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Abstract

Repeated measures degradation studies are used to assess product or component reliability when there

are few or even no failures expected during a study. Such studies are often used to assess the shelf life of

materials, components, and products. We show how to evaluate the properties of proposed test plans. Such

evaluations are needed to identify statistically efficient tests. We consider test plans for applications where

parameters related to the degradation distribution or the related lifetime distribution are to be estimated.

We use the approximate large-sample variance-covariance matrix of the parameters of a mixed effects linear

regression model for repeated measures degradation data to assess the effect of sample size (number of units

and number of measurements within the units) on estimation precision of both degradation and failure-time

distribution quantiles. We also illustrate the complementary use of simulation-based methods for evaluating

and comparing test plans. These test-planning methods are illustrated with two examples.

Keywords: Repeated Measures Planning, Aging and Degradation, Lifetime Distributions, Degradation

Distributions
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1 Introduction

1.1 Motivating Examples

Engineers often need to quantify the failure-time distribution of highly reliable items. Traditional life tests,

where the response is time to failure, typically yield few or no failures. Instead engineers can sometimes

use methods that measure the degradation of an item, providing more information than the traditional life

tests. One such method is to use non-destructive repeated measurements over time on the degradation of

each item. Given a degradation model and a relationship between degradation and failure, a failure-time

distribution can be established. Before the test is performed, however, the engineers need to decide how

many items should be measured and how often should these measurements be made in order to achieve a

certain level of precision.

This work is motivated by two different applications that we have encountered. The first application

involved a long-term shelf-life study on the chemical degradation of a certain compound in a particular

environment. A sample of 12 items were randomly selected from a much larger population of items in storage.

The engineers would then make annual measurements of the concentration of the chemical compound in units

of parts per million volume (ppmv). Because of the importance of the application the available data would be

analyzed and a summary report would be prepared annually. Since the data were sensitive and not available

for release, Figure 1 shows data that were simulated on a modified scale to mimic the original study. The

question asked by the engineers was, “Given the pattern of the observations in Figure 1 (from a previous

similar study), how should the next shelf-life study be performed?”
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Figure 1: Simulated shelf-life degradation data for n = 12 units.

The second application involves a study involving inkjet printer heads. The engineers involved in this

example were interested in performing a system reliability study for which the print heads were a compo-
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nent. The engineers wanted an estimate of the failure-time distribution where failure-time depends on the

degradation level of the print head. Degradation was defined to be the amount of diffusion of an ink-related

substance in the printheads. As time progresses, if this substance reaches a certain location in the printhead,

a failure will soon follow.

In the experiment, measurements were taken periodically on a sample of 12 units. At each inspection

time, the units were measured to determine how far this substance had moved (in millimeters) after a certain

amount of time. Figure 2 shows a scatterplot of the print head degradation data. Again, the data were

scaled to protect proprietary information. The first point in time (time point zero) is considered the point

for which the printhead had been initially loaded with ink. According to the coordinate system used, failure

will occur when the degradation level reaches 60 mm.
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Figure 2: Scatterplot of printhead migration data. The horizontal line indicates point at which a failure is
declared.

1.2 Related Work

This section reviews some of the literature on degradation test plans or related applications. Yu and Tseng

(1999) discuss the optimization of degradation plans under the constraint of total experimental cost and the

assumption that the lifetime distribution is lognormal. Lu and Meeker (1993) derive an analytical form of

the lifetime distribution under different models and assumptions on the model parameters. Lenth (2006),

on his website, has several Java programs that allow design of repeated measures experiments based on

controlling power. Diggle, Heagerty, Liang, and Zeger (2002) give sample size calculations for longitudinal

data models where the number of measurements per unit is specified. Boulanger and Escobar (1994) discuss

experimental design for accelerated degradation tests where the amount of degradation over time levels off to

a plateau. Vickers (2003) discusses how adding more measurements in a repeated measures study can affect

the power of the test (i.e., the probability of detecting a difference caused by a treatment when a difference
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is truly present).

1.3 Overview

The remainder of this paper is organized as follows. Section 2 describes the linear degradation model used

in our work. Section 3 gives the likelihood function and the large-sample approximate variance-covariance

matrix of the maximum likelihood estimator, followed by a discussion of parameter estimation. Section 4

gives the degradation distribution quantile function and shows the use of the Fisher information matrix for

inference on this function. Section 5 illustrates the use of the Fisher information matrix and simulation

for degradation test planning and for comparing test plans. Section 6 describes test plans that focus on

estimating quantities of the failure-time distribution induced by the degradation model. Section 7 presents

results from a simulation study which assesses the accuracy of the large-sample approximate standard error

used in the test planning relative to the empirical standard errors obtained from simulation. Section 8 gives

conclusions and describes possible areas for future related research.

2 Repeated Measures Degradation Model

2.1 Model and Data

Let yij be the observed degradation at time tij on unit i where i = 1, . . . , n and j = 1, . . . ,mi. The linear

degradation random effects model is

yij = Dij + ǫij , (1)

where the actual degradation path is

Dij = b0i + b1itij . (2)

The intercept b0i and the slope b1i are modeled as random realizations from the bivariate-normal distribution

(b0, b1)
T ∼ BVN(β,V), where the elements of β = (β0, β1)

T are fixed terms representing the population’s

mean intercept and slope and

V =


 σ2

b0
ρσb0σb1

ρσb0σb1 σ2
b1




is the covariance matrix.

Collecting into Yi = (yi1, . . . , yimi
)T the observations from unit i, an equivalent expression for the linear

degradation model in (1) is

Yi = Xiβ + Zib
∗

i + ǫi, (3)

where b∗

i = (b∗0i, b
∗

1i)
T is modeled as (b∗0, b

∗

1)
T ∼ BVN(0,V), Xi and Zi are matrices of explanatory variables
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defined by

Xi = Zi =




1 ti1
...

...

1 timi




and ǫi = (ǫi1, . . . , ǫimi
)T .

Assuming independence between ǫi and b∗

i and that the components of ǫi are independent and jointly

normal distributed, that is ǫi ∼ MVN(0, σ2Ii) where Ii is a mi ×mi identity matrix, it follows that Yi ∼

MVN(Xiβ,Σi) with

Σi = Var(Yi) = Var(Xiβ + Zibi + ǫi) = ZiVZT
i + σ2Ii. (4)

See Jenrich and Schluchter (1986) for more details. Notice that the independence assumption among the

components of ǫ implies that the error terms are not autocorrelated which is a reasonable assumption when

spacing between observations is not too small.

3 Model Likelihood Function and Fisher Information Matrix

3.1 Likelihood

Suppose that y1, . . . ,yn are n independent observations from Y1, . . . ,Yn, respectively. The log-likelihood

for observational unit i is

Li = −1

2
log [det(Σi)]−

1

2
(yi −Xiβ)

TΣ−1
i (yi −Xiβ). (5)

The total log-likelihood for n units is

L =

n∑

i=1

Li = −1

2

n∑

i=1

log [det(Σi)]−
1

2

n∑

i=1

(yi −Xiβ)
TΣ−1

i (yi −Xiβ). (6)

3.2 Variance Covariance Matrix

Let θ = (βT ,ϑT )T be the parameter vector where ϑ = (σb0 , σb1 , ρ, σ)
T . Recall that the Fisher informa-

tion matrix is defined as I(θ) = E(−∂2L/∂θ2). From large sample theory, the large-sample approximate

covariance matrix of the maximum likelihood (ML) estimators is

AVar(θ̂) = [I(θ)]−1
. (7)

AVar(θ̂) can be estimated by evaluating (7) at the ML estimates θ̂. We denote this estimator by V̂ar(θ̂).

The derivation of the information matrix is given in the appendix.
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3.3 Linear Mixed-Model Parameter Estimation

Our focus is on test planning, but it is necessary to mention how mixed effects model parameters can be

estimated. Laird and Ware (1982) discuss ML and restricted ML (REML) parameter estimation for a general

class of linear mixed effects models, which includes our repeated measures model, using the EM algorithm.

Jenrich and Schluchter (1986) derive the derivatives and second derivatives needed in a Newton-Rhapson

algorithm for ML estimation of parameters for a general class of models that includes linear mixed effects

models. Lindstrom and Bates (1988) extended the work of Laird and Ware (1982) and Jenrich and Schluchter

(1986) and developed efficient algorithms for computation of both ML and REML estimates for mixed-effects

models.

Faraway (2006) is a useful reference for methods to estimate model parameters using the R software

package. In particular, he focuses on using the package lme4 with the built-in function lmer to perform

all the analysis and find the estimates of both the fixed and random effects. For more information on the

package lme4 and its functions, see Bates, Maechler, and Bolker (2011). Another model fitting function in R

is lme found in the package nlme. This package contains functions that also allow for interval estimation of

both fixed and random effects model parameters as well as best linear unbiased predictors of the response.

We use this function to calculate ML estimates of the model parameters. See Pinheiro, Bates, Debroy, Sarkar

and the R Development Core Team (2012) for additional information on nlme and its underlying functions.

Although both lme and lmer both produce ML and REML estimates, there are some differences between

the two packages. To name a few, lmer is a quicker function than lme and can also handle crossed random

effects. The function lme can only handle nested random effects. lme is a more stable function and is easier

for handling heteroscedasticity than lmer and provides p-values for significance of effects. Finally, the SAS

software procedure Proc Mixed (SAS Institute Inc. 2012) is widely used for the fitting and estimation of

mixed effects models. Littell, Milliken, Stroup, Wolfinger, and Shabenberber (2006) give many examples of

fitting mixed effects models in SAS as well as the theory involved.

4 Estimating Quantiles of the Degradation Distribution

4.1 The Quantile of the Degradation Distribution

From the model in Section 2.1, it follows that the degradation at time t is given by D = b0 + b1t. When

(b0, b1)
T has a bivariate normal distribution, D is normally distributed with E(D) = E(b0 + b1t) = β0 + β1t

and Var(D) = Var(b0+ b1t) = σ2
b0
+σ2

b1
t2+2tρσb0σb1 . The p quantile of the degradation distribution at time

t is

dp(t) = E(D) + Φ−1
nor(p)

√
Var(D)

= β0 + β1t+Φ−1
nor(p)

√
σ2
b0

+ σ2
b1
t2 + 2tρσb0σb1 , (8)

6



Years

C
on

ce
nt

ra
tio

n 
pp

m
v

0 2 4 6 8 10 12 14 16 18 20

3

4

5

6

7

8

0.10 Quantile Estimate
0.50 Quantile Estimate
0.80 Quantile Estimate

Figure 3: Estimated 0.10 (solid line), 0.50 (dashed line), and 0.80 (dotted line) quantiles of the degradation
distribution at different points in time.

where Φ−1
nor(p) is the inverse standard normal cumulative distribution function. The ML estimate of dp can

be computed by evaluating (8) at the ML estimates θ̂.

Example 1 Consider the simulated shelf-life data set in Figure 1. The data were simulated using (1) and

the parameter values β0 = 8, β1 = −0.2, σb0 = 0.3, σb1 = 0.04, ρ = 0.7, and σ = 0.3 for n = 12 items

and for a length of time of 20 years. The R function lme provides the ML estimates of these parameters as

β̂0 = 7.98, β̂1 = −0.19, σ̂b0 = 0.35, σ̂b1 = 0.05, ρ̂ = 0.9, and σ̂ = 0.28. For given values of p and t, the ML

estimate of the degradation quantile is (8) evaluated at the ML estimates of θ. This is illustrated in Figure

3 for p = 0.10, 0.50, and 0.80 and at different points in time.

4.2 Standard Error for the Maximum Likelihood Estimator of the p Quantile

This section deals with the estimation of the standard error of the ML estimator of the degradation quantile

dp in (8). This quantile is a function of the parameters θ = (β0, β1, σb0 , σb1 , ρ, σ)
T . Using the invariance

property of ML estimators, the ML estimator d̂p of dp is obtained by evaluating (8) at θ̂. The formula for

the approximate standard error of d̂p was derived using the delta method. Let c be a vector with elements

ci = ∂dp/∂θi, i = 1, . . . , 6. Then by the delta method, the large-sample approximate variance of d̂p is

AVar(d̂p) = cTAVar(θ̂)c. (9)

The standard error of d̂p is ASEd̂p
=

√
AVar(d̂p) which is estimated by evaluating (9) at θ̂ giving ŜEd̂p

=√
V̂ar(d̂p). The explicit forms of the partial derivatives are given in the appendix.
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(a) After 5 years.
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(b) After 10 years.
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(c) After 20 years.

Figure 4: ML estimates of d0.10 as a function of years in service, along with approximate 95% confidence
intervals. The vertical lines indicate the point where the data analysis was done after 5 years (a), after 10
years (b), and after 20 years (c).

4.3 Confidence Interval for the Degradation Distribution Quantiles

A large-sample approximate 100%(1− α) confidence interval for dp is

[dp
˜
, d̃p] = d̂p ± z(1−α/2)ŜEd̂p

, (10)

where z(1−α/2) is the 1− α/2 standard normal quantile.

Example 2 Returning to Example 1, Figures 4a, 4b, and 4c show 95% confidence intervals when extrapola-

tions were made to estimate degradation based on data available at 5 years, 10 years, and 20 years respectively.

As expected, the width of the confidence intervals decreases as more information becomes available.

5 Degradation Test Planning

This section describes planning methods for repeated measures degradation tests. The test plans and test

plan properties described in this section and in Section 6 depend, however, on the true model and its

parameters. In order to illustrate or describe the results of a proposed test plan, one must have “planning

information” for the model parameters. Ideally, this information would come from design specification,

expert opinion, or previous experience. Because this planning information does not correspond to the true

values of the model parameters, it is recommended to perform a sensitivity evaluation over a range of the

unknown values. Additionally, the results of such an evaluation could be used to help select a more robust or

conservative (i.e., a plan that will meet experimental goals with high probability) test plan. A more formal

way to do this would be to assume a prior distribution for the unknown parameter values and take a Bayesian

approach, as has been done for accelerated life tests (e.g., Chaloner and Larntz 1992). In this paper, the

superscript � (an open box) on a parameter is used to denote planning information for the unknown model
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parameters (i.e., σ� is a planning value for the unknown parameter σ).

Additionally, when the degradation paths deviate from linearity, one should first consider transformations

of the response and/or time that could lead to an approximately linear degradation path. In some applica-

tions, certain transformations are suggested by previous experience with the same degradation mechanism

or physical/chemical knowledge of the failure mechanism that would make the degradation linear in time.

The test planning would then be based on the transformed relationship. See, for example, Box and Cox

(1964) for very general family of transformations. Some degradation processes are inherently nonlinear and

cannot be transformed to linearity (e.g., a degradation process described by first order kinetics, leading to

a degradation path with an asymptote). In such cases, the general ideas presented in this paper could still

be used. The simulation approach would be straightforward to implement using nlme in R (see Section 22.5

of Meeker and Escobar 1998 for an example of this). Boulanger and Escobar 1994 developed methods for

designing accelerated degradation tests for degradation processes that approach an asymptote. Certainly

large-sample approximate variances could also be derived, but this would have to be done on a case-by-case

basis, depending on the particular degradation path model.

The rest of Section 5 is organized as follows: Section 5.1 shows a simple, graphical approach for test

planning that assumes all units have the same inspection schedule. Section 5.2 describes an approach that

allows for different schedules for different units. Section 5.3 illustrates a simulation-based approach that

complements the analytical evaluations and can also be applied to the more general settings. Finally Section

5.4 describes an approach for minimizing the cost of a test, subject to a constraint on estimation precision.

5.1 Simple Degradation Test Plans

In a simple degradation test plan all units are measured using the same schedule. Evaluation of statistical

test-plan properties help to determine the number of units to measure in the study and how many measure-

ments should be made over time. We use the large-sample approximate standard error ASEd̂p
to quantify

and compare the precision provided by alternative test plans. In particular, we obtain a contour plot of the

ASEd̂p
values obtained over a grid of n = 3, 4, . . . , 10 experimental units and m = 3, 4, . . . , 10 measurements

per unit. Test-plan decisions and recommendations are based on the actual values of ASEd̂p
calculated over

the grid and the corresponding contour plot. In the following two examples, we use rather extreme levels

for the measurement error variability planning values to illustrate the strong effect that this parameter can

have on degradation test plans.

Example 3 Suppose that the objective is to assess the trade-off, in terms of variance, between the number

of measurements per unit and the number of units being used in the study. The shelf-life study is expected

to run for 20 years. The parameter values from Example 1 are used as the planning information and they

are denoted by β�
0 = 8, β�

1 = −0.2, σ�
b0

= 0.3, σ�
b1

= 0.04, ρ� = 0.7, and σ� = 0.3. Figure 5a shows

the results for some simple test plans. This plot shows that for the proposed planning values, the smallest

standard error that could be obtained is less than 0.46 (corresponding to n = 10 and m = 10). The plot
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suggests that a trade-off could be made by choosing a small number of units, say 6, and measuring them 7

times without losing much in terms of precision (in this region ASEd̂p
≈ 0.59). Because the measurement

error is relatively small in this example, increasing the number of measurements over time will not have a

large effect on estimation precision.

In the next example, we use a much larger planning value for the measurement error variability to

illustrate its effect on estimation precision.

Example 4 Now suppose that the planning information value for σ is increased to σ� = 3. Figure 5b shows

the large-sample approximate standard error ASEd̂0.10
for different combinations of n and m with the new

planning information. In this case, the plot shows that a test should be chosen from the North–East region

where ASEd̂0.10
is less than 1.5. In the South–West corner of the plot, however, ASEd̂0.10

reaches values

larger than 5.5 . In summary, to compensate for the large variability in measurements (i.e., large σ), the

test plan requires more units and more measurements per unit to achieve a smaller standard error when

compared to σ� = 0.3 in Example 3.
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Figure 5: Contour plot of the large-sample approximate standard error ASEd̂0.10
as a function of n and m.

For 5a the measurement error variability σ� is small and for 5b the measurement error variability is large.

5.2 Degradation Test Plans with Differing Schedules

The use of different inspection schedules for groups of units is motivated by two concerns of test planners:

• Inspections can be expensive and there can be substantial savings if some units are sampled less

frequently.
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(b) n = 24 units per test.

Figure 6: Comparison of large-sample approximate standard errors of d̂0.10 for 2 different test plans with
extrapolation out to 20 years. The point where the line changes from solid to dashed or dotted is the time
at which extrapolation begins.

• There was concern that the measurements could have an effect on the degradation process. Having

groups of units on different inspection schedules can provide information to detect and model the effect

of such changes, if they exist.

Example 5 Again consider a shelf-life study that is to be performed over a period of 20 years. Periodic

evaluation of a sample of units is scheduled for 5, 10, and 20 years. Some questions of interest are “What

is the current state of the units in the larger population of units from which the sample was taken?” and

“Can the future state of the population of units be predicted?” Two different plans will be compared for this

study, 4(21),4(11),4(6) and 12(21). This notation means that this plan will use 12 units of which 4 units

are measured 21 times (i.e., every year starting at time 0), 4 are measured 11 times (i.e., every other year),

and 4 units are measured 6 times (i.e., every 4 years). In the alternative plan, all 12 units will be measured

every year. Notice that the first of these plans will involve 152 measurements and the second will have 252

measurements. Thus if the first plan gives adequate information, it would be preferred because it costs much

less than the second plan. Figure 6a shows a comparison of these two plans. There is a large difference in

the standard errors for plans 12(21) and 4(21),4(11),4(6) when extrapolation to 20 years is performed after

5 years of observations. After 10 years of observations, however, there is little difference between the two

plans. These results suggest that the sampling plan 4(21),4(11),4(6), especially after 10 years of inspection

could result in large savings in both time and money with little loss of precision.

If the number of units tested could be doubled from 12 to 24, estimation precision would be improved.

Figure 6b shows the results from the two plans 24(21) and 8(21),8(11),8(6). It is easy to show that standard

errors for the 24(21) test plan are the same as those from the 12(21) plan, divided by
√
2. This is only

11



approximately so for the 8(21),8(11),8(6) plan with respect to the 4(21), 4(11), 4(6) plan.

5.3 Using Simulation to Evaluate Test Plans

This section describes a complementary simulation-based method for comparing test plans. After methods

based on large-sample approximate variance are used to find a candidate test plan, we generally recommend

the use of simulation to study the plan. Simulation provides visualization of sampling variability and in-

sight into the test planning process. Simulation results, presented graphically, are particularly useful when

communicating with engineers. In general, simulation methods for evaluating and comparing test plans are

also useful in situations where the delta method might not provide a good approximation, when it is difficult

to derive an analytical method, or when there is not enough time to derive an analytical method. The

simulation algorithm for repeated measures degradation testing is as follows:

1. With a given test plan and planning values, simulate data vectors Y∗

i from the model in (3) where

i = 1, . . . , B and B being a large number, say 10,000.

2. For each simulated data set Y∗

i , calculate the ML estimates of θ∗

i , say θ̂
∗

i .

3. Calculate functions of θ̂
∗

i that are of interest, say g(θ̂
∗

i ) (e.g., d̂
∗

p,i).

4. Plot the estimates to illustrate the trial to trial variability.

5. Estimate the standard error of the components of θ̂
∗

i or g(θ̂
∗

i ) by calculating the sample standard

deviation of the simulated estimates.

Figure 7 shows an example of Step 3 for d̂∗0.10 in the above algorithm for the planning information given in

Section 5.1. Figure 8 shows a comparison between the simulation method and the large sample method for the

plan 12(21) when considering again the standard error for the 0.10 quantile of the degradation distribution.

Notice that the two approaches agree with each other and are similar in shape and numerical values. The

simulation approach, however, indicates smaller standard errors than the large-sample approximation value

for the 0.10 quantile for the case when extrapolation began after 5 years. This can also be seen in the

simulation results presented in Figures 13b and 14a in Section 7.

5.4 Selecting a Test Plan Under a Cost Constraint

This section describes the selection of a degradation test plan when there is a constraint on ASEd̂p
and there

is a desire to minimize the cost of running the experiment. Suppose the cost of the experiment is

cost(n,m) = c1 + c2n+ c3nm,

where c1 denotes the fixed cost of running the experiment, c2 is the cost of testing an experimental unit, and

c3 is the cost of a measurement on an item. Although the approach is general we will use the exact same
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Figure 7: Simulations of ML estimates of the 0.10 quantile of the degradation level using the planning values
in Example 3. The longer thick line represents the 0.10 quantile under the planning information.
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Figure 9: Contour plot of cost (thick solid lines) and ASEd̂0.10
(dashed lines) for Example 6. The large dot

indicates the constrained optimum test plan. The cross-hatched region corresponds to the pairs (n, m) that
do not satisfy the constraint ASEd̂0.10

≤ 0.50. The labels for the cost contours have been multiplied by 10−3

for readability.

measurement schedule for each unit and equally spaced inspections. Let γ denote the maximum acceptable

value of ASEd̂p
. Then we wish to find the values of n and m, say n∗ and m∗ such that ASEd̂p

≤ γ and

cost(n∗,m∗) = min
n,m

[cost(n,m)].

Example 6 Consider a shelf-life study that is to be performed for 20 years with the planning information

given in Example 3. The information after 10 years of observations will, however, be used to make important

predictions at 20 years. This study has a limited budget and a test plan is to be chosen so that the cost of

the study is to be minimized subject to the constraint ASEd̂0.10
≤ 0.50. The individual cost components of

the study are c1 = $15,000, c2 = $1,500, and c3 = $75. Figure 9 shows the results of this optimization. In

the cross-hatched region ASEd̂0.10
> 0.50. The large dot on the plot corresponds to the constrained optimum

test plan. The plot indicates that n = 11 items should be measured at m = 7 equally-spaced times. For this

test plan, ASEd̂0.10
= 0.498 and cost(n,m) = $37,275.

6 Failure-Time Distribution

This section derives the failure-time distribution implied by the linear degradation model in (2) and a

specification of the degradation level Df for failure. Chapter 13 of Meeker and Escobar (1998) provides a

more general discussion of failure-time distributions that are implied by a degradation model.
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6.1 Relationship Between Degradation and Failures

We assume a degradation process with soft failures. That is, the failure time for a unit is defined to be

the time at which the degradation level reaches the specified degradation level Df . Let T define the random

variable associated with the unit’s time to failure.

For a fixed t, b0 + b1t ∼ NOR(β0 + tβ1, σ
2
b0

+ t2σ2
b1

+ 2tρσb0σb1). First, consider the case of increasing

degradation. In this case

Pr(T ≤ t) = F (t; θ) = Pr(b0 + b1t ≥ Df)

= 1− Pr(b0 + b1t ≤ Df) = 1− Φnor [κ(θ)] , (11)

where κ(θ) = (Df − β0 − tβ1) /
√
σ2
b0

+ t2σ2
b1

+ 2tρσb0σb1 and Φnor(z) is the cdf for a standard normal dis-

tribution evaluated at z. Similarly, if failure occurs when the degradation level decreases to Df , then

Pr(T ≤ t) = F (t; θ) = Pr(D = b0 + b1t ≤ Df) = Φnor [κ(θ)] . (12)

When ρ = 0, F (t; θ) is known as the Bernstein distribution (e.g., Gertsbakh and Kordonskiy 1969, Ahmad

and Sheikh 1984, and Lu and Meeker 1993). The ML estimator of the failure-time distribution is F (t; θ̂)

where θ̂ is the ML estimator of θ. Meeker and Escobar (1998), page 330, describes a numerical integration

and a simulation based approach to evaluate the failure-time distribution for more complicated models where

a closed form solution for the cdf F (t; θ) does not exist.

Example 7 The printhead of an inkjet cartridge is a component in a larger series system for a printer.

Estimation of its lifetime distribution was needed to estimate the lifetime distribution for the entire system.

As described in Section 1.1, the failure mechanism was diffusion of a failure-causing substance. The engineers

defined a degradation level of Df = 60 mm to be a failure. This degradation level is represented by the

horizontal line in Figure 2. The ML estimates of the model parameters for the degradation model are

β̂0 = 11.22, β̂1 = 1.14, σ̂b0 = 0.45, σ̂b1 = 0.07, ρ̂ = −0.82, and σ̂ = 2.6. (13)

Figure 10 gives the ML estimate of the failure-time distribution for the print head degradation data.

6.2 Estimating the p Quantile of the Failure-Time Distribution

From inverting (11) the p quantile of the failure-time distribution is

tp =
− (kσb0b1 + hβ1)±

√
k2σ2

b0b1
+ kσ2

b0
β2
1 + h2kσ2

b1
− k2σ2

b0
σ2
b1

+ 2hkβ1σb0b1

kσ2
b1

− β2
1

(14)
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Figure 10: Estimated failure-time distribution based on the printhead data. The dashed lines represent
pointwise approximate 95 % confidence intervals.

where σb0b1 = ρσb0σb1 is the covariance between b0 and b1, h = Df − β0 and k =
[
Φ−1

nor (1− p)
]2

or k =
[
Φ−1

nor (p)
]2

depending on whether a failure is declared when D ≥ Df or D ≤ Df , respectively. The derivation

of (14) is given in the appendix. If 0 < p < 0.5, tp is the root where the radical is added. If 0.5 < p < 1, tp

is given by the root where the radical is subtracted. An estimate of tp can be computed by evaluating (14)

at the ML estimates θ̂.

6.3 Standard Error for the Maximum Likelihood Estimator of the Failure-Time

Quantile

Let c be the gradient vector with elements ci = ∂tp/∂θi, i = 1, . . . , 6. Using the delta method, the large-

sample approximate variance of t̂p is

AVar(t̂p) = cTAVar(θ̂)c. (15)

The large-sample approximate standard error of t̂p is ASEt̂p
=

√
AVar(t̂p) which is estimated by evaluating

(15) at θ̂ giving ŜEt̂p
=

√
V̂ar(t̂p). The explicit forms of the partial derivatives in c are given in the appendix.

6.4 Degradation Test Planning Using tp

This section applies the test planning techniques described in Sections 5.1 and 5.2 to tp. This work is

motivated by the inkjet cartridge example. The engineers were interested in estimating t0.10, the time at

which 10% of the items in the population would fail. They were interested in performing other degradation

tests in the future on similar parts and wanted to know how many items should be measured and how many

measurements should be made on each item. The ML estimates obtained in Example 7 will be used as the

planning information (i.e., β�
0 = 11.22, β�

1 = 1.14, σ�
b0

= 0.45, σ�
b1

= 0.07, ρ� = −0.82, and σ� = 2.6).
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First, we consider the simple test plans described in Section 5.1 where each unit is measured the same

number of times. Figure 11 shows several simple degradation test plans using the planning information given

above. As expected, the best plan is the 12(21) on the North–East corner for which ASEt̂0.10
≈ 0.83.

A drawback to the plan 12(21) is that it might be expensive or time consuming to complete because

it requires 252 measurements. Thus, it is of interest to entertain other degradation test plans that involve

different measurement sequences on the units. For example, Table 1 shows the ASEt̂0.10
for the degradation

plans 12(21) and 4(21),4(11),4(6), and 3(21), 3(11), 3(6), 3(3) respectively. Notice that there is not a large

difference in the estimation precision for the three different plans. One could achieve savings for both time

and money at the sacrifice of only a small amount of estimation precision if the plan 3(21), 3(11), 3(6), 3(3)

(with 123 measurements) is selected over the plan 12(21).

Plan Number of Measurements Standard Error
12(21) 252 0.83
4(21),4(11),4(6) 152 0.88
3(21),3(11),3(6),3(3) 123 0.92

Table 1: large-sample approximate standard error ASEt̂0.10
for three different degradation test plans.
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Figure 11: Contour plot of the large-sample approximate standard error ASEt̂0.10
as a function of n and m.

As in Section 5.4, test planning to minimize cost under the constraint ASEt̂p
≤ α can be applied to

the failure-time distribution quantile. Consider again the cost structure from Example 6 but now with the

constraint ASEt̂0.1
≤ 0.80 for a test that is going to run for 50 hours. Figure 12 shows the constrained

optimum plan to be n = 16 and m = 8. The cost associated with this test plan is $48,600 with ASEt̂0.1
=

0.791.
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Figure 12: Contour plot of cost (thick solid lines) and ASEt̂0.10
(dashed lines) . The large dot indicates the

constrained optimum test plan. The cross-hatched region corresponds to the pairs (n, m) that do not satisfy
the constraint ASEt̂0.1

≤ 0.80. The labels for the cost contours have been multiplied by 10−3 for readability.

7 Accuracy of Approximate Standard Errors

We conducted a simulation study to assess the accuracy of the large-sample approximate standard errors

(ASE) relative to empirical standard errors (ESE) obtained from Monte Carlo simulation. We focus on

results for the ASE of the 0.10 degradation distribution quantile. The experiment used the four factors that

have the most influence on the ASE for a given fixed time schedule. These factors are σb0 , σb1 , the length of

the test (TL), and the point in time where extrapolation begins (EP). Additionally, the model parameters

were scaled so that they are unit-less (i.e., are free of a unit of measurement). In particular, the model

parameters β0, β1,σb0 , σb1 , and σ were divided by σ (removing the degradation units) and β1 and σb1 were

both multiplied by the time corresponding to the end of the test (eliminating the time units). Additionally,

the time vector was divided by the time corresponding to the end of the test so that all time values are in

between zero and one.

We used a 24 factorial design with the factors described in the previous paragraph. For each factor-level

combination of the 24 factorial design and for a combination of n (the number of units) and m (the number

of measurements), data was simulated from (1). For each simulated data set, the ML estimate of d0.10 was

calculated. This procedure was repeated 300,000 times providing a distribution of d̂0.10. The Monte Carlo

standard error was then calculated by taking the sample standard deviation of the simulated values of d̂0.10.

The large number of Monte Carlo trials was needed in order to reduce the Monte Carlo error to be less than

some specified constant at the factor-level with the larger values of σb0 , σb1 , and TL.

Figures 13 and 14 provide a summary of a subset of the factor level combinations that give a general
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picture of the relationship between the ASE and the corresponding ESE as a function of the number of

experimental units (n) and the number of equally-spaced measurements within each experimental unit (m).

In each plot there are four horizontal lines, of different line types and symbols, which represent the different

equally-spaced measurement schedules. These levels of are m = 10, 25, 50, and 200. The horizontal line at

the top of each plot corresponds to m = 10 and the horizontal line at the bottom of each plots corresponds

to m = 200.

Figure 13a shows that for small m (the solid lines), there is a large difference between the ESE and

the ASE. For small m, the ESE curve generally has an asymptote that is well below the ASE. For large m

(m = 200), represented by the horizontal line at the bottom of the plot, the ESE and ASE are close to each

other, indicating that n does not have to be too large for good agreement of the ASE when m is reasonably

large.

Figures 13a and 13b combined illustrate the effect that changing TL and EP have on the ESE and ASE.

The levels of σb0 and σb1 are the same in Figures 13a and 13b whereas the levels of TL and EP are different

(Figure 13b has a larger levels of TL and a larger amount of extrapolation). We see that for smaller values

of n and m the standard errors (both ESE and ASE) are smaller for Figure 13b relative to Figure 13a,

corresponding to the larger TL and more extrapolation, whereas for larger values of n and m, the standard

errors are smaller in Figure 13a. The reason for this is that for the smaller levels of n and m, the sources

of error that are contributing to the ASE and ESE is the sampling error from the population, sampling

error for the model parameter estimators, and the error amplification associated with the extrapolations.

For smaller levels of n and m, the measurements made at larger time values for the items in Figure 13b are

helping to decrease the error (relative to Figure 13a) associated with the model parameter estimation. As

both n and m increase, the total error contributed from the model parameter estimation decreases to where

the contribution of error amplified by the extrapolation plays a more dominant role. Comparing the two

figures, Figure 13a has less extrapolation, given smaller values of the ASA and ESE for the larger levels of

n and m.

Figure 14a illustrates the case where the variance components are at their lowest levels and both TL and

EP are at their largest levels. Notice that the standard error values are at their lowest values among the

four plots. We observe good agreement between the ESE and ASE in this figure.

The purpose of Figure 14b is to show the effects of large values of σb1 (the unit-to-unit variability in

slopes). To emphasize the effects of σb1 , the levels of the other factors are all set at their least influential

values, i.e., small σb0 and large TL and EP (which is in contrast to Figure 14a where σb1 is at its lowest

level). Notice that the standard error values have increased compared to Figure 14a . There still seems to

be good agreement, however, across values of m as the different paths are still similar.

Based on this simulation study, for situations where the ASE performs poorly, it is recommended to use

simulation methods for test planning. In particular, if large extrapolations are to be made or if the number

of measurements per item is small, then simulation methods would be preferred.
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Figure 13: Factor-level combinations to assess the effects of extrapolation and test length. The horizontal
lines corresponds to the ASE and the different symbols represent different numbers of measurement.
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Figure 14: Factor-level combinations to assess the effects of the slope-to-slope variability. The horizontal
lines corresponds to the ASE and the different symbols represent different numbers of measurement.

8 Conclusions and Areas for Future Research

Nondestructive repeated measures degradation tests are useful in understanding the material or performance

degradation of a product or components over time. It is important to plan these tests carefully in order to

acquire the desired level of precision while working within resource constraints (time, number of units, and

number of measurements). The methodology presented in this paper can be extended to more complicated
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situations. The following list suggests future work:

• Extend to models with more complicated covariance structures such as autocorrelations which might

be needed when one has smaller spacing between measurements.

• In some applications accelerated repeated measures degradation testing is needed (e.g., when using a

regression model to describe the effect of temperature on degradation rates). For examples, see Chapter

21 of Meeker and Escobar (1998).

• Bayesianmethods are often useful when there is prior knowledge (e.g., from physics of failure or previous

experience with similar products). When such information is available, it should be incorporated into

both the analysis and test planning.
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10 Appendix

10.1 Derivation of the Information Matrix in Section 3.2

Using equation (4) of Jenrich and Schluchter (1986), it can be shown that, using our notation from Section

2, the Hessian Matrix, Hi, for unit i , is given by

Hi =


Hββ,i Hβφ,i

Hφβ,i Hφφ,i


 =




∂2Li

∂β∂β

∂2Li

∂β∂φ
∂2Li

∂φ∂β

∂2Li

∂φ∂φ


 .

Then the information matrix can be expressed as

Ii(θ) =


XT

i Σ
−1
i Xi 0

0 Mi


 ,

where Mi is a 4× 4 symmetric matrix with elements

M i
jk =

1

2
tr(Σ−1

i

·

ΣijΣ
−1
i

·

Σik), j = 1, . . . , 4; k = 1, . . . , 4,

and
·

Σij =
∂Σi

∂φj
, j = 1, . . . , 4.
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From equation (4), it follows that

·

Σi1 =
∂Σi

∂σb0
= Zi


2σb0 ρσb1

ρσb1 0


ZT

i ,
·

Σi2 =
∂Σi

∂σb1
= Zi


 0 ρσb0

ρσb0 2σb1


ZT

i ,

·

Σi3 =
∂Σi

∂ρ
= Zi


 0 σb1σb0

σb1σb0 0


ZT

i ,
·

Σi4 =
∂Σi

∂σ
= 2σIi.

Then the information matrix for all n units is I(θ) =
∑n

i=1 Ii(θ).

10.2 Forms of the Partial Derivatives in Section 4.2

The individual elements of c in (9) are
∂dp
∂β0

= 1,
∂dp
∂β1

= t,
∂dp
∂σb0

= ζ(2σb0+2tρσb1),
∂dp
∂σb1

= ζ(2t2σb1+2tρσb0),

∂dp
∂ρ

= ζ(2tσb0σb1 ), and
∂dp
∂σ

= 0, where

ζ =
Φ−1

nor(p)

2
√
σ2
b0

+ σ2
b1
t2 + 2tρσb0σb1

.

10.3 Derivation of tp in Section 6.2

Let F denote the CDF of the random variable T , corresponding to the time to crossing definition in Section

6 (i.e., failure occurs when b0 + b1t ≥ Df).

F (tp) = 1− Φnor


 Df − β0 − tpβ1√

σ2
b0

+ t2pσ
2
b1

+ 2tpσb0b1


 = p

Φnor


 Df − β0 − tpβ1√

σ2
b0

+ t2pσ
2
b1

+ 2tpσb0b1


 = 1− p

Df − β0 − tpβ1√
σ2
b0

+ t2pσ
2
b1

+ 2tpσb0b1

= Φ−1
nor (1− p)

(Df − β0 − tpβ1)
2

σ2
b0

+ t2pσ
2
b1

+ 2tpσb0b1
=

[
Φ−1

nor (1− p)
]2
. (16)

Let k =
[
Φ−1

nor (1− p)
]2
, h = Df − β0, and l = kσ2

b0
. Then

k
(
σ2
b0 + t2pσ

2
b1 + 2tpσb0b1

)
= (h− tpβ1)

2

l + t2pkσ
2
b1 + 2tpkσb0b1 = h2 − 2hβ1tp + β2

1t
2
p

t2p
(
kσ2

b1 − β2
1

)
+ 2tp (kσb0b1 + hβ1) +

(
l − h2

)
= 0.
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Let a =
(
kσ2

b1
− β2

1

)
, b = 2 (kσb0b1 + hβ1) , c =

(
l − h2

)
. Then this equation is of the form:

at2p + btp + c = 0 (17)

with the following solutions for tp:

tp =
−b±

√
b2 − 4ac

2a

=
−2 (kσb0b1 + hβ1)±

√
4 (kσb0b1 + hβ1)

2 − 4
(
kσ2

b1
− β2

1

)
(l − h2)

2
(
kσ2

b1
− β2

1

)

=
−(kσb0b1 + hβ1)±

√
(kσb0b1 + hβ1)

2 −
(
kσ2

b1
− β2

1

)
(l − h2)

kσ2
b1

− β2
1

=
− (kσb0b1 + hβ1)±

√
k2σ2

b0b1
+ kσ2

b0
β2
1 + h2kσ2

b1
− k2σ2

b0
σ2
b1

+ 2hkβ1σb0b1

kσ2
b1

− β2
1

.

The derivation is similar when the failure definition is b0 + b1t ≤ Df , using

F (tp) = Φnor


 Df − β0 − tpβ1√

σ2
b0

+ t2pσ
2
b1

+ 2tpσb0b1


 .

10.4 Forms of the Partial Derivatives in Section 6.3

Let ψ =
√
kβ2

1σ
2
b0

+ kσ2
b1
(β0 −Df)

2 − k2σ2
b0
σ2
b1

+ k2ρ2σ2
b0
σ2
b1

− 2kρβ1σb0σb1 (β0 − Df). Then,

∂

∂β0
tp =

β1
kσ2

b1
− β2

1

±
kσ2

b1
[β0 −Df)− kρβ1σb0σb1(

kσ2
b1

− β2
1

)
ψ

.

∂

∂β1
tp = 2

β1(
β2
1 − kσ2

b1

)2 (β0β1 − β1Df ± ψ − kρσb0σb1)−
1

β2
1 − kσ2

b1

[
β0 −D ±

kβ1σ
2
b0

− kρσb0σb1 (β0 −Df)

ψ

]
.

∂

∂σb0
tp =

1

β2
1 − kσ2

b1

[
σb1kρ±

σb0σ
2
b1
k2 − σb0kβ

2
1 − σb0σ

2
b1
k2ρ2 + σb1kρβ1 (β0 −Df)

ψ

]
.

∂

∂σb1
tp =

1

β2
1 − σ2

b1
k

[
σb0kρ±

σb1k (β0 −Df)
2 − σ2

b0
σb1k

2 + σ2
b0
σb1k

2ρ2 − σb0kρβ1 (β0 −Df)

ψ

]

− 2σb1
k

(
β2
1 − σ2

b1
k
)2 (β0β1 − β1Df − σb0σb1kρ− ψ) .

∂

∂ρ
tp =

1

β2
1 − kσ2

b1

[
kσb0σb1 ±

k2ρσ2
b0
σ2
b1

− kβ1σb0σb1 (β0 −Df)

ψ

]
.

∂

∂σ
tp = 0.

For all cases, excluding the partial derivative with respect to ρ, replace ± with “+” if 0 < p < 0.5 and with

“−” if 0.5 ≤ p ≤ 1. For the partial derivative with respect to ρ, replace ± with “−” if 0 < p < 0.5 and with
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“+” if 0.5 ≤ p ≤ 1.
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