, to chord length, c, for a NACA 0012 

airfoil which is 0.0159.  However, as opposed to the case shown in Figure 40, the data will be 

plotted against an arc-length which is non-dimensionalized by R.

Effect of the Reynolds Number on the Base Roughness Pattern
The baseline distributed roughness pattern used in this study is shown in Figure 41. 

This roughness field consists of three-dimensional quartic roughness elements defined by 

(3.9), where s==0.2 , m=10 and k=0.05, that is the roughness height is 5% of the leading 

edge radius of curvature, R.  For example, for a 21” NACA 0012 airfoil, which is a standard 

airfoil used in icing research, this represents a roughness height of approximately 0.42mm. 
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Figure 42 shows a comparison of the baseline roughness pattern and the clean leading edge 

two-dimensional laminar boundary-layer thickness at Reynolds numbers of 1000, 5000, 

10000 and 15000.  At the lower Reynolds numbers the roughness field is completely 

submerged within the boundary-layer.  At the higher Reynolds numbers tested in this study 

the roughness penetrates the boundary-layer and is as high as approximately twice the 

boundary-layer thickness near the stagnation point.

For the quartic roughness element defined by (3.9) there is no well defined diameter. 

However, if it is arbitrarily assumed that the diameter is defined as the point at which the 

roughness height is 1% of the maximum roughness height, then the diameter of the 

roughness shown in Figure 41 is D=0.12.  The uniform spacing between roughness elements 

in Figure 41 is  s =0.115, that is the spacing is approximately one roughness diameter. 

This value is a little smaller than observed “typical” ice roughness spacing from experimental 

data.  However as mentioned previously, the intent here is to examine the overall effect that 

these various parameters have on the surface flow properties of the roughness fields.

 The strip in the middle of the roughness field of Figure 41 is the baseline mesh used 

for the computations in this study.  The flow is solved in the meshed region only, and 

symmetry boundary conditions are applied at each of the spanwise planes.  The larger 

roughness field is being shown for clarity.

Figure 43 shows streamwise and spanwise skin-friction contours for flow over the 

roughness field at Re=5000.  Both components of the skin friction increase for roughness 

elements which are further downstream.  This is due primarily to the increasing skin-friction 

from the base leading edge flow which reaches a maximum on the clean leading edge at 

approximately x=-0.2.  This corresponds to the second-to-last row of roughness elements in 
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Figure 43 (see Figure 42).

Figure 44 shows that there is a correlation between the skin friction and the surface 

heat transfer induced by the roughness, as might be expected from a Reynold's analogy.  The 

heat transfer, presented as the Frossling number, is largest over the peaks of the roughness 

elements where the skin friction is largest.  As seen from the plots on the right of Figure 44 

this also corresponds to locations where the thermal boundary-layer is very thin, as would be 

expected for a roughness element which protrudes through the clean leading edge boundary-

layer.  The separation region which is induced between roughness elements maintains a 

larger region between the cold outer flow and the warmer wall (increased thermal boundary-

layer thickness), and the heat transfer in these separated regions is reduced.  Therefore, it is 

expected that the heat transfer augmentation which is caused by the roughness field depends 

on the magnitude of the skin friction over the tops of the roughness elements and the size of 

the separation regions between the roughness elements.

This correlation between the skin friction and the convective heat transfer is also seen 

to some degree in Figure 45.  Each spike in the streamwise skin friction, C fs , is 

accompanied by a corresponding spike in the Frossling number.  However, it can be seen that 

the correlation is not proportional along the entire roughness field.  Rather, the maximum 

Frossling number over the roughness asymptotes at about the sixth roughness element while 

the maximum streamwise skin friction continues to increase at approximately a linear rate. 

The continual increase of the skin friction is due to the continually increasing inviscid 

velocity which is driving the flow.  This velocity field can be seen in the contours in the 

upper right plot of Figure 44.  This increase in the skin friction tends to increase the 

convective heat transfer by the Reynolds analogy.  Conversely, the roughness elements 
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further downstream are submerged deeper in the base thermal boundary-layer.  This tends to 

decrease the convective heat transfer over the roughness element because the roughness is 

further from the cold outer flow.  The net result is that these two effects somewhat offset 

each other for the downstream roughness elements and the effect of the roughness on the 

convective heat transfer asymptotes to a constant.

Also shown in Figure 45 is a comparison of C fs  with a fine grid solution which has 

25% more grid points in each coordinate direction compared to the base grid.  There is no 

distinguishable difference between the two curves, thus the rest of this study uses the base 

grid for the remaining calculations, however it should be noted that grid checks were 

performed periodically throughout the course of this study.

The heat transfer and streamwise skin friction for an increased Reynolds number of 

10,000 is shown in Figure 46.  The skin friction profile is similar to the profile seen in Figure

45 for Re=5000.  However, the Frossling number shows a different character.  Instead of an 

asymptote to a constant value downstream, the Frossling number for Re=10,000 continues to 

increase with downstream distance.  As before, the increasing skin friction lends itself to 

increased convective heat transfer.  At the increased Reynolds number, however, the 

downstream roughness elements are very near the height of the base thermal boundary-layer. 

Thus, there is not the associated decreased in the convective heat transfer as was seen for the 

Re=5000 case.  The net result is that for Re=10,000, the downstream roughness elements 

continue to increase the convective heat transfer as shown in the Frossling number in Figure

46.

The same trends hold for Reynolds numbers lower and higher than those shown in 

Figure 45 and Figure 46.  For the case of Re=1000 the effect of the roughness actually 
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decreases moving downstream.  For Re=15,000 the trend is similar to that seen in Figure 46 

with the magnitude of the effect of the roughness increased further, owing primarily to the 

thinner base thermal boundary-layer.  These trends can also be seen in Figure 65 which 

summarizes all of the results from the chapter in terms of the correlation of the maximum 

heat transfer over the roughness with respect to the roughness Reynolds number, Re k , and 

the roughness height to boundary-layer thickness ratio, k / .

The effect of doubling the spanwise extent of the computational domain is shown in 

Figure 47.  The solid and dashed lines in Figure 47 show the streamwise skin-friction and 

convective heat transfer, respectively, at the right symmetry plane for the meshed domain 

shown in Figure 41.  Also shown, by the symbols, are the same parameters from a 

computation with double the spanwise extent.  In this calculation, the spanwise slice shown 

in Figure 47 is not at the right symmetry plane but in the middle of the computational 

domain.  For both parameters, the two calculations are indistinguishable, therefore it is 

concluded that using the reduced spanwise extent with the symmetry boundary conditions is 

sufficient for capturing the roughness effects in the steady laminar flow.

One of the challenges in analyzing the heat transfer results of this chapter is 

determining how to put the data in a format which might be applicable to heat transfer 

modeling for icing codes.  Typical icing codes will not resolve flow features on the scale of 

the roughness elements and the effect of the roughness would tend to show up as an averaged 

augmentation of the heat transfer of a computational cell adjacent to the surface.  The method 

used here is to first take an area-weighted spanwise average of the convective heat transfer 

computations at a given streamwise location.  That is, for a given spanwise strip, the 

spanwise average is given by
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Fr spanave=
1
A∫min

max Fr dA , (5.1)

where A  is the total surface area over the roughness for the spanwise strip.  The spanwise 

averaged Fr does not include the effect of the increased surface area due to the roughness, 

which would also tend to increase the heat transfer (as an example, for the roughness shown 

in Figure 41 the leading edge surface area is increased by about 30% due to the roughness). 

Rather, only the effect of the altered flow field is being examined.  This allows a direct 

comparison of roughness fields of different sizes and surface areas in the following sections.

Figure 48 shows the spanwise averaged heat transfer as a function of streamwise 

location for the Re=5000 calculation.  Because of the pattern of the roughness used here there 

is still a significant amount of variation in the spanwise averaged data.  Therefore, a rolling 

streamwise average is applied to the spanwise averaged data.  The averaging “window” for 

the rolling average is chosen based on trial and error to produce a smooth curve while still 

capturing the significant trends of the data.  For the present study this averaging window is 

equal to the roughness spacing.  The same averaging window is used for all Reynolds 

numbers.  This rolling average data is also shown in Figure 48, along with a comparison to 

the clean leading edge heat transfer.  Note that for this particular case the net effect of the 

roughness is to slightly decrease the leading edge convective heat transfer.  This effect 

remains relatively constant over the entire length of the roughness field.  This can be seen 

more clearly examining what will be called the relative heat transfer, Fr p/Fru , where

Fr p  is the heat transfer over the roughness field (perturbed region) and Fru  is the heat 

transfer over the clean leading edge (unperturbed region).  This relative increase in the 

convective heat transfer is shown in Figure 49 for all Reynolds numbers investigated in this 
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study.  As noted previously, the Re=5000 data shows a constant small decrease in the heat 

transfer, while the Re=1000 data shows a similar trend with a larger relative decrease in the 

heat transfer.  By contrast, for the Re=10,000 and Re=15,000 cases, though the heat transfer 

is decreased near the stagnation point, the average leading edge heat transfer increases when 

moving downstream.  The sudden drop in the relative heat transfer for all Reynolds numbers 

seen in Figure 49 is due to the larger separation region downstream of the last row of 

roughness elements.

Figure 50 shows the surface shear lines, that is limiting streamlines, for all four 

Reynolds numbers of the base roughness pattern.  As mentioned before, for thin films on the 

surface it is expected that the liquid water would be driven primarily by the air shear. 

Therefore, the motion of the surface film is primarily in the direction of the shear lines shown 

in Figure 50.  Chapter 2 showed that in two-dimensions this approximation breaks down 

when the magnitude of the surface shear is small which occurs near singularities in the wall 

shear pattern.

For all four Reynolds numbers shown in Figure 50, the primary direction of the air 

shear over the first two rows of roughness elements is in the downstream direction. 

Therefore, any droplets which impinge in this region and do not freeze are driven back over 

the roughness.  Further downstream, saddle points of separation develop at locations where 

the flow is separated between roughness elements.  From these saddle points, separation lines 

emanate which divide the surface flow.  A purely shear driven film will not be able to cross 

these separation lines.  For a Reynolds number of 1000 (the left most plot) the first saddle 

point appears in front of the fourth streamwise roughness element on the right side of the 

pattern.  This saddle point forces the surface shear lines toward the middle of the roughness 
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pattern.  Subsequent saddle points in front of downstream roughness elements have a similar 

effect, forcing the surface shear lines toward the middle of the roughness pattern.  The result 

is that a “river” of surface shear lines (or water) flows down the middle of the roughness 

pattern.  This is a potential mechanism by which surface water finds its way through a 

roughness field.  Note that for a Reynolds number of 1000 the saddle points are “weak” in 

that the resulting flow separation region evident from the surface shear pattern is small.  For 

the higher Reynolds number cases the saddle points begin one roughness element further 

upstream and tend to be stronger, in that the resulting separation regions are larger.  This 

leads to larger spanwise components of the shear vector inside the separation region which, 

in turn, leads to stronger forcing of the main shear lines toward the middle of the roughness 

pattern.  The result is that the “river” which flows down the middle of the roughness is 

narrower for the higher Reynolds numbers.  This would likely lead to either higher film 

velocities or thicker films in this region.  The highest Reynolds number case of 15,000 at the 

far right of Figure 50 shows that the downstream flow is nearly choked off by the roughness 

field.

Figure 51 shows contours of the convective heat transfer (i.e. Frossling number) for 

each of the cases shown in Figure 50.  In this figure, the blue regions are the regions of 

increased cooling (increased heat transfer) while the red regions are regions of decreased 

cooling (decreased heat transfer).  The heat transfer for the Re=1000 case is relatively 

unremarkable.  As expected, there is an increase in heat transfer over the peak of each 

roughness element.  As the Reynolds number increases, the size of this region on the peak of 

each roughness element also increases.  At the same time, owing to increased flow separation 

between the roughness elements, the heat transfer between the roughness elements decreases 
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(the color scale is the same for each plot).  These regions of decreased heat transfer seem to 

correlate with the emergence of singularities in the surface streamline pattern.  This is 

consistent with the previous discussion of heat transfer over an isolated roughness element.

Effect of Roughness Height
This section investigates the effect of roughness height on the convective heat transfer 

and surface shear lines.  The roughness pattern is identical to that in the previous section, 

however in this case, in addition to a roughness height of k=0.05, roughness heights of 

k=0.03 and k=0.01 are also investigated.  The Reynolds number for these cases is held 

constant at a value of 10,000, which is the case which showed moderate increase in the 

convective heat transfer in the previous section.

The relationship between roughness height and boundary-layer height for the various 

roughness patterns is shown in Figure 52.  As before, the largest roughness of k=0.05 is a 

little higher than the boundary-layer thickness at the downstream edge of the roughness.  The 

roughness height of k=0.03 is equal to the boundary-layer thickness at the trailing edge of the 

field, while the roughness height of k=0.01 is submerged well within the boundary-layer.  In 

this regard, these latter two cases are similar to the Reynolds numbers of 5000 and 1000, 

respectively, of the previous section.

Figure 53 shows the relative heat transfer over the clean leading edge for the various 

roughness heights.  Of course, the curve for k=0.05 corresponds to the Re=10,000 curve in 

Figure 49.  The k=0.01 curve has essentially no effect on the convective heat transfer.  For 

k=0.03, there is a decrease in the convective heat transfer near the stagnation point.  Moving 

downstream the relative heat transfer gradually increases to a maximum of approximately 1.1 

at the trailing edge of the roughness.  This trend is very similar to the Re=5000 curve shown 
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in Figure 49 which has a similar roughness height to boundary-layer thickness ratio.

Figure 54 shows the surface shear lines for the various roughness heights.  The plot 

on the left is for k=0.01 and shows that all surface shear lines generally flow downstream. 

As a result, it is expected that there would not be a significant effect on the distribution of the 

water film other than small changes in the film thickness due to variation in the surface shear. 

For k=0.03, saddle points begin to appear in front of the fourth roughness element on the 

right side of the roughness pattern.  This is similar to the Re=1000 case shown in Figure 50, 

however the surface shear pattern for k=0.03 is somewhere in between the surface shear 

pattern for Re=1000 and Re=5000 in Figure 50.  The surface shear lines originating at the 

stagnation point are again forced toward the center in a “river” of surface shear lines which is 

not as narrow as the case for larger roughness height, k=0.05.

Effect of Roughness Streamwise Extent
In many glaze icing experiments a smooth region free from roughness is known to 

exist near the stagnation point and this region can extend several millimeters away from the 

stagnation point.  The baseline distributed roughness pattern examined thus far starts 

immediately at the stagnation point and does not include a smooth region.  In this section, the 

starting point of the roughness field is gradually moved downstream to examine the effect of 

a smooth region.  All of these cases are run at Re=10,000.  For each new case, the starting 

point of the roughness is moved downstream by about 23% of the leading edge radius of 

curvature.  This corresponds to approximately 2 millimeters on the standard 21 inch NACA 

0012 airfoil.  Note that instead of shifting the entire roughness field downstream, the 

roughness elements at the beginning of the roughness field are removed so that the 

streamwise extent of the field is shortened.  For each new case, this involves removing four 
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roughness elements from the roughness field.

Figure 55 shows the relative heat transfer for the four cases being investigated in this 

section.  The value of Δs is the distance, as a fraction of the leading edge radius of curvature, 

from the stagnation point to the start of the roughness field.  The curve for Δs=0 corresponds 

to the Re=10,000 curve of Figure 49.  For Δs=0.23, as the flow approaches the starting point 

of the roughness, a spike is seen in the relative heat transfer.  Initially there is a sharp drop in 

the relative heat transfer due to the “blockage” that the roughness creates in decelerating the 

approaching flow from the clean leading edge flow.  However, compared to the fifth row of 

roughness elements for Δs=0, the leading roughness elements for Δs=0.23 which are at the 

same streamwise location see a significantly higher flow speed.  As a result, the relative heat 

transfer over these roughness elements is increased compared to the fifth row of roughness 

elements for Δs=0.  This trend continues for Δs=0.46 and Δs=0.69 with the magnitude of the 

spike increasing as the size of the smooth region increases.  This corresponds to the start of 

each roughness field effectively seeing a higher local velocity as Δs is increased.  For each 

roughness field, the relative heat transfer over the roughness elements quickly returns to the 

baseline curve of Δs=0 after the first one or two rows of elements.  Therefore, the leading 

roughness effect may not be that significant, as it occurs only over a relatively short distance 

compared to the entire roughness field length.  However, this would depend on the total size 

of the roughness field.

Figure 56 shows surface shear lines for increasing values of Δs from left to right.  As 

was seen in the third plot of Figure 50, for Δs=0 there is a small “river” of shear lines which 

is able to wind its way through the roughness field, becoming thinner as it moves 

downstream.  For Δs=0.23 the trend is similar, with a sharper line dividing sections of the 
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surface flow just downstream of the first roughness element.  For Δs=0.46, this feature has 

evolved into a saddle point just downstream of the second roughness element and divides the 

approaching surface flow into two parts.  The first part moves to the right of the saddle point 

and continues to move downstream in a “river” similar to that seen in the previous two plots. 

However, a greater portion of the approaching surface flow is divided off to the left where it 

is driven towards the peak of the second roughness element.  For Δs=0.69, this saddle point 

increases in strength, to the point where all of the surface flow approaching the roughness 

field is prevented from moving downstream and is instead driven toward the second 

roughness element.  As a result, the “river” of streamlines which appeared in previous plots 

has been annihilated and only makes a brief appearance in the middle of the roughness field. 

As mentioned before, this type of scenario may lead to local increases in the film thickness or 

even pooling, but would not necessarily completely prevent the downstream flow of a surface 

water film through the roughness field.

Figure 57 shows the convective heat transfer contours for the cases shown in Figure

56.  Because the starting point of the roughness field is different in each plot, the heat 

transfer approaching each roughness field is slightly different.  The contour scale used in 

Figure 57 is the same as the scale used in Figure 51.  As before, the regions of increased heat 

transfer (blue regions) are greatest for those roughness elements which protrude through the 

boundary-layer and also for those roughness elements which experience a flow stagnation 

point due to direct impingement, as evidenced by a nodal point of attachment near the peak 

of the roughness.  The regions of decreased heat transfer (dark regions) again correlate with 

the presence of singularities in the surface shear pattern.  For example, for the right-hand plot 

in Figure 57, the first two red regions correspond to two saddle points which have set up 
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behind the first two roughness elements.

Effect of Roughness Spacing
This section investigates the effect of the roughness spacing.  The center-to-center 

spacing between roughness elements used in the nominal roughness pattern shown in Figure

49 and Figure 50 is approximately equal to one roughness diameter.  As the roughness 

spacing increases it would be expected that the flow over the roughness elements would start 

behaving like the flow over an isolated roughness element.  Figure 58 shows the relative heat 

transfer for roughness fields which have center-to-center spacing of 1.0, 1.5 and 2.0 

roughness diameters.  Recall that both the heat transfer with roughness present, Fr p , as well 

as the heat transfer without the roughness present, Fru , use the total surface area of the 

roughened surface to compute the heat transfer.  As a result, there is little difference between 

the three sets of curves.  In fact, near the stagnation point the less dense roughness patterns 

have higher relative heat transfers.  The less dense roughness patterns have fewer separation 

regions near the stagnation point which leads to the slightly higher relative heat transfer, 

similar to Figure 53.  Near the downstream ends of the roughness fields the higher density 

roughness fields have a slightly larger relative heat transfer.  In this region, both the high 

density and low density roughness fields induce flow separation.  However, the separation 

regions for the lower density roughness fields have greater streamwise extent.  Therefore, the 

regions which have lower heat transfer, the separation regions, cover more of the surface than 

the regions which have higher heat transfer, i.e. the roughness elements themselves.  As a 

result, the relative heat transfer decreases near the downstream boundary of the roughness 

field.

Figure 59 shows the surface streamlines for the same three roughness fields near the 
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stagnation point.  This figure shows how decreasing the density of the roughness causes the 

initial separation regions to move further downstream.  It is also clear that the “river” of 

surface streamlines which is present in the middle of the roughness field becomes wider as 

the density of the roughness pattern is decreased.  Individual roughness elements still set up 

separation regions with corresponding limiting streamlines which would prevent water from 

flowing behind the roughness element.  However, because the roughness spacing is larger, 

these limiting streamlines would likely not pose nearly as much of a restriction on the 

downstream flow of water as those of the higher density roughness fields.

Figure 60 shows the convective heat transfer contours for each case plotted in Figure

59.  The color scaling for this figure is the same as was used for the previous heat transfer 

figures.  As expected, the variation in the convective heat transfer becomes smaller as the 

roughness spacing is increased.  The regions of increased heat transfer on the peak of the 

roughness elements are larger for larger roughness spacing because each roughness element 

effectively sees a higher speed flow.  In addition, as before, the regions of decreased heat 

transfer correlate with surface shear singularities.  However, in this case the number of 

singularities is reduced as the roughness spacing is increased.  Therefore, there are no 

extensive regions of decreased heat transfer for larger roughness spacing.

Effect of Roughness Shape
This section investigates the effect of the roughness shape.  Up to this point, all of the 

roughness studies have used the quartic roughness shape defined by (3.9).  The other two 

roughness shapes investigated in this section are the hemispherical shape given by (3.17) and 

the cylindrical shape given by (3.18).  In all cases, the height of the roughness is held fixed at 

k=0.05 and the height to diameter ratio is approximately one half.  Since the quartic 
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roughness elements have a “peaky” shape  the decrease in roughness height when moving 

away from the maximum height is much more rapid than for the other two roughness shapes. 

As a result, even though the roughness diameters are the same, the quartic roughness 

elements present a smaller flow restriction than the other shapes.  In fact, if the hemispherical 

roughness shapes are used, with a roughness spacing of one roughness diameter, the 

roughness elements would overlap each other.  Therefore the nominal roughness spacing 

chosen for this study is ds/D=1.5 which, for the quartic roughness element, corresponds to 

the middle plot of Figure 59.  As with Figure 59 the Reynolds number used for the shape 

study is 10,000.

The relative heat transfer for the three roughness shapes is shown in Figure 61.  The 

quartic and hemispherical roughness elements have essentially the same relative heat transfer 

and the maximum relative heat transfer is approximately 1.3.  The cylindrical shape has an 

increased heat transfer when compared to these other two, and a corresponding maximum 

relative heat transfer of about 1.5.

Figure 62 shows the surface shear patterns for the three different roughness shapes. 

As seen previously in Figure 59, the quartic roughness field shown on the left of Figure 62 

permits a wide “river” of shear lines to flow unobstructed down the middle of the roughness 

field.  By contrast, the larger flow restriction of the hemispherical roughness elements in the 

middle plot causes this “river” to narrow much quicker.  This is partly affected by the 

separation in front of the third roughness element on the right side which is not present for 

the quartic roughness field.  The separation regions begin even sooner for the cylindrical 

roughness field, starting behind the first roughness element on the left side.  In fact, a focus 

of separation can be seen in this region which is closely coupled with a saddle point.  The 
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“river” of surface shear lines for the cylindrical elements is smaller still.  However, the 

difference from the hemispherical roughness does not appear to be that significant. 

Therefore, it appears that the hemisphere and cylindrical roughness elements present 

approximately the same level of blockage to the downstream flow of surface water.

Figure 63 shows the surface heat transfer map for each of the roughness shape 

patterns shown in Figure 62.  The scale for the heat transfer coefficient is the same for each 

plot.  The effect of the roughness shape on the maximum heat transfer over a given 

roughness element is apparent.  In particular, peaky type roughness elements produce larger 

values of the maximum heat transfer (the blue regions).  That is, the quartic roughness 

elements produce the highest maximum heat transfer while the hemispherical roughness 

elements, which have a constant curvature, produce the smallest.  In addition, the effect of 

the roughness shape on the minimum heat transfer coefficient is also apparent.  As mentioned 

previously, a focal point on the surface tends to lift the flow away from the surface producing 

a region of low heat transfer.  Roughness shapes which have the largest slope on the side of 

the roughness produce the strongest focal points and chimney vortices because of the strong 

shear layer which separates from the sides of the roughness.  The cylindrical roughness 

element produces the strongest chimney vortices, followed by the hemisphere and the quartic 

roughness element.  This is consistent with Figure 63 which shows large regions of decreased 

heat transfer just downstream of the cylindrical roughness elements, at the same location at 

which focal points exist.

Summary of the Various Roughness Effects
This section revisits the question of whether Rek  or k /  is the primary parameter 

controlling roughness effects, by correlating the results from the previous sections using 
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these two parameters.  Once again, the primary roughness effect of interest is the relative 

heat transfer.

Figure 64 shows the spanwise and streamwise averaged relative heat transfer (which 

has been presented in the previous figures) in terms of Rek  and k / .  A direct correlation is 

not evident from this figure, however the data does tend to collapse toward a single curve 

when plotted as a function of Rek .  As a result, if this study is supplemented with a more 

complete data set, it may be possible to determine a simple curve fit as a function of Re k  

which can be incorporated within an icing code to account for the effects of roughness fields 

on heat transfer.  Note that the roughness does not act to increase the averaged heat transfer 

until Re k  has reached a value of approximately 200.  The spread in the data is likely due to 

small differences in the geometry or the flow conditions of the different cases.  There does 

not appear to be a direct correlation with k /  indicating that this parameter is likely a 

secondary effect at best.

Figure 65 shows the maximum relative heat transfer over each individual roughness 

element as a function of Re k  and k / .  This data tends to be cleaner than the plots of the 

averaged relative heat transfer in Figure 64 because it does not include the effect of 

separation regions which can vary in size and strength.  The maximum heat transfer increases 

significantly with increasing Rek .  Also evident from Figure 65 is the effect of roughness 

shape on the maximum relative heat transfer.  Peaky type roughness elements tend to 

produce large values of the maximum relative heat transfer for a given Re k .  Hemispheres 

produce the smallest maximum values, while the quartic roughness elements produce the 

largest.  In addition, there appears to be a k /  effect on the maximum relative heat transfer. 
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For example, considering the four cases that were run at four different Reynolds numbers, for 

a given Rek , maximum relative heat transfer decreases as the value of k /  increases.
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CHAPTER 6. CONCLUSIONS AND 
RECOMMENDATIONS FOR FURTHER STUDY

The purpose of this study was to examine the potential impact of surface ice 

roughness on the convective heat transfer and the motion of unfrozen surface water in an 

attempt to ascertain the significance of ice roughness on the ice accretion process.  This study 

focused mainly on low Reynolds number cases, which result in steady flow over roughness 

fields.  

The first part of the investigation used a condensed layer structure to compute the 

multi-phase flow of thin liquid films which are driven over shallow two-dimensional 

roughness elements.  Limiting structures were developed in addition to direct computation of 

the governing equations.  This study showed that:

– the film distribution can be computed using a Couette flow approximation when 

the minimum magnitude of the surface shear over the roughness, min , satisfies 

min≫h4/7 , where h is the film thickness.

– when min≤h4 /7  then the film distribution in the vicinity of this point violates a 

Couette flow assumption.  A separation bubble forms within the film which traps 

water locally.  The amount of trapped water increases as the size of the air flow 

separation region increases.

– when multiple roughness elements are present, the amount of water trapped by the 

roughness can increase or decrease depending on the spacing between roughness 

elements.  In addition, if the roughness elements are closely spaced a separation 

region can be maintained within the air at steady state.

Therefore it was determined that the thin films were primarily driven by the air shear 
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with the size of air flow separation regions playing a significant role in determining the 

actual amount of water present on the surface.  Thus, in the Navier-Stokes portion of the 

study, the three-dimensional surface shear lines were used to interpret the potential effect of a 

roughness field on the surface water distribution.

This part of the study examined the single phase air flow over roughness fields near 

an airfoil leading edge by solving the Navier-Stokes equations.  The study included 

systematic variation of the Reynolds number, the roughness height, the smooth zone extent, 

the roughness spacing and the roughness shape.  The net effect of the roughness fields on the 

relative heat transfer are shown in Figure 64 and Figure 65.  While the maximum heat 

transfer over the roughness element was always greater than the clean leading edge value, the 

average relative heat transfer did not go above one until Rek  reached approximately 200.

Most roughness fields examined in this study started at the stagnation point, and the 

effect of those surface roughness fields is to converge the shear lines which originate at the 

stagnation point into narrow “rivers” of shear lines.  In the context of surface water, this 

would tend to move the water towards the center of the roughness field and possibly trap 

water between the roughness elements.  This effect of narrowing the “river” of surface shear 

lines tends to increase with increasing roughness height, roughness density, roughness shape 

surface slope and Reynolds number.

Of particular interest is the effect of the smooth zone, or starting point of the 

roughness field, on the surface shear lines and heat transfer.  As the extent of the smooth 

zone increases, the effective local flow velocity at the beginning of the roughness field also 

increases and the effect on the surface shear lines becomes more severe.  Separation regions 

set up behind the first row of roughness elements.  The strength of these regions grow as the 
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length of the smooth zone increases and, eventually, the approaching surface shear lines are 

blocked altogether.  The result is that any surface shear lines that originated at the stagnation 

point do not penetrate the roughness field.  The implication is that the presence of the smooth 

zone affects the distribution of water within the roughness field.  This may be consistent with 

the experimental observations of Olsen & Walker[27] and Hansman[28] which indicated a 

thin uniform film in the smooth zone region but only local pockets or pools of water within 

the roughness field.  The computations performed in this study did not include a solution for 

the water film layer, so it is not possible at this time to develop a water trapping model for 

three-dimensional roughness fields which could answer these questions.  However, this study 

has pointed out the likely key parameters which could impact the surface water processes and 

it is recommended that full three-dimensional multi-phase calculations be carried out in the 

future to develop such a model.

As with the surface shear line study, the smooth zone extent has the most interesting 

effect on the relative heat transfer.  As the length of the smooth zone increases, the local 

velocity approaching the roughness increases and the heat transfer over the first couple rows 

of roughness elements increases significantly.  The relative heat transfer has a value of one 

approaching the roughness field with a large spike over the initial part of the roughness field. 

The size of this spike grows larger as the length of the smooth zone increases.  Downstream 

of the spike, the relative heat transfer quickly returns to the value which corresponds to a 

roughness field which starts at the stagnation point.

To complete the data set which would be required for developing an icing code 

model, it is recommended that calculations be performed at higher Reynolds numbers, which 

would likely require unsteady computations.
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FIGURES

                

Figure 1: Time stepping procedure used in Messinger[7] based ice accretion codes.
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Figure 2: Close-up of ice roughness near an airfoil leadinge edge.  From Anderson[12], 
reproduced with permission.
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Figure 3: Typical flow structures for laminar flow over an O(1) aspect ratio isolated 
roughness element,  a) surface shear and symmetry velocity patterns, b) streamlines which 

are part of the upstream horseshoe vortex system.
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Figure 4: Typical flow structures for laminar flow over an O(1) aspect ratio isolated 
roughness element, a) streamlines which are part of the chimney vortex structure, b) 

streamlines which are part of the wake vortex.
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Figure 5: Schematic of the global scale and local scale multi-phase icing problem.
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b)

Figure 6: Comparison of the full Stage II numerical solutions and the steady film equation 
from (2.13) for film flow over a roughness element with an attached airflow.
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Figure 7: Spatial scales applicable to the low shear structure for an air/water film interaction 
induced by the presence of a roughness element.
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Figure 8: Scaled film thickness near the incipient separation point induced by a roughness 
element.  Comparison of asymptotic theory and full Stage II numerical results.
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Figure 9: Development of a thin water film flowing over a roughness element which has an 
initial two-dimensional separation in the air.  a) initial condition, b) final steady state 

solution.

a) T=0

b) T∞
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Figure 10: Trapping factor for thin film flow over a roughness element of constant 
wavelength.    is the roughness height, h=0.1.
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Figure 11: Effect of distributed roughness on water trapping.  a) decreasing water trapping as 
roughness elements are moved closer together.  b) effect of distributed roughness in allowing 

steady state separation within the air flow.

a)

b)
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Figure 12: Evolution of the approximate hemisphere roughness model as m goes to infinity.

m = 2 m = 4

m = 6 m = 8

m = 10 m → ∞
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Figure 13: Roughness shapes currently implemented in the Navier-Stokes code.
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Figure 14: Example of a complex ice shape created by the superposition of basic shapes.



129

Figure 15: Grid terminology and typical grid setup for the roughness problem.
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Figure 16: Summary of the geometry and grid generation process.  Taken from Huebsch[41], 
reproduced with permission.
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Figure 17: Vorticity immediately downstream of a roughness peak.
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Figure 18: Comparison of the three different convection differencing schemes.  a) central 
differencing, b) WENO, c) QUICK.

c) QUICK

b) WENO

a) Central
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Figure 19: Schematic of a) the grid partitioning scheme and b) the inter-processor 
communication.

b) Inter-processor communication

a) Grid partitioning scheme
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Figure 20: Computed parallel speedup compared to linear speedup.
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Figure 21: Comparison of the, a) streamwise skin friction down the roughness center-line and 
b) spanwise skin friction at  the  =0.3 plane; with the Davis et al.[42] computations for a 
3% bump.  Present results are for parabolas of varying “thickness”, R.  The dashed curve 

with R=0.1 is a fine grid solution.

b)

a)
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Figure 22: Comparison of the, a) streamwise skin friction down the roughness center-line and 
b) spanwise skin friction at  the  =0.3 plane; with the Davis et al.[42] computations for a 

6% dent.  

b)

a)
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Figure 23: Comparison of the streamwise velocity with the Davis et al.[42] computations  a) 
at the dent maximum depth, b) same streamwise location and  =0.3

b)

a)
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Figure 24: Roughness used for the Fluent comparison study.
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Figure 25: Comparison of z-vorticity at z = -0.05

a) b)

c) d)
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Figure 26: Comparison of z-vorticity at z = -0.03

a) b)

c) d)

(a) (b) (c) (d)
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Figure 27: Comparison of x-vorticity at z = -0.03

a) b)

c) d)

(a) (b) (c) (d)
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Figure 28: Comparison of y-vorticity at z = -0.03

a) b)

c) d)

(a) (b) (c) (d)
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Figure 29: Model geometry and grid used to reproduce the Winkler[17] experiment.
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Figure 30: Effect of increasing the wall-normal grid resolution on the time-averaged 
streamwise skin friction, <C fs > , for a two-dimensional calculation of the Winkler[17] 

experiment.
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Figure 31: Effect of increasing the streamwise grid resolution on the time-averaged 
streamwise skin friction, <C fs > , for a two-dimensional calculation of the Winkler[17] 

experiment.
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Figure 32: Comparison of experimental smoke visualization and computational time-
averaged streamlines upstream of the roughness element.  Experiment figure is taken from 

Winkler[17], reproduced with permission.
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Figure 33: Comparison of time-averaged streamwise velocity contours near the leading 
edge of the roughness.  Experiment figure is taken from Winkler[17], reproduced with 

permission.
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Figure 34: Comparison of time-averaged wall-normal velocity contours near the leading 
edge of the roughness.  Experiment figure is taken from Winkler[17], reproduced with 

permission.
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Figure 35: Time-averaged velocity profiles approaching the roughness element. 
Comparison between experiment of Winkler[17] and computation.
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Figure 36: Shifted time-averaged velocity profiles approaching the roughness element. 
Comparison between experiment of Winkler[17] and computation.
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Figure 37: Iso-surface of spanwise vorticity, showing flow development over the isolated 
roughness.  Also shown is a close-up immediately downstream of the roughness element 

with grid overlay.
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Figure 38: Contours of spanwise vorticity at various spanwise locations.  The top plot is at 
the roughness center plane.  The bottom plot is approximately two roughness heights from 

the center plane.
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Figure 39: Comparison of time-averaged streamwise velocity contours over the entire 
isolated roughness.  Numerical solutions are not grid resolved and contain excessive 

numerical dissipation.  Experiment figure is taken from Winkler[17], reproduced with 
permission.

u
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Figure 40: Frossling number on the leading edge.  Comparison with leading edge NACA 
0012 flight test data of Poinsatte et al.[52]
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Figure 41: Baseline roughness pattern used in the current study.
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Figure 42: Comparison of the baseline roughness pattern with the two-dimensional laminar 
boundary-layer thickness for leading edge Re of 1000, 5000, 10,000 and 15,000.
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Figure 43: a) Streamwise and b) spanwise skin friction for flow over the roughness field at 
Re=5000.

a) b)
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Figure 44: Contours of a) Frossling number, b) streamwise velocity, Uc, and c) static 
temperature, over the roughness field at Re=5000.

a) b)

c)
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Figure 45: Streamwise skin-friction and convective heat transfer for flow over distributed 
roughness, Re=5000.  The fine grid solution is also shown for the streamwise skin-friction.
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Figure 46: Streamwise skin-friction and convective heat transfer for flow over distributed 
roughness, Re=10,000.
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Figure 47: Effect of doubling the computational spanwise domain on the streamwise skin-
friction and convective heat transfer at the right symmetry plane (Re=10,000).
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Figure 48: Comparison of various methods for evaluating the convective heat transfer. 
Re=5000.  The width of the window for the rolling average is approximately equal to the 

roughness spacing.
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Figure 49: Relative increase in convective heat transfer due to leading edge roughness as a 
function of the Reynolds number.
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Figure 50: Variation of the surface streamline pattern as a function of the Reynolds number. 
Plots are, from left to right, Re = 1000, 5000, 10000, 15000.
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Figure 51: Variation of the surface heat transfer as a function of the Reynolds number.   Blue 
regions are increased cooling, red regions are reduced cooling.  Plots are, from left to right, 

Re = 1000, 5000, 10000, 15000.
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Figure 52: Comparison of the various roughness heights with the two-dimensional laminar 
boundary-layer thickness at Re = 10000.  k = 0.01, 0.03 and 0.05.
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Figure 53: Relative increase in convective heat transfer due to leading edge roughness as a 
function of the roughness height, k.
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Figure 54: Variation of the surface streamline pattern as a function of the roughness height. 
Plots are, from left to right, k=0.01, 0.03, 0.05.
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Figure 55: Relative increase in convective heat transfer due to variation in the starting point 
of the roughness field, i.e. the smooth region length Δs.
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Figure 56: Variation of the surface streamline pattern as a function of the roughness field 
starting point, i.e. smooth region effect.  Length of smooth region is, from left to right, Δs= 0 

(at stagnation line), 0.23, 0.46 and 0.69.
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Figure 57: Variation of the convective heat transfer as a function of the roughness field 
starting point, i.e. smooth region effect.  Length of smooth region is, from left to right, Δs= 0, 

0.23, 0.46 and 0.69.  Blue regions are increased cooling, red regions are reduced cooling.
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Figure 58: Relative increase in convective heat transfer due to variation in the roughness 
spacing, ds/D.
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Figure 59: Variation of the surface streamline pattern as a function of the roughness spacing. 
Roughness spacing is, from left to right, ds/D = 1, 1.5 and 2.
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Figure 60: Variation of the convective heat transfer as a function of the roughness spacing. 
Roughness spacing is, from left to right, ds/D = 1, 1.5 and 2.  Blue regions are increased 

cooling, red regions are reduced cooling.
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Figure 61: Relative increase in convective heat transfer due to variation in the roughness 
shape (see Figure 13).
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Figure 62: Variation of the surface streamline pattern as a function of the roughness shape. 
Roughness shapes are, from left to right, quartic, hemisphere and cylinder.
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Figure 63: Comparison of convective heat transfer for various roughness shapes.  Roughness 
shapes are, from left to right, quartic, hemisphere and cylinder.  Blue regions are increased 

cooling, red regions are reduced cooling.
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Figure 64: Average relative heat transfer as a function of Rek  and k / .
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Figure 65: Maximum relative heat transfer as a function of Re k  and k / .
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APPENDIX: DETAILS OF THE NUMERICAL 
EQUATIONS 

This appendix gives a summary of the equations being solved for the multi-phase 

condensed-layer study and a detailed derivation of the incompressible Navier-Stokes 

equations used for the three-dimensional distributed roughness study.

Summary of the Condensed-Layer Equations
Streamfunction equation:

=Y
2 YY . (A.1)

Vorticity-transport equation:

YX−Y X=Y
2YY . (A.2)

Wall-normal momentum equation (in terms of the air pressure gradient):

=0 . (A.3)

Transmission of film thickness to the outer flow:

F =0 . (A.4)

No slip condition at the wall:

==0 . (A.5)

Equation for the film thickness:

∂F
∂T
 ∂
∂ X [  X ,0  F2

2
− F 3

3
 F 3

3  ∂3 F
∂ X 3

∂3 F ice

∂ X 3 ]=0 , (A.6)

where

F=F water−F ice . (A.7)
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Approach to Prandtl shear at the far-field:

Y=YF water−1 , (A.8)

where

=
air

2

RB
3 4 h7 . (A.9)

Derivation of the Incompressible Navier-Stokes Equations
The Navier-Stokes equations in vector notation are given by the vorticity transport 

equation,

V⋅∇ =⋅∇ VRe−1∇ 2  , (A.10)

and the equation for the velocity potential,

=∇×V=∇×∇×A . (A.11)

Transformation to Contravariant Coordinates

(A.10) and (A.11) are transformed using

 ' ,' =C  x , y  and '=z , (A.12)

where C  is a Conformal coordinate transformation.  In this case

h1=h2=h And h3=1 . (A.13)

In this scenario the general vector transformations are given by

∇=1
h
∂
∂ x1

e1
1
h
∂
∂ x2

e2
∂
∂ x3

e3 , (A.14)

∇⋅= 1
h2{ ∂∂ x1

1 h ∂
∂ x2

2 h ∂
∂ x3

3 h2} , (A.15)

∇2=
1
h2 { ∂∂ x1  ∂∂ x1  ∂

∂ x2  ∂∂ x 2 ∂
∂ x3 h2 ∂

∂ x3 } , (A.16)
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∇×=1
h [ ∂∂ x2

3 − ∂
∂ x3

h2 ] e1

1
h [ ∂∂ x3

h1 − ∂
∂ x1

3 ] e2

 1
h2 [ ∂∂ x1

h2 − ∂
∂ x2

h1 ] e3 , 

(A.17)

and

∇×∇×=
1
h [ ∂∂ x2 { 1

h2 [ ∂∂ x1
h2− ∂

∂ x2
h1 ]}− ∂

∂ x3 {[ ∂∂ x3
h1 − ∂

∂ x1
3]}] e1

1
h [ ∂∂ x3{[ ∂∂ x2

3 − ∂
∂ x3

h2 ]}− ∂
∂ x1{ 1

h2 [ ∂∂ x1
h2 − ∂

∂ x2
h1 ]}] e2


1
h2 [ ∂∂ x1{[ ∂∂ x3

h1− ∂
∂ x1

3 ]}− ∂
∂ x2 {[ ∂∂ x2

3 − ∂
∂ x3

h2 ]}] e3 .

(A.18)

Applying these transformations to (A.10) gives

∂ h1
∂ t

 ∂
∂ ' V 21−V 12  ∂

∂ ' {hV 31−V 13 }

=Re−1 ∂
∂ ' { 1

h2 [ ∂∂ ' h1 − ∂
∂ ' h2 ]} ∂

∂ ' {[ ∂∂ ' h1 − ∂
∂ ' 3 ]}

(A.19)

for 1  and

h2 ∂3

∂ t
 ∂
∂ ' {h V 13−V 31} ∂

∂' {h V 23−V 32 }
=Re−1 ∂

∂ ' {[ ∂∂ ' 3 − ∂
∂ ' h1 ]} ∂

∂ ' {[ ∂∂ ' 3 − ∂
∂ ' h2 ]} .

(A.20)

for 3 .  Applying the transformations to (A.11) gives
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1=
1
h [ ∂∂' { 1

h2
∂ h 
∂ ' }∂

2 h
∂ ' 2 

∂2
∂ ' ∂ ' ] , 

2=
1
h [ ∂2
∂' ∂ '

− ∂
∂ ' { 1

h2
∂ h 
∂ ' }]

and 3=
1
h2 [− ∂2 h

∂ ' ∂'
− ∂

2
∂ ' 2−

∂2
∂' 2 ] .

(A.21)

The relationship between the velocity vector and the stream-like functions to be used in 

(A.19) and (A.20) is,

V=1
h
∂
∂ '

e1
1
h [−∂ h∂ '

− ∂
∂ ' ] e2

1
h2
∂ h
∂'

e3 . (A.22)

Transformation for Potential Flow and Computational Parameters

The vector components in the preceding section are transformed to remove the 

potential flow solution and remove some of the conformal coordinate scale factors,

{

h

h1

h2

3

}={


1

2

3

} , (A.23)

where   is the two-dimensional streamfunction given by the potential flow solution past the 

clean parabola.  With this transformation the vorticity transport equations become

∂1

∂ t
− 1

h2 V 21
∂h
∂'

1
h

V 2

∂1

∂ '
1

h
1

∂V 2

∂ '
 1

h2 V 12
∂ h
∂'

V 3

∂1

∂ '
1

∂V 3

∂'
−hV 1

∂3

∂'
−h3

∂V 1

∂ '
=Re−1− 2

h3

∂1

∂ '
∂ h
∂'

 1
h2

∂21

∂' 2 
2
h3

∂2

∂ '
∂h
∂'

− 1
h2

∂22

∂ ' ∂ '

∂21

∂' 2−
∂23

∂ ' ∂'  ,

(A.24)
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for 1  and

h2 ∂3

∂ t
V 13

∂ h
∂ '

h3

∂V 1

∂ '
hV 1

∂3

∂ '
−1

∂V 3

∂ '
−V 3

∂1

∂ '

V 23
∂ h
∂'

h3

∂V 2

∂ '
hV 2

∂3

∂ '
−2

∂V 3

∂ '
−V 3

∂2

∂ '

=Re−1∂23

∂ ' 2−
∂21

∂  ' ∂ '

∂23

∂ ' 2−
∂22

∂ ' ∂ '  ,

(A.25)

for 3 .  Applying the transformation to (A.21) gives

1=
−2
h3
∂
∂ '

∂ h
∂ '

 1
h2
∂2
∂ ' 2

∂2
∂ ' 2

∂2
∂ ' ∂ ' , 

2=
∂2

∂ ' ∂ '
− 1

h2
∂2
∂ ' ∂ '

 2
h3
∂
∂'

∂ h
∂ '

and −h23=
∂2

∂ ' ∂ '
 ∂

2
∂ ' 2

∂2
∂ ' 2 .

(A.26)

The relationship between the velocity vector and the stream-like functions is

V=1
h [ ∂∂'

 ∂ 
∂ ' ] e1

1
h [− ∂∂ '

− ∂
∂ '

− ∂ 
∂ ' ] e2

1
h2
∂
∂ '

e3 . (A.27)

Elimination of terms using Continuity and Solenoidality

The solver being used in the current study is a block tri-diagonal solver which inverts 

the equations for the four unknowns  ,  , 1  and 3 .  Therefore 2  is treated as a 

guessed value from the previous iteration.  In addition, any terms involving the derivative of 

the second component of velocity introduce mixed derivatives into the vorticity transport 

equations.  When using a second order central difference scheme for these terms they cannot 

be included directly in the inversion process.  Therefore, this section details the method of 

using the continuity equation and solenoidality condition to eliminate as many terms 
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involving V 2  and 2  as possible.  The continuity equation in contravariant coordinates is 

given by

∇⋅V= 1
h2 { ∂∂ ' hV 1  ∂

∂ ' hV 2  ∂
∂ ' h

2 V 3}=0 . (A.28)

Expanding derivatives gives

h
∂V 1

∂ '
V 1

∂ h
∂ '

h
∂V 2

∂'
V 2

∂h
∂ '

h2 ∂V 3

∂ '
=0 . (A.29)

Solving for the term involving a derivative of V 2  gives

∂V 2

∂ '
=−

∂V 1

∂ '
−V 1

1
h
∂h
∂ '

−V 2
1
h
∂h
∂'

−h
∂V 3

∂'
. (A.30)

Now multiply (A.30) by 1/h1  to give

1
h
1

∂V 2

∂ '
=−1

h
1

∂V 1

∂ '
− 1

h21V 1
∂ h
∂ '

− 1
h21V 2

∂h
∂'

−1

∂V 3

∂' , (A.31)

which will allow elimination of the corresponding term in (A.24).  Note that as a bi-product, 

other terms are eliminated in (A.24) as well.  Similarly multiply (A.30) by h3  to give

h3

∂V 2

∂ '
=−h3

∂V 1

∂ '
−V 13

∂ h
∂ '

−V 23
∂ h
∂ '

−h23

∂V 3

∂ '
, (A.32)

which allows elimination of the corresponding term in (A.25).

The solenoidality condition in contravariant coordinates is given by

∇⋅= 1
h2 { ∂∂ ' 1  ∂

∂ ' 2  ∂
∂ ' h

23}=0 . (A.33)

Expanding the derivatives in this equation and solving for the term that involves the second 

component of vorticity, 2 , gives
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∂2

∂'
=−

∂1

∂ '
−h2 ∂3

∂'
. (A.34)

Multiplying (A.34) by −1 /hV 1  gives

−1
h

V 1

∂2

∂ '
=1

h
V 1

∂1

∂ '
hV 1

∂3

∂'
, (A.35)

which will allow elimination of the corresponding term in (A.24).  In addition, differentiating 

(A.34) with respect to  '  and multiplying by −1 /h2  gives

− 1
h2

∂22

∂ ' ∂ '
= 1

h2

∂21

∂ ' 2
2
h
∂3

∂ '
∂ h
∂ '


∂23

∂ ' ∂ '
, (A.36)

which will allow the elimination of terms in (A.24) which are multiplied by the inverse of the 

Reynolds number.  Note once again that, as a bi-product, a fortuitous elimination of other 

mixed derivatives is achieved.  Multiplying (A.34) by −V 3  gives

−V 3

∂2

∂ '
=V 3

∂1

∂ '
h2V 3

∂3

∂ '
, (A.37)

which will allow elimination of the corresponding term in (A.25).  In addition, differentiating 

(A.34) with respect to  '  and multiplying by −1  gives

−
∂22

∂ ' ∂ '
=

∂21

∂ ' ∂ '
h2 ∂

23

∂ ' 2 , (A.38)

which will allow elimination terms in (A.25) which are multiplied by the inverse of the 

Reynolds number.

The net result of this section is that (A.31), (A.35) and (A.36) are applied to (A.24) 

while (A.32), (A.37) and (A.38) are applied to (A.25).  When this is done the resulting 

equations are



187

∂1

∂ t
− 2

h2 V 21
∂h
∂'

1
h

V 2

∂1

∂ '
 1

h2 V 12
∂h
∂ '

1
h

V 1

∂1

∂ '
−1

h
2

∂V 1

∂'

V 3
∂1

∂ '
−h3

∂V 1

∂ '
−1

h
1
∂V 1

∂ '
− 1

h21V 1
∂ h
∂ '

=Re−1 1
h2

∂21

∂ ' 2

− 2
h3

∂1

∂ '
∂ h
∂'

 2
h3

∂2

∂ '
∂ h
∂ '


∂21

∂' 2
1
h2

∂21

∂ ' 2 
2
h
∂3

∂ '
∂ h
∂ '  ,

(A.39)

for 1  and

h2 ∂3

∂ t
hV 1

∂3

∂ '
−1

∂V 3

∂ '
hV 2

∂3

∂ '
−2

∂V 3

∂'
h2 V 3

∂3

∂ '
−h23

∂V 3

∂ '

=Re−1∂23

∂ ' 2
∂23

∂ ' 2h2 ∂
23

∂ ' 2  ,
(A.40)

for 3 .

Transformation for The Roughness Shape

The transformation to incorporate the roughness via the Prandtl transposition is

= ' , = '− f  ,  and = ' . (A.41)

Applying this transformation to the vorticity transport equations gives

h2 ∂1

∂ t
−2V 21

∂h
∂'

hV 2

∂1

∂
V 12

∂h
∂ '

hV 1

∂1

∂
−h f V 1

∂1

∂

−h2

∂V 1

∂
h2 V 3

∂1

∂
−h2 f V 3

∂1

∂
−h33

∂V 1

∂
h3 f 3

∂V 1

∂

−h1

∂V 1

∂
h f 1

∂V 1

∂
−1 V 1

∂h
∂  '

=Re−1−[ 2h ∂ h
∂ '

 f  h2 f ] ∂1

∂

[1 f 
2h2 f 

2 ] ∂
21

∂2 
∂21

∂2 h2 ∂
21

∂2 
2
h
∂2

∂
∂h
∂ '

−2
h

f 
∂2

∂
∂ h
∂'

2h
∂3

∂
∂ h
∂ '

−2h f 
∂3

∂
∂h
∂ '

−2 f 
∂21

∂∂
−2h2 f 

∂21

∂∂

(A.42)

for 1  and
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h2 ∂3

∂ t
h V 1

∂3

∂
−h f V 1

∂3

∂
−1

∂V 3

∂
 f 1

∂V 3

∂
hV 2

∂3

∂

−2

∂V 3

∂
h2 V 3

∂3

∂
−h2 f V 3

∂3

∂
−h23

∂V 3

∂
h2 f 3

∂V 3

∂

=Re−1∂23

∂2 1 f 
2h2 f 

2  ∂
23

∂2 h2 ∂
23

∂2 − f h2 f 
∂3

∂

−2 f 
∂23

∂∂
−2 h2 f 

∂23

∂∂ .

(A.43)

for 3 .  Applying the transformation to (A.26) gives

1=
−2
h3
∂
∂

∂ h
∂ '

 1
h2
∂2
∂2 

∂2
∂2 f 

2 ∂2
∂2− f 

∂
∂
−2 f 

∂2
∂∂

− f 
∂2
∂∂

 ∂2
∂∂

 f  f 
∂2
∂2 − f 

∂2
∂∂

− f 
∂
∂

, 

2=
∂2
∂∂

− f 
∂2
∂2 

2
h3
∂
∂

∂h
∂'−

1
h2
∂2
∂∂

 f 
1
h2
∂2
∂2

and −h23=
∂2
∂2 

∂2
∂2  f 

2 ∂2
∂2 − f 

∂
∂
−2 f 

∂2
∂∂

− f 
∂2
∂∂

 ∂2
∂∂

 f  f 
∂2
∂2− f 

∂2
∂∂

− f 
∂
∂

.

(A.44)

The relationship between the velocity vector and the stream-like functions is

V=1
h [ ∂∂  ∂ ∂ ' ] e1

1
h [−∂∂ f 

∂
∂
−∂
∂
 f 

∂
∂
− ∂ 
∂ ' ] e2

1
h2
∂
∂

e3 . (A.45)

The velocity derivatives present in (A.42) and (A.43) can be evaluated using (A.45) such that 

the vorticity transport equations are written entirely in terms of the vorticity components and 

the stream-like functions.  It can be shown that these derivatives are given by

∂V 1

∂
=−1

h
V 1 ∂ h

∂ '
 f 

∂ h
∂ ' 1

h [ ∂
2

∂∂
 ∂2 
∂ ' ∂ '

 f 
∂2 
∂' 2 ] , (A.46)
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∂V 1

∂
=−1

h
V 1
∂h
∂'

1
h [ ∂

2
∂2 

∂2 
∂ ' 2 ] , (A.47)

∂V 1

∂
=−1

h
f V 1

∂ h
∂ '

1
h [ ∂

2
∂∂

 f 
∂2 
∂ ' 2 ] , (A.48)

∂V 3

∂
=−2

h
V 3 ∂ h

∂ '
 f 

∂ h
∂ '  1

h2
∂2
∂∂

, (A.49)

∂V 3

∂
=−2

h
V 3
∂ h
∂ '

 1
h2
∂2
∂2  (A.50)

and
∂V 3

∂
=−2

h
f V 3

∂ h
∂'

 1
h2

∂2
∂∂

. (A.51)

Transformation for The Grid Stretching

The last transformation is application of the one-dimensional grid stretching laws in 

each of the three coordinate directions.  This transformation is given by

= f 1  , = f 2   and = f 3  . (A.52)

The stretching transformations alter the various terms in one direction only.  For example, a 

first order derivative is transformed by

∂
∂
=∂


∂
∂
∂ , (A.53)

and a mixed derivative is transformed by

∂2
∂∂

=∂

∂
∂ 
∂

∂2
∂∂

. (A.54)

The only additional terms in the governing equations are introduced by second order 

derivatives of the same coordinate direction.  For example
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∂2
∂2 =∂∂ 

2
∂2
∂ 2 −

∂2
∂2

∂
∂

. (A.55)

Therefore the governing equations are relatively unchanged from the previous section and 

will not be repeated here.

Boundary Conditions

At the surface, a no-slip boundary condition is applied which requires setting each 

component of (A.45) to zero.  The result is

=− and 
∂
∂
=−

∂ 
∂ ' (A.56)

for   and

=∂
∂
=0 (A.57)

for  .  The derivation of these equations is given in Chapter 3.  (A.56) and (A.57) allow the 

evaluation of any derivative in the wall-normal direction for either   or   terms.  For 

example, the second order wall-normal derivative of   is

∂2
∂2 =∂ ∂

2
∂2
∂ 2 −

∂2
∂2

∂
∂

. (A.58)

Using the second equation in (A.56) and applying a second order central difference at the 

wall gives

i2k−i0k

2
=∂∂

−1
∂ 
∂ '

, (A.59)

or solving for the “fictitious” point below the surface gives

i0k=i2k−2∂ ∂
−1
∂ 
∂'

. (A.60)
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Applying a second order central difference at the surface to (A.58) gives

∂2
∂2 =∂ ∂

2i2k−2i1ki0k

2
−∂

2
∂2

i2k−i0k

2
. (A.61)

Substituting (A.60) into (A.61) gives

∂2
∂2 =∂∂ 

2 2i2k−2i1k

 2
− 2


∂
∂

∂ 
∂ '

−∂
2
∂2 ∂∂ 

−1
∂ 
∂ ' . (A.62)

Thus any wall-normal derivative can be evaluated in terms of known quantities at grid points 

at or adjacent to the surface.  A similar expression can be developed for the second derivative 

of   at the wall,

∂2
∂2 =∂ ∂

2 2i2k−2i1k

2
. (A.63)

These expressions can be substituted for the appropriate terms in (A.44) in order to be able to 

evaluate the vorticity components at the surface.

At the   far-field the two-dimensional potential flow solution is recovered.  This is 

accomplished by eliminating any streamwise or spanwise velocity components that would 

not be present in the pure potential flow, that is

∂
∂
=∂
∂
=0 . (A.64)

Therefore, at the   far-field the velocity components, (A.45), have the form

V=1
h
∂ 
∂ '

e1
1
h [−∂∂−∂∂ − ∂ ∂ ' ] e20 e3 . (A.65)

Note that there are components of the wall-normal velocity component, V 2 , in (A.65) which 

are not part of the potential flow solution.  This allows the possibility of flow displacement 

due to the presence of the roughness.  Since the flow at the   far-field is a potential flow 
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solution there is no vorticity, therefore

1=2=3=0 . (A.66)
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