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ABSTRACT 

We propose an approach that is under the framework of Gutzwiller wave function but goes 

beyond the commonly adopted Gutzwiller approximation to improve the accuracy and flexibility 

in treating the correlation effects. Detailed formalism is described for a dimer which is 

straightforwardly generalized later to more complicated periodic bulk systems. The accuracy of 

the approach is demonstrated by evaluating the potential energy curves of spin-singlet N2 dimer, 

spin-triplet O2 dimer, and one-dimensional hydrogen chain. The computational workload of the 

approach can be easily handled by efficient parallel computing. 
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1. INTRODUCTION 

Ab initio calculation of correlated electron systems is one of the most fundamental challenges 

in physics, chemistry and materials science. Understanding and controlling the properties of 

matter that emerge from their complex correlations of atomic or electronic constituents requires 

accurate and efficient methods to calculate the energies and properties of strongly-correlated 

electron materials. While density functional theory (DFT) [1,2] and related computational 

approaches have been very successful in predicting the structures and properties of many 

materials, they hardly yield satisfying results for strongly-correlated electron materials. Over the 

past fifty years, many theories and methods for treating correlated electrons beyond DFT have 

been proposed and developed, each having different strengths, weaknesses, and domains of 

applicability. For example, wave function-based quantum chemistry methods, especially the 

multi-configurational self-consistent field (MCSCF) approaches [3], such as complete active 

space SCF (CASSCF) [4], or equivalently full-optimized reaction space (FORS) [5,6], and the 

restrictive active space SCF (RASSCF) [7,8],  can be very accurate, and the efficiency of the 

methods has recently been improved, e.g., by using the density-matrix renormalization group 

(DMRG) [9-11], but these approaches are still limited to small systems. Quantum Monte Carlo 

(QMC) methods [12-14] have also advanced significantly in recent years and showcase studies 

have been available for realistic correlated-electron materials, but the computational workload of 

QMC remains very heavy. Conversely, hybrid approaches which merge DFT with many-body 

techniques, e.g., DFT + Hubbard U (DFT+U) [15,16], DFT + dynamical mean-field theory 

(DFT+DMFT) [17-19], and DFT + Gutzwiller approximation (DFT+G) [20-24], have been 

demonstrated to be very effective in describing the properties of real correlated-electron 

materials. However, the use of adjustable screened Coulomb parameters restricts the predictive 
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power of these methods. It is highly desirable to develop first-principles theories and 

computational methods for calculating the total energy and electronic structures of correlated-

electron materials without using adjustable parameters while retaining computational efficiency, 

especially for big systems such as big molecules or bulk materials.  

Since the seminal work about correlation effects on transition metal ferromagnetism by 

Gutzwiller in 1960s [25-27], Gutzwiller wavefunctions (GWF) have been widely used in 

describing strongly correlated systems [20,24,28-31]. The GWF is constructed by applying a 

correlation operator on the noninteracting wavefunction such that each on-site valence electronic 

configuration obtains an appropriate amplitude and phase factor [32].  

GWF introduces variational parameters directly in the onsite many-body configuration space, 

rather than an optimized form for the Jastrow function of inter-electron/ion separations [33-36]. 

Since a closed form of expectation value with respect to GWF is still not generally available,  

exact evaluations require the variational quantum Monte Carlo simulations, which can be very 

time-consuming due to large number of variational parameters. Gutzwiller approximation has 

been introduced to facilitate calculations, which essentially approximates the kinetic energy by 

including all the hopping processes without pair-environment dependence [27,37]. The 

approximation was later shown to be equivalent to slave-boson mean field approach [38,39]. The 

famous applications of Gutzwiller wavefunction based on Gutzwiller approximation include 

Brinkman-Rice metal-insulator transition and the description of the almost localized fermi liquid 

behavior of normal 3He [28,40]. While the early calculations were focused on single-orbital 

Hubbard model (HM), the approach was successfully generalized to multiple correlated orbital 

systems [41,42]. On the other hand, exact solutions based on GWF are quite scarce. There has 

been report on 1D single-orbital HM as a first rigorous assessment of the quality of the 
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Gutzwiller wavefunction [43,44]. It was also proved that Gutzwiller approximation becomes 

exact in infinite dimension. At finite dimensions, e.g., 3D, the correction terms in single-orbital 

models have been worked out [45,46], but most calculations are restricted to effective 

Hamiltonians with on-site Coulomb interactions only. The performance of GWF-based approach 

when applied to general ab initio many-body Hamiltonian of real systems remains elusive. 

Recently, we developed a method, namely, the correlation matrix renormalization (CMR) 

method which extends the GWF-based approach to the calculation of ground state energy of real 

correlated-electron materials [47-49]. The CMR method adopts the Gutzwiller variational wave 

functions and use the Gutzwiller approximation and Hartree-Fock type factorization to treat the 

intersite Coulomb interactions, thus greatly enhance the computational efficiency. As illustrated 

in Ref. [49], while the CMR method can achieve a reasonable accuracy for correlated-electron 

systems, the use of Gutzwiller approximation may still be the major source of inaccuracy. 

Therefore, a more accurate method that goes beyond the limitation of Gutzwiller approximation 

is desirable.  

In this paper, we propose an approach for accurate evaluation of the total energy and electronic 

properties of correlated electron systems using GWF but without resorting to the Gutzwiller 

approximation. We name this approach as Gutzwiller conjugate gradient minimization (GCGM) 

approach. In GCGM, the total energy is expressed explicitly as a function of the Gutzwiller 

variational parameters, and is then minimized with conjugate gradient method using analytical 

energy gradients. The Gutzwiller wavefunction represents a variational many-body wavefunction 

of relatively simple form, which can be further extended if desired. As we will show later, the 

GCGM method is more rigorous and flexible to deal with the GWF in some generalized form. 
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The computational burden for higher accuracies can be released by an efficient partitioning for 

parallel computing based on the new methodology.  

2. METHODS 

In the form of second quantization, the full ab initio nonrelativistic Hamiltonian for an 

interacting many-electron system can be expressed as, 

 † † †

' '

,
, '

1
( ; )

2
i j i j i j l k

i j i j
k l

H t c c u i j k l c c c c       

    
  

   = +      (1) 

where  , , ,i j k l  are the atomic site indices, , , ,     the orbital indices, and  , '   the spin 

indices. Here, t  and u  are the one-electron hopping integral and the two-electron Coulomb 

integral, respectively, which can be expressed as, 

ˆ ˆ
i j i ion jt T V    = + ,          (2) 

* * ˆ( ; ) ' ( ) ( ') ( ') ( ') ( )i j l ku i j k l d d U          = − r r r r r r r r ,    (3) 

where T̂ , ˆ
ionV , and Û  are the operators for kinetic energy, ion-electron interaction and Coulomb 

interaction, respectively. i  is the basis orbital at atomic site 𝑖 with orbital index 𝛼. As shown in 

Eq. (1), all interactions are included in the Hamiltonian without any adjustable parameters. An 

exact expression of the total energy consisting of one-particle and two-particle density matrices 

can be obtained if a full configuration interaction (FCI) wave function is used. In our GCGM 

approach, the total energy is evaluated with the GWF of the form, 
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0( )GWF i i i

i

g


 
 =     

 
  ,        (4) 

which is constructed based on the non-interacting wave function 0 , i.e. a single Slater 

determinant. ( )ig   is the Gutzwiller variational parameter determining the occupation 

probability of the on-site configuration i , which is defined as a Fock at ith site 

†

i
i c

   . Here the creation operator †c  creates an electron at the orbital- 𝛼 with 

spin-𝜎 in the vacuum state  . The total energy without adopting Gutzwiller approximation can 

be expressed as  

 

( )

† † †

' '

, ,
'

'
† †

' ' '

, '

1
( ; )

2

1
( ; ) ( ; )

2

GWF i j i j i i i iGWF GWF
i j i

i k j lGWF GWF
i j

k l

E t c c u i i i i c c c c

u i j k l u i j l k c c c c

       

   


    

 
  

   

        

= +

+ −

 


  (5) 

where ∑' indicates that the pure on-site terms are excluded from the summation. The on-site two 

particle correlation matrix (2PCM) are treated rigorously and the intersite 2PCM are evaluated 

using Hartree-Fock(HF)-type factorized approximation (Wick’s theorem, see Ref. [49,50]),  

† †

' '

† † † †

' ' '

i j l k GWF

i k j l i l j kGWF GWF GWF GWF

c c c c

c c c c c c c c

   

        



−
     (6) 

The following sum-rule correction [49] is also used as in the CMR method, to reduce the HF-

type factorization error by effectively evaluating the intersite Coulomb interactions through more 

accurate onsite calculations, 
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'

'

1
ˆ ˆ

2
sr i i j e

i j

H n n N  

 


  

= −   
  

  .       (7) 

Here eN  is the total number of electrons in the system and i  is determined by the weighted 

average of the relevant intersite 2-electron Coulomb integrals,1  

6

, '

6

, '

( ; ) ijj i

i

ijj i

u i j i j R

R







   


−



−



= −



 ,       (8) 

where 
ijR  is the distance from atom  i  to atom j . When we evaluate the energy, we include the 

sum-rule part srH  in Eq. (7) in the Hamiltonian H  in Eq. (1).  

For a clear presentation of the method, we consider a dimer that has only 2 sites.  The one-

particle density matrix (1PDM) can be expressed as, 

† † 2 0

, , ' ,

, ' ,

1
' ( ) ( ' ) ( ) ,

i j i j

i i j

i i i i i i i i jGWF
GWF GWF

c c c c g g g       

  

=     
 

   (9) 

† †

, , ' , '

0

, , ' ,

1
' '

( ) ( ) ( ' ) ( ' )

i j i j

i j i j

i j i i i j j jGWF
GWF GWF

i j i j

c c c c

g g g g for i j

   



   

   

=     
 

    


   (10) 

where 
0

, , ' ,i j i j
     is predetermined coefficient from 0 ,  

                                                 

1 The specific form of Eq. (8) is not unique. It works as long as the weight decreases sufficiently 

fast with respect to the inter-atomic separations. In other words, the dominant contribution comes 

from the nearest neighbors. 
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0

, , ' , 0 0, ' , '
i j i j i j i j    =        ,          (11) 

and 

0 2 2

, , ' ,

,

( ) ( )
i j i j

i j

GWF GWF i jg g   

 

  =   .                 (12) 

The on-site 2PCM can be expressed as, 

† †

' '

† † 2 0

' ' , , ' ,

, ' ,

1
' ( ) ( ' ) ( )

i j i j

i i j

i i i i GWF

i i i i i i i i j

GWF GWF

c c c c

c c c c g g g

   

       

  

=

    
 


              (13) 

Substituting Eq. (9)-(13) into (5), GWFE  can be expressed explicitly as a function of  ( )ig  . 

GWFE  is then minimized with respect to  ( )ig   with conjugate gradient method after the 

analytical 
( )

GWF

i

E

g



 
 is evaluated. It is worth noting that the calculation of the gradient of total 

energy contributes most to the computational burden of GCGM. Fortunately, the calculation of 

the gradient is readily partitioned with regard to the configuration i , as the evaluation of 

( )

GWF

i

E

g



 
 for a particular i  does not involve the evaluation of other derivatives. Therefore, the 

computational workload of the approach can be easily handled by the efficient parallel 

computing. 

The extension of GCGM method to more complex molecules or bulk materials is 

straightforward. Here, we use periodic bulk solids as an example to illustrate how to generalize 

the GCGM method to systems with more than 2 atoms. The Hamiltonian for a bulk system in the 

second quantization form can be expressed as, 
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† † †

' '

, , ,
, , '

1
( , ; , )

2
Ii Jj Ii Jj Ii Jj Ll Kk

Ii Jj Ii Jj
Kk Ll

H t c c u Ii Jj Kk Ll c c c c       

    
  

   = +  ,  (14) 

where  , , ,I J K L  represent the unit cell indices; , , ,i j k l  are the atomic site indices, , , ,     

the orbital indices, and  , '   the spin indices. The one-electron hopping integral, t , and the 

two-electron Coulomb integral, u , are defined similarly to Eq. (2)(3). The total energy is 

evaluated with the GWF of the form, 

0( )GWF Ii Ii Ii

Ii

g


 
 =     

 
  ,        (15) 

which is constructed from a non-interacting wave function 0 . ( )Iig   is the Gutzwiller 

variational parameter determining the occupation probability of the on-site Fock state Ii  at the 

atom site indexed “ i ” in the unit cell indexed “ I ”. Since all unit cells are identical, ( )Iig   does 

not depend on the specific unit cell and can be written as ( ) ( )Ii ig g =  . The total energy 

without adopting Gutzwiller approximation can be expressed as  

( )

† † †

, ' '

, , , ,
'

'
† †

' ' '

,
, , '

1
( , ; , )

2

1
( , ; , ) ( , ; , )

2

GWF Ii Jj Ii Jj Ii Ii Ii IiGWF GWF
Ii Jj I i

Ii Kk Jj LlGWF GWF
Ii Jj

Kk Ll

E t c c u Ii Ii Ii Ii c c c c

u Ii Jj Kk Ll u Ii Jj Ll Kk c c c c

       

   


    

 
  

   

        

= +

+ −

 


 

            (16) 

where ∑' indicates that the pure on-site terms are excluded from the summation. The on-site 
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2PCM are treated rigorously and the intersite 2PCM are evaluated using Wick’s theorem. The 

1PDM can be expressed as,2 

† †

, , ' , ',

, , ' , '

1
' '

( ) ( ) ( ' ) ( ' )

Ii Jj Ii Jj

Ii Jj Ii Jj

Ii Jj Ii Ii Ii Jj Jj JjGWF
GWF GWF Ii Jj

i j i j

c c c c

g g g g

   



   

   

=     
 

   


  (17) 

where , , ' ,Ii Jj Ii Jj
     is coefficient determined from 0  and  Gutzwiller variational parameters 

 ( ) , ( , ) ( , ) ( , )Kkg K k I i or J j  ,   

2

, , ' , ' 0 0

{ , , }

( ) , ,{ } ' , ' ,{ }
Ii Jj Ii Jj

Kk

Kk Ii Jj Kk Ii Jj Kk

Kk Ii Jj Kk

g   

 

=           ,  (18) 

and 

2 2

, , ,,
,

( ) ( )
Ii Jj Ii Jj

Ii Jj

GWF GWF i jIi Jj
g g   

 

  =   .      (19) 

By comparing Eq. (17)-(19) with Eq. (10)-(12), one can find that the expression of 1PDM of a 

bulk system is very close to that of a diatomic molecule, except that the expression of   is 

different. Clearly, the computational time to rigorously evaluate the expectation values of an 

operator such as 1PDM (Eq.17), the norm of GWF (Eq.19), or equivalently the coefficient tensor 

 , grows exponentially with respect to the number of atomic sites, as the summation goes 

through all of them. Therefore, effective approximations to evaluate the coefficient tensor   has 

been adopted. As will be shown numerically, this approximation introduces some balanced errors 

                                                 

2 For simplicity, Eq. (17) only presents 1PDM with ( , ) ( , )I i J j . The expressions of 1PDM with 

( , ) ( , )I i J j=  and the on-site 2PCM are very similar to the expressions in Eq. (9)(13) and are thus 

not presented here. 
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in the numerator and denominator when calculating the expectation value of operators such as 

density matrix, which ends up with quite good error cancellations. Furthermore, it guarantees 

that the method recovers the Hartree-Fock and atomic limits. 

 In the following we will take bulk Hydrogen as an example to illustrate how to approximate 

  in a simple way. For hydrogen systems described by minimal basis 1s-orbitals, there are 4 on-

site Fock states at each H-atom: , , ,    . And we have ( ) ( )g g =  since the 

orbital is half-filled. For simplicity, take ( ) ( ) , ( ) ( ) 1g g g g g =  =  =  = . The problem 

is to evaluate , , ' , 'Ii Jj Ii Jj
     in Eq. (18) concerning 2 sites ,Ii Jj for large systems. Let us consider 

the case with 1g , which implies the dominant onsite configuration is the singly occupied 

states. It corresponds to the system approaching dissociation limit. One can address the problem 

by considering the number of electrons ( ), ( )e en Ii n Jj  at the 2 sites. If ( ) ( ) 2e en Ii n Jj+ = , each of 

the rest sites will be occupied by 1 electron when a thermodynamic limit is approached, so 

( ) 1kg  =  in Eq. (18) as 
k or =   . Eq. (18) thus becomes 

, , ' , ' 0 0, ' , '
Ii Jj Ii Jj Ii Jj Ii Jj    =       . If ( ) ( ) 1e en Ii n Jj+ = , one electron must go to one of 

the rest sites and that site will be double occupied while all of other rest sites will be single 

occupied at the dissociation limit. So 

( ) ( ) ( ) ( ) ( ) ( )
2 2 2 2 22 2 2

,

( ) ( ) ( ) ( ) ... ( ) ( ) ... 1 1 ...k

Kk Ii Jj

g g g g g g g g


 =      =    =   and Eq. 

(18) now becomes 2

, , ' , ' 0 0, ' , '
Ii Jj Ii Jj Ii Jj Ii Jjg    =       . Similarly, if ( ) ( ) 3e en Ii n Jj+ = , 

one electron must go from one of the rest sites to site Ii or Jj . The site with the missing electron 

will be vacant and all other rest sites will be single occupied at thermodynamic limit. So 
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 =      =    = , and Eq. 

(18) becomes 2

, , ' , ' 0 0, ' , '
Ii Jj Ii Jj Ii Jj Ii Jjg    =       . The expression to evaluate 

, , ' , 'Ii Jj Ii Jj
   

 is summarized in Eq. (20), 
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,     (20) 

where 0

, , ' , 'Ii Jj Ii Jj
   

 is predetermined coefficient from 0 , 

0

, , ' , ' 0 0, ' , '
Ii Jj Ii Jj Ii Jj Ii Jj    =       .       (21) 

We further point out that, although Eq. (21) is developed based on the assumption that the onsite 

singly occupied states are dominant, it also recovers the Hartree-Fock limit with uniform 

variational parameters. 

For a general non-Hydrogen bulk system with en  electrons/atom, Eq. (20) can be generalized 

to, 
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,    (22) 

where 
+  and 

−  represent the dominant on-site configuration with 1 extra and 1 missing 

electron, respectively. In Eq. (22) we only consider 1 extra or missing electrons at sites ,Ii Jj . 

Higher order approximations can be made if more than 1 extra or missing electrons are 

considered. Eq. (22) is a generalized approximation to effectively evaluate the coefficient tensor
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, , ' , 'Ii Jj Ii Jj
   

. If we want to evaluate the 1PDM presented in Eq. (17) or the 2PCM, Eq. (22) 

should be used instead of Eq. (18) for evaluation of   in Eq. (17). 

By comparing Eq. (11) and (21), one can see that 0

, , ' , 'Ii Jj Ii Jj
   

 in Eq. (21) has the same form as 

0

, , ' , 'i j i j
   

 in Eq. (11). They can be easily evaluated using the 1PDM of 0  regarding sites 

,Ii Jj  or sites ,i j . Then 
, , ' , 'Ii Jj Ii Jj

   
is readily evaluated from 0

, , ' , 'Ii Jj Ii Jj
   

, as shown in Eq. (22). 

For a diatomic system, ( ) ( ) 2e e en Ii n Jj n+ =  is always true, and Eq. (22) gives 

0

, , ' , ' , , ' , 'Ii Jj Ii Jj Ii Jj Ii Jj
        = , thus the expression in Eq. (11) is recovered. So Eq. (22) can be 

regarded as a general expression of 
, , ' , 'Ii Jj Ii Jj

   
 that is compatible with both multi-atomic and 

diatomic systems.  

3. RESULTS 

Here we show the GCGM numerical results for N2 dimer in spin-singlet ground state, as well 

as O2 dimer in spin-triplet ground state. QUAsi-atomic Minimal Basis set Orbitals (QUAMBOs, 

see Ref. [51]) are used as basis-set orbitals (e.g.  in Eq. (2) and (3)) with the 2𝑠 and 2𝑝 orbitals 

chosen as the on-site correlated orbitals. QUAMBOs are constructed from the aug-cc-pVTZ 

basis functions [52]. QUAMBO-based FCI, large basis CI results and experimental 

measurements are also presented for comparison. We also show the GCGM results for 1-

dimensional hydrogen chain as an example of periodic bulk systems. The potential energy is 

evaluated using Eq. (5) for N2, O2 dimers and Eq. (16) for linear hydrogen chain.  

3.1.N2 dimer 
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N2 is a popular example for strongly correlated systems and has been served as a 

benchmarking system with several theoretical methods [53]. Figure 1(a) shows the QUAMBO-

based GCGM ground state total energy curve of N2 in comparison with the results from 

QUAMBO-based FCI calculations. Remarkably, QUAMBO-GCGM produces energy curves in 

good agreement with the QUAMBO-FCI results (error in the binding energy is 0.0061 Hartrees, 

or 3.83 kcal/mol). The bound QUAMBO-CMR result is also included for comparison. The 

GCGM result is slightly better than CMR around the region of bond length ~2 Å. More details 

on comparison of CMR and GCGM can be found in Discussion. To compare with experiment, 

dynamical correlation beyond the minimal basis calculations needs to be added. For simplicity, 

we adopt the local density approximation for the dynamical correlation energy Ec and evaluate it 

with PySCF package [54]. Figure 1. (b) plots the binding energy curve determined by 

GCGM+𝐸𝑐 and experiment [55,56] for comparison. GCGM+𝐸𝑐 produces energy curve in 

reasonable agreement with experiment (error in the binding energy is 0.016 Hartrees, or 10.0 

kcal/mol), illustrating the correct recipe to include 𝐸𝑐 in the total energy. 
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Figure 1. Potential energy curves of N2 determined by (a) GCGM, CMR and FCI methods, and 

(b) GCGM+Ec and experiments [54,55]. The GCGM, CMR and FCI calculations are based on 

QUAMBOs constructed from the aug-cc-pVTZ basis set. 

3.2.O2 dimer 

Here, we use O2 dimer as an example to show that GCGM also promotes more flexibility 

within Gutzwiller framework. We study the potential energy curve for both the ground state 

𝑋3Σ𝑔
−, or ‘triplet oxygen’, and the lowest excited state 𝑎1∆𝑔, or ‘singlet oxygen’. Figure 2(a) 
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shows the QUAMBO-GCGM potential energy curve in comparison with QUAMBO-FCI for the 

singlet and triplet states. GCGM produces energy curves in close agreement with QUAMBO-

FCI for the singlet state (the binding energy error is 0.0035 Hartrees, or 2.20 kcal/mol) and at the 

bound region for the triplet state. However, GCGM yields surprisingly wrong results at the 

atomic limit for the triplet state. 

 

Figure 2. Potential energy curves of O2 determined by (a) GCGM and FCI methods, where the 

atomic limit of GCGM is wrong for the ground triplet 𝑋3Σ𝑔
−  state; and (b) the corrected GCGM 
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and FCI methods for 𝑋3Σ𝑔
−, where the atomic limit solution is included in the trial wave function 

in GCGM. The GCGM and FCI calculations are based on QUAMBOs constructed from the aug-

cc-pVTZ basis set. 

After a careful investigation of the atomic limit solution, we found that the reason for the 

discrepancy is that the non-interacting wave function 0 , from which the Gutzwiller wave 

function is constructed, does not contain the configurations of the atomic limit solution. The 

triplet 𝑋3Σ𝑔
− state has 𝑆 = 1. If it can be described with a single Slater determinant 0 , 𝑆𝑧 can 

only be either 1 or −1. We picked 𝑆𝑧 = 1 for demonstration. When the two oxygen atoms pull 

away from each other towards the atomic limit, both atoms must have 𝑆𝑧 = 1/2 from symmetry 

of  0  and spin conservation, which is not the atomic solution (oxygen atom has 𝑆𝑧 =

−1, 0 𝑜𝑟 1). So 0  cannot contain the configurations of the atomic limit solution.  

To address this problem, we need to introduce some mechanism to feed in the atomic 

solutions. One possible way is to use the GWF with Gutzwiller correlator expressed in terms of 

atomic eigen-states, or in its rotationally invariant form [57-59]. However, it will significantly 

increase the complexity of the formalism and computational time. Alternatively, we here 

included the atomic limit solution straightforwardly in the trial wave function, 

 0 0' a =  +           (23) 

where a  is the atomic limit solution, and   is the factor determing the weight of a . a  

is set to let one oxygen atom has 1, 1zS S= =  and the other atom has 1, 0zS S= = . Then the total 

energy is minimized with respect to both  ( )ig   and  . Fig. 2(b) plots the corrected GCGM 
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energy in comparison with QUAMBO-FCI for triplet oxygen and good agreement is achieved 

(the binding energy error is 0.0023 Hartrees, or 1.44 kcal/mol). Fig. 3 plots the binding energy 

curve of GCGM+Ec and the large basis CI [60] for comparison, where close agreement is 

established again (the binding energy error is 0.0022 and 0.0027 Hartrees for singlet and triplet, 

respectively). 

 

Figure 3. Potential energy curves of triplet and singlet oxygen with GCGM+Ec and large basis CI 

[60] for comparison. 

3.3. 1-D hydrogen chain 

We benchmark the accuracy of our GCGM method for periodic bulk systems using one-

dimensional chain of hydrogen atoms. The linear hydrogen chain is the simplest periodic system, 

yet it is an ideal first benchmark system for testing the ability of many-body methods to treat 

correlation effects [61]. It also serves as a testing base to benchmark the compuational efficiency 

of these methods. On one hand, the full Coulomb interaction needs to be treated for accurate 
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description for electron correlations of this system. On the other hand, the hydrogen chain does 

not have the complexities of treating core electrons or incorporating relativistic effects. 

Therefore, many theoretical methods can be benchmarked with hydrogen chain, as discussed in 

details in the recent work [61].  

As shown in Fig. 4, the potential energy curve as a function of interatomic distance from our 

GCGM calculations is compared with the one using auxiliary-field quantum Monte Carlo 

(AFQMC) reported in Ref. [61]. The results from density functional calculations with local 

density approximation (LDA) and the Hartree Fock (HF) method are also plotted for comparison. 

In our GCGM calculation, 22 𝑘-points are used, or equivalently, 22 atomic sites with periodic 

boundary condition. From Fig. 4, one can see that a good agreement between GCGM and 

AFQMC results is achieved with a binding energy error of 0.022 eV/atom and that GCGM 

performs much better than the standard LDA or HF, especially when the interatomic distance 

gets larger. One downside of some popular theoretical methods to deal with correlated-electron 

systems is that their computational load increases dramatically as the system size gets bigger. 

Although they can be very accurate describing small systems, their power are restricted for big 

molecules or bulk materials. The GCGM method is developed with the motivation that a good 

balance between accuracy and computational efficiency can be achieved. As we will show in 

DISCUSSION later, GCGM scales a little more than linearly with system size for periodic 

systems, indicating a promising computational efficiency while maintaining satisfying accuracy.  
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Figure 4. Potential energy curves of one-dimensional hydrogen chain calculated from different 

methods as indicated.  

4. DISCUSSION 

The example of triplet oxygen 𝑋3Σ𝑔
− demonstrates the important role that the non-interacting 

wave function 0  plays in the Gutzwiller framework. An accurate solution cannot be obtained 

if 0  does not contain certain configurations which are present in the real solution. It is worth 

noting that in our GCGM approach, 0  can be easily modified to accommodate all possible 

configurations like the multireference configuration interaction method does. In the example of 

triplet oxygen, 0  is mixed with the atomic solution to get the accurate solution at the atomic 

limit. To study the constraint from 0  in the Gutzwiller scheme, we compare the GWF and the 

FCI wave function in the following. 
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For a finite system with N  sites, the exact ground state many-body wave function, i.e., the 

FCI wave function, is a vector in the Fock space of the following form 

1 2

1 2 1 2

{ , ,..., }

( ... ) ... ,
  

 =      
N

FCI N N       (24) 

where i  is the on-site Fock state at site i . The GWF in Eq. (4) can be rewritten as 

1 2

1 2 1 2 1 2 0

{ , ,..., }

( ) ( )... ( ) ... ... ,
N

GWF N N Ng g g
  

 =              (25) 

Clearly, the GWF represents an approximation to the FCI wave function by taking the linear 

expansion coefficient   in the form of 

1 2 1 2 1 2 0( ... ) ( ) ( )... ( ) ...N N Ng g g    =        .     (26) 

It contains a simple site-wise product of g -factors with site correlations encoded in 0 .  It is 

interesting to check the impact of the factorization of   as in the GWF and its dependence on 

0 . A parameter   is introduced to control the dependence of GWF  on 0 . We change 

the coefficient 1 2 0... N     in Eq. (25) to be, 

1 2 0 1 2 0

1 2 0

1 2 0

... , ...
...

, ...

N N

N

N

when

when

          
    = 

      

    (27) 

So the minimum of 
1 2 0... N     is set to be the adjustable  . 

1 2 0... N     is a number 

between 0  and 1  for a normalized 0 . By adjusting  , one can control the dependence of 

GWF  on 0 . For 0 = , the original GCGM results are exactly reproduced. As   gets 

larger, GWF  gradually loses the dependence on 0  and configurations which are not present 
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in 0  begin to come into play. For 1 = , the dependence of GWF  on 0  is fully removed 

and 1 2( ... )N     in Eq. (26) is exclusively factorized by ( )ig  . 

The triplet oxygen 𝑋3Σ𝑔
−  is picked again as a prototypical case that the configurations of the 

real solution are absent in 0  at certain bond length. In Fig. 5 we plot the energy curve of 

𝑋3Σ𝑔
−  with 0, 0.01,1 =  in comparison with QUAMBO-FCI. 0 =  just replicates the energy 

curve as shown in Fig. 2(a). As mentioned earlier, GCGM yields wrong results at the atomic 

limit because 
0  does not contain the configurations of the atomic solution. By setting 1 = , 

one includes all possible configurations which are not included in 
0  by eliminating the 

dependence of GWF  on 0 . The GCGM yields correct results at the atomic limit. However, 

the energy is too high at the bonding region, illustrating the importance of 0  and the 

effectiveness of the GWF scheme. It can be seen that 0 =  and 1  produce the correct energies 

at the bound region and the dissociation limit, respectively. At the intermediate region, e.g. 

𝑟~2Å, a   is to be selected to help one solution transit to the other smoothly. Here, we choose 

0.01 = . One can nearly reproduce the FCI results by selecting the minimum of the 3 GCGM 

energies with 0, 0.01,1 =  at each bond length. In principle, one needs to scan   ranging from 

0 to 1 and get the minimum energy. From our experience, it suffices to pick up several values of 

 , for example, 0, 0.01, 1, calculate the energies with these  s, and choose the minimal one. 

0.01 =  may not be the best selection at the intermediate region. However, choosing other   

does not raise a significant improvement in energy. For example, if we choose 0,0.02,1 =  

instead of 0,0.01,1 = , the resulting change in energy is only ~0.002 Hartree.  
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Eq. (23) and Eq.(27) provide 2 alternative ways to include configurations that are not 

originally included in 
0 . If one knows what are relevent configurations to include, Eq. (23) 

can be used to include these configurations straightforwardly, where   determines the weight of 

the configurations. However, if one has no information on what configurations should be 

included, Eq. (27) can be used to include all possible configurations by giving them a minimum 

weight measured by  . We note that there is no direct relationship between   and  .  

Our study clearly demonstrates the importance of  0  in the Gutzwiller framework. At the 

same time, the limitation of the Gutzwiller scheme from 0  is also shown. Fortunately, the 

limitation can be overcomed in our GCGM approach by modifying 0  to accommodate all 

possible configurations. From variational minimization point of view, both the reference 

wavefunction 0  and Gutzwiller projector should be simultaneously optimized. Indeed, in 

some variational quantum Monte Carlo approaches where the variational wavefunction is of 

Jastrow-Slater and Jastrow-antisymmetric geminal power (AGP) ansatz, both fermionic and 

Jastrow part are fully optimized within the given parameterized function form [62-64]. In the 

current GCGM calculations, the 0  is first fixed to be the restricted HF or restricted open-shell 

HF wavefunction of the corresponding spin-multiplicity for simplicity. The reported 

modification of 0  by adding the atomic wavefunction or minor tuning of the missing atomic 

configurations represents a simple and yet quite effective way to improve the ground state 

solutions when approaching the atomic limits.   
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Figure 5. Potential energy curves of the triplet oxygen 𝑋3Σ𝑔
− using GCGM with 0, 0.01,1 =  

and FCI methods. 

In the CMR approach proposed in our previous work [49], a modified Gutzwiller 

approximation is applied and the single-electron term can be written as, 

† †

0
,j

i j i i jCMR
c c z c c

             (28) 

where 


  =j GA GA

i i jz z z if ( ) ( )i j   and 1  otherwise. The z  factor can be evaluated as, 

†

'

0 0
'

| | '

(1 )

i i i i iGA

i

i i

p p c
z

n n





 

 



 
=

−
 .       (29) 

Here, 0

0 00i i i i in c c c c    = =  † † , and ip   is the Fock state occupation probability. The 

modified orbital renormalization form is obtained by comparison with the exact analytical total 

energy expression of the minimal basis hydrogen dimer. In the GCGM approach presented in 

this work, the equivalent j

iz 

  can be written as from Eq. (10),  
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†

, , ' , '

, , ' , '

†

, , ' , '

, , ' , '

' ' ( ) ( ) ( ' ) ( ' )

' '

i j i j

i j i j

i j i j

i j i j

i i i j j j i j i j

j

i

i i i j j j

c c g g g g

z
c c

 





 





   

   

   

   

       

=
   




,  (30) 

if i j (the formalism for i j=  is not presented here for conciseness). Comparing Eq. (28) and 

(30), it can be seen that the GCGM approach is different from CMR by NOT factorizing the z  

factor. The GCGM approach also features improved flexibility in selecting 0  discussed 

above. As shown in the example of O2, 0  can be modified to accommodate all possible 

configurations to give an accurate solution at atomic limit. On the other hand, since CMR is 

based on Gutzwiller approximation and Gutzwiller framework that the GWF is constructed on 

the basis of the single Slater determinant 0 , such extension of 0  is not as straightforward 

as in GCGM and still needs extra exploration. 

Finally, we want to discuss the scaling of our GCGM method with a system of increasing 

size. We consider a 𝑁-site(atom) system. From Eq. (16), one needs to evaluate the 1PDM 

†

Ii Jj GWF
c c   and on-site 2PCM † †

' 'Ii Ii Ii Ii GWF
c c c c     to calculate the total energy. The 

number of on-site 2PCM terms to be evaluated is 𝑁. The number of 1PDM terms is the number 

of pairs of atoms to be considered in the system, i.e. 𝑁 − 1 for periodic bulk systems or 𝑁(𝑁 −

1)/2 for molecules. Thus, we expect our GCGM method scales linearly with system size for 

periodic bulk systems and quadratically for molecules. In Fig. 6, we test the scaling of our 

GCGM method with 1-D hydrogen chain. We plot the computation time against the number of 

𝑘-points, or equivalently, number of atoms with periodic boundary condition. One can see that 

GCGM method scales a little more than linearly with system size. This is because that a small 
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fraction of computation time is attributed to the calculation of Fock terms which scales ~ 𝑁4, as 

our method adopts Hartree-Fock-type factorization for the intersite two-body interactions. 

  

Figure 6. Computation time (using 1 core) against the number of 𝑘-points for 1-D hydrogen 

chain at interatomic distance of 1 Å.  

5. CONCLUSION 

To go beyond some intrinsic limitations of Gutzwiller approximation and boost the accuracy, 

we propose a method, namely GCGM, that bypasses Gutzwiller approximation for energy 

calculation of correlated electron systems. The total energy can be expressed explicitly as a 

function of Gutzwiller variational parameters and minimized with conjugate gradient method. 

GCGM is benchmarked by calculating the binding energy curves of N2 and O2 dimers, which are 

selected as benchmark cases for non-magnetic and magnetic systems, respectively. One-
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dimensional hydrogen chain is also selected as a prototype periodic bulk system that goes much 

beyond diatomic molecules. The method produces energy curves in good agreement with 

QUAMBO-FCI, experiment data, large basis CI or AFQMC results. The method also features 

ideal parallel efficiency, which relieves the extra computational burden without resorting to 

Gutzwiller approximation. The dependence of Gutzwiller wave function on the trial non-

interacting wave function is also discussed. We showed that the GCGM  method adds more 

freedom in treating the trial wave function to achieve more accurate description of correlated 

electron materials. 
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