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I. IBFTRODUCTIOn 

Magnetohydrodynamics can be considered as a special part of a wider 

field, namely, the interaction of electromagnetic fields and flow fields, 

both gases and liquids. 

In astronomy and geophysical studies the electromagnetic-fluid inter­

action were and still are of great importance in stellar and planetary 

processes. Then in the last ten years the engineering applications of 

these interactions began receiving an increasing concentrated efforts as a 

major area of broad work that is called magnetohydrodynamics (MED), and 

sometimes as magnetofluidmechanics (MFD). 

Engineering applications (3, 15) of electromagnetic and fluid inter­

actions have been directed to such topics as, conversion of heat energy to 

electrical energy,, ion propulsion studies, radio wave propagation in the 

ionosphere and controlled nuclear fusion. Another engineering application 

is connected with the influence of the magnetic field in providing protec­

tion of the internal surfaces of channels and nozzles from high tempera­

ture, high speed fluids. 

A full understanding of MHD is a very necessary step toward adequate 

dealing with modern plasma physics and applications. A plasma was defined 

by Langmuir in 1929 as an ionized fluid with an approximately equal 

densities of ions and electrons. 

The designation MHD or MFD is used for a special branche of electro­

magnetic-fluid interactions in which magnetic forces and energy dominate 

the corresponding electrical quantities. 
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Magnetohydrodynamies in the literature covers three different fields. 

The first is classical MED in which experiments are conducted on fluids 

such as Mercury where theoretical results have been developed for the 

experimental observations noticed; such as Hartmann flow for incompress­

ible, viscous flow of electrically conducting fluids. In other cases it 

is assumed that the fluid has infinite electrical conductivity and zero 

viscosity ; that is approaching an ideal case. The second path is directed 

toward a study of conduction in plasma and the electrical discharges which 

gave a substantial knowledge about radiation properties of conducting 

fluids. The third path is toward astronomical and geophysical studies 

based on the kinetic theory initiated by Boltzman and Maxwell and con­

tinued later by Spitzer (33)^ Burgers (2) and others. 

Presently concentrated efforts have been conducted toward the use of 

MHD effects in an inviscid flow (4, 7) fields with infinite (17) electrical 

conductivity and strong applied magnetic fields. The magnetohydro­

dynami cal effects were found capable of contracting (27? 29, 31) the flow 

stream, due to the fact that the magnetic field cannot penetrate a perfect 

conductor, and hence the fluid flow is pushed off the channel walls until 

a balanced condition between the fluid pressure and the magnetic pressure 

is reached. Therefore a vacuous frozen layer in the vicinity of the 

applied magnetic field source is established, with an outer flow field 

stream free from the magnetic field. The separation (29) of fluid flow 

from channel walls is due to the emergence of an adverse pressure gradient 

along the channel wall, where in this region the magnetic body force is 

larger than the fluid inertia force. 



Studies had been conducted on an inviscid, incompressible flow using 

various types of magnetic field sources, where separation of fluid flow 

fran the internal surface of the channel was obtained and with neglecting 

the effects of the induced magnetic field. 

Before proceeding further, it is very appropriate to present the 

important MHD parameters which are of importance or related to the problem 

of this dissertation; 

1. The magnetic Reynolds number (31) 

Ug = the reference electrical conductivity 

= the reference magnetic permeability 

= the reference flow velocity 

= the reference length 

2. The ordinary fluid Reynolds number R , (19) 

. ̂ 0% H R = —77 where 
e M o 

= the reference fluid density 

= the reference fluid viscosity 

R is a measure of the ratio of inertial force to the viscous 
e 

force, 

3. The magnetic Rrandtl number, (31) 

R 
P = — 
m R^ 

which is analogous to the gas dynamic number. 
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1+. The magnetic pressure number Rg, 

R„ = ^ where 
tr 

B = the reference magnetic field 
o 

Eg is a measure of the ratio of the magnetic pressure 

over the dynamic pressure /2. 

5. The magnetic interaction parameter I, (31) 

I = -
Po^o 

which is a measure of the magnetic body force to the inertia 

force. 

6. The ordinary Mach number (l9, 24) 

Vo 
M = -r- where 
° ^o 

= the speed of sound 

is a measure of the compressibility of the fluid due to high 

velocity and defined as the ratio of the fluid flow velocity to 

the speed of sound A^. 

7. The magnetohydrodynamic Mach number (31) 

M = —^ 

" /Hh 

which has a great significance in flow problems where wave motion 

is important. 

8. The Hartmann number (jzh) 
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In the case of incompressible and inviscid conducting fluids through 

channels, two (31) of the preceeding parameters are of more importance 

than others. One is the magnetic Reynolds number which determines the 

change in the applied magnetic field due to electric currents induced in 

the flow field. The intensity of the magnetic field can be represented 

by the magnetic pressure when the fluid has high electrical conduc­

tivity. The induced magnetic field is small compared to the applied 

magnetic field when the electrical conductivity is small, hence the mag­

netic force which is the change in the magnetic pressure due to the 

induced currents is much smaller than the total magnetic pressure. There­

fore the second suitable element is the magnetic interaction parameter I. 

The effective strength of the magnetic field can be measured by I. 

Turning again to the magnetic Reynolds number R^, it can be defined 

also as 

Lo 
R = — • where 
m L • e 

L = —^ ' known as the characteristic length of the flow 

L = dimension of the flow field. 
o 

Also R can be defined as: 
m 

P ""o H R = ̂  where 
m V e 

V = —^ - known as the characteristic flow velocity, and 

= flow field velocity. 

Wow if L » L we will have what is called the frozen-in fields where the o e 

magnetic force lines stay with the conducting fluid. and are 
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respectively characteristic length and velocity "by which the magnetic 

field is moving through the conducting fluid. 

When is not zero, the applied magnetic field will face difficulty 

in penetrating the conducting plasma and the flow field will approach the 

situation of being aligned with the magnetic field and will be harmonic 

inside the conducting fluid. This will give rise to the formation of a 

current sheet as well as a vortex sheet at the surface of the channel. 

These current and vorticity sheets are in fact two layers. The physical 

interpretation of those boundary layers is that at the (28, 3I) surface 

there will be a viscous sub-layer of thickness of the order of 

Since is very large, the thickness of the viscous sub-layer is 

extremely small. In this sub-layer the vertical and horizontal velocity 

components are zero at the surface. Then there follows the inviscid-

magnetic layer whose thickness is of the order of 1//r , which will be of 
m 

finite value. At the inner boundary of this inviscid layer the perpen­

dicular velocity component is zero, and the parallel component is not. 

The flow above those viscous and current sheets will approach an 

irrotational flow to some degree, especially when is less than unity. 

Figure 1 shows an illustration of the sub-layers. 

The significance of assuming the existence of the viscous sub-layer, 

which is of extremely small thickness, is that of surrounding the flow on 

each channel. Thus, the flow will be similar to an ideal Poiseuille flow, 

where the Hartmann number R^ is very large or approaching infinity, because 

the viscosity coefficient in the viscous sub-layer is small. 
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REMAINDER of FLOW 

IN VISCID LAYER 

VISCOUS SUB-LAYER 

8i = THE INVISCID LAYER THICKNESS 

8v s THE VISCOUS SUB-LAYER THICKNESS 

Figure 1. Details of layers formation in the channel flow 
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The problem of (27j 32) protecting internal surfaces of channels and 

nozzles from high temperature, high speed flows led to investigations on 

inviscid; incompressible flow in MHD channels with equal to zero, to 

the extent that the induced magnetic field is neglected and the applied 

field is due to various sources such as infinite conductors and linear 

dipoles. An adverse pressure gradient was obtained at the channel wall and 

in the region of the applied magnetic field source. This led to the con­

clusion that the fluid will have a boundary layer separation in that 

region. This effect will result in preventing the direct contact between 

the fluid and the wall material and consequently will lead to a reduction 

in the transfer of heat from the hot fluid to the wall which, in effect, 

gives protection to the channel walls. 

The physical phenomena occurring (31) in the flow field is that the 

magnetic field acts on the inviscid flow layer in such a manner as to cause 

a rapid decrease in the free stream velocity, especially in the region 

near the source of the magnetic field. This will result in a reduction of 

the wall skin friction. Also the Lorentz force in the boundary layer due 

to the effect of the magnetic field tends to retard the flow, and so the 

two effects will result in separating the fluid layer from coming in con­

tact with the channel wall, and this will result in heat transfer reduction 

from the fluid to the wall. This is considered as an element of great 

significance in giving more protection to channel walls. 

Previous investigators have neglected the induced magnetic field, 

corresponding to the magnetic Reynolds number being zero. 
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This dissertation reports an investigation of magnetohydrodynamic flow 

problems where the fluid is incompressible, inviscid, electrically conduc­

ting, thermally non-conducting, of scalar constant conductivity, and with 

stable ionization of partial degree such that the magnetic Reynolds number 

is substantially smaller than unity but cannot be neglected. The flow is 

between infinite parallel plates of arbitrary separation and the applied 

magnetic field is nonuniform, due to an infinite current carrying conduc­

tor located at a small distance below the lower channel wall. The treat­

ment involves the use of perturbation theory in the expansion of the mag­

netic field and flow field components in a double power series in and I» 

The u].tiraate goal is the development of a certain criterion under-

which the magnetic Reynolds number R^ must be considered or can be neglect­

ed. Therefore the main objective is to observe the behavior of the 

pressure gradient along the channel wall in order to determine the effects 

of the induced magnetic field on the fluid separation from the channel 

wall and hence a reduction in heat transfer to the channel wall. 
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II. REVIEW OF LITERATURE 

The application of a magnetic field to control the motion of an 

electrically conducting fluid has been investigated under different con­

ditions : with respect to the nature of the conducting fluid, the geometry 

of the channel in which the fluid is flowing, the source of the magnetic 

field applied, the degree of ionization of the fluid and finally the 

strength of the magnetic field. 

V. J. Eossow (26) conducted an analysis for the flow of an incompess-

ible boundary layer over a flat plate when the applied magnetic field is 

transverse with respect to the direction of flow and confined the magnetic 

field effect to the boundary layer only. The fluid flow was viscous and 

he obtained numerical solutions which showed the behavior Of pressure, 

temperature, and skin friction and illustrated the effect of the magnetic 

field in reducing heat transfer to the channel wall and the significance of 

using infinite current carrying conductors in forming the boundary layer 

(19) separation which prevents hot conducting fluid from coming in contact 

with the channel walls. Kemp and Petschek (16) analyzed a two dimensional 

flow of an incompressible constant conductivity fluid through an ellip-

tically shaped solenoid with the magnetic field perpendicular to the flow 

plane. They considered the effects of ion-slip and Hall current and 

applied the generalized Ohm's Law in the analysis with tte use of the 

perturbation theory in obtaining solutions for the force and moment on the 

solenoid. They carried the perturbation approach to the first order in 

the magnetic Reynolds number R^ and to the first order in the magnetic 

interaction parameter I, This means that the magnetic field is modified 
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but the flow field is not and the flow field is distorted but the magnetic 

field is not. 

Also Petschek and his colleagues (9) investigated a two dimensional 

supersonic magnetohydrodynaniic flow using the perturbation theory in a 

double power series of the magnetic Reynolds number and the magnetic 

interaction parameter.!, with consideration of the ion-slip and Hall 

current. They used a loosely wound circular solenoid as a source of the 

magnetic field where the flow was perpendicular to the axis of the sole­

noid and had a weak interaction with it. 

The validity of using the perturbation procedure was based on the 

assumption that the two coefficients in the power series expansion R^ and 

I must be substantially smaller than unity. This group (9) also extended 

their study to an experimental analysis for the drag and lift on the sole­

noid in order to match the theoretical results. 

Much work in the field of magnetohydrodynamics has been directed to 

the effect of the fluid conductivity, whether it is a scalar constant, a 

tensor constant, a function of position or a function of the current 

density, on the characteristics of the magnetohydrodynamic flow for various 

types of magnetic field sources. Kogain (17) conducted his study for a 

fluid of infinite electrical conductivity and the magnetic field not 

parallel to the flow field. A. Sherman (29) extended the analysis for the 

interaction between an inviscid magnetohydrodynamic flow and a non-uniform 

magnetic field of an infinite current carrying conductor. The flow was 

between two parallel plates of arbitrary separation and the current 

carrying conductor was located at unit distance below the lower channel 

wall. In this analysis, Sherman considered the flow field to be slightly 
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distorted "by taking the interaction parameter I small and the total 

magnetic field undistorted and equal to the original applied magnetic 

field, and hence the magnetic Reynolds number zero, and no induced 

magnetic field. He obtained numerical solutions for the velocities, 

temperature, pressure and pressure gradient along the channel wall, and 

showed that the high temperature fluid flow will probably have a boundary 

layer separation in the region near the source of the applied magnetic 

field due to the adverse pressure gradient. This led to the conclusion 

that heat transfer from the fluid to the channel wall will be reduced. 

this conclusion raised hopes for reliance on the non-uniform magnetic field 

for protection of the channel walls from the high temperature, high speed 

gaseous plasma. 

R. H. Levy (20, 21) continued along the same direction to investigate 

the effect of the interaction between magnetic field sources of various 

two dimensional types and fluid plasma at low conductivity. He neglected 

the effect of the induced magnetic field, such that the flow field is modi­

fied but the magnetic field is not. In his analysis. Levy considered 

magnetic field sources of one current-carrying conductor of infinite 

extent below the channel wall, two conductors separated by a certain 

distance below the channel wall and extending infinitely, and also a 

magnetic dipole below the lower wall. He showed clearly the effect of the 

magnetic field and flow field interaction in forming an adverse pressure 

gradient near the magnetic field source and its influence on the protection 

of the magnetohydrodynamic channel wall from the high temperature gas. 

Furthermore, Levy analyzed supersonic and subsonic flows with the 
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electrical conductivity as a scalar function of position and used the 

linearized perturbation theory to the first order in the magnetic inter­

action parameter I, but was zero. 

F. D. Hains and Y. A. Yoler (l2) conducted their analysis for magneto-

hydrodynamic flow through a circular cross-sectional channel with a com­

pressible fluid and where the magnetic field was slightly distorted such 

that was very small. They checked the calculated results of boundary 

layer thickness, skin friction, heat transfer and pressure gradient experi­

mentally. Later, C. Chu (4) conducted an investigation on the flow of an 

inviscid fluid over an insulated flat plate using the linearized pertur­

bation procedure and a magnetic field which was transverse with respect to 

the direction of fluid flow. 

The problem of heat transfer to the channel wall has been under 

continuous investigation. Sxegel and Perlmutter (32) reported an exten­

sive work in the area of heat transfer in the fluid in a transverse 

magnetic field. Horlock (l4) conducted his studies on inviscid magneto-

hydrodynamic flow at low electrical conductivity with cross and parallel 

magnetic fields. He used a very small to the extent that the applied 

magnetic field remained un-distorted, but he also considered the flow 

field to be distorted substantially such that the magnetic interaction 

parameter I was equal to unity. 

Timofeev (35) investigated the convection of a weakly ionized plasma 

with a non-uniform magnetic field due to direct current. He obtained 

results concerning the value of the critical magnetic field for the condi­

tion of instability where it was known that convection of completely 
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ionized plasma is unstable in a non-uniform magnetic field and a similar 

effect also in a weakly ionized plasma in a strong magnetic field. 

F. Eo Ehler (8) conducted a study on the use of linearized methods in 

magnetohydrodynamic flow in a circular channel flow with the applied 

magnetic field having axial symmetry due to a circular solenoid. 

The effect of magnetohydrodynamic interaction when the plasma is of 

infinite electrical conductivity also received great emphasis. Sears (28) 

conducted a study on the class of steady plane and axisymmetric magneto­

hydrodynamic flows of inviscid character and analyzed the properties of 

the "boundary layers formed ou solid bodies. Sakurai (27) investigated the 

two dimensional hypersonic channel flow of a perfect gas with infinite 

electrical conductivity in the non-uniform magnetic field produced by two 

anti-parallel line currents. He concluded that the magnetic field is 

capable of contracting the fluid flow away from the magnetic field source 

and that the wind tunnel wall can be protected from the high temperature^ 

high speed gas flow by the magnetohydrodynamical effect. R. H. Levy (22) 

investigated the flow of a plasma having infinite conductivity past a two-

dimensional dipole to find a bounding line at which the magnetic pressure 

balances the dynamic pressure. Thommen and Yoshihara (3^) investigated the 

case of a weak magnetic dipole moving in a plasma composed of protons and 

electrons of infinite conductivity. 

The strength of the magnetic field has a big effect on whether the 

electrical conductivity is a scalar or a tensor. For a weak magnetic 

field and in a low degree of ionization the induced current is parallel to 

the electric field as seen by the gas and is proportional to it with the 
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magnetic Reynolds number as the constant of proportionality. At a higher 

intensity of magnetic field and with a higher degree of ionization, the 

electrons can make several cyclotron orbits between collisions. They 

drift in a direction perpendicular to the electric and magnetic fields and 

thus a Hall current will be produced normal to the electric field direction. 

At a still higher intensity of the magnetic field, the electrons and ions 

are held so strongly by the magnetic field that there is a relative motion 

between the ionized and unionized portions of the fluid and the effective 

conductivity will be reduced since the ion slip will reduce the induced 

emf. A. Sherman (29) investigated magnetohydrodynamic flow with a fluid 

plasma having a tensor conductivity and in a non-equilibrium state by 

assuming the electrical conductivity to be a linear function of the current 

density. In his analysis Sherman used the perturbation method and carried 

the expansion to the zeroth order in the magnetic Reynolds number and to 

the first order in the expansion parameter. His conclusion was that non-

equilibrium ionization tends to reduce the Hall potential even when there 

is no current leakage between electrode pairs. 

, 'The preceding discussion presented the various stages of investiga­

tion conducted on the interaction between a fluid plasma at different 

degrees of ionization (with the electrical conductivity as either scalar 

constant function, a special function of position, a special function of 

current density or a tensor constant value), and the applied magnetic 

field (either transverse, cross-parallel or non-uniform in the plane of 

the flow). Viscous and inviscid, compressible and incompressible fluids 

have also been treated. The problem of protection of the internal walls 
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of magnetohydrodynamlc channels from high temperature, high speed gaseous 

plasmas have been receiving continuous attention for the last ten years. 

In most of those investigations, solutions were obtained by neglecting the 

effects of the induced magnetic field with thus zero or was taken to 

be small and in the perturbation procedure the expansion was carried only 

to the first order in R and to the first order in Jo For a channel of 
m 

two infinite parallel plates with an infinite current carrying conductor 

as a magnetic field source located unit distance below the lower wall, 

only solutions to the first order in the magnetic interaction parameter I 

have been considered while the magnetic Reynolds number was taken as zero 

since the applied magnetic field remained without distortion. The fluid 

treated was incompressible, inviscid and thermally non-conducting. 

Solutions have been obtained by converting the partial differential 

equations to the finite difference form and solving with a digital compu­

ter. It has been concluded that a separation of the fluid boundary layer 

is indicated by the appearance of an adverse pressure gradient at the lower 

channel wall near the source ol the applied magnetic field. This fluid . 

displacement results in a reduction of the heat transfer from the high 

temperature gaseous plasma to the channel wall and hence this will add a 

new protective element to the channel. Also theoretical investigations 

of the case of infinite electrical conductivity fluid have been carried 

out. Again the magnetohydrodynamical displacement (30) effect in 

separating the fluid from the channel walls has been demonstrated. The 

magnetic field cannot penetrate a perfect electrical conductor and hence 

the fluid flow is frozen and contracted. This case corresponds to the 
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condition of infinite value of the magnetic Reynolds number and results 

in a substantial reduction in the heat transfer from the fluid to the 

channel walls. 
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III. STATEMENT OF THE PROBLEM 

The effect of the non-uniform magnetic field due to a current 

carrying conductor of infinite extent laying at a small distance below the 

lower plate of a magnetohydrodynamic channel of arbitrary height will be 

considered. The fluid plasma is incompressible, inviscid, thermally non­

conducting, electrically conducting and has.constant scalar conductivity. 

The induced magnetic field is small compared to the applied field, to the 

extent that the magnetic Reynolds.number R^ is small, i.e. R^ is less than 

unity but not zero. 

Solution of the problem will be carried out by the perturbation 

approach in a double power series expansion in the magnetic Reynolds 

number and the magnetic interaction parameter, both smaller than unity. 

The appearance of an adverse pressure gradient at the lower channel wall 

and in the vicinity of the magnetic field source, implying the probability 

of boundary layer (l9, 3l) separation and consequently the reduction of 

heat transfer from the high temperature plasma to the channel wall 

material, will be investigated. 

In this dissertation the perturbation method will be carried to the 

first order in the magnetic Reynolds number R^ and then to the first order 

in the product of R and I. m 

Fourier transforms will be used to solve the partial differential 

equations arising from the perturbation method using certain justified 

approximations. 

Expressions for the hydrostatic and magnetic pressure gradient along 

the channel wall will be obtained from which the effects of the induced 
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magnetic field will be determined. A criterion under which the induced 

magnetic field can be considered or neglected will be developed. 

The applied magnetic field is non-uniform and due to an infinite 

conductor carrying direct current and is represented by 

"ox - - ' 2TT 2̂ ̂  - - ("qt;) "9—: 79 (2) 

The conductor is imbedded below the channel wall at a distance y^. The 

reference magnetic field is the absolute value of the applied field at 

X = 0, y = 0 and the reference distance is y . 

The fluid is electrically conducting and assumed to have a constant 

initial velocity parallel to the channel wall at the entrance of the 

channel and with initial pressure P^. The initial velocity is consid­

ered equal to the reference velocity. 

The significance of the induced magnetic field will be explored to 

the extent of showing that the area under the adverse hydrostatic pressure 

gradient curve.at the wall is increasing more than the case when the in­

duced magnetic field is assumed to be zero. Also the effects of the 

arbitrary height of the channel flow on pressure distribution, both static 

and magnetic along the wall, and its influence in producing more boundary 

layer separation will be explored. 
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IV. THEORY 

Consider a control volume of fluid in the presence of an electro­

magnetic field. The fluid is assumed to have the normal properties of 

fluids. The mathematical eçLuations describing the fluid flow are not 

independent from the electromagnetic field equations. The two sets of 

equations are coupled. These equations are given in the following 

sections. 

A. Flow Field Equations 

1. Continuity equation (3^ 24) 

The mathematical statement of the conservation of mas is 

^ + V. (pV) = 0 (3) 

where 

( ) indicates vector quantity 

p = fluid mass density 

Equation 3 can he rewritten as 

•|| + PVV + V.VP=0 (4) 

Then, 

with the convective derivative 

term 

M 
Dt 

and Equation 4 becomes 

# + P V V = 0 (5) 
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The continuity equation is unaffected by the electromagnetic effects 

since forces never appear in it. 

The definition for an incompressible fluid is that the connective 

derivative is equal to zero. 

Therefore, Equation 5 becomes ' ' ' 

V• V = 0 (6) 

2. Momentum equation (2k, 31) 

The contribution to momentum flux comes from 

a. surface forces due to pressures acting on the control volume 

surface. 

•b. body forces such as magnetic, electric and gravitational forces. 

Surface forces are represented by the pressure tensor. 

P = -P! + T. j (7) 

where 

P = hydrostatic pressure 

Ï = unit tensor 

T. . = viscosity tensor 
l^i 

The electromagnetic forces are given by the Lorentz equation 

where 

E = electric field intensity 

= excess electric charge 

The surface and body forces can be combined in a momentum equation 



22 

& J' = J' ^8 ' ̂  + I (9) 
V s V 

where 

F = surface force 
s 

and 

= body force 

Then, for an arbitrary.volume of incompressible and inviscid fluid, with 

no applied electric field and neglecting gravitational force, the momentum 

equation becomes 

upon application of the Divergence Theorem. 

3. Energy equation (24, 31) 

Conservation of energy in magnetohydrodynamic flow is represented by 

the following : 

a. The rate of increase of the fluid energy is the sum of the rate 

of increase of kinetic energy and the rate of increase of 

internal energy. 

b. The rate of energy input comes from the sum of 

(1) The rate at which electromagnetic energy enters. 

(2) The rate at which energy due to heat conduction and 

p(7 . V)V = - VP + I X B (10) 

where 

B = magnetic flux density 

diffusion enters. 

(3) The rate of energy input resulting from surface forces. 
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Then for incompressible, inviscid and steady flow the energy equation 

is given by 

P (V • V) [| + I + T ] = Ê - I (11) 

where 

E = total electric field intensity 

= specific heat at constant volume 

T = temperature 

j = current density 

B. Electromagnetic Field Equations (l5, 31 ) 

lo The charge continuity equation 

_ _ SPe , V 
sr. j + = 0 (12) 

2. Ampere's Law 

= (13) 

where 

= total current density 

V• B = 0 (l4) 

3. Faraday's equation 

vx i = - f (15) 

(The remaining Maxwell equation which relates the divergence of the 

electric field to the net charge density can be replaced by the condition 

that electron and ion densities are equal in magnetohydrodynamic flows.) 
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4. Ohm's Law 

where 

+ V X B) (16) 

= conduction current density neglecting Hall effect and ion 

slip 

a = electrical conductivity 

= applied electric field intensity 

5. The energy equation (18, 3l) 

_ _ 

where is the rate at which electromagnetic energy enters the flow 

field. 

If E =0 
8, 

^em = • V 

For MED flow having the properties of being incompressible, inviscid 

and steady and with no applied electric field the magnetohydrodynamic 

equations are 

V  •  V  =  0  

P (V • V ) V =  -  V  P + CT (VXB) X B 
(19) 

V • B = 0 

V x B = u I  

p(v . v)(| yZ + 2 + c^T) = - -f-

if the Hall effect and ion slip are neglected. 
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Next, Equation 19 can "be made non-dimensional as follows: 

B B* = 
®ref 

\ef 

— (20) 
P ref 

1* =  ̂

^ref 

p* = -£-
Pref 

where \ef' ̂ref ^ref reference values of magnetic field 

density, velocity, length and fluid density respectively and ( )* 

represents a non-dimensional, we get 

V • V = 0 

V • Ë = 0 (21) 

V X B = E ("V X B), 
m 

( V  •  V ) V  =  - V P  +  I ( V x B ) X B  

where 

^o'^o^ref^o ' 

T = °"o^o ^ref 

Po ?ref 
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If (the initial flow velocity) and = B^ (the applied 

magnetic field at (O, O)) 

^ref ^o 

\ ' (22) 

(23) 
*•^0 o 

Therefore, 

\ VpX 
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V. DERIVATION OF THE MGKETIC AKD FLOW FIELD PERTURBATION EQUATIONS 

A. Application of the Perturbation Method (8, 3l) 

Let 

V represent the velocity of the conducting fluid 

P represent the pressure of the conducting fluid 

B represent the total magnetic flux density 

Then, expressing Y, P and B as a double power series in I and 

V = V + E n, k = 0, 1, 2 — 
° n+k=l 

B = B + S (24) 
° n+k=l 

P = P + S pC^'jk) 
° n+k=l ^ 

V = To + BrnVi + IVg + ^3 + 

B = Bo + Bafl + IBg + + ... (2$) 

P = Po + BmPi + IPg + 15% P3 + 

Rewriting Equations 21 

V X B = R^(V X B) 

V  • B = 0 

(V • V)V = -VP + I(VxB)XB 

V • V = 0 

(21) 
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Substituting Equations 25 in Equations 21 and equating the sum of co­

efficients of like powers in I and to zero, the following system of 

equations is obtained. 

1. Zeroth order 

V  • = 0 

V  X = 0 
(26) 

V • = 0 

2. First order in I 

V• B^ = 0 

Vx B = 0 

(27) 

V - \ = 0 

(Vq • V)\ + (Vg • V)\ + V Pg = (V^ X \) X \ 

3. First order in R m 

V -  B ^  =  0  

= 7^ X 

(28) 

V  •  =  0  

(Vo • V)\ + (V]_ • +Î7 ?! = 0 
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4. First order in IE m 

V •  =  0  

VX B = X BG + VG X 

(29) 

V • = 0 

(\ ' v)\ + (Vg ' V)\ + (V3 ' V)VQ + i\ • + V P3 

=. (V^ X Bj_) X + (Y„ X B^) X + (T^ X B^) 

X B o 

To solve this system of equations we proceed as follows: 

1. To the zeroth order, the magnetic flux density is that of the 

applied magnetic field with fluid velocity and pressure equal to 

the initial value and respectively. 

2. To the first order in I, the magnetic interaction parameter, the 

fluid flow will be slightly distorted but the induced magnetic 

field is neglected and so the applied magnetic field will remain 

undistorted. This implies B^ = 0 and Vg, must be solved for, 

based on the zeroth order solution. Sherman and Levy (20, 31) 

have obtained solutions for and Pg for this particular case. 

3. To the first order in R^, the magnetic Reynolds number, the 

applied magnetic field will be distorted due to the effect of 

the induced field. This distortion will be slight because is 

substantially less than unity. The flow field will remain 

undistorted, so that V^, P^ = 0 and the induced magnetic field B^ 

can be solved for, based on the zeroth-order solutions. 
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4. To the first order in the product of IR^ the distorted flow field 

Pg can be solved for, knowing and can 

also he determined, knowing and B^. In this part both the 

magnetic field and the flow field are distorted. 

B. Derivation of the Induced Magnetic Field Equations 

Rewriting Equation 28 

V• B^ = 0 

ifx Bi = To X Bb 

V  •  \  =  0  

(Vo • V)\ + (\ • V)V^ = 0 

This set of equations represents the case where the applied magnetic field 

of flux density B will be distorted (32) to some degree. This results in 

the induced magnetic flux density B^. The flow field will remain undis-

torted, i.e. = 0. 

the velocity of flow at the entrance of the channel, is con­

sidered the reference velocity and hence 

= 1 (non-dimensional) 

Since the initial flow is in the x direction, 

V = a 
ox 

where a is a unit vector in the x direction. 
X 

Equation 28 can be written as 
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V • = 0 

V x  X  

V ' \ = 0 

(a^ • V)V^ + (V^ • V)a^ + = 0 

The flow will remain un-distorted, i.e. V^, = 0. 

Equation 30 "becomes 

V • Bi = 0 

3l = %% % + Voy) ' Voy 

The two equations to be solved to obtain B^ are 

V * B, = 0 

Vx Bi = oy 

where B^^ is the y component of the external field B^ 

From Equation 1 

B -
x^ + (ity)^ 

Then 

Vx EL = * 
^ + (inf 

V •  =  0  

Since B^ will be two dimensional, 
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(34) 

ÔB, SB, 
- f ( 3 6 )  

Now differentiate Equation 35 with respect to y and Equation 3^ with 

respect to x and then subtract with the result that 

^ ^ly _ ^ ̂ Ix ^ -2x(l+y) 

ay2 [x2+(lty)2]2 
(37) 

2 2 

^*^'0 (38) 

Subtracting Equation 37 from 38 we obtain 

_ 2x(l+y) (oQ) 
0 0 0 0 0  \ ' - > y  J  

ay2 [x2+(l+y)2]2 

It is now necessary to establish the boundary conditions on 

It is shown in Figure 1 that in addition to the main flow, there is 

an inviscid (28,31) layer of finite thickness. Beneath this layer there 

is the viscous sub-layer, laying on the channel wall, of very small thick­

ness, of the order of l/y^g with assumed to have a very large value. 

In the viscous sub-layer of the fluid the vertical and horizontal 

velocity components will have zero value, then just after this sub-layer, 

the flow assumes the undistorted velocity in the x direction. There­

fore the flow is very similar to an ideal Hartmann (24) type where the 

Hartmann number is very large. 



33 

The following approach, based on boundary layer approximation, is 

similar to that presented in the Sears paper (28) and also in the book by 

Sherman and Sutton (31)• 

Rewrite the second of Equations 28 as 

Vx B3_ = X 

is only in the x direction and 

B = â B + a B 
o X ox y oy 

Then, in two dimensions, 

ÔB, ÔB_ ^ 
^ = a V B (40) 

ay Sx z o oy 

In the viscous sub-layer, the flow field has zero velocity. In other 

words, will be replaced by zero in the viscous sub-layer. 

Therefore, Equation 40 in the viscous sub-layer becomes 

and also in this sub-layer 

where 

is of the order of l/ô, 
ây ' V 

5 = thickness of the viscous sub-layer = l/v/Rg 

and 

~ is of the order of 1 

Therefore, Equation 4l becomes 

or 
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Since is a large number in the viscous sub-layer, or at the surface of 

the channel wall, 

Six = ° 

at y = 0 and L 

where 

L = Arbitrary channel height 

Therefore, the partial differential equation of together with 

the established boundary conditions, becomes 

2 2 
^ ̂ Ix , ^ ^Ix . 2x(l+y) (he) 

ax^ ay^ [xf + (i+y)^]^ 

= 0 at y = 0, L 

and (46) 

= 0 at X = ± CO 
Ix 

In a similar problem, Pai (24) indicated in his textbook that boundary-

condition on B for an insulated wall can be taken to be zero at the 
X 

boundary. 

C. Derivation of Flow Field Equations (31) 

Rewriting the fourth of Equations 29 

(\ • V)Vg + (Vg • V)\ + (V3 ° V)\ + • V)Vg + V P3 

= (V^ X X + (V^ X B^) x B^ + x B^). 

X B 
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are the perturbations in the flow field when only the magnetic 

field is distorted, and hence both are equal to zero. 

Thus, 

?! = ?! = 0 

and 

= a (dimensionless) 

Now the above equation becomes 

(V3 • V)Vg + (v^ • V)v^ +V P3 

= (v^ X B^) X + (Vo X B^) X B^ (4?) 

The terms on the right of Equation 4? are 

= Wox - \v°y (48) 

and 

(Y^ X B„) X = VLXV - "XVOY (^9) 

(V3 "SfjVo + (Vo +9 F3 

= Wo. * BlxV - "xC2 VV (5°) 

Now we look at the left side of Equation 4$. The first expression is 

zero since is a constant value, hence 

(^x) • + CVsx + Vsy^ 

X Sx y 3% 

and 

= \ f + ='y f 
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Equation 4$ becomes 

and 

= Wox + Voy] - ' (51) 

^ ' - V.y <52) 

^ - f - Vox + =lxV (53) 

Equation 51 can also be written as 

- f = ̂  ̂ ̂ Vo. (54) 

The term 2 EL B represents the magnetic pressure along the channel flow. oy 

The term represents the accelerating or decelerating pressure along 

dP the channel. When - — is negative, it will correspond to an adverse 

pressure gradient that gives the indication of boundary layer separation. 

Differentiating Equation 52 with respect to y and Equation 53 with 

respect to x, we get 

cfv-, .2^ _ 
? + && = -2 (B, B ) (55) 

ôxôy ôxôy By ly oy' 

^ è = I; c Vox + Voy] (56) 

Subtracting Equation 5̂  from. Equation 55? we get 

--l^T = iz + 2 (57) 2 BxSy Sx ly ox Ix oy-' Sy ^ ly oy-
oX 
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For incompressible fluids 

V • V = 0 

or 

ÔV, 3x 
ÔV. 

Sx ay 
^ = 0 

or 

or 

ax By 

Therefore, Equation 57 "becomes 

2 sfvoy 

^3y " 2x2 + 2y2 " [^iy^ox + 

^2 ly ÔX ox Sx Ix âx 

Sine. ̂  and 

the result is 

c%2 ayZ "ïy ay &% 

_ B ^ + B ffly 
oy Bx ox 3y 

with the boundary conditions 

Vgy. = 0 at X = ± 00 

0 at y = 0, L 
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VI. THE SOLUTION OF THE INDUCED MAGNETIC FIELD EQUATIONS 

Equation 45 and boundary conditions of the first of Equations 46 are 

reproduced here 

^ ^ ̂  ^ 2x(l+y) 

ax^ ay2 [x2+(i+y)2]2 

Ix 
= 0 at y = 0, L 

Also there is the "boundary condition that must be "bounded at 

x = ±o3, i.e. =Oatx = ±co 
' Ix 

Now define the Fourier transform of a function u(x, y) as 

CO 
u(a, y) = ^ J' u(x, y) 

V 2TT -CO 
e dx (6l) 

'tt - 00 

•where _ -

a = Fourier transform variable 

We note that in the remaining part of this dissertation the symbol u 

will denote the transform of u rather than vector u. 

Multiplying Equation 45 b y  e^'^ and integrating with respect to 
/2tt 

X, and using the definition given in Equation 6l, we get (see Appendix A) 

= -i ̂  . a • e'l®'' (62) 

The transformed boundary conditions are 

(63) 
BiaXa, 0) = 0 

L )  =  0  

Then the general solution of B^^ is obtained as 



39 

.  e- l«Kl+L)^ (64)  

low the inverse Fourier transform of a function u(a, y) is given by 

u 1 f —/ _-i(%% (%, y) = ^ J' u(a, y) e da (65) 

Taking the inverse transform of from Equation 6k gives the 

following result (see Appendix A). 

B = I 2 + S ÏÎ:— ^2 
X + (l+y) n=0 X + (l+L+2nL+2y) 

- : (66) 
n=0 X + (l+L+2nL) 

can he found from the divergence relation given in Equation 36, 

repeated helow, 

2K ay 

Therefore 

'  J " ^ ^ ( 6 7 )  

where 0(x) is a function of x  only. In order to validate the differentia­

tion of B^ which has an infinite series solution, the uniform convergence 

(13) of the infinite series in Equation 66 must be proven. 

The Weirstrass M test of uniform convergence is used for this 

purpose. Take the 2nd series expression in Equation 66, 

CO 

E ^ 
a=0 + [l+L-tSnL]^ 
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In this series |U ' 
^ + [l+L+2nL]^ 

then, 

ix 

x^ + [l+L+2nL]^ [l+I+2nL]^ 

For all X and n and 

M = 
^ [l+L+2nL]^ 

[l+L+2nL]^ 

Since the series Z converges uniforinly, the original series, 
n 

CO _ 
s 
n=0 x^ + [l+L+2nL]^ 

converges uniformly and absolutely for all values of x and n. Hence, it 

can be differentiated term by term. Similarly the first series expression 

in Equation 66, 

CO 

g xL 

n=0 x^ + [l+L+2nL+2y]^ 

can be shewn to converge uniformly and absolutely for all values of x and 

n, and hence it can be differentiated term by term. 
as 

Now in order to calculate B using Equation 67, —r— is found as 
Xy ox 
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-"ix _ 1 y(l-)y)^ 1_J2L_ 

a: - 2 [x2+(l+y)2]2 " = [xZ+d+yff 

+ i g [l+L+2nL+2y1^ 

^ 11=0 [x^ + {l+L+2nL+2y}^]^ 

- 00 2 

& s 
^ n=0 [x^ + {l+L+2nL+Sy}^]^ 

- I S fl^L-K^nL]^ - x" (68) 
n=0 [x + {l+L+2nL) ] 

To find , Equation 68 must be integrated with respect to y. 

In order that the above infinite series expression in —r— can be 
oX 

integrated term by term, we must have ordinary convergence. This was 

checked by using the Weirstrass M test. They converge uniformly and 

absolutely for all x and n. 

Integrating Equation 68 vith respect to y, the following result is 

obtained. 

n=0 [x + {l+L+2nL+2y} ] 

. L „ r{l+L+2nI.f - x'"! 
+ P E '——-p ^y 

n=0 [{l+L+2nL} + x ] 

+ 0 (x) (69) 

In order to find 0 (x), the boundary condition that must go to zero at 

X equal ± ra is used, and 
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0(x) = Ln [x^+(l+ô)^3 + I 

•where ô is chosen as representing the arbitrary thickness of inviscid 

layer of the conducting fluid from the lower channel wall. 

Equation 69 thus becomes 

n=0 [x + Cl+L-t2nL+2y} ] 

L ; yffl+L anLf - /u I (70) 

n=0 [[l+L+2nL] + x ] 

Since the main interest is in the behavior of the inviscid boundary layer 

of thickness 6 in the gaseous flow, only the solution for small values of 

y will be examined. The following approximation is used. 

y « (l+L+2nL) , n = 0, 1^ 2 * 

Therefore, 

•R 1 xy 
1= *2 2.2 + 

and (71) 

. ^ -1 + 1 + y , L y ri+L+2nLl + 1 

^ ̂ x^ + (1+y)^ ^n=0[x^ + {l+L+2iiL}^] ^ 

Therefore the total magnetic field density with the effect of the induced 

field included, is given by 

and 

or 

B = B + R B, 
X ox m Ix 

B = B + R BL 
y oy m ly 
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VIIo THE SOLUTION OF FLOW FIELD PERTURBATION EQUATIONS 

A. The Solution for V^y 

Equation 59 is repeated here for convenient reference. 

ax^ a/ ^ 

B + B ^ oy ax ox By (59) 

with the boundary conditions 

V^y = 0 at X = ± CO 
(60) 

= 0 at y = 0, L 

In Equation 59? the right hand side is known since B , B , B^ oy ox J-X and 

B^y are determined from Equations 1, 2, 66 and 70 respectively. We will 

obtain the solution for the region of interest, namely for small values of 

y. 

With the approximation y « (l+L+2nL), Equation 59 reduces to the 

following ; 

^ ̂ 3y ^ V _ L x(l-fy) g l+L+2nL 

ôy^ ^ x^ + (l-ty)^ n=0 [x^ + {l+L+2nL}^]^ 

I p X g „ (74) 
[x + (Hy) ] n=0 X + {l+L+2n} 

Then letting 

L = 1 + L + 2nL 
n 

and 

Y = 1 + y 
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Equation. 74 becomes 

+ \ 
ôx^ ôy^ 2 X^ + y2 n=0 [x^+L^]^ 

^ S _ s (75) 
^[x^ + Y%.=0 x^ + L^ 

n 

The right hand side of Equation 75 is expanded by partial fractions in 

order to obtain Fourier transforms easily. 

Equation 75 becomes 

Sx^ ôy^ n=0 2(L^-ï^)^ Tx+ÏyJ 

1 

=0 2(L^-Y^)^ JX-ÏÏ) 
^ " n 

CO ÏL L 

=0 2(L^-Y^f' 
n 

00 ÏL L 
- E 

=0 2(L^-Y^)^ (x-XL^) 
- -n 

H, L 
- E n X 

n=0 2(L^-"ï^) (x^+Y^)^ 

CO XL L 
- Z --| (76) 
n=0 (x2+L2j2 

Then, for y « (l+L+2nL), Equation 76 becomes 
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^ ̂ 3y = 2 ^ 1 

n=0 2iL^-lf 

œ YL L ^ 

n=0 2{L^-lf 
^ n 

V ^ '^a . j-

" n=0 ac4i)2 

. ; 1 

n=0 2(L^-l)^ 
^ n 

co ÏL L 
Z n X 
n=0 2(L^-1) (x^+l^y 

n 

Ob YL L 
- 2 2~^—^-2T (77) 

31=0 2(lf^l) (x +&%) 

with the boundary conditions on being 

=  O a t x  =  ± œ _  

Vg = 0 at y = 0 

y = L 

The Fourier transforms with respect to x are used with Equation 77» 

The partial differential equation is converted to an ordinary 

differential equation in y as shown on the following page (see Appendix B).  



47 

ay' 

= -S [(l+y) for a < 0 
n=0 (L-l)  

n ' 

+ Z ^ 3° [(I4y) a-«(l+r)] for « > 0 
n=0 (L-l) 

n 

oo i^/rf/S L L y 
+ E p p- • 6°^ "• [1+y] for a < 0 
n=0 (L^-1) 

CO 1/0/2 L L _ y 

- ^ 2 g— • e "• [1+y] for a > 0 
n=0 (lf-1)' 

œ iyW/2 L I, a 
+  E  : — f o r  a l l  a  
n=0 (L^-1) 

+ g x/Fr/g la . e-|»|Ln [i+y] for all Œ (78) 
n=0 (L^-l) 

where a is the Fourier transform variable. 

Equation 78 is an ordinary differential eqimtion with respect to y 

with the following boundary conditions 

Vg = 0 at y = 0, L (79) 

The solution of Equation 78 with boundary conditions as in Equation 79 is 

obtained as follows : 

1(1-^)-
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; ^ \ slnh oy - sinh (g, 

n=0 (L^-1)' 

Tr - V m r/L e ' sinû oy - : 
3y \ /.,2 , \2 '-^ 4af sinh aL 

L sinh oy - y gjnb Q,I,\ 
O / g , for Q- > 0 

4af sinh q?L 

+ g(y(l+L) cyy - y^ gQf(lty) 

^ ~ 4cy sinh œL 

+ y sinh o^L - L sinh cvy^ for a < 0 

ka^ sinh aL 

+ /L sinh w - y sinh for > 0 
^ 4Qf sinh cvL 

+ /L sinh ay - y sinh aLs for a < 0 
^ ' 4 a  s i n h  œ L  

+ (y sinh gL - L e"°^^ sinh oy^ for a > 0 

sinh aL 

+ (L e'^^n sinh ay - y sinh gL^ for a < 0 

g^ sinh gL 

+ sinh ay + sinh aL) f^ < Q 

ka^ sinh gL 

(e°^ sinh gL + sinh ay) „ 
- p ^ for g < 0 

4a sinh gL 

+ sinh gL + e-o'CL+V ginb oy) f^ > q 

l+a sinh gL 

(e-o'C^n^y) sinh.gL + sinh oy) 
'2 4g sinh gL 

] for g > 0 
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» Vn/2 L ^ ̂  -UI(x+L) sinh oy y a -lalCl-fy)-, 

in T n for all a 

Z 1/77/2 L p/L 6"°^ sinh ay - j sinh cyL\ ^ g 
^ . 2 Lk Q, sinh c^L J TOT a > V 
n=0 (L^-1) 

/I e'^^n sinh oy - y e°'^n sinh gLx . ^ 
I asidaoG ' 

+ (e°^^ sinh gy + sinh gL) f-^r rv < 0 
4^ sinh cvL 

_ (e°^ sinh gL + e'^(^+^n) sinh ay) < q 
fesirSi^i 

+ sinh gy + g-o^y+^g) sinh gL) g 
^Q/ sinh œL 

- °i°j; Ql. t sinh Qg) 0 (80) 
40/ Sinh Q?L ' 

The inverse Fourier transform of Equation 80 is taken (see Appendix B) 

and we obtain for 

=0 -L L 2 CO + (L +L+y)^ 

'3. ̂ Jo ' io 7T̂  
^ m n 

+ f (l^+LHt) tan-^ I,^ A + y 

y fr T - i; taa" 

2 

n - + y 

L J. -1 X , J. -1 X 
L^+L +y+Trta% + L + y 

Lx, 

^ + (Ljj+L-y)^ 
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t (V^-y) tan-\^ /l y 

+ Ç (L/L-y) tan"^ i,^ A - y 

T ' L^frr? ' i 

+  Ï l i ? ]  

œ , ̂ œ x^ + (L +2L+2nL)^ 

- 2 2 [- —j—j -2-
m=0 /^2 _\2 n=0 x + (L -t^nl) 

- f tan-^ L^-T&lSm 

+ { (L„ + 2-a) taa-^ iT-Tsa: 

x^ + (L+L^+233L+y)^ 
+ T; 2c L —p -p 
^ X + (L+L^+2nL-y) 

+ Ï (L+Ljj+SnI+y) tan'^ L + Ï 2nL + y 

- Ç (l+L̂ -teiil-y) tan-^ L + I,\ 211L - y 

' " + (2L-l2nL+L^)^ 

- I (2L-«2nL+L^) tan-^ SL 2nL + 



+ i (SOL+L^) taa-^ 

^ + (2L+I^+2nIi-iy)^ 

' " x^ + {2nL+L̂ -trf 

+ i (2L+2nI+L^4y) tau'^ gi, + 2nL% + y 

- i (^ol'+I'n+y) tan-1 2,̂  + + y 

x^ + (L +L+2r3L+y)^ 
_j_ % ̂  £i 
' " x^ + (L^+L+2nL-y)^ 

+ f (L^+L+2nL4y) tan-^ H- i, ̂  ga, ̂  y 

- ï tan-^ +L AnL - y 

+ (2L+2nL+L +yf 
n 

+ (2L+2nL+L^-y)^ 

+ I (2L+2nL+L^-y) tan-1 2L + 2nL% 1^ - y 

- I (2L+2nL+L_^4y) tatl"^ 2L + 2jjL + + y ^ 

y ^ j-l xy 

m=0 (L^-1) ^ x^ + (i+y)^ 
m 

- i 2 [-p 2 + -p pj 
n=0 X + (l+2L+2nL-y) x + (l+2L+2nL+y) 
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CO CO _ 
S -4 E [f tan"^ f-
m=0 (L -1) n=0 n 

m ' 

L , -1 X 
? L + + 2r]L - y 

, L . -1 X 
? L + + 2rLL + y 

, L . -1 X 1 , X 
. ï LR + 2rLL ~ ÏÏ 2L + 2nL + 

L , _-l X . 1 , X 
1+ + 2nL + y ? + 2nL + + y 

• Ij: L + + 2nL - y L + + 2nL + y 

- ̂  tan"^ ^ 4 + 2nL + 2L + y 

+ r tan"^ T. 4. O.T.\ QT. - .r] (^l) ? + 2nL + 2L - y 

To simplify Equation 8l we let 

y « (l + L + 2nL) 

with the result that 

CO -L L 2 T 

m=0 1 

x^ + (L +2L+2nL)^ 
2Sl 

^ x^ + (L^+2nL)^ 
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. f  (LV 
n 

- f (L^-L) tan-1 
n 

+ f (l.a+2^) I, +2nl, 
n 

I (L +2L42nl) tan-1 , gg ^ 
n 

00 L L _ 
z [i-^—g] 
m=0 (L^-1) X + (l+y) 

CO CO 

- E E I tan"^ ~ (82) 
m=0 (L -l) n=0 a 

^ m 

B. The Solution for Static and Magnetic Pressure Gradients 

Now, we return to Equation $4, rewritten below as 

Since 

Bx ay 

we obtain 

2y + ̂  = - 2 B, B 

or 

5y Bx ly oy 

f = ̂  Voy - (S3) 

where - is the negative of the pressure gradient. 
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The term 2 from Equation. 82 represents the magnetic pressure 

in the flow field» 

ôV_ 00 L L . 

^ m ' 

_ (ity) + g [25%, ^ 
+ (Hy)^ n=0 ̂ ^ 

x^ + (L +2L+2nL)^ 
X ^ 

^ ^ + (L^+2nL)^ 

-1 X + (L +L) tan + 1 

(L -L) tan"^ ^ n - L 

+ (L +2nL) tan"^ ^ n ' + 2nL 

(V 21 + L + 2̂  + 2nL] 
n 

m = 08(L^-1) [X2+(I+Y)2]2 

CO  ̂ CO 

+ Z —% Z T tan ^ (84) 
m=0 (L -l) n=0 n 

^ m ' 

The term 2 with y « (l + L + 2nL) becomes 
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2 B B = 
ir °y [32+(i+y)2]2 

xL % 1 + L + 2nL . 

+ (l+y)^n=Ox^ + (l+L+2riL)^ 

Combining Equations 84 and 85 and setting y = 0, we obtain the negative of 

the pressure gradient along the lower channel wall as 

M L T œ 

" di " ^ 2 2 X + S 
m=0 1+(L^-1) n=0 

X x" + (La+L)' 

^ ^ x^ + 

+ (L +2nL+2L)^ 
X T ^ n ^ 

- TT L 
^ x^ + (L +2nL)^ 

n 

+ (L +L) tan'^ ^ 

(L -L) tan"^ ^ n - L 

+ (L +2nL) tan"^ ^ 
n + 2nL 

(L +2nL+2L) tan"^ ^ h ^ + 2nL + 2L 

00 L L 
+ XI • - ^ X 
m=0 8(L^-1). 1 + X^ 

^ m 

CO CO 

+ E 1-— S tan" f-
m=0 1+(L -L) n=0 n 

m ' 
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CO II II 
z (86) 
m=0 (x +L^) (l+x ) 

and the magnetic pressure along the lower channel wall is given by 

dP 00 L L 
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VIII. RESULTS 

In the previous sections algebraic expressions for the magnetic 

field and the velocity component V^y were developed. From these, 

dP 
expressions for the static and magnetic pressure gradients - — and 
dP 

- -T— along the. channel wall were obtained. 
dx 

The pressure gradients as given by Equation 86 and 87 were numerically 

calculated for different value of R^, I, and L using an IBM 36O digital 

computer. The results are tabulated in Appendix C, in Tables 1 to 8. The 

data is displayed graphically in Figures 2 to I6, described as follows: 

1. In Figures 2 to 5 the total adverse static pressure gradient 

along the channel wall is plotted against x for a given value of 

with I and L held constant at 0.10 and 6.h respectively. The 

case of R^ = 0 as given in reference (27) is also shown for easy 

comparison. Figure 2 shows the total adverse static pressure 

gradient along the channel wall when R^ = O.O5 and I = 0.10. It 

is recognized that the increase in the net negative area with 

respect to that when R^ = zero is insignificant. Figure 3 shows 

the total adverse static pressure gradient with R^ = O.O75, 

I = 0.10. It indicates a slight increase in the net negative area 

from that when R^ = 0. Figure 4 shows the total adverse static 

pressure gradient with R^ = 0.1, I = 0.1. It indicates a signifi­

cant increase in the net negative area from that when R^ = 0. 

Figure 5 confirms the increasing influence of the induced field 

where, with R^ = 0,15, I = 0.1, the adverse pressure gradient is 

significantly greater than that with R^ = 0. 
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Figures 6 through 12 show the behavior of the static and magnetic 

pressure gradient due to the effects of the induced magnetic 

field for channel heights of L = 6.4, 9*6, 32, 64, $6 and, 

for a very large height, L = 9999» Those curves show the 

increasing influence of the induced magnetic field as the channel 

height increases. 

Figures 13 and l4 show the adverse static pressure gradient due 

to the induced magnetic field for various channel heights. They 

indicate the increasing effects of the induced magnetic field as 

channel height increases. 

Figures 15 and l6 show the adverse magnetic pressure gradients due 

to the induced magnetic field. They indicate also the increasing 

effects of the induced magnetic field as channel height increases. 

Figures 17 and l8 show the magnitude of the maximum value of 

static and magnetic pressure gradient for various channel heights. 
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Figure 2. Total static pressure gradient at lower wall 
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Figure 3» Total static pressure gradient at lower wall 
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Figure h. Total static pressure gradient at lower wall 
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Figure Total static pressure gradient at lower wall 
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Figure 6. Static and magnetic pressure gradient at lower wall due to induced magnetic field 
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Figure 7. Static and magnetic pressure gradient at lower wall due to induced magnetic field 
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Figure 8. Static and magnetic pressure gradient at lower wall due to induced magnetic field 
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Figure 9. Static and magnetic pressure gradient at lower wall due to induced magnetic field 
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Figure 10. Static and magnetic pressure gradient at lower wall due to induced magnetic field 
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Figure 11. Static and magnetic pressure gradient at lower wall due to induced magnetic field 
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Figure 12. Static and magnetic pressure gradient at Lower wall due to induced magnetic field 
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Figure 13. Static pressure gradient due to induced magnetic field at lower wall at various values of L 
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Figure l4. Static pressure gradient due to induced magnetic field at lower wall at various values of L 
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Figure 15. Magnetic pressure gradient due to induced magnetic field at lower wall for various L 
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Figure l6. Magnetic pressure gradient due to induced magnetic field at lower wall for various L 
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Figure 17. IVfe-gnitude of maximum static pressure gradient due to induced magnetic field 



dP 
dx max 

1.30 

120 

1.10 

1.0 

sooL——L_ L 
0 12 24 

L = CHANNEL HEIGHT 
Rm~ 0.10 

36 48 60 72 84 96 
L 



Figure l8. Magnitude of maximum magnetic pressure gradient due to induced magnetic field 
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IX. CONCLUSIONS 

The importance of preventing a hot conducting fluid from coming in 

contact with the internal .walls of channels and nozzles, and hence of 

protecting those walls is the main point of study when the induced mag­

netic field is to be considered. 

From the results obtained in Section VIII, the following conclusions 

concerning the effects of the induced magnetic field on protecting the 

channel walls from hot conducting fluid are recognized. 

1. Figure 2 indicates that for I = 0.10 a negligible increase in the 

net area of the adverse pressure gradient is observed with = 

0.05. With = 0.075, the increase in the net negative area is 

slight but recognizable as shown in Figure 3* It is shown that 

with R equal to 0.1 and 0.15 the obvious result is a clear net 
m 

dP increase in the negative area of - — . 

Those results indicate that with R of the order of 0.1 the 
m 

induced magnetic field cannot be neglected and therefore must be 

included in any treatment of inviscid magnetohydrodynamic flow. 

Also, the conclusion is reached that with R^ less than 0.1 it can 

be neglected. We recall that = cr|iV^y^. 

Therefore, for fluid flow with electrical conductivity a and 

magnetic permeability ̂  and with R^ > 0.1 

îqÏCT ^ ̂ 0^0 

or 

00 
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As a consequence of s 0.1, an Improvement in "boundary layer 

separation will result. This will add more to the protection 

of the channel walls from the high temperature fluid. 

2. Figures 6 to 12 show the hydrostatic and magnetic pressure gradi­

ent due to the induced magnetic field along the channel wall for 

several values of L. The plots indicate that in the up-stream 

region of the flow field the magnetic pressure gradient is acting 

to help the inertia forces. As the flow approaches the source of 

the applied magnetic field, this effect decreases. At the start 

of the down stream flow, the magnetic pressure gradient is acting 

in opposition to the inertia forces of the flow field. As a 

result, separation of fluid particles from the channel wall will 

occur. 

3. Figures 13 to l6 show the hydrostatic and magnetic pressure 

gradients due to the induced magnetic field along the channel 

wall for several channel heights. It is indicated that as the 

two channel walls move apart, the differences among the hydro­

static pressure gradients and also among magnetic pressure gradi­

ents are diminishing. This is due to the fact that the magnetic 

field has more freedom in deflecting the flow and slowing it down 

as the height of the channel is increasing. 

k. Another fact demonstrated in Figures 6 through 12 is that as the 

channel height increases from 6.4 to $6, the order of magnitude 

of the hydrostatic pressure gradient is approaching that of the 

magnetic pressure gradient. This is due to the increased 
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influence of the magnetic field in slowing down the flow as the 

channel width increases. 

5. In Figures 17 and l8 it is shown that the maximum magnitude of 

the static and magnetic pressure gradient due to the induced 

magnetic field along the channel wall is increasing with L until 

L is about 30. Past this point the increase is small due to the 

fact that in such a case the magnetic forces have more freedom to 

slow down the fluid flow. 

It should also be mentioned that the problem studied in this disserta­

tion, namely that of MHD flow between two parallel plates of infinite 

extent, can be considered equivalent to that of an annular duct of radii 

r^ and r^ such that the mean circumference of the duct is much larger than 

if r = mean radius of the duct 

(2Ttr) » (r^-r^) 

In other words the length of the channel is much greater than its height 

as shown in Figures 19 and 20. 
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Figure 19. Hot conducting fluid flow in an annular duct 
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Figure 20. Hot conducting fluid flow in a two parallel plate channel 
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XII. APPEMDIX A - FOURIER TRMSPORmTION OF EQUATION 

The equation to be transformed is 

= 2 X (1+y) (45 

ôx^ ôy^ [x^ + (ny)^]^ 

with the boundary conditions given by Equation 46 

= 0 at y = 0, L 

and (46) 

= 0 at X = ± œ 
Ix 

Now, take the exponential Fourier transformation of the above partial 

differential equation with respect to x, resulting in 

where cy is the Fourier transform variable. This operation reduces the 

partial differential equation to an ordinary one. Equation 88 becomes 

where is the Fourier transform of B^ . To find the Fourier transform 
Ix Ix 

of the right hand side of Equation 89, we proceed as follows 

(88) 
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1 — œ T ™ /. \ j-ur-x. 
= [3^°=^ ̂  5 / - (.̂ ) f „ ax (91) 

X + (l+y) -œ -00 X + (l+y) 

The first expression of the right side of Equation 91 is zero 

and thus we get, 

CO iosc . ro ioQC 

—r2 = f f-f ;2 (^2) 
-co [x + (l+y) ] -co X + (l+y) 

Then, from a table of Fourier transforms (24), the Fourier 

transform of 

[a^ + (x±b)^]"^ 

= ̂  2 e"^^ /n [ (v)]~^ K^_l (a|a|) with R^v > 0 

For V = 1, b = 0, a = (l+y), the Fourier transform of 

= (93) 

Then, using Equation 92, the Fourier transform of 

= (a|«|) (9k) 

Also from tables (24), 

K^(Z) = 2{8in nv)-l [I_2(Z) -

From Equation 94, 

v = - ^ ,  Z = a\a\ , thus 
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\ (a|e|) =|(sin|)'^ [I ̂  (a|e|) - (a|a^) 

2  " 2 2  

= f[I ̂  (a|a|) - (a|a|)] (95) 

"2 2 

Also from, the tables (24) 

- l^iTTV 
I^/Z) = e e ] 

therefore 
in 

\ (aley)) = e ^ (ia|a|) (96) 

2 2 

and 

in 

I ̂ (a|a|) = e~^ J ̂  (ia|a|) (97) 

"2 "2 

Hence 
in in 

\ (a|a|) = f[s ̂  J 1 (ia|%|) - e (ia|&|)] (98) 

since 

J ^ (x) = Y? cos X 

-"2 nx 

(x) = /2_ Bin X 
•g nx 

(99) 

Substituting in Equation 89 we get 

• a ' e-|%|Cl+y) (lOO) 
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The Fourier transforms of the boundary conditions in Equation 46 

are given by, 

®lx O) = 0 (lOl) 

and 

\x L) = 0 (102) 

The general solution for is thus 

i/n r g - |QF|(l+y) 
= 27? y ̂  

The inverse Fourier transform of B, is Ix 

CO 

B. ^ X ®lx to (104) Ix /âr J Ix 
— CO 

Performing the steps indicated in Equation 104 and using the 

following relations from tables (lO, 11) 

where 

/ ~^x— = $(v) - KlJ-) (Rg n > Of Rg V > 0) (105) 
b 1 - e 

1 1 
= - 0 - z (— - ̂ ) (106) 

n=0 

and C = Euler's constant, we get 

CO 

®lx = I [ 2 2 ^ — 2 
X + (Hy) n=0 X + (l+L+2nL+2y) 

- S p] (107) 
n=0 X + (l+L+2nL) 
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Further properties of the i|; function are 

Kx+iy) - t(x-iy) = E -g—^ g 
n=0 y + (x+n) 

Hv.) - •(v) = s [-^ - -j^] 
n=0 

CO 

- y U. V 
~ ̂ =0 (p+n)(v+n) 

V / 0, -1, -2 

RgCwJ, a( v )  >  0  

and 

^Z) = ̂  logp(z) 
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XIII. APEEKDIX B - FOURIER TRMSFORMâTIOI OF EQUATION 77 

The equation to be transformed is 

_ 2 ^ 1 
ay^ n=o 2(1^-1)^ 755^ 

+ ; 1 
n=0 2(L^-lf 

n ' 

V ^ ̂n 1 
n=0 2(l^-1)^ (x+iL^j 

^ n ' 

; 1 

n=0 2(1^-1)2 (x-iL^) 
^ n 

_ ; X 

=0 2(l^-I) (x^+y^)' 

00 H L 
n X 

n=0 2(L^-1) (x^+I.2)2 
(77) 

Use is made of mathematical tables (24) to transform the above partial 

differential equation. 

An example showing the transform of the first term of Equation 77 

follows : 

Let F.T. = Fourier transform 

F.T. of —^ _ can be obtained from tables (24). 
x + lY 

F.T. of = 0 for Of > 0 
(a-ix)V 

= /2Tr [P(v)] ̂ (-oO^ ̂  e°^ for a < 0 (ill) 
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where 

R V > 0 
e 

For V = 1 

F.T. of — =0 for a > 0 
a - IX 

= /2tt e°® for e < 0 (ll2) 

or 

F.T. of —^ . = 0 for a > 0 
X + xa 

= /2TT for a < 0 (llS) 

Therefore 

F.T. of —^ = 0 for a > 0 
X + xY 

= - i/Zrr e*^^ for a < 0 (ll^J 

The inverse Fourier transform of Equation 80 was obtained using the 

relation (l) 

j/(t)dt = F.T."^ [^] (115). 

where 

F.T. ̂  = inverse Fourier transform 

^ (t) = inverse Fourier transform of F(q') 

t is a dummy variable 

The inverse,transform was checked using the convolution (39) theorem. 

As an example consider the inverse transform of two terms from Equation 80 
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2 
F.T. ̂  [—^ e (where o? > O) 

2 
+ F,T. ̂  [—^ e*^^] (where a < O) (ll6) 

F.T. ̂  [e (where a > O) 

+ F.T. ̂  [e^^] (where o? < O) 

/2fr i Ct-iY} " /2F i (t+iY) 

Then, using Equation 115 

-1 
F.T. [—r^] (where or > O) 

-1 
+ F.T. [—T^] (where a < O) 

1 ^ r 1 1 
/SÏT 

^ r [L (t-iY) - L (t+iY)] 
y2ïï 1 ^ 

' _ rx t + iY. 
i ^ n t - iY-' /2rr 

-i ^ X + iY 
/2^ n X - iY 

M + i f 

1 f] 

(117) 

i J' ^t - iY " t + iY^ (118) 

- tan ^ ̂  (119) 
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Then, returning to Equation ll8, 

T .r2 -Of? 
F.T," [[" ] (where cv > O) 

_ 2 ofY 
+ [" ] (where o; < O)} 

" ^ X 

ta.-^ 1 (120) 
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XIV. APPEEDIX C - TABLES 

Table 1. Hydrostatic and magnetic pressure gradient vs. distance L = 6.k 

dx dx 

-10 -0.3330 0.1996 

- 9 -0.2875 0.2277 

- 8 -0.2341 0.2633 

- 7 -0.1700 0.3095 

- 6 -0.0904 0.3711 

- 5 0.0124 0.4560 

- 4 0.1517 0.5779 

- 3 0.3516 0.7611 

- 2 0.6509 1.0423 

- 1 0.9871 1.3262 

- .9 0.9947 1.3204 

- .8 0.9875 1.2968 

- .7 0.9613 1.2501 

- .6 0.9114 1.1749 

- .5 0.8331 1.0659 

- .4 0.7231 0.9194 

- .3 0.5802 0.7342 

- .2 0.4070 0.5132 

- .1 0.2100 0.2642 
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Table 1 (Continued) 

dx dx 

0.0 0.0 0.0 

.1 -0.2100 -0.2642 

.2 -0.4070 -0.5132 

.3 -0.5802 -0.7342 

.4 -0.7231 -0.9194 

.5 -0.8331 -1.0659 

.6 -0.9114 -1.1749 

.7 -0.9613 -1.2501 

. .8 -0.9875 -1.2968 

.9 -0.9947 -1.3204 

1 -0.9871 -1.3262 

2 -0.6509 -1.0423 

3 -0.3516 -0.7611 

4 -0.1517 -0.5779 

5 -0.0124 -0.4560 

6 0.0904 -0.3711 

7 0.1700 -0.3095 

8 0.2341 -0.2033 

9 0.2875 -0.2277 
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Table 1 (Continued) 

dP 
X *" T"" ~ j dx dx 

10 0.3330 -0.1996 

dP = Hydrostatic pressure gradient used in this table and Tables 1-7 

— 

—^ = Magnetic pressure gradient used in this table and Tables 1-7 
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Table 2. Hydrostatic and magnetic pressure gradient vs. distance L = 9.6 

X - É2 
dx dx 

-10 -0.0680 0.2225 

- 9 -0.0300 0.2527-

- 8 0.0153 0.2906 

- 7 0.0706 0.3391 

- 6 0.l402 0.4027 

- 5 0.2311 0.4892 

- 4 0.3557 0.6118 

- 3 0.5366 0.7948 

- 2 0.8093 1.0751 

- 1 1.0997 1.3563 

- .9 1.1002 1.3496 

- .8 1.0853 1.3247 

- .7 1.0504 1.2764 

.6 0.9907 1.1991 

- .5 0.9017 1.0876 

- .4 0.7798 0.9378 

- .3 0.6239 0.7487 

- .2 0.4367 0.5232 

- .1 0.2251 0.2694 

0.0 0.0 0.0 
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Table 2 (Continued) 

dx dx 

.1 -0.2251 -0.2694 

.2 -0.4367 -0.5232 

.3 -0.6239 -0.7487 

.4 -0.7798 -0.9378 

.5 -0.9017 -1.0876 

.6 -0.9907 -1.1991 

.7 -1.0504 -1.2764 

.8 -1.0853 -1.3247 

.9 -1.1002 -1.3496 

1 -1.0997 -1.3563 

2 -0.8093 -1.0751 

3 -0.5366 -0.7948 

4 -0.3557 -0.6118 

5 -0.2311 -0.4892 

6 -0.I402 -0.4027 

7 -0.0706 -0.3391 

8 -0.0153 -0.2906 

9 0.0300 -0.2527 

10 0.0680 -0.2225 
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Table 3. Hydrostatic and magnetic pressure gradient vs. distance L = l6 

dx dx 

-10 0.1075 0.2480 

- 9 o.i4oo 0.2793 

- 8 0.1793 0.3179 

- 7 0.2278 0.3668 

- 6 0.2896 0.4305 

- 5 0.3715 0.5165 

- 4 0.4856 0.6384 

- 3 0.6537 0.8207 

- 2 0.9102 1.1008 

- 1 1.1735 1.3811 

- .9 1.1697 1.3738 

- .8 1.11+99 1.3480 

- .7 1.1095 1.2985 

.6 1.1043 1.2196 

- .5 0.9476 1.1059 

- .4 0.8179 0.9535 

- .3 0.6535 0.7611 

- .2 0.4569 0.5318 

- .1 0.2353 0.2738 

0.0 0.0 0.0 
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Table 3 (Continued) 

dP 
- "dSE - "dSE 

.1 -0.2353 -0.2738 

.2 -0.4569 -0.5318 

.3 -0.6535 -0.7611 

.4 -0.8179 -0.9535 

.5 -0.9476 -1.1059 

.6 -1.0437 -1.2196 

.7 -1.1095 -1.2985 

.8 -1.1499 -1.3480 

.9 -1.1697 -1.3738 

1 -1.1735 -1.3811 

2 -0.9102 -1.1008 

3 -0.6537 -0.8207 

4 -0.4856 -0.6384 

5 -0.3715 -0.5165 

6 -0.2896 -0.4305 

7 -0.2278 -0.3668 

8 -0.1793 -0.3179 

9 -o.i4oo -0.2793 

10 -0.1075 -0.2480 
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Table 4. Hydrostatic and magnetic pressure gradient vs. distance L = 32 

_ fjS 
dx dx 

-10 0.2038 0.2688 

- 9 . 0.2324 0.2996 

- 8 0.2674 0.3378 

- 7 0.3113 0.3860 

- 6 0.3683 0.4489 

- 5 0.4449 0.5343 

- 4 0.5533 0.6556 

- 3 0.1752 0.8378 

- 2 0.9644 1.1190 

- 1 1.2155 1.4001 

- .9 1.2095 1.3925 

- .8 1.1872 1.3661 

- .7 1.1440 1.3158 

- .6 1.0747 1.2357 

- .5 0.9748 1.1204 

- .4 0.8406 0.9659 

- .3 0.6711 0.7709 

- .2 0.4690 0.5387 

- .1 0.2415 0.2773 

0.0 0.0 0.0 
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Table k (Continued) 

X 
dz 

dP 
m 
dx 

.1 -0.2415 -0.2773 

.2 -0.4690 -0.5387 

.3 -0.6711 -0.7709 

.4 -0.8406 -0.9659 

.5 -0.9748 -1.1204 

.6 -1.0747 -1.2357 

.7 -1.1440 -1.3158 

.8 -1.1872 -1.3661 

.9 -1.2095 -1,3925 

1 -1.2155 -1.4001 

2 -0.9644 -1.1190 

3 -0.7152 -0.8378 

4 -0.5533 -0.6556 

5 -0.4449 -0.5343 

6 -0.3683 -0.4489 

7 -0.3113 -0.3860 

8 -0.2674 -0.3378 

9 -0.2324 -0.2996 

10 -0.2038 -0.2688 
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Table 5- Hydrostatic and magnetic pressure gradient vs. distance L = 64 

^ _ fjn 
dx dx 

-10 0.2336 0.2768 

- 9 0.2608 0.3073 

- 8 0.2943 0.3451 

- 7 0.3368 0.3931 

- 6 0.3922 0.4558 

- 5 0.4673 0.5411 

- 4 0.5742 0.6625 

- 3 0.7348 0.8452 

- 2 0.9826 1.1274 

- 1 1.2309 1.4097 

- .9 1.2243 1.4019 

- .8 1.2013 1.3753 

- .7 1.1571 1.3246 

- .6 1.0867 1.2439 

- .5 0.9854 1.1278 

- .4 0.8495 0.9723 

- .3 0.6781 0.7760 

- .2 0.4738 0.5422 

- .1 0.2440 0.2792 

0.0 0.0 0.0 



Table 5 (Continued) 
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X _ ^ 

dx dx 

.1 -0.2440 -0.2792 

.2 -0.4738 -0.5422 

• 3 -0.6781 -0.7760 

.4 -0.8495 -0.9723 

.5 -0.9854 -1.1278 

.6, -1.0867 -1.2439 

.7 -1.1571 -1.3246 

.8 -1.2013 -1.3753 

.9 -1.2243 -1.4019 

1 -1.2309 -1.4097 

2 -0.9826 -1.1274 

3 -0.7348 -0.8452 

4 -0.5742 -0.6625 

5 -0.4673 -0.5411 

6 -0.3922 -0.4558 

7 -0.3368 -0.3931 

8 -0.2943 -0.3451 

9 -0.2608 -0.3073 

10 -0.2336 -0.2768 
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Table 6. Hydrostatic and magnetic pressure gradient vs. distance L = 96 

da 

-10 0.2399 0.2787 

- 9 0.2668 0.3092 

- 8 0.3000 0.3469 

- 7 0.3422 0.3949 

- 6 0.3973 0.4576 

- 5 0.4722 0.5429 

- 4 0.5789 0.6645 

- 3 0.7393 0.8475 

- 2 0.9871 1.1302 

- 1 1.2351 1.4129 

- .9 1.2284 1.4051 

- .8 1.2051 1.3784 

- .7 1.1607 1.3276 

- .6 . 1.0901 1.2467 

- .5 0.9884 1.1303 

- .4 0.8521 0.9744 

- .3 0.6801 0.7778 

- .2 0.4752 0.5434 

- .1 0.2447 0.2798 

0.0 0.0 0.0 
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Table 6 (Continued) 

dx dx 

.1 -0.2447 -0.2798 

.2 -0.4752 -0.5434 

• 3 -0.6801 -0.7778 

A -0.8521 -0.9744 

.5 -0.9884 -1.1303 

.6 -1.0901 -1.2467 

• 7 -1.1607 -1.3276 

.8 -1.2051 -1.3784 

.9 -1.2284 -1.4051 

1 -1.2351 -1.4129 

2 -0.9871 -1.1302 

3 -0.7393 -0.8475 

4 -0.5789 -0.6645 

5 -0.4722 -0.5429 

6 -0.3973 -0.4576 

7 -0.3422 -0.3949 

8 -0.3000 -0.3469 

9 -0.2668 -0.3092 

10 -0.2399 -0.2787 
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Table J. Hydrostatic and magnetic pressure gradient vs. distance L = 9999 

^ " dx dx 

-10 0.2459 0.2810 

- 9 0.2726 0.3115 

- 8 0.3057 0.3493 

- 7 0.3477 0.3974 

- 6 0.4027 0.4603 

- 5 0.4776 0.5459 

- 4 0.5844 0.6679 

- 3 0.7451 0.8515 

- 2 0.9934 1.1354 

- 1 1.24I8 1.4192 

- .9 1.2349 i.4ii4 

- .8 1.2115 1.3846 

- .7 1.1668 1.3335 

- .6 1.0957 1.2522 

- .5 0.9934 1.1354 

- .4 0.8564 0.9788 

- .3 0.6836 0.7812 

- .2 0.4776 0.5459 

- .1 0.2459 0.2810 

0.0 0.0 0 . 0  



Table 7 (Continued) 
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d3 
dx 

dP 
m 
dx 

.1 -0.21+59 -0.2810 

.2 -0.4776 -0.5459 

.3 -0.6836 -0.7812 

.4 -0.8564 -0.9788 

.5 -0.9934 -1.1354 

.6 -1.0957 -1.2522 

.7 -1.1668 -1.3335 

.8 -1.2115 -1.3846 

.9 -1.2349 -l.4ll4 

1 -1.24I8 -1.4192 

2 -0.9934 -1.1354 

3 -0.7451 -0.8515 

4 -0.5844 -0.6679 

5 -0.4776 -0.5459 

6 -0.4027 -0.4603 

7 -0.3477 -0.3974 

8 -0.3057 -0.3493 

9 -0.2726 -0.3115 

10 -0.2459 -0.2810 
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Table 8. Channel width vs. magnitude of maximum hydrostatic and magnetic 

pressure gradient 

I-1 'dx'max. 

S.h 1.3262 0.9947 

9.6 1.3563 1.1002 

l6 1.3811 1.1735 

32 1.4001 1.2155 

. 64 1.4097 1.2309 

96 1.4129 1.2351 

9999 1.4192 1.24I8 

L' is actual channel width 

y^ is the characteristic length 

All points are for x = 1 except for the first two which are for x = 9 

|—I I dx'max. 


