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CHAPTER I. INTRODUCTION

Properties of Zirconium

Zirconium has been and continues to be a material of considerable
experimental interest due to its structural characteristics and the
temperature dependence of its electrical and thermodynamic properties.
Pure zirconium metal solidifies to a body centered cubic structure (B-
phase) at approximately 2123K (1850°C) and then undergoes a martensitic
transformation to a hexagonal close-packed structure (a-phase) at
approximately 1135K (862°C). (See Table 1 for basic properties of Zr.)
There is also a competing structural transition to the omega (w) phase
occurring in pure zirconium under pressure (1,2) and in alloys (3-6).

Zirconium as well as other hcp transition metals (Ti and Hf) show
unusual behavior in their electrical resistivity and heat capacity at
constant pressure. The electrical resistivity of Zr (7) (Figure 1)
above room temperature increases linearly with temperature; the normal
behavior for a metal, but then saturates to a nearly constant value at
about 1000K. The heat capacity (8-11) (Figure 2) increases almost
linearly with temperature and even for T/@D >> ] (@D n 270-290K) there
is no tendency for Cp to level off in accordance with the classic
Dulong-Petit law at 3kBN (5.96 cal/mole deg). There is also a large
decrease with increasing temperature of the elastic constants (12) chh
and especially c66 which decreases by about 75% from 4K to the transi-
tion temperature (see Table 1). Studies of the temperature dependence

of the normal vibrational modes, the phonon dispersion curves, provide



©
o
l

Zr

N
®)
|

6}
o
I

RES4STIVITY (microhm—cm)
W
o
I

o
T

] l | | | l

0 200 400 600 800 1000 1200
(K)

Figure 1. Temperature dependence of the electrical resistivity of hep Zr (7)
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Table 1. Physical properties of zirconium

Atomic mass 91.22 amu
rA Lo

bcc to hcp transition temperature (12) 1135K

Lattice parameters (13)

a Zr (hcp) at 298K a=3.2324
c=5.147 A
y =c/a= A.593
B Zr (bcc) at 1252K a = 3.616
Thermal neutron cross section (14)
Coherent 4.9 barns (10 2%cm2)
Incoherent 1.4 barns
Absorbtion .1 barns
Coherent neutron scattering amplitude (15)
b=0.71 x 10 12¢cm
Elastic constants (12) (1013 dynes/cm?)
4K 295K 1007K 1133K
€13 15.54 14,34 .14 10.64
€12 6.72 7.28 8.32 8.40
Ci3 6.46 6.53 6.56 6.56
Cuys 3.63 3.20 2.28 2.01

Cas  17.25  16.48 114 13.7h
(Ces = 3(C11-C12))
Superconducting transition temperature (13)

Tc = 0.55K




a great deal of information useful in the understanding of the tempera-
ture dependence of the above properties.

Zirconium is also a superconductor (Tc Y 0.5K). The superconducting
transition elements have also been studied extensively using inelastic
neutron scattering techniques. These studies have revealed anomalies
in the phonon dispersion curves which are usually attributed to strong
electron-phonon interaction (16) and are therefore related to the super-
conducting properties of the materiais. The transition metals of the
fifth and sixth columns of the periodic table (bcc in structure) have
all been studied but the high temperature bcc phases of the fourth
column transition elements have not because of difficulty in growing

single crystals under experimental conditions.

Classical Theory of Lattice Dynamics

Crystal potential energy ¢

The presence of the weakly bound conduction electrons is the
characteristic feature of the metallic crystal. It is these electrons
(4d in the case of Zr) which give rise to the large electrical con-
ductivity and aid in the binding of the ion cores. But the transition
metals have a relatively high binding energy which implies there may be
additional binding from the inner electron shells in the form of a van
der Waals interaction and from covalent binding. This complicated
nature of binding in metals makes it difficult to visualize ¢. One
method of visualization is to consider ¢ as a superposition of atomic

pair potentials V(r) which are explained as follows (17). Consider an



impurity charge Ze in an electron gas.] The electronic charge distribu-
tion is distorted around the charge Ze, the distortion denoted by Zel(r).
The dielectric properties of the electron gas determine the form of
Ze](r) and in addition, IR Zel(r)d? = -Z, where R is a limited region
about the impurity Ze. Therefore Ze + Zel(r) appears as a neutral

object from a distance. A test charge (another Ze) then sees not only
the impurity but the induced screening charge Zel(r) as well. The
effective potential &(r) is then the interaction between the two charges

Ze altered by the screening charge.

Born-von Karmin treatment of lattice dynamics

In the former section the crystal potential energy ¢ was discussed
in terms of electronic motion rather than nuclear motion which is the
phenomenon we wish to analyze. The relationship between dynamics and
binding was first justified in the case of molecular vibrations by
Born and Huang (18). Their arguments, easily applied to crystals,
validate the use of a potential function ¢ in describing dynamics
provided one assumes what is called the adiabatic approximation. In
this approximation, it is assumed that since the frequency of motion of
the electrons is much higher than the vibrational frequencies (by a
factor of the order of (mi/me)% ¥ 100), the electrons follow the

nuclear motion "adiabatically'. That is the electrons do not undergo

]The term "electron gas'' used here refers to a gas of electrons
with a uniform background of positive charge.



transitions from one state to another but instead the electronic states
are deformed progressively as the nuclear displacements change.

Using the '"'adiabatic approximation'' together with a perturbation
procedure leads to an effective Hamiltonian for the ions with an effec-
tive ionic potential containing the electronic energy explicitly. |In
crystal types where there exists a large band gap between electronic
ground states and excited states such as ionic crystals, the procedure
is justified, but in metals where the ground states form effectively a
continuum the perturbation procedure is not valid and the nuclear and
electronic motions will be coupled. Arguments have been given, however,
to justify the use of the adiabatic approximation for metals by Chester
(19) and Ziman (20). In these treatments a general Hamiltonian for the

ion-electron system is assumed of the form

2
_ 2 2 e >
H=1p,/2m, + V.. (R) + ] p;"/2m I et vie(r,’R*) (1.1)
% J J>t Irj-ril
b ——— , S —~— e
H H
p e

where successive terms are the kinetic energy of the ions (in the case
of non-Bravais lattices such as in the hcp structure, % signifies a
double indexing & and h), the bare ion-ion interaction, the kinetic
energy of the electrons, the electron-electron interaction and the
electron ion interaction. The coordinates ¢ and R are those of the
electrons and ions respectively.

First, using the electronic Hamiltonian He’ one solves the

Schrédinger equation for the electronic energies Ek(K) and wave



functions Wk(?,ﬁ). Notice that the electron energy depends on R, the
ionic coordinates which are fixed parameters at this point. Then the
total wave function, the solution to the total Hamiltonian, is expanded
in terms of the complete set Wk(?,ﬁ). The coefficients in this expansion

Qq k(ﬁ) are shown to satisfy the following equation

’

%pzz/ng sV @ s g Mo B =eo @ (1.2)

q,k q,k

where the eq's are the energy eigenvalues of the total wave equation,
obtained by neglecting terms which are small in comparison with H and
Ek(ﬁ). This approximation is essentially the adiabatic approximation
in this context and the resulting Equation (1.2) can be used satisfac-
torily for calculating the phonon energy spectra or dispersion rela-

tions. In fact Equation (1.2) can be further simplified by writing it

in the form

2
% P, /2m + ¢(‘R’2) 2, = & (1.3)

where the total effective potential ¢(§2) = V,; + E_ is dependent only

on the instantaneous ion coordinates.

Harmonic approximation

At this point the discussion of the lattice dynamics of metals
becomes phenomenological in nature but still extremely useful. The
results of this approach together with the phonon dispersion curves
meésured by inelastic neutron scattering enable predictions of macro-

scopic physical properties.



The basis for this treatment is the Hamiltonian of Equation (1.3)

H= ] b, 2/2m + 8(R(2k)) (1.4)
Lk

where the indices % and k are for the &th cell and the kth atom in the

cell. We can write K(zk) in the form

R(2k) = x(2k) + u(ek) (1.5a)
x(2k) = x(2) + x(k) (1.5b)
x(2) = 213] + 1232 + 2333 (1.5¢)

where x(2k) is the equilibrium position of the atom denoted by (2k),
u(2k) is the displacement from the equilibrium position, x(2) is the
position of the fth cell, x(k) is the position of the kth atom in this
cell, the ;}'s are primitive translation vectors and the zi's are

integers. We can then write the kinetic energy term in the Hamiltonian

(1.4) as

2 e 2
Y P, /2mx = % m, u,” (2k) (1.6)
2k 2k REG k™

where the index o denotes the cartesian component. In most cases of
+
practical interest where we expect the |u(fk)| to be much smaller than

the lattice spacing we can expand ¢ in a power series of the u(2k) .

o(R(2K)) = G * O F o, + . (1.7a)

where

8y = ¢(R(2K)) = o(x(1k)) (1.7b)
u(2k)=0



10

o= I o2y (k) = ] Mui(zk) (1.7¢)
aki ki au. (2k) 1,
. u(2k)=0

o, =% ) @ij(xk,z'k')ui(zk)uj(z'k')=

2
s z li 9“0 (R(2k)) :| ui(lk)uj(l'k') . (1.7d)
Rk

Bu, (zk)auj(z'k')

2'k'j u(2k)=0

u(2'k')=0
In the harmonic approximation the power series expansion is limited to
the second~order term which leads to harmonic vibration of the atoms and
hence the term harmonic approximation.
Tne first term in the expansion @0 is merely a constant and

therefore does not enter into the equations of motion as will be seen

later. The second term @I vanishes since the ¢i(2k) are the forces on
the atom which must be zero for all 2%ki in the equilibrium configuration.

Thus the potential energy in the harmonic approximation becomes

o =o(R(ak)) = o +4% ¥ o . (2k,2'k")u,(2k)u,(2k) . (1.8)
0 2ki '] ' J
2'kj
It should be mentioned at this point that in the study of the tempera-
ture dependence of the lattice dynamics of hcp zirconium anharmonic

effects are critically important but they need not be considered until

the thermodynamic analysis of the data is discussed.



1]

The Hamiltonian (1.4) can now be written

H=3 T m 020k + 0y + 4 ] 0, (8,87 k D u (e u (k) (1.9)

2ki 0 2ki
L'kt j
and using Hamilton's Equation
o= - 9
Pi =~ 3q (1.10)

where p. corresponds to m, Gk(zk) and q, corresponds to ui(lk) the

equations of motion are obtained

-m, U, (2k) = Y @..(fk,2'k')u,(2'k") i =x,y, 2 . (.
k i oy 1 j
J .
k=1, ... n

£ - entire crystal

The equations of motion are independent of ¢0. The Qij can be inter-
preted as (interatomic) force constants (AFC's) since ¢ij(£k,2'k') is
the component of a force exerted on the atom at (fk) in the i direction

when the atom at (&'k') is displaced in the j direction.

Properties of AFC's

Permutation symmetry Since the order of differentiation of

—)
®(R(2k)) is unimportant, assuming ¢ is a well-behaved function

¢ij(2k,£'k') = ¢j'(2'k',£k) . (1.12)

Transiational sum rule If all atoms of the crystal are

translated by t (an infinitesimal) from their equilibrium position the

crystal as a whole is translated by U(gk) =T with no change in
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individual restoring forces. From Equation (1.11) one obtains

0= ) o..(8k,2'k")t, , (1.13a)
Z'k'j ‘J J

but the tj are independent therefore

0= ) o, (ak,2'k") for all j (1.13b)
k! 1]
or
o, . (2k,2k) = - o9, (gk,s'k') . (1.13¢)
J k! LN}
LA
k! #k

This "self force constant'' ¢ij(2k,2'k') is merely the opposite of the
sum of the force constants between atom (2k) and every other atom in
the lattice.

Rotational sum rule if the whole crystal undergoes an infini-

tesimal rotation, again there will be no restoring forces. The compo-

nents of this rotation can be represented by a 3(2k) as follows

i

> 1 1
uj(sl.k) € x x 2'k )]J.

Y oe, 08 x (&'k") (1.14)

jmn"m"n
mn

where 8 is along the axis of rotation and Eijk is the Levi-Civita symbol.

Putting this into the equations of motion (1.11) yields

0= QIE-J- o (ak,2tkt)e; 6 x (20k!) (1.15)

mn

Again the em's are independent and
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0= ¢..(2k,2'k")e., x (2'k' for alliand m . 1.16
by SR e (1K) a (1.16)
n
- . Crystal symmetry Crystal symmetry imposes important restrictions

on the AFC's. The symmetry posessed by a crystal is demonstrated in
terms of the space group (G) which is the set of operations (elements)
which when applied to the crystal bring it back onto itself. The
operations, denoted by Xm, are a combination of a rotation S (proper,

a pure notation, or improper, a pure rotation followed by an inversion
or reflection), a primitive lattice translation X(m) and in some cases
a nonprimitive translation V(s). The space group for the bcc lattice
does not have a V(S) and is termed symmorphic while the hcp lattice
space group has an essential V(S) and is called a nonsymmorphic space
group. The total operation Xm is then written in the Seitz notation as

X, = {s1x(m) + V(S)} and X0 acting on the static crystal is defined

X (k) = X' (2k) = S x(2k) + x(m) + V(S) = X(LK) . (1.17)

The operation acting on the excited crystal is then

xm(;t(zk) + 0(2K)) = S X(2k) + S u(ek) + x(m) + V(s) (1.18)

%(LK) + S u(2k)

Thus after applying Xm the displacement 3'(LK) of the atom at site
(LK) is S 3(&). If we now perform the same operation Xm on another
site (&'k') which becomes rotated and translated by X to site (L'K'),
the potential of the (2k)(2'k') pair must be the same as that of the

(LK) (L'K') pair, thus
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i)jj o5 (k, 2tk u; (2k)up(atk) mzn & (LK, L' K Du* (LK)u ' (LK)

1
Do (LKL K')smpup(zk)anuq(z'k')
mn
Pq

(The Smp are the elements of the 3 x 3 matrix representing S.)

]
3; ¢mn(LK,L K')Smiui(zk)snjuj(z'k')
ij

i% rz:n Smi@mn(LK,L'Kl)Snj]ui(zk)up(zlkl)

(1.19a)
Thus
¢ij(2k,2'k') = g% Smian(LK,L'K')SnJ B (1.19b)
which in matrix notation is
o(2k,2'k') = S o(LK,L'K')S (1.20a)
and since S represents a rotation it is orthogonal (§ = S-]),]
(LK, L'K') = S 0(2k,2'k")S . (1.20b)

It is this relation which will be used to determine the form of
the force constant matrix. |In other words it can be used to indicate
vanishing elements and relations between nonvanishing elements. This
is done for the bcc and hcp force constants in Appendix D. There are

also some special cases for this equation which give an indication of

IThe transpose of S is denoted s and the inverse S-'.
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the form of the force constant matrices. One of these cases is for

transitional symmetry where Xm = Em ='{l3];(m)} and

1 0 0O
13 = 01 0
0 0 1
Then
@ij(zk,z'k') = @ij(z+mk,z'+mk') (1.21a)
and in particular
@ij(zk,z'k') = @ij(Ok,z'-zk') . (1.21b)

Using Equation (1.21b) in (1.13b) gives

0= ) o.. (0k,2'-2k") (1.22)
l'k' IJ

which is used to determine the ''self force constants' @ij(Ok,Ok). If
the inversion operation is an element of the space group of the crystal,
the crystal is called 'centro-symmetric'' and if the inversion leaves
every atom in its same relative position in the cell (this is the case

for the bcc lattice) then (17)
o(0k,2'-2k') = &(0k,L'-LK") . (1.23)

If the inversion interchanges like atoms in different sublattices, that
is the atom changes relative position within the cell as well as changing

cell then (17)

(0k,2'-2k') = &(2'-2k',0k) . (1.24)
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Solutions of the equations of motion - dynamical matrix

The periodic nature of the crystal suggests solutions to the equa-

tions of motion (1.11) of the form

ui(2k) = —— v, (k|@exp(ifq-X(2) - w(@t]) (1.25)

|-
~

where 3 is the wave vector and w(a) is the angular frequency associated
with the wave. It is understood that when the final solution is formed
from a superposition of these wavelike solutions (1.25) the displacements
must be real. Substituting the uj(zk) of Equation (1.25) into the

equation of motion (1.11) gives

2>
Ee%(e))m 28 13y = 0. (2K,8'k) —— u. (k'|3)
exp ilgex My - u; |q Z'Z‘j ¥ JE;'UJ Iq
X exp i(g-;(l')) (1.26a)
or
o @ v (k|3 = T 0 (k' [du; (k' [3) (1.26b)
A k'j

where the elements of the ''dynamical matrix" D;j(k’k'la) are given by

1

Dij(kk'ﬁ) =7 0, ; (2k,L'k")exp i(gex(2') - x(2))

L! mGmk,
- (% ) L 0, ; (0K, Tk exp | (3-X(E) (1.27)
=(&1-) Ymm

by using the results of translational invariance (1.21b). Equation
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(1.26b) can be expressed in matrix form as

w2 (@) U@ = 0@ U@ | (1.28)

>,
where u{q) is a 3n component vector;

u (1,3)
uy(]’a)
uz(l’a)

u(q) = (1.29)
u (n,3)
uy(n,Q) /;“
uz(n’-c’i)

and D(;) is a 3n x 3n matrix;

(11,9 012,39 . . . D(in,q)
D(21,3) :

D(a) = : : : (1.30)

o(n,1q) . .. ... D(nn,q
with D(kk'|3) a 3 x 3 matrix;
D, (kk'|q) ny(kk'la) D, (kk'[d) |
D(kk'[d) = D, (k' [d) D (k! [&) o Gkt [@) | . (1.3D)

> ~> >
D, (kk'|q) Dzy(kk'lq) D, (kk'|q)

The problem has evolved into eigenvalue problem (1.28) with 3n eigen-

values, or eigenfrequencies, mg(a) and eigenvectors E(kla,g). This
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means that we must solve the secular or characteristic equation

1@ - w*(@1(3n)| =0 (1.32)

to obtain the 3n eigenfrequencies and eigenvectors all of which need not
be distinct. As isshown in Appendix C, the symmetry of the

crystal involved may dictate degeneracies in mg(a) at particular points
a or along an entire line for 3 in a particular direction.

The dynamical matrix exhibits certain properties of importance
which are manifestations of the force constant matrices and therefore
the crystal symmetry. From the permutation symmetry expression (1.12)
and the expression of translational symmetry (1.21b), it can be shown

that
Dij(kk'|3) = o?i(k'klé) (1.33a)
or

p'(d = p(d) (1.33b)

which means that Qﬁa) is Hermitian and therefore its eigenvalues are

real. It can also be shown from Equation (1.27) that
%
Dij(kk'l-a) = oij(kk'la) (1.34a)
or
*, o -
D (-q) = D(q) . (1.34b)

Using the fact that Tex(2) =2m, n=0,1, 2, ... for Ta reciprocal

lattice vector (see Appendix A), then
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D@+ =0@ . (1.35)

This means thatlg(a) has the periodicity of the reciprocal lattice.
Also,‘QﬂE) is real for 3 = 0, ?/2 which means the dynamical matrix is
real at the zone center and zone boundary.

The eigenfrequencies and eigenvectors also exhibit important
properties. As was mentioned earlier 2(3) is Hermitian which implies
that the w 2(3) are real. From the corresponding properties of Qja)

g
one obtains

w;@) - mgz(a* £ 7 (1.36a)
and
w;m - wgz(-q*) : (1.36b)

The eigenvectors G(kla,j) are usually written in the form
(k|d,6) = AG,E)2(k|q,8) (1.37)

where A(E,g) is independent of k and time and has the same dimensions

as a(kla,g). The factor e (k 3‘5) is then a unitless eigenvector of

2}3) on which the orthonormality condition is imposed as

E,08@,e) = St (1.38)

The left side of Equation (1.38) is simply the 3n dimensional dot
product (the symbol f is the vector analogy to the Hermitian adjoint
operation for matrices which implies transposition followed by complex

conjugation) and if expressed explicitly becomes
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Doeqkldoe (i = o, (1.39)

The set of eigenvectors also form a complete set, a condition which is

expressed by the following relation
* g V|2 =
g ei(kIQ.E)ej(k lg,€) = 8 Ot (1.40)

The eigenvectors again exhibit the same properties as the eigenvalues and

the dynamical matrix, i.e.,

>, >, >
e(q,£)

e(q+T,E) (1.41a)
and

Z(Z,E) Z(‘a,ﬁ) . (] -l”b)

Lattice Dynamics of a bcc Crystal
We now discuss the dynamical matrix and equations of motion

specifically for the bcc lattice. Equations (1.26) and (1.27) become
m o’ @u;@ =] 0, @@ (1.42a)
J

and

0;;(@ =T o ;(Wexpti(a-x(M)} (1.42b)
T

respectively with ij(a)“= m Dij(kkla)(k=k' with one atom per unit cell).

Using the translational symmetry condition Equation (1.22)

0= ) o.(0k2'-2,k') =7} ¢.(2) (1.43)
ok Y 3 ij
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we can rewrite Dij(g) as

;@ = 05000 + T ¢y (Mexpli (@-X(M)}
2#£0
=- 7 0,0 - cos(q-x(®))] . (1.44)

2#0

Also used was the fact that the inversion operation {1|0} is an element
of the space group of the bcc lattice (this is the case for all

Bravais lattices) and that
o(2) = a(-2) . (1.45)

We now set about simplifying Dij(a) and thus the equations of
motion for q along one of the symmetry directions [001], [110] or [111].
For each of these directions [hk&] there is a series of {hk2} planes
perpendicular to it. For all atoms in each of these planes, a°;(i)

(= aoi(l) if the reference atom is at x(2') = 0) has the same value

> > >
CI'X(.Q') - IQIdthI (]'I'G)
where dhkl is the spacing between the {hk&} planes. From Equation (A.4)
_ 27
ke —-FE———[ (1.47)
hk2

—¥

where hk& is the nearest reciprocal lattice point to the origin

. We define the reduced wave vector Z by

ay

along
=27 (1.48)

>
and cm as the reduced wave vector at the zone boundary
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>
> _2r > _ "hke
In a Cm 2
Then
>
gXen =2y nlel
Thkll Icm' om

and for the nth (hk%) plane

q-x(2') =0T
cI’\'l

Using Equation (1.51) in Equation (1.4k)

+__ . _ C
Dij(q) = E 2! (£)[1 - cos %%T ]

(1

(1

(1

(1

where ¢a(£) is the sum of all ¢ij(2) for % such that the atom at x(%)

.49)

.50)

.51)

.52)

is

in the nth plane in the x[hk2] directions from the reference atom at the

origin. Also, the sum in Equation (1.52) is now over pairs of planes

+(hk) .

The equation of motion (1.41) becomes for the mode &

m wgz(a) =1 e (e)[1 - cos = ]
n cn

where the ¢n(£)'s are the interplanar force constants and are equal to

(1

.53)

-¢$(g)'s of Equation (1.52). We have used here the fact that along the

symmetry directions the dynamical matrix factors and the w

2(3)'5 are

just linear combinations of the dynamical matrix elements (see Appendix

C). The composition of the ¢n(£)‘s in terms of the AFC's for the

vibrational modes in the symmetry directions of a bcc crystal are given
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in Table 2 (21). For example ](TEOOC]), the interplanar force constant
between the (001) plane through the origin and the first two (001) planes
on either side of it in the [001] direction for a T[00z] mode is

l(T[OOc]) = 8(Ixx) + 8(hxx) + 8(hyy) + 8(7xx)

considering eight neighbors. The method for obtaining the coefficients
for the AFC decomposition of the interplanar force constants is described
in Appendix D.

As the wave vector for a phonon mode, 3, tends to zero, the long
wavelength limit, the lattice vibrations become the acoustic vibrations
of the crystal. That is for large enough A the crystal appears to be a

continuous medium. The velocity of an acoustic vibration is given by
2 2,> , 2
V.=C_/p = w.(q)/q (1.54)

where C_ is the elastic constant or combination of elastic constants

g
associated with the mode £, p is the density of the crystal. The Cg

for a cubic crystal are given in Table 3. Solving Equation (1.54) for

wgz(a) one obtains

mgz(q) = = . (1.55)

The density of a bcc crystal is
p = 2m/a> (1.56)

since there are two atoms in the cubic unit cell. Equating the two
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Table 3. Elastic wave velocities in a cubic crystal in terms of elastic

constants

£ w?o = Czq? (v = C./p)
L[oo1] w2p = Cy1q2
T[001] w2 = Cyyq2
L[110] w2p = %(Cy1+C12+2Cyy) q?
T,[110] (polarization 11 to [110]) w2p = $(Cy1-C12)q2
T,[110] (polarization 11 to [001]) wZp = Cyyuq?
Lf11] w2p = 1/3(Cy1+2C; o +hCy,) q2
Thinl w2p = 1/3(C11-C12+Cyy)q2
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expressions for wgz(a) Equations (1.53) and (1.55) and expanding the

cosine term for small £ we get

2
a cg2n2;2=2¢n(g)[l S - Ry L)
n

2
a ng;mz = z 2 () o . (1.57)

Thus the elastic constants can be expressed in terms of the AFC's through
the interplanar force constants. For example consider the £ = L[00z]

mode. (This is a simple case since C, = iy (from Table 3) rather than

1

a linear combination of elastic constants as is the case for £ = L[110]

for example.) From Equation (1.57)
a €, (1) =(vh)e, (Llooc]) + (1)e,(Llooz]) + ... +9/4 o,(L[00L])

+ 16/4 %(L[OO;]) (1.58)

using Em = ], The AFC composition of the ¢n(L[00;])'s are obtained from

Table 2 and we have

/]
o
|

ne (/) [8(1xx) + 16(kyy) + 8(7zz)] + (1)[2(2xx) + 8(3xx) + 8(5xx)

+ 8(8yy)] + (9/4[8(lxx) + 16(7xx)] + 4[2(6xx) + 8(8xx)]

2(1xx) + 2(2xx) + 8(3xx) + 18(Lxx) + h(l4yy) + 8(5xx) + 8(6xx)
+ 36(7xx) + 2(7zz) + 32(8xx) + 8(8yy) (1.59)

as given in Table 2.
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Force Models for the bcc Crystal

As was discussed earlier and is demonstrated in Appendix D symmetry
considerations restrict the number of independent force constants. The
nature of the forces between atoms may reduce the number even further by
imposing additional relations between the force constants. This is the
case for central forces where the forces act only between pairs of atoms
and are dependent only on the separation of the pair of atoms. There
exists two commonly used central force models; the axially-symmetric
(AS) force model and the ''central force' model (21). Both models
require central forces as described above but the '‘central force' model
is not as general as the AS model. In the context of the central force
model the potential is the same for all types of neighbors in the
crystal. |If this potential describes the only forces existing in the
crystal, the equilibrium condition for these forces imposes another
condition in the force constants.

The conditions common to both the AS model and the central force

model will first be discussed. From Equations (1.7c) and (1.7d)

320 (R(2k))
2ui(mk)auj(z'k')

u(2k)=0 , (1.60)

¢ij(zk,z'k') =

u(2'k')=0
the force constants, may be written in the form

3 3¢ (R) R,
¢ij = [ 3;7 ( 3R 7%') } (1.61)
R=R

where R; = R aR/Buj = the j component of R, R = |R(2k)| = distance
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between the two atoms of consideration (taking one atom to be at the

origin) and the indices &, k, etc. have been dropped. Differentiating

again results in

2
2 ®(R) R.R, 90(R 1 OR. 9®(R} R.R,
(R RR; 90(R) ;R RGR,

b.., = + — -
' 5RZ R 2 3R R au, 3R R 2
(o] (o) 1 [o]
R.R, R.R.
= ¢t( Gij = 2 ) + ¢r 2 (1-62)
RO RO

where aij is the Kronecker delta,

1 32(R)
% R_ TR (1.63)

° R=R
(o]

is the tangential force constant and

2
_ 97¢(R)

is the radial force constant. Thus for both models only two independent
force constants (AFC's) exist for each type of neighbor. The mathe-
matical constraints which reduce the AFC's to two per neighbor type are
obtained from Equation (1.62). For example consider the third neighbor
AFC's in the bcc crystal. For one of these neighbors, see Appendix D,

Table 21, R = a/2(2,2,0) and the force constants of Equation (1.62) are

given by

2
0, = XX = 13 ¢g?) + - 20(R) (1.65a)

3 2 oR 2/3a R
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B = 2Z = —— (] -65b)
3 Y2a R R
(o]
1 BéQ(R) 1 3¢(R)
-Y3 = xy = — ————2-— - (].65C)
2 9R R 2/2a  9R R
o [0}

The elimination of the partials of ®(R) give the constraint on the third

neighbor AFC's, namely,
Xx ~ 2z - xy =0 . (1.66)

These constraints for the AFC's to eight neighbors are given in Table &,
The equilibrium condition of the ''central force' model will now be

discussed. This constraint arises from the fact that the value of the

equilibrium lattice constant, a, must minimize the total potential energy

of the crystal. Thus

(—a—as— (] an>(Rn)]>

]
o

(1.67)

S=a

where S and Rn are the nonequilibrium values of the lattice constant
and nth neighbor distance respectively (Rn = S/alﬁ(ﬂk)l for &k corre-
sponding to n) and Zn is the number of equivalent neighbors n. From

Table 21 for a bcc crystal

zZ, = 8, 6, 12, ... (1.68a)
R. = $V3/2, S, SV2, ... (1.68b)

for i =1, 2,3, ... . Equation (1.67) then becomes
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Table 4. Axially symmetric constraints to eighth neighbors for bcc
crystals (21)

Neighbor Constraint Condition

1 none

2 none

3 ag3~B3z=y3 =0

4 oy=By-8yy = 0
yy=3yy = 0

5 none

6 none

7 3a7-3B7+v7-387 = 0
3y7~67 = 0

8 ag-Yg=268g = 0

2Bg-2yg-8g = 0
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(8)(/372) aﬁﬁg) + ©) af#f) + (12) (V2) aﬁﬁf)
"Ry R=R, R=R,
S=a S=a S=a
+... =0 (]'69)

The derivatives of #(R) can be obtained by exploiting Equation (1.62) as

shown in Equation (1.65b) where

a%ﬁ) = Y7 asB, . (1.70)
R=R 3

S=a

Table 5 gives the first and second derivatives of #(R) to eight
neighbors. The result is the constraint for the ''central force' model

to eight neighbofs which is
o = By + By * bs3 + 118, = Ty, + 4a5 - hss + 436 + l9a7

- 1967 + 20yg = 0 (r.71)

Using this result (Equation (1.71)) together with Tables 2 and 4 it can
be verified that the constraints for the ''central force'' model satisfy

the classic Cauchy condition for central forces in cubic crystals (21)
Cip = Cyy . (1.72)

Since the independent elastic constants for a cubic crystal are C]],
Clz and Chh’ and if the Cauchy condition holds, only two elastic con-
stants are required to describe the elastic properties. 1t can be seen
from Table 2 that the elastic constants are extremely sensitive to long
range forces and therefore the forces may be nearly central but fail to

satisfy the Cauchy condition.
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Table 5. First and second derivatives of #(R) to eight neighbors for a
bcc crystal

32 (R) 320 (R)
Neighbor(n) (hjhsh3) R, 2R |R=R_ T 2RZ|R=R_
1 m V3 a/2 V3 a (a1-81)/2 a1+ 28;
2 200 a afy o
3 220 /2a V2 a B3 203 - B3
311 Y11 a/2 /T a (By-vy)/2 (50,=Ry) /4
5 222 V3a Y3 alas=-Bs) a5 + 285
6 400 2a 2aBg ag
7 331 /19 a/2 /19 a (a7-v7)/2 (907-587) /4
8 420 /5a YBayg (bog-pg)/3
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Lattice Dynamics and Force Model for the hcp Crystal

The analysis of the lattice dynamics of the hcp crystal proceeds in
a manner analogous to that of the bcc crystal. However the situation is
much more complicated since we now have two atoms per unit cell and the
space group of the hcp lattice is nonsymmorphic (see Appendix C).
Again, Fourier analysis techniques are applied as in Equation (1.53)
which can only be applied here along A] (c or 33 axis). For other
symmetry directions the analysis proceeds using the sum of the squares
of the frequencies of the optic and acoustic branches with some
modifications. As in the bcc case the force constant matrices are
reduced using the symmetry operations of the particular bond
in question. The force constant matrices as well as the AFC composition
of the interplanar force constants are given in Appendix D.

In order to determine the AFC's we must again invoke a model. The
model used here is a modification of the axially symmetric model
described in the section on bcc crystals. In the axially symmetric
model the AFC's are described by two forces; the bond bending and bond
stretching forces of Equations (1.63) and (1.64). The modification is
to take the bond stretching in the z- or c-direction different from
that in the basal plane. This approach was first introduced by DeWames

et al. (22) and is called the modified axially symmetric (MAS) model.

]The reason is that Equation (1.53) applies only to crystals with
one atom per unit cell. For the c-axis in the hcp crystal we can use
the double zone scheme which has one atom per unit cell.
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The model imposes restrictions on the AFC's, reducing the number of
independent force constants in this case to 17 for 6th neighbor AFC's.
An additional constraint on the AFC's of an hcp crystal arises
from the rotational sum rule or rigid body rotational invariance of
Equation (1.16). This condition in the 6th neighbor MAS model is given
in Appendix D. Also given in Appendix D are the elastic constraints
which may be imposed on the AFC's, That is, the force constants may

be forced to fit elastic constant data.
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CHAPTER II. THE NEUTRON SCATTERING EXPERIMENT

In the experiments presented in this work the lattice dynamics of
hcp and bcc zirconium were studied using the techniques of inelastic
thermal neutron scattering. The equipment, methods and results of the
measurements will be presented in this chapter. First, the furnace and
cryostat used in the experiments will be described. Next, the features
and calibration of the triple-axis instrument will be explained and
finally in the last section the results of the measurements will be
presented. Included in this last section is a description of the
methods used for optimizing the instrumental parameters through the

study of the differential cross section.

Furnace and Cryostat

Measurements were made on the hcp phase of zirconium at 5.5K,
295K, 773K and 1009K and on the bcc phase at 1323K and 1423K. Thus
both a furnace and cryostat were required to perform the experiments.

The furnace used was specially designed for use on the triple-axis
spectrometer (to be described later). That is, it was built with the
criteria that it must be almost transparent to neutrons in the region
of the sample and all connections (power, water coolant, vacuum lines
and thermocouple leads) must be made to allow rotation of the furnace
about the vertical axis through about 180° and rotation of at least a
few degrees about the two horizontal axes while mounted on the sample

table of the instrument.
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The furnace as used consisted of an outer aluminum can 50 mils in
thickness with a water jacket above and below the sample position, as
seen in Figure 3. The top and bottom of the can were made of stain-
less steel plates which included the following features: a pumping
port, thermocouple feed-throughs, electrical feed-throughs for the heat-
ing elements and several water jackets. The internal heat shielding
was constructed of 10 mil niobium rolled and spot welded into concentric
cylinders. These cylinders were stacked on a set of concentric niobium
discs which were spaced and fastened together. Another set of discs
went on top of the cylinders to complete the heat shield enclosure.
Niobium was chosen for the heat shields because of its refractory
characteristics - it melts at 2741K, and for its relatively small
absorbtion cross section for thermal neutrons - op = 0.63 x IO-ZA cmz.

The furnace was heated with two 30 mil tungsten wire filaments,
wound around aluminum furnace tubes. The filaments were powered by a
variable transformer with 110 VAC across the primary aﬁd an inter-
mediate proportional controller. Feedback for the controller as well
as temperature measurement was provided by two chromel-alumel thermo-
couples. The power required at 1400K was approximately 0.6 KW.

The vacuum system for the furnace consisted of a four inch water
cooled diffusion pump and a mechanical roughing pump. A thermocouple
vacuum gauge and meter were used to measure roughing vacuum and an
fonization gauge and meter were used to measure the ultimate vacuum
with the diffusion pump operating. Typical vacuum attained was approxi-

mately 2 x 10-5 torr at the temperature of the measurements.
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The cryostat used for the 5.5K measurements was built for prior
experiments on the triple~axis instrument. The construction of the
cryostat was conventional, using liquid nitrogen and liquid helium
reservoirs for cooling. Thermal shielding was provided by aluminum
containers and vacuum spaces between shields and reservoirs.

During the measurements the temperature was held at 5.5K + 0.5K
and was measured using a Au-Fe versus Cu thermocouple with the emf

read using a potentiometer.

Triple-Axis Spectrometer

The method used to measure the phonon dispersion curves for hcp
and bcc zirconium was that of inelastic thermal neutron scattering
employing a triple-axis spectrometer. The following is a description
of the triple-axis spectrometer, called the Triax, at the Ames Labora-
tory Research Reactor (ALRR), now installed at the Oak Ridge Research
Reactor (ORR) at the Oak Ridge National Laboratory (ORNL). This
instrument was used for all of the measurements on hcp zirconium and
many of those on bcc zirconium. The remainder of the bcc measurements
were performed on the triple-axis instrument HBIA which is installed
at the High Flux Isotope Reactor (HFIR) at the ORNL. Comments will be
made where the construction of the Triax is different from that of HBIA.

The triple-axis spectrometer performs essentially three functions
in an inelastic scattering experiment: (1) neutrons of a particular
energy and with a small spread in energies must be selected for the

incident beam, (2) the energy of the scattered neutrons must be analyzed
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to determine the energy change, and (3) the angle of scattering with
respect to the incident beam and with respect to the sample must be
obtained to determine the momentum change. A schematic illustration
of the triple-axis spectrometer is given in Figure 4.

The neutron beam used by the instrument originates from the thermal
moderator of a nuclear reactor. This beam, with a Maxwellian velocity
distribution representative of a temperature on the‘order of 100°C,
is incident on a monochromating crystal. This crystal is positioned

(angles 0, and ZOM) to Bragg scatter neutrons of a particular velocity

M
or energy range (Eo * AEO).] This scattered beam is then collimated

with cadmium Soller slits.2 The momentum Ko of the incident beam of

energy EO is determined by the direction of the beam and

h2k2
E = —2
o) 2m

(2.1)

where m is the mass of the neutron.
The beam is then incident on the sample crystal set at the angle Y
and is scattered through the angle ¢. The scattered beam passes through

another collimator and is then incident on an analyzing crystal which

]The spread in energies is due to the finite mosaic spread of the
monochromating crystal. A real crystal is not a perfect lattice through-
out the entire crystal but consists of mosaic blocks with a spread in
orientations about the macroscopic orientation of the entire crystal.

This spread called the mosaic spread n is chosen small enough to give a
reasonably small AEg but not so small as to produce a low intensity beam
(for a good monochromator n is typically of the order of 0.5 degrees.

2Cadmium has an extremﬁly large absorbtion cross section for thermal
neutrons - o, = 2650 x 10-24 cm2,
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is positioned (angles 6, and ZGA) for Bragg scattering neutrons of

energy El into the detector (to be discussed below). The final

—’. - .
momentum of the neutron ko is determined from El using

i

El = m (2.2)

and the angle ¢. Thus the neutron energy change Eo - E] and momentum
change KO - KI are obtained.

The detector commonly used for neutron scattering experiments,
both elastic and inelastic, is a boron trifluoride (BF3) filled propor-
tional counter. The BF3 counter has such advantages as a large effi-
ciency (from 25% to 65% with | atmosphere of pressure) for neutrons
with energies below approximately 4 Thz (1 Thz = 4.136 meV) and
insensitivity to gamma-radiation. These advantages have made the BF3
counter one of the best choices for thermal neutron detection in
spectrometers and diffractometers.

The calculation and positioning of the above described angles,
OM’ ZOM, Yy O, OA and ZGA for the Triax is performed by an on-line
computer system consisting of a PDP 15 computer, an SDS 910 computer]

and an interface between the computers and the control electronics of

the instrument. The HBIA instrument uses a PDP 8E computer only.

]This computer system operated three neutron spectrometers as well
as experiments for other groups at the ALRR and is now operating the
Triax instrument at the ORR. The purpose of the 910 between the inter-
face and the 15 was to receive interrupts from the several different
machines and make them all look the same to the 15. This function
greatly simplified the program codes for the operation of the individual
instruments.
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Communication with the computer is via a Deckwriter. To perform a
phonon measurement on the Triax the following information is entered:
the number of steps on each side of the center of the scan, the number
of counts at each scan point, the preset or counting interval in
seconds or monitor counts (described below), a control character for
selection of detector arm (the second arm has been removed from the
Triax so this character is always set equal to 1), a control character
to designate mode of operation; a zero for fixed Eo or a one for fixed
E], fixed energy value in Thz, central 3 value, central energy value of
E0 - E], 6 increments and energy increments. A sample input for a
constant Q"' scan (to be discussed in detail in the next section) with
fixed E] is given here:

5, 3, 300

1, 1, 3.2756

', 0, -.2, .45, 0, 0, 0, .05
This scan is for a transverse [001] phonon, Q= (10 -.2)(q = .2), with
eleven steps 0.05 Thz apart, centered at 0.45 Thz. The mode of opera-
tion is fixed El = 3.2756 Thz. This is also a phonon creation experi-
ment since E0 - E] = +0.45 Thz., Essentially, the same information is
entered on the HBIA instrument but it is restricted to fixed Eo experi-
ments only.

The computer calculates the angles for each step in the scan and
drives each angle to its calculated position. At each step in the scan

the prescribed number of counts are taken for the prescribed interval.
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This interval is usually determined by the rate at which neutrons are
incident on the sample. This rate is measured by placing a monitor
counter between the monochromating crystal and the sample. The monitor
is an uranium foil detector with an efficiency of less than 0.1% which
provides a method of sampling the beam without appreciable attenuation.
Determining the counting interval in this manner eliminates the effect
of small fluctuations in the reactor power and also of the energy
dependent neutron spectrum of the reactor which affects the flux inci-
dent on the sample for fixed E, (and therefore varied Eo) scans. At
each step in the example scan the instrument counts three times until
the monitor count reaches 300 (times two prescale factors which are

set manually on the instrument). These three counts are summed for
each step. The output for such a scan includes the monitor preset
multiplied by the prescale factors, the fixed energy El’ the plane of
the scan (determined from the data entered into the program when the
sample is mounted and aligned on the spectrometer), all angles for the
initial point in the scan, and for each step in the scan the angles

Uy, &, ZGM, each of the three individual counts, the time in seconds for
each count and the sum of the three counts.

The results of a typical scan obtained using the above scheme,
called a neutron group, are shown in Figure 5, To determine the center
of the peak, the phonon energy, a line is first drawn through the points
of the neutron group. Then a linear background is drawn under the peak.

Next, the full width at half maximum (FWHM) is obtained by locating the
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Figure 5. Plot of raw data for a typical neutron group
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half maximum point (above background) and at this point drawing a line
parallel to the background line. The length of the part of this line
which is under the neutron group is the FWHM and the midpoint is the
center of the peak. Occasional checks are made using a computer pro-
gram which fits the neutron group to a gaussian with a linear back-
ground. The agreement between the two methods is well within the
experimental error, which is determined as follows. The experimental
error is essentially a measure of the left and right extremes that one
could draw the line through the points of the neutron group. The
error is determined as one half the difference in peak centers obtained
from these two extremes.

Prior to performing an experiment on the triple-axis spectrometer
the instrumental parameters must be calibrated. That is the various
angles of the instrument must be determined absolutely proceeding from
monochromator to sample to analyzer.

First the analyzer system is effectively removed by either setting

ZGA = 0° and either setting the analyzer crystal perpendicular to the beam,

OA = 90°, or removing the analyzer crystal entirely. In the sample
position is placed a vanadium or aluminum container filled with salt
in powdered form (on the order of 2-3 cm3 in volume). Aluminum and
especially vanadium are used as containers in neutron scattering
experiments because of their low coherent scattering amplitudes,

which means they are almost transparent to thermal neutrons. Several

elastic reflections from the NaCl are then measured by stepping the
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angle ¢, including at least one for ¢ = *¢' (the same reflection on
both sides of the zero setting of ¢(= ¢o)). The monochromator is
assumed to be set at a OM,ZOM position such that the Bragg condition
A= 2d sin OM is satisfied. The exact values of OM and ZOM and there-
fore A, are not know. The two scans at ¢' and -¢' give the exact

value of ¢o and thus ¢ = ZONaCl + ¢, for the other reflections is known.
These ZONaCl values together with the d spacings of NaCl permit the
calculation of A from A = 2dNacl sin ONacl With A the monochromator
settings OM and ZOM can be calculated. The encoders used on the instru-
ment allow the angles to be read towithin x0.010. This together

with an accurate knowledge of the d spacings of NaCl and the mono-
chromating crystal allow the determination of A to within a few ten
thousandths of an angstrom.

The next step is to mount on the sample table a single crystal of
known lattice parameter and orientation. The crystal to be used in the
experiment could be used here also. Two things must be accomplished
in the alignment of the sample. The first is the centering of the
crystal in the beam. This is checked by taking Polaroid photographs
of the straight through beam at four positions of the sample angle ¥,
90° apart. The second is the positioning of the particular reciprocal
plane of the crystal of interest, parallel to the scattering plane of
the instrument (horizontal). For a description of the reciprocal

lattice see Appendix A. This plane is made to be horizontal by optimiz-

ing the intensities of two reflections in this plane. To permit brincing
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this plane into the horizontal position the sample is typically
mounted on a goniometer which has adjustments to rotate the sample
about two perpendicular axes which lie in the horizontal plane. The
goniometer also has horizontal translations to permit centering the
sample in the beam (vertical translation is usually provided in the
pedistal on which the goniometer is mounted).

Finally, using the Bragg reflections from the sample the analyzer
angles can be obtained. The angles ¢, ¢, @A’ and ZOA are first set by
hand. That is, each angle is set by manually driving the angle while
observing on a rate meter the variation of scattered neutron intensity
with angle position. The intensity of a Bragg reflection for a typical
crystal as measured on the Triax at the ALRR is of the order of IO3 counts
per second.‘ Thus the values of ¥, ¢, OA and ZGA are determined to within
about *0.5°. At this point a computer operated scan is employed to
determine the angles more precisely. The program used an iterative
process sometimes called a ''double-rock' to determine the © and 20 angles
for a Bragg reflection. The process begins by setting one of the two
angles to the manually determined Bragg peak position, 20 for example. The

angle 0 is then stepped through the Bragg peak with the size of step

]The intensity for a particular Bragg reflection depends, of course,
on many factors: neutron flux incident on the crystal, incident wave-
length of the neutron, the absorbtion coefficient of the crystal volume
to name some of the more important ones (14).
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and counting time at each step determined by the peak width and height
respectively. The computer program then calculates the 0 value of
the center of this peak and sets the angle to this value. A scan
through the 20 position of the Bragg peak is then made and the angle
20 then set to the calculated center of the peak. The program
repeatedly performs these © and 20 scans until successively determined
values of both © and 20 for the Bragg peak differ by A® and A20. The
values of AO® and A20 are input parameters in the program and are
usually chosén to be about 0.02° to 0.05°, depending on the circum-
stances. This process, the double-rock, is performed on the sample to
determine ¢ and ¢ with OA and ZGA set at their manually determined
positions. Then GA and ZOA are double-rocked with ¢ and ¢ set at
their double~rock positions. This sequence of double rocks is repeated
until successive values of each angle differ by only a few hundredths
of a degree.

As a final check of the calibration and sample alignment phonon-
type scans can be made through a =7 and v = 0 (Bragg scattering).
The scans used are a '‘constant-Q' scan, a transverse '‘constant-E"
scan and a longitudinal '‘constant-E'' scan all through v = 0. The
"eonstant-Q'' scan and ''constant-E'' scan are discussed in the next
section. The above information; zeros for all angles, A, and angles
Y and ¢ for Bragg reflections for the sample are entered into the

computer program for the control of the instrument.
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This calibration procedure need not be carried out for each new
experiment on the instrument, but it is repeated occasionally to insure
proper operating conditions for the instrument. Changes in the instru-
ment which dictate recalibration are things such as changing the type
of monochromating or analyzing crystal and changing collination of the
incident or scattered beam. These changes provide flexibility to
improve resolution and increase a (to be discussed in the last section

of this chapter).

Measurements

The success or failure of a phonon measurement is critically
dependent on how well the instrumental parameters are chosen to opti-
mize the intensity of the neutron group. This optimization is achieved
by careful consideration of the factors in the differential cross
section for the scattering process involved and the appropriate choice
of scan type and parameters which are suggested by those factors. The
process involved is that of inelastic coherent neutron scattering with
one phonon creation or annihilation, and expression for the differen-

tial cross section is

d20 coh K M1 /241/2)
i 2n U = > > h(n+1/241/2
—  — . h -
dndE v Eza K 8 (hwthv) % 8 (&q-1) 7
-w 2
I b, exp i (8, )%8-T, Mo % K (2.3)
k
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where
V = volume of the unit cell,
>
g = phonon wave vector,
g = phonon mode index,

hw = E0 - El’ the energy change of the neutron,

hv = phonon energy (v = vg(a), the frequency of the Eth mode at
->
wave vector q), .
T = reciprocal lattice vector (see Appendix A),

= KO ~ E‘, the scattering vector - the momentum change of the

=1
I

neutron,
n = [eh\)/kT - I]_I, the mean phonon occupation number,
bk = coherent neutron scattering amplitude for the kth atom,

h

X = position of the kt atom of the basis with respect to the

origin for the unit cell,
ﬁk = U(kla.EX displacement of the kth atom for a phonon of wave

>
vector q and mode £,

M, = mass of the kth atom,

and

W (a-ﬁk)z/Z, the Debye-Waller parameter for the kP atom.

k

The 7 and * signs refer to phonon creation (upper sign) and phonon
annihilation (lower sign). The two delta functions require energy and

> -> .
momentum conservation; aw ¥ hv = 0 and 6 * q=r1, respectively.



53

There are also contributions to the scattered intensity by one-
phonon incoherent scattering and multiphonon scattering, the later
being negligible in comparison to the one-phonon processes. These give
rise to an energy dependent background which is a function of the
phonon frequency distribution of the sample material.

The factors in the differential cross section which are considered
in order to optimize the intensity of the neutron group will now be
discussed in the context of typical scan types used for measuring the
phonon dispersion curves. The most common scan type used on a triple-

.. >,
axis instrument to measure v versus q is the '"constant a“ scan. The
representation of this scan in a plane of (v,a) space is shown in
. T
Figure 6 (top). The scattering vector 6 =k -k] is held constant

0

while the energy change of the neutron, #iw = E0 - E] is varied. Since

E. - E, = ﬁz/ZM(koz - k.2, (2.4)

0 1 1
the initial and final neutron momenta are also varied but their differ-
ence is not. Another restriction is usually imposed to simplify the
situation and that is to fix either E0 or El‘ The Triax was usually
operated in the fixed E] mode while the HBIA spectrometer had no means
of varying Eo and therefore always operated with fixed Eo.

In Figure 7, the scattering geometry is shown in reciprocal space.
The figure shows how KO and KI are varied for several stéps of a

“constantJG” scan. For cach step in the scan the components of the

fixed a are given by
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Figure 6. Schematic representations of a ''constant Q' scan (top) and a
"eonstant E'' scan (bottom)
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Figure 7. Positions in reciprocal space of kg and k for several steps in a '"'constant Q' scan with
fixed E;. The plane shown is the ?ITO) plane of the bcc reciprocal lattice

s



56

]

Q

Q

Also, at each step in the scan the phonon energy hv is selected. Since

k0 cos ¥ - k] cos (¢ + ) (2.5)

kO sin ¢ - k] sin (¢ + v). (2.6)

E] and thus k] is fixed for all points in the scan, ko can be calculated

from

2

hy = tﬁ2/2m(kc2) - 1

(2.7)

where the +(-) sign refers to phonon creation (annihilation). Using
Equations (2.5-2.7) permits the calculation of the angles y and ¢ for each
point in the scan. (The angles OM, 20“, GA and 2®A are determined from

E, and E].)

Under certain circumstances it is desirable and sometimes necessary
to perform constant energy transfer, E0 - E], scans commonly called
"constant E" scans (see Figure 6 bottom). In this scan, Ey and E|
are both fixed, thus fixing k0 and k], and 6 is varied by changing vy
and ¢. The application of the ''constant-E'' method will be discussed
later with respect to the bcc zirconium measurements.

With the above mode of operation of the instrument in mind, the
various factors in the differential cross section are considered. The

quantity
- >y e 5 s
952(6) = 'Zk bkMk 12 exp (ia-rk)es ka-U(k(q,E)lz (2.8)

from Equation (2.3) is called the inelastic structure factor and contains

several factors important in selecting scan parameters to optimize the
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intensity. The quantities bk and Mk depend on the sample material only
and are given for zirconium in Table 1. The dot product QU (k14,£)
indicates that to optimize the intensity of the neutron group the scat-
tering vector a must be parallel or nearly parallel to the atomic dis-
placement (phonon polarization vector). For example, consider the
situation illustrated in Figure 8 which shows the [1T0]
reciprocal plane for a bcc lattice and the vector E, for
several phonon measurements. In each case, ? is chosen such that 6 is
nearly perpendicular to ﬁ(kiagg). This term also suggests that the
measurement be performed at the largest 3 possible;gzg(ﬁ)alalz, but
the competing term e-wk = exp -[(a-ﬁk)z/Z] serves to moderate such an
action. The limitation in intensity at large |3| indicated by the
Debye-Waller factor was not a hindrance in these experiments since |6|
was limited by the instrumental capabilities on both the Triax and HBIA.
In the case of the Triax, the low flux at the ALRR at the energies
required for large Ial, negated any increase in intensity gained by
increasing |6|. Physical limitations on the angles ¢ and ZOA limited
[4] on HBIA. Figure 9 shows Q e-ZW versus Q for three temperatures
for zirconium.

The inelastic structure factor also indicates that there are special
reciprocal lattice points T where the scattered intensity will be
largest. This can be understood by the analogy of the inelastic

structure factor with the elastic structure factor. Using the hcp

lattice as an example the elastic structure factor F is maximum for
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such reciprocal lattice points as © = (002),(110) where lF|2 = b2
and less for other T's (see Appendix A). In fact, in the limit
v,a = 0 the scattering becomes elastic and a > T which means the
inelastic structure factor must go to the elastic structure factor.
Thus, a rule of thumb is that the optimum T about which to look for
accoustic phonons is also a T which has a large elastic structure
factor.

The above reasoning for the selection of reciprocal lattice
points from which to measure a particular phonon is extremely useful
when calculations of the inelastic structure factor do not exist.
Ideally, however, one would like to have actual calculated values of
the structure factor for various t's and a‘s while performing the
experiment. But, as can be seen from Equation (2.8), to calculate
the structure factor, the eigenvectors or polarization vectors are
required and to obtain these the eigenvectors or phonon frequencies
are needed. Thus it is impossible to have the structure factor for
the specific crystal being studied before the dispersion curves have
been determined at least in part. The usual method used to circumvent
this problem is to use the structure factor calculations for a crystal
of like structure and if possible, similar atomic composition. Also
the dispersion curves which are easiest to measure can be mapped out
first using the similarities between the elastic and inelastic structure
factor discussed above. When sufficient data has been collected to

enable the fitting to a force constant model, the structure factor may
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then be calculated for a values of the phonon branches which are more
difficult to obtain. This procedure is of course only necessary for
a crystal lattice with a basis where the structure factor is nontrivial.
The details of the structure factor calculation for hcp zirconium will
be discussed in later sections.

The other quantities in the differential cross section that are
of importance are v-], k]/k0 and a(n + 1/2 = 1/2). The v-] factor
indicates that the intensity decreases as phonon energy increases. The
k]/k0 factor seems to show that phonon annihilation (neutron energy
gain) measurements would have a larger intensity but evaluation of the
population factor n + 1/2 * 1/2 indicates that phonon creation (neutron
energy loss) measurements are more favorable at higher phonon energies
for room temperature measurements. At 6K phonon creation measurements

are the only possible choice as can be seen in Table 6.

Resolution function

The delta functions in the differential cross section imply that
the neutron groups are of infinite height and zero width, but the
instrumental resolution serves to lower and broaden them. The resolu-
tion of the triple-axis spectrometer has been described by several
workers in as many different forms (24-28). The resolution function
R(§,v) as defined by Cooper and Nathans (24) is the probability of detec-
tion of neutrons as a function of Av and Aﬁ when the instrument is set

to measure at the point (§,v) in the four dimensional reciprocal space
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Table 6. Population factor at four temperatures for phonon annihilation
and creation with three different frequencies

T v Population Factor®
(K) (Thz) Creation Annihilation

1.0 1.00 0.00

6K 3.0 1.00 0.00

5.0 1.00 0.00

1.0 6.56 5.56

300K 3.0 2.56 1.56

5.0 1.78 0.78

1.0 21.00 20.00

1000K 3.0 7.25 6.25

5.0 L.57 3.57

1.0 26.00 25.00

1400K 3.0 10.09 9.09

5.0 6.26 5.20

Fpopulation factor = #l{n+3t3) (n = Eiﬁrhi/ n ) .
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(Qx’Qy,Qz’v)' The usual method of visualizing this function is by
considering the 50% probability ellipsoid. This is where R(a,v) = 0.5R0
where Ro is the maximum value of R(a,v).

As the phonon scan is made the resolution ellipsoid passes through
the dispersion surface and the size and orientation of the ellipsoid
with respect to the dispersion surface determines the width and shape
of the neutron group. For transverse phonon measurements the scan must
be performed in the ''focusing'' direction. That is the slope of the
resolution ellipsoid as seen in the q =V plane is nearly parallel to
the dispersion curve. Figure 10 illustrates the '‘focused' and
"defocused'' scans which are the result of taking a =7 t'a. Also
shown is resolution ellipsoid in the q, =V plane (longitudinal scans).
The cross section of the ellipsoid in this plane is nearly circular and
therefore no focusing effect is observed.

Another resolution effect is that of the relative scattering
directions from the three crystals in the triple-axis instrument (the
monochromator, sample and analyzer). The optimum condition is when
the scattering is in alternating directions from each successive
crystal. For example, in Figure 4, as seen by standing between the
reactor and the spectrometer the scattering at the monochromator is to
the right, at the sample to the left and at the analyzer to the right
(RLR). The RLR configuration is obviously equivalent to the LRL config-
uration and any other arrangement such as RRL or RLL for example, pro-

duces a defocusing effect.
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Figure 10. Resolution ellipsoid in the v-q plane for longitudinal and
transverse scans
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Spurious processes

In addition to the scattering event the instrument is set to
measure there are spurious processes which may contribute to the
measured intensity. These processes do not merely contribute to the
background as does the one phonon incoherent process for example, but
they give rise to peaks in the neutron group which may shift signifi-
cantly the peak due to the phonon or may be misinterpreted as phonons.

One of these processes is Bragg scattering in the monochromator
and sample, and incoherent scattering in the analyzer crystal (denoted
B-B-1). If this process is suspected for a particular neutron group,
the measurement is repeated using a different E0 or E], or different
reciprocal lattice point T. The indications that a peak in the neutron
group is the result of a spurious process are an abnormally large
intensity and an unusually small FWHM. To detect these abnormalities,
the widths and intensities (the area under the peak and above back-
ground) for each phonon were tabulated for comparison throughout the
experiments.

Another spurious process is the B-1-B process; higher order Bragg
scattering in the monochromator and analyzer, and incoherent scattering
in the sample. The B-|-B conditions can be calculated in order to avoid
the process entirely or to identify the process as giving rise to a
peak in the neutron group. The calculation begins with the Bragg

condition for the monochromator and analyzer;
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A

om 2dm sin 0, = m\_ monochromator (2.9)

>‘Oa

2d_ sin 0, = ax_  analyzer (2.10)

where dm, ZOM, da and ZOA are the plane spacing and scattering angle for
the monochromator and analyzer respectively and AOm and AOa are the
first order wavelengths the monochromator and analyzer are set to
scatter. Besides this first order scattering, the two crystals also
scatter through the same angles, ZGM and ZGA, the higher order wave-
Tengths A = Aom/m and A, = Aoa/m where m,a = 2,3,4,-++. Thus, for

the monochromator, not only is the energy

2,2
£ = ko - (2m) ®

0 2m 2
2m AOm

(2.11)

scattered through the angle ZGM but also the energies

2
Ey = igﬂﬂ%r-= m’E, (2.12)
2m A
m
Similarly, the analyzer passes in addition to
2,2
ko 7" (2mn)?
1 2m 2
2m_ A
n "0a
the energies
(21rﬁ)2 2
E,} =—5 = a', (2.14)
2m A
a
when
2. 2
Ey' = E;' (m“Ey = a”E,) (2.15)
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for some m and a, and we get the condition for a B-1~B ''phonon.'" The
neutron energy change #w appears to be fw = E0 - El and the ‘'phonon'!

energy h apears to be

hvB-I-B = thy = i(EO - E]) , (2.16)

here the + and - are for phonon creation and annihilation respectively.
Since most of the measurements in this work were phonon creation
and fixed E] scans, eliminate Eo in Equation (2.16) with the + sign

and use Equation (2.15) to obtain

hva_|-g = E](a2/m2 -1). (2.17)

Phonon creation requires that Ej > E, which, by Equation (2.15) implies
m < a. Figure 11 shows the solutions to (2.17) for several pairs
of integers (m,a). To use the plot to avoid the B-1-B '"contaminations"
as they are sometimes called, an E] (horizontal axis) is selected such
that around the phonon frequency of interest (vertical axis) there is
no intersection with any of the lines which are solutions to (2.17).
Also, a pyrolytic graphite filter (29) positioned before the analyzer
was used to attenuate the higher order wavelength neutrons and thus
reduce the possibility of the B-1-B process.

There is a third process which may give rise to a spurious peak
in the neutron group. This process involves incoherent scattering or -
inelastic scattering in the monochromator which produces a contaminated

beam incident on the sample. |If the sample is coincidentally set
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v-phﬂ(ThZ)

Figure 11. Several solutions for the equation for B-Ii-B contaminations
(Equation (2.17)) for fixed E, and phonon creation
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properly to Bragg scatter neutrons of energy E], which will also be
passed by the analyzer, a contaminated neutron group may be observed.
This |-B-B process can be identified because the y and ¢ angles are those

-]/2. Again,

for Bragg scattering by the sample with A = 2nh(2mEl)
repeating the measurement under different conditions usually eliminates
the problem.

At the ALRR the major cause of contaminations was the B~1-B proc-
ess due to the low flux of the reactor. Also pyrolytic graphite,
which has a very low incoherent scattering cross section, was used for

monochromating and analyzing crystals. Thus the possibility of B-B-I

or 1-B-B type contaminations are reduced using graphite.

Sample crystals

The measurements presented here on hcp zirconium were performed
on a single crystal grown by 0. D. McMasters, of the Metallurgy
Department of the Ames Laboratory. The crystal was prepared from
high purity zirconium crystal bar purchased from Teledyne, Wah Chang.
(Material in crystal bar form is poly-crystaline.)

Vacuum fusion analysis showed a halfnium content of less than 100 ppm
(by weight). Halfnium, which occurs naturally with zirconium, is
difficult to remove from zirconium due to similar physical

properties (they are both column IV transition metals). Halfnium has

"

a large absorption cross section (oa = 6] x 10-2 cm2) for thermal
neutrons and therefore a high halfnium content hinders a neutron

scattering experiment.
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Large single crystals, 3 to 4 cm” in volume, were grown using the
following technique. The crystal bar was arc-melted into a smoothed
surfaced boule. The boule was then cold rolled and scaled in an
evacuated tantalum crucible. The boule was then heat treated by heating
it to 1200°C in a vacuum furnace for several hours and then cooled to
about 8L0°C. The crystal was held at this temperature for several
days. The boule was then examined by standard elastic neutron diffrac-
tion techniques. Several large single crystals were located and
separated with a spark cutter. The largest of these, henceforth called
crystal 1, was selected for use in the hcp experiment. It was later
used in the bcc experiment also.

An additional crystal (crystal 2) was purchased from Materials
Research Corporation and used in the bcc experiment. This crystal was
grown by the electron beam zone refining technique. Its shape was
cylindrical with a 0.25" diameter and was approximately one inch in
length.

After the bcc measurements on crystal 1 at the ALRR and crystal 2
at the HFIR, vacuum fusion analysis was performed 6n the crystals to
determine hydrogen, nitrogen and oxygen content. The results of the
analysis are given in Table 7. Zirconium is a gettering material and
it was anticipated that oxygen contamination would present a problem.
This problem will be commented on in the presentation of the bcc results

later in the chapter and also in Chapter III.
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Table 7. Chemical analysis of crystals 1 and 2 by vacuum fusion
analysis in ppm by weight

Prior to experiments:

Crystal 1 Crystal 2
Hf (<)100 ppm @ Hf 170.02
c 9.0

0o 11.0
H <1.00
N <1.00

After experiments:

Crystal 1 Crystal 2
0 13000 0 2900
H 35 H 22
N 610 N b

®Mass spectrographic analysis in ppm atomic.
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Measurements on hcp zirconium

The measurements on the hcp phase of zirconium were performed
exclusively on the Triax at the ALRR. The ALRR was a CP-5 type heavy
water reactor operated at 5MW. All measurements were condﬁcted uéing
pyrolytic graphite crystals, set to scatter from the (002) planes, as
monochromator and analyzer. Collimations used were 40' between monochroma-
tor and sample and 30' between sample and analyzer. All scans were ''con-
stant a“ phonon creation with fixed El' For most scans E] = 3.27 Thz but
larger values, up to 7.5 Thz, were used to avoid B-1-B contaminations, to
reach larger 6'5 and to measure higher energy phonons. The latter was the
case for the [110] optic modes near and along the zone boundary.

Phonon measurements were made at 295K, 773K and 1007K with a few
selected phonons measured at 5.5K. The phonon dispersion curves were
obtained in the [001], [100] and [110] symmetry directions. The measured
phonon frequencies and corresponding errors are given in Table 8 and typi-
cal neutron groups are given in Figure 12. The wave vector for each phonon
is given in terms of the reduced wave vector, which is defined as [3[ =
(2ﬂ/d[hk2])c, where [hke] is the direction of q. Also given is t, the
reciprocal lattice point about which the given phonon was measured. The
reciprocal lattice points were selected on the basis of the inelastic
structure factor calculations of lyengar et al. (30) for magnesium. When
sufficient data was collected to enable a fitting of a force constant
model the structure factor was calculated for zirconium is shown in Figures
13, 14, and 15. (The corresponding reciprocal lattice planes are shown

in Figures 16, 17, and 18.)



Table 8. Phonon frequencies for hcp Zr (1 Thz = 4.136 meV)
> NN viAv
q 7(G) 5.5K 295K 773K T007K
TA[0017 (ag)
0 0 . 100 0.45+0.01 0.34+0.03 0.33+0.01
0 0 .2 100 0.83+0.01 0.77+0.02 0.72+0.01
0 0 0.2 100 1.02+0.02
0 0 0.3 100 1.19+0.02 1.1220.02 1.06+0.02
0 0 0.4 100 1.54+0.02 1.4340.02 1.37+0.02
0 0 0.5 100 1.90+0.04 1.81+0.02 1.68+0.04 1.6240.04
LAfo01] (a,)
0 0 0.1 002 1.01+0.03 0.96+0.03 0.95+0.03
0 0 0.2 002 1.94+0.03 1.85+0.04 1.82+0.02
0 0 0.3 002 2.82+0.03 2.69+0.04 2.64+0.03
0 0 0.4 002 3.48+0.04
0 0 0.5 002 4,20+0.05 4.17+0.04 L.07+0.03 4.03+0.03
0 0 0.5 003 4.12+0.08
70[001] (Ag)
0 0 0 100 2.66+0.02 2.56+0.03 2.32:+0.05 2.16+0.06
0 0 -0.1 100 2.56+0.03 2.24+0.05 2.08+0.04
0 0 -0.2 100 2.41+0.03 2.15+0.04 2.00:0.03
0 0 -0.3 100 2.21+0.02 2.01x0.04 1.93£0.04
0 0 -0.4 100 2.04+0.02 1.89+0.03 1.80+0.03
0 0 -0.5 100 1.90+0.04 1.81+0.02 1.68:0.04 1.62+0.04
Lofoo1] (ay)
0 0 0 003 4,23+0.15 4.61+0.04 4.87+0.08 4.86+0.06
0 0 0.1 003 4 .45+0.10 4,58+0.06 4,90+0.08
0 0 0.2 003 L,59+0.06 4.43:0.15 4,72+0.08
0 0 0.3 003 4.65+0.10 4.61£0.08 L,72+0.12 4.74+0.08
0 0 0.4 003 4,40+0.08 L 45+0.08
0 0 0.5 003 4,20+0.05 4.15%0.06 4.07+0.03 4,03t0.03
TAL[100] (Z3)
-0.1 o0 0 002 0.78%0,01 0.71%0.02 0.67+0.01
-0.15 0 0 002 1.18%0.01
-0.2 0 0 002 1.57%0.01 1.40+0.02 1.31%0.01
-0.3 0 0 002 2.21%0.02 2.00%0,02 1.88%0.01
-0.4 0 0 002 2.62%0,02 2.41%0,03 2.30%0.03
-0.5 0 0 002 2.73%0.04 2.63%0.05 2.480.04



Table 8 continued

> > viAv
q 7(G) 5.5K 295K 773K 1007K
T0.[100] (£4)

0 0 0 003 L, 34+0.15 k.61+0.04 4.87+0.08 4 .86+0.06
-0.1 0 0 003 4,60+0.05 4.86+0.08
-0.2 0 0 003 4.79+0.08
-0.3 0 0 003 4.75+0.07 4.71:x0.10 4.71+0.10
-0.4 0 0 003 4.62+0.10
-0.5 0 0 003 L.85+0.08 L.68:0.10 L.46+0.09
taf100] (z,)

0.1 O 0 100 1.68£0.03 1.53+0.05 1.55+0.02
0.2 0 0 100 3.23+0.03 3.01+0.06 2.89+0.04
0.3 0 0 100 4.18+0.03 L.04+0.10 1.53+0.04
0.4 0 0 100 3.97+0.02
0.5 0 0 100 5.14+0.04 4.78:0.10 4.63+0.08
Lof100] (z;)

0 0 0 100 2.66+0.02 2.56+0.03 2.32+0.15 2.16+0.06
0.1 0 0 100 2.76+0.10
-0.2 0.2 O 220 4.17+0.06 3.52+0.20 3.60+0.15
-0.3 0.3 O 220 5.02+0.06
-0.4 0.4 o 220 5.31+0.06 4,84+0.18 4,76+0.15
-0.5 0.5 O 220 5.36+0.05 5.03:0.15 5.16+0.15
TA11[100] (£,)

0.1 -0.1 0 110 0.83+0.01

0.2 -0.2 0 110 1.53+0.01

0.3 -0.3 0 110 1.97+0.06

0.4 -0.4 o 110 2.21+0.03

0.5 -0.5 0 110 2.33+0.06
Tol1[100] (z,)

0 0 ) 100 2.66+£0.02 2.56+£0.03

0.1 -0.1 0 110 2.98+0.02

0.2 -0.2 O 020 3.59+0.04

0.3 -0.3 0 020 4.28+0.05

0.5 -0.5 0 120 4.70+0.06
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Representative neutron group for hcp Zr at 295K and 1007K
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Figure 13. Inelastic scattering structure factor g 2 for Zr calculated
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using the MAS model of DeWames et al. (
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Figure 4. Inelastic scattering structure factor g 2 for Zr calculated

2) (Chapter 111) in
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(120) plane of the hcp reciprocal lattice. The region
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the origin is labeled with the standard group theoretical
notation
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bounded by the dotted line is the unit over which the
structure factor repeats. The first Brillouin zone about
the origin is labeled with the standard group theoretical
notation
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The dispersion curves constructed from the data of Table8 are
shown in Figures 19 through 22. The solid lines through the room
temperature and 1007K (Figures 19, 20 and 21) data were determined by a
fitting procedure which is discussed in Chapter lll. The dispersion
curves had previously been measured in the [100] and [001] directions at
room temperature by Bezdek et al. (31,32) and our room temperature data
are in good agreement with those measurements. The dispersion curves in
the [110] direction had not been measured prior to this work. The tem-
perature dependence of the TA]][IOOJ branch was not measured. However,
the observed temperature dependence of all other branches with one

exception discussed below, was consistent with that of Moss

t al. (33)

et
for the TA]I[IOO].

In addition to the phonon measurements the lattice constants a
and c as a function of temperature were determined from the positions
of the two Bragg reflections used to align the crystal at each temp-
erature. Figure 23 shows the values of a, c¢c and c/a determined in

the experiment along with data determined by the thermal expansion

experiments of Goldak et al. (34).

Measurements on bcc zirconium

Measurements on the bcc phase of zirconium were begun on the Triax
at the ALRR. All operating conditions were the same as in the hcp
experiment. Before the dispersion curve measurements could be com-
pleted, the ALRR permanently ceased operation on December 31, 1977.

When time became available on HBIA at the HFIR at the ORNL the
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Figure 19. Phonon dispersion curves for hcp Zr at 295K in the symmetry directions [001], [100] and
[110]. The solid lines were obtained by fitting the data to the MAS force constant

model of DeWames et al. (22)
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Figure 20. Phonon dispersion curves for hcp Zr at 295K and 1007K in the symmetry directions [oo01],
[100] and [110]. The solid lines are an aid to the eye only
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experiment was continued. Scans on HBIA were also ''constant a" with
one exception to be mentioned. As mentioned earlier, HBIA operates
with fixed E0 only. This requires phonon annihilation measurements
in order to reach all but the very lowest frequency phonons since

E0 is fixed at 3.57 Thz.

The bcc single crystals were grown from the parent hcp single
crystals in the vacuum furnace.used for the high temperature hcp
measurements. The hcp crystal was first oriented at room temperature.
Then, while sitting on a Bragg reflection, the crystal was cycled
through the transition temperature (approximately 1135K) several times.
For crystal 1, which was used for the measurements taken on the Triax,
the hcp reflection intensity was observed to decrease as the transi-
tion temperature was approached. Then, after cycling and the tempera-
ture increased above 1135K, the intensity of the bcc reflection was
observed to increase. The orientation of the bcc crystal with respect
to the hcp crystal for crystal 1 was foﬁn& to obey thé Befgers rélations
(35-37) for hcp to bce transitions. In fact the process could be re-
peated in that the hcp single crystal was retained upon lowering the
temperature through the transition. The hcp crystal could then be re-
oriented in order to obtain the reoriented bcc crystal.

The behavior of crystal 2 used for the measurements taken on HBIA
was not so predictable. Upon cycling crystal 2 through the transition
temperature, the hcp single crystal was lost. Fortunately a bcc single
crystal was eventually grown and oriented but not without a great deal

of difficulty.
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The dispersion curve measurements on crystal 1 were made at 1323K.
It was observed that the intensity of the Bragg reflections decreased
with time. There are at least three possible explanations for this.
The first is that the sample was simply being annealed and therefore
the mosaic spread was decreasing with time. The second involves the
competing w-phase. It is possible that the amount of crystal in the
w-phase was increasing with time and therefore decreasing the amount
of bcc material. The third explanation is that the oxygen impurity in
the sample was affecting the Bragg intensities. This decrease in
intensity prompted the measurements on crystal 2 to be made at 1423K
in the event that the decreasing in the intensities was due to either
the annealing or w-phase effects. In addition, crystal 2 was sealed
in a tantalum crucible under a vacuum of approximately 10-5 Tour in
order to decrease the rate at which oxygen was absorbed by the crystal.
The oxygen content of crystals | and 2 measured after their use in the
experiments is given in Table 7. Although the oxygen impurity in
crystal 2 was about 1/4 that in crystal 1, 2900 ppm (by weight) is a
significant amount of oxygen (on the order of 1% atomic).

The dispersion curves at 1423K on crystal 2 were determined along
the [100], [110] and [111] symmetry directions, and are shown in Figure
24, The solid line is an aid to the eye only, Table 9 gives the data
from which the dispersion curves were constructed. The information is

analogous to that of Table 8. Also given in Table 9 are the Triax data
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Table 9. Phonon frequencies for bcc Zr (1 Thz = 4,136 meV)

Crystal 2 data (HBIA, 1423 K) Crystal 1 data (Triax, 1323K)
-+ -> ! -> ->
3 (%) VAV q T(8) vEAY
L[001] (A4) L[001] (a;)
0.1 0 0 200 1.15:0.10 0 0 0.1 002 1.06:0.03
0.2 0 0 200 1.96:0.08 0 0 0.2 002 2.05+0.05
0.3 0 0 200 2.97+0.10 0 0 0.3 002 2.91+0.03
0.4 0 0 200 3.64:0.20 0 0 0.4 002 3.58:0.04
0 0 0.5 002 4.20:0.20 0 0 0.5 002 4.21+0.04
0 0 0.6 002 4.68+0.25 0 0 0.6 002 4.56x0.15
0 0 =-0.7 002 4.63:0.25 0 0 0.7 002 4.62+0.20
0 0 ~-1.0 002 4.75:0.30 0 0 0.8 002 U4.66%0.20
T[001] (As5) T[001] (As)
0 0.1 0 200 0.61:0,02 0 0 0.1 110 0.56:0.03
0 0.2 0 200 1.20:0.03 0 0 0.2 110 1.18:0.03
0 0.3 0 200 1.82:0.03 0 0 0.3 110 1.81+0.05
0 0.5 0 200 2.58:0.16 0 0 0.4 110 2.36:0.06
0 0.5 0 200 2.98:0.12 0 0 0.5 110 2,97+0.10
0 0.6 0 200 3.40:0,30 0 0 0.6 110 3.70+0.12
0 0.7 0 200 4.07+0.35 0 0 0.7 110 4,15+0.15
6 0.7 0 200 4.18:0.25 0 0 0.85 220 4,39+0.30
0 0.85 0 200 4.42:0.25
Lfiio] (z5) L1101 (z;)
0.1 0.1 0 116 1.57+0.02 0.1 0.1 o0 110 1.67+0.04
0.2 0.2 0 110 3,08:0.05 -0.2 -0.2 O 220 3,1420.10
0.3 0.3 O 110 4,17:0.08 -0.3 -0.3 O 220 4.30+0.15
0.35 0.35 O 110 4.40+0.20 -0.4 -0.4 0 220 4,36+0.20
0.4 o.4 0 110 L4.46x0.10 -0.5 -0.5 O 220 4,28+0.40
0.45 0.45 0 110 4.40+0.20
0.5 0.5 0 110 4.24+0.30
T,[110] (z,)2 101107 (z,)
-0.1 0.1 0 110 0.80:0.02 -0.1 =0.1 O 1T0  0.76+0.04
-0.2 0.2 0 110 1.,65:0.05 -0.2 -0.2 O 170 1.58:0.08
-0.3 0.3 0 110 2.55:0,08
-0.4 0.4 0 110 3.24:0.10
-0.5 0.5 0 110 3.88:0,15

Fpolarization 11 to [1T0].
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Table 9 continued

Crystal 2 data (HBIA, 1423K) Crystal ) data (Triax, 1323K)
- > > >
q () VEAY q (%) viAy

T,[110] (23)b T,[110] (z,)

-0.1 -0.1 0 002 0.86:0.04 -0.1 -0.1 0 002 0.77+0.02
-0.2 -0.2 0 002 1.72:0.04 -0.2 -0.2 0 002 1.65:0.03
-0.3 -0.3 0 002 2.49+0.06 -0.3 -0.3 0 002 2.43+0.06
-0.4 -0.4 0 002 3.14:0.10 -0.4 -0.4 0 002 3.18:0.10

0.5 0.5 0 002 4.20+0.25 0.5 0.5 0 002 3.43+0.20
T[111] (Aq) TL111] (Aq)

-0.1 -0.1 0.1 002 0.70+0.02 -0.1 =-0.1 0.1 112 0.64+0.04
-0.2 =-0.2 0.2 002 1.45+0.05 -0.2 -0.2 0.2 112 1.31£0.10
-0.3 -0.3 0.3 002 2.10:0.20 -0.3 -0.3 0.3 112 1.94+0.20
-0.4 ~0.4 -0.4 002 2.70+0.15 0.4 0.4 -0.4 112 2.60+0.30
-0.5 -0.5 -0.5 222 3.40:0.30 -0.5 -0.5 0.5 112 3.30£0.30
-0.6 -0.6 0.6 003 4.00+0.20 -0.6 -0.6 0.6 002 3.44+0.40
-0.7 =-0.7 =-0.7 002 L4.23:0.20

-0.8 ~-0.8 0.8 112 4.,52+0.25

-0.9 -0.9 -0.9 002 4.75+0.20

L[1117 (a,) LL111d (ay)

-0.1 =-0.1 =-0.1 111 2.,22+0.05 -0.1 -0.1 -0.] 111 2.09+0.04

0.2 0.2 0.2 110 3.94:+0.20 -0.2 -0.2 -0.2 111 3.96:0.30
-0.3 -0.3 -0.3 112 4.63+0.20 -0.3 -0.3 -0.3 111 &4.44:0.40
-0.4 -0.4 -0.4 112 4,31:0.20 -0.4 -0.4 -0.h4 111 4.32+0.20

, Constant AE scans. _ Constant AE seans
z 7(6) AE r 1(€) AE

0.562+0.02 222 2.80 0.54120.01 222 2.80
0.5880.015 222 2.30 0.589:0.01 222 2.30
0.614+0.012 222 1.80 0.632+0.0) 222 1.80
0.672+0.015 222 1.20 0.650+0,01 222 1.20
0.658:0.015 222 0.70 0.700+0.01 222 1.80
0.676x0.010 222 1.80 0.715+0.01 222 2.30
0.706+0.015 222 2.30 0.762+0.01 222 2.80
0.738+0.02 222 2.80 0.826+0.01 222 3.50
0.794+0.025 222 3.50

bPolarization 11 to [001].
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Table 9 continued

Crystal 2 data (HBIA, 1423K) Crystal 1 data (Triax, 1323K)

a _%(?) viAv -5 ‘ ?(E) viAv

-0.9 -0.9 -0.9 222 4.50+0.35 -0.9 -0.9 -0.9 222 L. 24+0.40
-1.0 ~-1.0 -1.0 222 4.75+0.30
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from crystal 1 at 1323K. Figure 25 shows typical neutron groups for
crystals | and 2. The agreement is quite remarkable since the two
sets of data were taken using different crystals and scan modes on
different spectrometers. (From the results of the hcp measurements,
one would not expect a large difference in results for the 1323K and

1423K data.)



80

60

97

_ TRIAX Q(1,1,0:4)
T[001]

q= 04

250

200

TRIAX Q(08,08,22)
T

q=02

and 1423K (HBIA)

40} 150
o
20 1 1 1 1 1 1 100 i ] , 9
-8 -20 -22 -24 -26 28 -30 -03 -07 -t1 -I'5 -9 -23
ool TRIAX Q(-0-,-0,2) 00k HBIA Q(2:3,00)
T, (1101 L ool
75F q=01 1000 q=03
) 50 900
=
S s 800
o
O o 1 | ) ) l ] 700 ) 1 ] 1 1 1 1
-30 --46 -62 -78 ~-94 -|lI0 21 24 27 30 33 36 39
125f- HBIA Q(08,12,0) HBIA Q(1:5,1-5,0)
T,110] L{1ol
100} q=0-2 700 q=05
751 600
50 - 500
25 O~ 400 ] 1 1 1 1
2 |4 |6 I8 20 22 20 28 36 44 52 60 68
AE=E,- Eg (Thz)
Figure 25. Representative neutron groups for bcc Zr at 1323K (Triax)
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CHAPTER I11. ANALYSIS AND DISCUSSION

Data Analysis for the hcp and bcc Experiments

Although a great deal of information about a crystal can be obtained
directly from the measured dispersion curves, there is additional infor-
mation which may be extracted from this data. Specific thermodynamic
properties such as the lattice specific heat and Debye temperature can
be calculated once the dispersion curves have been measured. The pro-
cedure begins with the fitting of the data, usually to a Born-von
Karman force model as discussed in Chapter 1, to obtain a set of calcu-
lated AFC's. The AFC's have very little physical significance in the
analysis since they are a phenomenological representation of the
largely unknown interatomic forces. This is especially true for
metallic crystals where the contribution of the itinerant electrons
complicates the picture even further. Once the AFC's have been calcu-
lated, wg(a) may be evaluated for any mode £ and any q. Thus the AFC's
are in a sense only part of an interpolation scheme to obtain a con-
tinuous wg(a) as a function of a. Then the phonon density of states is
calculated from the continuous dispersion curves. The density of states
is then used in the calculation of the lattice specific heat.

We begin with the analysis of the bcc data since the techniques used
are much less involved. The analysis of the hcp data is covered next
followed by a discussion of the anomalies in the dispersion curves of

hcp and bec Zr.
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bcec fitting procedure

The computer program used to analyze the bcc data was a linear
feast squares fitting routine acquired from McMasters University,
Ontario, Canada. The program was the same as the fcc program used by
Gould (38) but with the appropriate modifications for a bcc crystal.
The detailed operation of the program is given in Reference 38 and only
an outline of its description is givn here.

The program uses a given set of data, the phonon frequencies,
wg(a), and corresponding errors to obtain a set of AFC's which minimize

the quantity

of = WEDIn 0 D2 - ] ¢ (5,3 (5,917 (3.1)
" 5 P P
€q
(see Equation (1.53)). The W(E,q) is a weighting factor which takes
into account the error of a particular phonon frequency and is of the

form

2
w(a,?;)=[ _ _,] : (3.2)
w(E,Q)(Aw(ﬁ,Q))

The ¢p's are the AFC's and fp(g,a), the fitting function, is given by

fp(a,E) =) anp(l - cos "—C"—g—) ’ (3.3)

n m

where the anp's are the coefficients of the AFC decomposition of the
¢n's given in each row of Table 2.
The program allows the AFC's to be fit to elastic constant data as

well. This is accomplished by adding a term in Equation (3.1) as
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follows

o2 =o?+ IO ¢, 6, - ) 0 F,5(1) 12 (3.4)

where wc(j) is the weighting factor for the particular Cj. The
quantity fpc(j) is the elastic constant fitting function obtained from

Equation (3.4) as
Cr.y _ 2
fp () =7 %o n“/4 . (3.5)
n

Minimizing 6'2 with respect to the AFC's results in a set of AFC's con-
sistent with the data and/or the given elastic constants. The elastic
constants for bcc zirconium have not as yet been measured and therefore
the above program option was not utilized.

Also provided in the program is the capability of fitting the data
with the additional axially symmetric (AS) constraints of Table 4 and
with any given set of AFC's fixed at some value. The terms added to

Equation (3.4) for the AS constraints and AFC fixing constraints are

) w"m(i 8. o )" , (3.6)
m n

B defined in Table 4 and
nm

y w'm( h - L8 ¢, )2 , § =1 forn=m (3.7)
m n

0O forn#m

respectively. The W'm and W“m are inputed weighting factors for the

two types of constraints. Thus if all the constraints of Table 4 are
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imposed a fit results which is consistent with the axially symmetric
model .

The relative importance of the data or a particular constraint in
the fit is determined partly by the weighting factors W(E,E), wc(j),
W' and W' (Equations (3.1), (3.4), (3.6), and (3.7)) and by the number
of data points and constraints.

In this fitting scheme the AFC's are obtained essentially from the
AFC composition of the interplanar force constants. Therefore only as
many AFC's may be obtained as there are IFC's. From Table 2 it can be
seen that for the three major symmetry direction [00z], [zz0], and
[zzz] there are 31 IFC's. However these IFC's are not all independent
since there exist degeneracies at the high symmetry points I', H, and P.
At T all seven branches are degenerate and there are only three
independent elastic constants. Therefore there must be four relations
(7 - 3 =4) between the IFC's. At H there are four degenerate branches
with one frequency. Thus there are three more relations (4 - 1 = 3)
between the IFC's. Similarly another relation is introduced at P where
two branches are degenerate (2 - 1 = 1). There is one additional
relation due to setting all ¢n =0 for n > 8. There are therefore only
22 independent IFC's (31 - 4 -~ 3 -1 - 1 = 22) but from Table 2 there
are 23 independent AFC's for 8 neighbors. Thus, to obtain an eight
neighbor fit additional constraints must be imposed. The alternative
is to measure a few frequencies in the [¥%z] or [zzl] directions. Also
the fitting for n < 7 may be made with no additional constraints and is

called a general tensor fit.
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Once the set of AFC's have been calculated from the fitting routine
the program calculates a frequency for each of the inputed measured
phonons using Equation (1.53). The '"goodness' of the fit is then

indicated by the value of x2 evaluated from

2

wg(q)calc } wg(q)exp (3.8)

+
1 Awg(q)exp

where the sum is over all data points and N is the number of data points
minus the number of fitting parameters.
Several of the fitting techniques used to analyze the data are
listed below.
1) 1 to 7 neighbor; general tensor
2) 1 to 7 neighbor; modified tensor (one AS constraint - each of
the 7 AS constraints used)
3) 1 to 8 neighbor; modified tensor (three AS constraints)
4) 1 to 8 neighbor; axially symmetry (all 7 AS constraints)
5) 1 to 7 neighbor; (one and two AFC's fixed at values from
general tensor fit)
The X2 value for the general tensor fit is shown in Figure 26 as a function
of neighbor. The 7 neighbor general tensor fit had one of the lowest
x2 values of all the fits and the AFC's from this fit were used in the
continuation of the data analysis. The dispersion curves obtained from
this fit are plotted in Figure 27 along with the experimental data.
The agreement between the experimental and calculated frequencies is

excellent in the [00z] direction and in the [zz0] direction except near
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Figure 26. Variation of X2 with the number of neighbors included in the
7 neighbor general tensor fitting procedure
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the zone boundary for the longitudinal branch, an anomaly to be dis-
cussed later. The region of poorest agreement is the [zzz] direction
for ¢ from 0.5 to 1.0. This problem is obviously the result of trying
to fit the anomalous dip at z ¥ 2/3.

The AFC's, IFC's and elastic constants obtained from the 7 neighbor

general tensor fit are tabulated in Table 10.

bcc phonon density of states

The method used to calculate the phonon frequency distribution
function g(w) or phonon density states (DOS) is that of Gilat and
Raubenheimer (39). The DOS program first uses the AFC's from the fitting
program to give the dynamical matrix at a set of a values that form a
cubic mesh in an irreducible section of the Brillouin zone (see
Appendix A Figure 42). The dynamical matrix is then used to solve for
the eigenfrequencies at the cubic mesh points. The constant energy
surfaces inside each cube are then approximated by parallel planes
which means g(w)dw is proportional to the volume between the two planes
at w and w + dw. Therefore by selecting an appropriate number of mesh
points and a small enough dw the program can very accurately obtain
g(w).

Some of the features of the dispersion curves may cause dramatic
features to be present in the DOS. This can be seen by examining the

form of g(w) (40)

dS
g(w)dw ~ [ V;%-dm (3.9)

q
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Table 10. AFC's, interplanar force constants (IFC's) and elastic constants
obtained from seven neighbor general tensor fit

AFC 10% dynes/cm (error)  IFC? T[001] tfoo1]
1xx 0.79583 0.04038
Ixy 0.47259  0.04540 9, 6.70882 6.93466
2xx 0.73283  0.07862 &,  -0.66202 1.90336
2yy  -0.23570  0.05291 34 0.0928%  -0.13300
3xx 0.15018  0.02861 &,  -0.04328  -0.29958
3zz  -0.00690  0.04063
3xy  0.24337  0.04447 nlie]  Tie] _t[1l0]
by 0.02793  0.02509 2  ~0.57598  -0.51044 0.92767
byz  -0.33868  0.02043 %3 -0.00968 0.06052  -0.24201
kixz 0.03233 0.02035 T[111] Lf111]
5xx  =0.09547  0.02053 &, 6.42387 1.51674
5xy 0.23409  0.04148 o, 0.41822  -0.98634
6xx 0.03452  0.07432 &3  ~0.29958 6.60014
6yy -0.02164 0.03447 oy, 0.08266 1.54288
7xx  -0.03146  0.01031 o5 0.24989  ~0.17352
722z 0.01513  0.01184 o 0.42748  ~1.14170
7Jyz  -0.11624  0.01495
Jxy  -0.02904  0.01283
12 2

Elastic Constants 10 dynes/cm

€11 0.99970

Cyy 0.29072

Cio 0.45379
(Cy1-Cy2=Cyy)/3 0.27888
(Cl 1+2c1 +llCu|+)/3 1 .02338
(Cn-Cu%/Z 0.27296
(Cy #C12#+2C,,,) /2 1.01746

3IFC's in units of 10* dynes/cm.



107

where dSw is an element of area on the constant frequency surface w.
From the factor Vam in the denominator g(w) is expected to become very
large as Vaw + 0 or in other words as the constant energy surface
becomes parallel to a. If we consider 3 in one of the symmetry direc-
tions then Vam is simply the slope of the dispersion curve and we expect
g(w) to become large as the slope of the dispersion curve goes to zero.
Although the behavior of g(w) is determined by phonons in off symmetry
directions as well as in the symmetry directions, flat regions along
the dispersion curves usually produce some structure in the DOS.

The density of states for bcc Zr calculated using the AFC's of the
7 neighbor general tensor fit is shown in Figure 28. The spike at
4.5 Thz apparently corresponds to the L[zz0] branch near the zone bound-
ary (Figure 24). The broad peak at 4.4 Thz may be due to the local
minima and maxima in the L[zzz] branch around ¢ = 0.8 but the width of

the peak makes positive identification difficult.

bec thermodynamic analysis

The method used here to calculate the lattice specific heat of bcc
Zr is much simpler than that used for hcp Zr since the phonon dispersion
curves we measured at a single temperature only. To obtain the relation
for the specific heat we begin with the expression for the lattice

vibrational energy of a crystal (40,41)
U = [ g(w) n(w) aw dw (3.10)

where n{w) is the phonon occupation number of Equation (2.3) and the

integration is over the nonzero frequency range of g(w). The lattice
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Figure 28. Phonon density of states of bcc Zr at 1423K determined from
the AFC's generated by the 7 neighbor fit
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specific heat at constant volume (per mole), Cs, is related to the den-

sity of states by

j (ma)zg(m)exp(ﬁhm)dm

c(m) 3U
L ( ) (3.11)

3N kg 3T/, [exp(Baw) - 1]2

where B = l/kBT and N0 is Avogadro's .number. The integral in Equation
(3.11) may be evaluated numerically at any temperature given the phonon
density of states g(w). Using the DOS described in the previous sec-
tion, Cs(T) for bcc Zr was calculated and is shown in Figure 29. Notice
that although bcc Zr does not exist below ll35K,C3(T) was evaluated
down to OK.

Direct calorimetric measurements of the specific heat at constant
pressure Cp of bcc Zr have been made (8,42). This makes comparison of

the calculated CV with direct measurements possible through the relation

c = C,+¢C

p v d
_ 2 e
= Cy+ Ly + Ly (3.12)

where Cs is the electronic contribution to the specific heat at constant
volume. The dilation term Cd is obtained from the thermodynamic

relation

K C 2

(92T + ch) P

C =

v : (3.13)

or
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c, = C -¢, = 9a2VT/K for cp/cvgl (3.14)

where o is the coefficient of linear thermal expansion, V is the specific
volume (atomic volume) and K is the adiabatic compressibility. The
compressibility is the inverse of the bulk modulus and for a cubic

crystal is given in terms of elastic constants by

B = 1/K = 1/3(c” +2c12) . (3.15)

Since neither an experimental value of the compressibility nor experi-
mental values of the elastic constants were available the appropriate
slopes of the dispersion curves were used to calculate CI] and C12
(see Tables 3 and 10). The resulting value for the bulk modulus of bcc
Zr at 1423K calculated from Equation (3.15) and the values of Ciy and
Cip from Table 10 was B = 0.664 x 1012 dynes/cmz. With the values of o
as a function of temperature (43) Cd(T) was calculated from Equation
(3.14). The electronic contribution to the specific heat at constant
volume was obtained by using the electronic DOS of bcc Zr of Myron et al.
(44) and is shown in Figure 30 (top).

In Figure 30b we show the calculated specific heat at constant
pressure, Cp(calc) = C& + Cs + Cd, plotted along with the direct
measurement Cp(meas) of Hultgren et al. (8) and Vollmer et al. (42).

Considering the disagreement between the two measured Cp's, the calcu-

lated specific heat for bcc Zr is quite acceptable.
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hcp fitting procedure

The MAS model of DeWames et al. (22) was used in the analysis of the
hcp data. The phonon frequencies are nonlinear functions of the force con-
stants in this model. This means that there is not a unique set of
force constants which minimize xz (Equation (3.8)). Thus by using a
noniinear fitting routine with different initial starting parameters
one may obtain a different set of force constants. For this reason a
program was developed by Harmon and Arch (45) which sampled the
parameter space for parameters within a given range at random points at
which the xz test was performed. Typically on the order of 30,000
points were tested and the set of parameters with the lowest x2 was
used in the nonlinear fitting program.

The success of the fitting procedure was judged on the agreement
between the measured phonon frequencies and elastic constants and those
calculated using the force constants obtained from the fit. For this
reason fits were made using the 295K and 1007K data both with and without
the elastic constants fixed. As can be seen from the plot of the
calculated and measured frequencies in Figures 19, 20 and 21, the
calculated and measured (12) elastic constants in Table 11, the fits at
295K and 1007K are quite acceptable. Also given in Table 11 are the
MAS force constants (see Appendix D) for the four fits described.

For all fits the condition deduced from rotational invariance (Equation

(1.16) and (D.28)) was satisfied.



114

Table 11. MAS force constants (see Appendix D) for four fits
(10% dynes/cm) _
295K 295K 1007K 1007K

MAS force no elastic elastic no elastic elastic
constants constraints constraints constraints constraints
K(1,12) 3.974 3.979 5.34) 7.276
CBX(I,IZ) -0.377 -0.354 -0.648 -1.467
ch(l,lz) -1.288 -1.292 -2.132 -3.395
K(2,11) 2.280 2.266 2.762 3.620
ch(z,ll) -0.070 -0.048 0.093 0.904
ch(z,ll) 0.328 0.324 0.062 0.038
K(3,12) -0.460 ~0.500 0.448 0.295
CBX(3,12) -0.039 -0.030 -0.122 0.600
CBZ(3,12) ~0.145 -0.126 -0.368 -0.301
Kk, 11)+

ch(h,l]) 0.840 0.650 0.520 0.310
cBX(h,ll) 0.043 0.039 0.034 0.030
K(5,12) 0.195 0.152 -0.592 ~0.1056
CBX(S,IZ) 0.028 0.036 0.197 0.288
CBZ(S,IZ) -0.026 -0.013 0.149 0.258
K(6,11) 0.148 0.127 0.418 0.688
CBX(6,II) 0.171 0.167 -0.323 ~0.1021
CBZ(G,II) 0.010 0.002 0.008 -0.010

(10'2 dynes/cm?)
295k% 295 1007° 1007

Elastic no elastic elastic no elastic elastic
constants constraints constraints constraints constraints

Ci1 7 1.508 1.434 1.207 1.114

Ciz = 0.833 0.728 0.702 0.832

Ci3 = 0.840 0.653 0.795 0.656

Cypy = 0.324 0.320 0.232 0.228

C33 = 1.857 1.648 1.614 1.014

3From Ref. (12).
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hcp phonon density of states

The method used to calculate the hcp phonon DOS was again that of
Raubenheimer and Gilat (46) with the extension to hcp crystals. The
force constants of the first column of Table 11 were used in this
calculation with the resulting phonon DOS of Figure 31.

Two identifications appear possible in the DOS of hcp Zr. The
first large peak in the DOS at about 2.5 Thz is probably due to the

flat regions in the TO[001] and possibly also the TA and TA, [100]

it
branches near M. Also the flat region of the LO[001] and T0,[100] near
I' probably give rise to the peak at about 4.7 Thz.

The phonon density of states will be used later in the thermo-

dynamical calculations.

hcp thermodynamic analysis

As mentioned in the introduction the specific heat of zirconium
exhibits anomalous behavior above room temperature. For this reason it
is interesting to use the results of the phonon measurements to calcu-
late the lattice specific heat. Thus, it can be determined if the
temperature dependence of the phonon dispersion curves is consistent
with the direct measurement of the specific heat.

The entropy at temperature T of an anharmonic crystal can be

calculated using

s(8) ok %? {Bhw (T)n_+ In(n_+ 1)} (3.16)
, B o o o o )

where kg is Boltsman's constant, o stands for (q,j) the wave vector and
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branch index of the phonon mode, hwG(T) is the quasiparticle (phonon)

energy, B = 1/kT and

ng = lexp(Bau (M) - 117" . (3.17)

This is the usual harmonic formula with the harmonic frequencies
replaced by the ''renormalized effective frequencies' wO(T) (47,48) .
Within the framework of low-order perturbation theory the wU(T) agree
with the frequencies determined by inelastic neutron scattering and
this expression for the entropy can be used to calculate the lattice

specific heat at constant pressure (47,48). From Equation (3.16)

(2) 2
3s 3 3 1
¢t . = Nkg 7 —>E°———[1 - ( " v) ] (3.18)

P . 2
T constant o sinh xo 3 1In T

pressure

where Xg = hv/ZkBT. The first term is the quasiharmonic contribution
Céz)(QH) and approaches the classical value of 3NkB in the high-
temperature limit. The second term is the anharmonic contribution.
Anharmonicity manifests itself in the explicit temperature dependence
of the phonon frequencies. Also, from Equation (3.18) it can be seen

(2)
p

that in order to calculate C as a function of T, the phonon fre-

quencies and their temperature derivatives are needed. Since only a
relatively small number of phonon frequencies were measured and at only

a few temperatures suitable interpolation schemes are necessary to use

(2)

Equation (3.18) to evaluate Cp . The fitting procedure of the previous

section yields a continuous set of phonon frequencies at a given
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temperature in the appropriate symmetry directions of the Brillouin

zone. The interpolation method used to calculate the thermodynamics

of Cu and Pd by Miiller and Brockhouse (49) was applied to obtain the
temperature derivatives of the frequencies. In this method, the tempera-

ture dependence of the frequencies is expressed in the form

v (T) = vU(T])f(T) (3.19)

where T] is an arbitrary reference temperature, taken here to be 295K.

The average temperature dependence f(T) is defined experimentally as

v 5 n v (T
f(T) = ‘v—‘ﬁ-—)‘ g —-ﬁ.-]-y (3.20)

where n is the number of modes measured at the temperature T] and T.

As can be seen from Figure 32 the experimental frequencies vary linearly
with temperature, which means that f(T) is merely the average slope of
vG(T) versus T. Using Equations (3.18), (3.19) and (3.20), the specific

heat can be written

, 2
(8 3Nk[l ) H g(v,T,) 2X dv (3.21)
P f(T) sinh® (xf(T))

where g(v,T,) is the phonon frequence distribution (density of states),
Figure 31, which was discussed in the previous section. The lattice
specific heat calculated using Equation (3.21) is shown in Figure 33
along with the quasiharmonic contribution Céz)(QH). It can be

(2)

seen that there is a large contribution to Cp from the explicit

temperature dependence of the phonon frequencies. Before this
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calculation can be compared to direct measurements of Cp, the electronic

(e)
p

temperature dependence is evaluated.

specific heat C must be added. First, though, the use of an average
In view of the anomalous temperature dependence of the zone center
upper optic mode, the interpolation method of Equations (3.19) and (3.20)
must be justified since Cu and Pd show no such anomaly. Justification
was provided by several calculations, the first of which uses the high

temperature limit (x0 << 1) of Equation (3.18)
(2) o [ _ [ 3<in v
Co & 3Nkp| T . (3.22)

where <In v> = [ g(v,T)In v dv. The lattice specific heat was evaluated
at 773K and 1007K using Equation (3.22). The average value of In v,
<1n v> was evaluated using the frequency distributions at 295K, 773K
and 1007K. The slope of <In v> vs. In T (notice the linearity in
Figure 34) was used in Equation (3.22). The values of Cél) at 773K and
1007K calculated in this manner agreed to better than 2% with those of
the previous calculation using the average temperature dependence of
the frequencies f(T).

An additional check was made by calculating the heat capacity using
the quasiharmonic approximation (3.16) where the temperature dependence

of the frequencies is expressed as
- h)
v = v ' +a (T (3.23)

the Ac(T) being the shifts from the harmonic frequencies. The anharmonic
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contribution to the entropy, correct to lowest order in perturbation

theory, is given by
Bno
= =% ——
AS g ( = ) 8,(T) (3.24)

where n, = (exp hv/kBT - l)-] is evaluated at the harmonic frequencies

v = v(h). The contribution to C(l) is then
o o P
(2) aznc Bnc oA (T)
c = 4 J = A (T) +— g (3.25)
P o T 3T aT

As mentioned previously, the phonon frequencies varied linearly with

temperature. Therefore AU(T) is of the form

AG(T) = aoT (3.26)

where o is the slope of VO(T) versus T and the harmonic frequencies

véh) can be obtained by extrapolation to OK. The anharmonic contribution
to Cél) calculated using Equation (3.25) was added to Céz)(QH) calculated
with the frequency distribution determined by the harmonic frequencies

h)

!

s The specific heat evaluated using this approach was found to

agree to better than 2% with that obtained using the interpolation
method of Miiller and Brockhouse (49).

A much better test of the interpolation method of Equation (3.20)
is the direct calculation of the entropy since both Equation (3.18) and
Equation (3.25) involve approximations. The entropy was calculated
directly from Equation (3.16) using the measured frequency spectra at

295K, 773K and 1007K. A comparison of the entropy calculated in this
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way to the entropy calculated using the interpolation method of Miiller

and Brockhouse shows agreement to within 1% at 773K and 4% at 1007K.

Finally, the electronic specific heat'Cée) was calculated and added
to Cél) in order for comparison to direct measurements of C_. A band

theoretical calculation (hh)awas performed to obtain the electronic
density of states (Figure 35) from which the electronic specific heat
was calculated (shown in Figure 36). Notice the large increase of 062)
above y(0)T, ‘the linear extrapolation from low temperatures. This
increase is due to the increase of the effective electronic density of
states at the Fermi level with increasing temperature. The sum

C(e) + Céz) is shown in Figure 37 along with the direct measurements of
Cp by various workers (8,9,10,11). The agreement is quite good in view

of the fact that there are discrepancies, on the order of 10% in some

instances, among the values of Cp measured by the various workers.

Discussion of hcp Dispersion Curves

The temperature dependences of the frequencies of all branches,
Figures 20, 21 and 22, except the zone center upper optic mode to be
discussed later, are as expected; decreasing frequency as the tempera-
ture, and therefore volume, increase. However the changes in the
frequencies are much larger than can be accounted for by the thermal
expansion effect. In fact, estimates of the frequency shifts using the
thermodynamic Grlneisen parameter (34) are only 0.1 to 0.2 times the
observed shifts. Such strong temperature dependence implies that the

phonon frequencies have mostly an explicit temperature dependence.
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The frequency shifts given in Table 8, for a particular branch,
are generally larger for lower q. Also, the elastic constants at room
temperature and 1007K given in Table 11, :calculated from the slopes of
the low g linear region of the acoustic branches, agree very well with
the measured values of the elastic constants (12). Since the elastic
constants depend strongly on long range forces, it appears that the
large frequency shifts for low q phonons are due to changes in long
range forces determined by the electronic response to the nuclear
motion. This implies that the temperature dependence of the phonon
frequencies is intimately related to the structure of the electronic
density of states near the Fermi level. The electronic states near the
Fermi level are the most important in screening of nuclear motion and
are affected most by changes in temperature.

As the temperature was increased towards the hcp + bcc transition
temperature (1135K) there were no systematic significant changes in the
widths of the neutron groups. Also, there was no precipitous decrease
observed in any of the p» -on frequencies. These two observations
suggest that the hcp » bcc transition from below is first order, a
conclusion consistent with -that of Moss et al. (33).

The most striking aspect of the dispersion curves, the exception
mentioned above, is the zone center upper optic mode behavior.] From

the dispersion curves in the [001] direction (Figure 22) it can be seen

Terom now on this mode will be referred to as Lo[001] although the
To[100]. and TO[110]L exhibit the same behavior for § + O.
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that frequencies of the LO[001] branch at and near the zone center
decrease with decreasing temperature. This is called soft mode behavior
and is sometimes a precursor to a structural phase transition. For thi's
reason measurements of this branch were also taken at 5.5K to determine
just how dramatic this dip at the zone center might become. A similar
but much more pronounced dip is exhibited at room temperature in the
same branch of technetium (51) which has the highest superconducting
transition temperature (TC n 8K) of the hcp elements.

Ideally the results of the hcp experiment should be described in
using the microscopic theory of lattice dynamics (52,53). Using the
microscopic framework the results could be related to the electronic
band structure of the metal. However at its present stage of development
the microscopic theory has not been used for any realistic calculations
at finite temperatures. In order to make more quantitative the
argument presented earlier for the connection between the temperature
dependent frequencies and the electronic band structure, Harmon and
Stassis (54) have performed a frozen phonon calculation. The electronic
band structure of hcp Zrwas calculated using the LAPW method (55,56)
with the nuclei displaced in the manner of the zone center LO[001] mode.
The nuclei were placed in sites along the c-axis 5% closer than in the
normal lattice. The following discussion, still more qualitative than
quantitative, is based on the frozen phonon calculations.

The electronic density of states (DOS) of Zr has a large peak just
above the Fermi level (Figure 35) originating from bands of predominantly

d character. As the temperature is increased the DOS at the Fermi level,
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the effective DOS, increases due to this peak. This is evident from
the calculated electronic heat capacity which rises above the linear
constant DOS electronic heat capacity Y(0)T (see Figure 36). The
increase of the effective DOS with increasing temperature adds to the
usual electron screening in metals of the ionic charges. This effect
decreases the long range forces and lowers the phonon frequencies with
increasing temperatures. Such behavior is consistent with the implica-
tions of the temperature dependence of the phonon frequencies and
elastic constants discussed earlier.

The anomalous behavior of the zone center LO[001] mode arises from
a situation unique to the hcp lattice. The electronic bands for wave
vectors in the AHL plane (reciprocal lattice basal plane) are doubly
degenerate. There is some spin orbit splitting but it is very small.
Performing the band calculation with the frozen phonon displacements
which reduce the crystal symmetry shows that the degeneracies are split.
This is true for any phonon displacements in general but the splittings
are largest with those of the Lo[001] phonon. The results of the
calculation show that the band near H at the Fermi level is split such
that the upper band rises above the Fermi level and is therefore
unoccupied and the lower band falls below the Fermi level and remains
occupied. The net effect on the total energy of the crystal would be
zero if both bands were equally occupied but since the upper band is
totally unoccupied (at T = 0) the crystal energy is lowered. Thus the
energy associated with the LO[001] phonon is lowered (on the order of

a few meV). The splitting is on the order of 1000K so that as the
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temperature is increased the occupation of the upper band increases, wiping

out the reduction in the crystal energy from the split bands.

Discussion of bcc Dispersion Curves

The dispersion curves for bcc Zr show instances of anomalous
behavior, some of which are not observed in other bcc transition metals.
One anomaly is the degenerate, to within experimental error, T][cgo]
and Tz[g;o] branches. This behavior implies that the elastic shear
moduli C,, and %(C]l - Clz) are equal (see Table 3) or in other words
bcc Zr exhibits isotropy for the propagation of elastic waves. This
observation is consistent with the conditions favoring the mechanism for
the bcc to hep transition (see Appendix B). Tungsten (57) is the only
other bce transition metal which exhibits this behavior and since Ti and
Hf also undergo hcp to bcc transitions it is expected that their bcc
phases are isotropic also.

Another anomaly is the dip in the L[zz0] branch as 3 approaches
the zone boundary point N. This behavior may be related to the zone
center upper optic mode anomaly at hcp Zr since the (001) hcp plane
transforms to a (110) bcc plane.

The most dramatic feature of the dispersion curves is however the
pronounced valley in the L{zzz] branch at ¢ = 2/3. Due to the finite
resolution of the triple axis instrument the minimum frequency of this
valley was impossible to determine. Constant energy transfer neutron
groups taken in attempt to find the bottom of the dip are shown in

Figures 38 and 39 for crystals 1 and 2 on the Triax and HBIA instruments
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respectively. No other bcc element ever examined has shown such
behavior although sodium (58), tantalum (59), niobium (60), and iron
(61) do show less dramatic but similar behavior of the L[zzz] branch.

Fortunately there exists other experimental data which is very
revealing as to the behavior of the L[2/3 2/3 2/3] mode. Examining the
dispersion curves of niobium (60), molybdenum (62) and Nb-Mo alloys (in
an extensive study of the lattice dynamics of these alloys by Powell
et al. (63)) shows that the entire phonon spectrum and especially the
L[2/3 2/3 2/3] mode soften dramatically in going from Mo to bcc Zr
(see Figure 40). This softening correlates with the decrease in the
number of electrons outside closed shells from 6 for Mo to 4 for bcc
Zr. Thus it is probable that the behavior of the L[2/3 2/3 2/3] mode
for bec Zr is a manifestation of the electronic structure of the
crystal.

As mentioned in the introduction there is a competing bcc to w-
phase transition in pure Zr under pressure and in Nb-Zr alloys. In
principle this transition occurs through the softening of a single
phonon, namely the L[2/3 2/3 2/3] (64,65). Therefore the observed
behavior of this mode for bcc Zr supports the suggestions that the bcc
to w-phase transition is electronically driven and proceeds presumably

through charge density waves.
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APPENDIX A. RECIPROCAL LATTICE AND ELASTIC STRUCTURE
FACTOR FOR THE bcc AND hcp CRYSTALS

Reciprocal Lattice to the bcc Lattice
The direct lattice primitive basis vectors of the bcc lattice are

shown in Figure 41 and are expressed as:

3, =talx +y - 2) , (A.1a)
3’2 = fa(-x +y +2) , (A.1b)
33 = 3a(x - v + 2) , (A.1¢)

where 2, § and z are unit vectors in the x, y and z directions respectively,
and a is the lattice constant in angstroms. The formulae for the reciprocal

lattice basis vectors are (40):

2, xa
> 2 .3
b]—Z'n'_* .+ > 9 (A‘Za)
ay + 3, x ag
3, xa
o 37
b, = 2m 3 — — (A.2b)
ay * a3, x ag
a, xa
1 2
B‘3=zn+ 3 (A.2¢)
a) * 3y x ag

From Equations (A.Ta)-(A.2c) we obtain:

KI = %} (x + y) (A.3a)
B, = & (5 + 2) (A.36)
B, = 2% (x + 3) (A.3c)
3 a i
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which are the primitive lattice vectors of the fcc lattice.
Thus the fcc lattice is the reciprocal lattice of the bcc lattice.
Also, note that Zi-’ﬁj = 8;;2n for i,] = 1,2,3. (A.b)

The general reciprocal lattice vector denoted € or T is then

G = hb, + kb, + 233 (A.5a)
= -2;} [(h+2)x + (h+k)y + (k+2)z]. (A.5b)

From Equation (A.4) we note that Ehkz-iﬁnp = 2w(integer) where ;mnp =
m%l + ngz + pg3. (A.6)

The first Brillouin zone is formed by the set of planes which are

perpendicular to the twelve shortest nonzero E's,
27 ALn
= (txxy) , . tyrz) = (xxxz) (A.7)

and located at their midpoints. The zone is a regular twelve-faced solid,
a rhombic dodecahedron, as shown in Figure 42. Also indicated in this
Figure are the points and iines of high symmetry (see Appendix C). The
irreducible volume of the zone is defined by the points I', H, N and P,
There is some confusion with the reciprocal lattice of the bcc and
fcc lattices for the following reason. When the Miller indices hk& are
used fof an fcc or bcc crystal they are not the hk& of Equation (A.4) but
are those referred to the simple cubic lattice. For example the [001]

direction in a bcc crystal is not in the b, direction (§+§) but is in the

3

z direction. With respect to this convention the reciprocal lattice

vectors are

= -Zal [hi + ky + 22] . (A.8)
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Figure b2, First Brillouin zone of the bcc reciprocal lattice. The
points and lines of high symmetry are labeled with the
standard group theoretical notation
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Using this convention, the various planes of atoms are very simple to see;
the planes x=0, y=0, z=0 are (001) type planes, the planes x=ty, y=tz, z=tx
are (110) type planes, etc. Figures 8 .and 43 show the (1T0) and the (001)
planes] in reciprocal space. Again the points and lines of high symmetry

are indicated.

Elastic Structure Factor of the bcc Lattice
The elastic structure factor squared appears in the expression for the
total coherent scattering per unit cell of a crystal (14). The elastic
structure factor of the unit cell for the hk# reflection, Ehkz’ is given by
(37)
F(hk2) = g by exp (=i X; * &) (A.9)

— >
where bi = coherent neutron scattering amplitude for the ith atom, X; =

position of ith atom of the basis with respect to the origin of the unit
cell. Since we are now using the simple cubic unit cell and not the primi-
tive unit cell for the bcc lattice, the crystal has a basis with atoms at
000 and %3% (components along ax, ay and az). Thus, Equation (A.6) becomes
F(hke) = b {1 + exp[-in(h+k+2)]} (A.10)
which has the following values
F(hke) = 0 when h+k+2 = odd integer (A.11a)

F(hke) = 2F when h+k+2 - even integer (A.11b)

A plane in reciprocal space is either denoted by the direction per-
pendicular to it, such as: the perpendicular to the (1T0) and (001) planes
are the [1T0] and [001] directions respectively; or by the two directions
lying in the plane, such as: the (1T0) and (001) planes are also called
the [110]-[001] and [100]-[010] planes respectively.
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The forbidden reflections (Equation A.8b) are a manifestation of the
use of the simple cubic cell instead of the primitive unit cell for the
bcc lattice. Therefore, points such as (001), (111) and (210) are not re-
ciprocal lattice points, E's, and instead lie on the zone boundary of some

Brillouin zone (see Figures 8 and 43).

Reciprocal Lattice to the Hexagonal Lattice
The direct lattice primitive basis vectors are shown in Figure 44

and can be written

3] = /3/2ax + }ay , (A.12a)
’52 = -/3/2ax + }ay , (A.12b)
33 =c: . (A.12¢)

where a and ¢ are the hexagonal lattice constants. The atomic positions

are given by Equations (1.5b) and (1.5c) where

X (k)

0 for k=1 R

X (k)

2/33] + 1/33“2 + 1/233 for k=2

Applying the reciprocal lattice formulae (Equations A.2a, b and c),

the reciprocal lattice basis vectors we obtain

B, =-251(7‘3-;<+9) (A.13a)
’62=3§‘-(%§<+9) (A.13b)
33 = %} z (A.13c)

which also form a hexagonal lattice and are shown in Figure 45 along with

points and lines of high symmetry. The irreducible volume of the cell is
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The wave vector

(001) plane of the bcc reciprocal lattice.
g for the measurement of the T][Ilo] branch is shown. The
first Brillouin zone about the origin is labeled with the

standard group theoretical notation
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Figure 45. First Brillouin zone of the hcp reciprocal lattice. The points and lines of high
symmetry are labeled with the standard group theoretical notation

051
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defined by the points I', M, K, A, L and H, Again the general reciprocal

. .-). -
lattice vector 3 or T is

> > >
Ehkk = hB, + kB, + 1B, (A.14)

As was the case for the bcc lattice we have for the hexagonal lattice

> o> o e . . ,"* = 9un{3

bi-bj = diJZW for i,j = 1,2,3 (Equation A.15) and Ehkl Xmnp 2n(integer)
> > > >

(Equation A.16) where Xmnp = mb, + nb, + pbs.

Elastic Structure Factor of the hcp Crystal
The hcp lattice is the hexagonal lattice with a basis of two identical
atoms located at 000 and %-%-%-(components along the 3i). Equation (A.10)

becomes

F(hke) = B{1 + exp[-i(2/32§l + 1/3’52 + %33)~(h31 + kB“z + 233)]} (A.17)

Using Equation (A.15), F(hk) becomes

F(hke) = B {1 + exp[-zni(z—hiﬁ + D1 (A.18)
Then
|F(hke)|2 = 0  for 2h+k = 3(integer), % odd; (hk2)=(001),..., (A.19)
= b2 for 2h+k = 3(integer)tl, 2 even; (hk2)=(100),...,

3b2 for 2h+k

3(integer)*1l, 2 odd; (hke)=(101),...,

462 for 2h+k = 3(integer), % even; (hkz)=(002),(110)....

Since we have a basis, we again have forbidden reflections as in the bcc

case.
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Plane Spacings for Hexagonal and Cubic Lattices
The plane spacings dhkz for hexagonal lattices are given by

_ h2+hk+k?2, , 22 4-%
dhkz = [4/3(-—52-——4 +Ez'] (A,20)

and for cubic lattices by

4. = [h2+k2+52,2 14
hke aZ
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APPENDIX B. bcc TO hcp TRANSITION

During the growing procedure used in obtaining the bcc phase of
zirconium (in Crystal 1), the relations between the planes of the hcp
phase and those of the bcc phase were established. These relations were

found to agree with those of Burgers (35) and are as follows:

bcc hcp

(110) <+~ (002)

(110) > (100) (8.1)
(002) > (110)

That is, in the bcc to hcp transition a (110) bcc plane becomes a (002)
hcp plane, another (110) type bcc plane, perpendicular to the first, be-
comes a (100) type hcp plane and a (002) type bcc plane, perpendicular
to both of the (110) type bcc planes becomes a (110) type hcp plane which

is perpendicular to the (100) hcp plane. A specific example is the

following:
becc hcp
(110) type [ (170) (002)
bcc planes | (110) (100) (B.2)
(002) (T20) } (110) type hcp plane

According to Burgers the bcc to hcp transition takes place in the
following manner, as depicted in Figure 46. Figure 46a shows five bcc
unit cells positioned such that a (110) plane is horizontal. Marked by
heavy lines, is a prism which becomes the hcp unit cell after the
transition. The sides of the prism are formed by {112} bcc planes and
the ends by {110} bcc planes. The primary shear of the transition is
along a {112} becc plane in the corresponding [111] direction (e.g. the [111]

direction is parallel to the (112) plane). This shear, shown in Figure



bcc hcp

[110]
* [ool]
/ / 7053 [eo°
\ \\
N [/ ® ;,
\
tmol 4 N4
I’ \\ Il' \ -
N N S [100]
001} g [10]

(a) (b) (c)

Figure 46. bcc to hep transition. (a) bcc lattice, (b) primary shear of the bcc to hcp transition,
(c) hcp lattice

14l
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Léb, changes the acute angle in the basal parallelogram of the prism from
70.53° to 60°.

There remain other smaller atomic motions to complete the transition
the primary one being that of the atom in the center of the prism, This
atom must move in the [100] or [100] direction to a position directly
above the center of gravity of one of the equilateral triangles formed
by the atoms in the base of the prism as shown in Figure 46c. Also, the
dimensions of the sides of the prism must be altered by contraction or
dilation to become those of oa-Zr at the transition temperature, For
example, the sides of the basal parallelogram are unequal because of the
shear process; the sides parallel to the shear direction [111] are unal-
tered while the other sides have increased in length (by a factor of sin
109.47°/sin 120°=1,09).

The stiffness modulus for the above described (112) [111] shear in
a cubic crystal is given by (12)

Conaypinng = V3Ey - Cyp + Cyy) (8.3)

This modulus is minimum with respect to the two principal shear moduli

chh and %(Cll - Clz) when
zchh/(cll - °12) =1 . (B.4)

That is, the (112)[111] shear if favored in an isotropic bcc crystal.
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APPENDIX C. GROUP THEORY IN LATTICE DYNAMICS

Group Theoretical Techniques
Application of the techniques of group theory in order to exploit the
symmetry properties of the crystal lattice, greatly simplifies lattice
dynamical calculations. In this section these techniques will first be
explained and then applied to the bcc and hcp crystal structures, The
method (and notation) adopted here will be that of Venkataraman et al.
(17) who use the multiplier-representation approach (66,67).

The eigenvalue equation we wish to solve is Equation (1.20)

D(@)U@E,E) = w2@UE,8) (c.1)

The solution is obtained for each individual 4 of interest in the Brilloun
zone. When working with only a particular 3 (in lattice dynamics or band
structure) it is valid to consider G(q), ''the group of the wave vector"
(68). This group, which is a subgroup of the space group of G of the
crystal, is formed by the elements of GR(m) = [RIX(m) + V(R)] for which
the following relation holds

Rg=q or q+@ ‘ (c.2)
where G is a reciprocal lattice vector, Therefore, the elements of GTq)
are those of G whose rotational part R acting on a leave it invariant. Also
an element of G(a) acting on the crystal leaves the direction of a wave
traveling along a unchanged or change it by 8. The elements of G(a)
still posses their translational part and thus 3={[E|x(m)]} the transla-
tional group, is a subgroup of G(a). In adopting the '"multiplier-

representation'' (MR) approach, the situation is further simplified by the
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use of the point group of E,G (3) and its "irreducible multiplier
representations' (IMR). The elements of GQ(E) are simply the rotational
parts of the elements of G(3), Go(a) = {R}.

Before discussing the multiplier representation as applied to lattice
dynamics, the description of a MR in general is appropriate. The set of
matrices {IfRi)} form a "multiplier representation' of the group G under
the following conditions:

(1) for each element R.eG there is associated a matrix IfRi)

(2) ;r_(Ri)l(RJ.) = (b(Ri,RJ.)_'_r_(RiRj) for all R;»R;eC. The {<I>(Ri,Rj)}
from the corresponding factor system for the MR. If the matrices IﬁRi)
are irreducible the MR {IiRi}} is called an "irreducible multiplier
representation' (IMR).

The outline of the procedure to be used is as follows:

1. The set of matrices which commute with 2}3) will be constructed.

They form a reducible MR RMR of Go(a).

2. The RMR of Go(a) is decomposed in terms of the IMR's of GO(E).

3. The '"symmetry-adapted' vectors are constructed. These trans-

form just as the eigenvectors of Qﬂa).

L, The dynamical matrix is block diagonalized through the similarity

transformation indicated by the symmetry adapted vectors.
This is the ultimate goal of the application of group theory to the

eigenvalue problem of Equation (C.1),
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Construction of matrices

The matrices which commute with 9_(3) are constructed by considering
the transformation properties of the eigenvectors of g(a’) , o(ql}). The
detailed method of obtaining the form of these matrices is given in (17)
and only the results are presented here. The components of the 3nx3n
matrix, I(E,B_), associated with the element R of GO(E) are

T (k' [G5R) = R 6k, F(k',R)) explig-[x(k) -RX(k')]) (c.3)

a,B =1,2,3 and k,k' = 1,...n

where the R . are the components of R and the Kronecker delta &(k,F(k',R))

B
depicts the interchange of sublattices. F(k',R) is the sublattice reached

from k' via R = [B_Iz(m)+-\7(R)]. The T(q,R) have the following properties:

1. ]'_(E;,B_) is unitary; I(Z,B_)"‘ = 1(3,5)-1'
2. T(3,R) commutes with D(q); T(q,R)D(q)T(q,R)+ = B(q) for
. >
all Re Go(q) |
3. T(3) = {T(q,R)} forms a 3n dimensional RMR of Go(a) with the

corresponding factor system ¢(q) = {<I>(;q'j;5i ’Ej)} where

<I>(3J-;Ri,RJ-) = exp{iG(E,Ri)-V(Rj)} .

It is appropriate at this time to point out the simplifications in the
scheme brought about by special values of a and particular lattices. For
example, consider a crystal symmetry with a symorphic space group and one
atom per primitive unit cell, (n=1) such as a bcc crystal. Then the
Tae(kk' [9;R) becomes
(c.h)

—)-
TaB (q;R) = RaB

since k takes only one value and >—<>(k) can be taken to be zero with an
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appropriate choice of axis. Also, °(3;54’5j) = 1 since t(gj) = 0 for
all Bj (for a symmorphic space group). This means that the IMR are identi-
cal to the IR in this case. Antoher simplification occurs even for non-

symmorphic groups when 3 is within the BZ and thus §(+,Ri) = 0. Again the

multipliers Q(G;EJ Rj) 1 and the IMR reduce to the ordinary IR.

Decomposition of T(q)

The decomposition of T(E) is of the form
7@ = Jc°@) (c.5)
s

where the t°(q) are the IMR of Go(a), C, is the number of occurrences of
t5(q) and the sum is over all IMR's of Go(a). C, is determined through

the use of the expression

c,=r I [CGERMGER , (c.6)
ReG_(q)

where h is the order of Go(a) and

x(@R) = TrT(@R) X (@R = Tre® (@GR . (c.7)

The relation 3n = Xcsfs, (c.8)
s

where fs is the dimensionality of TS(E), is useful as a check when all
Cs's have been evaluated.
The implication of Equations (C.5) and (C.6) is that there are C,
\ > -+ > .
eigenvalues ws’%(q), ws,g(q),..., wsfc (q), each being f-fold degenerate.

s
The eigenvectors for this set of eigenvalues are denoted

mS%(E) b {Z(a;s,l,l),z(a;s,l,w),...,z(a;s,l,fs)}
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w 3@ ¥ {2(4;5,2,1),8(d;5,2,2),...,8(d55,2, )}

wsgs(a’)  {e@s,c(,1),8(@35,c,,2) ... ,6 (@550, F )} (c.9)

At this point in the process the so called '"compatibility reiations'
can be examined. Through these relations the changes in the decompositions
and degeneracies are determined as 3 moves to a neighboring point 3'. Such
is the case as a moves along a line of symmetry to a point on the BZ,EI
say, where Go(a) is a subgroup of Go(a'). The compatibility relations are
simply the decompositions of the IMR's of Go(a ) in terms of the IMR's of
Go(a);

°(q") = ZCOTC(H) v (c.10)

where the sum is over the IMR's of Go(a) and are obtained in the usual

way by using Equation (C.6). The application of the compatibility rela-

tions will be examined in the context of the bcc and hcp examples.

Construction of symmetry-adapted vectors

In order to construct the symmetry-adapted vectors the projection
operator Pix(q) is created from the definition
f

PS (q) = = [ (R FT(q:R) . €.11)
TR 5e§o(&’> Taaras ) 520a5 2,

By operating on each member of the set of 3n component unit vectors
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-> -> - \
e e g 0
o'\ /0%\ [o3\ /% 0
0 o \[o \/ o *
< 0 B n elements (c.12)
b ¥
0 0 0 0 ]
\ 3 )
-> 1 > 0 > 0 .
where e, =1 0], e, =| 1| and e, =( 0|, one projects out c_ mutually
1 0 2 0 3 1 s

orthogonal vectors. In practice one simply examines the 3n columns of

Pix(a) to obtain the c, vectors which are labeled e(g;s,l,X), e(&;s,z,x),

. s(a}s,cs,k). Corresponding to each of these vectors are (fs-l)

partners which are obtained using the operators

f

s S s > -
PA@ =& !, [t (G RFT@GR) (C.13)
ReG_(q)
)
where u=l,2,...,fS and p#A. Thus, c  or the normal sets, corresponding

to the c_ occurrences of t5(3) in T(q), can be formed as follows

y

{—g(a;S’]’])’Z(E;S’]’z)s~°~’g(—5;Ssl9fs)}

{3(3;5,2,1),2(3; 512’2);"-,—5(3; S,Z,fs)}
> > > > >
{e(q;s,cs,l),e(q;s,cS,Z),...,e(q;s,cs,fs)} (C.14)

By obtaining such a set of vectors corresponding to each 73(q) in the

decomposition of T(3), a set of 3n (by Equation (C.8)) symmetry-adapted

vectors {g(a)} is constructed,
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Block diagonalizing DG;)

Each symmetry-adapted vector Z(a s,a,k)a{g(a)} obeys the relation
e(@;stainn)t D(AIE(d;s,a,1) = 515, ," (c.15)

Thus, if the matrix gﬂa) is formed from {e(q)} by arranging the vectors
as follows

{...,3(3;5,1,1),Z(a;s,z,l),...,Z(E;s,cs,l) ,
3(3;5,1,2),3(3;s,w,w),---,g(a;s,cs,Z) ,

> > > > >
e(q,s,l,fs),e(q,s,Z,fS),...,e(q,s,cs,fs),...} , (c.15)
> >
then Z(q) block diagonalizes D(q) via

D@ =z @@ . (c.16)
The form of the matrix D (3) is that of f, blocks of dimension c_ x c_
lying on the diagonal of the matrix. (The dynamical matrix may first be

simplified using the relation
-}.
0@ = T(GRID@T @R, (c.17)

before it is block diagonalized,)

Application of Group Theoretical Techniques to the becc Crystal

The space group of the bcc lattice is Oa with corresponding point
group 0, of order h=48. Half of the 48 operations of 0, are proper rota-
tions and are defined in Table 12 with respect to Figure 46, The 3 by 3
matrix representations, the R matrices, for these operations are given in
Table 13. The remaining 24 operations of 0h are improper rotations and

are merely the 24 proper rotations followed by the inversion operation |I.
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Table 12. Proper rotations of the point group 0h (refer to Figure 46)

Operation Defined as

E tdentity

C(3a),C(38),C(3y),C(36) 120° rotation about Oz, 08, Oy and 0§
respectively in the right hand sense

c(3a) " 1,c(38) " 1,c(3y) 1,c(38) 71 Inverse operations of C(30), C(38),
C(3y) and C(35) respectively

c(2x),c(2y),c(2z),c(2a),c(2b), 180° rotation about 0x, Oy, 0z, 0Oa,

c(2c),c(2d),c(2e),c(2f) Ob, Oc, 0d, Oe and Of respectively

C(4x),C(hy),¢{hz) 90° rotation about Ox, Oy and 0z

respectively

C(kx)"1,c(hy) 1,c(4z)"? Inverse operations of C(4x), C(4y) and
C(4z) respectively
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N

Figure 47. Axes of rotation for the symmetry operations of 0h
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For example, the operation which is the reflection in the x-y plane is

Ic(2z) or
-1 0 O 1 00 i 00
IcC(2z) ={0-1 0 0-1 0 = 01 0
- 0 0 -1 0 0 1 0 0 -1
where
-1 0 O _ -} 0 O
l=10-1 0 and .5(22) = {0-1 0
- 0 0 -1 0 0 1 .

The Brilloun zone for the bcc lattice is shown in Figure 42 with
special symmetry points and lines indicated. The point group of the wave
vector Go(a) for g at these points and along these lines is given in
Table 14. Also given in Table 14 are the elements of each point group
separated according to classes Ci,

The simplifications that can be made in this situation make the
problem for the bcc lattice a trivial one. Since the lattice is bravais,
n=1 and k takes on only one value. If we chose x(k)=0 then the 113;5) of
Equation (C.3) are simply Iﬂa;ﬂ)=§, the 3x3 matrices of Table 13. Thus
the IMR's and the ordinary IR's are the same. This is why the IR's of
Cornwell (69) can be used.

The calculations will be demonstrated for a along A, Ee(o,o,;), and
the results listed for other values of a. From Table 14 there are eight
elements in the point group Go(a)=chv for a along A and they form the

following five classes

C,=E ’ |C(2X),IC(2Y) ’

Cy
o = C(22) c
C(4z),c(4z)"t

O
It

5 Ic(2a),1Cc(2b)

(]
n
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Table 14. Point group of the wave vector, G (a) for 3 at the points and
lines of high symmetry in the reciprocal space of the bcc
crystal (69)

> >
Point (q) Coordinate Go(q) Elements
T (000) 0h A1l L8 operations
H 2n/a(001) 0, A1l 48 operations
N 21/a(%30) D, C; to Cg; E, C(2z,a,b), !, 1C(2z,ab),

respectively

P 2"/3(%%%) Td C1=E, c2='vc(3$s6’Y’6)i1’ 03=C(2X,Y,Z),
- =1 =
Cy=1C(kx,y,2z)"!, Cs=1C(2a,b,c,d,e,f)

Coordinate

Line 0<z<1 Go(a) Elements
A(F to H)  w/a(002%) Cy Cy=E, C,=C(2z), C3=C(kz)*1,
Cy,=1C(2x,y), Cs=iC(2a,b)

AT to P)  n/a(zzr) Cay C1=E, C,=C(38)*1, Cy=1C(2b,d,f)

z(r to N) n/a(z50) Cyy Cy=E, C»=C(2a), C3=1C(2z), Cy=1C(2b)
G(H to N) n/a(zttl) Cyy C1=E, Cp=C(2b), Cs=1C(2z2), Cy=1C(2a)
D(N to P) n/a(33L) Cyy C1=E, Cp=C(2z), C3=iC(2a), C,=1C(2b)
F(Hto P)  w/a(l-g,1-2, Gy C1=E, Cp=C(3a)*1, C3=1C(2b,c,e)

142)




168

The character table for Go(a) is given in Table 15 with the 1°(q)

denoted As. Using Equation (C.6)

s = I DE@EGRINGR
5§Go(q)

the characters from Table 15 and the matrices in Table 13 we obtain

1
cyy = BL3

It
—

T+ (D2+ (12 + (1)2]

¢s =§3{3 Sl (-2 (D2 + (-1N2] =0
NI %{3 -1+ (D2+ (-1)2+ (<1)2] =0 (c.18)
T 5{3 1+ (-2 + (-1)2 4 (1)2] =0

[}
-
»

casi= GL(2)3 + (-2)(-1) + (0)2 + (0)2]

Thereby the decomposition of T(A) is obtained as

T(a) = Ay + A5

where A] and A5 are one and two dimensional |IR's respectively with fl=l
and f5=2 respectively, (The dimensionality of an IR is apparent from the

character table since)
x*(q;E) = Tr ©°(q;E) = fe - (c.19)
Also, it can be seen that Equation (C.8) is satisfied with the above
values for Cys fs and n,
The symmetry-adapted vectors may now be deduced for the IR's in the
decomposition by using the projection operator technique of Equation (C.11)
f

S (¥ _ _S
Paala) =4 L,

[S. (@R #T(G5R) (C.20)
ReGL(3) M
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Table 15. Character table for the point group G (3)=C4 for g along A in
the bcc crystal and matrices for the two dimensional irreducible
representation As (69)

C, C, Cs Cy Cs
Ay 1 1 1 1 1
Ay ] ] -1 ] -1
Ay i i 1 -1 -1
by | 1 -1 -1 !
As 2 -2 0 0 0
5,8 = (09 5(8,c(22)) = (79
©S(,c2) = (0 ) B,c ™ = &)
5(,1cex)) = (4 9 = (a,10(2y)) = (39

T3 (a,1c(2a)) = (’_?‘5) ES(A,IC(Zb))-’-(? (]))
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For Al we have

P1(a) = glE + C(22) + Clh2) + C42)™D + 1C(2x) +

|

which in turn gives the symmetry-adapted vector

2(a31,1,1) = <y =( )

For A5 we use the matrices for A5 from Table 15 to obtain

(=N e Ne)
OO
—_0 0

1c(2y) + 1c(2a) + _t_C_(Zb)]'=(

-—_ 0 0O

S, (a) = §[<l)g+ (-1)¢(22) + (0)g(hz) + (0)C(42)™2 +

i

and P5 (A) = -B-[(I)E + (-)c(2z) + (0)c(kz) + (0)C(hz) 1 +

1c(2x) + (1}1c(2y) + (0)ic(2a) + (0)1c(2b)] =

OO —
[=NeNo
[oNoNo

(Nic(2x) + (-1)1c(2y) + (0)1c(2a) + (0)ic(2b)] =

O - O
[eNoNo]

i

The corresponding symmetry-adapted vectors are

0
) and 2(435,1,2) =22 =(1)
0

Summarizing the results so far for A we have

0 0
T(a) = a,+A, €(a,,L) ={ 0}, €(a.,T)H0 |, (A, TY) =| 1

T OO0

OO -

(r35,1,1) = Z] =(

(c.21)

(c.22)

(c.23)

(c.24)

(c.25)
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(The meaning of the L, T and T' indices will be made clear shortly.) The
physical interpretation of these results is that along A, a in the [001]
direction, there are two dispersion branches (both acoustic, of course,
since n=1) with one being doubly degenerate. The symmetry-adapted vector
or polarization vector for the A] branch indicates that this is the longi-
tudinal branch with polarization vector (AI’L)' Similarly the symmetry-
adapted vectors for the degenerate A5 branches indicate that they are
transverse with polarization vectors Z(AS,T) and Z(AS,T').

The decompositions and symmetry-adapted vectors for 3 along the
symmetry directions are contained in Tables 16 and 17. Table 16 gives
the decompositions for all symmetry points and lines as given in Table 14
and also the compatibility relations in going from a symmetry line to a
symmetry point.

Using the matrices E(Z)“Formed by the symmetry-adapted vectors,
the dynamical matrix can be diagonalized for a in the symmetry directions.
First though, D(q) is simplified through the use of Equation (C.17) which
is a process similar to that of reducing the number of independent ele-
ment in the force constant matrices (see Appendix D). Let us consider
2}5) = D(a) (q=(00z)) as an example. The elements of the point group
GO(A) = Cy,» With respect to which D(A) is invariant are given in Table
14, 1t is sufficient to employ only C(4z) and 1C(2x), two elements of
GO(A) which can be used to generate all other elements of the group. For

the elements R ¢ G_(A) it is true that

D@) = R DR)R (c.26)

from the corresponding relation for the force constant matrices of
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Equation (1.20). Then we must have for R = 1C(2x)

1c(2x) D(a)1C(2x) = D(A) (c.27)
R g oo ey
0 0 1 22 23 0 0 1 21 D22 Dy '
D D3z D33 D3y P35 D35

DZI 22 23 =
D3y P3p 033

which means that

Dyg = =Dy =0 Dy3=-Dy3=0
02] = _D12 =0 D3] = —D3l =0 (C.29)
and therefore
b, 0 0
D(a) = [ 0 D,y Dy, (c.30)
0 D3y Dyg
Letting R = C(4z)
o 1 0\ fp,, 0 O 0-1 o\ = [pD,, 0 O
1 11
-1 0o of 4, 1 00 0 D
0 0 1 22 Y230 lo o0 1 22 Y23
0 Dy, Dyg 32 D33
Dgg 0 Dy3
0 Db, 0 = (c.31)
32 0 D33

which means that

D,, = 032 =0 and D, =D, (c.32)

23
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and therefore

DH 0
D(a) = 0 D, 0 (c.33)
0 D

Writing the equations of motion in matrix form

moZ(8) €(a;8) = p(a) €(a;8) (c.34)
by using Equation (1.28) and the unitless eigenvectors or polarization
vectors (Equation (1.37)), and using the polarization vectors of Equation
(C.25) the wE(A) in terms of the Dij(A) may be determined. For example

ma (8) €(a),L) = D@) 2(a,L) (c.35a)

which becomes by substitution

oy [Pn ° 0%} /o
mo? (A){ 0] =| 0 D, 0 , (C.35b)
i 1
0 D
33
2 -
or mmL(A]) = 033 . (C.35¢)
Similarly, we may obtain
2 —
mwT(As) - D‘l ’ (Cv363)
and
2 =
mwT,(AS) =D, - (C.36b)

The final piece of information for phonons with 3 along A comes at
the endpoints of A; T and H, By transforming D(A) with €(3a) € GO(P) =
GO(H) we find that

Dyj = D33 - (c.37)
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Through this determination we see exactly how the longitudinal and trans-
verse branches become degenerate at I' and H for a=§(006), a fact already
evident from the decomposition of GO(P) and Go(H) (see Table 16). A
summary of the above results and similar results along £, A, F, D and G
are found in Table 17.

The group theoretical analysis for the bcc crystal and in particular
the [00z]A direction is so trivial that much of the full power of the
technique is not brought to bear. For example D(A) was already diagonal-
ized after being brought into symmetrized form and the process of Equation
(C.16) was not needed to diagonalize it. In order to demonstrate this
process consider the [z,z,0] direction. Using the elements C(2a) and

1C(22z) of the point group Coy for I and applying Equation (C.26), D(X)

becomes
Dyp Dy O
D(z) = |Dy, D}y O (c.38)
0 © 033

As was done for A, Equation (C.34) could be used to find wé(z) as a func-
tion of Dij(z) but for demonstration purposes let us use the process of
Equation (C.16). Using the polarization (symmetry-adapted) vectors for

I given in Table 17, the transformation matrix is formed

11
2 = g5 11 (c.39)

V2

where coluinns one through three correspond to the L, TI and T2 modes
respectively.

Transforming D(L) by Equation (C.16) we find

0'(x) = £7(2) p(x) E(x) (c.40a)
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Table 16. Decompositions and compatibility relations for lines and points
of high symmetry in the bcc crystal

[00;]A T(a) = Ay+As T15 » MAjAs
L1Z3Ly
[cz0lz T(Z) = Z+ig+ny AAg
[zzzlh T(A) = Ay+Ag His + Ay4g
FiT'3
[43zp T(D) = Dy+D3+Dy 163Gy
[zz1le T(G) = G+G3+Gy Py - AjAj
F1F3
[zzzdF T(F) = Fy+F3 D;D3Dy
[OOOJF T(r) = T'is Np'! I
Ny ' > Iy
[001]H T(H) = Hyg N3' > I3
[3331P T(P) = Py Ny' + Dj
Ny' =+ Dy

[320IN T(N) = Ny '+Ny'+N3' N3' - D;
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Table 17. Summary of results of the application of group theory to the
lattice dynamics of the bcc crystal

fooz] A GO(A) =C,, Generators; C(4z), 1C(2x)
D;; 0 O D110 O
D(pA) =10 D3 O D'(a) =0 D31 0
0 0 Dj; 0 0 Dis
mwf (4) = D33
-> 0 > 1 -> 0
mw%(A5) = Dy e(p,L) = ? e(ps5,T) = 8 e(as,T') = é
mm%(As) = D11 at T and H; Dll = D33 (__= Eﬂ3a))
[zzolz G (z) = Coy Generators; C(2a), 1C(22)
D11 012 0 D11+DIZ 0 0
2‘2) = |Dj2 D31 O 2}(2) = |0 Dy1-D32 O
0 O Disj3 c O e

mwf(zl) = Dy1+D12
1

]
-5
D11-D12 €(Z,L) = V2

: EYZu,Tl) =75

N 0
2 -1 E(Z3,T2) =10
moz (Zu) 0 ' 1

1
11
0
D(N) and at I'; Dy, = 0, Dy; = D33

mw%z(zs) D33 at N; D(Z) =

[ezela,F o6 (A) = 6 (F) = €5, Generators; C(3y), 1C(2b)

D31 Dy2 Di2 . D11-2D3, 0 O
D(A) = [Dyp D31 D32 D'(A) = {0  Dy;-Dy2 O
D12 D32 D13 0 0 D;3-D;2
me(Al) = Dy11+2D12 |
-1
2 n L -> =] > =]_—> ‘=]_
mwT(Ag) = D11-D12  e(Aq,L) 73 : e(A3,T) 77 é e(As,T") 75 ;

mw%l(ﬂ3) = D1;-D12 at P; D12 =0 (ﬂ = EﬂZx))
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Table 17 continued

[#3cl0 6 (D) = ¢,

The information with a along D is the same as with § along I with the
following indices interchanged:

gl : gz (m) (The index in parenthesis is the notation)
y
23 » Dy (A) of Woods et al. (58)

as indicated by the compatibility relations (Table 16).

[2,5,116 G (6) = C,,

Again the information with a along G is the same as with a along & with
the following indices interchanged:

Ly > Gy (my)
Zq -> Gl
L3 + G3 ('Irz)

as indicated by the compatibility relations (Table 16).

The index in parenthesis is the notation)
of Woods et al. (58)
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| 11 o)\ (P P2 1 1 0
p(E)=%|1-1 0 D 1 -1 0] =
o ov2)| 2 1 0 02
0O 0 D
33
it i (c.hob)

0 Dy byy O |
0 0 D,

This process is analogous to a transformation of coordinate systems. That

is the new basis vectors (polarization vectors) corresponding to D'(z) are

1
€'(z,L) = [0,
0
ey <) (c.b1)
E eyt = ol :
. R 0
and 5'(23,T2) = ?

Thus, from Equations (C.34), (C.40b) and (C.41) the eigenfrequencies are

2 —
mof (24} = Dyy +Dyy
2 - -
mmT](Eh) = D]] Dip (C.42)
2 =
and mmT2(23) D33 .

Application of Group Theoretical Techniques to the hcp Crystal

The space group of the hcp crystal is Dgh (P63/mmc) with point group
D6h of order 24. The space group is nonsymorphic in that 12 operations
have a nonprimitive translation v(R) which depends on the choice of origin.
There are two common choices for the origin in the hcp crystal. The first

is with the origin at §;=(000) from Figure 44, Then v(R) is given by
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v(R)=—2-?7§§<+% §+%2 (c.42)
c272 L1 Lc2
=33 + 3 3, + 35 ag (c.43)

and the symmetry of the environment at the origin is DBh' However, the
origin is often taken at a point xé (References 67 and 70) midway between

two (001) planes and is given by

3:(') =79§§< +-};c2 (C.hk)
=%3]+%32+%% . (c.45)

With ;é as the origin the symmetry environment at the origin is D3d' The
choice of origins determines which operations of the space group are
associated with the nonprimitive translation. For our purposes here ;o
will be taken as the origin. The operations of the point group D6h
referred to Figure 48 are: E; the identity
Cezo C3z; rotations of 60°and 120° about the z axis (right hand)
C, C

2y sz, CZA’ CZB’ CZC’ CZD; rotations of 180° about

0x, Oy,0z, OA, 0B, OC and OD respectively

x’

The remaining operations are the inverses of CGz and c32’ C62 1 and

C3z-1 and the improper rotations obtained by multiplying the above

R . . - >
proper rotations by the inversion operator |. For the origin at X, the

- -1 -1
operations E, C32’ C3z , CZy’ CZC’ CZD’ |c6z’ |C6z , |c22’ |c2x’ IC2A
and ICZB always appear with primitive translations only. Table 18 gives
the connection between several sets of notation, The matrices for the
proper rotations are given in Table 19.

The point groups of the various symmetry points and lines of hcp

reciprocal space are as follows:
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B y
/ --——-—-h_._\\
/ \
// > D
/ \
% ‘
0 \
\ // X
\\ /
\\ /
\ // C
\ /
_______ /
A

Figure 48. Axes of rotation for the symmetry operations of D6h
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Table 18. Various notations for hcp symmetry operations

Cornwell (69) Iyengar et al. Herring Kovalev

(used here) (7)) (72) (70)
E E € hl
Cs, Ce(2) 86 hg
C32 C3(z) 83 hs
C,, Cor(2) 1 82 hy

-] - -1

c321 C3(Z)_1 53_1 hs
662 Ce(2) 8g hg
Cop C2(6) o' h7
CZC C2(3) 8o 3! hg
Coy Ca2 (4) 822" hg
Cop Ca(1) 6y " hio
CZA C2(5) 523' hll
Cyy Cp(2) 82" hi2
| i i hy3
Ic62 SG(Z) O3 - by
IC5, S3(z) o6 his
chZ Uh ) p ) hls
|c3;1 S3(z) ! og ! hy7
ICgot Sg(z) ! o3 ! h1g
IC,y ay(h) pa'! hig
1€y a,(5) p3" h2¢
'CZX O‘d(Z) pp_' hgl
ICop o, (6) Py h22
lCZA UV(3) pg' hz 3

t
ICp s, (1) Py hay
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for the symmetry operations for the 12 proper

rotations of D6h for the hcp crystal (see Figure 47)

Matrices

Table 19.

o~o _hu~2 —lv © F,.‘U_Z —~lN © _hw.)_Z g A FH.._Z ._I~2 o
~oo Tl Qe o 7l RWTL o —le KWTA o o I )
—— ~N ~N—— ~N— ~N—
i I n ] i
N < o] ~ o
ol o St ) Sl
— T~ — T — T~ T _—
o o -~ © o - © o = °c ©° - eeT
Dl ~iv © v Tl © KWTL =) RWTL Tl © o—o
—ly E%TL (=) 4;2 E%T‘ o —jey RUTL o 442 KUTA o —0O0
I ] i I i
v " x
N N N o N
CJO C.m) C/W ol ol




I; Dg, $; C
a5 Cg, s'; €
s €y, L; D
T; sz H; D
R: C2v A; D

The elements

are given in Cornwell (69).
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6h

(c.u6)

of these point groups, class composition and character tables

The extent of the following discussion will be to deduce the decompo-

sition along A as an example with the other decompsitions as well as

compatibility relations tabulated only.

The first step in the decomposition process is to obtain the If?,g)

matrices for the elements of the point group of A, c6v' The elements and

classes of C6v are

primitive translations only

Cys By
a3 €3, O,
Cg3 1850 1650, 1C05

The matrices T(q,R) are obtained
3x3 matrices in Table 19 and

6§ (k,F(k',R)) 1 for

=0 for

nonprimitive translations

Cys Cpp
Cgs Copr Cgp (C.47)
C6; |C2y, chc’ ICZD
from Equation (C.3) with RaB being the
k=k' and Classes Cl, Cz, C3
k#k' and Classes Cu, Cs, C6 ,
k#k' and Classes Cl, Cys 03
k=k' and Classes Cyyo Cs, Ce (c.u48)
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The exponential factor o = exp{i 3 . [;(k)-gg(kl)]} are obtained below,

For 3 along A; 3 = %;-(0,0,C)(C=0 to .5) thus we need only

consider the z components of x(k) for k=1,2 which are

x,, (k)

and xz(k)

. =l
Classes C], Cz, C3, k=k

k#k'

. =l !
Classes Ch, CS, C6, k=k

k#k'

0 for k=1

c —
7 for k=2

R(x(K') = X(k') = x(k)

and o=1

s(k,F(k',R)) =0
independently of o

§(k,F(k',R)) = 0
independently of o

k=2, k'=1; xz(Z) - %
(1)), = 0

then o = exp(itz) for all R
in Ch, C5 or C6. The same

is true for k=1, k'=2,

The matrices Iﬁa,g) = T(A,R) are then

and T(A,R) =(g %eiﬂg

for R in Cy, C,, c3 ,

for R in Cu, Cs, C6 .

(C.49)

(c.50)

(c.51)

(c.52)

We may now use Equation (C.6) together with the character table (Table 20)

from Cornwell (69) to find the decomposition along A:
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Table 20. Character table for the point group Go(a) = Cg, for q along A
in the hcp crystal (69)




Al

A2

A3

ab

A5

A6
Therefore,

T(a)
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-112—[6+6]=l
16+ 6] =1
lre-6]=o0
TE'[ - 6] =
lreg-6]1=0
5l ] =
T%-[lz + 0] =1
L2 -0]=1

= Ti.[ ] =

= Al + AZ + AS + A6 .

By similar methods for a along £ and T we obtain

T(z)
T(T)
At the special
T(r)

T(K)

T(M)

T(A)

25, + 2%

+ zzh

1 3

27

]+T2+T3+2T4

points I', K, M and A we have

- - + +
P2 + T6 + PS + FB

K

H]

I + K3 + K5 + K6

Ex - + - + -
M] + MZ + M3 + M3 + Mh + Mu

+ A

il
>

3

(c.53)

(C.5ha)

(c.54b)

(c.5kc)

(C.54d)

(Cc.54e)

(C.54f)

(c.54g)

The notation for the IR's is that of Warren (67) and it should be pointed

out that there exist confusing discrepancies in notation within the

literature. For example, Ky in Warren's work (67) is denoted K, in that

of Raubenheimer and Gilat (45).
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The compatibility relations are given at T, K, M and A as

1 3 3
+
I'3 “«> AZ )33 T2
(C.55a)
1‘5 <> AS ZIZ,_l TlTll
at K; Kl <> T] P‘
(c.55b)
K5 <> TlTl} P3
K6 “r T2T3 P3
+
at M; MI > T] Z] U]
M, <> Tu zl U2
+
M3 <~ T2 23 U2
- (c.55¢c)
+
My =Ty I, Uy
Mz, “ T3 23 U]
at A; A] < A.IAZ R]R3
(Cc.55d)

A, A5A6 R]R2R3Rh
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direction

and
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the above columns also give the decompositions for the particular

or point. Finally the phonon modes associated with the IR's are

along A [001] TA
LA
TO
LO

along ¢ [100] TA|
TO
LA
LO
TA]]
Toll

L

along T [110] TA,
TOL
LA
LO
TA

TO

1
11

(C.56a)

(C.56b)

(c.56c)
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APPENDIX D. SYMMETRY REDUCTION OF AFC MATRICES AND COMPOSITION OF
INTERPLANAR FORCE CONSTANTS IN TERMS OF AFC'S
The becc Crystal

The AFC matrices for a bcc crystal will be reduced using Equation (1.12)
@ij(zk,z'k')=:¢ji(z'k‘,zk) (D.1)

and Equation (1.20b)
o (LK,L'K') = Ro{2k,2'k')R . (p.2)

We can first reduce all @ij(zk,z'k') to the form

XX Xy Xz
Xy yy yz (p.3)
Xz yz 2z

by using Equation (D.1) and the fact that the bcc crystal is centro-

symmetric (Equation (1.23)). To further simplify the force constant

matrices, we must first deduce the symmetry operations, the R's of

Appendix C, which leave the ''bond'' between the atom of the origin and

the nth neighbor invariant or reversed, The eight nearest neighbors for

bcc crystals are listed in Table 21 in terms of their positions (components

h‘h2h3 along %&, g&, %& respectively), number (of nth neighbor) and

distance from the origin (see Figure 49).

Consider the first nearest neighbor at 111. The operations which

leave the "bond' between 000 and 111 invariant are

E, C(38)%1, 1c(2b), 1c(2d), 1c(2f) (0.4)

and those which leave the bond reversed are

I, 1c(36)%1, c(2b), c(2d), c(2f) (p.5)
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Table 21. Eight nearest neighbors in a bcc crystal (see Figure 49)

Neighbor Position Number of nth Distance to
n hihohs neighbors origin (R;) R.,/a
1 11 8 /3 a/2 0.87
2 200 6 9 1.00
3 220 12 /2 a 1.41
4 311 24 /11 a/2 1.66
5 222 8 V2 a 1.73
6 Loo 6 2 a 2.00
7 331 24 /19 a/2 2.18

8 420 24 Y5 a 2.24
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‘Z 5
.
s }\J 1 7 )
| %
s 8
Z £] x
000 2 6

®—body-centered positions

Figure 49. 8 neighbor positions in the bcc lattice
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as defined in Appendix C (Table 12). The 3x3 matrices for these opera-
tions are also given in Appendix C (Table 13).

Before applying Equation (D.2), the following expression is used to
determine the number of independent force constants to expect for a given

neighbor. The expression is (73)
N = % {Ix(R)2 + Tx(R'2)} (0.6)

where g is the number of operations which leave the bond invarient or
reversed, x(R) is the character of the operation R, and R and R' are the
bond invariant and reversal operations respectively. Using the operations
(D.4) and (D.5) and the characters from the matrices in Table 13 to evalu-

ate N for the first neighbor we get
N=]—'2-[9 +0+0+1+1+1+3+3+3+3+0+0] =2 (0.7)

Therefore, we can expect the matrix (D.3) to be reduced to having only two
independent force constants.
To begin the reduction process, we select an operation R from Equation

(D.4), 1c(2b) for example, and then apply Equation (D.2)

R ¢(1IDR = o(111) (p.8)
o010 xx xy xz\: {010 YY Xy yz XX Xy X2
100 Xy yy vz 100| = Xy XX xz| = Xy yy yz (D.9)
001 XZ yz 2z 001 YZ Xz zz Xz yz 2z

This implies that xx=yy and yz=xz and therefore

XX Xy Xz
o(111) = |xy xx xz (p.10)
Xz Xz 2z
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Let R now be 12}2d) then

00 1) [xx xy xz{ [0 0 1 ZZ Xz Xz XX XY Xz
010 |xyxxxz|[010] = [xzxxxy|] =[xy xx xz (p.11)
100/ \xzxzzz/ |100 XZ Xy XX XZ Xz 2z

and we have that xx=zz and xy=xz.
The 1st neighbor force constant matrix is now
XX XY XY
o(111) = |xy xx xy , (p.12)
Xy XY XX

or in another notation
% By By
e(1M) = {8, a; B, . (p.13)
Bl By
Since we now have only two independent force constants there is no need to
continue the process with other R's from Equation (D.4). In Table 22 we
give for neighbors 1 through 8 the following information:
(1) invariant operation R,
(2) reversal operations R',
(3) N,
(4)  a(hjhyhs).
We may now use these matrices to find the composition of the ¢n(g)
in terms of the AFC's. As an example, we consider the (001) type planes
on either side of the origin, the (001) and (00T) planes, and find that
they contain eight first neighbor atoms located at h]hzh3 =+l £ 1z 1.
The force constant matrices representing the forces between these atoms
and the atom at the origin, ¢(h1h2h3), are obtained by applying the sym-
metry operation which takes 111 to hlh2h3, to ¢(111). For example, £(2z)

takes 111 to =1 -1 1, therefore
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Table 22. AFC matrices and their symmetry operations for eight nearest
neighbors in a bcc crystal

Yinvariant” "Reversal!!
n (hphah3) operations (R) operations (R!) N ¢(hyhahg)
11 0 Ec,ll,ic 1,1c,52 2 [xx xy xy\ xx=a
’ ’ - w]
C3v) ) 1Y) rofbidied Bioclls
2 | (200) E,c(ZX),c(ﬁ;) |,|c(2x),|c(i;) 2 [xx 0 0\ xx= o
Oyy O Yy = B2
6 (H00) 1C52)21Cay)  Cl2z)*Cay) (2 oo
1€27) %) “(2e)
3 (220) EsCoan |’|C(2a), 3 [xxxy O XX = 03
xy xx 0 zz = B3
'C(Zb)’lc(ZZ) C(Zb)’c(Zz) 0 0 zz Xy = yj3
y  (311) E"C(zf) I,C(Zf) L [xx xy xy XX = 0oy
Xy YY yz Yy = By
Xy yz yy YZ = Yy
Xy=X2=0y
7  (331) E’|c(2b) |’c(2b) L [xx xy xy XX = a7
Xy YY yz yy=zz=87
Xy Yz yy YZ = Y7
xy = 67
8 (420) E,IC 1,C L (xx xy 0 XX = ag
? 2 7 (2
(22) (22) xy vy 0] yy =8g
0 0 zz 2z = yg
xy = 6Og




o(-1 -1 1)

-1 0
where 0-1 0
0 0 1

Similarly,

e(1 -1 -1)
o(-1 1 -1)
(11 -1)
o(1 -1 1)

(=1 11)

XX Xy
(=1 -1 =1)={ xy xx

Summing the ¢(h]h2h3),

matrix
8xx 0
0 8xx
0 0

= €(2z) and ¢(111) = |xy xx

-0 O

-1 0
0 -l
0 0

XX XY

"

Xy ~XY

XX —Xy
=Xy XX
Xy Xy

XX =Xy
-Xy XX

Xy —Xy

XX Xy
Xy XX

Xy =Xy

XX =Xy
=Xy XX

Xy =Xy

XX =Xy
-Xy XX
=Xy XY

Xy Xy

0
0

8xx .
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XX XY XY
Xy XX Xy
Xy Xy X

-Xy

Xy XX =Xy

XX

~xy
Xy
XX

xy
XX

-Xy
-Xy
XX

Xy
-xy
XX

-xy

xy
XX

—— e N S e N—

Xy
xy
XX

XX Xy

Xy Xy

OO -

Xy
xy
XX

[eR Ne

— OO0

(p.

(D

(D.

(p.

(D.

(D.

(D.

(D

Equations (D.13a) through (D.13b), we find the

(D

13a)

.13b)

13¢)

13d)

13e)

13f)

139)

.13h)

.14)

This is the first neighbor, n=1 (first set of planes) contribution to the

dynamical matrix.

>
q along A,

From Appendix C we found that in the [00z] direction,
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mi =Dy
mi = D, , (D.15)
= Dy
By inspection of Equations (D.14) and (D.15) we see that
¢](L[00c]) = 8(Ixx) + ....
¢, (TL00z]) = 8(1xx) + .... (D.16)

¢](T[00§]) 8(1xx) + ....

as indicated in Table 2.

The hcp Crystal
The symmetry reduced AFC matrices to six neighbors for the general
tensor model are given in Table 23. Also given is k for each neighbor
(see Appendix A), NN, the number of nth neighbors and . the distance
to the nth neighbor.
The force constants in the MAS model originate from Equation (1.62)

for the axially symmetric model:

R.R, R.R,
~ - | |
05 = 0 l8yy 2 ) o 1t (0.17)

where ¢t is the tangential or bond bending force constant and @r is the
radial or bond stretching force constant. In the rotation of DeWames et

al. (22), these are written as
¢, = CB(s,ij) (D.18)
and e = Ct(S,IJ) (p.19)

where the interaction is between the jth atom of the sth shell with the
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Table 23. Force constant matrices for six nearest neighbors in an hcp
crystal (see Figure 50)

Neighbor Number of Distance from
n nth neighbors Force constant matrix origin
15t 6 Ay izj-(Al-Bl) /3D,
- /3 T y2

=2 —2-3— (Ay-B7) By D a (§ + l’['—)
/3D, D Gy

an 6 a %(al—bl) e

=1 :{i (a;-by) by /3e, a
e V3e, 91

rd

3 6 A, 0 0 —
0 D, G

yth 2 ay 0 0

=1 0 as 0 c = ya
0 0 92

5th 12 Ay Fi Es 5

k=2 F3 B3 D3 a/ £+ 3

37k

Es D3 G3

6th 6 ag 0 0

=1 0 b3 0 v3a
0 0 g3
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Figure 50. 6 neighbor positions in the hcp lattice



ith atom in the cell at the origin.
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K(S’ij) = ct(S,ij) = CB(-S’ij)

Equation (D.17) becomes

o,

ij

R.R.
;= Kis, i)+ Cgls,if) .
o]

Then with

(D.20)

(D.21)

The modification to the thus far axially symmetric model is to replace CB

by ch

Ist &, = K(1,12)/ (4+3y2)

3rd

5th

€1x

€12
83
€

3x

€3Z

and ch'

]

The MAS force constants to six neighbors are (74)

ch(l,lz)

ch(l,lz)

CBX(Z,IZ)

CBZ(Z,IZ)

= K(2,12)/(16+3y2)

8 = K(3,12)/(28+3y2)

€

5x

€

5z

]

Cpy (3,12)

Cg,(3,12)

2nd o, = K(1,11)

Lth

6th

By = Cpx(1s11)
Bzz = CBZ(I,II)
ay, = K(2,11)

Byx = CBx(z’ll)
th = CBZ(Z,II)
ag = k(3,11)

B6z = ch(3’|l)

(D.22)

The MAS force constants are related to the general tensor force con-

stants of

>
|

[2]
1

-n
il

Table 22 by the following relations (74)

€, *+§

X

l

= €136, ’

2
E]Z+3'Y 6] ’

/38

]

=

[}

€

[>

€

0

3

3

3

X

x+I663

2
z+3y 8

3

A, =¢

3 x+]26

5 5

83 e5x+1665

- 2
G3 852+3Y 65

F, =8/3 &

3 5



E] = 3Y6] , E2 =0 ’ E3 = GYGS ’ (D-23)
D, = /3v6, , D, = W3ys, , Dy = 4/3y8
a, = o, +8, y a, = By ’ a3 = By ’
b, = 2 a 4B b, = 8 b, =a, + 8

1§ ’ 2 Lx ’ 3776 6x °
9 = By, ’ 9 = oy * By o 93 = Bz ’

/3 =

=% =0 370 ’
e] = 0 y e2 = 0 ’ e3 = o ’
d] =0, , d2 =0 , d3 =0

The constraints on the general tensor AFC's from these relations

are (74)
Dy = e 0, = 2 v(Ay8)
= - - =23 -
F3 = -2/§ (A3-B3) . (,D-Zl*)

The constraints imposed by the elastic constants are given in terms

of the MAS force constants by (42)

- _b 3 3
Ciq = 573{(9/8)a2 + (27/8)a6 + 56, + 2#63 + 14765 + 58, F
9 ! - 2 g
FBex * 31x T 283 * 735x (12/mo_ )(863 8 2055)2} ,
C11Cyp = Tyl (3/8)ay + (9/8)mg + 45, + 86, + 438 + 26, + P +

] - 2 -
o1k * 265, * Teg, (IZ/mwa )(8<s3 8

X 3x

]-2065) = 2C66 ’
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_ 4%2 3 3 3 3
ContCyy = moe{ Ja. + 30, + &, + 168, + 985.)
127N TR TR T Y 3 5 ’

_ by?
c]3+chu = E7§{ 36] + 1263 + hzas} s

Cyy = c7u§{ I + 6r265 + 21285 + 20 * %662 + ]felz *
2€3z + 7352} ,

c33 - %52{ oy * %7261 * 27263 * %YZGS T By, * %glz + %€3z *
%€52}

Using these relations it can be shown (22) that

_ 3,3 .3
C/g(cuh'cl3) = 8By, + fE, ¥ Te3x * 255y

(d.25)

(p.26)

Thus, if the bond bending force constants B and € are not included in the

model the Cauchy relation C]3=Cuh is obtained, The elastic constraints

in terms of the general tensor AFC's are (74)
_
Ch = w7 {12b, + 9(a3+3b3) + 3b3 + l&A] + 4(A2+3Bz) + 26A3 +

308, + 16/§F3 - P |,

3
o -
Cep = T73C {lZa] + 9(_3a3+b3) + liB] + 4(3A2+32) + 30A3 + 26133
16/§F3 -pPy |,
_ ¢
c33 = 7357 {l;g2 + 3G, + 3G, + 663} )
_ 2

s ]
c]3-73—a{/§ol+/§02+353+2/3'03} cm’ .

(p.27)
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. where

l&{(A]-BI) + (AZ-BZ) + 2(A3—83) +,2/3'F3}2
P = []
(AI+BI) + (A2+Bz) + 2(A3+83)

The constraint deduced from the condition of rotational invariance
Equation (1.16) for the six neighbor MAS model is
1 1
2 =
v2[za, + gl(A+B)) + (A,+8)) + 2(As+B,)1] (p.28)
1 3 ! 2 7
7N t793 S 3Gty .
This condition requires that the slopes of the TA[001] and TA [100]
branches near q=0 are identical.
The equations of motion for an hcp crystal in the symmetry directions
in terms of the interplanar force constants hi and Pi(i=0,l,2,3) are given
below (74) and the AFC composition of the interplanar force constants are

given in Table 2k,

[001] (a) ms? = h {1 = cos(rcq)} + h,{1 - cos 2mcq}

(reduced zone scheme) (p.29)
[100] () m(mAz-moz) =p, *+ Py cos (Y3raq) + P, cos (v/32raq)
[110] (T) TO(,TB)mm2 = B, {1 - cos mag} + h,{1 - cos 2maq}

T0(T,)mw? = p_ + p, cos(raq) + p, cos(2raq) +
Ps cos (3raq)

Using the MAS force constants the equations of motion written directly

in terms of the atomic force constants are (42)
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Table 24. Force constant composition of interplanar force constants for
an hcp crystal
Ay Az Az|a; az a3{B; By B3lby by b3|Gy Gy G3|g; 9o 93
Lloo1l my 6 612
Aydo
ho 2
Tloo1] By 3 3 6 3 3 6
Aghg 1 1
hy 2
L[100] Po 6 612 6] 6 6 12| 8 6
21 Pa1 -6 -8 -1
P2 =4
1.[100] po 12 12 24( 8 12
I3 P1 -8 -8
P2 -4
T;10100] pg 6 612! 8 6/ 6 6 12 6
E|+ P1 -8 -2 -6
P2 -4
TAL110]  hy 4 Ll 4
T3 ha L 4 2
hs [ b
To[110]  po E 8 12| 6 4
P1 Li-4
T2, b b4|-2
P3 4 -4
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[001] A
(wgp)? = (wa2/2)(l-clz) + (28, /m)(1-C,)
(w )2 = (w0 272)(1-C ) + 2(ay+s) ) /m (1-Cy ), (p.30)
(m'l'o)2 = (%wéz)(l+clz) + (zshx/m)(]-CZZ) ’
()% = G 2) (1€, ) + (2(ay+8y, ) /m) (1-C,.)

and at the zone boundary (A) q = (0,0,7/c) and the frequencies are

(IUTO)Z[q=(o:os"/C)J = (D-‘TA)Z[CI:(OOTT/C)] = waz/z + l'Bl'x/m ’

(wLO)Z[q=(0,O,1T/c)] = (mLA)Z[q=(001r/c)] = wb2/2 + (l'ul}"'l*sl;z)/m ,

where
waZ = (12/m){e,, + Egy ¥ 265, + 26 + 863 + 2865} ;
wp2 = O2/m){(e;, + g, + 265,) + 3y2(8) + 85 + 255)}
an = cos nqz%c, n=1,2,....

[100] =

At the zone boundary (M) q=(2/v3a,0,0) and the frequencies are given
by

2 o
G”LO) l/m{165] + he]x + 9663 + 12¢ ot 1285, + 8¢ o F 6a2 +

3 5 5

882)( + 2@6 + 886)(} ’

2 =
(0 p)% = 1/m{88 + 8, + 2085, + l6e; + 6a, + 88, + 20, + BB,

2 .
(mToll) = l/m{zhal + 8e'x + 2&065 + 16e5x + 2a2 + 832x + 6“6 +

88} (p.31)
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(wpp )

. l/m{llelx + 965, + 12¢ 5t 966

3 3 + 8¢ <t 2a2 + 832x +

5 5
6(!6 + 866)(} )

+ 8¢,. +

+ 24726ﬂ-+helz+ 12¢ 52

2 - 2 2
(mTAL) = 1/m{12y a‘ + 36v28 g

3 3z

882z + 8862} ,

+ 8812 + 16 + 8822 + 8862}

5 5z

2 - 2 2
(wToL) 1/m{2hy 6] + 48vy48
[ti0] 7
At the zone boundary (K) q=%/§ha(110) and the frequencies are given
by
2 - 2 - 1.2 2.
(0 g)? = (o p)? = 50 2 + gmlay+28, 1

1 2 9
N (J/m)[i-a2 + 98, + 128, + 488

3" 15665] ,

(p.32)

1 2 9 .
w2+ (1/m[5 0, + 96, + 126, - 48s

o~
£
-]
>
S
]

3+ 15665] ,

2

2 - 1.2
(NTOJ} (wpg 37= 5 0% + 98, /m

(Notice that the degeneracies at the points A and K are consistent with

those given in Appendix C, Equation (C.5b).)



