
Runtime Analysis with R2U2:
A Tool Exhibition Report

Johann Schumann1(B), Patrick Moosbrugger2, and Kristin Y. Rozier3

1 SGT, Inc., NASA Ames, Moffett Field, Mountain View, CA, USA
Johann.M.Schumann@nasa.gov

2 Vienna University of Technology, Vienna, Austria
moosbrugger@cps.tuwien.ac.at

3 Iowa State University, Ames, IA, USA
kyrozier@iastate.edu

Abstract. We present R2U2 (Realizable, Responsive, Unobtrusive
Unit), a hardware-supported tool and framework for the continuous mon-
itoring of safety-critical and embedded cyber-physical systems. With the
widespread advent of autonomous systems such as Unmanned Aerial
Systems (UAS), satellites, rovers, and cars, real-time, on-board decision
making requires unobtrusive monitoring of properties for safety, per-
formance, security, and system health. R2U2 models combine past-time
and future-time Metric Temporal Logic, “mission time” Linear Temporal
Logic, probabilistic reasoning with Bayesian Networks, and model-based
prognostics.

The R2U2 monitoring engine can be instantiated as a hardware solu-
tion, running on an FPGA, or as a software component. The FPGA real-
ization enables R2U2 to monitor complex cyber-physical systems with-
out any overhead or instrumentation of the flight software. In this tool
exhibition report, we present R2U2 and demonstrate applications on sys-
tem runtime monitoring, diagnostics, software health management, and
security monitoring for a UAS. Our tool demonstration uses a hardware-
based processor-in-the-loop “iron-bird” configuration.

1 Introduction and Tool Overview

The Realizable, Responsive, Unobtrusive Unit (R2U2) is a framework for run-
time System Health Management (SHM) of cyber-physical systems. R2U2 is
unique in that it combines several different runtime reasoning “building blocks”
to provide a more effective runtime analysis than can be accomplished via any
one of them alone; [10,11] give an overview of the building block architecture
and provide ideas and examples for tool configurations. Building blocks include
temporal logic runtime observers, Bayes Net (BN) decision-makers, and sensor
filters; the framework is extensible in that it is easy to connect the inputs and
outputs of different types of reasoning blocks. Other notable advantages of R2U2
are its zero-overhead hardware implementation, dual-encodings of temporal logic
observers to include both time- and event-triggered results, implementations of

c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 504–509, 2016.
DOI: 10.1007/978-3-319-46982-9 35



Runtime Analysis with R2U2: A Tool Exhibition Report 505

future-time and past-time observers, and efficient use of Bayesian reasoning over
observer outputs to provide temporal diagnostics.

R2U2 reasons efficiently about temporal behaviors using temporal logic run-
time observers. These observers encode Metric Temporal Logic (MTL) [5] and
Mission-Time Linear Temporal Logic (LTL) [6] formulas. MTL adds discrete
time bounds to the temporal operators of LTL formulas; for R2U2 we bound
operators in units of ticks of the system clock, so a singular bound of [100]
designates the operator holds for the next 100 clock ticks and a paired bound
of [5, 20] designates that the operator holds from 5 to 20 clock ticks from
now. We defined Mission-Time LTL [6] in recognition that many requirements
for missions of air- and spacecraft, for example, are most naturally written in
LTL but there is an (often unspecified) assumption that the eventualities guar-
anteed by strong operators (♦ and U) are fulfilled during the mission. Therefore,
we consider such formulas to be in Mission-Time LTL, where we automatically
fill in MTL-like time bounds on eventualities to give an appropriate finite-trace
semantics that guarantees satisfaction during the current mission, or mode of
flight. Uniquely, R2U2 encodes every future-time temporal logic specification
twice: once as an asynchronous observer and once as a synchronous observer.
Asynchronous, or event-triggered, observers return a verdict (true or false) in
the first clock-tick that the formula can be evaluated. Their output is a tuple
including the clock-tick(s) they have a verdict for and that verdict, where the
clock-tick(s) may be in the past in the case of future-time formulas for which
there was not previously sufficient information to evaluate fully. Asynchronous
observers resemble traditional runtime monitors with one important difference:
they always report both success and failure of the formula (rather than just
reporting failures) as both evaluations provide valuable information to influ-
ence the probabilistic evaluations of the BNs. Synchronous, or time-triggered,
observers return a three-valued verdict (true, false, or maybe) at every tick of
the system clock. This is useful to provide intermediate information for proba-
bilistic BN reasoning as well as a “liveness” check that the monitoring framework
is responsive. We defined and proved correct FPGA-based implementations of
asynchronous and synchronous runtime observers [6].

R2U2 expands upon the failure reporting of traditional runtime monitors
to provide advanced diagnostics by combining the temporal logic observers with
light-weight Bayesian Networks (BNs) that reason over the observer outputs and
(possibly filtered) sensors signals. Our R2U2 model can have modular, usually
rather small Bayesian networks for groups of highly-related faults that might
occur for one hard- or software component. We designed and experimentally
evaluated efficient FPGA-based encodings of our BNs in [4], demonstrating their
ability to perform efficient diagnostics for safety and performance requirements.
Recognizing that violations of security properties that occur through tampering
with sensor inputs may also have unique temporal patterns, we expanded on this
work with a series of case studies for UAS in [8]. A possibly innocuous off-nominal
reading or event, followed by a specific temporally-displaced pattern of behavior
is often indicative of a hard-to-diagnose security threat, such as dangerous MAV



506 J. Schumann et al.

(Micro Air Vehicle) commands, ground station denial-of-service attempts, or
GPS spoofing; [8] defines and demonstrates R2U2 configurations that efficiently
diagnose these during runtime.

2 Tool Architecture

In its usual configuration, R2U2 obtains data from sensors, actuators, and the
flight software using a read-only (serial) interface (Fig. 1A). This enables R2U2
to continuously monitor multiple signals during runtime with minimal instru-
mentation of the flight software. Altering safety-critical software or hardware
components can cause difficulties maintaining flight certification. R2U2 itself is
implemented in VHDL that is compiled into an FPGA configuration. For our
experiments, we use an Adapteva Parallella board [1] that provides a suitable
FPGA and runs a Linux system for data logging and development. Software-
only versions of R2U2 are available and can be executed on any Linux-based
system, preferably on a separate hardware unit to avoid interaction with the
flight software and hardware.

R2U2 models consist of temporal logic formulas, Bayesian networks, and
specifications of signal-preprocessing and filtering. These models can be designed
in a modular and hierarchical manner to enable the designer to easily express
properties containing temporal, model-based, and probabilistic aspects. For
graphical modeling of the Bayesian networks, we use the freely available tool
SamIam [2]. With the other parts of the model in textual format, our tool-chain
(Fig. 1C) compiles temporal formulas and Bayesian network reasoners into a
compact and efficient binary format. The compiled model then can be directly
downloaded onto the R2U2 execution engine without having regenerate code or
configuration, which could take considerable time for an FPGA.

MTL and LTL formulas are compiled into code for a special purpose processor
that is instantiated on the FPGA or emulated in software. Efficient and correct

A

RF−Rx

A
ct

ua
to

rs

Se
ns

or
s

Flight Computer

R
2U

2

UAS

GPS

B m
on

ito
re

d 
si

gn
al

s

da
ta

 lo
gg

in
g

Memory Interface
Control Unit

te
m

po
ra

l l
og

ic

R
R

−
U

ni
t

B
N

 r
ea

so
ni

ng

SP
−

U
ni

t

si
gn

al
 p

ro
ce

ss

R
V

−
U

ni
t

C

system specification
& description

Bayesian network

Γ > 0 → ♦[0,2s]Δβ > θ,
(cmd = do) → �[0,40](x ≥ 600 ),. . .

LTL formulas

parser,
compiler &

assembler script

ACE compiler*

*3rd party tool

01001001
01001100
01001111
01010110
01000101

binary file

+

× ×

+ +

× × × ×

θα θα

λβλβ θβθβ

arithmetic circuit

parser,
compiler &
assembler

GUI

01010101
01000010
01000001
01000010
01010011

binary file

in
te

rf
ac

e

FPGA

synthesis,
placement
& route*

*3
r

d
pa

rt
y

to
ol

.

VHDL sources

Fig. 1. A: Schematics of R2U2 for a small UAS. B: R2U2 architecture C: R2U2 tool
chain



Runtime Analysis with R2U2: A Tool Exhibition Report 507

algorithms for the temporal operators [6] avoid the construction of potentially
large finite state machines. The Bayesian network is compiled into an arithmetic
circuit [3], which can be efficiently evaluated in bounded time using a special pur-
pose processor on the FPGA. Filtering and thresholding of the (floating-point)
input signals is done by the SP-Unit. Figure 1B shows the high-level architecture
of the R2U2 engine. All algorithms of R2U2 are fully static, do not require any
dynamic structures or memory allocation, and have known and bounded runtime
behavior, making the tool suitable for execution on embedded architectures.

3 Examples and Applications

R2U2 has been used for UAS to continuously monitor numerous properties and
perform root cause analysis [4]. These properties typically address safety (“Is the
airspeed always higher than the stall-speed?”), performance (“Have we reached
our desired waypoint within 10 s of ETA?”), or security (“Has our GPS system
be spoofed?”).

S BaroAlt
(S )

H BaroAlt
(H )

S LaserAlt
(S )

H LaserAlt
(H )

S Sensors
(S )

U Altimeter
(U )

Fig. 2. Sensor failure detection BN from [6]

For example, the relationship
property “A pitch-up should cause
the UAS to climb within 5 s”
can be expressed by the follow-
ing MTL formula: �(pitchup →
♦[0,5](�[2](vbz > 20 ft/min))), where
vbz is the vertical speed measured by
the baro-altimeter. Here, we have
refined the requirement that within
the last 5 s, we have to encounter

at least a 2 s stretch of uninterrupted climbing in order to filter out short-term
effects like turbulence.

Checking the consistency of several sensors can be an important help to
figure out if a sensor is broken, and if so, which one. In our example (see [6]), the
UAS is equipped with a barometric altimeter, a laser altimeter, and an inertial
measurement unit (IMU) for navigation. Because of sensor noise, it would be
hard to directly compare the values. We rather abstract the readings from each
sensor into “climbing” and “descending”. We feed these data to the sensor nodes
of our the Bayesian network model (Fig. 2, bottom row). Given this information,
R2U2 can calculate, in real-time, the posteriors of the health nodes (H LaserAlt
and H BaroAlt) indicating their most likely health status. This Bayesian network
allows us to incorporate domain knowledge (e.g., the laser altimeter is more likely
to fail than the barometric altimeter) and complex interrelationships between
components. For details of this example see [6,7].

The tool demonstration website [7] contains a number of relevant examples
illustrating the monitoring of safety and performance properties, monitoring a
UAS for possible cyber-attacks [8], and incorporating battery prognostics [9]. We
will demonstrate multiple examples with R2U2 on our “iron-bird,” which con-
tains the Arduino flight hardware including sensors and servos, and the Parallella
board with R2U2 running on FPGA or in software.



508 J. Schumann et al.

4 Summary

R2U2 is designed for continuous runtime analysis of safety-critical and embedded
cyber-physical systems, for example, UAS. The modeling framework uses a syn-
ergistic combination of past- and future-time MTL, mission-time LTL, Bayesian
Networks, and prognostics models. The R2U2 framework and tool is demon-
strated on our UAS iron-bird, a processor-in-the-loop setup for a small UAS.
R2U2 can be instantiated on an FPGA or as a software application and can
be used for monitoring safety, security, and performance properties, as well as
performing diagnostics for wide ranges of software and cyber-physical systems.

Detailed information about R2U2, documentation, examples, and demo
scripts can be found at [7]; we are in the application process for a NASA Open
Source License.

Acknowledgments. The development of R2U2 was in part supported by NASA
ARMD grant NNX14AN61A, ARMD 2014 I3AMT Seedling Phase I NNX12AK33A,
and NRA NNX08AY50A.

References

1. Adapteva: The Parallella System (2016). http://adapteva.com
2. Automated Reasoning Group, UCLA: SamIam Sensitivity Analysis, Modeling,

Inference and More (SamIam) (2016). http://reasoning.cs.ucla.edu/samiam/
3. Darwiche, A.: A differential approach to inference in Bayesian networks. J. ACM

50(3), 280–305 (2003)
4. Geist, J., Rozier, K.Y., Schumann, J.: Runtime observer pairs and Bayesian net-

work reasoners on-board FPGAs: flight-certifiable system health management for
embedded systems. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol.
8734, pp. 215–230. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11164-3 18

5. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2(4), 255–299 (1990)

6. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime observer
pairs for system health management of real-time systems. In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 357–372.
Springer, Heidelberg (2014). doi:10.1007/978-3-642-54862-8 24

7. Schumann, J., Moosbrugger, P., Rozier, K.Y.: Runtime Analysis with R2U2: A Tool
Exhibition Report (Tool Demonstration Website) (2016). http://temporallogic.
org/research/RV16/

8. Schumann, J., Moosbrugger, P., Rozier, K.Y.: R2U2: monitoring and diagnosis of
security threats for unmanned aerial systems. In: Bartocci, E., Majumdar, R. (eds.)
RV 2015. LNCS, vol. 9333, pp. 233–249. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-23820-3 15

9. Schumann, J., Roychoudhury, I., Kulkarni, C.: Diagnostic reasoning using prog-
nostic information for unmanned aerial systems. In: Proceedings of PHM 2015
(2015)

http://adapteva.com
http://reasoning.cs.ucla.edu/samiam/
http://dx.doi.org/10.1007/978-3-319-11164-3_18
http://dx.doi.org/10.1007/978-3-642-54862-8_24
http://temporallogic.org/research/RV16/
http://temporallogic.org/research/RV16/
http://dx.doi.org/10.1007/978-3-319-23820-3_15
http://dx.doi.org/10.1007/978-3-319-23820-3_15


Runtime Analysis with R2U2: A Tool Exhibition Report 509

10. Schumann, J., Rozier, K.Y., Reinbacher, T., Mengshoel, O.J., Mbaya, T., Ippolito,
C.: Towards real-time, on-board, hardware-supported sensor and software health
management for unmanned aerial systems. In: Proceedings of PHM 2013, pp. 381–
401 (2013)

11. Schumann, J., Rozier, K.Y., Reinbacher, T., Mengshoel, O.J., Mbaya, T., Ippolito,
C.: Towards real-time, on-board, hardware-supported sensor and software health
management for unmanned aerial systems. Int. J. Prognostics Health Manage.
(IJPHM) 6(1), 1–27 (2015)


	Runtime Analysis with R2U2: A Tool Exhibition Report
	1 Introduction and Tool Overview
	2 Tool Architecture
	3 Examples and Applications
	4 Summary
	References


