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A resurgence of research in artificial neural networks has sparked 
interest in applying these networks to difficult computational tasks 
such as inversion. Artificial neural networks are composed of simple 
processing elements, richly interconnected. These networks can be 
trained to perform arbitrary mappings between sets of input-output pairs 
by adjusting the weights of interconnections. They require no a priori 
information or built-in rules; rather, they acquire knowledge through 
the presentation of examples. This characteristic allows neural net­
works to approximate mappings for functions which do not appear to have 
a clearly defined algorithm or theory. Neural network performance has 
proven robust when faced with incomplete, fuzzy, or novel data. 

Inversion of eddy current flaw signals has typically been based 
upon models of the field-flaw interaction, a so-called model-based in­
version procedure. Although the feasibility of inverting eddy current 
data in this fashion has been demonstrated before [1-3], the complexity 
of such procedures has hampered their widespread acceptance and use in 
industry. The goal of this study is to develop an inversion method that 
is easy to use and implement outside the research community. This paper 
presents preliminary results on the use of neural networks for the in­
version of eddy current flaw signals to obtain flaw sizes. 

UNIFORM FIELD PROBE 

A uniform field eddy current probe was selected for use in this 
study because a substantial body of experimental and theoretical work 
exists. The theory for the interaction of a spatially uniform electro­
magnetic field with a three-dimensional flaw developed by B. A. Auld 
[4,5] is well-known and has been shown to agree with experiment [6,7]. 

The probe used here is based on a design proposed by E. Smith [6], 
but in a slightly different configuration[8]. This probe consists of a 
C-shaped ferrite core wound with 65 turns of wire, creating an active 
region between the two tips of the ferrite. To increase uniformity of 
the magnetic field in the active region, the tips of the ferrite were 
shaped and chamfered [8], and a copper foil surrounds the probe to di­
minish effects of field leakage. 
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NEURAL NETWORKS 

Neural networks are intended to model the structure and operation 
of the brain. They are composed of computationally simple processing 
elements and connections. Succinctly, a neural network can be described 
as a directed graph, with the nodes of the graph represented by the 
processing elements and the edges of the graph represented by the con­
nections between the processing elements [9]. Each processing element 
receives inputs from several places - other processing elements, the 
outside world, or both - and operates on its inputs with a transfer 
function to produce a single output. This output becomes the input 
either to other processing elements in the network or the final output 
of the network. 

The networks studied here are multilayered feed-forward networks 
and use a backpropagation learning algorithm [10]. In this implementa­
tion, networks are composed of several separate layers (groups of proc­
essing elements), including an input layer, an output layer, and possi­
bly one or more hidden layers (layers which do not receive inputs from 
or send outputs to the outside world), as shown in Fig. 1. The inter­
connections transmit information in only one direction during operation 
and each interconnection has an associated weighting factor. 

The transfer function for a processing element comprises two steps. 
The first step is to compute the weighted sum of inputs, I 

I (1) 

where wli is the weight on the connection from the ith processing element 
in the preceding layer to the jth processing element (the processing 
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Figure 1. A multilayered feed-forward neural network with hidden lay­
ers. 
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element whose transfer function is being computed) in the current layer 
and x 1 is the output of the it" processing element. The second step is 
to apply an activation function, f, to I to produce OUT 

OUT = f(I). (2) 

The activation function generally used for backpropagation is a sigmoid 
[10] of the form 

f(I) 
1 

1 + e-I 
(3) 

A sigmoid satisfies the requirement, discussed later, that the activa­
tion function be everywhere differentiable. Any activation function 
which is everywhere differentiable could be used. It also acts as an 
automatic gain control [11], so that OUT~O as I~-~ and OUT~1 as I~+~. 
This prevents the outputs of the processing elements from growing with­
out bound, which could allow some processing elements to dominate the 
operation of the network and cause a kind of ftparalysis." 

BACKPROPAGATION LEARNING 

By appropriately adjusting the weights of interconnections, a neu­
ral network can be configured to approximate a particular function; in 
our case, the flaw inversion transform. Weights are adaptively adjusted 
through the application of a learning algorithm during a process called 
training. Training a neural network using a backpropagation learning 
algorithm consists of: 1) presenting inputs to the network's input 
layer; 2) allowing the network to compute its outputs; 3) computing 
the errors at the output layer by presenting the network with the target 
outputs for the associated inputs; 4) propagating errors back through 
the network and adjusting weights so as to minimize the errors at the 
outputs. 

For processing elements in the output layer, an error signal, 8., 
is calculated for the kth processing element as 

( 4) 

where f' is the derivative of the activation function, y• is the target 
output, and y'• is the network estimate of y •. The calculation of the 
error signal shows why the activation function f must be everywhere 
differentiable. The change of weight u•i connecting the kth processing 
element and the jth processing element in the final hidden layer is de­
fined as 

(5) 

where a is the learning rate and zi is the output of the jth processing 
element. For all other processing elements not in the output layer, an 
error signal 8i for the j'h processing element is calculated from 

( 6) 

and the change of weight wi1 connecting the jth processing element and 
the i'h processing element in the previous layer is defined as 

(7) 
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where x1 is the output of the i th processing element in the previous 
layer. This backward propagation of error signals continues to the 
first hidden layer. Therefore, two passes through the network are re­
quired for each iteration - one forward to compute outputs and one back­
ward to compute errors and adjust weights. The weight adjustment proc­
ess is repeated for many input-output pairs, known as a training set. 
Training is stopped when the errors at the output layer reach a suffi­
ciently low level. 

The goal of backpropagation learning is to perform a gradient de­
scent search in weight space to find the minimum error for all pairs in 
the training set. The error surface is determined by the set of pos­
sible weights for the network for a given input-output pair. As with 
any gradient search method, backpropagation is susceptible to becoming 
trapped in local minima. Several methods for escaping local minima have 
been proposed, including momentum [11]. Using a momentum term essen­
tially adds some part of past weight changes to the current weight 
change. This can often help move over small "bumps" in the error sur­
face that otherwise would trap the algorithm. 

APPROACH 

Two approaches were taken to determine the feasibility of using a 
neural network for inversion of eddy current flaw signals. The first 
approach involved the development of a network for inverting synthetic 
(noise-free) data. Flaw dimensions were generated randomly such that c 
~ 2.00 mm, a/c ~ l, du ~ O.lc, and a/S ~ 2, where c is the flaw half­
length, a is the flaw depth, du is the flaw width, and a is the skin 
depth. Flaw impedance magnitude, ldZI, and phase, 0, were then calcu­
lated at seven frequencies (2 MHz - 8 MHz at 1 MHz intervals) according 
to Auld's Az theory [5] for each of the flaw geometries. 

The second approach was the trial inversion of experimental data 
obtained with a uniform field probe. Data were taken with the uniform 
field probe described earlier using computer controlled x-y positioners 
to move a sample under the stationary probe. Real and imaginary values 
of probe impedance were acquired by a personal computer connected to a 
Hewlett-Packard 4194A Impedance Analyzer over an IEEE-488 bus. Each 
measurement consisted of scanning the probe over a flaw in one-dimen­
sion, giving impedance values at a number of points both near the flaw 
and away from the flaw. This allowed for preprocessing of the data to 
remove effects caused by tilt. Flaw impedance magnitude, IAZI, and 
phase, 0, at the center of the flaw was then calculated. The flaws 
consisted of five semi-elliptical EDM notches and one "no flaw" in Ti 
6Al-4V. The dimensions of these flaws are shown in Table 1. 

In both approaches, the flaw dimensions are the outputs of the 
neural network and the Az magnitude-phase information is the input. 
This requires a network with an input layer of 14 processing elements 
(magnitude-phase values at seven frequencies) and an output layer of 
three processing elements (flaw half-length, depth, and width). The 
number of hidden layers and hidden processing elements for each case are 
discussed below. After training, the networks were tested with data not 
used during training in order to evaluate the network's ability to gen­
eralize. 

RESULTS USING SYNTHETIC DATA 

Two sets of flaw dimensions and associated AZ magnitude-phase in­
formation were generated for training a network. One set consisted of 
100 pairs, the other consisted of 1000 pairs. The second set included 
the same 100 pairs as the first set, but with an additional 900 pairs. 
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Table 1. Dimensions of flaws used in the experimental portion of this 
study. A * denotes a flaw used in training the neural 
network. The remaining two flaws were used for testing the 
network after training. 

Length, 2c Depth, a Width, ~u 
Flaw # (mrn) (mrn) (mrn) 

* 1 2.48 1. 05 0.16 

2 2.01 0.85 0.20 

* 3 1. 60 0.63 0.12 

4 1.18 0.40 0.12 

* 5 0.61 0.33 0.10 

* 6 0.00 0.00 0.00 

After training separate networks using the two training sets, the per­
formance of each network was tested with a 100-pair testing set differ­
ent from either of the training sets. The estimates computed by the 
network for the testing set were then compared with the actual flaw 
dimensions to evaluate the network's performance. The network trained 
on 100 pairs had one hidden layer of 14 processing elements while the 

network trained on 1000 pairs had two hidden layers of 14 processing 
elements each. 

Figure 2 shows the results of both networks' estimates of flaw 
depth vs. the actual depth for each of the 100 flaws in the testing set. 
The figure shows that the network trained on 100 pairs (Fig. 2a) has 
fair performance, but that the network has not been able to closely 
approximate the function involved. The mean error for the testing set 

is -8.941 and the standard deviation is 18.856. The network trained on 
1000 pairs (Fig. 2b), however, produced much better results, having a 
mean error of -0.770 and a standard deviation of 4.136. This demon­
strates that the second network has already begun to closely approximate 
the mapping for flaw depth inversion. 

Both training sets represent a small percentage of the total popu­
lation of flaws. This suggests that the performance of the first net­
work is good considering the training set size, but that performance was 

dramatically improved by training on a larger set of flaws as demon­
strated by the second network. This suggests that the performance of 
the network might be further improved by using a still larger training 

set. 

RESULTS USING EXPERIMENTAL DATA 

Due to the limited number of flaws available for measurement, only 
one set of data was obtained for training a network to invert experimen­
tal flaw data. In order to generate training and testing sets of useful 

size, 10 independent measurements at seven frequencies (2 MHz - 8 MHz at 
1 MHz intervals) were made on each of the flaws in Table 1, giving a 
total of 60 measurements. Training and testing sets were created by 
dividing the six flaws into two disjoint subsets. Because the training 

set needed to span the range of flaw dimensions that would be seen dur­

ing testing, we chose to use four flaws, *1, *3, *5, and *6, for train­

ing and the remaining two flaws, *2 and *4, for testing. Although the 
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Figure 2a. Results of testing after having trained a neural network 
with synthetic data generated according to Auld's ~z the­
ory for 100 randomly chosen flaw geometries. The graph 
shows estimated flaw depth vs. actual flaw depth. 
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Figure 2b. Results of testing after having trained a neural network 
with synthetic data generated according to Auld's ~Z the­
ory for 1000 randomly chosen flaw geometries. The graph 
shows estimated flaw depth vs. actual flaw depth. 
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training flaws cover the range of dimensions of the test flaws for both 
the flaw half-length and depth, the width for flaw *2 falls outside 
those in the training set. 

Figure 3 shows a comparison of the network's estimates for flaw 
depth with the actual depth for each of the ten measurements on flaws #2 
and *4. The network's estimates show excellent agreement with the ac­
tual flaw depth, and all estimates are within about ±5% of the actual 
size. 

DISCUSSION 

Because space is limited, we are not able to present results esti­
mating flaw half-length and flaw width for either approach. However, 
the results of depth estimation for both cases are representative of 
estimations for all three dimensions. Some notable exceptions occurred 
in the experimental case. For half-length, the network estimates fell 
within ±3% for flaw #2, but overestimated c by as much as 25% for flaw 
*4. Width estimations for flaw #2 were deemed invalid because its ac­
tual width fell outside that of the training set, but estimations of ~u 
for flaw *4 were within +20%. 

Several steps can be taken to improve performance of the networks, 
particularly for experimental data. One such step is to measure more 
flaws, thereby creating a larger training set. We believe that this 
will improve performance for experimental data as it did with synthetic 
data. This means, however, measuring a large number of flaws covering a 
wide range of shapes and sizes. One way to overcome this problem is to 
train a network with synthetic data, from which a large training set can 
easily and readily be obtained, and then test the network with experi­
mental data. This would provide a virtually unlimited training set size 
and could be configured to meet any criteria. 
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Figure 3. Results of testing after having trained a neural network 

with experimental data. The graph shows estimated and 
actual flaw depths for each of 10 independent measurements 
on flaws *2 and #4 (see Table l) . 
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No study was conducted to determine the optimal size, structure, or 
learning parameters of the networks. Almost certainly, other networks 
exist which will give better performance and an effort will be made in 
future work to find such networks. Possibilities for future study in 
this area include examining other network sizes, structures, and para­
digms to find potentially better solutions. In fact, recent study indi­
cates that possibly too many processing elements were used in the hidden 
layers for both approaches. This can hinder a network's ability to 
generalize as well as increase learning time. 

CONCLUSIONS 

Results from both the theoretical and experimental approaches to 
training neural networks for the inversion of uniform field eddy current 
data are very encouraging, but it should be emphasized that the results 
presented here are preliminary. There is certainly much more work to be 
done, especially with experimental data. Results from both parts of 
this study have shown the need for proper training sets: a large number 
of examples as demonstrated by the theoretical results, and a thorough 
and complete coverage of ranges as demonstrated by the experimental 
results. As our results demonstrate, neural networks show great promise 
in being able to solve the inverse problem for eddy current data. 
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