
INVERSION OF UNIFORM FIELD EDDY CURRENT DATA USING NEURAL NETWORKS

INTRODUCTION

J. M. Mann, L. W. Schmerr,
J. C. Moulder, and M. W. Kubovich

Center for NDE, Iowa State University
Ames, IA 50011

A resurgence of research in artificial neural networks has sparked
interest in applying these networks to difficult computational tasks
such as inversion. Artificial neural networks are composed of simple
processing elements, richly interconnected. These networks can be
trained to perform arbitrary mappings between sets of input-output pairs
by adjusting the weights of interconnections. They require no a priori
information or built-in rules; rather, they acquire knowledge through
the presentation of examples. This characteristic allows neural net­
works to approximate mappings for functions which do not appear to have
a clearly defined algorithm or theory. Neural network performance has
proven robust when faced with incomplete, fuzzy, or novel data.

Inversion of eddy current flaw signals has typically been based
upon models of the field-flaw interaction, a so-called model-based in­
version procedure. Although the feasibility of inverting eddy current
data in this fashion has been demonstrated before [1-3], the complexity
of such procedures has hampered their widespread acceptance and use in
industry. The goal of this study is to develop an inversion method that
is easy to use and implement outside the research community. This paper
presents preliminary results on the use of neural networks for the in­
version of eddy current flaw signals to obtain flaw sizes.

UNIFORM FIELD PROBE

A uniform field eddy current probe was selected for use in this
study because a substantial body of experimental and theoretical work
exists. The theory for the interaction of a spatially uniform electro­
magnetic field with a three-dimensional flaw developed by B. A. Auld
[4,5] is well-known and has been shown to agree with experiment [6,7].

The probe used here is based on a design proposed by E. Smith [6],
but in a slightly different configuration[8]. This probe consists of a
C-shaped ferrite core wound with 65 turns of wire, creating an active
region between the two tips of the ferrite. To increase uniformity of
the magnetic field in the active region, the tips of the ferrite were
shaped and chamfered [8], and a copper foil surrounds the probe to di­
minish effects of field leakage.

Review of Progress in Quantitative Nondestructive Evaluation, Vol. 9
Edited by D.O. Thompson and D.E. Chimenti
Plenum Press, New York, 1990

681

NEURAL NETWORKS

Neural networks are intended to model the structure and operation
of the brain. They are composed of computationally simple processing
elements and connections. Succinctly, a neural network can be described
as a directed graph, with the nodes of the graph represented by the
processing elements and the edges of the graph represented by the con­
nections between the processing elements [9]. Each processing element
receives inputs from several places - other processing elements, the
outside world, or both - and operates on its inputs with a transfer
function to produce a single output. This output becomes the input
either to other processing elements in the network or the final output
of the network.

The networks studied here are multilayered feed-forward networks
and use a backpropagation learning algorithm [10]. In this implementa­
tion, networks are composed of several separate layers (groups of proc­
essing elements), including an input layer, an output layer, and possi­
bly one or more hidden layers (layers which do not receive inputs from
or send outputs to the outside world), as shown in Fig. 1. The inter­
connections transmit information in only one direction during operation
and each interconnection has an associated weighting factor.

The transfer function for a processing element comprises two steps.
The first step is to compute the weighted sum of inputs, I

I (1)

where wli is the weight on the connection from the ith processing element
in the preceding layer to the jth processing element (the processing

Output
Layer

t
Hidden

Layer#N

A
• • • • • • •

Hidden
Layer#l

t
Input
Layer

OUTPUTS

INPUTS

Figure 1. A multilayered feed-forward neural network with hidden lay­
ers.

682

element whose transfer function is being computed) in the current layer
and x 1 is the output of the it" processing element. The second step is
to apply an activation function, f, to I to produce OUT

OUT = f(I). (2)

The activation function generally used for backpropagation is a sigmoid
[10] of the form

f(I)
1

1 + e-I
(3)

A sigmoid satisfies the requirement, discussed later, that the activa­
tion function be everywhere differentiable. Any activation function
which is everywhere differentiable could be used. It also acts as an
automatic gain control [11], so that OUT~O as I~-~ and OUT~1 as I~+~.
This prevents the outputs of the processing elements from growing with­
out bound, which could allow some processing elements to dominate the
operation of the network and cause a kind of ftparalysis."

BACKPROPAGATION LEARNING

By appropriately adjusting the weights of interconnections, a neu­
ral network can be configured to approximate a particular function; in
our case, the flaw inversion transform. Weights are adaptively adjusted
through the application of a learning algorithm during a process called
training. Training a neural network using a backpropagation learning
algorithm consists of: 1) presenting inputs to the network's input
layer; 2) allowing the network to compute its outputs; 3) computing
the errors at the output layer by presenting the network with the target
outputs for the associated inputs; 4) propagating errors back through
the network and adjusting weights so as to minimize the errors at the
outputs.

For processing elements in the output layer, an error signal, 8.,
is calculated for the kth processing element as

(4)

where f' is the derivative of the activation function, y• is the target
output, and y'• is the network estimate of y •. The calculation of the
error signal shows why the activation function f must be everywhere
differentiable. The change of weight u•i connecting the kth processing
element and the jth processing element in the final hidden layer is de­
fined as

(5)

where a is the learning rate and zi is the output of the jth processing
element. For all other processing elements not in the output layer, an
error signal 8i for the j'h processing element is calculated from

(6)

and the change of weight wi1 connecting the jth processing element and
the i'h processing element in the previous layer is defined as

(7)

683

where x1 is the output of the i th processing element in the previous
layer. This backward propagation of error signals continues to the
first hidden layer. Therefore, two passes through the network are re­
quired for each iteration - one forward to compute outputs and one back­
ward to compute errors and adjust weights. The weight adjustment proc­
ess is repeated for many input-output pairs, known as a training set.
Training is stopped when the errors at the output layer reach a suffi­
ciently low level.

The goal of backpropagation learning is to perform a gradient de­
scent search in weight space to find the minimum error for all pairs in
the training set. The error surface is determined by the set of pos­
sible weights for the network for a given input-output pair. As with
any gradient search method, backpropagation is susceptible to becoming
trapped in local minima. Several methods for escaping local minima have
been proposed, including momentum [11]. Using a momentum term essen­
tially adds some part of past weight changes to the current weight
change. This can often help move over small "bumps" in the error sur­
face that otherwise would trap the algorithm.

APPROACH

Two approaches were taken to determine the feasibility of using a
neural network for inversion of eddy current flaw signals. The first
approach involved the development of a network for inverting synthetic
(noise-free) data. Flaw dimensions were generated randomly such that c
~ 2.00 mm, a/c ~ l, du ~ O.lc, and a/S ~ 2, where c is the flaw half­
length, a is the flaw depth, du is the flaw width, and a is the skin
depth. Flaw impedance magnitude, ldZI, and phase, 0, were then calcu­
lated at seven frequencies (2 MHz - 8 MHz at 1 MHz intervals) according
to Auld's Az theory [5] for each of the flaw geometries.

The second approach was the trial inversion of experimental data
obtained with a uniform field probe. Data were taken with the uniform
field probe described earlier using computer controlled x-y positioners
to move a sample under the stationary probe. Real and imaginary values
of probe impedance were acquired by a personal computer connected to a
Hewlett-Packard 4194A Impedance Analyzer over an IEEE-488 bus. Each
measurement consisted of scanning the probe over a flaw in one-dimen­
sion, giving impedance values at a number of points both near the flaw
and away from the flaw. This allowed for preprocessing of the data to
remove effects caused by tilt. Flaw impedance magnitude, IAZI, and
phase, 0, at the center of the flaw was then calculated. The flaws
consisted of five semi-elliptical EDM notches and one "no flaw" in Ti
6Al-4V. The dimensions of these flaws are shown in Table 1.

In both approaches, the flaw dimensions are the outputs of the
neural network and the Az magnitude-phase information is the input.
This requires a network with an input layer of 14 processing elements
(magnitude-phase values at seven frequencies) and an output layer of
three processing elements (flaw half-length, depth, and width). The
number of hidden layers and hidden processing elements for each case are
discussed below. After training, the networks were tested with data not
used during training in order to evaluate the network's ability to gen­
eralize.

RESULTS USING SYNTHETIC DATA

Two sets of flaw dimensions and associated AZ magnitude-phase in­
formation were generated for training a network. One set consisted of
100 pairs, the other consisted of 1000 pairs. The second set included
the same 100 pairs as the first set, but with an additional 900 pairs.

684

Table 1. Dimensions of flaws used in the experimental portion of this
study. A * denotes a flaw used in training the neural
network. The remaining two flaws were used for testing the
network after training.

Length, 2c Depth, a Width, ~u
Flaw # (mrn) (mrn) (mrn)

* 1 2.48 1. 05 0.16

2 2.01 0.85 0.20

* 3 1. 60 0.63 0.12

4 1.18 0.40 0.12

* 5 0.61 0.33 0.10

* 6 0.00 0.00 0.00

After training separate networks using the two training sets, the per­
formance of each network was tested with a 100-pair testing set differ­
ent from either of the training sets. The estimates computed by the
network for the testing set were then compared with the actual flaw
dimensions to evaluate the network's performance. The network trained
on 100 pairs had one hidden layer of 14 processing elements while the

network trained on 1000 pairs had two hidden layers of 14 processing
elements each.

Figure 2 shows the results of both networks' estimates of flaw
depth vs. the actual depth for each of the 100 flaws in the testing set.
The figure shows that the network trained on 100 pairs (Fig. 2a) has
fair performance, but that the network has not been able to closely
approximate the function involved. The mean error for the testing set

is -8.941 and the standard deviation is 18.856. The network trained on
1000 pairs (Fig. 2b), however, produced much better results, having a
mean error of -0.770 and a standard deviation of 4.136. This demon­
strates that the second network has already begun to closely approximate
the mapping for flaw depth inversion.

Both training sets represent a small percentage of the total popu­
lation of flaws. This suggests that the performance of the first net­
work is good considering the training set size, but that performance was

dramatically improved by training on a larger set of flaws as demon­
strated by the second network. This suggests that the performance of
the network might be further improved by using a still larger training

set.

RESULTS USING EXPERIMENTAL DATA

Due to the limited number of flaws available for measurement, only
one set of data was obtained for training a network to invert experimen­
tal flaw data. In order to generate training and testing sets of useful

size, 10 independent measurements at seven frequencies (2 MHz - 8 MHz at
1 MHz intervals) were made on each of the flaws in Table 1, giving a
total of 60 measurements. Training and testing sets were created by
dividing the six flaws into two disjoint subsets. Because the training

set needed to span the range of flaw dimensions that would be seen dur­

ing testing, we chose to use four flaws, *1, *3, *5, and *6, for train­

ing and the remaining two flaws, *2 and *4, for testing. Although the

685

1.2 a
a

1.1 D

a a
a

1.0
a a ,.-._ "b a § D a g a

a lfl
'-' 0.9 a
~

.s 0.8 a
c.
8 D

IJ 0.7 a

~
~ 0.6 ei: D

"0 D

£ 0.5
~ a
e D

·:= 0.4
"' ~

0.3 a

0.2 D

0.1 a

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Actual Flaw Depth, a (mm)

Figure 2a. Results of testing after having trained a neural network
with synthetic data generated according to Auld's ~z the­
ory for 100 randomly chosen flaw geometries. The graph
shows estimated flaw depth vs. actual flaw depth.

1.2

1.1

1.0
,.-._

e 0.9 e
'-'
~ 0.8 .s
c. 0.7
Cl.)

0

~ 0.6

~ e 0.5
·:=
"' ~ 0.4

0.3

0.2

0.1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Actual Depth, a (mm)

Figure 2b. Results of testing after having trained a neural network
with synthetic data generated according to Auld's ~Z the­
ory for 1000 randomly chosen flaw geometries. The graph
shows estimated flaw depth vs. actual flaw depth.

686

training flaws cover the range of dimensions of the test flaws for both
the flaw half-length and depth, the width for flaw *2 falls outside
those in the training set.

Figure 3 shows a comparison of the network's estimates for flaw
depth with the actual depth for each of the ten measurements on flaws #2
and *4. The network's estimates show excellent agreement with the ac­
tual flaw depth, and all estimates are within about ±5% of the actual
size.

DISCUSSION

Because space is limited, we are not able to present results esti­
mating flaw half-length and flaw width for either approach. However,
the results of depth estimation for both cases are representative of
estimations for all three dimensions. Some notable exceptions occurred
in the experimental case. For half-length, the network estimates fell
within ±3% for flaw #2, but overestimated c by as much as 25% for flaw
*4. Width estimations for flaw #2 were deemed invalid because its ac­
tual width fell outside that of the training set, but estimations of ~u
for flaw *4 were within +20%.

Several steps can be taken to improve performance of the networks,
particularly for experimental data. One such step is to measure more
flaws, thereby creating a larger training set. We believe that this
will improve performance for experimental data as it did with synthetic
data. This means, however, measuring a large number of flaws covering a
wide range of shapes and sizes. One way to overcome this problem is to
train a network with synthetic data, from which a large training set can
easily and readily be obtained, and then test the network with experi­
mental data. This would provide a virtually unlimited training set size
and could be configured to meet any criteria.

0.9

0.8
,...._
s s 0.7 ..__,
CIS

-5
0.. 0.6 Q)

0
~
CIS 0.5 -~

0.4

0.3

., ""'-'"-1:1--o-00\J"-cr-u--a. .
'·c

-- Flaw #2 - Actual

--a-- Flaw #2 - Estimated

--.....- Flaw #4 - Actual
--o-- Flaw #4 - Estimated

.o--n
0' ... -cr~ 'o--o--o--o--

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Run Number
Figure 3. Results of testing after having trained a neural network

with experimental data. The graph shows estimated and
actual flaw depths for each of 10 independent measurements
on flaws *2 and #4 (see Table l) .

687

No study was conducted to determine the optimal size, structure, or
learning parameters of the networks. Almost certainly, other networks
exist which will give better performance and an effort will be made in
future work to find such networks. Possibilities for future study in
this area include examining other network sizes, structures, and para­
digms to find potentially better solutions. In fact, recent study indi­
cates that possibly too many processing elements were used in the hidden
layers for both approaches. This can hinder a network's ability to
generalize as well as increase learning time.

CONCLUSIONS

Results from both the theoretical and experimental approaches to
training neural networks for the inversion of uniform field eddy current
data are very encouraging, but it should be emphasized that the results
presented here are preliminary. There is certainly much more work to be
done, especially with experimental data. Results from both parts of
this study have shown the need for proper training sets: a large number
of examples as demonstrated by the theoretical results, and a thorough
and complete coverage of ranges as demonstrated by the experimental
results. As our results demonstrate, neural networks show great promise
in being able to solve the inverse problem for eddy current data.

ACKNOWLEDGMENTS

This work was supported by the Center for NDE at Iowa State Univer­
sity and was performed at the Ames Laboratory. Ames Laboratory is oper­
ated for the U. S. Department of Energy by Iowa State University under
Contract No. W-7405-ENG-82. We are grateful to P. J. Shull of NIST­
Boulder for the loan of flaw specimens.

REFERENCES

1. B. A. Auld, S. R. Jefferies, and J. C. Moulder, J. Nondestruct.
Eval.]_, 79-94 (1988).

2. L. David Sabbaugh and Harold A. Sabbaugh, J. Nondestruct. Eval 1_,

95-110 (1988) .
3. L. Udpa and S. S. Udpa, J. Nondestruct. Eval.]_, 111-120 (1988).
4. B. A. Auld, F. G. Muennemann, and M. Riaziat, in Research Tech­

niques in Nondestructive Evaluation, edited by R. S. Sharpe (Aca­
demic Press, London, 1984), Vol. VII, Chap. 2.

5. B. A. Auld, S. R. Jefferies, J. c. Moulder, and J. C. Gerlifz, in
Review of Progress in Quantitative NPE, edited by D. 0. Thompson
and D. E. Chimenti (Plenum Press, New York, 1985), Vol. 5, pp. 383-
393.

6. E. Smith, in Review of Progress in Quantitative NPE, edited by D.
0. Thompson and D. E. Chimenti (Plenum Press, New York, 1985), Vol.
5, pp. 177-187.

7. J. C. Moulder, P. J. Shull, and T. E. Capobianco, in Review of
Progress in Quantitative NPE, edited by D. 0. Thompson and D. E.
Chimenti (Plenum Press,. New York, 1986), Vol. 6, pp. 601-610.

8. P. J. Shull, T. E. Capobianco, and J. C. Moulder, in Review of
Progress in Quantitative NPE, edited by D. 0. Thompson and D. E.
Chimenti (Plenum Press, New York, 1986), Vol. 6, pp. 695-703.

9. Hecht-Nielsen, R., in Neurocomputing, in press, (Addison-Wesley
Publishing Company, spring, 1990), Chap. 2.

10. Rumelhart, D. E., Hinton, G. E. and Williams, R. J., in Parallel
Distributed Processing· Exploration in the Microstructure of Cogni­
~ edited by D. E. Rumelhart and J. L. McClelland, (M.I.T.
Press, Cambridge, MA, 1986), pp. 318-363.

11. Wasserman, P. D., in Neural Computing· Theory and Practice, (Van
Nostrand Reinhold, New York, 1989), Chap. 3.

688

