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I. INTRODUCTION

Magnetohydrodynamics can be considered as a special part of a wider
field, namely, the interaction of electromagnetic fields and flow fields,
both gases and liquids.

In astronomy and geophysical studies the electromagnetic-fluid inter-
action were and still are of great importance in stellar and planetary
processes. Then in the last ten years the engineering applications of
these interactions began receiving ar increasing concentrated efforts as a
major area of broad work that is called magnetohydrodynamics (MHD), and
sometimes as magnetofluidmechanics (MFD).

Engineering applications (3, 15) of electromagnetic and fluid inter-
actions have been directed to such topics as, conversion of heat energy to
electrical energy;mioh propulsion studies, radio wave propagation in the
ionosphere and controlled nuclear fusion. Another engineering application
is connected with the influence of the magnetic field in providing protec-
tion of the internal surfaces of channels and nozzles from high tempera-
ture, high speed fluids.

A full understanding of MHD is a very necessary step toward adequate
dealing with modern plasma physics and applications. A plasmé was defined
by Langmuir in 1929 as an lonized fluid with an approximately equal
_deﬁsities of ions and electrons.

The designétion MHD or MFD is used for a special branche of electro-
magnetic~fluid intergctions in which magnetic forces and energy dominate

the corresponding electrical quantities.



Magnefohydrodynamics in the literature covers three different fields.
The first is classical MHD in which experiments are conducted on flulds
such as Mercury where theoretical results have been developed for the
experimental observations noticed, such as Hartmann flow for incompress-
ible, viscous flow of electrically conducting fluids. In other cases it
1s assumed that the fluid has infinite electrical conductivity an@ zZexro
viscosity, that is approaching an ideal case. The second path is directed
toward a study of conduction in plasma and the electricdl discharges which
gave a substantial knowledge about radiation properties of conducting
fluids. .The third path is toward‘astronomical and geophysical studies
based on the kinetic theory initiated by Boltzman and Maxwell and con-~
tinued later by Spitzer (33), Burgers (2) and others. |

Presently concentrated efforts have been conducted toward the use of
MHD effects in an inviscid flow (4, 7) fields with infinité(l?) electrical
conductivity and strong applied magnetic fields. The magne tohydro-
dynamical effects were found capable of contracting (27, 29, 31) the flow
stream, due to the fact that the magnetic field camnot penetrate a perfect
conductor, and hence the fluid flow is pushed off the chammel walls until
a balanced condition between the fluid pressure and the magnetic pressure
is reached. Therefore a vacuous frozen layer in the vicinity of the
applied magnetic field source is established, with an outer flow field
stream free from the magnetic field. The separation (29) of %iuid flow
from channel walls is due to the emergence of an adverse pressure gradient
along the channel wall, where in this region the magnetic body force is

larger than the fluid inertia force.
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Studies had been conducted on an inviscid, incompressible flow using

various types of magnetic field sources, where separation of fluid flow

from the internal surface of the channel was obtained and with neglecting

the effects of the induced magnetic field.

Before proceeding further, it is very appropriate to present the

important MHD parameters which are of importance or related to the problem

of this dissertation:

1.

The magnetic Reynolds number R , (31)

Rm = coMoVbLo where

o, = the reference electrical conductivity
bo = the reference magnetic permeability
Vb = the reference flow velocity

Lo = the‘reference length

The ordinary fluid Reynolds number R_, (19)

poVoLo
R = ——— vhere
e M
o
p, = the reference fluld density
Mo = the reference fluid viscosity

R is a measure of the ratio of inertial force to the viscous

force.

The magnetic Prandtl number, (31)

Rm
Fn =% -
e
- O-OI‘LOMO
Po

which is analogous to the gas dynamic number.



The magnetic pressure number RH,
2
0

R. = — where

Pt Vo
Bo = the reference magnetic field

RH is a measure of the ratio of the magnetic pressure B02/2p,O

over the dynamic pressure poV62/2.
The magnetic interaction parameter I, (31)

2
_ GoLoBo

T =
PoVo
which is a measure of the magnetic body force to the inertia

force.

The ordinary Mach number M_, (19, 24)

Vb v
MO = " where
o
Ao = the speed of sound

M_is a measure of the compressibility of the fluid due to high
velocity and defined as the ratio of the fluid flow velocity to
the speed of sound Ao.

The magnetohydrodynamic Mach number Mo (31)

1
M ==
m

/RH

which has a great significance in flow problems where wave_motidn
is important.

The Hartmann number R, , (2k)

R =
h /ReRmRH



In the case of incompressible and inviscid qonducting fluids through
channels, two (31) of the preceeding parameters are of more importance
than others. One is the magnetic Reynolds number Rm_which determines the
change in the applied magnetic field due to electric currents induced in
the flow field. Tﬁe intensity of the magnetic field can be represented
by the magnetic pressure Bg/eu when the fluid has high electrical conduc-
tivity. The induced magnetic field is small compared to the applied
magnetic field when the electrical conductivity 1s small, hence the mag-
netic force which is the change in the magnetic pressure due to the
induced currents is much‘smaller than the total magnetic pressure. There-
fore the second suitable element is the magnetic interaction parameter I.
The effective strength of the magnetic field can be measured by I.

Turning again to the magnetic Reynolds number Rm’ it can be defined

also as
LO
Rm = T where
Te
I = —%— known as the characteristic length of the flow
e ouV
o0 O
I = dimension of the flow field.

o
Also Rm can be defined as:

Vo

m o where
e

v, = ;7%5E~ known as the characteristic flow velocity, and
oo o

>e}
1l

<
1

flow field velocity.

Now if LO >> Le we will have what is called the frozen-in fields where the

magnetic force lines stay with the conducting fluid. Le and Vé are



respectively characteristic length and velocity by which the magnetic
field is moving through the conducting fluid.

When Rm is not zero, the applied magnetic field will face difficulty
in penetrating the conducting plasma and the flow field will approach the
situation of being aligned with the magnetic field and will be harmonic
inside the conducting fluid. This will give rise to the formation of a
current sheet as well as a vortex sheet at the surface of the channel.
These current and vorticity sheets are in fact two layers. The physical
interpretation of those boundary layers is that at the (28, 31) surface
there will be a viscous sub-layer of thickness of the order of l//Re.
Since Re is very large, the thickness of the viscous sub-layer is
extremely small. In this sub-layer the vertical and horizontal velocity
components are zero at the surface. Then there follows the inviscid-
magnetic layer whoée thickness is of the order of l/th? which will be of
finite value. At the inner boundary of this inviscid layer the perpen-
dicular velocity component is zero, and the parallel component is not.

The flow above those viscous and\;urrent sheets will approach an
irrotational flow to some degree, especially'When Rm is less than unity.
Figure 1 shows an illustration of the sub-layers.

The sighificance of assuming the existence of the viscous sub-layer,
which is of extremely small thickness, 1s that of surrounding the flow on
each channel., Thus, the flow will be similar to an ideal Poiseuille flow,
where the Hartmann number Rh 1s very large or approaching infinilty, because

the viscosity coefficient in the viscous sub-layer is small.



REMAINDER of FLOW

CINVISCID LAYER =0

Q

VISCOUS SUB-LAYER Vvx=0
| - Vy*0

8i = THE INVISCID LAYER THICKNESS
8, = THE VISCOUS SUB-LAYER THICKNESS

Figure 1. Details of layers formation in the channel flow



The problem of (27, 32) protecting internal surfaces of channels and
nozzles from high temperature; high speed flows led to investigations on
inviseld, incompressible flow in MHD channels with Rm equal to zero, to
the extent that the induced magnetic field is neglected and the applied
field 1s due to vafious sources such as infinite conductors and linear
dipoles.. An adverse pressure gradient was obtained at the channel wall and
in the region of the applied magnetic field source. This led to the con-
clusion that the fluid will have a boundary layer separation in that
region. Thils effect will result in preventing the direct contact between
the fluid and the wall material and consequently will lead to a reduction
in the transfer of heat from the hot fluid to the'wall which, in effect,
gives protection tp the channel walls.

The physical phenomena occurring (31) in the flow field is that the
magnetic field acts on the inviscid flow layer in such a manner as to cause
a rapld decrease in the free stream velocity, especially in the region
near the source of the magnetic field. This will result in a reduction of
the wall skin friction. Also the Lorentz force in the boundary layer due
to the effect of the magnetic field tends to retard the flow, and so the
two effects will result in separating the fluid layer from coming in con-
tact with the channel wall, and this will result in heat transfer reduction
from the fluid to the wall. This ig considered as an element of great
gignificance in giving more proﬁection to channel walls.

Previbus investigators have neglected the induced magnetic field,

corresponding to the magnetic Reynolds number being zero.



This dissertation reports an investigation of magnetohydrodynamic flow
problems where the fluild is incompressible, inviscid, electrically conduc-
ting, thermally non-conducting, of scalar constant conductivity, and with
stable ionization of partial degree such that the magnetic Reynolds number
is substantially smaller than unity but cannot be neglected. The flow is
between infinite parallel plates of arbitrary separation and the applied
magnetic field is nonuniform, due to an infinite current carrying conduc-
tor located at a small distance below the lower channel wall. The treat-
ment involves the use of perturbation theory in the expansion of the mag-
netic field and flow fileld components in a double power seriles in Rm and I.

The ultimate goal 1s the development of a cerftain criterion unde:—
which the magnetic Reynolds number Rm must be considered or can be neglect-
ed. Therefore the main objective is to observe the behavior of the
pressure gradient along the channel wall in order to determine the effects
of the induced magnetic field on the fluld separation from the channel

wall and hence a reduction in heat transfer to the channel wall.
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IT, REVIEW OF LITERATURE

The application of a magnetic field to control the motion of an
electrically conducting fluid has been investigated under different con-
ditions: with respect to the nature of the conducting fluild, the geometry
of the channel in which the fluid is flowing, the source of the magnetic
field applied, the degree of ionization of the fluld and finally the
strength of the magnetic field.‘

V. J. Rossow (26) conducted an analysis for the flow of an incompess-
ible boundarj layer over a flat plate.when the applied magnetic field is
transverse with respect to the direction of flow and confined the magnetic
field effect to the boundary layer only. The fluid flow was viscous and
he obtained numerical solutions which showed the behavior of preséure,
temperature, and skin friction and. illustrated the effect of the magnetic
field in reducing heat transfer to the channel wall and the significance of
using infinite current carrying conductors in forming the boundary layer
(19) Separation which prevents hot conducting fluid from coming in contact
with the channel walls. Kemp and Petschek (16) analyzed a two dimensional
flow of an incompressible constant conductivity fluid through an ellip-
tically shaped solenold with the magnetic field perpendicular to the flow
plane. They considered the effects of ion-slip and Hall current and
applied the generalized Ohm's Law in the analysis with the use of the
perturbation théory in obtalning solutions forbthe force and moment on the
solenoid. They carried the perturbation approach to the first order in
thé magnetic Reynolds number Rm and to the first order in the magnetic

interaction parameter I. This means that the magnetic field is modified
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but the flow field is not and the flow field is distorted but the magnetic
field is not.

Also Petschek and his colleagues (9) investigated a two dimensional
supersonic magnetohydrodynamic flow using the perturbation theory in a
double power series of the magnetic Reynolds number Rm and the magnetic
interaction parameter I, with consideration of the ion-slip and Hall
current. They used a loosely wound circular solenoid as a source of the
magnetic field where the flow was pefpendicular to the axis of the sole-
noid and had a weak interaction ﬁith it.

The validity of using the perturbation procedure was based on the
assumption that the two coefficients in the power series expansion Rm and
I must be substantially smaller than unity. This group (9) also extended
their study to an experimental analysis for the drag and 1ift on the sole-
noid in order to match the theoretical results.

Mach work in the field of magnetohydrodynamics has been directed to
the effect of the fluid conductivity, whether it is a scalar constant, a
tensor constant, a function of position or a function of the current
density, on the characteristics of the magnetohydrodynamic flow for various
types of magnetic field sources. Kogain (17) conducted his study for a
fluid of infinite electrical conductivity and the magnetic fileld not
parallel to the flow field. A. Sherman (29) extended the analysis for the
interaction between an inviscid maghnetohydrodynamic flow and a non-uniform
magnetic field of an infinite current carrying conductor. The flow was
between two parallel plates of arbitrary separatioh and the current

carrying conductor was located at unit distance below the lower channel

wall. 1In this analysis, Sherman considered the flow field to be slightly
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distorted by taking the interaction parameter I small and the total
magnetic field undistorted and equal to the original applied magnetic
field, and hence the magnetic Reynolds number Rm'zero, and no induced
magnetic field. He obtained numerical solutions for the velocities,
temperature, pressure and pressure gradient along the channel wall, and
showed that the high temperature fiuid flow will probably have a boundary
layer separation in the region near the source of the applied magnetic
field due to the adverse pressure gradient. This led to the conclusion
that heat transfer from the fluid to the channel wall will be reduced.
this conclusion raised hopes for reliance on the non-uniform magnetic field
for protection of the channel walls from the high temperature, high speed
gaseous plasma.

R. H. Levy (20, 21) continued along the same direction to investigate
the effect of the interaction between magnetic field sources of various
two dimensional types and fluid plasma at low conductivify. He neglected
the effect of the induced magnetic field, such timt the flow field is modi-
fied but the magnetic field is not. In his analysis, Levy considered
magnetic field sources of one current-carrying conductor of infinite
extent below the channel wall, two conductors separated by a certain
distance below the channel wall and extending infinitely, and also a
magnetic dipole below the lower wall. He showed clearly the effect of the
magnetic field and flow field interaction in forming an adverse pressure
gradient near the magnetic field source and its influence on the protection
of the magnetohydrodynamic channel wall from the high temperature gas.

Furthermore, Levy analyzed supersonic and subsonic flows with the
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electrical conductivity as a scalar function of position and used the
. linearized perturbation theory to the first order in the magnetic inter-
action parameter I, bu? Rm was zero,

F. D. Hains and Y. A. Yoler (12) conducted their analysis for magneto-
hydrodynamic flow through a circular cross-sectional channel with a com-
pressible fluid and where the magngtic field was slightly distorted such
that Rm was very small. They checked the calculated results of boundary
layer thickness, skin friction, heat transfer and pressure gradient experi-
mentally. Iater, C. Chu (4) conducted an investigation on the flow of an
inviscid fluid over an insulated flat plate using the linearized pertur-
bation procedure and a magnetic field which was transverse with respect to
the direction of fluid flow.

Tﬁe problem of heat transfer to the channel wall has been under
continuous investigation. Siegel and Perlmutter (32) reported an exten-
sive work in the érea of heat transfer in the fluid in a transverse
magnetic field. Horlock (1k) conducted his studies on inviscid magneto-
hydrodynamic flow at low electrical conductivity with cross and parallel
magnetic fields. He used a very small Rm, to the extent that the applied
magnetic field remained un-distorted, but he also considered the flow
field to be distorted substantially such that the magnetic interaction
parameter I was equal to unity.

Timofeev (35) investigated the convection of a weakly ionized plasma
with a non-uniform magnetic field due to direct current. He obtained
results concerning the value of the critical magnetic field for the condi-

tlon of instability where it was known that convection of completely
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ionized plasma is unstable in a non-uniform magnetic field and a similar
effect also in a weakly ilonized plasma in a strong magnetic field.

F. E. Ehler (8) conducted a study on the use of linearized methods in
magnetohydrodynamic flow in a circular channel flow with the applied
magnetic field having axial symmetry due to a circular solenold.

The effect of magnetohydrodymamic interaction when the plasma is of
infinite electrical conductivity also received great emphasis. Sears (28)
conducted a study on the class of steady plane and axisymmetric magneto-
hydrodynamic flows of inviscid character and analyzed the properties of
the boundary layers formed on solid bodies. Sakurai (27) investigated the
two dimensional hypefsonic channel flow of a perfect gas with infinite
electrical conductivity in the non-uniform magnetic field produced by two
anti-parallel line currents. He concluded that the magnetic field is
capable of contracting the fluid flow away from the magnetic field source
and that the wind tunnel wall can be protected from the high temperature,
high speed gas flow by the magnetohydrodynamical effect. R. H. Levy (22)
investigated the flow of a plasma having infinite conductivity past a two-
dimensional dipole to find a bounding line at which the magnetic pressure
balances the dynamic pressure. Thommen and Yoshihara (34) investigated the
case of a weak magnetic dipole moving in a plasma composed of protons and-
electrons of infinite conductivity.

The strength of the magnetic field has a big effect oh whether the
electrical conductivity 1is a.scalar or a tensor. For a weak magnetic
field and in a low degree of ilonization the induced current is parallel to

the electric field as seen by the gas and is proportional to it with the
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magnetic Reynolds number as the congtant of proportionality. At a higher
intensity of magnetic field and with a higher degree of ionization, the
electrons can make several cyclotron orbits between collisions. They

drift in a direction perpendicular to the electric and magnetic fields and
thus a Hall current will be produced normal to the electric field direction.
At a still higher intensity of the magnetic field, the electrons and ions
vare held so strongly by the magnetic field that fhere is a relative motion
between the ionized and unionized portions of the fluid and the effective
conductivity will be reduced since the ion slip will reduce the induced
emf. A. Sherman (29) investigated magnetohydrodynamic flow with a fluid
plasma having a tensor conductivity and in a non-equilibrium state by
assuming the electrical conductivity to be a linear function of the current
density. In his analysis Sherman used the perturbation method and carried
the expansion to the zeroth order in the magnetlc Reynolds number and to
the first order in the expansion parameter. His conclusion was that non-
equilibrium ionization tends to reduce the Hall potential even when ﬁhere
1s no current leakage between electrode pairs.

. "The preceding discussion presented the various stages of investiga-
tion conducted on the interaction between a fluid plasma at different
degrees of ionization (with the electrical conductivity as either scalar
constant function, a special function of position, a special function of
current density or a tensor constant value), and the applied magnetic
field (either transverse, cross-parallel or non-uniform in the plane of
the flow). Viscous and inviscid, compressible and incompressible fluids

have also been treated. The problem of protection of the internal walls
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of magnetohydrodynamic channels from high temperature, high speed gaseous
plasmas have been receiving continuous attention for the last ten years.
In most of those investigations, solutions were obtained by neglecting the
effects of the induced magnetic field with Rm thus zero or Rm was taken to
be small and in the perturbation procedure the expansion‘was carried only
to the first order in Rm and to the first order in I. For a channel of
two infinite parallel plates with an infinite current carrying conductor
as a magnetic field source located unit distance below the lower wall,
only solutions to the first order in the magnetic interaction parameter T
have been congidered while the magnetic Reynolds number was taken as zero
since the applied magnetic field remained without distortion. The fluid
treated was incompressible, inviscid and thermally non-conducting.
Solutions have been obtained by converting the partial differential
equations to the finite differeﬁce form and solving with a digltal compu-
ter. It has been concluded that a separation of the fluld boundary layer
is indicated by the appearance of an adverse pressure gradient at the lower
channel wall near the source oi the applied magnetic field. This fluid.
displacement results in a reduction of the heat transfer from the high
temperature gaseous plasma to the channel wall and hence this will add a
new protective element to the channel. Also theoretical investigations
of the case of infinite electrical conductivity fluid have been carried
out. Again the magnetohydrodynamical displacement (30) effect in
Separating the fluid from the channel walls has been demonstrated. The
magnetic field cannot penetrate a perfect electrical conductor and hence

the fluid flow is frozen and contracted. This case corresponds to the
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condition of infinite value of the magnetic Reynolds number and results
in a substantial reduction in the heat transfer from the fluid to the

channel walls.



18

IIT, STATEMENT OF THE PROBLEM

The effect of the non-uniform magnetic field.due to a current
carrying conductor of infinite extent laying at a small distance below the
lower plate of a magnetohydrodynamic channel of arbitrary height will be
considered. The fluid plasms is incompressible, inviscild, thermally non-
conducting, electrically conducting and has constant scalar conductivity.
The induced magnetic field is small compared to the applied field, to the
extent that the magnetic Reynolds. number Rm is small, i.e. Rm is_less than
unity but nof ZET O,

Solution of the problem will be carried out by the perturbation
approach in a double power series expansion in the magnetic Reynolds
number and the magnetic interaction parameter, both smaller than unity.
The appearance of an adverse pressure gradient at the lower channel wall
and in the vicinity of the magﬁétic field source, implying the probability
of boundary layer (19, 31) separation and consequently the reduction of
~ heat transfer from the high temperature plasma to the chamnel wall
material, will be investigated. |

In this dissertation the perturbation method will be carried to‘the
first order in the magnetic Reynolds number Rm and then to the first order
in the product of Rm and I.

Fourier transforms will be used to solve the partial differential
equations arising from the perturbation method using certain Justified
approximations.

Expressions for the hydrostatic and magnetic pressure gradienf along

the channel wall will be obtained from which the effects of the induced
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magnetic field will be determined. A criterion under which the induced
magnetic field can be considered or neglected will be developed.
The applied magnetic field is non-uniform and due to an infinite

conductor carrying direct current and 1s represented by

Tug x
Boy = ) Z v () (1)
Ipg (y+yo)
Box - ( 21 X2 + (yfy )2 (2)

The conductor is imbedded below the channel wall at a distance y,. The
reference magnetic field is the absolute value of the applied field at
x = 0, y = 0 and the reference distance is Vo

The fluid is electrically conducting and assumed to have a constant
.initial veloclty Vb parallel to the éhannel wall at the entrance of the
channel and with initial pressure PO. The initial velocity VO is consid-
ered equal to the reference velocity.

The significance of the induced magnetic field will be explored to
the extent of showing that the area under the adverse hydrostatic pressure
gradient curve. at the wall is increasing more than the case when the in-
duced magnetic field is assumed to be zero. Also the effects of the
arbitrary height of the channel flow on pressure distribution, both static
and magnetic along the wall, and its ihfluence in produéing more boundary

layer separation will be explored.
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IV, THECRY

Consider a control volume of fluld in the presence of an electro-
ﬁagnetic field. The fluid is assumed to have the qprmal properties of
fluidse. The mathematical equations describing the fluid flow are not
independent from the eléctromggnetic field equations. The two sets of
equations are coupled. These equations are given in the following

sections.

A. Flow Field Equations

1. Continuity equation (3, 24)

The mathematical statement of the conservation of mas is

%% + —V. (p—\f) = 0 (3)

where
(") indicates vector quantity
p = fluid mass density

Equation 3 can be rewritten as

%% + p VeV V. f}p =0 (&)
Then,

(%% + 7V « ¥ p) can be repls~ed with the convective derivative
term

Dp

Dt

and Equation 4 becomes

2 4pg-T=o0 . (5)
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The continuity equation is unaffected by the electromagnetic effects

gsince forces never appear in it.

The definition for an incompressible fluid is that the convective
derivative is equal to zero,

Therefore, Equation 5 becomes

VeV=0 (6)

2. Momentum equation (2k, 31)

The contribution to momentum flux comes from

a. surface forces due to pressures acting on the control volume

surface.

.b. body forces such as magnetic, electric and gravitational forces.

Surface forceg are represented by the pressure tensor

2

1l

"Pi + Tij ' (7)

where

Hd
1

hydrostatic pressure

unit tensor

N H
]

-3

13 = viscosity tensor

The electromagnetic forces are given by the Lorentz equation

=3 x B+ péﬁ (8)

sl

em

where
E = electric field intengity

p, = excess electric charge

The surface and body forces can be combined in a momentum eguation
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%—t- | ev)av = [ F, o nda+ J‘ R, dv (9)
v S v
where
FS = surface force
and
F% = body force

Then, for an arbitrary volume of incompressible and inviscid fluid? with
no applied electric field and neglecting gravitational force, the momentum
eqﬁation becomes

o(V - VV=-VP+3x3B (10)
where

B = magnetic flux density
upon application of the Divergence Theorem.

3. Energy equation (24; 31)

Conservation of energy in magnetohydrodynamic flow is represented by

the following:

a. The rate of increase of the fluid energy is the sum of.the rate
of increase of kinetic energy and the rate of increase of
internal energy.

be The rate of energy input comes from the sum of
(1) The rate at which electromagnetic energy enters.

(2) The rate at which energy due to heat conduction and
diffusion enters.

(3) The rate of energy input resulting from surface forces.
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Then for incompressible, inviscid and steady flow the energy equation

is given by
= P - -
(TR GV r o T]=F ] (11)

where
E = total electric field intensity
Cv = gpecific heat at congtant volume
T = température

J = current density

B. Electromagnetic Field Equations (15, 31)

1. The charge continuity equation

op

= - e _

AVAERN +-§E_ 0 (12)
2. Ampere's Law

VxB=p,03t ‘ (13)
where

jt = total current density

V-B=0 (14)

3. TFaraday's equation

= _ 3B '
Vx E=- = (15)

(The remaining Maxwell equation which relates the divergence of the
electric field to the net charge density can be replaced by the condition

that electron and ion densities are equal in magnetohydrodynamic flows.)
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L. Ohm's Law

3, =o(® +7VxB) (16)
c a
where
jc = conduction current density neglecting Hall effect and ion

slip
o = electrical conductivity
Ea = gpplied electric field intensity

5. The energy equation (18, 31)

.2
= - JC
W =By * 3y - —- (17)

where wem is the rate at which electromagnetic energy enters the flow

field.
IfE =0
a
.2
—_— - —i
wem o ‘ (18)

For MHD flow having the properties of being incompressible, inviscid
and steady and with no applied electric field the magnetohydrodynami.c

equations are

v- T]’:O
o(V-G)W=-V>P+c(WxB) xB
. (19)
V+B=0
E}X B= Méj J.2
1 2 c
o(V - ( +E+CT>—_—5—

if the Hall effect and ion slip are neglected.
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Next, Equation 19 can be made non-dimensional as follows:

B¥* = BB
ref
V¥ = VV
ref
P :
e (20)
Plrer ‘
1% = L
ref
p¥ = =
Pref
where Bref’ Vref’ lref and Prer BT reference values of magnetic field

density, velocity, length and fluid density respectively and ( )%

represents a non-dimensional, we get

V:V=0
vV-8=0 (21)
vx§=Rm(VX-J§),

V- V)V=-Vp+I(Vx3B)x3B
where

Rm = “’ocovre o’

2
T = Goyo Bref

Po Vref
and 2

&’y = Oyop‘ V:c‘ef

1

2.2 .2
“(G Yo Bref Vief/pvief)
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ItV

rer = Vo (the initial flow velocity) and B.or = B, (the applied

magnetic field at (0, 0))

ref o
Ry = BTV (22)
2
o y.B
Vo 0
I= 2
PV )

Therefore,
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V. DERIVATION OF THE MAGNETIC AND FLOW FIELD PERTURBATION EQUATTONS

A. Application of the Perturbation Method (8, 31)
Let

V represent the velocity of the conducting fluid

P represent the pressure of the conduéting fluid

B represent the total magnetic flux density

Then, expressing Tf, P and B as a double power series in I and R

V=V + % 'InerflTr(n’k) n, k=0, 1, 2 ~--

ntk=1
E=3 + x 18550 (k)
(@] m
ntk=1
p=p + v TR p(sk)
n+k=1 n

V=T, +R¥, + IV, + IR T, + -
B=3, +R B +IB, + IR By + .- (25)
P =P, *+RpP +IP, +IR P+ er

Rewriting Equations 21

x B

)]

<

Rm(\—/' x B)

« B=0

Il

]

(21)
T -NV=-VP+I(VxB)x3B

s V=0

i
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Substituting Equations 25 in Equations 21 and equating the sum of co-
efficients of like powers in I and Rm to zero, the following system of
equations is obtained.

l. Zeroth order

§'7.§O=o
f?x Eg =0

(26)
V.V =0

(ﬁg ' VOVB * Po =0

2. First order in I

AV D 32 =0
f}x'§2 =0
(27)
\VAD Vé =0
(W, -9, + (V, )V, +T2, = (V, x3B) x B
3. First order in Rm

V- Bl = 0
V x Bl = Vb X Bo

| (28)
V.V =0

(V, - V)V + (V) -9)V, +V B =0
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L, wirst order in IRm

V-.B =0
B 3
v X B3 = Vb X B2 + Vé X Bo
(29)
VeV,=0

(W, * OV, + (W, -0V, + (V5 -V, + (V, « V)V, +V P,
= (Vo X ﬁl) x Eo + (Vb X Eo) Py §l + (Vi x 36)
x B
To solve this system of equations we proceed as follows:

1. To the zeroth order, the magnetic flux density is that of the
applied magnetic field with fluld velocity and pressure equal to
the initial value Vb and Po’ respectively.

2. To the first order in I, the magnetic interaction parameter, the
fluid flow will be slightly distorted but the induced magnetic
field is neglected and so the applied magnetic field will remain
undistorted. This implies B2 = 0 and Vé, Eé mist be solved for,
based on the zeroth order solution. Sherman and Levy (20, 31)
have obtained ;olutions for Vé and P2 for this particular case.

3. To the first order in Rm, the magnetic Reynolds number, the
applied magnetic field will be distorted due to the effect of
the induced field. This distortion will be slight because Rm is
substantially less than unity. The flow field will remain

undistorted, so that Vi, Ii = 0 and the induced magnetic field Bl

can be solved for, based on the zeroth-order solutions.



30

4, To the first order in the product of IRm the distorted flow field
V. Pé can be solved for, knowing Vb, Vi, Vé, Bo and Bl. B3 can
also be determined, knowing Vé and Bo' In this part both the

magnetic field and the flow field are distorted.

B. Derivation of the Induced Magnetic Field Equations

Rewriting Equation 28

el
vy
1}
(@}

<
<
i

o

@, 9T, + (T, - DT, =T =0
This set of equations represents the case where the applied mégnetic field
of flux density B will be distorted (32) to some degree. This results iﬁ
the induced magnetic flux density Bl' The flow field will remain undis-

torted, i.e. Vi, Pl = 0,

Vb, the velocity of flow at the entrance of the channel, is con-
sidered the reference velocity and hence

v, =1 (non-dimensional)

Since the initial flow is in the x direction,

= a
e} X

where ax is a unit vector in the x direction.

Equation 28 can be written as
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<!
wl
i
o

VXBl=a'xXBo

v [ V = O
(aX . VOvi + (Vi . Vnax + 7B =0
The flow will remain un-distorted, l.e. Vl’ Pl = 0,

Equation 30 becomes
V-3 =0
Vx3B =a x (;XBOX + ayBoy? = 2,8,

The two equations to be solved to obtain §l are

v-E =0

Il
O

V= Bl zBov
where Bo is the y component of the external field Bo'

From Equation 1

B =X
oy X2 + (l+y)2

Then.
Jx3B = —T
T 22+ )
v: B, = 0

Since Bl will be two dimensional,

(30)

(31)

(32)

(33)
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0B 0B

SR o= Y 1x
Vx 3B = = (34)
e (35)

F T By (1)

1y 1x -
=55t 5 <O (36)

Now differentiate Equation 35 with respect to y and Equation 36 with

respect to x and then subtract with the result that

2 2
OBy %Pk ox(ity) (37)
TV T 0P (1ey)oR

2 2
¥B_ FB
—L 2 =0 | (38)
axay 3=

Subtracting Equation 37 from 38 we obtain

2 2
O Py, 2Pk ex(iwy) . (39)

%" ay° [x2+(l+y)2]2

It is now necessary to establish the boundary conditions on le.

It is shown in Figure 1 that in addition to the main flow, there is
an inviscid (28,31) layer of finite thickness. Beneath this layer there
is the viscous sub-layer, laying on the channel wall, of very small thick-
ness, of the order of l/VRe with Re assumed to have a very large value.

In the viscous sub-layer of the fluld the vertical and horizontal
velocity components will have zero value, then just after this sub-layer,
the flow assumes the undistorted velocity Vb in the x direction. There-

fore the flow is very similar to an ideal Hartmann (24) type where the

Hartmann number Rh is very large.
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The following approach, based on boundary layer approximation, is
similar to that presented in the Sears paper_(28) and also in the book by
Sherman and Sutton (31).

Rewrite the second of Equations 28 as

§_7X§l=X_/‘ox-§O
V; is only in the x direction and

=aB_ +aB
e} X 0ox v oy

wl

Then, in two dimensions,

Eﬁéﬁ - Eflz =3 VB (L0)
oy ax Z O oy

In the viscous sub-layer, the flow field has zero velocity. In other
words, Vb will be replaced by zero in the viscous sub-layer,

Therefore, Equation 40 in the viscpus sub~layer becomes

EEEE - Py =0 (41)
Y ox

and also in this sﬁb-layer

2 is of the order of 1/6V

oy

where
8, = thickness of the viscous sub-layer = l//he

and
o 1s of the order of 1
ox

Therefore, Equation 4L becomes

/ﬁ; By = Bly - (42)

or
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_B_ll (43)

B. = 43
x /ﬁ;

Since Re is a large number in the viscous sub-layer, or at the surface of

the channel wall,
B, ~0 (bk)

where
I = Arbitrary channel height
Therefore, the partial differential equation of le, together with

the established boundary conditions, becomes

2 2
0B, 9By ox (1+y) X
5t T3 55 (45)
3x Y [x~ + (1ty)7]
'le=0aty=o,L
and (46)
le=0atx=i:oo

In a similar problem, Pai (24) indicated in his textbook that boundary
condition on Bx for an insulated wall can be taken to be zero at the

boundaxry.

C. Derivation of Flow Field Equations (31)
Rewriting the fourth of Equations 29
37 L] 777 + . 7\ + o VALN &2 . )V <7
(T -, + (T, VT + (T V)V, + (V, - V)V +V Py
= (Vb X Bl) x By + (Vb X BO) x By + (Vi x Bo)

x B
o}
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Vis By

P. are the perturbations in the flow field when only the magnetic
field is distorted, and hence both are equal to zero.

Thug,
Vi = Pl =0

and

1

v, = a (dimensionless)
Now the above equation becomes

(V3 - 9V, + (V, - V)V +V 2y

= (T, xB)xB, + (F, xB) x5 (47)

The terms on the right of Equation 47 are

aZBly X [aXBOX + ayBoy]
(48)

ayBlyBOx - axBlyBoy

(Vb x Bl) X Bo

]

and
(19)

(Vb xB) x B = aB. By = 2xBryBoy

1

(¥, -V, + (V, - V)V +T Py

=— <+ ——
y[BlyEOX BlXBoy] gx[e BlyBoy] (50)

The first expression is

Now we look at the left side of Equation L49.

zero since Vo is a constant value, hence

=Ny .r3 8 .3 873 + 3
(a) « Tay 55 ¥ oy 55d [ogVay ¥ ag¥s,]
. 3%x+§ O
x ox v o

and
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Equation 49 becomes

3 .z 3y—§£~aP
X ox * y o * %% X y oy

= + _ 5 ’
a B B +B. B 1-3[e8 B ] (51)
énd
ov.
3% " JP
-~ = -2B. B 2
ox o Ly oy (52)
ov.
_..__..3y + .Q:E = +
= oy BiyPox T PrPoy (53)
Equation 51 can also be written as
T |
+2 B. B L
ax X 1y oy (54)
The term 2 BlyBo represents the magnetic pressure along the channel flow.
oV
The term aix represents the accelerating or decelerating pressure along

the chamnel. When - %g is negative, 1t will correspond to an adverse
pressure gradient that gives the Indication of boundary layer separation.
Differentiating Equation 52 with respect to y and Equation 53 with

respect to x, we gét

2
3V 2 :
3x d P
+ = o
XAy A (Bly oy) (55)
2
V. 2
3y L3P B3
2 dydx | X [B 1y Box * leBoy] (56)
Ford
Subtracting Equation 54 from Equation 55, we get
a2v3y a2v3 | .
- + —_—
2 XY [Bly 0X leBoy] te oy [Bly oy] (57)

>4
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For incompressible fluids

V.-V=0
or
av3X . 3V3y Y
X Y
or
av3X . av3y
X oy

Therefore, Equation 57 becomes

2 2
3V 3V
- 3y 3y _ 3
v V3y - ax2 * ayz T [BlyBox * leBoy]
5]
+ o O 8
or
2 2
Vv V. B B B
a3y+33y___ Pox Py B oy
BXZ ay2 ly ox 0X oX Ix x
aBlX , aBoy aBly
oy X ly oy oy oY
Since BBOX = - BBOy and iB_l_}_c = - _a_}i];z
- X oy % oY
the result is
2 2
B B
2 2 ly oy Ix  ox
for:s oy
n Dty Sy (59)
oy oX oxX oy .
with the boundary conditions
V3 =0atx =t
v (60)
=0aty=0, L ' '
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VI, THE SOLUTION OF THE INDUCED MAGNETIC FIELD EQUATIONS

Equation 45 and boundary conditions of the first of Equations U6 are

reproduced here
2 2
© Bix , ° P | ox(uy)

w we [EH()PP

B,=08ty=0,L

Also there is the boundary condition that le must be bounded at

X=ioo,i.e.B]x=Oatx=:l:oo

Now define the Fourier transform of a function u(x, y) as

T 1) = A [l v) S ax (61)
T~

where o B
o = Fourier transform variable

We note that in the remaining part of this dissertation the symbol u

willl denote the transform of u rather than vector u.

lox

- Multiplying Equation 45 by‘7%r e and integrating with respect to
il

x, and using the definition given in Equation 61, we get (see Appendix A)

2_

3B
13 = . JT - o) (1)

ay2 - o By, = -1 7% cq e |l (147 (62)

The transformed boundary conditions are

0

1l

—B-:LXZ(OZ’ O)
- (63)
le(a, L) =0

Then the general solution of Eix is obtained as
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= _i/fmea - || (1) o sinh o ¥
Bix =272 Lrat e | " Te L sinh o L
el (&)

Now the inverse Fourier transform of a function u(e, y) is given by

ulx, y) = 7%: T ;(@, ) omlox g (65)

Taking the inverse transform of Eix from Equation 64 gives the

following result (seé Appendix A).

B :é[___:x:y—.__—[- Z xh
2t 2 2 2D 2
x= + (1+y) n=0 x° + (L+L+2nl+2y)
-y = 51 (66)
n=0 x~ + (1+L+2nL)

Bly can be found from the divergence relation given in Equation 36,

repeated below,.

ale + aBly =0
ox oy
Therefore
ale '
By = - [ wrelx) (67)

where ¢(x) is a function of x only. In order to validate the differentia-

tion of B,_ which has an infinite series solution, the uniform convergence

1x
(13) of the infinite series in Equation 66 must be proven.

The Weirstrass M test of uniform convergence is used for this

purpose. Take the 2nd series expression in Equation 66,
2 T,
z 2 2
n=0 x~ + [1+L+2nL]
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|xL |
+ [:L+L+2m:]2

In this series |Uh| = x2

then, -
x| L

5 5 =
%= + [1#42nL]"  [1+1+2nL]

2

For all x and n and

Mﬁ - - 2
: [1+I+2nL ]
- 5= i2'
[1+L+2nL] n
Since the series 2-35 converges uniformly, the original series,
n
2 %L

o
n=0 x> + [1+L+2nL]°

converges uniformly and absolutely for all values of x and n. Hence, it
can be differentiated term by term. Similarly the first series expression
in Equation 66,

[ee]

XL
% 2 2
n=0 x~ + [L+L+2nL+2y]

can be shown to converge uniformly and absolutely for all values of x and

n, and hence it can be differentiated term by term.
0B

using Equation 67, —2 35 found as

Now in order to calculate B =

Ly
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) 2

yaw)® 1 yx
)P 2 )

le 1
X 2

[+o]

[144enrey

+
n=0 [x° + {1+I+enr42y}° ]2

N

LY 2

2 =0 [x° + {1eTeantey PP

1 {1ent)® - %2
"2 T 22 (68)
n=0 [x°~ + {1+I+2nL}7] :
To find Bly’ Equation 68 must be integrated with respect to y.
oB
In order that the above infinite series expression in can be

ax

 integrated term by term, we must have ordinary convergence. This was
checked by using the Weirstréss M test. They converge uniformly and
absolutely for all x and n.

Integrating Equation 68 with respect to y, the following result is

obtained.

2
ayy F A - )
x= + (1+y)

[se]

+I5 [1++2nL+2y ]
B n=0 [xe + {l+L+2nL+2y}2]

«©

s L 5 i{l+L+2nL}2 ~ 2]
2 n=0 [{1+42nn}’ + x5

y

NI

+ ¢ (x) (69)

In order to find ¢ (x), the boundary condition that B. must go to zero at

ly

x equal + » is used, and
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o(x) = - F In [F+(1+6)°] + 3
where § is chosen as representing the arbitrary thicknesé of inviscid
layer of the conducting fluid from the lower channel wall.
Equation 69 thus becomes

4 xP 1ty 1oz + (1)
e R b 2

W2
X2 + (l+5')‘“' .

. [ 1+ +2nT+2y ]
n=0 [x2 + {1+L+2nL+2y}2]

L 2 y[{14 2nn} - %57, 1
+3 F S5t 5 (70)
n=0 [{1+L+2nL}" + x~]°
Since the main interest is in the behavior of the inviscid boundary layer
of thickness § in the gaseous flow, only the solution for small values of
y will be examined. The following approximation is used.
vy << (1HL#+2nL) , n = 0, 1, 2 «e-

Therefore,

Bix

Q

nofH-

—_x

2+ ()

and - (71)
¥ +1+y L° [1+I+2nL ] + 1
5 2*L 23 5. 3
x= + (1+y) n=0[x" + {1+l+2aL}"]

L
2

Q

Bly
Therefore the total magnetic field density with the effect of the induced

field included, is given by

i

' +
BX Box Rmle

and

or



mm X + S&Eﬁgo&m

S 4
(€2) [T _” - [T+ TIIE <g?
M.\nmtu.dmt.?d + N”_anw Af..mv + % ar 1
Em+ﬂm+q+$ w N%HM + X TTT
S(A4T) + % 2 SALT) + X,
AN ”_ g+ S =g
£+ T + mx T X
puE
- ﬁmm@mﬁii + mxomQ.m. ] Em+nam+q+d + mxowgm
) TX T Tx T *

N?f.ﬁv + X (&+T) + X X
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VII, THE SOLUTION OF FLOW FIELD PERTURBATION EQUATIONS

A., The Solution for V
3y

Equation 59 is repeated here for convenient reference.

2 2
B B
av3y+av3y=3 aoy+B Bo::
2
aX2 3y ly oy 1x ax
- B 1y + B Eﬁlﬁ
oy X oX oY (59)
with the boundary conditions
V3 =0atx ==+
y (60)

]

Oat y =0, L

In Equation 59, the right hand side is known since Boy’ Box’ le and
Bly are determined from Equations 1, 2, 66 and 70 respectively. We will
obtain the solution for the region of interest, namely for small values of

Ve
With the approximation y << (1+1+2nl), Equation 59 reduces to the

following:

2 2

OVay O Vay 1 x(uky)  ° L+HL+onT

> T2 T2z 5 X % 2.2
x oy x° + (14y)” n=0 [x" + {1+L#2nL}"]
L x(1+y) 2 1+L+2nL

[x.2 + (l+y)2]2 n=0 x° + {1+L+‘2n}2
Then letting
= + -+
L, =1+L+anL
and

Y=1+y o
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Equation 74 becomes

2 2
Vv V L
LT N R S T
e 2 222 412 no [X2+Li]2
L v 2 L

n
-2 2 ) (75)
oL + Y7F00 & + 12
The right hand side of Equation 75 is expanded by partial fractions in
order to obtain Fourier transforms easily.

Equation 75 becomes

2
Vv o LY L
I5) Véy . fs) 3y : Y N 1

ax2 ay2 1m0 Z(Li-Y2>2 (x+iY)
o YL L
n

1
% -
+ = 2(Li—Y2)2 (x-1Y)

® YL T,
-3 n 1
ne0 2(z2-¥")? (¥Hily)

o YL L 1
- = = =
n=0 2(Li-Y2)2 (x-1L )

s YL Ln X
" o 2(12-7) (P+P)2

© YL L
n

- X , 6
nEO 2(Li—Y2) (x2+Lr21)2 (7e)

Then, for y << (1++2nl), Equation 76 becomes
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2 L Ln 1

i

z -
as0 2(2-1)2 GHY)

2 s Ln 1

+ 3 :
n=0 2(Lr21-1)2 (x-1Y)

© pan Lrl 1

- 2 -
n=0 Q(Li—l)g (L)

® YL L,
- 5
n=0 2(Ln—l)

L
2 (x—an)

@ YL, I
n x

nzg 2(Li—l) (x4 )

® YL, Ln < (
- X 77)
 p=0 2(L§l—l) (x2+Lr21)2

with the boundary conditions on Véy being

Véy = 0 at g

=0 at
Véy at y
y

The Fourier transforms

1l
(@}

=L

with reépect to x are used with Equation 77.

The partial differential equation 1s converted to an ordinary

differential equation in y as shown on the following page (see Appendix B).
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3y 2=
- o°T
@ Y3y

o i/m2 L L
= =3 'i_Eé———TEH [(1+y) ed(l+Y)] for @ <O

- 2
n=0 (Ln-l)

© i/m/2 L L
+ T ——11-"-752 (1) )] g o> 0

2
n=0 (Ln—l)

o i/f/2 L L
+ 3 —————-——-5—2—1:1- . eCYLn [L+y] for o <O
-1

» i/7/2 L L,
- T

— 53 ° e—Oan [1+y] for o> 0
- n=0 (Ln—l)

© i/m/2 L L, o
+ % :

( o) [e*‘al(l+Y)] for all «
n=0 L -1
n

@ .
+ ¥ <E£Eé§_ég . e-'aan [1+y] for all « (78)
n=0 (1L.5-1)
n
where o is the Fourier transform variable.
Equation 78 is an ordinary differential eqqitipn with respect to y
with the following boundary conditions
V. =0aty=0, 1L
3y y =0, (79)

The solution of Equation 78 with boundary conditions as in Equation 79 is

obtained as follows:
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_ = WiRLL, g2 el

2
7 sinh oy = ¥
3V n=0 (Li—-l)2

) op or
ho sinh oL ‘

£ L e-oz(l'*'L) sinh oy = ¥ eud(l—*‘y) sinh O‘L) for o« > 0
4&2 ginh oL
+ (L2 ea(l+L) sinh oy - y2 eoz(l-*'y) sinh ol
Ly ginh ol
| ¥ )
¥ ea/(l-l-y) sinh oL - L ea(l L) sinh ozy) for o < 0
4o? sinh of
-o{1+L) . -alty) .
T e sinh oy - ¥ & sinh ol
*+ ( I sinh ol ) fora>0
+ (L ea(l+L) sinh oy - ¥ ea<l+y) sinh ch) for o < O
. Loy sinh oL

"O[Ln - - "O[Ln . v
+ (y e s1nh2aL L e sinh o/y) for @ > 0O
o sinh ok

(& I sinh ay - v 0 sinh ol

> ) for o <0
o sinh oL

+

, (%0 sinh gy + 2Ta*) i o1,) cor o < 0

bo? sinh ol
ol . oI ) .
+ n
) (e”"n sinh gL e sinh ay) for o <O
Lo sinh ol
~aly, ~a(THL ) .
+(e N ginh ol + e n! sinh oy) for o > O

lLozz sinh oL

~a(Ly+y) . , ~of L) .
(e n s:l.nh_rcgyL + e “¥n - sinh afy)] for o > 0
Lo sinh ol
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-0 (1-1) ° o] © ~siabol - 2 o]
m for all «

+ ; l/—/2 L [< L ¢ %n gimn oy = ¥ e”n sinh O’L) for @ > 0
- (L l) o sinh oL

ols . oL .
e ns1nhdy-yen31nh°’L) for @ < 0
o sinh ol

+

L) s
(ea N sinh gy + eoz(y sinh oL)
Lo sinh ol For o< 0

(eOan sinh oL + Q(L+Ln) sinh oy)

Lo sinh ol for a <0

+ (%0 ginh oy + &) sinn ol.)

Ty for o > 0O

...aL . _Q’(Ln+L) s
) ("™ ginh ch'+ e sinh a/y)] for ¢ > 0 (80)
by sinh ol

The inverse Fourier transform of Equation 80 is taken (see Appendix B)

and we obtain for V
3y

° LI 2 ., S oy, Xt pm)
v, = X [ tan " Tt T gl
3y~ oy (L 1) L 1+Y.. ne0 0 B2, (Ln-L+y)2

y g S

¥ L S—
-3 (Ln_L+y) tan I_-L+y

2 '2
L et X Lt X
i L +L+y & Ly#b*y
2 2
+ (I, T+
x + (D, HHy)

- L
8 ™n x> + (Ln+L-Y)2
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1

L - X
-5 (Ln+L+y) tan i;—TfT—y

L -1 X
- A+ ——
L (b,*T-y) tan I *L-7

L -1 X L -1 X
—Etan T TT +L+y+Etan TR I oy +L-y}
n n

o o x> + (Ln+2L+2nL)2

Xy
- ¥ ~m z [- L
Sa0 O B 424 (Ln+2nL)2

1 X

Ln + 2L +2nk

- £ (v +er+enL) tan

y : -1 X
+ + ——
§ (L, +2nL) tan T+ o

x> + (ur4+1rJn+2mL+y)2

++x L
F5 o2y (L+Ln+2nL-y)2

X
L+Ln+2nL+y

L -1
+ 5 (L+Ln+2nl.+y) tan

X
L+Ln+2nL-y

- 7LI (14D, +2ni-y) tan™ "

2+ (L. +2nL)2
X n
+ N T

D2 (2L+2nL+Ln)2

1 X
2L+2nL+Ln'

1 -
-5 (2L+2nL+Ln) tan
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. 1

==

- X
(2pL+Ln) tan T o7 T

x> + (21+Ln+2nL4y)2

+ X7
T *n 2 (2nL+Ln+y)2

1 X

2L+2nL+Ln+y

1 -
+ (2L+2nL+Ln+y) tan

L -1 X
- T (2nL+Ln+y) tan " 5= L Fy

X2 + (Ln+L+2nL+y)2

+ 31,
o2, (Ln+L+2nL—y)2

1 -1 X
+ 3 (L, *l+enlty) tan L L+ 2 Ty

L -1 X
- 3 (L #+enl-y) tan L FL F o -y

*2 + (2LAonLH, +y)°

_ X I n
TL n 2
X

+ (2L+2nL+Ln—;V)2

1 -1 X
i (2L+2@+Ln"y) Yan © STy, & L -7

1 X ]
2L+2nL+Ln+y

l o~
- (2L+2nL+Ln+y) tan

o L L
-5 m L Xy

m=0 (Li—l) 5  + (LHy)?

L 2 X X ;
-1 =13 273 51
n=0 x°~ + (1+2L+2nl-y) x= + (L+eL+enlty)
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-z ]é Y [% ’Gan-l %—
m=0 (Lm-l) n=0 n

L X
L+Ln+2nL—y

- 71'_: tan

1 X
L+Ln+2nL + oy

T, -
+Il'_' tan

1

+ Bt X L tan_l X
an L, + 2ok In L + 20l + L

1 1 X

lL +2}I§L+ LR e e e
n ¥ n n y

- ]Ti- tan

1 X

1 X +ltan_
L+Ln+2nL—yAE L+L +2nL +y

- % tan

- L ogant X
Ly Ln+2nL+2L+y

L -1 X
fR LT L -y (61)

To simplify Equation 81 we let
y << (L + L + 2nL)

with the result thé,t

x> + (Ln-l'2L+2nL)2

B2 (Ln+2nL)2
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1

A - X
+ L (¥
n (L Ln) tan L, * L

1

- ¥ (n - - X
E(LﬂL)tan L oL

J RN -l x
+-E(Ln onl) tan £+ ZnT

L

v - b
- 5 (Ln+2L+2nL) tan N =]

@ L L
-3 m -1 Xy ]

m=0 (ern-l) K x> + (l+y)2

co [ee]
-y & 5 %tan'l

m=0 (Li—l) n=0

(82)

X
L
n

B. The Solution for Static and Magnetic Pressure Gradients

Now, we return to Equation 54, rewritten below as

v '
3X -+ é—ri = -
> = 2 BlyBoy (5k4)

Since

we obtain

or

P _ _ 93y o
X 2 BlyBOy Y (83)

where - 2 is the negative of the pressure gradient.

ox
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The term 2 B Boy from Equation 82 represerits the magnetic pressure

1y
in the flow field,

v, © LI )
_.7§X= b _—E——E[(L@y)tm1
m=0 M(mel)

2 2
) + +
), Spx X

2+ (Lty)°  n=0° TS 4 (Ln—L)2

1 b
1+y

x> + (Ln+.2L+2nL)2

Ll’l

1
V]

x® + (1_+2nL)?

X
L + L

+ (1 *0) tan™"
) n

1

- X
- (Ln-L) tan LT

-1 X
+ —
+ (Lrl onlL) tan Ln + onT

-1 X
- + 2L +
‘ (Ln 2L + 2nL) tan T ]

© LL 2.2
+ 3 m. XQ -y +l)

m = OB(Li—l) [x2+(l+’y)2]2

@ o]
+ ¥ —2— 3 T ten
m=0 (mel) n=0

! (81)

X
L
n

The term 2 B._ B _ with y << (1 + L + 2nL) becomes
Ly oy
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p = _-xy (1iy)
WV [xP(1y) T

2B

® + 1+
5 xL 55 21_L amg (85)
x° + (1+y) " n=0x" + (1+L+2nL)

Combining Equations 84 and 85 and setting y = O, we obtain the negative of

the pressure gradient along the lower channel wall as

® L L ©
-5 T —ts [t xs %
m=0 h(Lm—l) n=0

2 2
X x= + (Ln+L)

= L
2 ™n X2 + (Ln-L)2
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L

1
o)
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+ (Ln+L) tan T T3
n .
;l X
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-1 X
+ (Ln+2nL) tan T s

2
n

1 X ]
Ln + 2nl + 2L

- (Ln+2nL+2L) tan”

o L L
+ 5 m X

m=0 8(L§-1) 1+ x

2

[o0] [o0]
+ 3 L % tan_l

X
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- 3 o X 86)
m=0 (x2+L§1) (l+x2) (

and the magnetic pressure along the lower channel wall is given by

4apP

m LIJm
ax

= (87)

= - 3 5

m=0 (X2+Lr2n) 1+ x

-
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VIIT. RESULIS

In the previous sections algebraic expressions for the magnetic
field and the velocity component V3y were developed., From these,

expressions for the static and magnetic pressure gradients - %% and
dP :

- EEE along the channel wall were obtained.

The pressure gradients as given by Equation 86 and 87 were numerically
calculated for different value of Rm, I, and L using an IBM 360 digital
computer. The results are tabulated in Appendix C, in Tables 1 to 8. The
data is displayed graphically in Figures 2 to 16, described as follows:
l. In Figures 2 to 5 the total adverse static pressuré gradient
along the channel wall is plotted against x for a given value of
Rm? with T and L held constant at 0.10 and 6.4 respectively. The
case of Rm = 0 as given in reference (27) is also shown for easy
comparison., Figure 2 shows the total adverse staftic pressure
gradient along the channel wall when Rm = 0,05 and I = O.lo; It
is recognized that the increase in the net negative area with
respect to that when Rm = zero is insignificant. Figure 3 shows
the total adverse static pressure gradient with Rm = 0,075,
I = 0,10. It indicates a slight increase in the net negative area
from that when Rm.= 0. Figure L4 shows the total adverse static
pressure gradient with Rm = 0,1L, I =0,1, It indicates a signifi-
cant increase in the net negétive area from that when Rm = 0,
Figure 5 confirms the increasing influence of the iﬁaﬁced field
where, with Rm = 0.15, I = 0,1, the adverse pressure gradient is

significantly greater than that with Rm = 0.
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Figures 6 through 12 show the behavior of the static and magnetic
pressure gradient due to the effects of the induced magnetic
field for channel heights of L = 6.4, 9.6, 16, 32, 64, 96 and,
for a very large height, L = 9999. Those curves show the
increasing influence of the induced magnetic field as the channel
height increases.

Figures 13 and 14 show the adverse static pressure gradient due
to the induced magnetic field for various channel heights. They
indicate the increasing effects of the induced magnetic field as
channel height increases.

Figures 15 and 16 show the adverse magnetic pressure gradients due
to the induced magnetic field. They indicate also the increasing
effects of the induced magnetic field as channel height increaéeé.
Figures 17 and 18 show the magnitude of the maximum value of

static and magnetic pregsure gradient for various channel heights.
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Figure 2. Total stabic pressure gradient at lower wall
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Figure 3. Total static pressure gradient at lower wall
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Figure L. Total static pressure gradient at lower wall
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Figure 5. Total static pressure gradient at lower wall
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Figure 6. Static and magnetic pressure gradient at lower wall due to induced magnetic field
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Figure 7. Static and magnetic pressure gradient at lower wall due to induced magnetic field
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Figure 8. Static and magnetic pressure gradient at lower wall due to induced magnetic field
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Figure 9.  Static and magnetic pressure gradient at lower wall due to induced magnetic field
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Figure 10. Static and magnetic pressure gradient at lower wall due to induced magnetic field
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Figure 11. Static and magnetic pressure gradient at lower wall due to induced magnetic field
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Figure 12. Static and magnetic pressure gradient at lower wall due to induced magnetic field
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Figure 13. Static pressure gradient due to induced magnetic field at lower wall at various values of L
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Figure 1h4. Static pressure gradient due to induced magnetic field at lower wall at various values of L
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Figure 15. Magnetic pressure gradient due to induced magnetic field at lower wall for various L
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Figure 16. Magnetic pressure gradient due to induced magnetic field at lower wall for various L
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Figure 17. Magnitude of maximum static pressure gradient due to induced magnetic field
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Figure 18, Magnitude of maximum magnetic pressure gradient due to induced magnetic field
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IX. CONCLUSIONS

The importahce of preventing a hot conducting fluid from coming in

contact with the internal walls of channels and nozzles, and hence of

protecting those walls is the main point of study when the induced mag-

’

netic field is to be considered.

From the results obtained in Section VIII, the following conclusions

concerning the effects of the induced magnetic field on protecting the

channel walls from hot conducting fluld are recognized.

1.

Pigure 2 indicates that for I = 0.10 a negligible increase in the
neﬁ area of the adverse pressure gradient is observed with Rm =
0.05. With Rm = 0,075, the increase in'the net negative area is
glight but recognizable as shown in Figure 3. It is shown that
with Rm equal to 0.1 and 0.15 the obvious result is a clear net
increase in the negative area of - %5 .

Those results indicate that with Rm of the order of 0.1 the
induced magnetic field cannot be neglected and therefore must be
included in any treatment of inviscid magnetohydrodynamic flow.
Also, the conclusion is reached that with Rm less than 0.1 it can
be neglected. We recall that Rm.= O“beo’

Therefore, for fluid flow with electrical conductivity o and

magnetic permeability p and with Rm = 0.1

1
Too = oo
or

1 .
vy > (lOp.o‘)

o 0
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As a consequence of Rm 2 0.1, an improvement in boundary layer
separation will result. This will add more to the protection

of the channel walls from the high temperature fluid.

Figures 6 to 12 show the hydrostatic and magnetic pressure gradi-
ent due to the induced magnetic field along the channel wall for
several values of L. The plots indicate that in the up-stream
region of the flow field the magnetic pressure gradient is acting
to help the inertia forces. As the flow approaches the source of
the applied maghetic field, this effect decreases. At the start
of the down stream flow, the magnetic pressure gradient is acting
in opposition to the inertia forces of the flow field. As a
result, separation of fluid particles from the channel wall will
occur.

Figures 13 to 16 show the hydrostatic and magnetic pressure
gradients due to the induced magnetic field along the channel
wall for several channel heights. It 1s indicated that as the
two channel walls move apart, the differences among the hydro-
static pressure gradients and also among magnetic pressure gradi-
ents are diminishing. This is due to the fact that the magnetic
field has more freedom in deflecting the flow and slowing it down

as the height of the channel is increasing.

. Another fact demonstrated in Figures 6 through 12 is that as the

channel height increases from 6.4 to 96, the order of magnitude
of the hydrostatic pressure gradient is approaching that of the

magnetic pressure gradient. This is due to the increased
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influence of the magnetic field in slowing down the flow as the
channel width increases.

5. In Figures 17 and 18 it is shown that the maximum magnitude of
the static and magnetic pressure gradient due to the induced
magnetic field along the channel wall is increasing with L until
I is gbout 30. Past this point the increase is small due to the
fact that in such a case the magnetic forces have more freedom to
slow down the fluid flow.

It should also be mentioned that the problem studied in this disserta-

tion, namely that of MHD flow between two parallel plates of infinite
extent, can be considered equivalent to that of an annular duct of radii

Ty and r, such that the mean circumference of the duct is much larger than

(rl—rz), i.e.
if r = mean radius of the duct
(emr) >> (r;-r,)

In other words the length of the channel is much greater than its height

as shown in Figures 19 and 20.
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XII. APPENDIX A - FOURIER TRANSFORMATION OF EQUATION 45

The equation to be transformed is
2 2
9B oB .
1x 1x _ 2 x (14y) (45)

e o [+ ()3T

with the boundary conditions given by Equation 46

le

and (46)

+ >

ODat y =0, L

0 at x

By

Now, take the exponential Fourier transformation of the above partial

differential equation with respect to x, resulting in

2 2

1 ]3 [a P, O Pixy tom g
/en oo 8x2 BV2
o .'.Lo/X
- 1 2 X (l+'y) e ax (88)

o s [ ()P
where ¢ is the Fourier transform variable. This operation reduces the
partial differential equation to an ordinary one. Equation 88 becomes

D

0 By 5 =20 §_x M% gy ' (89)
W LTE )

where Elx is the Fourier transform of le. To find the Fourier transform

of the right hand side of Equation 89, we proceed as follows:

o) ilax © R
X e dx iox d -1 1
-] (90)

1 2t () = Z 7, (14y)
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l
- eiax (i) e _ 1
< +<1+y)2 - _J;x F R o

The first expression of the right side of Equation 91 is zero

and thus we get,

T - eiax _ ia f 1ax (92)
S0+ ()P 2 P+ (1)

Then, from a table of Fourier transforms (24), the Fourier

transform of
[a2 + (xﬁb)Zj_v
1, b 1 o] v-5 ,
=—= 2 e Jm [ (v)] (5] 12.K\) 1 (ala]) with RV >0
T2

Vo

For v=1, b = 0, a = (1L+y), the Fourier transform of

;z_i;’é = =/ lal & (alo]) (93)

n

Then, using Equation 92, the Fourier transform of

X _de 1 '
(B2 2 V/a /IO!IK_l_ (ale]) | (9k)
Also from tables (24),

K (2) = X(sin ™)™" [1_,(2) - 1.(2)]

From Equation 94,

v =-% s L = alal s thﬁs
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Kl-. (a{ozl) =T§T(Sin g)—l [I—l (ala/f) - I!: (alafl)
2 2

2

7
S, Gelal) - 1 Gefa]))
2 2 '
Also from the tables (24)

L, i
- ity =0

T2 2
I\)(Z) = e J\)[Z e 7]
therefore
im
‘ n .
Ii (ala]) = J_:;: (iao])
2 2
and
I-i_(aloz]) = e J_l (ia]o|)
2 2
Hence .
im i

K}_ (a]a|) = g[e h J_-_;L_ (ia]o]) - e_r Jl.(iala/l')]
2

2 2
since

Jl(x)=/_'g-_cosx

3 (x) = /2 sin x
2 =

Substituting in Equation 89 we get

~ |
0By o VT o e (@)

- B, = -1 o
5 o
oy L 72

(95)

(96)

(97)

(98)

(99)

(1.00)
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The Fourier transforms of the boundary conditions in Equation L6

are given by,

ﬁix (@s 0) =0 (101)
and
By, (@, L) =0 (102)
The general solution for Eix is thus
= _iff -« ~ o[ (1Hy)
Bix = 2/2 [Ial ye
_ .o sinh gy e—-lafl(lﬂ.)] (103)
|| ~ sinh oL
The inverse Fourier transform of Eix is
17 i
- = ~ilow
Bl =75 i B, © dov (10k)
Performing the steps indicated in Eduation 104 and using the
following relations from tables (10, 11)
o2} e—pg{ _'e—\)x
/= ax =40 - ¥(w) ®, w>0, R, v>0) (205)
0 l-e
where
2 1 1
J0) =-C - T (e - =) (106)
n=0
and C = Buler's constant, we get
1 2 xL
By =slzo—3* % 3 z
x= + (1+y) n=0 x° + (L+I+enL+2y)
(oo} .
xL
- = ] (107)

n=0 x° + (1+L+2nL )"
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Further properties of the | function are

[o0]

P(xty) - Y(x-iy) = = 2ly

W) - ¥0) = B Iy - o)

n=0

[o0]
_ -V
a nEO Zp,+n52\)+n5
Mo V 74 0, -1, -2
R (u)s R(v) >0
and

§(2) = S 10g[7(2)

n=0 y2 + (x+n)2

(1.08)

(109)

(110)
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XIII., APPENDIX B - FOURIER TRANSFORMATION OF EQUATION 77

The equation to be transformed is

2 2
o) Véy .\ 9 V3y ) ; YL Ln l.
T Tk R D

® YL L

+ ¥ n
2

n=0 2(Ln-l)

1
2 (x-1Y)

© YL Ln
- N 5
n=0 2(Ln—l)

1
2 (x+1Ln)

© YL Ln 1

2 (X—iLn)

LT
n=0 2(Ln—l)

© YL L
n X

- 3
n=0 2(L§—l) (2+72)?

P (77)
- 77
n=0 2(Li—l) (x2+Li)2

Use.is made of mathematical tables (24) to transform the above partial
differential equatibn.
An example showing the transform of the first term of Equation 77
follows:
Tet F.T. = Fourier transform

F.T. of can be obtained from tables (24).

1
x + 1Y
1
F.T, of-——————; =0 for o >0
(a-ix)

= /Zn [rﬂ(v)]_l (-oz)\)-:L e® for @ < 0 (111)
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where
Rv>0
e
For v =1
F,T of-——;L——— =0 for >0
°=e a - ix o
= /2 e for ¢ <0 - (112)
or
F.T. Of ——— =0 for o > O
x + ia
= /o ¥ for o <O (113)
Therefore
F.T. of —=—— = 0 for @ > O

= - 157 e for @ <0 (114)
The inverse Fourier transform of Equation 80 was obtained using the

relation (1)

- lu

Tf(t)dt - por.t (Elad, (115)

where
F.7.”' = inverse Fourier transform
f(t) = inverse Fourier transform of F(w)
t is a dummy variable
The inverse transform was checked using the convolution (39) theorem.

As an example consider the inverse transform of two terms from Equation 80
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1 —yF oy
F.T. [—%O—le Y7 (where a > 0)

1 2 Y
+ F T E:%§ e¥*7 (where o < 0) (116)

ro,7t [e"o’Y] (where o > 0)

1

+ F.To— [eQ’Y] (Where o < O)

11 11
VR B A €9 (117)

Then, using Equation 115
-1 e-aY .
FoTe = [ 'a] (where o > 0)

o -1 eozY
+ F.T, [_—i&—] (where o < 0)

_ L % 1 1
V- _«O[ [t- SR (118)

<
= [L (t-1iY) - L_(t+iY)]
/é‘ﬁ 1l n n e
1 b+ 1Y

/g*ni[nt-ing

-1 x + iY¥
J/om R X - 1Y

-i . <17
I ev— + —
Ve (L /o o 1 tan

. -1 Y
- I, fxg 72 + 1 tan -}-{-]
_J -1 Y
= 7?— tan - (119)
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Then, returning to Equation 118,

1 2 -0y .
F.T. {r_y_%e?___] (where o > 0)

-y2 oY
+ ] (where o < 0)}

= =L tant % (120)
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XIV. APPENDIX C - TABLES

Table 1. Hydrostatic and magnetic pressure gradient vs. distance L = 6.k

ap
-10 -0.33301 0.1996
-9 -0.2875 0.2277
-8 -0.2341 0.2633
-7 ~0.1700 0.3095
-6 - -0.0904 0.3711
-5 0.012k4 0.4560
- b , 0.1517 0.5779
-3 0.3516 0.7611
2 0.6509 1.0423
-1 0.9871 1.3262
~ .9'“ 0.9947 1.3204
- .8 0.9875 1.2968
- .7 0.9613 1.250L
- .6 0.911k4 1.1749
- .5 0.8331 1§o659
- b 0.7231 0.9194
- .3 0.5802 0.7342
- .2 0.4070 0.5132

- .1 0.2100 0.26k42



Table 1 (Continued)
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0.0 0.0 0.0
1 -0.2100 -0.2642
.2 -0.4070 -0.5132
.3 -0.5802 -0.73k42
A -0.723L -0.919k4
.5 -0.833L -1.0659
.6 -0.9114 ~1.1749
.7 -0.9613 -1.2501
.8 -0.9875 ~-1.2968
.9 -0.99k7 -1.3204
1 -0.9871 -1.3262
2 -0.6509 -1.0423
3 -0.3516 ~-0.7611
I -0.1517 -0.5779
5 -0.0124 -0.4560
6 0.0904 -0.3711
7 0.1700 -0.3095
8 0.2341 -0.2033
9 0.2875 -0.2277
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Table 1 (Continued)

. _ap M
dx dx
10 0.3330 -0.1996

%% = Hydrostatic pressure gradient used in this table and Tables 1-7

4ap
_n
dx

= Magnetic pressure gradient used in this table and Tables 1-7
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Table 2. Hydrostatic and magnetic pressure gradient vs. distance L = 9.6

-10 -0.0680 0.2225
-9 -0.0300 0.2527
-8 0.0153 0.2906
-7 0.0706 0.3391
-6 0.1402 0.4027
-5 0.2311 0.4892
- 0.3557 0.6118
-3 0.5366 0.7948
-2 0.8093 1.0751
-1 1.0997 1.3563
- .9 1.1002 | 1.3496
~— - .8 1.0853 1.32k47
- 7 1.050k 1.276L
- .6 0.9907 1.1991
- .5 0.9017 1.0876
- .4 0.7798 0.9378
- .3 0.6239 0. 7487
- .2 '0.4367 0.5232
- .1 | 0.2251 0.2694

0.0 0.0 - 0.0
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Table 2 (Continued)

1 -0.2251 -0.2694
.2 -o.u367 -0.5232
.3 -0.6239 -0.7487
A -0.7798 -0.9378
5 - -0.9017 -1.0876
.6 -0.9907 | -1.1991
.7 -1.050k -1.276k
.8 -1.0853 -1.32h7
.9 ~-1.1002 -1.3496
1 -1.0997 -1.3563
2 -0.8093 ~1.0751
3 -0.5366 -0.7948
Ly -0.3557 -0.6118
5 -0.2311 -0.4892
6 | -0.1k02 -0.4027
7 -0.0706 -0.3391
8 -0.0153 - =0.2906
9 0.0300 - -0.2527

10 0.0680 -0.2225




Table 3.

Hydrostatic and magnetic pressure gradient

116

vs. distance L = 16

dpP

-10 '0.1075 0.2480
-9 0.1400 0.2793
-8 0.1793 0.3179
-7 0.2278 0.3668
-6 0.289 0.4305
-5 0.3715 0.5165
- b 0.4856 0.6384
-3 0.6537 0.8207
-2 0.9102 1.1008
-1 1.1735 1.3811
- .9 1.1697 1.3738
- .8 1.1499 1.3480
- .7 1.1095 1.2985
- .6 1.10L3 1.2196
- .5 0.9476 1.1059
- L 0.8179 0.9535
- .3 0.6535 0.7611
- .2 0.4569 0.5318
- .1 0.2353 0.2738
0.0 0.0 0.0



Table 3 (Continued)
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1 -0.2353 -0.2738
.2 -0.4569 -0.5318
.3 -0.6535 -0.7611
A -0.8179 -0.9535
5 -0.9L76 -1.1059‘
.6 -1.0437 -1.2196
.7 -1.1095 -1.2985
.8 -1.1499 -1.3480
.9 -1.1697 -1.3738
1 -1.1735 -1.3811
2 -0.9102 -1.1008
3 -o.6537' -0.8207
L -0.4856 -0.638L
5 -0.3715 -0.5165
6 -0.2896 ~0.4305
7 -0.2278 -0.3668
8 -0.1793 -0.3179
9 -0.1400 -0.2793
-0.1075 -0.2480

10
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Table L. Hydrostatic and magnetic pressure gradient vs. distance L = 32

-10 0.2038 0.2688
-9 . 0.232L 0.2996
-8 0.267h 0.3378
-7 0.3113 0.3860
-6 0.3683 0.4489
-5 0. 4449 0.5343
-4 0.5533 0.6556
-3 0.1752, 0.8378
-2 0.96k4kL 1.1190
-1 1.2155 1.4001
- .9 1.2095 1.3925
- .8 1.1872 1.3661
- .7 1.14%0 1.3158
- .6 1.0747 1.2357
- .5 0.9748 1.120k4
-k 0.8L06 0.9659
- .3 0.6711 0.7709
- .2 | 0.4690 0.5387
- .1 0.2415 0.2773

0.0 0.0 0.0



Table 4 (Continued)

1i9

.1 -0.2k15 -0.2773
.2 -0.4690 -0.5387
.3 -0.6711 -0.7709
A -0.8L06 -0..9659
.5 -0.9748 -1.120k
.6 -1.07k7 -1.2357
.7 -1.1440 - -1.3158
.8 -1.1872 - -1.3661
.9 -1.2095 ~1.3925
1 -1.2155 -1.k001
2 -0.964L -1.1190
3 -0.7152 -0.8378
L -0.5533 -0.6556
5 -0.4hkg -0.5343
6 ~0.2¢82 ~0. 4489
7 -0.3113 -0.3860
8 -0.267k -0.3378
9 -0.2324 -0.2996
10 -0.2038 -0;2688




Table 5.

Hydrostatic and magnetic pressure gradient

120

vs. Qlstance L = 6L

-10 0.2336 0.2768
-9 0.2608 0.3073
-8 0.2943 0.3451
-7 0.3368 0.3931
-6 0.3922 0.4558
-5 0.4673 0.5h411
- 0.57he 0.6625
-3 0.7348 0.8h52
-2 0.9826 1.1274
-1 1.2309 1.4097
- .9 1.2243 1.4019
- .8 1.2013 1.3753
- .7 1.1571 1.3246
- .6 1.0867 1.2439
- .5 0.9854 1.1278
L 0.8L95 0.9723
- .3 0.678L 0.7760
- .2 0.4738 0.5h22
- .1 0.2440 0.2792
0.0 0.0 0.0



Table 5 (Continued)
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1 -0.2h4ho -0.2792
o2 -0.4738 -0.5k422
.3 -0.6781 -0.7760
K -0.8495 -0.9723
5 -0.985L -1.1278
- 6 -1.0867 -1.2439
7 -1.1571 -1.3246
.8 -1.2013 -1.3753
.9 ~1.2243 -1.4019

1 -1.2309 -1.4097
2 -0.9826 -1.1274
3 -0.7348 -0.8452
b -0.57kh2 -0.6625
5 -0.4673 -0.5411
6 -0.3922 -0.4558
7 -0.3368 -0.3931
8 -0.2943 -0.3k451
9 -0.2608 -0.3073
10 -0.2336 -0.2768
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Table 6. Hydrostatic and magnetic pressure gradient vs. distance L = 96

-10 0.2399 0.2787

-9 0.2668 0.3092

-8 0.3000 0.3469

o, -7 0.3k422 0.3949
- - 6 0.3973 0.4576
- 5 0.4722 0.5429

-k 0.5789 0.6645

-3 0.7393 0.8475

-2 0.9871 1.1302

-1 1.2351 1.4129

- .9 1.228L 1.4051

- .8 1.2051 1.3784

- .7 1.1607 1.3276

- .6 1.0901 1.2k67

- .5 0.9884 1.1303

- .L 0.8521 0,974k

- .3 0.6801 0.7778

- .2 0.4752 0.543L

- .1 0.24h7 0.2798

0.0 0.0

0.0



Table 6 (Continued)
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1 -0.24k7 -0.2798
.2 -0.4752 -0.543k
.3 -0.6801 -0.7778
N -0.8521 -0.97hk
~-0.988k4 -1.1303

.6 -1.0901 -1.2Lk67
7 -1.1607 ~1.3276
.8 -1.2051 -1.378L
.9 -1.2284 -1.4ho51
1 -1.2351 -1.k4129
2 -0.9871 -1.1302
3 -0.7393 -0.8L75
L -0.5789 -0.6645
5 -0.472é* -0.5k429
6 -0.3973 -0.4576
7 -0.3h22 -0.3949
8 -0.3000 -0.3469
9 -0.2668 -0.3092
10 -0.2399 -0.2787
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Table 7. Hydrostatic and magnetic pressure gradient vs. distance L = 9999

-10 0.2459 0.2810
-9 0.2726 0.3115
-8 0.3057 0.3493
-7 0.3477 0.3974
- 6 o.koz27 - | 0.4603
-5 0.4776 0.5459
- 0.584k 0.6679
-3 0.7451 0.8515
-2 0.993k 1.1354
-1 1.2418 1.k192
- .9 1.2349 1.h11k
- .8 1.2115 1.3846
- .7 1.1668 1.3335
- .6 1.0957 1.2522
- .5 0.9934 1.1354
- .4 0.856L 0.9788
- .3 0.6836 .0.7812
- .2 0.4776 0.5459
- .1 0.2U459 0.2810

0.0 0.0 0.0



Table 7 (Continued)

1 -0.2U459 -0.2810
.2 ~0. 4776 -o.5u59
.3 -0.6836 -0.7812
A -0.856k ~0.9788
-5 90-993h -1.135L
.6 -1.0957 ~1.2522
.7 -1.1668 ~1.3335
.8 -1.2115 -1.3846
9 -1.2349 -1.#11&
1 -1.2418 -1.4192
2 -0.9934 -1.1354
3 -0,7451 -0.8515
L -0.5844 B -0.6679
5 -0.4776 -0.5459
6 -0.hko27 -0.4603
7 -0.3477 -0.397h
8 -0.3057 -0.3493
9 -0.2726 ~0.3115

10 -0.2459 -0.2810
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Table 8. Channel width vs. magnitude of maximum hydrostatic and magnetic -

pressure gradient

dp
g 5 e, [ .
6.4 1.3262 0.9947
9.6 1.3563 1.1002
16 1.3811 1.1735
32 1.4001 1.2155
N 1.4097 | 1.2309
96 1.4129 1.2351
9999 1.4192 1.0418

t
L =L
y-O

L’ is actual chamnel width
Yo is the characteristic length

- All points are for x = 1 except for the first two which are for x = 9




