
The design and development of SNIP:

Simple Network Imitator Program

by

Brett Philip Myers

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Co-Majors: Information Assurance; Corriputer Engineering

Program of Study Committee:
James Davis, Co-Major Professor

Douglas Jacobson, Co-Major Professor
Gifford Bergman

Iowa State University

Ames, IA

2004

Copyright ©Brett Philip Myers, 2004. All rights reserved.

11

Graduate College

Iowa State University

This is to certify that the master's thesis of

Brett Philip Myers

has met the thesis requirements of Iowa State University

Signatures have been redacted for privacy

TABLE OF CONTENTS

LIST OF FIG~:TIZES v

LIST OF TABLES vi

ABSTRACT vii

C~[APTER 1. INTRODUCTION 1

information Assurance 2

Test Beds 3

What Can Be Done? 4

Objectives 5

CFCAPTER 2. RELATED WO~:K 7

LA►I~IAT ?

ISEAGE 8

Course on Information Warfare 9

C~:[APTER 3. BACKGROt;TND 11

Layered Networking Model and Protocols 11

Libnet 16

Ethereal 17

CI=[APTER 4. DESIGN AND IlVIPLEI~~IENTATION 19

Components I9

Data Structures 21

CJeneral Physical, Network, and Transportation Layers Design 22

TCP Functions 24

]POPS Functions 26

POP3 Input 28

Overall POP3 Handling 29

a

iV

C~:CAPTER 5. RESUIjTS 3 ~

Netcat Verification 31

Netscape Mail Verification 32

C~-iAPTER 6. SI:TwI:MARY 3 7

Compliance with C~bj ectives 3 7

L~EAGE 3 8

future Work 3 ~

Conclusion 4~0

AC I~1~T~ W LED Gl~~IENT S 41

REFERENCES 42

v

LIST OF FIGL:~~ES

Figure 1.1: CERT incidences per year 2

Figure 2.1: The ISEAGE Project ~

Figure 3.1: OSI Model 11

Figure 3.2: Ethernet Frame 12

Figure 3.3: IP Header 14

Figure 3.4: TCP Header 15

Figure 3.5: Libnet protocols 17

Figure 3.f : Ethereal screen shot , 8

Figure 4.1: Components 20

Figure 4.2: NetInfo Data Type 21

Figure 4.3: Comminfo data type 22

Figure 4.4: Libnet Build Functions 23

Figure 4. S : TCP Functions 24

Figure 4.6: Three-vvay connection handshake 25

Figure 4.7: Disconnection handshake 25

Figure 4.8: POPS Function Prototype 2'~

Figure 4.9:1VIailInfo Data Type 28

Figure 4.10: Sequence of function calls 30

Figure 6.1: ISEAGE architecture Layout 3 8

~~

LIST OF TALBES

Table 4.1: POP3 commands 27

Table 5.1: Netcat user generated traffic 33

Table 5.2: SNIT' generated traffic for Netcat 34

Table 5.3 : Netscape Mail Generated Traffic 3 5

Table 5.4: SNIP generated traffic for Netscape Mail 36

vil

ABSTRACT

As computer systems become more complex, they become mare vulnerable to

malicious users. Researchers and professionals are working hard to keep unwanted users out

of their networks, but this requires special tools and training for them to be able to adapt to

new problems. One requirement for researchers is a good test bed network. This allows

them to run experiments and train others on network security without risking live networks.

To improve the effectiveness of such networks, tools can be to make these networks seem

more realistic.

This thesis proves that a tool can be create that runs on a single machine, but can

generate the equivalent traffic of a network, where neither the client nor the server has to

exist. However, if a computer on the unmediate network was perniciously sniff ng traffic,

they would not know whether the machine exists or not from the information they gathered

from sniffing the network.

This tool has many possible uses and a strong future. It has been developed to be

used in Iowa State University's new Internet-Scale Event and Attack Generation

Environment (ISEAGE) to provide the background network traffic.

1

CHAPTER 1. INTRODUCTION

Computers play a vital role in modern society. They manage our information

and perform invaluable computations. Computer networking allows us to distribute

resources and communicate with others. A network is a group of connected, communicating

devices such as computers and printers [4] . These networks fulfill various tasks,

communicating through rules known as protocols. Some of the activities governed by these

protocols are file transfers, e-mail and viewing web pages, to name a few.

What is currently known as the Internet is based on a research project known as

ARPANET sponsored by the Department of Defense Advanced Research Projects Agency

(DARPA). Implemented in 1969, this research project connected several computer networks

across the nation on a larger network. Currently, the Internet connects thousands of networks

throughout the world enabling them to communicate with each other.

With the dependence on computer networks and the Internet increasing, new

challenges face the world. A few such problems include individual processor performance,

high speed networking, securing communication and data mining algorithm development.

Millions of dollars are spent on research and education of many areas relating to computers,

especially their networking capabilities.

One such area of study in the computer industry is the study of Computer Security

and Information Assurance. The technologies that were meant to improve computer

communication and increase work efficiency are being turned against the users they were

designed to help by malicious users. Intruders have the ability to gain access to restricted

machines and the information that these machines store. Also, malicious programmers can

create viruses and worms that quickly and easily spread through the Internet and often times

cost companies millions of dollars in losses.

To counteract this, research into Information Assurance has quickly grown to be an

area of great concern for both the government and private industry. The remaining sections

of this chapter introduce the study of Information Assurance and go on to explain the needs

of these researchers and educators. The chapter will conclude by describing the reasons why

there is a need of a new tool that will improve research test beds and the requirements for

such a tool.

2

1.1 Information Assurance

'the creation of the Internet and the resulting connectivity among computers has

caused a security threat to these computers and the information they hold on them. This

threat of attack created the need to prepare for and monitor malicious acts. The Computer

Emergency Response Team (CERT) Coordination Center has been monitoring incidences

since 1988. An incredible increase in the number of attacks occurring each year has

occured, from the six incidences reported in 198 8 to 13 7, 529 incidences reported in 2003 .

These incidences can result in financial loss and\or the loss of privacy. Figure 1.1 shows the

dramatic increase of incidences over those 15 years [2].

160000 ~ ~

S:q~ ~'... 1::.^~M'.MT.•I.y?t. n•~•..

N
ur

~n
be

r o
f

In
ci

de
nc

es

1

`
i

S.

S.
3

120000

100000 ~j>,~

${

80000 .„.~
iiS

f"

I

S.
T

YVY00 'L::M

w......,,.<..>

40000 ' .__..

5

~
/

~ry~~

y.:..M:y nf 4': .~w.~r..?.

.;.:ppi.y.yw!r':.!.In:fl.~n':Nv....!b:.vt~-. t. . . .,.anv:.:rfnr ~uw.v... }n ..~

.w~Y::: ice•+AiFi:r.~iJ~Hiy:~

TV. :.1!.Y4:uw:{:.}ii:.:.x.,v..tivS:.y:n...v::.; .4.0
S•i

1988 1989 1980 1991 1992 1993 9994 1995 1996 1997 199$ 1999 2000 2001 2002 2003

Year

Figure 1.1: CERT incidences per year

As a result, colleges and universities across the United States have steadily increased their

research and education programs in the area of Information Assurance. The government is

encouraging the grov~Tth of these programs in several ways. The National Security Agency

(NSA) has created a list of schools that are recognized as Information Assurance Centers of

Excellence Institutions. These institutions partner with the NSA to promote the education of

3

Information Assurance [1]. The National Science Foundation is also encouraging the

education of Information Assurance professionals through their Scholazship for Service

program. This program provides funding for undergraduate and graduate college students to

study Information Assurance and work for the federal government in the field after

graduation.

There aze several different areas of research in Information Assurance. One area is

computer forensics and attack trace back. Finding out the origin of computer attacks is a

difficult problem being studied by researchers. This research may require lazge test bed

networks from which to examine the attacks.

Another large azea of study is into Intrusion Detection Systems (IDS). Network IDSs

monitor network traffic in an attempt to determine if an attack is occurring. This can be quite

complicated with the large quantity of traffic that flows through a network. Attacks can be

anything from sending a single packet using a buffer overflow to several small packets

creating a fragmentation attack. A difficulty in detecting these attacks is that they can be

easily camouflaged behind normal traffic and ignored.

One type of attack that IDSs try to detect is denial of service (DOS) attacks. The objective of

a DOS is to not allow users access to services that are normally available. DOS attacks can

be coordinated to come from multiple attacking machines which can number in the hundreds,

or even thousands to create a distributed denial of service (DDOS). Studying these attacks

that occur from so many sources can require extremely lazge test beds.

Another important area of study is in prevention of the distribution of viruses and

worms. Viruses and worms have caused companies millions of dollars from the loss of

productivity. The observation of how these programs spread across the Internet could be

very helpful in preventing them. Once again, a large test bed would be very useful; perhaps

even one equivalent to the scale and scope of the Internet.

1.2 Test Beds

Research experiments in the field of Information Assurance should be contained in a

protected environment at times. When examining the effects and prevention methods of

attacks, worms and other problems computer criminals inflict on computers and networks,

4

researchers must be sure to protect the outside connnunity. The release of one such

experimental computer virus could have a detrimental effect. Researchers need a contained,

yet realistic, test bed network in which to perform their experiments that will not harm the

outside community.

Another interesting use for test bed networks is educating students. One way to teach

people how to defend against attackers is by teaching them the attacker's methodology and

showing the students how to penetrate a network. V~Thile this is an interesting and effective

approach, educators cannot let their students atl;ack live networks. They could damage the

network and acquire information they should not access.

Yet, networks setups such that users cannot damage the network are not ideal test

situations. For an experiment to be as informational as possible to the researcher, the test bed

must be as realistic as possible. Tools need to be created to make these networks more

realistic and useful.

1.3 What Can Be done?

One problem when researching and teaching network security is that it is difficult to

find a suitable platform in which to conduct tests and teach defense techniques. Since it is

often not practical to run some experiments or projects on live networks due to the fact the

network could, and at times are expected to, be damaged by the tests. At times, the test bed

networks created to run these experiments do not closely enough resemble live networks.

The lack of actual network usage can reduce the effectiveness of the test bed to obtain its

objective.

A solution to this problem is the creation of a tool that can produce network traffic

that is equivalent to the traffic that would be generated by typical users. This would allow

researchers and students to see the effects of network traffic on their experiments and

exercises.

Such a tool could be deployed on a wireless honeynet. The traffic the tool produces

would allow people searching for wireless networks to discover the network, and possibly

penetrate the network. Another possible use would be to allow students to sniff traffic and

gather information during a penetration test, which is a method used by attackers to gather

information on the network. This tool could also be used to see how new applications and

protocols react to typical networks.

1.4 Ub j ectives

The main objective of such a tool is to generate network noise traffic for test beds.

The traffic being generated is best called noise traffic, because the traffic produced by such a

tool is not actually communicating with anything, but is s-imply generating realistic looking

background traffic, or noise traffic. Computers g this tool are not .actually having 2-

way communication with other computers, but the communication is done with fictional

rachines. Because of this, the traffic being generated should not correspond to machines on

the network where the research is being done on. If a specific attack is to be tested against a

machine, such as a session highjacking, the victim mach~ze should generate its own traffic

and open its own connection.

Since traffic itself will not be received by a client or a server application, only

machines on the immediate network r~~nning applications that are promiscuously sniffing

traffic will receive the traffic. However, the computers who are not promiscuously sniffing

traffic on the immediate network will react to the traffic the way any computer would react to

normal traffic. The traff c that is viewed by the sniffing application should equivalent to any

other traff c that would typically be seen on a live network and make the sniffing application

have a similar reaction.

The traffic sniffing application must be on the immediate network because the traffic

produced by the noise traffic generating application should not be transferred to another

network through a router or switch. This will keep the traffic from creating noise on other

subnets that could be running other experiments or even possible live networks.

Also, the noise traffic generating application will not pose any security threat to the machine

it is running on. If a threat is being tested for, the noise traffic application should not open up

new vulnerabilities on its host machine that could alter the results of the experiment.

The last objective of this project is that the code should be easily reused. Since

computers and networks are constantly evolving, new protocols may be developed. Different

test situations require different network traffic; therefore the implementation must be

flexible. The test noise traffic may not be easily planned for and the application will need to

be adaptable to new requirements. Also, parts of this code may need to be incorporated into

other applications. Another programmer maybe interested in reusing code, perhaps to create

a tool to generate traffic to flood a network. By designing the code in components, the code

will be more easily transferred to other applications and implementations. Cane should be

able to take different functions from this application and use it in other applications.

Again, the purpose of this thesis is to prove that such a program is possible. The

objectives of this thesis can be stated as:

- Produce network noise traffic equivalent to traffic that could be found on the

network for test noise

- The noise traffic produced does not transfer to another sub-network

- The application does not create a security threat to the host machine

- Component based for easy code transfer

CHAPTER 2. RELATED WORK

A tool that produces the network traffic equivalent to a computer network is a useful

tool for researchers and testers. This has already been addressed at MIT. The approach used

at MIT is a very effective method, yet it is not suitable for all situations. The MIT method

will be discussed in the first section of this chapter. The proposed tool is a different approach

that is required for a new computer security laboratory at Iowa State University, which will

be discussed in the second section of this chapter. The final section in this chapter will

discuss a class in where this proposed tool will be used to help educate security professionals.

2.1 LARIAT

In 1998 and 1999, DARPA funded MIT to evaluate some network IDSs. To do this,

MIT set up test bed networks specifically designed for the tests. The networks were set up to

handle offline evaluations of the IDSs being evaluated. Typical network traffic was required

to make these tests effective by allowing the IDSs to see normal, noise traffic while they are

trying to detect attack traffic [7,8]. An application called Expect was used to generate the

traffic, as suggested in [12] .

Expect is a tool designed to automate the use of applications, such as Telnet and FTP

Clients. Scripts used by Expect can control exactly what the client programs do, such as

logging on to servers and downloading files, and when they run [9]. The evaluators set up

several client machines to run the scripts that would connect to servers running on the

network, which creates the noise traffic on the test bed network.

While this was an effective method to run tests on the IDSs, it was very time

consuming. For each test, the network had to be reset. It was then determined that it would

be useful to develop a specific evaluation test bed network. Such a test bed would be used to

support real-time, automated and quantitative evaluations of IDSs and other Information

Assurance technologies [13]. This was the foundation for the Lincoln Adaptable Real-time

Information Assurance Testbed (LARIAT).

LARIAT was designed and developed to support real-time evaluations and to create

deployable, configurable, easy-to-use test beds [13]. The objectives of the system were to

have a test bed network that can be easily setup for evaluations, yet simple enough to use that

8

the operator would not need to have an understanding of how the system works. The user

simply selects the network settings and the atf;ack they wish to run from a database of

different attacks.

The noise traffic generation for LARIAT is also done with Expect. An application

was developed for LA►IZIAT to allow multiple IP to addresses to come from one computer

and to allow users to select different traffic profiles from different Expect scripts. Each

profile has different traffic patterns, which statistically copy traffic patterns that have been

obtained through observing production networks. The patterns consist of the type of traff c,

whether it is PoP3 or HTTP or some other protocol, and a scaled amount of each protocol.

The traffic being produced by this application is actually connecting to servers that must be

set up within the network to complete the communication.

This method is an effective way of generating network noise traffic, However, the

objective of the LARIAT tool differs from that of the proposed tool. The L~dZIAT tool

creates traffic that not only serves as noise on the network, but by creating the complete

communication process, the servers on the network are actually affected. To some degree,

the researchers were interested in the effects on the server, not just creating noise traffic .

This meant that not only the traffic generating machine also need to be maintained, but

different servers that the traffic will communicate with must be maintained. The proposed

tool will only focus on the noise traffic generation and not worry ab-out affecting an actual

server, which reduces the number of machines the system administrator will have to

maintain. The researchers will only be able to see how the noise traffic affects computers

other than the imitated clients and servers that are attached to the network.

2.2 ISEAGE

The Internet-Scale Event and Attack Generation Environment (ISEAGE) is a test bed

network being developed by the Information Assurance Center at Iowa State University.

ISEAGE will be a test bed network that will create a virtual Internet for the use of testing

new network equipment and software. It will also give researchers the chance to examine

how interactions occur throughout the Internet, whether it is an attack tracing experiment or

watching a worm propagate. Unlike other Internet simulations, the attacks will be carried out

9

on real equipment [6]. Figure 2.1 shows the different uses for such a test bed, along with

some of the control structure.

~~ :~ s r~ 4 ~~ ~ ~n~~~

~~~~~~ c:. ~a 
c:~~a 

Figure Z.1: The ISEAGE Project 

r~~: 
~~-F 

:mod: 
~~~~ 

Since ISEAGE is creating a virtual Internet, a comparable amount of noise traffic

must be created to make this test bed resemble the Internet, without using all the computers

required to create this traffic. The tool being developed in this project will generate the noise

traffic required for ISEAGE. This tool reduces the complexity of the system by not requiring

actual servers to be running for their interaction

2.3 Course on Information Warfare

One of the more effective ways to train security professionals is to teach them the

methodology that attackers use. This allows them to learn about an attacker's thought

process and familiarizes them with the tools which they use. Also, it would be helpful to let

them use the tools and experience the attacks. By learning about the attacker's tools and

to

methodology, the students will be more prepare to defend against them, This can be done by

allowing the students to attack a test bed network.

This is done at Iowa State in the Information Warfare class offered each spring.

Every year, students learn attack methodologies and tools, and then learn how to detect and

defend against them. At the end of the class, the students get the opportunity to test their

skills on a fake corporate network set up for the class activity, known as 532Corp. This gives

the students the experience without endangering any production systems.

11

CHAPTER 3. BACKGROUND

Computer networking and the Internet have become quite complex. Hundreds of

tools and protocols exist and are used regularly. Many of these tools and protocols have

become international standards. This chapter details the protocols that are being used in this

new tool and the tools being used to test its functionality. The chapter will conclude with a

brief discussion of some test bed networks being developed and currently used.

3.1 Layered Networking Model and Protocols

In the late 1970s, the International Standards Organization (ISO) released a standard

to cover all aspects of network communication with its Open Systems Interconnection (ISO)

model [4]. While this standard is rarely used fully, it standardized the use of the Iayer

framework to allow for communication independent of the architecture it is on. The ISO

model called for seven layers: physical, data link, network, transport, session, presentation,

and application. These layers were designed so that corresponding layers interact with each

other in communicating computers. The layers are then passed to the lower layer as just a

data packet, not affecting how the lower layers work. This is represented in Figure 2.1.

Application ~— — — — — — — — — ►~ Application
♦ ~

.Presentation — — — — — — —►L Presentation
~ ~

-----~
'~,'

Session

Transport

Session

Transport

Network ~ — — — ~ Network

Data Lirtk

Physical

+ ~--►~
 I~- -►I

Data_link

.Physical

Figure 3.1: OSI Model

12

This layered approach was also used when developing the TCPIIP Protocol Suite.

However, only five layers were used in this suite: the physical, data link, network,

transportation and application layers. The physical and data link are defined by the network

interface and the physicals medium. The application level is defined by the programs that use

the application layer. The TCP/IP Protocol Suite has become the international standard that

defines the internetworking and transportation layers. Ethernet has also become the standard

for the data Link layer.

These protocol layers take the information front the previous layer then either add a

header to the front of the data or encapsulate the data within a frame. This new information

is used to conununicate with the corresponding layer on the machine receiving the packet.

The Ethernet frame requires the Medium Access Control (i~ZAC) address of both the source

and destination machines and the length of the data. The frame also adds seven bytes of

alternating ` 1's and `0's for the preamble and a start frame delimiter (SFD) to signal the start

of a new frame. This is the same in all Ethernet packets. However, the 1VIAC Addresses are

universally unique to the network interface. The packet format is shown below in Figure 2.2.

Preamble SFD Dest. Address Source Address Len.

7 btyes 1 byte 6 bytes 6 bytes

Figure 3.2: Ethernet Frame

2 btyes

The Internet Protocol (IP) is the primary standard for the network layer on the

Internet. This protocol uses abest-effort approach to delivering its information, meaning

there is no error checking or tracking of packets. It uses IP addresses to give each device on

the Internet a unique universal address, theoretically. With the limited number of these

addresses, network administrators have started using IP Address conserving methods to

connect devices to the Internet. IP Addresses currently consist of 4 bytes and are written

with a period separating each byte (such as 174.35.185.8).

The Il' header, shown in Figure 2.3, requires at least 20 bytes of information, and can

hold as much as 60 bytes. The first 4 bits of information give the protocol version (VER).

Version 4 (IPv4) is the most used and is the basis of this discussed. There is a push for

13

version ~ (IPv6) to become the standard, however this is a slow process. The next 4 bits

gives the size of the header in number of 4 bit sections (HLEl~. The next 8 bits are used for

the differentiated services (I~►S). This is used to state different services that can be used with

IP. The next 16 bits give the length of the entire packet in bytes at the IP level (this is the IP

header plus the data being carried by the packet).

The next 32 bits deal with possible fragmentation of the packet. At times, the packet

might be too large to transport across a network, V~hen this occurs, the packet must be

broken into sections and sent separately. This is called fragmentation. The first 1 ~ bits of

this section are used to uniquely identify the packet from a particular source and port. The

next 3 bits are flag bits. The first of these three flags is reserved and not currently used. The

second i set if the packet should not be fragmented, resulting in axi error if transmission can

not continue. The third flag states whether there are more fragments in the original packet to

come. The last 13 bits in this section are the fragmentation offset. This is the number of 8

byte chunks of the original data this section starts on. For example, if a 2,000 byte packet is

split into two even fragments, the first fragment offset will be 0 for bytes 0 — 999 and the

second fragment offset will be 125 for bytes 1,000 —1,999. This is the first byte (1,000)

divided by 8 to determine the number of 8 byte chunks. These packets must be reassembled

at the destination to form the entire original packet.

After the fragmentation section, the next 8 bits hold the time-to-live (TTL) of the

packet. Each time a packet is transferred from one network to another, the TTL number is

decreased by one. ~]Vhen this number reaches zero, the packet is dropped and does not reach

the destination. The next 8 bits state what protocol is contained inside the IP packet (such as

TAP or UDP). The next 16 bits are used as the sum check for the packet. This is a number

created by a mathematical process done on the packet to check its integrity for error

detection. The final required 64 bits are used for the IP address, the first 32 bits are for the

source and the second 32 bits are for the destination,

There could be up to 40 bytes of information following the information given for

options. These options are not relevant at this time.

14

~~ER GLEN D S Total Length

Identification Flags Fragmentation Offset

TTL Protocol I~ieader Checksum

Source IP address

Destination IP address

8 bits 8 bits 8 bits S bits

Figure 3.3: IP Header

The Transmission Control Protocol (TCP) is a standard protocol at the transport layer

level. It establishes a reliable connection between two communicating applications. This

protocol is connection oriented since before communication occurs, a port on the client

machine must be connected with a port on the server machine through athree-way handshake

process. V'Vhen the communication is completed, the connection must be broken using a

four-way handshake process. The TCP protocol is considered reliable because it has error

control and packet acknowledgement, so the sending machine knows that its packets have

been received. If a packet is ever not received correctly, the sending application can resend

the lost packet. This protocol uses port numbers (between 0 and X5,535) to address the

different programs using the network interface. Some of these ports are reserved for popular

conununication tools (such as port 21 for the File Transfer Protocol). The TCP header has

two 16 bit port numbers and two 32 bit numbers for the sequence number and the

acknowledgement numbers. The sequence number starts as apseudo-random number

generated by the sending machine. This number then has the length of the packet added to it.

This new number is the sequence number for next packet sent by the machine. The

acknowledgement number is sent by a receiving machine to acknowledge the packet Iasi

packet received. This number is the sequence number of the packet received plus its .length

(or the next sequence number expected).

15

The header also has 4 bits for the header length (HLE1~, b bits reserved and 6 flag bits.

These flags are for the urgent pointer, an acknowledgement flag, a push flag, a reset flag, a

synchronization connection flag, and a finish connection flag. Then there are 16 bit sections

for the window sire, the checksum, and the urgent pointer. The window size is used to

determine the number of packets that are allowed to be sent before acknowledgement is

received. The checksum is the same as the IP checksum., used to verify that the packet is

intact. Finally, the urgent pointer is used when the data is important and it holds a number

that is used to add to the sequence number to know where the last urgent data byte is. The

packet is shown in Figure 2.4.

Source Port Destination Port

Sequence Number

Acknowledgement Number

I-ILEI`3 Reserved Flags Window Size

Checksum Urgent Pointer

8 bits 8 bits 8 bits $bits

Figure 3.4: TCP Header

The data carried by the transport layer comes from the application layer. There are

hundreds of different application layer protocols available. One of which is. the Post Office

Protocol version 3 (or POP3), which allows client machines to contact a-mail servers and

receive the users a-mail. This is a relatively simple protocol, only having nine commands.

These commands are USER, PASS, LIST, STAT, RETR, TOP, DELE, RSET, UIDL, APOP,

NOOP and QUIT. The USER command is followed by the user's login name. The PASS

command is followed by the password that username. The STAT command requests the

number of a-mails available for this account and their size. The LIST command requests the

size of each a-mail available. RETR is followed by the message number to request the e-

mail message. TOP is followed by the message number and the number of lines requested.

The server will reply with the header for the message and the number of lines requested by

16

the client. 1)ELE is followed by an a-mail message number and marks that message for

deletion. RSET removes all marks made by the server. IJIDL is followed by a message

number and returns the unique-identifier listing for the message, which gives each a-mail

ever received by a users account a unique character string of one to 70 character in the range

of 0x21 to Ox7E [1 ~] . By using this number, a-mail clients will be able to recognize if they

have already downloaded the message. The a-mail number cannot be used for this purpose

because that number could be changed after the client has logged off the server. The APC~P

coixunand is followed by user's login name and an NIDS sum check to the timestamp sent by

the server appended with a secret shared between the client and the server, giving another

level of authentication and security for the server, The N~~P command does not have any

ar~u.ments with it and the server just replies with it status. Qi:IIT deletes all the messages

marked for deletion and logs the client out of the mail server.

3.2 Libnet

The Libnet Library is a packet creation and injection library developed in C by Mike

Schiffman. It focuses on the TCP/IP Protocol Suite and handles several of the corresponding

protocols, which are shown in Figure 2.5. The complete packet is generated in a data buffer

defined by libnet called libnet t, which holds the different headers, packet information and

data held by the packets.

The library supports packet injection in two ways. It allows the application

progra~mn~~er to open a raw socket interface to allow the system to handle its own data link

layer or through link-layer interface. The link-layer interface allows the application

programmer to control the data link protocol and change the MAC address of the packet.

Libnet is licensed under the BSD license agreement.

17

ICAItP

NTP

Pr+~S '"C1~~~1C3~'1

r.
CAE ASP

~ i ~yvwu~
~.,~ . _ __ mm .. _. _.._~.~.,.~~,,, ,,,,,,,,,,,~.r., ..,._R~.~ _ . r , _ __ ..T.. _ ,_~

Figure 3.5: Libnet protocols [15]

3.3 Ethereal

Ethereal is a popular open source network traffic analyzer. It is used to take network

traffic and examine the packets to see what they are. Currently, 472 different protocols can

be dissected. Included in these 472 protocols are IP, TCP, Ethernet, and POP3. When

dissected, Ethereal can differentiate the information in each section of the packet. A screen

shot of Ethereal is shown in Figure 2.6.

It can be used with TCPDump, which is a network sniffer. Using these tools together,

attackers can gather information about the network and researchers can watch traffic patterns.

~~

I
CJl i~11ti~N~1

?9 5.02.6284 125.186.155.83 ~2G.73.159.6 Tca
84 S.Oi81D+' 13100.147 0.255 N8P
BI 5.119780 2000.207 0.255 NBP
$2 5.220b81 129.186.228.23 239.255.255.253 SRV~OC
83 4.223401 Ciscold:b3:fc Broadcast RaP
84 5.222400 129.186.228.118 239.255.3.55.253 SRvix
85 5.22396 129.186.11.iS 129.186.1.2.255 Hl4NS
86 5.231732 129.188.155.83 220.73.159.6 TCP
87 5.23G25Q 220. 73.159. 129.186.1 S 5.83 MTTP
36 5. Z322~zG 220. 73.159. 6 129.184.155.83 MrTP
X39 5.4E4??2 226.73.159.6 129.18b.155.83 MTTP
90 .4647Et= 123.186.155.83 220.73.159.6 TCP
'32 5.4h9.401 eZv.73.159.6 125.184.155.83 MTTP
9~ 5.a7;742 129.186.145.83 22G.73.15~5.6 TCP
93 S.~S32328 12?.186.156.179 239.255.25S.2S3 SRVi.Oc
~:]R r eX a;7fE7 t 7G tl;R 27 ~;F 9PQ ?SC ?SF 7C; QP~n fY

117$ > http [AiCK Seq~2019aN9217 Acb~860243783 win=175~Q
Op: 1OOkUp COUM : 1
Op: lockup Count: 1
service aequest
who has 129.186.155.103? Tell 129.186.155.25E
Servics aequest
NaAte query NB ~IBRRaY_TREE<00>
1178 > http [AGKI Seq-2019669217 RcR-86UZ45243 win-17;4
Continuation
Continuation
Continuation
1178 ~ http [ACK~ Seq~2029t~69217 A:.k~860251033 uin+e17520
COntinuation
1178 > httD [kCK Seq~2414659217 Ac~a860254043 win~175'20
service aequest
epr,~4re Oan..eer

~..~

® Fral~e 1 (92 bytes On wire, 92 bytes captured)
rSlEthernet IF, Src: 00:05:Sd:98:ba:41, Dst: ff:ff:ff:ff:ff:ff
~ znterrret Protocol, Src Rtidr: 125.186.155.195 (229.28fs.25S.195), Dst addr: 129.18fl.155.255 C129.286.155.255j
® user Oatagram Protocol, Src Port: netbios-ns (137), Dst Port: netbies-ns (1371
83 Net8Z6S Name Service

 _
i=

P

0000 ff ff ff f~ f?= rf 04
QU1L` 0G 4e 4f 48 00 OO 80
20 9b ff 00 85 00 89 40

0030 00 04 04 00 00 00 20
00J0 42 46 L1 46 a5 aS 5~~

F ute~r, E

45 5ci 98 ba dl 0$ 00 45 40 j..A. .E.
11 b0 1f Ffl ba 9b C3 81 ba .NOM
'sa b3 S4 9e A8 01 10 00 Ol: .d.M....
46 48 46 L2 4S 4e 45 4d 45 F MFBfiNEME
46 L1 43 41 43 d1 43 d1 J3 eF.AFEEPF ,er/icnr:or f

u

Figure 3.6: Ethereal screen shot

19

CHAPTER 4. DESIGN AND IMPLEMENTATION

The design of this tool is based on the layered model of computer network

communications. Each layer of the model has associated protocols, and each of these

protocols has its own set of operational processes. These processes are needed for the setup,

interaction, and disconnection of a communication process with the protocol and will have

corresponding functions. Each function will handle the necessary events required b~~ the

particular protocol and the functions will communicate with other functions for different

protocols, similar to the layers of the network model do, to complete communication. Data

structures have been defined to assist with the interactions of these functions. Over~~rching

functions have also been created to generate the complete communication process between

two computers at the application layer. The rest of this chapter will discuss the design of

these different functions and the data types used within them.

4.1 Components

To make this code easy to reuse, it has been created in components. This way the

different components can be reused, like the layered networking model. A visual

representation of this is given in Figure 4.1. By using components, different functions will

have their own function set, represented by the objects in Figure 4.1. Each protocol will have

at least one function that creates the packet information. This is all that some protocols, such

as IP, require. Other protocols require different series of packets to create connections and

communicate appropriately, such as TCP. These procedures are grouped together into

control functions.

However, these components are dependent on other components. IP can not simply

write a random IP packet to the wire without having a purpose. Also, a TCP packet requires

the IP packet to be sent.

Yet, by creating these components, it makes it easy to use the TCP code with multiple

application layer implementations. The POP3 function will send data to the TCP function to

be transferred. Later, an implementation of the File Transfer Protocol (FTP) could be

created, and use the same TCP functions developed for the POP3 implementation.

20

It is also possible to implement other transportation layer protocols, such as User

Datagrarn. Protocol (UDP). Then the UDP functions could use the already existing IP

functions.

All of these components will conununicate with each other through new data

structures created for them, which are discussed in the next section. But to make the

components fit together; they .must both use the same data structures.

By dividing this project into different components, these components can be reused

with different protocols once they are implemented. If a researcher needs to use FTP to

complete an experiment, then the researcher can reuse the TCP and IP components developed

for this project in the new implementation. Another possibility is that a researcher may not

want a complete communication process, the components developed in this project to

generate the packets to be sent could be reused, and a new main control function to create the

incomplete traffic could be made.

POP3

L
FTP

BOOTP

~L TCP~~ ~~

UDP~

Figure 4.1: Components

~1

4,2 Data Structures

General data structures have been created to simplify the communication between

functions. Two structures have been created and are used by the TCP and. IP functions.

Other applications that use the fiunctions for the TCP and IP protocols will also use these

structures. These structures are defined as data types called Netlnfo and Conzminfo and are

described below.

Each computer being represented will have a Netlnfo data type shown below in

Figure 4.2, This data structure will hold the represented computer's IP address, port number

being used, l~'IAC address, IP identification number and TCP sequence number for the

communication.

typedef struct Networklnformation

u_long IP;
u short Port;
u char EthAdd[6];
u int3 2 Sect;
u_short ID;
Netlnfo;

Figure 4.Z: Netlnfo Data Type

Another data type is needed to hold the information passed by the imitated

communication. The Con:lminfo data type, shown in Figure 4.3, was created for this purpose.

The structure has two Netlnfo data types for the machines that axe participating in the

communication, a character pointer, a data. length variable, and a libnet t buffer.

The two Netlnfo data types are there to make the correlation of the two machines'

communications easier, such as the sequence numbers and the acknowledgements, if needed.

The Netlnfo data types are not pointers since two CommInfo data. types cannot share a

Netlnfo data type because each cor~ununication interaction requires sequence numbers and

identification numbers to be unique to that connection. This data structure simplifies

handling one server and multiple clients. This is because a single server can be represented

22

in multiple Co o, with different sequence numbers and identification numbers, but the

key information, such as the addresses, must be copied into the data structure,

The data for the application layer is generated by the individual Application Layer

Functions, The function passes this data to the Network Layer through the character pointer

and data length variable. Finally, the libnet t buffer is required for the libnet functions that

are being used within the tool.

typedef struct CommunicatInformation
{

Netlnfo Server;
Netinfo Client;
char *data;
ant DataSize;
libnet t PacketBuff;

} CommInfo;

Figure 4.3: CommInfo data type

4.3 General Physical, Network and Transportation Layers Design

The physical and network layer communications are handled using the libnet library.

The libnet library includes functions to build the IP header, the TCP header, and the Ethernet
frame for the tool. These fiunctions are independent from one another. They create the
respective packet headers and add them to the packet buffer. The data buffer for the packet
information is the libnet data type libnet t, which holds all the information needed to write
the packet to the network. The functions require all the particular header information and the
libnet packet data type (libnet t) that the packet is being generated in. The function

prototypes are listed in Figure 4.4.

~3

libnetpta~t libnet build tcp (u_.int 16 t sp, u_int 16_t dp, u int3 2_t seq,
u int3 2_t ack, u_int8 t control, u_int 16 t win, u int 16_t sum,
u int 16_t urg, u int 16_t Len, u int8_t * payload, u int3 2 t payload s,
libnet t * 1, libnet ptag~t ptag)

libnot ptag_t libnet build_ipv4 (u int 16_t len, u int8_t tos, u int 16_t id,
u_int 16 t frag, u int8 t ttl, u_int$ t Prot, u_int 16 t sum, u int3 2_t src,
u int32_t dst, u int$_t * payload, u int32_t payloads, libnet t * 1,
libnet ptag_t ptag)

libnet ptag_t libnet build_ethernet (u int$_t * dst, u int8_t * src,
u_int 16 t type, u int8 t * payload, u int3 ~_t payload_s, libnet t '~ 1,
libnet ptag,-.t ptag

Figure 4.4: Libnet Build Functions

The IP addresses and the MAC addresses are part of the input to the application.

These addresses may be tied to particular users, if necessary. This depends on the particular

application layer protocol being used. Also, the MAC address should not correspond to any

MAC address on the local network. By making sure that the l~'iAC address does not exist on

the local network it assures that for the packet will be dropped and not transferred to another

network. If the MAC address does exist on the immediate network, the network device with

that ~~.0 address will attempt to handle the incoming traff c, possibly harming that

machine. This way, the only computers to read the packet off the network are computers in

promiscuous mode the read ever;~thing off the network.

In the IP header, the check sum is generated by the libnet function. All other pieces

of the header are defined by the user, including fragmentation, time-to-live and the packet

identification. Libnet also allows future implementations to be able to fragment their

packets. Also, the packet identification number is pseudo-randomly generated for the TCP

connection's initial value. It is modified throughout the TCP connection.

In the TCP header, the sequence numbers are generated pseudo-randomly by a

function in the libnet Library, libnet_seed~rand. The check sum for the TCP packet is also

generated by the libnet function. The rest of the packet is defined by the programmer, such

as the window size. The identification number and sequence number axe pseudo-random for

24

their initial values to give the packets authenticity, since these numbers are pseudo-randomly

generated for real packets.

Libnet also has functions to initiate the network interface, write the packet to the

network and deactivate the network interface. There are two options for opening the network

interface, the raw socket interface or the link layer interface. The link layer interface uses the

computer's actual l~'IAC addre s and creates the Ethernet header. The raw socket interface

allows the progra~rnmer to manipulate the Ethernet header, this option was chosen so that the

M.AC address could be modified.

4.4 TCP Functions

There are three different processes in TCP communication: three-way handshaking

for connection, the regular communication process and the four-way handsh~g for

connection termination. Each of these processes have their awn functions, and their

prototypes are listed below in Figure 4. S . The connection and disconnection handshakes

only require the two computers that are being represented. The cor~ununication function will

update the computer's information when needed due to the corYununications events. This is

also where the options for the TCP and IP headers will be set. A diagram of the sequence of

the packets sent for the three-way connection handshake and the disconnection handshake are

shown in Figure 4.6 and 4.7, respectively.

int TCPConnect (Comminfo *Comps)

int TCPDisconnect (Comminfo *Comps

int TCPSendPacket (Comminfo *Comps, int sic, int des, u_int8_t Ops ~

Figure 4.5: TCP Functions

Client

Client

25

1. Packet sent with Seq flag set

2. Packet sent with SeglAck flags set

3. Packet sent with. Ack flag set

Server

Figure 4.6: Three-way connection handshake

1. Packet sent with Fin flag

2. Packet sent with Ack flags set

3. Packet sent with Fin flag

4. Packet sent with Ack flag

Figure 4.7: Disconnection handshake

Server

26

4.5 PQP3 Functions

Because the libnet Library does not have functions to form the required application

level protocols, they had to be made. This implementation is imitating POP3

communication, so only one specific function has been created. The function, whose

prototype is listed below in Figure 4.8, requires the following information:

- A pointer to the computers being- imitated

- The command to be sent (shown in Table 4.1 }

- The message number, if one is being manipulated

- The number of lines requested, if the TOP command has been called

- The mailbox information

- The user identifier that is requesting information

A new data structure has been created for the PCJP3 function, This data structure is

defined as a data type called Maillnfo, which is shown in Figure 4.9. This data structure

holds the information listed below.

-1Vlail server name

- l~/Iail server information

- Number of users
- The list of user names

- The list of passwords

- The MDS sum check for authentication

- The number of a-mails for each user

- The e-mails stored for each user

- Unique-id listing number for each a-mail

- The corresponding size of each a-mail

- Each user's computer information

With the application layer protocol function created, several higher level functions are

created to control the interactions between the client and the server. For this implementation,

one function will handle all the commands in Table 4.1. This function will not only handle

~~

the application layer interaction, but also call the necessary methods for generating the TCP

and IP headers and finally writing of the packet to the network. Also, for this

implementation, each user will be tied to one specific computer and there will only be one

server.

Table 4.~: P~P3 commands

POP3 Command Typedef Number

USER POPS USER 1

PASS POP3 PA5S 2

STAT POP3 STAT 3

LIST POP3 LIST 4

RETR POP3 RETR 5

TOP POP3 TOP 6

DELE POP3 DELE 7

RSET POP3 RSET 8

QUIT POP3_QUIT 9

UIDL POP3 UIDL 10

APOP POP3 APOP 11

NOOP POP3 NOOP 12

Server Reply POP3 Reply 0

int POP3Message(Comminfo* machines, int POPCmd, int MessNum,
int lines, Maillnfo *Ma.ilbox, int user}

Figure 4.8: POP3 Function Prototype

2~

typedef struct 1V~ailboxInformation

char *Server lame;
Netlnfo Serverinfo;
int NumOfCIsers;
char **LlsrName;
char **pass~vd;
char **MDS;
i.nt *NumMess;
char ***Messages;
char ***LIIDL;
int **MessSize;
Netinfo *Comps;
Maillnfo;

Figure 4.9: Maillnfo Data Type

4.6 P4P3 Input

The application receives its input from a text file and fills in the MailInfo data

structure for the application. Thus file contains all the necessary information that the

application needs to run. It starts with the name and network information for the server.

Next, it states the number of users that will be represented in the program. Then each user

will have their user name, password and network information. After an individual user' s

information, the number of messages it has is stated. For each message, there will be the

message size and the a-mail message itself, including the header information.

All of the information is not required for each implementation. If a researcher only

wants the APOP authentication method, then the password data is not necessary and the

password pointers will not be accessed. If the implementation does not require the UIDi,

conrunand, then the UIDL character arrays are not necessary.

The e-mails used are actual a-mails which where copied into the input file. These

messages may be sent a number of times, depending on how long the program runs. V'Vhile

this allows the user to easily generate input easily, it does make the traffic less authentic. It

would be useful to develop an a-mail generator, yet that is out of the scope of this project.

29

4.? overall POP3 dandling

For any implementation, ageneral function should be created to control the traffic

generation process. With the POPS implementation, ageneral function controls the

interaction between the clients and the server. First, the application takes the input from a

given fide which contains the user data to be used in the traffic. This file includes the login

names., passwords, a-mail message information and actual a-mail messages.. The function

then pseudo-randomly initiates connections between the client and the server based on the

amount of time passed. ~.s shown in Figure 4,10, the function creates a TCP connection.

Next the function logs. the user onto the server with the login and password commands.

Then, the list command is called and the user starts receiving and deleting the available e-

rr~ails using their respective commands. When no more e~-mails are- available, the function

disconnects the TCP connection.

The data in the server is not modified during this process to allow for continuous

traffic generation without having to generate new data. The network traffic will be generated

for the duration of an input time from the user command line.

30

TCP Cor~neCt

PC~P~ user

Pt~P3 PASS

PaP~ ~~~t

PQP3 i~etr i

1
PC~P3 Deie i

1
TCP' Disconnec#

Figure 4.10: Sequence of function calls

31

CHAPTER 5. RESULTS

The Simple Network Imitator Program (SNIP) was developed to meet the

requirements stated in the introduction and prove that it is possible to impersonate network

communication. The code was developed on an x86 machine running Redhat Linux 9.

Libnet version 1.1.2 was used to develop this proof-of-concept program. This chapter

explains the results of the implementation.

5.1 Netcat verification

The correctness of this program was primarily determined by having Ethereal sniffing

SNIP traffic to determine if Ethereal recognizes the traffic as authentic POP3

communication. Baseline traffic was generated using Netcat to connect to a POP3 server.

Netcat is a networking utility which connects to servers, opens communications then reads

and writes data across network connections using the TCP/IP protocol [11] . Netcat has

similar functionality to Telnet, but was chosen because Telnet sends the individual characters

of the user's input across the network, quickly increasing the number of packets sent into the

hundreds. On the other hand, Netcat does not send the user input across the network until is

receives a carriage return. This reduces the number of packets for comparison greatly.

The traffic that was generated with Netcat was collected by Ethereal and is shown in

Table 5.2. Ethereal filtered out all the traffic on the network except for the IP addresses of

the machines running the baseline traffic generation. Each row in Table 5.2 represents one

packet in the communication. Each row shows the packet number in the communication

process, the source and destination IP addresses, the top protocol used (whether it be at the

application layer or the transportation layer), and other packet information. The packet

information fill first give packet errors, if there are any, and the information that the packet is

caring. When the packet's top layer is the application layer, the information shows the data

held by the application level packet. If the packet's top layer is the transportation layer, the

information shows the purpose of the packet and the basic information, which is typically

done when TCP acknowledgments are being sent.

Rows one through three of Table 5.1 shows the three way handshake between Netcat

and the POP3 server, followed by the POP3 welcome information and request for user name.

32

The fifth packet is just a TCP acknowledgement to the POP3 welcome. Packets six through

eleven are the USER and PASS commands with the appropriate server responses and client

TCP acknowledgements. Packets 12 through 17 packets are is the LIST command followed

by the appropriate responses. The RETR and QUIT command are called in packets 18

through 22 and 23 through the 29, respectively. Packets 25 through 28 are the four way

disconnection, with packet 29 being the reset packet.

Table 5,2 shows the results of having Ethereal sniff traffic generated by SNIP. The

sequence of packets is the same as the ones generated by the base traffic generation. The

packets do have different sequence numbers and window numbers, since these are randomly

generated numbers. The IP addresses for the SNiP generation where selected to be

unrealistic address to show that they are controlled by the program, Ethereal does show that

the packets are authentic TCP and POP3 traffic.

5.2 l~Tetscape Mail Verification

Using Netcat gave the user complete control of the commands being sent, yet it is rare

that a user would use this method to check their mail. Typically people use a-mail client

programs, such as Netscape Mail, to easily handle their a-mail and control the

communication process through the push of a few buttons. Since these programs are use

significantly, an implementation of SNIl' was created to produce equivalent noise traffic to

that of Netscape Mail. The output from Ethereal's sniffing Netscape's traffic is shown in

Table 5.3. Table 5.4 shows Ethereal's output from sniffing the SNTP representation of

Netscape Mail receiving an a-mail, It is apparent that these two traffic generators are

equiva ent.

The Netscape Mail implementation of SNIP differed from the Netcat implementation

in a couple of ways. First, the commands to retrieve the data were different. Netscape 1Vlail

used the UILD and STAT commands, while Netcat didn't. Also, Netscape Mail did not have

to send specific TCP acknowledgement packets like Netcat did. These differences were

handled in the top function which controls the overall handling of the different protocol

unctions.

33

Table 5.1: Netcat user generated traffic

No. Source Destination Protocol

1 129.186.152.249 129.186.215.40 TCP

2 129.186.215.40 129.186.152.249 TCP

3 129.186.152.249 129.186..215.40 TCP

4 1 X9.186.215.40 12.9.186.152.249 POP

5 129,186,152.249 129.186.215.40 TCP
6 129.186.152.249 129.186.215.40 POP

7 129,186,215.40 129.1.86.152.249 POP

8 12`9.186.152.249 129.186..2.15.40 TCP
9 12.9.186.152.249 129.186.215.40 POP

'! 0 129.186.215.40 129.'186.152.249 PAP

11 129.186.152.249 129.186.215.40 TCP
12 129.186.152.249 129.1$6...21.5.40 POP
13 129.186.215.40 ~ 29.186.152.249 POP

14 129.186.152.249 129.186.215.40 TCP
15 129.186.215.40 129.1$6.152.249 POP

16 129.186.152.249 129.186.215.40 TCP

17 129.186.215.40 129.186.152.87 TCP
18 129.186.152.249 129.186.215.40 POP
19 129.186.215.40 129.186.152.249 POP

20 129.186.152.249 129.186.215.40 TCP
21 129,186,215.40 129.1.86.152.249 POP

22 129.186.152.249 129.186.215.40 TCP
23 129.186.152.249 129.186.215.40 POP

24 129.186.215.40 129.186.152.249 POP

25 129.186.152.249 129.'186.215.40 TCP

26 129.186.215.40 129.1$6.152.249 TCP

27 129.186.152.249 129.186.215.40 TCP

28 129.186.215.40 129.186.152.249 TCP

Info
36646 > pop3 [SYNC Seq=3443380522
Ack=OWin=5840 Len=O
pop3 > 36646 ~SYN, ACK]
Seq=4018811733 Ack-3443380523
Win-57344 :Len-O
36#146 > .pop3 [AGK] Seq=3443380523
Ack=4018811734 Win=5840 Len=O
Response: +OK QPOP (version 2.53) at
spock.ee.iastate.edu starting.
<9584.1080844989~spock.ee. iastate.ed u>
36646 > pap3 [AGI~ Seq=34433:80523
Ack= 4018811833 V11in=5840 Len-O
Request: user brettm
Response: +OK Password required for
bream .
3664E > pop3 [ACK] Seq=3443380535
Ack=4018811868 Wien=5840 Len=O
Request: pass test01
Response: +OK bream has 3 messages
X3158 octets).
36646 > pop3 [AC K] Seq =3443380547
Ack=4018811910 Win=5840 Len=O
Request: list
Response: +OK 3 messages {3158 octets)
36646 > pop3 [AGK] Seq=3443380552
Ask=4018811940 Win=5840 Len=O
Continuation
36646 > pop3 [ACK] Seq=3443380552
Ack=4018811967 Win=5840 Len=O
tel et > 3145 [ACK] Seq=2201419551
Ack=3585168974 W in=58400 Len =0
Request: rear 1
Response: +OK 1104 octets
3664:6 > pop3 [AC1~] Seq=3443380559
Ack =4018811984 Win=5840 Len=O
Coptinuation
36646 > pop3 [ACK] Seq=3443380559
Ack=40188'! 3091 Win=7749 Len=O
Request: quit
Response: +OK Pop server at
spock.ee.iastate.edu signing off.
36646 > pop3 [ACK] Seq=3443380564
Ack= 401881.3144 Win=7749 Len=O
pop3 > 36646 [FIN, ACK~ Seq=4018813144
Ack=3443380564 Win=57920 Len=O
36646 > pop3 [FIN, AGE Seq=3443380564
Ack=40188131451Nin=7749 Len=O
pop3 > 36646 [ACK] Seq=4018813145
Ack=3443380565 Win=57920 Len=O

34

Table ~.2: SNIP generated traffic for l~Tetcat

No. Source Destination Protocol Info
34 > pop3 [SYN] Seq=1247443331 Ack=OWin=32767

1 1.2.3.4 4.3.2.1 TCP Len=O
pop3 > 34 [SYN, ACK] Seq =2015967873

2 4.3.2.1 1.2.3.4 TCP Ack=1247443332 Win=32767 Len=O
34 > pop3 [ACK] Seq=1247443332 Ack=2015967874

3 1.2.3.4 4.3.2,1 TCP Win=32767 Lend
Response: +~#{ QPC}P {version 2.53) at
spock.ee.iastate.edu starting.

4 4.3.2.1 1,2.3.4 POP <8379.1080829469~spock.ee.iastate.edu>
34 > pop3 [AGK] Seq=1247443333 Ack=2015967971

5 1.2.3.4 4.3.2.1 TGP Win=32767 Len=O
6 1.2.3.4 4.3.2 ,1 PO'P Request: user bream
7 4.3.2.1 1.2.3.4 POP Response: +OK Password required for bream.

34 > pop3 [ACK] Seq=1247443344 Ack=201596$004
8 1.2.3.4 4.3.2.1 TCP Win-32767 Len=O
9 1.2.3.4 4.3.2.1 POP Request: pass test01

10 4.3.2.1 1.2.3.4 POP Response: +OK bream has 3 messages {3158 octets}.
34 > pop3 [ACK] Seq=1247443355 Ack=2015968044

11 1,2.3.4 4.3.2.1 TCP Wtn=32767 Len=O
12 1.2.3.4 4.3.2.1 PCjP Request.: list
13 4.,3.2.1 1.2.3.4 POP Response: +OK bream has 3 messages {3158 octets}.

34 > pop3 [ACK] Seq=1247443359 Ack=2015968084
14 1.2.3.4 4,3.2.1 TCP Win=32767 Len=O
15 4.3.2.1 1.2.3.4 POP Continuation

34 > pop3 [ACK] Seq=1247443359 Ack=2015968106
16 1.2.3.4 4.3.2.1 TCP Win=32767 Len=O
17 1.2.3.4 4.3.2.1 POP Request: retr 1
18 4.3.2.1 1.2.3.4 POP Response: +OK 1104 octet.

34 > pop3 [ACK] Seq=1247443365 Ack=2015968121
19 1.2.3.4 4.3.2.1 TCP Win=32767 Len=O
20 4.3.2.1 1.2.3.4 POP Continuation

34 > pop3 [ACK] Seq=1247443365 Ack=2015969206
27 1..2.3.4 4.3.2.1 TCP Win=32767 Len=O
22 1.2.3.4 4.3.2.1 POP Request: quit

Response: +OK Pop server at spock.ee.iastate.edu
23 4.3.2.1 1.2.3.4 POP signing off.

34 > pop3 [ACK] Seq=1247443369 Ack=2015969257
24 1.2.3.4 4.3.2.1 TCP Win=32767 Len=O

pop3 > 34 [FIN, ACK] Seq =2015969257
25 4.3.2.1 1.2.3.4 TCP Ack=1247443369 Win =32767 Len =0

34 > pop3 [ACK] Seq=1247443369 Ack=2015969258
26 1.2.3.4 4.3.2.1 TCP Win=32767 Len=O

34 > pop3 [FIN, ACK] Seq=1247443369
27 1,2.3.4 4.3.2.1 TCP Ack=2015969258 Win=32767 Len=O

pop3 > 34 [ACK] Seq=2015969258 Ack=1247443370
28 4.3.2.1 1.2.3.4 TCP Win=32767 Len=O

35

Table 5.3: Netscape mail generated tra#'fic

No. Source

1 129.186.152.56

2 129.186.215.40

3 129.186.152.56

Qestination Protocol

129.186.215.40 TCP

129.186.152.56 TCP

129.186..215.40 TCP

4 129.186.215.40 129.186.152.56 POP
5 129.186.152.56. 129.186.215.40 POP

6 129.18E .215.40 1.29.186.152,56 POP
7 129.186.152.56 129.186.215.40 POP

8 129►.186.215.40
9 129.185.152.56

10 129.186.215.40
11 129.186.'152.56
12 129.186.215.40

13 .129.186.152.56
14 129.186.215.40
15 1.29.186.152,56
16 129.186.215.40

17 129.186.152.56
18 129.186.215.40
19 12:9.186.152.56
20 129.186.215.40

21 129.186.152.56
22 1.29.186.215.40
23 129.186.152.56

129.186.1.52.56
129.186.215.40
1.29.186.152.56
1.29.1$6,215.40
129.186.152.56

129.156.215.40
129,186,152.56
129.186.215.40
129.186.152.56

129.186.215.40
12:9.1.86.152.56
129.186.215.40
129.185.152.56

129.186.215.40
129.186.152.56
129.186.215.40

POP
POP
POP
POP
POP

TCP
POP
POP
POP

TCP
POP
POP
POP

TCP
POP
POP

24 129.186.215.40 129.186.152.56 POP
25 129.186.152.56 129.186.215.40 POP

26 129.186.215.40

27 129.186.215.40

28 129.186.152.56

29 129.186.152.56

30 129.186.215.40

129.1$6.152.56 POP

129.186.152.56 TCP

129.186.215.40 TCP

129.186.215.40 TCP

129.186.152.56 TCP

Info
1072 > pop3 [SAN] Seq=3?49790475 Ack=O
Win=64240 Len=O
pop3 > 1072 .[SAN, ACK] Seq=3487214969
Ack=3749790476 Win=57344 Len=O
1072 > pop3 [fi►CK] Seq=3749790476
Ack=3487214970 Win=64240 Len=O
Response; +OK t,~POP (version 2.53) at
spock.ee.iastate.edu starting.
<12399.1086695818~spock.ee,iastate.edu>
Request: USER brettm
Response: +OK Password required for
bream .
Request: PASS test0l
Response: +OK bre#tm has 1 message (769
octets) .
Request: STAT
Response: +OK 1 769
Request: LIST
Response: +OK 1 messages (769 octets)
1072 > pop3 JACK] Seq=3749799514
Ack=3487215185 Win=54025 Len=O
Continuation
Request: UIDL
Response: +OK uid! command accepted.
1072 > pop3 [ACK] Seq=3749790520
Ack=348721.5223 W in=63987 Len=O
Continuation
Request: RETR 1
Response: +OK 769 octets
1072 > pop3 [ACK] Seq=374979052.8
Ack=34.87215278 Win=63932 Len=O
Continuation
Request: DELE 1
Response: +OK Message 1 has been
deleted .
Request: +QUIT
Response: +OK Pop server at
spock.ee.iastate.edu signing off.
pop3 > 1072 [FlN, ACK] Seq=3487216136
Ack=3749790542 Win=58400 Len=O
1072 > pop3 [ACK] Seq =3749790542
Ack=3487216137 W in=63074 Len=O
1072 > pop3 jF1N, ACK] Seq=3749790542
Ack=3487216137 Win=63074 Len=O
pop3 > 1072 [ACK] Seq=3487216137
Ack=3749790543 Win=584.00 Len=O

36

Table 5.4: SI~TIP generated traffic for Netseape

No. Source Destination Protocol Info
34 > pop3 [SYN] Seq=1295804997 Ack=O Win=32767

1 1.2.3,4 4.3.2.1 TCP Lend
pop3 > 34 [SYN, ACK] Seq=1809603373

2 4.3..2.1 1.2.3.4 TCP Ack=12958Q4998 Win=32767 Len=O
34 > pop3 [ACK] Seq=1295804998 Ack=1809603374

3 1.2,3.4 4.3.2.1 TCP Win=32767 Len=O
Response: +OK QPOP (version 2.53) at
spock.ee.astate.edu starting.

4 4.3.2.1 1.2.3.4 POP <8379.108082.9469- ~a spock.ee.iastate.edu>
5 1.2 , 3.4 4.3.2.1 P C3P Request; USER brettm
6 4.:3.2.1 1.2.3,4 PO'P Response: +OK Password required for brettm.
7 1.2.3.4 4.3,2.1 POP Request: PASS test0l
8 4.3.2.1 1.2.3.4 POP Response: +OK bream hats 1 messages (1009 octe5ts).
9 1..2.3.4 4.3.2.1 POP Request: STAT

10 4,3.2.1 1.2.3.4 POP Response: +OK 1 1009
11 1,2.3.4 4.3.2.1. POP Request: LAST
12 4.3.2.1 1,2.3,4 POP Response: +OK brettm has 1 message (1009 octests)

34 > pop3 [ACK] Seq=1295805029 Ack=1809603594
13 1.2.3.4 4.3.2.1 TCP Win=32767 Len=O
14 4.3.2.1 1.2.3.4 POP Continuation
15 1.2.3.4 4.3.2.1 POP Request: UIDL
16 4.3.2.1 1.2.3.4 POP Response: +OK uidl command accpeted.

34 > pop3 [ACK] Seq=1295805033 Ack=1809603627
17 1.2.3.4 4.3.2.1 TCP Win=32767 Len=O
18 4.3.2.1 1.2.3.4 POP Continua#ion
19 1.2,3.4 4.3.2.1 POP Request: retr 1
20 4.3.2.1 1.2.3.4 POP Response: +OK 1009 octet

34 > pop3 [ACK] Seq=1295805039 Ack=1809603641
21 1.2,3.4 4.3.2.1 TCP Win=32767 Len=O
22 4.3.2.1 1.2.3.4 POP Continuation
23 1.2.3.4 4.3.2.1 POP Request: dele 1
24 4.3.2.1 1.2.3.4 POP Response: +OK Me-sage 1 has been deleted.
25 1..2.3.4 4.3.2.1 POP Request: quit

Response: +OK Pop server at spock.ee.iastate.edu
26 4.3.2.1 1.2.3.4 POP signing off.

pop3 > 34 [FIN, ACK] Seq=1809.604676 Ack=129580508®
27 4.3.2.1 1.2.3.4 TCP Win=32767 Len=O

34 > pop3 [ACK] Seq=1295805080 Ack=1809604677
28 1.2.3.4 4.3.2.1 TCP Win=32767 Len=O

34 > pop3 [FIN, ACK] Seq=1295805080 Ack=1809604677
29 1.2.3.4 4.3.2.1 TCP Win=32767 Len=O

pop3 > 34 [ACK] Seq=1809604677 Ack=1295805081
30 4.3.2.1 1.2.3.4 TCP Win=32767 Len=O

37

CHAPTER 6. SUMMARY

SNIP was designed and developed in response to the need for test bed networks to

behave more like production networks. The end product proved that traffic from both the

client and the server can be imitated by a single machine without making the machine

vulnerable to attacks as a result of the tool. The rest of this chapter explains how the tool

meets the requirements given and then details the future of SNIP.

6.1 Compliance with objectives

The objectives of this tool were to prove that an application can create network traffic

identical to traffic seen on a production network. The traffic will only affect the immediate

network it is being produced on and will not bridge a second layer interconnect, such as a

router. The application should also not create another security threat to the machine it is

running on. Finally, the code for this application should be component based so it can be

easily modified and reused if needed. As explained below, all of these objectives have been

met by the tool that has been created.

The main objective of this tool was to prove that network traffic can be imitated by a

single source. Sl~TIP has shown that it is possible by the results given. The network traffic

produced by this tool is viewed as typical network traffic.

The traffic generated by this tool will not cross a second layer network

interconnection because the MAC Addresses are spoofed. Since no machine on the network

has the MAC Address being used in the packet, after the packet is created and sent, the only

machines that will pick up the traffic are machines that are promiscuously sniffing the traffic.

This means routers and switches will not pick up the packet and reproduce it on another

network. There is a possibility that a machine on the network could have one of the spoofed

addresses, but there are nearly 248 different addresses possibilities, so it is highly unlikely that

this wi 11 occur.

The next objective was that the application does not create additional security threats

to the machines they are running on. This is helpful when the test bed networks are being

used for penetration tests. The application should not provide another vulnerability that can

be used to access restricted machines. Because this application does not process input from

38

other machines, it does not create a security threat. However, it is possible that the traffic

produced by this application can add to a DOS attack flooding the network and making it

difficult for other machines to use the network.

Finally, the code is based off of multiple functions making it easier to reuse the code.

These functions have been placed in a separate source file with a corresponding header file.

Also, the Libnet Library that is used extensively within the code is supported on multiple

platforms, such as Linux and Microsoft Windows XP.

6.2 ISEAGE

This tool has the ability to be run as one of the custom tools on ISEAGE, as shown in

the system architecture layout in Figure 6.1. This test bed network will be creating a virtual

Internet and there will be several subnets within this virtual Internet. The traffic being

generated by these subnets can be produces by this tool.

ISE AGE A~~ciiit~ct~~~~e

~~«

Figure 6.1: ISEAGE Architecture Layout

39

6.3 Future Work

This project has just begun and is still in its infancy. Here are several ways to

improve the usefulness of this tool.

6,3.1 Other Application Protocols

while the tool has been developed to produce POP3 traffic, there are several more

application layer protocols that can be implemented to improve the effectiveness of this tool.

Other possible protocols could be the Hyper-text transfer protocol (HTTP), the file transfer

protocol (FTP), the simple mail transfer protocol (SMTP}, the simple network management

protocol. (SI~~VIP), or the Internet control message protocol (ICMPj to name a few. Also, a

larger variety of application layer protocols maybe helpful to researchers. Each additional

protocol will not only require its own protocol implementation functions, but will need its

own control unit as well.

b.3.2 Server Specific Implementations

~+'~hile all the protocols that are used are the same, each implementation of these

protocols may vary slightly. Typical users might not see the difference between Microsoft's

web server or the Apache web server, their packets may vary just slightly even if they are

hosting the same webpage. If someone was trying to produce traffic to represent a specific

server, they would have to adjust the tool producing the traffic to match the specifics of that

particular server. This would be helpful if the implementer of the tool was either testing an

application identification tool or running a honeynet attempting to get someone to believe

that a particular application is running.

6.3.3 Remote Administration

One of the planned uses for the tool is to run on ISE AGE, which will have several

computers possibly running this application. Because of this, it of interest to add remote

40

administration to this application so the user does not have to have contact with the machine.

This addition would also allow people to monitor their test bed networks while in their office.

6,3.4 Graphical ~7ser Interface

A .graphical user interface (GUI) could make this tool more user friendly, allowing it

to be used by more people. A GUI could make it easier to format and change the user input

and manage the systems.. It could also be coordinated with control protocol, making remote

administration easier to handle..

6.4 conclusion

~~TIP was successful in proving that network traffic can be .imitated from a single

source, It can be effectively used to improve test bed networks by generating realistic

network traffic. ~►lhile this implementation is just a proof of concept, it provides a good

foundation for the future development of this tool.

41

ACI~~TOWLEDGEMENTS

I would like to thanks Dr. Doug Jacobson for all the help and opportunities he has

given me over the past five years. I would also like to thanks Dr. Jim Davis and Paul

Heaberlin for their assistance in writing my thesis.

I would like to thank my parents, Kent and Marilee, and my brother Ryan, for all the

love and support they have given me over the years. They have put up with a lot from me,

and I wouldn't be able to complete what I have done so far in life without them.

Finally, I would like to thank my friends who have put up with me during my college

experience. You've helped me enjoy the experience.

42

REFERENCES

[1]Academic Centers of Excellence, Date accessed 3/20/2444, www.nsa. gov/ia

[2] CERT Statistics, Date accessed 4/13/2004, v~wvw.cert.org

[3~ Ethereal, D-ate accessed 4/13/2404 www.ethereal,com

[4] Porouzan., Behrouz A. TCP/IP Protocol Suit, McGraw Hill, I~Tew York, NY, 2x03

[5] Information Assurance, Date accessed 4/13/2044, www.iac.iastate.edu

[~~ ISEAGE, Date accessed 411.3/2004, www.iseage.issl.org

[7] Kendall, Kristopher ̀ `A Database of Computer Attacks for the Evaluation of Intrusion
Detection Systems", S.l~I. Thesis, Department of Electrical Engineering and
Computer Science,lVIIT, June 1999

[8] Korba, Jonathan "Windows hTT Attacks for the Evaluation of Intrusion Detection
Systems", S.M. Thesis, Department of Electrical Engineering and Computer
Science, MTT, June 2440

[9] Lbes, D. Exploring Expect.: A Tcl-based Toolkit for Automating Interactive
Programs, O'Reilly &Assoc., Sebast<~pol, CA, 1998

[10] Myers, J. and M. Rose "Post C)ffice Protocol -- version 3 (I~FC 1939)", Date
accessed 6/8!2004, www. fags.org/rfcs/rfc 193 9.html

[11] Netcat, Date accessed 4/13/2044, netcat.sourceforge.net/

[12] Puketza, Nicholas, Mandy Chung, Ronald Olsson, and Biswanath Mukherj ee.
"A So#lware Platform for Testing Intrusion Detection Systems." Technical report,
t3niversty of California, Davis, Department of Computer Science, Davis, CA,
September 1995.

[13] Rossey, Lee M., Robert K. Cunningham, David J. Fried, Jesse C. Rabek, Richard P.
Lippmann, Joshua VV. Haines, and Marc A. Zissman. "L~!~ZIAT: Lincoln
Adaptable Real-tune Information Assurance Testbed", Aerospace Conference
Proceedings, 2002. IEEE, vol,6, Iss., 2002 Pages: 6-2671-2676, 6-2678- 6-2682
vol.6

[14] Schiffman, Mike D. Building C3pen Source Network Security Tools: Components
and Techniques. Wiley Publishing, Inc. Indianapolis, IN, 2003

[15] Schiffinan, Mike D., Libnet, Date accessed 4/13/2004,
u~vvw.packetfactory, com/libnet

