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CHAPTER 1. Introduction

In financial markets, there exist two types of contracts: European type contracts and

American type contracts. European type contracts, such as European options, specify

an expiration date. If the option is to be exercised, the exercise must occur on the

expiration date. In contrast, an American option contract can be exercised at any time

before or on the expiration date. Compared to its European counterpart, the pricing

of an American option is much more complicated due to this early exercise feature. If

the price of the underlying stock is modeled as a stochastic process, the pricing of an

American option on the stock is an optimal stopping problem. In this thesis, we study

three pricing problems related to American type financial contracts:

1. We derive a closed form upper bound for American put options. This upper bound

can be used in conjunction with traditional Monte Carlo simulation, which usually

generates a lower bound, to obtain a better estimate for the option price;

2. A stock can be considered as an American type contract since the owner can sell

it at any time. We model the stock price as a diffusion process with a positive

probability of jumping to default and find the optimal strategy for the owner to

sell the stock. A similar problem has been solved in Oksendal [36] where the stock

is considered to be free of default risk;

3. We prove an ordering result for American options with a piecewise linear payoff

under a family of equivalent martingale measures used in stochastic volatility mod-
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els. The equivalent martingale measure used in this thesis is proposed by Hobson

[24]. A similar result for European options is proved by Henderson in [20].

In the remaining part of this chapter, we will discuss these three topics in more detail.

1.1 Upper bound for American option price

In contrast to its European counterpart, the price of an American option does not

have a closed-form formula even when the underlying stock price is assumed to be a geo-

metric Brownian motion (such as in the standard Black-Scholes-Merton framework). For

American option pricing, researchers and market practitioners have developed several

numerical procedures, such as binomial and trinomial trees (see, for example, Cox et.

al. [9]), finite difference method (see, for example, Brennan and Schwartz [4], and Hull

and White [27]), and Monte Carlo simulation (see, for example, Boyle [3] and Broadie

and Glasserman [5]).

Among these numerical techniques, the advantage of Monte Carlo simulation is that

it can be used when the payoff of the option depends on the history of the underlying

stock price while the other two methods work only when the payoff is dependent only

on the terminal value of the stock. One disadvantage of Monte Carlo method is that

before the simulation can be performed, one must determine an exercise policy. Unfortu-

nately, the optimal exercise policy is usually not known. For instance, for the standard

American put option with payoff (K − St)
+ where K is the strike price and St is the

stock price, it is well known that one optimal strategy for the owner is to exercise the

option at the first time when the stock price reaches an exercise boundary. Some prop-

erties of the exercise boundary are known, see Karatzas and Shreve ([31], section 2.7), or

Peskir [37] for recent developments. However, no explicit formula has been derived so far.
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Many different methods for determining the exercise boundary in Monte Carlo sim-

ulation has been developed, such as the least squares approach and parametrization

approach. For an introduction to these methods, we refer to Hull [25], section 20.9. A

drawback of Monte Carlo simulation methods is that they always produce lower bounds

of the true price since the exercise boundary used in simulation is not necessarily optimal.

On the other hand, it is much harder to obtain an upper bound for American option

price using simulation methods. One of the most notable results in this direction is pre-

sented in Rogers [39]. Rogers’ research is based on the theoretical results of Davis and

Karatzas [10]. Rogers’ upper bound can be obtained using a Monte Carlo simulation.

In this thesis, we derive an upper bound in closed form based on Rogers’ result. Since

our upper bound is in closed form and no simulation is needed, it can be used as a quick

estimate for Rogers’ upper bound. We also conduct a comparison between our upper

bound and the one proposed by Rogers.

1.2 Jump-to-default models

Default risk is the theme in the pricing and hedging of credit risk. There are two

types of models developed by researchers to evaluate default risk. A structural model

considers the equity of a firm as a call option of its total asset, and calculates the default

probability based on the classic Black-Scholes-Merton model. While a reduced form

model defines a default intensity function and a random variable, usually exponentially

distributed, and assumes that default occurs at the first time when the accumulated

default intensity exceeds the exponentially distributed random variable. The default

intensity function in a reduced form model can be chosen as a constant, a deterministic

function, or a stochastic process. A review of different intensity functions can be found
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in Duffie and Singleton [13], section 3.4. A comparison of structural model and reduced

form model can be found in Arora, Bohn, and Zhu [1], and Jarrow and Protter [28].

The jump-to-default model used in our study is a reduced form model. The intensity

function in our model is a decreasing function of the stock price. Our research is based

on the theoretical results by Elliot, Jeanblanc, and Yor [16] for European options. We

prove similar results for American options. On the basis of these results, we solve an

optimal stopping problem for the owner of a stock. When the stock is free of default

risk, Oksendal [36] showed that the owner should hold the stock till the first time when

the stock price is greater than or equal to an exercise point. We solve the problem

and derive an exercise point under the assumption of a positive default risk. Numerical

examples in this thesis show that the owner should actually hold the stock longer under

the jump-to-default model.

1.3 Stochastic volatility models

If the log-normal assumption for stock price in the Black-Scholes-Merton model is

correct, then the implied volatility, which is obtained by observing option prices from

the real market and inverting the Balck-Scholes formula, should not depend on the strike

price of the option used in the calculation. However, it is well known that the implied

volatility is a (non-constant) function of the strike price of options. This function is

called the volatility smile. For reference, see MacBeth and Merville [34], or Lauterbach

and Schiltz [32].

Numerous models have been proposed to explain the volatility smile. Merton [35] in-

troduced jumps in the stock distribution; Cox [8] proposed Constant Elasticity Variance
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(CEV) model; Dupire [14], as well as Derman and Kani [11] developed a concept called

”local volatility”. For a review of these models, we refer to Javaheri [29]. In comparison

to the models mentioned above, other researchers model the volatility as a stochastic

process, such as the Hull-White model [26], the Heston model [22], and the Stein and

Stein model [40].

Stochastic volatility models are promising both in theory and in practice. On one

hand, it provides a second source of risk affecting the level of instantaneous volatility;

On the other hand, a stochastic volatility is usually equivalent to a Generalized Au-

toregressive Conditional Heteroscedasticity, or GARCH model, which is very popular in

empirical economics and finance research. For example, the Heston model corresponds

to a special case of GARCH model (see Heston and Nandi [23]).

However, since stochastic volatility models involve two sources of randomness, they

are in general very complicated. In particular, since the volatility is not equal to the

price of any traded security, its drift in the risk neutral world is not necessarily equal to

the risk-free interest rate. Accordingly, there are many different martingale measures,

depending on how one determines the stochastic equation for volatility in the risk neu-

tral world. Heston [22] chooses a martingale measure which enables him to derive a

closed form pricing formula for European options. However, no theoretical or empirical

evidence is provided to justify the selection of Heston’s martingale measure. Other pop-

ular choices of martingale measures include variance-optimal measure (see Duffie and

Richardson [12]) and the minimal entropy measure (see Frittelli [18]). Yet very little

empirical research has been conducted to show which martingale measure is more con-

sistent with price of options in the real market.

Recent research by Hobson [24] reveals that the variance-optimal measure and the
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minimal entropy measure can be integrated into a large family of martingale measures

which are known as the q-optimal measures, corresponding to the values q = 2 and

q = 1, respectively. The q-optimal measure, in some sense, is the martingale measure

closest to the physical measure. Hobson also derived the form of the q-optimal measure.

Similar results and more examples can also be found in Henderson et. al. [21]. Hender-

son [20] proved that the price of European options with convex payoff is monotonic in

the parameter q under the q-optimal measure.

The ordering result for option prices is remarkable since, in conjunction with other

properties of the q-optimal measure, it significantly facilitates the selection of martingale

measures. For instance, if a stochastic volatility model tends to underprice an option

under the q-optimal measure with q = q1, and tends to overprice the same option when

q = q2, using the ordering result, one can immediately conclude that the parameter q

implied by the option price is between q1 and q2.

Our research is based on the proof of the ordering result in Henderson [20]. We point

out that one equality in Henderson’s proof is not correct, and we fix the problem by

choosing an appropriate filtration. We then extend the monotonicity result to American

option prices. To the extent of our knowledge, this is the first research on pricing

American options under the q-optimal measure.
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CHAPTER 2. A closed-form upper bound for American put

option

In this chapter, we propose a closed-form upper bound for American put option.

Our research is based on a Monte Carlo valuation method developed by L.C.G. Rogers

in [39]. Rogers proved that American put value V ≤ E
[
sup0≤t≤T (Zt −Mt)

]
where Zt

is the discounted intrinsic value of the option and Mt is a martingale satisfying certain

conditions. In this chapter, we choose the discounted European put price process as Mt

and derive a closed-form upper bound for American put.

2.1 Rogers’ Monte Carlo method

Let St denote the stock price process and (Ft) be the filtration generated by St.

Define the discounted exercise value of the American put

Zt ≡ e−rt(K − St)
+ (2.1)

The time t value of an American put option that expires at time T is

VA(St, T − t) = sup
τ∈St,T

E [Zτ |St] .

where S is the collection of all (Ft)- stopping times between time t and T . It is well

known that it is optimal for the owner of American put to exercise the option at the

first time when St falls below a threshold called the exercise boundary. Explicit formula

for this exercise boundary is unknown. One major difficulty in Monte Carlo valuation of
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American options is how to determine the exercise boundary. No matter what boundary

is chosen, the traditional simulation method always tends to underprice the option be-

cause the boundary is not actually optimal. Therefore, such simulation methods always

yield a lower bound for American put. Rogers [39] proposed a new Monte Carlo method

based on the work of Davis and Karatzas [10], and proved that this method always gives

an upper bound for the value of the American put.

The price of the put option at time 0 is given by VA(S0, T ) = Y ∗
0 ≡ supτ∈S[0,T ]

EZτ

where Zt is defined by (2.1). Under the assumptions that Y ∗
0 <∞, that sup0≤t≤T |Zt| ∈

Lp for some p > 1, and that Z is right continuous, the Snell envelope Y ∗
t ≡ supτ∈St,T

E [Zτ |Ft]

is a supermartingale and the family {Y ∗
τ }τ∈S is uniformly integrable. Therefore Y ∗

t has a

Doob-Meyer decomposition Y ∗
t = Y ∗

0 +M∗
t −A∗t where M∗

t is a martingale with M∗
0 = 0,

and A∗t is a previsible integrable increasing process, also vanishing at 0. Rogers showed

that E
[
sup0≤t≤T (Zt −Mt)

]
is an upper bound of Y ∗

0 for any M ∈ H1
0 where H1

0 is the

set of all martingales M with sup0≤t≤T |Mt| ∈ L1 and M0 = 0. More precisely, he proved

the following theorem.

Theorem 2.1.1. (see also Rogers [39], theorem 2.1)

Y ∗
0 = inf

M∈H1
0

E
[

sup
0≤t≤T

(Zt −Mt)

]
. (2.2)

The infimum is attained by taking M = M∗.

Proof. It follows from the definition of Y ∗
0 that

Y ∗
0 = sup

τ∈S[0,T ]

EZτ = sup
τ∈S[0,T ]

E[Zτ −Mτ ] ≤ E
[

sup
0≤t≤T

(Zt −Mt)

]
The last inequality holds, because E[Zτ−Mτ ] ≤ E

[
sup0≤t≤T (Zt −Mt)

]
for any stop-

ping time τ ∈ S[0,T ].
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Now take M = M∗,

E
[

sup
0≤t≤T

(Zt −M∗
t )

]
≤ E

[
sup

0≤t≤T
(Y ∗

t −M∗
t )

]
= E

[
sup

0≤t≤T
(Y ∗

0 − A∗t )

]
= Y ∗

0

since A∗t is increasing. From the assumption that sup0≤t≤T |Zt| ∈ Lp for some p > 1

it follows that M∗
t is actually in H1

0 . This completes the proof.

2.2 A closed-form upper bound

Based on (2.2), an upper bound can be obtained using Monte Carlo simulation. Com-

pared to traditional Monte Carlo techniques, Rogers’ method not only provides an upper

bound rather than a lower bound, it also converges faster because no pre-determined

exercise boundary is needed. In this section, we derive a closed-form upper bound. Our

upper bound can be used as a quick estimate of the early exercise premium, it may also

serve as an error bound for Rogers’ method.

2.2.1 Theoretical results

As in the previous section, let VA(St, T − t) be the time t value of an American put

option where St denotes the stock price and T the expiration date. Furthermore, let

VU(St, T − t) be the value of an European put option with the same expiration date,

underlying stock and strike price. We will derive a closed-form upper bound for the

early exercise premium (EEP) which is defined by EEP ≡ VA(S0, T )− VU(S0, T ).

Throughout this chapter, we assume that the stock price is a Geometric Brownian

Motion. According to the risk neutral pricing theory, the stock price under the risk
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neutral measure is governed by the following stochastic differential equation:

dSt = rStdt+ σStdWt, (2.3)

where r represents the risk free rate of return and Wt is a standard Brownian Mo-

tion under the risk neutral measure. Under these assumptions, the European put value

VU(S0, T ) is given by the Black-Scholes formula, and therefore a closed-form upper bound

for VA(S0, T ) can be calculated immediately once a closed-form upper bound for EPP

is derived.

We first prove the following lemma:

Lemma 2.2.1. Let Zt be the discounted intrinsic value process defined in (2.1), and Ft

be the filtration generated by the stock price process St, then the early exercise premium

EEP ≤ E sup
t∈[0,T ]

E [Zt − ZT |Ft]

Proof. It is well known that the discounted European put price e−rtVU(St, T − t) is a

martingale. Hence e−rtVU(St, T − t) − VU(S0, T ) is a martingale with starting value 0.

It follows from theorem 2.1.1 that

VA(S0, T ) ≤ E sup
t∈[0,T ]

[
Yt − e−rtVU(St, T − t) + VU(S0, T )

]
= E sup

t∈[0,T ]

[
Yt − e−rtVU(St, T − t)

]
+ VU(S0, T )

Hence

EPP = VA(S0, T )− VU(S0, T ) ≤ E sup
t∈[0,T ]

[
Yt − e−rtVU(St, T − t)

]
.

Moreover the martingale property of e−rtVU(St, T − t) implies that

e−rTE [VU(ST , 0)|Ft] = e−rtVU(St, T − t)

Notice that VU(ST , 0) is the payoff of the European put at expiration date and thus

VU(ST , 0) = (K − ST )+. It follows that

E [ZT |Ft] = e−rtVU(St, T − t) = e−rTE
[
(K − ST )+

]
.
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Therefore

EPP ≤ E sup
t∈[0,T ]

[
Zt − e−rtVU(St, T − t)

]
= E sup

t∈[0,T ]

[Zt − E[YT |Ft]]

= E sup
t∈[0,T ]

E [Zt − ZT |Ft] .

This completes the proof.

Notice that Zt is not a C2 function of St. In order to apply Itô’s formula, we

approximate the function (K−x)+ using smooth functions (see also Chung and Williams

[7], page 142).

Define

φε(x) =


K − x x ≤ K − ε

(K + ε− x)2/4ε K − ε ≤ x ≤ K + ε

0 x ≥ K + ε

(2.4)

Then limε→0 φε(x) = (K − x)+, and

φ′ε(x) =


−1 x ≤ K − ε

−(K + ε− x)/2ε K − ε ≤ x ≤ K + ε

0 x ≥ K + ε

φ′′ε (x) =


0 x ≤ K − ε

1/2ε K − ε ≤ x ≤ K + ε

0 x ≥ K + ε

Furthermore, define Zε
t = e−rtφε(St). Clearly, limε→0 Z

ε
t = Zt. Next we will prove

the main result of this section.
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Theorem 2.2.2. Let p(t, u, x, y) be the transition density function of Geometric Brow-

nian Motion, i.e.,

p(t, u, x, y) =
1

yσ
√

2π(u− t)
e−[log y

x
−(r− 1

2
σ2)(u−t)]2/2σ2(u−t), (2.5)

then

E[Zt − ZT |Ft] =

∫ T

t

e−ru
[
rk

∫ K

0

p(t, u, St, y)dy −
1

2
σ2K2p(t, u, St, K)

]
du. (2.6)

Proof. Apply Itô’s formula to Zε
t − Zε

T . Direct calculation yields

Zε
t − Zε

T =

∫ T

t

re−ru(φε(Su)− Suφ
′
ε(Su))du︸ ︷︷ ︸

(1)

−
∫ T

t

1

2
e−ruφ′′ε (Su)σ

2S2
udu︸ ︷︷ ︸

(2)

−
∫ T

t

e−ruφ′ε(Su)σSudWu︸ ︷︷ ︸
(3)

(2.7)

Since |φ′ε(x)| ≤ 1, it follows from the properties of stochastic integral that the last

term (3) is a martingale and E[(3)|Ft] = 0 for any ε, thus

E[lim
ε→0

(3)|Ft] = lim
ε→0

E[(3)|Ft] = 0 (2.8)

Now consider the first term. Let ψε(x) = φε(x)−xφ′ε(x), then |ψε(x)| ≥ K+Su, and

E
∫ T

t
re−ru(K + Su)du is finite. By the dominated convergence theorem,
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E
[
lim
ε→0

(1)|Ft
]

= E
[∫ T

t

re−ru lim
ε→0

φε(Su)− Suφ
′
ε(Su)du|Ft

]
= E

[∫ T

t

re−ru((K − Su)
+ + SuI[0,K](Su))du|Ft

]
= E

[∫ T

t

re−ru(K − Su + Su)I[0,K](Su)du|Ft
]

= E
[∫ T

t

re−ruKI[0,K](Su)du|Ft
]

=

∫ T

t

re−ruKE
[
I[0,K](Su)|Ft

]
du

=

∫ T

t

re−ruKP [Su ≤ K|Ft] du

=

∫ T

t

re−ruK

∫ K

0

p(t, u, St, y)dydu

(2.9)

The last step follows from the Markov property of St.

Finally consider the second term. Notice that for u > t,

E[φ′′ε (Su)|Ft] = E
[

1

2ε
I[K−ε,K+ε](Su)

∣∣∣∣Ft] = P [K − ε ≤ Su ≤ K + ε | St]

Furthermore 1
2ε

I[K−ε,K+ε](Su) converges to the local time process of Su at K as ε

tends to zero and this limit is finite. By the dominated convergence theorem

E
[
lim
ε→0

(2)|Ft
]

=

∫ T

t

1

2
e−ruσ2E

[
lim
ε→0

S2
u

2ε
I[K−ε,K+ε](Su)

∣∣∣∣Ft]
=

∫ T

t

[
1

2
e−ruσ2K2p(t, u, St, K)

]
du

(2.10)

Combining (2.7) ∼ (2.10) we obtain equality (2.6).

Remark: An upper bound for EEP follows immediately from lemma 2.2.1 and

theorem 2.2.2:

EEP ≤ E sup
t∈[0,T ]

∫ T

t

e−ru
[
rk

∫ K

0

p(t, u, St, y)dy −
1

2
σ2K2p(t, u, St, K)

]
du, (2.11)
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where p(t, u, x, y) is the transition density function defined by (2.5).

2.2.2 Numerical examples

Based on inequality (2.11), we can derive a closed-form upper bound. In this sub-

section we will numerically compare our upper bound with Rogers’ upper bound. For

this purpose we assume that the parameters take the same value as in Rogers [39] (page

277, table 4.1):

K = 100, r = 0.06, T = 0.5, σ = 0.4 (2.12)

For convenience, we define a function F (t, x) by

F (t, x) =

∫ T

t

e−ru [f(u− t, x)− g(u− t, x)] du

where

f(u− t, x) ≡ rk

∫ K

0

p(t, u, x, y)dy and g(u− t, x) ≡ 1

2
σ2K2p(t, u, x,K).

Our goal is to estimate the quantity E supt∈[0,T ] F (t, St). To this end, we choose a

fixed positive number x∗ and consider the following 2 cases:

1. If St < x∗ for some t, then f(u− t, x)− g(u− t, x) ≤ f(u− t, x) since g(u− t, x)

is nonnegative. Notice that f(u− t, x) is also nonnegative and
∫ K

0
p(t, u, x, y)dy =

P[0 ≤ Su ≤ K|St = x] ≤ 1 for any x, and hence

sup
t∈[0,T ]

F (t, St) ≤
∫ T

0

e−ruf(u− t, x)du ≤
∫ T

0

e−rurKdu = K(1− e−rT ) (2.13)

2. If St ≥ x∗ for all t ∈ [0, T ], we notice that f(u − t, x) is decreasing in x, and

g(u − t, x) has a local maximum at x = exp(log(K) − (r − 1
2
σ2)(u − t) ≡ x∗∗.

Moreover, g(u − t, x) is increasing in x on (0, x∗∗) and decreasing on (x∗∗,∞).

Since both f and g are nonnegative, it follows that

f(u− t, St)− g(u− t, St) ≤ max{f(u− t, x∗)− g(u− t, x∗), f(u− t, x∗∗)}
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whenever 0 ≤ u− t ≤ T . Consequently,

sup
t∈[0,T ]

F (t, St) ≤
∫ T

0

e−ru max{f(u− t, x∗)− g(u− t, x∗), f(u− t, x∗∗)}du. (2.14)

Combine (2.13) and (2.14) to obtain

E sup
t∈[0,T ]

F (t, St) ≤ P ·
∫ T

0

e−ru max{f(u− t, x∗)− g(u− t, x∗), f(u− t, x∗∗)}du

+ (1− P ) ·K(1− e−rT )

(2.15)

where P = P[min0≤t≤T St ≥ x∗|S0 = x].

Next we compare our result with the first example in Rogers [39] (page 277, table

4.1). We calculate EPP when the initial stock price x is equal to 80, 90, 100, 110, and

120. For each fixed x, we set x∗ to be 50, 60, 70, 80 and choose the minimum upper

bound as our final result. The results are shown in the following table and graph.

Table 2.1

x EEP (true) EEP (Rogers) EEP (ours)

80 0.9166 1.0060 2.5858

90 0.5102 0.5607 2.4607

100 0.2816 0.3061 2.3498

110 0.1555 0.1960 2.2590

120 0.0852 0.1002 2.1846
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It can be seen that our upper bound works better for in-the-money put options but

does not converge to 0 as S0 increases. We have also tried a different method for at-the-

money (i.e., S0 = K) options. The idea is, for a given sample path of St, if it stays in a

region where F (t, St) ≤ 0 (we call it the � region), then clearly supt∈[0,T ] F (t, St) = 0.

Otherwise we use the upper bound K(1− e−rT ) (see (2.13)). Therefore

E sup
t∈[0,T ]

F (t, St) ≤ P1 ·K(1− e−rT ), (2.16)

where P1 = P [St is not in the � region for some t ∈ [0, T ]]. Now it remains to estimate

the probability P1. For this purpose we plot the graph of the function F (t, x) and the

level curve for F (t, x) = 0, as shown below.
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From the second graph it can be seen that when t = 0, F (t, x) has two zeros, call

them x1 and x2 and suppose x1 < x2. Furthermore, the rectangle R ≡ {0 ≤ t ≤ T, x1 ≤

x ≤ x2} is in the � region. Since log(St) is a Brownian motion with drift parameter
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(r − 1
2
σ2) = −0.02, an upper bound for P1 can be obtained as follows:

P1 ≤ P
[

max
0≤t≤T

log(St/S0) ≥
x2 − S0

σ

]
+ P

[
min

0≤t≤T
log(St/S0) ≤

S0 − x1

σ

]
(2.17)

When S0 = 100, formulas (2.17) and (2.16) yield an upper bound 2.2484 for EEP , which

is smaller than the upper bound 2.3498 from table 4.1.

Remark:

1. This second method works better when S0 is close to K since otherwise the upper

bound (2.17) for P1 will be close to 1;

2. It can be seen from the graph that the level curve F (t, x) = 0 is monotone. How-

ever, this has not been proved, and there is no guarantee that this remains true

when the parameters change.
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CHAPTER 3. Jump-to-default models

3.1 Jump-to-default models

The risk of default of a security is not taken into consideration in the standard Black-

Scholes model. On the contrary, in recent years, default risk is in the center of study

on corporate bonds. In this chapter, we consider a jump-to-default model in which

the default is assumed to be the first jump time of a doubly stochastic Poisson process

(Cox process). Our work is motivated by Elliott, Jeanblanc, and Yor [16], and Linetsky

[33]. Formally, we assume that the pre-bankruptcy stock price under the equivalent

martingale measure is governed by the SDE

dSt = (r + h(St))Stdt+ σStdWt (3.1)

where the function h(·) is called the default intensity. As in Linetsky [33], we assume

that h(·) is a C1 function, which is strictly decreasing and has the following limits:

lim
x→0

h(x) = +∞, lim
x→∞

h(x) = 0

We model the default time τ0 as

τ0 = inf

{
t ≥ 0 :

∫ t

0

h(Su)du ≥ e

}
where e is an exponentially distributed random variable with mean 1. It is assumed that

the random variable e is independent of (Wt)t≥0.
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We denote by S4t the stock price process subject to default. Throughout this chapter

we assume zero recovery in the case of default. Define the bankruptcy indicator process

(Dt) by Dt = I[t≥τ0], then S4t follows a process in the form

dS4t = S4t−(rdt+ σdWt − dMt), (3.2)

where

Mt = Dt −
∫ t∧τ0

0

h(Su)du

is a martingale. For more details, we refer to Elliott, Jeanblanc, and Yor [16], and

Linetsky [33]. Linetsky proved that for any deterministic time T ,

E[I[τ0>T ]|FT ] = e−
R T
0 h(St)dt. (3.3)

Notice that from the stochastic equation (3.2), it readily follows that the discounted

price process e−rtS4t is a martingale. In other words, the additional term h(St) in the

drift of the pre-bankruptcy stock price process St compensates for the bankruptcy jump

so that under the equivalent martingale measure, the total rate of return of S4t remains

the same as the risk free interest rate. See also Linetsky [33].

In the next section we will prove that Rogers’ method for obtaining upper bound

can still be used for American options when the stock is subject to bankruptcy. We

also prove an equality similar to (3.3) but the deterministic time T is replaced by any

stopping time τ with respect to the filtration (Ft) generated by St. The problem tackled

in the last section is an optimal stopping problem solved by Oksendal in [36] where the

stock price follows a geometric Brownian motion. We derive the optimal strategy when

the stock has a positive possibility of default.
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3.2 Upper bound for American option

When the stock is subject to default, the discounted exercise value of American

option becomes

Zt = e−rt(K − S4t )+. (3.4)

In this section we will prove that Rogers’ upper bound (2.2) still applies when the stock

price process is subject to default. In particular we will prove that supτ∈S[0,T ]
EZτ <∞,

sup0≤t≤T |Zt| ∈ Lp for some p > 1, and Zt is right continuous.

Lemma 3.2.1. Let (Ft) be a given filtration and τ be a discrete valued (Ft)-stopping

time with range {t1, t2, · · · }. If Y is a nonnegative random variable with E[Y ] < ∞,

then

E[Y |Fτ ] =
∞∑
k=1

I[τ=tk]E[Y |Ftk ]

where the stopped σ-algebra Fτ is defined by

Fτ ≡ {A : A ∩ [τ ≤ t] ∈ Ft for each t ≥ 0}

Proof. We claim that, for any k,

1. E[Y I[τ=tk]|Fτ ] is Ftk measurable.

2. E[Y I[τ=tk]|Ftk ] is Fτ measurable.

3. E[Y I[τ=tk]|Fτ ] = I[τ=tk]E[Y |Ftk ].

To prove claim 1, let U = E[Y I[τ=tk]|Fτ ], then for any nonnegative number l, the set

[UI[τ=tk] ≤ l] = ([U ≤ l] ∩ [τ = tk]) ∪ ([τ 6= tk])

Since U is Fτ measurable, it follows from the definition of Fτ that the set ([U ≤

l]∩ [τ = tk]) is in Ftk . Hence UI[τ=tk] is Ftk measurable since the set ([τ 6= tk]) is also in

Ftk .
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On the other hand, we notice that

UI[τ=tk] = E[Y I[τ=tk]|Fτ ] · I[τ=tk] = E[Y I[τ=tk]I[τ=tk]|Fτ ] = E[Y I[τ=tk]|Fτ ] = U

Therefore U itself is Ftk measurable. This proves the first claim.

To prove claim 2, let Z = E[Y I[τ=tk]|Ftk ]. Notice that Z = E[Y |Ftk ]I[τ=tk]. Then for

any nonnegative number l, the set [Z ≤ l] ∩ [τ ≤ t] = A1 ∪ A2, where

A1 = [E[Y |Ftk ] ≤ l] ∩ [τ = tk] ∩ [τ ≤ t], and

A2 = [τ 6= tk] ∩ [τ ≤ t].

To show that Z is Fτ measurable, it’s enough to show that both A1 and A2 are in

Ft. To this end we consider two cases. If t < tk, A1 = Φ ∈ Ft and A2 = [τ ≤ t] ∈ Ft. If

t ≥ tk, A1 = [E[Y |Ftk ] ≤ l] ∩ [τ = tk] ∈ Ftk ⊆ Ft, and

A2 =
⋃
tj≤t

[τ = tj] ∈ Ft.

This completes the proof of claim 2.

Now suppose V is a nonnegative Ftk measurable random variable, then by claim 2,

V I[τ=tk] is Fτ measurable. Therefore

E[V · U ] = E
[
V · E[Y I[τ=tk]|Fτ ]

]
= E

[
V I[τ=tk]E[Y |Fτ ]

]
= E

[
E[Y V I[τ=tk]|Fτ ]

]
= E[Y V I[τ=tk]] = E

[
V I[τ=tk]E[Y |Ftk ]

]
This implies that U = I[τ=tk]E[Y |Ftk ] almost surely. This completes the proof of the

last claim. Since this is true for any k, it follows that

E[Y |Fτ ] = E

[∑
k

(Y Iτ=tk)|Fτ

]
=

∑
k

E [Y Iτ=tk |Fτ ] =
∑
k

Iτ=tkE[Y |Ftk ]

The proof of the lemma is complete.



23

Let τ0 be the default time defined in section 3.1. Note that τ0 is not an (Ft)-stopping

time. Take the nonnegative random variable Y to be the indicator function I[τ<τ0] for

any (Ft)-stopping time τ , then we have the following lemma:

Lemma 3.2.2. For any (Ft)-stopping time τ ,

E
[
I[τ<τ0]|Fτ

]
= e−

R τ
0 h(Su)du.

Proof. First we assume that the stopping time τ take values t1, t2, t3, . . .. In this case,

by lemma 3.2.1,

E
[
I[τ<τ0]|Fτ

]
=

∑
k

I[τ=tk]E
[
I[τ<τ0]|Ftk

]
Notice that for each k, I[τ=tk] = I[τ=tk] · I[τ=tk] and that I[τ=tk] is Ftk-measurable,

therefore

I[τ=tk] · E
[
I[τ<τ0]|Ftk

]
= I[τ=tk] · I[τ=tk] · E

[
I[τ<τ0]|Ftk

]
= I[τ=tk] · E

[
I[τ<τ0] · I[τ=tk]|Ftk

]
= I[τ=tk] · E

[
I[tk<τ0]|Ftk

]
= I[τ=tk] · e−

R tk
0 h(Su)du by equality (3.3).

It follows that

E
[
I[τ<τ0]|Fτ

]
=

∑
k

I[τ=tk] · e−
R tk
0 h(Su)du = e−

R τ
0 h(Su)du

Now suppose τ is any Ft-stopping time. Define a sequence of discrete valued stopping

times by

τn =
[2nτ ] + 1

2n
(3.5)

where [a] denotes the largest integer that is less than or equal to a. Then τn is decreasing

and τn → τ as n→∞. Moreover, Fτ =
⋂
nFτn (see Durrett [15], page 348, theorem 6).
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For each n, by lemma 3.2.2, E
[
I[τn<τ0]|Fτn

]
= e−

R τn
0 h(Su)du → e−

R τ
0 h(Su)du almost surly.

By the dominated convergence theorem for conditional expectations (see, for example,

Durrett [15], page 227, (5.7)), E[I[τn<τ0]|Fτn ] → E[I[τ<τ0]|Fτ ] almost surly. So we conclude

that E
[
I[τ<τ0]|Fτ

]
= e−

R τ
0 h(Su)du.

This completes the proof.

Using the above lemma we can write EZt in terms of the pre-bankruptcy stock price

process St instead of S4t . We will show that EZt can be written as an expectation of a

bounded function.

Theorem 3.2.3. Let Zt be the discounted exercise value of American option defined by

(3.4), and τ be any stopping time with respect to the filtration generated by S4t , then

EZτ = E
[
Ke−rτ − (sτ ∧K)e−

R τ
0 (r+h(Su))du

]
(3.6)

where the operator ∧ describes the minimum of two numbers or variables.

Proof. Write EZτ as the sum of two terms:

EZτ = E
[
e−rτ (K − S4τ )+

]
= E

[
e−rτ (K − S4τ )+I[τ<τ0]

]
+ E

[
e−rτ (K − S4τ )+I[τ≥τ0]

]
It follows from lemma 3.2.2 that the first term

E
[
e−rτ (K − S4τ )+I[τ<τ0]

]
= E

[
E

[
e−rτ (K − Sτ )

+I[τ<τ0]

∣∣Fτ]]
= E

[
e−rτ (K − Sτ )

+E
[
I[τ<τ0]

∣∣Fτ]] = E
[
e−rτ (K − Sτ )

+e−
R τ
0 h(Su)du

]
since e−rτ (K − Sτ )

+ is Fτ -measurable. Similarly, the second term

E
[
e−rτ (K − S4τ )+I[τ≥τ0]

]
= E

[
e−rτ (K − S4τ )+

(
1− e−

R τ
0 h(Su)du

)]
= E

[
e−rτK

(
1− e−

R τ
0 h(Su)du

)]
.
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The second equality follows from the assumption that s4τ = 0 when τ ≥ τ0. Put the two

terms together we obtain

EZτ = E
[
Ke−rτ + e−

R τ
0 (r+h(Su))du[(K − Sτ )

+ −K]
]

= E
[
Ke−rτ − (Sτ ∧K)e−

R τ
0 (r+h(Su))du

]
,

as needed.

Notice that
∣∣Ke−rτ − (Sτ ∧K)e−

R τ
0 (r+h(Su))du

∣∣ ≤ 2K, it follows immediately that the

conditions in Rogers’ proof are satisfied, i.e., supτ∈S[0,T ]
EZτ <∞, sup0≤t≤T |Zt| ∈ Lp for

some p > 1, and Zt is right continuous.

3.3 The optimal time to sell the stock

In this section we consider an investor who needs to choose the optimal time to sell a

stock so that the discounted value of the stock is maximized. The stock price is assumed

to follow the jump-to-default model introduced in section 3.1. As in Oksendal [36], We

also assume that the discount rate ρ > r and that there is a financial charge of a dollars

when the investor sell the stock. The investor may deicide to sell the stock at any (Ft)-

stopping time τ where (Ft) represents the filtration generated by S4t . If default occurs

before the investor sell the stock, the payoff to the investor is 0. So this problem can be

described as the following optimal stopping problem:

Maximize Ex

[
e−ρτ (S4τ − a)I[τ<τ0]

]
over all (Ft)-stopping times τ , where τ0 again denotes the default time.
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Notice that S4τ = Sτ when τ < τ0, it follows from theorem 3.2.3 that the value

function for this optimal stopping problem can be written as

V (x) ≡ sup
τ

Ex

[
e−

R τ
0 (ρ+h(Su))du(Sτ − a)

]
(3.7)

where the supremum is taken over all (Ft)-stopping times τ . To obtain the solution to

this optimal stopping problem, we need to compare solutions to certain second order

differential equations. For this, we intend to use the maximum principle for ordinary

differential equations (see,for example, Protter and Wenberger [38]).

In this section, we first state and prove an upper bound of the objective function, then

we construct a strategy such that this upper bound can be achieved. The construction

of an optimal strategy will be provided at the end of the section.

3.3.1 The optimal strategy

We first state and prove the verification lemma, which helps us to sort out an optimal

stopping time.

Lemma 3.3.1. (Verification lemma) Let Q be a nonnegative C1 function which is piece-

wise C2. Also assume that the limits limx→c−Q
′′(x) and limx→c+Q

′′(x) exist and are

finite for each c. Let Q satisfies the following Hamilton-Jacobi-Bellman (HJB) equation

max{σ
2

2
x2Q′′(x) + (r + h(x))xQ′(x)− (ρ+ h(x))Q(x), (x− a)−Q(x)} = 0 (3.8)

for almost all x in [0,∞), then

Q(x) ≥ V (x)

where V (x) is the value function defined by (3.7).

Proof. For any Ft-stopping time τ , using a localization procedure and applying Itô’s

formula to e−
R τ
0 (ρ+h(Su))duQ(Sτ ) and taking expectation yields

Ex

[
e−

R τ
0 (ρ+h(Su))duQ(Sτ )

]
= Q(x) + Ex

[∫ τ

0

e−
R u
0 (ρ+h(Sr))drL(Q(Su)) · du

]



27

where the differential operator L is defined by

L ≡ σ2

2
x2 d

2

dx2
+ (r + h(x))x

d

dx
− (ρ+ h(x)).

It follows from the HJB equation that both L(Q(x)) and (x − a) − Q(x) are non-

positive. Therefore

Q(x) ≥ Ex

[
e−

R τ
0 (ρ+h(Su))duQ(Sτ )

]
≥ Ex

[
e−

R τ
0 (ρ+h(Su))du(Sτ − a)

]
The conclusion in the lemma follows since the above inequality holds for every (Ft)

stopping time.

Now we assume that there exists a point x∗ > a and a increasing C2 function Q̃∗(·)

which is defined on R such that it satisfies the differential equation L(Q̃∗(x)) = 0 every-

where on R. We also assume that Q̃∗(x
∗) = x∗ − a, Q̃′

∗(x
∗) = 1 and Q̃∗(x) > x − a for

all x < x∗. The existence of the point x∗ and such a function Q̃∗(·) will be shown in the

next subsection.

Consider a function Q∗ defined by

Q∗(x) =


Q̃∗(x) if x ≤ x∗

x− a if x ≥ x∗

Then Q∗(x) satisfies the following conditions:

(i) L(Q∗(x)) = 0 and Q∗(x) > x− a if x < x∗;

(ii) Q∗(x) = x− a if x ≥ x∗; and

(iii) Q′
∗(x) is continuous everywhere, and Q′′

∗(x) is continuous everywhere except at x∗.

Furthermore, Q′′
∗(x

∗−) and Q′′
∗(x

∗+) are finite.
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Since Q′′
∗(x

∗−) = Q̃′′
∗(x

∗) ≥ 0 from theorem 3.3.6, and the fact that L(Q̃∗(x
∗)) = 0,

it follows that (ρ − r)x∗ − a(ρ + h(x∗)) ≥ 0. Therefore (ρ − r)x − a(ρ + h(x)) ≥

(ρ − r)x∗ − a(ρ + h(x∗)) ≥ 0 for all x ≥ x∗, since ρ > r and h(·) is strictly decreasing.

Then it is straightforward to check that Q∗(x) satisfies the HJB equation and it is C1

on R and a piecewise C2 function. Hence, by the verification lemma, Q∗(x) is an upper

bound for the value function V (x). We will now construct a strategy such that this

upper bound is achieved.

Define the (Ft)-stopping time

τ ∗ ≡ inf{t ≥ 0 : St ≥ x∗},

and

V∗(x) ≡ Ex

[
e−

R τ∗
0 (ρ+h(Su))du(Sτ∗ − a)

]
.

We intend to prove that

V∗(x) = Q∗(x) (3.9)

and τx∗ is an optimal stopping time.

When x ≥ x∗, obviously Q∗(x) = V∗(x) = x − a. If x < x∗, we need to show that

Q∗(x) = V∗(x). To this end, we apply Itô’s formula to Q∗(Sτ∗)e
−
R τ∗
0 (ρ+h(Sr))dr and take

expectation to get

Ex

[
Q∗(Sτ∗)e

−
R τ∗
0 (ρ+h(Sr))dr

]
= Q∗(x) + Ex

[∫ τ∗

0

L(Q(Su)) · e−
R u
0 (ρ+h(Sr))drdu

]
= Q∗(x)

The second equality holds since L(Q∗(x)) = 0 for any x. Moreover, by the definition

of τ ∗, we notice that Q∗(Sτ∗) = Q∗(x
∗) = Sτ∗ − a. Therefore

Q∗(x) = Ex

[
(Sτ∗ − a)e−

R τ∗
0 (ρ+h(Sr))dr

]
= V∗(x)
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We have proved that the strategy that the investor sell the stock at the first time

when the stock price reaches x∗ achieves the upper bound and hence this strategy is

optimal. What’s left is to show the existence of the point x∗ and the function Q̃∗(x),

which will be done in the next subsection.

3.3.2 Existence of the function Q̃∗(x)

In this subsection we will prove the existence of the point x∗ and the function Q̃∗(x).

We first consider the following transformation: let y = ln(x), and Yt = ln(St), then the

differential equation L(Q) = 0 becomes T (Q) = 0 with the operator T defined as

T =
σ2

2

d2

dy2
+ (r − σ2

2
+ ψ(y))

d

dy
− (ρ+ ψ(y))

where ψ(y) = h(ey) is the transformed default density function that satisfies limy→−∞ ψ(y) =

∞ and limy→∞ ψ(y) = 0. Furthermore, the process Yt is governed by the stochastic dif-

ferential equation

dYt = (r − σ2

2
+ ψ(Yt))dt+ σdWt (3.10)

To prove the existence of x∗ and Q̃∗(x), it will be sufficient to find a number y∗ and a

function Q(y) such that the following problem (3.11) has a non-negative solution, then

choose the point x∗ = ey
∗

and the function Q̃∗(x) = Q(ln(x)).
T (Q(y)) = 0

Q(y∗) = ey
∗ − a and Q′(y∗) = ey

∗

Q(y) > ey − a for all y < y∗

(3.11)

The proof will be divided into 3 steps:

Step 1: prove that for any large number b, the following boundary value problem has
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a solution: 
T (Q(y)) = 0

Q(b) = eb − a

limy→−∞Q(y) = lb for some lb ≥ 0

(3.12)

Step 2: show that for large b, the solution Q to (3.12) satisfies Q′(b) > eb hence Q(·)

will cross the curve ey − a at least twice.

Step 3: prove the existence of a solution to problem (3.11).

We start the proof by introducing a function Qb(y) defined on the interval (−∞, b]:

Qb(y) ≡ Ey

[
e−

R τb
0 (ρ+ψ(Ys))ds

]
(eb − a), (3.13)

where b is a positive number such that eb > a and τb ≡ inf{t ≥ 0 : Yt = b}. Our aim

is to show that Qb(y) is a bounded solution to problem (3.12) on the interval (−∞, b].

The major difficulty is how to analyze the behavior of Qb(y) as y goes to −∞. To avoid

this difficulty we first consider functions defined on finite intervals.

Lemma 3.3.2. Let b be a positive number such that eb > a, Let Yt be the process

satisfying (3.10). For each positive integer n, define the stopping time τn and the function

Qn by

τn ≡ inf{t ≥ 0 : Yt = b or Yt = −n}, and

Qn(y) ≡ Ey

[
e−

R τn
0 (ρ+ψ(Ys))dsI[Yτn=b]

]
(eb − a)

then

(i) Qn(y) satisfies T (Qn(y)) = 0, Qn(−n) = 0, and Qn(b) = eb − a;

(ii) Qn(y) has no local extrema in (−n, b);

(iii) Q′
n(y) > 0 for y ∈ (−n, b); and
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(iv) For any fixed y < b, the sequence {Qn(y)}n>−y is strictly increasing;

(v) limn→∞Qn(y) = Qb(y).

Proof. The proof of (i) is essentially the same as the proof of (3.9).

To prove (ii), we notice that Qn(y) is nonnegative by its definition. Suppose Qn(d) =

0 for some d in (−n, b), then Q′
n(d) = 0 since Qn ≥ 0 on [−n, b]. Now by the uniqueness

of the solution to the initial value problem

T Qn = 0, Qn(d) = Q′
n(d) = 0,

Qn(y) = 0 for all y in [−n, b]. This contradicts with Qn(b) = eb − a > 0. Therefore

Qn(y) is strictly positive on (−n, b]. Furthermore, Qn(y) satisfies the differential equation

T (Qn) = 0, so we have

1

2
σ2Q′′

n(y) = (ρ+ ψ(y))Qn(y)− (r − σ2

2
+ ψ(y))Q′

n(y) (3.14)

Suppose c ∈ (−n, b) is a local maximum of Qn, then Q′
n(c) = 0 so the right hand side

of (3.14) is strictly positive hence Q′′
n(c) > 0, contradicting the assumption that y = c

is a local maximum. Therefore Qn has no local maximum. Now suppose c is a local

minimum, since Qn(c) > 0 and Qn(−n) = 0, there must be a local maximum between

−n and c, which is impossible. This proves (ii).

It follows from (ii) that Qn is monotone. Moreover, equation (3.14) implies that

Q′′
n(y) > 0 whenever Q′

n(y) = 0 hence Qn has no saddle points and Qn must be strictly

monotonic. Combined with the fact that Qn(−n) < Qn(b), we conclude that Qn is

strictly increasing.

To prove (iv), it’s enough to show that for any n, Qn+1(y) > Qn(y) on the interval

(−n, b). By (iii), Qn+1(y) is strictly increasing hence Qn+1(−n) > Qn+1(−n − 1) = 0.
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If there exists a point c ∈ (−n, b) such that Qn+1(c) ≤ Qn(c), there must be a point

between −n and c at which Qn+1(c) and Qn(c) are equal. But Qn+1(b) = Qn(b) = eb−a,

by the maximum principle, Qn+1 and Qn must be the same function, contradicting

Qn+1(−n) > 0 = Qn(−n). This completes the proof of (iv).

To prove the convergence of Qn(y) to Qb(y), we first need to show that I[Yτn=b] → 1

as n→∞. For this purpose we consider the scale function S(y) of the process Yt.

S(y) ≡
∫ y

c

exp

[
−

∫ z

c

2(r − σ2/2 + ψ(u))

σ2
du

]
dz

where c is a fixed number. Then the probability that Yt reaches b before −n, or equiva-

lently, Yτn = b, can be represented as (see Bhattacharya and Waymire [2], page 419)

Py[Yτn = b] =
S(y)− S(−n)

S(b)− S(−n)
=

∫ y

−n exp
[
−

∫ z

c
2(r−σ2/2+ψ(u))

σ2 du
]
dz∫ b

−n exp
[
−

∫ z

c
2(r−σ2/2+ψ(u))

σ2 du
]
dz

Choose a number d < c,∫ d

−n
exp

[
−

∫ z

c

2(r − σ2/2 + ψ(u))

σ2
du

]
dz =

∫ d

−n
exp

[∫ c

z

2(r − σ2/2 + ψ(u))

σ2
du

]
dz →∞

since ψ(u) →∞ as u→ −∞. Therefore

Py[Yτn = b] =

∫ d

−n exp
[
−

∫ z

c
2(r−σ2/2+ψ(u))

σ2 du
]
dz +

∫ y

d
exp

[
−

∫ z

c
2(r−σ2/2+ψ(u))

σ2 du
]
dz∫ d

−n exp
[
−

∫ z

c
2(r−σ2/2+ψ(u))

σ2 du
]
dz +

∫ b

d
exp

[
−

∫ z

c
2(r−σ2/2+ψ(u))

σ2 du
]
dz

→ 1 as n→∞

Consequently I[Yτn=b] → 1 almost surely and Qn(y) → Qb(y) for any y ≤ b.

The proof of lemma is complete.

Since the function Qb is the limit of Qn, it is not surprising that they share many

properties, which will be described and proved in the next proposition.
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Proposition 3.3.3. The function Qb defined by (3.13) is a bounded and nonnegative

solution to T (Qb) = 0 and satisfies the boundary condition Qb(b) = eb−a. Furthermore,

(i) Qb has no local extrema in (−∞, b);

(ii) Q′
b(y) > 0;

(iii) Qb(y) is bounded on (−∞, b];

(iv) limy→−∞Qb(y) = lb where lb ≥ 0 is a finite number.

Proof. In order to show that T (Qb) = 0, we notice that Qn satisfies this differential

equation. Integrate the equation T (Qn) = 0 to yield:

σ2

2
Q′
n(b) =

σ2

2
Q′
n(y)−

∫ b

y

(r − σ2

2
+ ψ(u))Q′

n(u)du+

∫ b

y

(ρ+ ψ(r))dr

Applying integration by parts to the second term on the right hand side gives

σ2

2
Q′
n(b) =

σ2

2
Q′
n(x) − (r − σ2

2
+ ψ(b))Qn(b) + (r − σ2

2
+ ψ(y))Qn(y)

+

∫ b

y

Qn(r)ψ
′(r)dr +

∫ b

y

(ρ+ ψ(r))Qn(r)dr

Integrate once again to obtain:

σ2

2
Q′
n(b)(b− y) =

σ2

2
[Qn(b)−Qn(y)]− (r − σ2

2
+ ψ(b))Qn(b)(b− y)

+

∫ b

y

(r − σ2

2
+ ψ(u))Qn(u)du+

∫ b

y

∫ b

u

Qn(r)ψ
′(r)drdu

+

∫ b

y

∫ b

u

(ρ+ ψ(r))Qn(r)drdu

(3.15)

By lemma 3.3.2, Qn(y) → Qb(y) as n → ∞. Notice that Qn(y) is bounded by

eb−a on (−∞, b). By the bounded convergence theorem, the right hand side of (3.15) is

convergent hence the left hand side must also converge. In other words, Q′
n(b) converges
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to a finite number λ. The limit of equation (3.15) is

σ2

2
λ(b− y) =

σ2

2
[Qb(b)−Qb(y)]− (r − σ2

2
+ ψ(b))Qb(b)(b− y)

+

∫ b

y

(r − σ2

2
+ ψ(u))Qb(u)du+

∫ b

y

∫ b

u

Qb(r)ψ
′(r)drdu

+

∫ b

y

∫ b

u

(ρ+ ψ(r))Qb(r)drdu

(3.16)

Notice that, using (3.16), Qb(y) can be written as a linear combination of several

differentiable functions, and hence it is also differentiable. Differentiate (3.16) at b we

get

−σ
2

2
λ =− σ2

2
Q′
b(b) + (r − σ2

2
+ ψ(b))Qb(b)b− (r − σ2

2
+ ψ(b))

=− σ2

2
Q′
b(b)

So Q′
b(b) = λ. Using this result in (3.16), we find that Qb(y) and Qn(y) satisfies the

same integral equation hence they must satisfy the same differential equation T (Q) = 0.

It is obvious that Qb(y) satisfies the boundary condition Qb(b) = eb − a.

The proof of claim (i) and (ii) in the proposition is exactly the same as that of (ii)

and (iii) in lemma 3.3.2. For claim (iii), Qb(y) is bounded on (−∞, b] since each Qn is

bounded by eb − a. Claim (iv) follows since Qb(y) is decreasing and bounded below by

0 as y → −∞.

This completes the proof of the proposition.

Remark: Since τb < ∞ with probability one, strong Markov property yields the

following relationship for the family {Qb : b > ln a}: if b1 > b2, then Qb1(y) =

Qb2(y) · Qb1(b2). Since Qb1 and Qb2 satisfy the same ODE, it follows that they are con-

stant multiplies of each other.
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The function Qb(y) can be easily extended on the whole real line by setting Qb(y) to

be the solution of the following initial value problem:

T (Q) = 0, Q(b) = eb − a, and Q′(b+) = Q′(b−).

Obviously this extended function inherits properties (i), (ii), and (iv) in proposition 3.3.3

from the original function, i.e., it has no local extrema, it is strictly increasing, and it

converges to some nonnegative number lb as y goes to −∞. In the remaining part of

this section, we use Qb(y) to represent the extended function.

Notice that for any real number c > ln(a), the function Qc(y) defined by

Qc(y) ≡
ec − a

Qb(c)
Qb(y)

solves the boundary value problem (3.12) with b replaced by c and lb replaced by lc ≡
(ec−a)
Qb(c)

lb. Consider the family of functions {Qb}b>a, we intend to show that there exists a

b∗ such that Qb∗ not only solves (3.12), but also satisfies the additional conditions that

Q′
b∗ = eb

∗
, and Qb∗(y) ≥ ey − a on (−∞, b∗]. Loosely speaking, we want to find a Qb(y)

which meets eb−a tangentially at the point b. Notice that Qb(y) is a continuous function

of b, so it’s enough to find a Qb1(y) which crosses ey − a at least twice and a Qb2(y)

which never intersects with eb−a. It turns out that Qb2(y) can be obtained by modifying

Qb1(y), and for such a Qb1(y) to exist, a sufficient condition is that Qb1(b1) = eb1 − a

and Q′
b1

(b1) > eb1 . In fact, we will show that Q′
b(b)−Qb(b) tends to infinity as b goes to

infinity. First we find a lower bound for Q′
b(y)−Qb(y):

Lemma 3.3.4. For any y and any b > ln(a),

Q′
b(y)−Qb(y) ≥

2

σ2
(ρ− r)

∫ y

−∞
Qb(u)e

− 2
σ2

R y
u (r+ψ(s))dsdu > 0 (3.17)

Proof. Introduce Hb(y) ≡ Q′
b(y)−Qb(y), then Hb satisfies

σ2

2
H ′
b(y) + (r + ψ(y))Hb(y) = (ρ− r)Qb(y)
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Multiply the equation by exp(
∫ y

c
2
σ2 (r + ψ(u))du) and integrate the equation to obtain

Hb(y) = Hb(c)e
− 2

σ2

R y
c (r+ψ(u))du +

2(ρ− r)

σ2

∫ y

c

Qb(u)e
− 2

σ2

R y
u (r+ψ(s))dsdu

where c is any real number. SinceQ′
b(y) > 0, Qb → lb, and− 2

σ2

∫ y

c
(r+ψ(u))du→ −∞

as c→ −∞, we have Hb(c) ≥ −Qb(c) and

lim
c→−∞

Hb(c)e
− 2

σ2

R y
c (r+ψ(u))du ≥ − lim

c→−∞
Qb(c)e

− 2
σ2

R y
c (r+ψ(u))du = 0

Therefore

Hb(y) ≥
2(ρ− r)

σ2

∫ y

−∞
Qb(u)e

− 2
σ2

R y
u (r+ψ(s))dsdu > 0 (3.18)

As discussed earlier, each function in the family {Qb}b>a is a constant multiple of

any other function in the family. Now we choose an arbitrary (but fixed) b0 and for

convenience, denote the corresponding function Qb0 by Q0, then the inequality (3.18) at

y = b can be written as

Hb(b) ≥
2(ρ− r)

σ2

(eb − a)

Q0(b)

∫ b

−∞
Q0(u)e

− 2
σ2

R y
u (r+ψ(r))drdu > 0 (3.19)

Formula (3.19) gives a lower bound for Q′
b(b) − Q(b), we intend to show that this

lower bound tends to infinity as b goes to infinity. For this purpose, we notice that

ψ(b) → 0 as b → ∞. Hence for large y, the solution to T Q = 0 behaves similar to the

solution to the following constant coefficient ODE

Q′′(y) +
2

σ2
(r − σ2

2
)Q′(y)− 2

σ2
ρQ(y) = 0. (3.20)

A fundamental set of ODE (3.20) is {eλ(r)y, e−γ(r)y} where

λ(r) =
2ρ√

(r − σ2

2
)2 + 2ρσ2 + (r − σ2

2
)
, and



37

γ(r) =
2ρ√

(r − σ2

2
)2 + 2ρσ2 − (r − σ2

2
)
.

We use the notation λ(r), γ(r) to denote that they depend on the parameter r.

We will now prove the following lemma:

Lemma 3.3.5.

lim
b→∞

(eb − a)

Q0(b)

∫ b

−∞
Q0(u)e

− 2
σ2

R b
u (r+ψ(z))dzdu = ∞

Proof. Since the function Q0 appears on both the numerator and the denominator, we

need to find upper and lower estimates for the function Q0. Choose positive numbers

θ > r and ε such that 0 < λ(r)−λ(θ) < 0.5 and 0 < ε < θ−r. Since ψ(y) is a decreasing

function that goes to 0 as y → ∞, we can choose a number yε so that ψ(y) < ε for all

y > yε. Consider two functions Q1(y) and Q2(y) such that Q1(y) satisfies equation (3.20)

and Q2(y) satisfies (3.20) with r replaced by θ. Moreover, they satisfy the initial condi-

tions Q1(yε) = Q2(yε) = Q0(yε), Q
′
1(yε) = m1 and Q′

2(yε) = m2 with m1 > Q′
0(yε) > m2.

We want to show that for any y > yε, we have Q1(y) > Q0(y) > Q2(y).

By the assumptions Q1(yε) = Q0(yε) and Q′
1(yε) > Q′

0(yε) it follows that Q1(y) >

Q0(y) on some interval (yε, yε + δ). Now assume that Q1(y) ≤ Q0(y) for some y > yε,

then d ≡ inf{y > yε : Q1(y) ≤ Q0(y)} exists and is finite. By continuity of Q1 and Q0

we have Q1(d) = Q0(d). Also, d ≥ yε + δ. So Q1 and Q0 coincide at y = yε and y = d,

and Q1 > Q0 on the interval (c, d).

Define the operator A by

A ≡ σ2

2

d2

dx2
+ (r − σ2

2
)
d

dx
− ρ,

then A(Q1) = 0. Recall that ψ(y) > 0 and Q′
0(y) > Q0(y) from lemma 3.3.4. Therefore

A(Q0) = T (Q0)− ψ(y)Q′
0(y) + ψ(y)Q0(y) = ψ(y)[Q0(y)−Q′

0(y)] < 0
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Consequently A(Q0 − Q1) < 0, Q0(yε), and Q0(d) = Q1(d). Hence we can apply the

maximum principle of ordinary differential equations to conclude that Q0(y) > Q1(y)

on (yε, d). This is a contradiction since Q1(y) > Q0(y) on the interval (yε, yε + δ). This

proves that Q1(y) is an upper bound for Q0(y) on (yε,∞). By a similar argument it can

be proved that Q2(y) is a lower bound for Q0(y) on the same interval.

In fact, Q1(y) can be explicitly expressed as

Q1(y) =
(γ(r)Q0(yε) +m1)

λ(r) + γ(r)
eλ(r)·(y−yε) +

(λ(r)−m1)

λ(r) + γ(r)
e−γ(r)·(y−yε)

So there exists a constants K such that Q0(y) < Q1(y) < Keλ(r)·y if y > yε. Similarly it

can be shown that there is a constant C such that Q0(y) > Q2(y) > Ce−λ(θ)·y for y > yε.

Since λ(r) is continuous in r, and 0 < λ(r) − λ(θ) < 0.5 as described at the beginning

of the proof, we have 1 + λ(θ)− λ(r) > 0. We use this estimate below.

Now for b > yε,

(eb − a)

Q0(b)

∫ b

−∞
Q0(u)e

− 2
σ2

R b
u (r+ψ(z))dzdu

≥(eb − a)

Keλ(r)·b

∫ b

yε

Ce−λ(θ)·ue−
2

σ2 (r+ε)(b−u)du

≥(eb − a)

Keλ(r)·b · C ·
[
e−λ(θ)·b − e−

2
σ2 (r+ε)(b−yε)+λ(θ)·yε

]
=
C

K
· e(1+λ(θ)−λ(r))b + o(b) as b→∞

→∞ as b→∞ since 1 + λ(θ)− λ(r) > 0.

The proof is complete.

Lemma 3.3.5 and inequality (3.19) together implies that Q′
b(b) − Qb(b) → ∞ as

b→∞. Therefore, we can choose a b such that Q′
b(b) > Qb(b) + a = eb, then the graph
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of Qb(y) crosses the curve ey − a with Q′
b(y) > (ey − a)′ at y = b. This implies that

Qb(y) < eb − a on some interval (b − δ, b). But Qb(y) ≥ 0 > ey − a when y < ln a, so

there must be another point c < b which satisfies the following condition:

Qb(c) = ec − a, and there exists a δ > 0 such that Qb(y) > ey − a

on (c− δ, c) and Qb(y) < ey − a on (c, c+ δ).

(3.21)

Notice that Q′
b(c) < ec implies that c satisfies condition (3.21), which in turn implies

that Q′
b(c) ≤ ec.

Let d ≡ inf{y : Qb(y) = ey − a}. The set {y : Qb(y) = ey − a} is closed and

bounded below by ln a, so d is finite and d is also in the set, i.e., Qb(d) = ed − a. Since

d is the infimum, Qb(y) and ey − a does not intersect at any y < d. This implies that

Qb(y) > ey − a on (−∞, d). Apparently Q′
b(d) ≤ ed because otherwise, if Q′

b(d) > ed, by

the argument in the previous paragraph, there must a c < d at which Qb(y) and ey − a

intersect, contradiction. If Q′
b(d) = ed, the existence of solution to problem (3.11) follows

immediately by taking Q(y) = Qb(y) and y∗ = d, so we can assume that Q′
b(d) < ed.

This implies that d satisfies condition (3.21).

Next we consider the family {tQb(y)}t≥1 parameterized by t ≥ 1. Clearly T (tQb) = 0

for every t. Define dt ≡ inf{y < b : tQb(y) = ey − a} (dt is well defined at least for

t = 1). Notice that dt is a strictly increasing function of t and by definition dt < b. Let

t∗ ≡ sup{t ≥ 1 : tQb(y) and ey − a intersect at least once in (d, b)}.

The set {t ≥ 1 : tQb(y) and ey − a intersect at least once in (d, b)} is closed. Therefore

t∗Qb(y) intersects ey − a at least once in (d, b), and consequently, d∗ ≡ dt∗ is well de-

fined. Furthermore t∗Qb(y) > ey − a on (−∞, d∗) and t∗Q′
b(d

∗) ≤ ed
∗
. We claim that

t∗Q′
b(d

∗) = ed
∗
. Suppose t∗Q′

b(d
∗) < ed

∗
, then d∗ satisfies condition (3.21) with Qb re-

placed by t∗Qb. This implies there exists δ > 0 such that t∗Qb(y) < ey−a on (d∗, d∗+δ).
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We can choose δ such that d∗+ δ < b. Now choose ε > 0 such that (t∗+ ε)Qb(y) < ey−a

at y = d∗ + δ. Since (t∗ + ε)Qb(y) > t∗Qb(y) = ey − a at y = d∗, there must be a point

d∗∗ in (d∗, d∗ + δ) where (t∗ + ε)Qb(y) and ey− a intersect, contradicting t∗ is the largest

number such that tQb(y) and ey − a intersect in (d, b).

We have proved that the point d∗ and function t∗Qb(x) solves problem (3.11). For-

mally, we have proved the following existence theorem:

Theorem 3.3.6. There exists a point y∗ > ln(a) and a C2 functionQ(y) such that T Q =

0 on (−∞, y∗), Q(y∗) = ey
∗ − a, Q′(y∗) = ey

∗
, and Q′′(y∗) − Q′(y∗) > 0. Furthermore,

Q(y) > y − a for y < y∗, i.e., y∗ and Q(y) solves problem (3.11).

Proof. Choose y∗ equal to b∗, and set Q(y) = t∗Qb(y). It can be seen from the above

discussion that y∗ and Q(y) satisfies all conditions in the theorem, and hence solves

problem (3.11). The condition Q′′(y∗)−Q′(y∗) > 0 follows from lemma 3.3.4.

As mentioned in the beginning of this subsection, this is equivalent to the existence

of x∗ and Q̃∗(x) if we set x∗ = ey
∗

and Q̃∗(x) = Q(lnx). Note that the condition

Q′′(y∗)−Q′(y∗) > 0 implies that Q̃′′
∗(x

∗) > 0.

3.3.3 Numerical examples

When a stock is subject to default, on one hand, the investor tends to sell the stock

earlier due to the default risk; on the other hand, the pre-bankruptcy stock price process

has a higher drift than the risk free interest rate, so the investor also has an incentive

to hold the stock longer. In other words, as can be seen from (3.7), when default risk is

considered, the default intensity function is added both to the drift r of stock price and to

the discount factor ρ. An interesting question is, how does the default intensity function

affect the optimal strategy and the value function? In this subsection, we consider a
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family {cx−p} of default intensity functions parameterized by c and p and investigate

the influence of these two parameters on the boundary x∗ and the value function V (x).

We intend to answer the following questions:

1. What’s the relationship between the boundary x∗, the value function V (x) and

the default risk?

2. When the default risk is taken into consideration, how will other parameters affect

the optimal strategy? In particular, we will study the influence of the financial

charge a on the boundary x∗. The reason we choose the parameter a is that it

has a simple relationship with x∗ in the no-default model. As shown in Oksendal

([36], page 209, formula (10.2.13)), x∗ is a linear function of a when default risk is

not considered. We want to test if this linear relationship still holds when there is

default risk.

Unless otherwise specified, the parameters are set as follows:

ρ = 0.07, r = 0.06, σ = 0.4, c = 1, p = 1, a = 1 (3.22)

In the remaining part of this section, we solve the boundary value problem (3.11)

numerically and analyze the results. We will test the effect of parameters p, c, and a on

the boundary x∗ the the value function V (x).

1. Effect of the parameter p

We first test the effect of p when the financial charge a = 1 and a = 0.1. All other

parameters are set according to (3.22). The boundary x∗ are listed in the following table:
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Default intensity x∗(a = 1) x∗(a = 0.1)

h(x) = 0 15.55 1.555

h(x) = x−0.5 34.42 5.914

h(x) = x−1 22.08 4.310

h(x) = x−1.5 18.31 3.582

It can be seen that the x∗ obtained from jump-to-default models is always larger

than that from the no-default model. Furthermore, x∗ is decreasing in p. For a = 1

case, the x∗ obtained from the model with h(x) = x−1.5 is close to that from the no-

default model. This is not surprising since when the stock price is greater than 1, when

p becomes larger, the default probability (1− e−
R t
0 h(Su)du) in the jump to default model

goes to zero.

Accordingly, the value function V (x) is also decreasing in p, and the value function

obtained from any jump-to-default model is always above that obtained from the no-

default model, as can be seen from the following figures. We plot the graph of V (x) −

(x− a), rather than V (x), against the initial stock price x.
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2. Effect of the parameter c

Next we fix p = 1 and test the effect of the parameter c. Again we set a = 1 and

a = 0.1 in the two tests. We list the results in the following table and draw the graph of
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V (x)− (x− a) against x, as in the previous tests. It can be seen that when the param-

eter c is larger (corresponding to higher default risk), the boundary x∗ is larger and the

value function V (x) is higher. Combining this result with the result for the parameter

p, we conclude that the increase in the drift of stock price, in some sense, ”dominates”

the default risk. More precisely, when the default risk is taken into consideration, the

investor will hold the stock longer and the value of the stock is higher. Moreover, the

higher the default risk is, the larger the boundary x∗ and the value function V (x) are.

This answers the first question raised at the beginning of this subsection.

x∗(a = 1) x∗(a = 0.1)

c = 0 15.55 1.555

c = 0.3 18.22 2.901

c = 0.6 20.08 3.604

c = 1.0 22.08 4.310
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3. Effect of the financial charge a on x∗

In the no-default case, x∗ is linear function of the financial charge a, now we set the

default intensity h(x) = 1/x and study how a affects x∗ in the jump-to-default model.

All other parameters are set according to (3.22). The results are shown in the table

below. We also plot the graph of x∗ against a. The result shows that under the jump-

to-default model, the boundary x∗ still increase approximately linearly as a function of

the financial charge a. It is not unreasonable to assume that other parameters, such as

ρ and r, influence the boundary x∗ in a similar way in the jump-to-default model as in

the no-default model.
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a jump-to-default no-default

0.2 6.79 3.11

0.4 11.02 6.22

0.6 14.87 9.33

0.8 18.53 12.44

1.0 22.08 15.55
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CHAPTER 4. Stochastic volatility models

4.1 Introduction to stochastic volatility models

In the Black-Scholes option pricing model, the volatility of stock price is assumed to

be a constant. This constant volatility model fails to explain two phenomena in the real

market:

1. The implied volatility is a function of strike price. This is called the ”volatility

smile”;

2. The stock price distribution has a fat tail compared to log-normal distribution.

To address these two problems, researchers have modified the standard Black-Scholes

model in several different ways, among them are jump diffusion models, level dependent

volatility models, local volatility approach, and stochastic volatility models. A review

of these models can be found in Javaheri [29].

In stochastic models, popular choice of processes for the volatility includes Ornstein-

Uhlenbeck process and similar processes such as Cox-Ingersoll-Ross process, see, for ex-

ample, the Stein and Stein model in [40] and the Heston model in [22]. Since stochastic

volatility models involve two stochastic processes, they are in general more complicated

than other models. One of the difficulties is that, since the volatility of a stock can

not be the price of any securities traded in the market, stochastic volatility models are

incomplete. This implies that the Equivalent Martingale Measure (EMM) is not unique,
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and therefore one may derive many different values for the price of the same option. One

major difficulty in option pricing under stochastic volatility models is how to choose the

EMM, or equivalently, how to determine the market price of volatility risk. Later in this

section and also in the next section, we will introduce the EMM used by Heston in [22],

and also an optimization method to choose EMM proposed by Hobson and Henderson

in [24] and [20]. Hobson and Henderson’s EMM is known as the q-optimal measure.

In [22], Heston modeled the volatility σt as an Ornstein-Uhlenbeck process:
dSt = µStdt+ σtStdWt

dσt = −βσtdt+ δdBt

(4.1)

where Wt and Bt are standard Brownian motions with correlation ρ. The variance

vt = σ2
t follows a Cox-Ingersoll-Ross (CIR) process and the model can be written as:

dSt = µStdt+
√
vtStdWt

dvt = κ(θ − vt)dt+ η
√
vtdBt

(4.2)

By the risk-neutrality argument, the drift of the stock price under EMM is equal

to the risk free rate of return r and the drift of the variance process is κ(θ − vt) −

λ(St, vt, t)η
√
vt where λ(St, vt, t) is called the market price of volatility risk. Heston

assumes that the market price of volatility risk is proportional to vt, i.e., λ(St, vt, t) =

λtvt. Under this assumption, Heston was able to obtain a closed-form pricing formula

for the value of European call option expired at time T in the following form:

C(St, vt, t) = StP1 −Ke−r(T−t)P2 (4.3)

where P1 and P2 satisfy certain differential equation and terminal conditions. Using a

Fourier transform technique, Heston derived an explicit expression for P1 and P2. He-

ston’s result is remarkable since it is the first such closed form pricing formula for a
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stochastic volatility model. In the next section we will discuss the drawbacks of Hes-

ton’s model and introduce the EMM proposed by Hobson and Henderson.

4.2 The q-optimal measure

In Heston’s model, the EMM is determined so that a closed form pricing formula

can be obtained. Although the assumption that the market price of volatility risk is

proportional to the variance is not completely unreasonable, there is not much empir-

ical evidence or theoretical foundation that supports this assumption. In this section

we will introduce a family of EMM’s — the q-optimal measure proposed by Hobson in

[24]. Compared to the measure in Heston’s model, the q-optimal measure is theoret-

ically promising since it is, in some sense, the EMM closest to the physical measure.

The q-optimal measure also includes as special cases some of the most popular EMM’s,

such as the variance optimal measure and the minimal entropy measure. Furthermore,

the collection of q-optimal measures is actually a family of measures and as Henderson

showed in [20], the European option price under q-optimal measure is monotonic in q

thus it is convenient to calibrate the model and choose the correct q based on real market

data. In this section, we will first introduce the definition and properties of the q-optimal

measure; then we will prove the monotonicity property of American option price under

q-optimal measure.
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4.2.1 Definition and properties of q-optimal measure

Consider the more general model for stock price St and volatility σt under the physical

measure: 
dSt

St
= σt(α(t, σt)dt+ dWt)

dσt = a(t, σt)dt+ b(t, σt)dBt

(4.4)

where Wt and Bt are two standard Brownian motions with constant correlation coeffi-

cient ρ. Write ρ =
√

1− ρ2 then Bt can be written as Bt = ρWt + ρZt, where Z is a

Brownian motion independent of W . Notice that a and b are assumed to be independent

of St so that the volatility process is an autonomous diffusion.

Assume that the drift of stock price under EMM is 0. According to the risk neutral

pricing theory (see Henderson et. al. [21] or Frey [17]), the Radon-Nikodym derivative

of any EMM Q with respect to the physical measure P is

dQ
dP

∣∣∣∣
FT

= MT

where MT is the terminal value of a martingale Mt given by

Mt = exp

(∫ t

0

[
−α(u, σu)dWu −

1

2
α(u, σu)

2du− λudZu −
1

2
λ2
udu

])
(4.5)

The family of EMM’s is parameterized by λt, which is the change in the drift of Z

process. λt is also known as the market price of Z risk. By Girsanov’s theorem, under

the equivalent martingale measure Q, the processes WQ
t and ZQ

t defined by

dWQ
t = dWt + α(t, σt)dt

dZQ
t = dZt + λtdt

are two independent standard Brownian motions. Accordingly, the change of drift on σt

under Q is (ρα(t, σt)+ρλt)b(t, σt). Thus under Q, the stock price and volatility processes
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are governed by the following stochastic differential equations:
dSt

St
= σtdW

Q
t

dσt = [a(t, σt)− ρα(t, σt)b(t, σt) + ρλtb(t, σt)]dt+ b(t, σt)dB
Q
t

(4.6)

It can be seen from (4.5) that to determine the EMM, it’s equivalent to choose the

market price λt of Z risk. First of all, we expect λt to satisfy the Novikov condition so

that Mt is a martingale (see Karatzas and Shreve [30], page 199). The fundamental idea

of the q-optimal measure is to choose a martingale measure Q as close as possible to the

physical measure P.

Define the q-distance Hq(P,Q) between the physical measure and the martingale

measure as follows:

If q /∈ {0, 1},

Hq(P,Q) =


E

[
q
q−1

(MT )q
]

if Q � P

∞ otherwise,

and if q ∈ {0, 1},

Hq(P,Q) =


E [(−1)1+qM q

T ln(MT )] if Q � P

∞ otherwise,

Hobson [24] shows that, for each q, there exists a measure that minimizes Hq(P,Q).

This measure is called the q-optimal measure.

Hobson [24] derives a representation equation associated with the q-optimal measure

and finds the form of the corresponding market price λq(t, σt) of Z risk. Let A = 1−qρ2,
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then λq(t, σt) = ρb(t, σt)
∂f
∂σt

(t, σt), where

f(t, x) =


0 if q = 0

− 1
A

log Êx

[
exp

(
− q

2
A

∫ T

t
α(u, σu)

2du
)]

if q 6= 0 and A 6= 0

Êx

[
q
2

∫ T

t
α(u, σu)

2du
]

if q 6= 0 and A = 0

(4.7)

The expectation Ê is taken under the probability measure P̂ under which the volatility

has dynamics

dσt = (α(t, σt)− qρα(t, σt)b(t, σt))dt+ b(t, σt)dŴt

with P̂-Brownian motion Ŵt.

From the representation (4.7), it can be seen that if q > 0 and ρ2 < 1/q, or equiva-

lently qA < 0, then f is positive and finite hence the q-optimal measure is well-defined

for all time t ≥ 0. On the other hand, if qA < 0, the function f explodes at a finite time

hence the q-optimal measure is not defined beyond that time horizon.

By Feynman-Kac formula, f solves the PDE

q

2
α(t, σ)2 − qρb(t, σ)α(t, σ)fσ −

A

2
b(t, σ)2(fσ)

2 + a(t, σ)fσ +
1

2
b(t, σ)2fσσ + ft = 0

with the boundary condition f(T, σ) = 0 where T is the expiration date of the option.

Hobson [24] and Henderson et. al. [21] also gives the form of f in some special

cases. For example, Hobson shows that if α(t, σ) = α1σ for some constant α1, a(t, σ) =

κ(m/σ−σ) for some constants κ andm, and b(t, σ) is constant, then f can be represented

in the form

f(t, σ) = σ2F (T − t)/2 +G(T − t),
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where F and G satisfies certain ODE’s and initial conditions. For details we refer to

Hobson [24], section 5, and Henderson et. al. [21], section 5.

4.2.2 Ordering of American option prices under q-optimal measure

Throughout this subsection, we assume that the Brownian motions W and B in

model (4.4) are independent. In this case the market price λq(t, σ) of Z risk is the

same as market price of volatility risk. Under this assumption Henderson [20] proved

the monotonicity of European option price as a function of q under q-optimal measure.

In this subsection we are able to extend Henderson’s result for American option prices.

Earlier work on comparison theorems for the expected values of convex function of

diffusion processes can be found in Hajek [19].

Theorem 4.2.1. (see also theorem 4.2 in Henderson [20]) Assume that the correlation

coefficient ρ is 0 in the stochastic volatility model (4.4), then the market price λq(t, σ)

of Z risk is nondecreasing in q if the market price α(t, σ) of W risk is nondecreasing in

σ, and λq(t, σ) is nonincreasing in q if α(t, σ) is nonincreasing in σ.

Proof. Since this theorem does not involve option prices, the proof in Henderson [20] is

still valid.

Now that the monotonicity of λq(t, σ) in q has been proved, it remains to show that

American option price is monotonic in λ. We assume that the payoff of the option is a

convex function of stock price.

Theorem 4.2.2. (see also theorem 3.1 in Henderson [20]) Suppose λq(t, σ) and γq(t, σ)

are two market price of volatility risk corresponding to martingale measure Qλ and Qγ,
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respectively. The stock price and volatility processes under Qλ are given by
dSλ

t

Sλ
t

= σλt dW
Qλ

t

dσλt = [a(t, σλt )− λ(t, σλt )b(t, σ
λ
t )]dt+ b(t, σλt )dB

Qλ

t

(4.8)

where WQλ
and BQλ

are independent Qλ-Brownian motions. The stock price and volatil-

ity processes under Qγ are given by
dSγ

t

Sγ
t

= σγt dW
Qγ

t

dσγt = [a(t, σγt )− γ(t, σγt )b(t, σ
γ
t )]dt+ b(t, σγt )dB

Qγ

t

(4.9)

where WQγ
and BQγ

are independent Qγ-Brownian motions. Let T > 0 be a fixed

constant, then for any convex function h(·) which satisfies EQγ
[|h(SγT )|] <∞,

EQλ

h(SλT ) ≤ EQγ

h(SγT )

if λ(t, σ) ≥ γ(t, σ) for all t and σ.

Proof. Consider a new measure Q̂ under which Ŵ and B̂ are two independent Brownian

motions. Let σ̂λ and σ̂γ be two volatility processes governed by stochastic equations

dσ̂λt = [a(t, σ̂λt )− λ(t, σ̂λt )b(t, σ̂
λ
t )]dt+ b(t, σ̂λt )dB̂t

and

dσ̂γt = [a(t, σ̂γt )− γ(t, σ̂γt )b(t, σ̂
γ
t )]dt+ b(t, σ̂γt )dB̂t,

respectively. Since λ(t, σ) ≥ γ(t, σ), a standard stochastic comparison theorem (see

Karatzas and Shreve [30], section 5.2, prop. 2.18) yields σ̂λt ≤ σ̂γt if these two processes

have the same initial value. The intuition here is that once the two processes coincide,

then their increment have the same random term, but the drift term of σ̂λt is always less

than or equal to the drift of σ̂γt , hence σ̂λt can never exceed σ̂γt .
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Define Aλt ≡
∫ t

0
(σ̂λu)

2du, and Aγt ≡
∫ t

0
(σ̂γu)

2du. Then Aλt ≤ Aγt since 0 ≤ σ̂λt ≤ σ̂γt .

Consider the process Mt = ŴAλ
t

and two filtrations

Ft ≡ σ(Aλs : 0 ≤ s ≤ t,Ms : 0 ≤ s ≤ t), and

Gt ≡ σ(Aλs : 0 ≤ s ≤ T,Ms : 0 ≤ s ≤ t)

where σ(X) represents the sigma algebra generated by X. We intend to show that Mt

is an (Ft)-martingale. The process Mt has continuous sample paths, it remains to show

that

Ê [Mt+s −Mt| Ft] = 0, or equivalently Ê
[
ŴAλ

t+s
− ŴAλ

t

∣∣∣Ft] = 0 (4.10)

Notice that Aλt+s is measurable with respect to Gt and
(
ŴAλ

t+s
− ŴAλ

t

)
is a random

variable independent of Mt. Therefore

Ê
[
ŴAλ

t+s
− ŴAλ

t

∣∣∣Gt] = 0

but

Ê
[
ŴAλ

t+s
− ŴAλ

t

∣∣∣Ft] = Ê
(

Ê
[
ŴAλ

t+s
− ŴAλ

t

∣∣∣Gt]∣∣∣Ft)
since Ft ⊆ Gt. Hence (4.10) follows. Similarly it can be shown that

Ê
[
M2

t+s

∣∣Gt] = M2
t + Ê

[
(Mt+s −Mt)

2
∣∣Gt] = M2

t + Aλt+s − Aλt

Define Zt ≡M2
t −Aλt , then Zt has continuous sample paths. Moreover, Ê [Zt+s − Zt| Gt] =

0. Consequently Ê [Zt+s − Zt| Ft] = 0. Hence Zt is an (Ft)-martingale. It follows that

the quadratic variation process < M >t= Aλt =
∫ t

0
(σ̂λs )

2ds.

Introduce two new processes W̄ λ
t and W̄ γ

t by

W̄ λ
t ≡

∫ t

0

1

σ̂λu
dŴAλ

u
and W̄ γ

t ≡
∫ t

0

1

σ̂γu
dŴAγ

u

The quadratic variation of W̄ λ
t is

< W̄ λ >t=

∫ t

0

1

(σ̂λs )
2
d < M >s= t.
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We have shown that W̄ λ
t is an (Ft)-adapted local martingale with continuous sample

paths and quadratic variation t. Hence W̄ λ
t is a Q̂-Brownian motion. Similarly W̄ γ

t is

also a Q̂-Brownian motion.

Notice that if Ŝλ solves dŜλt = σ̂λt Ŝ
λ
t dW̄

λ
t , then the distribution of Ŝλ under Q̂ is the

same as the distribution of Sλt under Qλ if they have the same initial value s0. Hence

EQλ
h(Sλt ) = Êh(Ŝλt ). By a similar argument, EQγ

h(Sγt ) = Êh(Ŝγt ). Furthermore, for any

fixed time t, Ŝλt and Ŝγt can be explicitly expressed as

Ŝλt = s0 exp

(
ŴAλ

t
− 1

2
Aλt

)
and Ŝλt = s0 exp

(
ŴAγ

t
− 1

2
Aγt

)
For convenience we define Ŝt = s0 exp

(
Ŵt − 1

2
t
)
. Then Ŝλt = ŜAλ

t
and Ŝγt = ŜAγ

t

Define the filtrations (Dt) and (Ht) by

Dt ≡ σ(Ŵs : 0 ≤ s ≤ t) and Ht ≡ σ(Ŵs : 0 ≤ s ≤ t, B̂s : 0 ≤ s ≤ T ),

then both Aλt and Aγt are measurable with respect to DT , but DT ⊆ Ht for any t ≥ 0,

hence Aλt and Aγt are (Ht)-stopping times. Furthermore, Aλt and Aγt depends only on B̂t

so they are independent of the Ŝt process. We need to show

Ê[h(ŜλT )] ≤ Ê[h(ŜγT )],

or equivalently,

Ê[h(ŜAλ
T
)− h(ŜAγ

T
)] ≤ 0 (4.11)

For this purpose we use the fact that Aλt ≤ Aγt <∞ and define the region G in R2 by

G ≡ {(y1, y2) ∈ R2 : y1 < y2}.

Then the expectation in (4.11) can be written as

Ê[h(ŜAλ
T
)− h(ŜAλ

T
)] = Ê

∫
G

[h(Ŝy1)− h(Ŝy2)]dF (y1, y2)

=

∫
G

Ê[h(Ŝy1)− h(Ŝy2)]dF (y1, y2)

(4.12)
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where F (y1, y2) is the distribution function of the random vector (AλT , A
γ
T ). The order

of integration in (4.12) can be changed since Aλt and Aγt are independent of the Ŝt process.

Now we notice that Ŝt is a martingale and h is a convex function, and hence Ê[h(Ŝy1)−

h(Ŝy2)] ≤ 0 when y1 < y2. It follows that∫
G

Ê[h(Ŝy1)− h(Ŝy2)]dF (y1, y2) ≤ 0,

and consequently, (4.11) holds, as needed.

This completes the proof.

Remark: The proof in Henderson [20] is not complete. In particular, in their proof

they claim that Ê(ŜγT |AλT ) = ŜλT . But this equality doesn’t make sense, since ŜλT is not

measurable with respect to the sigma-algebra generated by AλT . In our proof, we con-

struct an enlargement of σ(AλT ) with respect to which ŜλT is measurable.

The generalization of the above monotonicity result to American type options is not

straightforward for the following reason: If τ is a stopping time with respect to the

filtration generated by the stock price process, then Aλτ and Aγτ are not independent of

the Ŝt process, and consequently the order of integration in (4.12) can not be changed.

We are able to prove the following theorem for American type options when the convex

payoff function h satisfies a linear growth condition. In particular, the following theorem

remains valid for American call and put options in stochastic volatility models.

Theorem 4.2.3. Let λq(t, σ), γq(t, σ) be the market price of volatility risk defined in

theorem 4.2.2, and Qλ, Qγ be the corresponding martingale measures under which the

stock price and volatility processes are governed by (4.8) and (4.9), respectively. In

addition, suppose h(·) is a nonnegative convex function which satisfies a linear growth
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condition 0 ≤ h(x) ≤ C0 + C1x for some positive constants C0 and C1, then

sup
τ

EQλ

h(Sλτ ) ≤ sup
τ

EQγ

h(Sγτ )

if λ(t, σ) ≥ γ(t, σ) for all t and σ. The supremum is taken over all stopping times τ ≤ T

with respect to the filtration generated by the stock price process.

Proof. Let τ be any stopping time adapted to the filtration of the price process {Ŝλt :

t ≥ 0} and 0 ≤ τ ≤ T . We intend to show that

Ê[h(Ŝλτ )] ≤ Ê[h(Ŝγτ )].

If Ê[h(Ŝγτ )] = ∞, this inequality is obvious and hence we assume Ê[h(Ŝγτ )] <∞.

First we notice that the processes (Ŝλt , σ̂
λ
t ) and (Ŝγt , σ̂

γ
t ) are adapted to the filtration

(Ht), and it is easy to observe that Aλt and Aγt are (Ht)-stopping times that satisfy

Aλt ≤ Aγt < ∞ for each t in [0, T ]. Since Ŝt is an (Ht)-martingale for 0 ≤ t < ∞,

the process Ŝλt (or equivalently ŜAλ
t
) is adapted to the filtration (HAλ

t
). Similarly Ŝγt is

(HAγ
t
)-adapted and HAλ

t
⊆ HAγ

t
for each t ≥ 0.

Therefore τ is a (HAλ
t
)-stopping time as well as a (HAγ

t
)-stopping time. Now, using a

discrete approximation of τ , as in the proof of lemma 3.2.2, it is a straightforward matter

to verify that Aλτ and Aγτ are (Ht)-stopping times which satisfy Aλτ ≤ Aγτ ≤ AγT < ∞.

Consider the bounded stopping times Aλτ ∧m and Aγτ ∧ n where 0 ≤ m ≤ n. Since Ŝt is

an (Ht)-martingale and h(·) is convex, it follows that

Ê[h(ŜAλ
τ∧m)] ≤ Ê[h(ŜAγ

τ∧n)]

We first send n→∞ and show that Ê[h(ŜAγ
τ∧n)] → Ê[h(ŜAγ

τ
)].

Notice that

Ê[|h(ŜAγ
τ∧n)− h(ŜAγ

τ
)|] = Ê[|h(Ŝn)− h(ŜAγ

τ
)|I[Aγ

τ>n]]

≤Ê[h(Ŝn)I[Aγ
τ>n]] + Ê[h(ŜAγ

τ
)I[Aγ

τ>n]]
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Since Ê[h(ŜAγ
τ
)] <∞, using the dominated convergence theorem to obtain

lim
n→∞

Ê[h(ŜAγ
τ
)I[Aγ

τ>n]] = Ê
[

lim
n→∞

h(ŜAγ
τ
)I[Aγ

τ>n]

]
= 0 (4.13)

On the other hand, when h(·) satisfies 0 ≤ h(x) ≤ C0 + C1x, note that Ŝn and I[Aγ
τ>n]

are independent, therefore, we obtain

Ê[h(Ŝn)I[Aγ
τ>n]] ≤ Ê[h(Ŝn)I[Aγ

T>n]] = Ê[h(Ŝn)] · P̂[AγT > n]

≤(C0 + C1s0) · P̂[AγT > n] → 0 as n→∞
(4.14)

Combining (4.13) and (4.14) to conclude that

Ê[|h(ŜAγ
τ∧n)− h(ŜAγ

τ
)|] → 0 as n→∞

It follows that Ê[h(ŜAγ
τ∧n)] → Ê[h(ŜAγ

τ
)] as n→∞. Hence we obtain Ê[h(ŜAλ

τ∧m)] ≤

Ê[h(ŜAγ
τ
)]. Now by letting m→∞ and using Fatou’s lemma, we derive

Ê[h(ŜAλ
τ
)] ≤ Ê[h(ŜAγ

τ
)].

The above inequality holds for every stopping time τ with respect to the filtration

generated by the stock price process. By taking supremum, it follows immediately that

sup
τ

EQλ

h(Sλτ ) ≤ sup
τ

EQγ

h(Sγτ )

The proof is complete.
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CHAPTER 5. Future research

• For American option price, while the upper bound derived in this thesis has a

closed form and provides a quick estimate, it is still too large for the purpose of

option pricing in the real world. More efforts are needed to reduce the estimation

error. Furthermore, this closed form upper bound can be extended to cases where

the underlying stock is subject to default risk or has stochastic volatility.

• The method used in chapter 3 to solve the when-to-sell-the-stock problem is also

applied to other similar optimal stopping problems. For example, it can be used to

price a stock loan when the stock has a positive possibility of jumping to default.

For an introduction to stock loan, we refer to Xia and Zhou [41].

• In chapter 4 we prove the ordering result for the price of American type options

with convex payoff function that satisfies a linear growth condition. Further re-

search needs to be conducted to generalize this result to American options with

any convex payoff function.



61

BIBLIOGRAPHY

[1] Arora, N., Bohn, J.R., and Zhu, F. (2005): Reduced form vs. structural models of

credit risk: a case study of three models, journal of investment management, 3, no.4.

[2] Bhattacharya, R.N. and Waymire, E.C. (1990): Stochastic processes with applica-

tions, John Wiley & Sons, Inc.

[3] Boyle, P.P. (1977): Options: a Monte Carlo approach, journal of financial eco-

nomics, 4, 323-328.

[4] Brennan, M.J. and Schwartz, E.S. (1977): The valuation of American put options,

journal of finance, 32, 449-462.

[5] Braodie, M. and Glasserman, P. (1996): Estimating security prices using simulation,

management science, 42, 269-285.

[6] Carr, P. and Linetsky, V. (2006): A jump to default extended CEV model: an

application of Bessel processes, finance and stochastics, 10, 303-330.

[7] Chung, K.L. and Williams, R.J. (1990): Introduction to stochastic integration, 2nd

edition, Birkhauser.

[8] Cox, J.C. (1996): The constant elasticity of variance option pricing model, journal

of portfolio management, special issue, 15-17.

[9] Cox, J.C., Ross, S.A., and Rubinstein, M. (1979): Option pricing: a simplified

approach, journal of financial economics, 7, 229-263.



62

[10] Davis, M.H.A. and Karatzas, I. (1994): A determinic approach to optimal stop-

ping, with applications, probability, statistics and optimisation: a tribute to Peter

Whittle, ed. F.P. Kelly, Chichester: Wiley, 455-466.

[11] Derman, E. and Kani, I. (1994): Riding on a smile, RISK magazine, 7, 139-145.

[12] Duffie, D. and Richardson, H.L. (1991): Mean-variance hedging in continuous time,

annals of applied probability, 1, 1-15.

[13] Duffie, D. and Singleton, K.J. (2003): Credit risk, Princeton University Press.

[14] Dupire, B. (1994): Pricing with a smile, RISK magazine, 7, 18-20.

[15] Durrett, R. (1991): Probability: theory and examples, Brooks/Cole publishing com-

pany.

[16] Elliott, R.J., Jeanblanc, M., and Yor, M. (2000): On models of default risk, math-

ematical finance, 10, no.2, 179-195.

[17] Frey, R. (1997): Derivative asset analysis in models with level-dependent and

stochastic volatility, CWI quarterly, 10, no.1, 1-34.

[18] Frittelli, M. (2000): The minimal entropy measure and the valuation problem in

incomplete market, mathematical finance, 10, 39-52.

[19] Hajek, B. (1985): Mean stochastic comparison of diffusions, Wahrscheinlichkeits-

theorie verw. Gebiete, 68, 315-329.

[20] Henderson, V. (2005): Analytical comparisons of option prices in stochastic volatil-

ity models, mathematical finance, 15, No.1, 49-59.

[21] Henderson, V., et. al. (2005): A comparison of option prices under different pric-

ing measures in a stochastic volatility model with correlation, review of derivatives

research, 8, no.1, 5-25.



63

[22] Heston, S.L. (1993): A closed-form solution for options with stochastic volatility

with applications to bond and currency options, the review of financial studies, 6,

No.2, 327-343.

[23] Heston, S.L. and Nandi, S. (2000): A closed form GARCH option pricing model,

the review of financial studies, 13, 585-625.

[24] Hobson, D. (2004): Stochastic volatility models, correlations, and the q-optimal

measure, mathematical finance, 14, No.4, 537-556.

[25] Hull, J.C. (2005): Options, futures, and other derivatives, 5th edition, Prentice

Hall.

[26] Hull, J.C. and White, A. (1987): The pricing of options on assets with stochastic

volatility, journal of finance, 42, 281-300.

[27] Hull, J.C. and White, A. (1990): Valuing derivative securities using the explicite

finite difference method, journal of financial and quantitative analysis, 25, 87-100.

[28] Jarrow, R. and Protter, P. (2005): Structural versus reduced form models: a new

information based perspective, Journal of Investment Management, 2, 34-43.

[29] Javaheri, A. (2005): Inside volatility arbitrage: the secretes of skewness, John Wiley,

Hoboken, New Jersey.

[30] Karatzas, I., and Shreve, S.E. (1988): Brownian motion and stochastic calculus,

Springer Verlag, New York.

[31] Karatzas, I. and Shreve, S.E. (1998): Methods of mathematical finance, Springer

Verlag.

[32] Lauterbach, B. and Schultz, P. (1990): Pricing warrants: an empirical study of the

Black-Scholes model and its alternatives, journal of finance, 4, 1181-1210.



64

[33] Linetsky, V. (2006): Pricing equity derivatives subject to bankruptcy, mathematical

finance, 16, No.2, 255-282.

[34] MacBeth, J.D. and Merville, L.J. (1979): An empirical examination of the Black-

Scholes call option pricing model, journal of finance, 34, 1173-1186.

[35] Merton, R.C. (1976): Option pricing when the underlying stock returns are discon-

tinuous, journal of financial economics, 3, 125-144.

[36] Oksendal, B. (2000): Stochastic differential equations: an introduction with appli-

cations, 5th edition, Springer.

[37] Peskir, G. (2005): On the American option problem, mathematical finance, 15,

no.1, 169-181.

[38] Protter, M.H. and Weinberger, H.F. (1984): Maximum principles in differential

equations, 2nd edition, Springer, New York.

[39] Rogers, L.C.G. (2002): Monte Carlo valuation of American options, mathematical

finance 12, 271-286.

[40] Stein, E.M. and Stein J.C. (1991): Stock price distributions with stochastic volatility:

an analytic approach, review of financial studies, 4, 727-752.

[41] Xia, J. and Zhou, X. (2007): Stock loans, mathematical finance, 17, no.2, 307-317.



65

ACKNOWLEDGMENTS

I would like to express my deep and sincere gratitude to my Ph.D. supervisor, Dr.

Ananda Weerasinghe for his enthusiasm, his inspiration, and his great efforts to explain

things clearly and simply. It has truly been a pleasure working with him.

I would also like to thank my committee members, Dr. Arka Ghosh, Dr. Dermot

Hayes, Dr. Steven Hou, and Dr. Michael Smiley., for their time and efforts.

I am indebted to my parents and my brother for their love and encouragement.

Without their support, I would not have been able to complete this work.


