NOTE TO USERS

This reproduction is the best copy available.
UMI

SYNTHETIC APPROACH TOWARDS METHYLLYCACONITINE

 bySarathy Kesavan

A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

Major: Organic Chemistry

Program of Study Committee:
George A. Kraus, Major Professor
Richard C. Larock
William S. Jenks
Susan Carpenter
David K. Hoffman

Iowa State University
Ames, Iowa

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

UMI Microform 3158348
Copyright 2005 by ProQuest Information and Learning Company.
All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346

Ann Arbor, MI 48106-1346

Graduate College

Iowa State University

This is to certify that the doctoral dissertation of

Sarathy Kesavan

has met the dissertation requirements of Iowa State University

Signature was redacted for privacy.
Major Professor

Signature was redacted for privacy.
For the Major Program

TABLE OF CONTENTS

GENERAL INTRODUCTION 1
CHAPTER 1. ANNULATIONS VIA DIANIONS: FORMATION OF FIVE-, SIX- AND SEVEN-MEMBERED RINGS
Introduction 2
Results and Discussion 6
Experimental Section 13
References 24
CHAPTER 2. SYNTHETIC APPROACH TOWARDS METHYLLYCACONITINE
Introduction 26
Results and Discussion 33
Experimental Section 55
References 78
GENERAL CONCLUSIONS 81
ACKNOWLEDGMENTS 82

GENERAL INTRODUCTION

Organic synthesis, with the invention of new synthetic strategies and technologies, has evolved from largely empirical approaches for the preparation of relatively simple molecules to sophisticated strategies for the construction of molecules with considerable structural and functional complexity. Organic synthesis is employed to synthesize the natural product and its analogs for the discovery of new drugs. The development of new synthetic methodologies in the course of total synthesis is imperative for the efficient synthesis of drug candidates. Apart from the practical applications, the pursuit of efficient syntheses of complex natural products is both gratifying and truly enjoyable.

Chapter One describes the development of annulation reaction for the construction of five-, six- and seven- membered rings. Chapter Two describes a direct approach to the synthesis of methyllycaconitine, a representative of the aconitine alkaloids. The numbering of the compounds, schemes and references are independent in each section.

CHAPTER 1

ANNULATIONS VIA DIANIONS: FORMATION OF FIVE-, SIX- AND SEVENMEMBERED RINGS

Introduction

C,C-Dianions, such as those shown in Figure 1, are generated by two sequential deprotonations. They have a long and diverse history and continue to serve as important synthetic reagents. ${ }^{1-6} \mathrm{C}, \mathrm{C}$-Dianions are categorized based on the location of deprotonation. When sequential deprotonation occurs at the same carbon atom, 1,1-dianions are formed. When sequential deprotonation occurs at adjacent carbons, 1,2-dianions are formed. When sequential deprotonation occurs at carbon sites one atom apart, 1,3-dianions are formed as shown in Figure 1. The 1,3-(C,C) dianions have been most widely used in organic synthesis owing to their ready access and predictable reactivity.

1,1-(C,C)-dianion geminal dianion

1,2-(C,C)-dianion vicinal dianion

1,n-(C,C)-dianion remote dianion

Figure 1. Examples of C,C-dianions

It is no surprise that investigators have made extensive use of these readily-accessed
dianions in synthesis. As an introduction to their utility, a pictorial survey of some natural and unnatural products prepared using dianions is shown in Figure 2.

isoretronecanol

juvenile hormone O

chalcogram

gascardic acid

Figure 2. Synthetic products resulting from the use of 1,3-(C,C)-dianions.

Dianion-based [3+3] Annulation

Cyclohexenes are generally prepared by Diels-Alder reactions or Robinson annulation reactions. ${ }^{7}$ There are only a few examples where cyclohexenes are prepared by bringing together two three-carbon units. In all of these cases, a 1,3-(C,C) dianion acts as one of the two units. Mordini reported a novel allylic stannane reagent which functions as a dianion equivalent. ${ }^{8}$ Recently, 3-trimethylstannyl-2[(trimethylstannyl)methyl]propene was used as an isobutene dianion equivalent. When treated with diacyl chlorides, a cyclic product was formed through a formal $[3+\mathrm{n}]$ annulation process as shown in Scheme 1.

Scheme 1.

Molander communicated an innovative approach to the synthesis of six-membered rings by use of α, β-epoxy aldehydes and iodomethyl-substituted allylic silanes (Scheme 2). ${ }^{9}$ Allyltin trihalide (generated in situ) addition to the carbonyl of the epoxy aldehyde occurred with good diasteroselectivity. The combination of intramolecular Lewis acid catalysis and fluoride-induced epoxide ring opening leads to formation of six-membered rings with good diastereoselectivity at three contiguous stereocenters of the newly-formed ring.

Scheme 2.

Moohoff reported an annulation using phosphorus-stabilized 1,3-(C,C) dianions. ${ }^{10}$ Moohoff reacted unsaturated aldehydes with the dianion of phosphonate keto esters. This led to the formation of cyclohexenones as shown in Scheme 3.

Scheme 3.

Cooke and Magnus ${ }^{11}$ converted 1-phenyl-3-phenylsulfonyl-2-propanone to its crimson red 1,3-dianion using two equivalents of LDA or sequential treatment with NaH and BuLi . They reacted it with 1,3 -dibromopropane to give the annulated product in modest yield as shown in Scheme 4.

Scheme 4.

Results and Discussion

As part of a program to develop terpene-based antiviral agents, ${ }^{12}$ we needed an efficient synthetic route to bicyclic segments present in sesquiterpenes such as illudin $\mathrm{S} .{ }^{13}$ The cytotoxicity and anticancer activity of illudin S has been most extensively investigated. ${ }^{14}$ The target of the compound is believed to be DNA. The low therapeutic index of illudin S has precluded its development as a chemotherapeutic agent. However, the semisynthetic illudin analogue, 6-(hydroxymethyl)acylfulvene (HMAF) shows outstanding activity and is now in various Phase I, II, and III clinical trials. ${ }^{15}$

The well-documented acid lability of cyclopropyl carbinols plus the ready availability of 1,1-diacetylcyclopropane ${ }^{16}$ led us to evaluate a [3+3] annulation route to this system. We envisioned a reaction of a $1,3-(\mathrm{C}, \mathrm{C})$ dianion with 1,1 -diacetylcyclopropane to generate the bicyclic segment of the illudins.

$R=H$ illudin M $\mathrm{R}=\mathrm{OH}$ illudin S

illudin A

HMAF

Figure 3. Cytotoxic sesquiterpenes

Scheme 5.

We reasoned that phosphonium salts bearing an electron-withdrawing group at the γ position could generate the dianion. The phosphonium salts were prepared from corresponding halides as shown in Scheme 6. Having synthesized the dianion precursor, we tested our dianion annulation using 1,1-diacetylcyclopropane and phosphonium salt 2a. ${ }^{17}$ The results are summarized in Table 1.

Scheme 6.

Table 1: [3+3] Annulations of 3-cyanopropyl phosphonium salts

Entry	Base	Temp (time)	Yield \%
1	LDA	$-78^{\circ} \mathrm{C}$	23
2	LDA, HMPA	$-78^{\circ} \mathrm{C}$	27
3	LDA	$-20^{\circ} \mathrm{C}(2 \mathrm{~h})$	39
4	NaHDMS	$-20^{\circ} \mathrm{C}(2 \mathrm{~h})$	trace
5	LiTMP	$-20^{\circ} \mathrm{C}(2 \mathrm{~h})$	65

Using LDA as base at $-78{ }^{\circ} \mathrm{C}$ gave a modest yield of 23%. Having achieved the desired cyclization, we tried optimizing the cyclization. Ultimately, the optimized cyclization was achieved using LiTMP as base at $-20^{\circ} \mathrm{C}$. The successful annulation prompted us to evaluate the annulation with a variety of 1,3-diketones as electrophiles. The results are summarized in Table 2.

Table 2: [3+3] Annulation

Entry	G	\mathbf{R}	$\mathbf{R 1}$	$\mathbf{R 2}$	Yield \% (isomer ratio)	
1	CN	$\mathrm{CH}_{2}-\mathrm{CH}_{2}$	Me	Me	$65(3: 1)$	$\mathbf{3}$
2	COOEt	$\mathrm{CH}_{2}-\mathrm{CH}_{2}$	Me	Me	$54(5: 1)$	$\mathbf{4}$
3	CN	Me, Me	Me	Me	61	$\mathbf{5}$
4	CN	$\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{2}$	Me	Me	59	$\mathbf{6}$
5	CN	Me, Me	H	Ph	$53(1: 1)$	$\mathbf{7}$
6	COOEt	Me, Me	H	Ph	$48(1: 1)$	$\mathbf{8}$

The reaction of dianions with keto aldehydes ${ }^{18}$ (entries $5 \& 6$) gave only one regioisomer. We believe that anion next to the electron withdrawing group is more reactive than the phosphorane and hence it reacts preferentially with the more reactive aldehyde, as shown in Scheme 7.

Scheme 7.

Having achieved $[3+3]$ annulations, we investigated the synthesis of five-membered rings. The results of the dianion additions to 1,2-dicarbonyl compounds are depicted in Table 3. As anticipated, the yields of cyclopentenes were higher.

Table 3: [3+2] Annulation

Entry	\mathbf{G}	Base	\mathbf{R}	Yield \% (isomer ratio)	
1	CN	LiTMP	Me	$61(1: 1)$	$\mathbf{9}$
2	CN	LiTMP	2 -furyl	$68(1: 1)$	10
3	CN	LiTMP	Ph	$80(1: 1)$	11
4	COOEt	LiTMP	Ph	$65(1: 1)$	12

We also evaluated the synthesis of seven-membered rings. The results are depicted in Scheme 8. The initial adduct was oxidized using Jones reagent to give compounds 13 and 14.

Scheme 8.

Having achieved useful [3+4] annulation with modest success, we decided to change our dianion. We synthesized phosphonium salt 15^{19} and evaluated [4+2] annulation as shown in Scheme 9. Yields were fairly modest, probably due to the instability of the dianion.

Scheme 9.
We also reacted $\mathbf{2 b}$ with cis-cyclopentane-1,3-dialdehyde. ${ }^{20}$ This reaction provided the
bicyclic adduct shown below in 38% yield.

18
The results above demonstrate that cyclizations using dianions derived from 2a and 2b can generate five-, six- and seven-membered ring compounds. The highly functionalized ring systems produced by the dianion annulations will be useful for the synthesis of natural products. Application of this methodology in the synthesis of core-structure of SorcodictyinA^{22} is currently under progress.

Sarcodictyin A

Scheme 10.

Experimental Section

Unless otherwise noted, materials were obtained from commercial suppliers and used without purification. Tetrahydrofuran was distilled over sodium benzophenone ketyl. Dichloromethane and benzene were distilled over calcium hydride. All experiments were performed under an argon atmosphere unless otherwise noted. Nuclear magnetic resonance measurements were performed with either a Varian 300 MHz or Bruker 400 MHz instrument. All chemical shifts are reported relative to $\mathrm{CDCl}_{3}\left(7.26 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}$ and 77.06 ppm for ${ }^{13} \mathrm{C}$), unless o therwise noted. Coupling constants (J) a re reported in Hz with abbreviations: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet. High resolution mass spectra were recorded on a Kratos model MS-50 spectrometer and low resolution mass spectra were performed with a Finnegan 4023 mass spectrometer. Standard grade silica gel $\left(60 \mathrm{~A}^{\circ}, 32-63\right.$ $\mu \mathrm{m}$) was used for a flash column chromatography.

Compound 3:

To a solution of $2 \mathrm{a}(457 \mathrm{mg}, 1.0 \mathrm{mmol})$ in 5 mL THF at $-78{ }^{\circ} \mathrm{C}$ was added a solution of LiTMP generated using tetramethylpiperidine ($296 \mathrm{mg}, 2.1 \mathrm{mmol}$) and 0.8 mL of $n-\mathrm{BuLi}$ (2.5 M solution in hexane) in 10 mL of THF. The temperature of above solution was allowed to rise to $-20^{\circ} \mathrm{C}$ and stirred at $-20^{\circ} \mathrm{C}$ for a period of 90 min . The above solution was then cooled to $-78^{\circ} \mathrm{C}$ and 2,2-diacetylpropane ($105 \mathrm{mg}, 0.82 \mathrm{mmol}$) in 3 mL THF was added. The solution was warmed to $0^{\circ} \mathrm{C}$ and was stirred at that temperature for an additional 1 h . The reaction was quenched with saturated ammonium chloride solution. The organic layer was extracted with ether (3 X 10 mL) and dried over MgSO_{4}. The crude product was chromatographed on silica gel $(\mathrm{H}: \mathrm{EA}=5: 1$ to $3: 1)$ to afford compound 3 as mixture of
isomers. 3a: $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.32(1 \mathrm{H}, \mathrm{bs}), 2.92(1 \mathrm{H}, \mathrm{dd}, J=7.8 \mathrm{~Hz}, J=4.5$ $\mathrm{Hz}), 2.50-2.60(1 \mathrm{H}, \mathrm{m}), 2.30-2.40(1 \mathrm{H}, \mathrm{m}), 1.42(3 \mathrm{H}, \mathrm{m}), 1.32(3 \mathrm{H}, \mathrm{s}), 1.00-1.10(1 \mathrm{H}, \mathrm{m})$, $0.80-0.95(2 \mathrm{H}, \mathrm{m}), 0.6-0.7(1 \mathrm{H}, \mathrm{m}) ; 75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 136.0,120.9,117.7,70.3$, 34.5, 28.6, 27.5, 24.2, 18.9, 8.3, 6.7. 3b: $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.40(1 \mathrm{H}, \mathrm{bs}), 2.86$ $(1 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}), 2.50-2.52(2 \mathrm{H}, \mathrm{m}), 1.45(3 \mathrm{H}, \mathrm{m}), 1.23(3 \mathrm{H}, \mathrm{s}), 1.13-1.20(1 \mathrm{H}, \mathrm{m}), 0.78-0.90$ $(2 \mathrm{H}, \mathrm{m}), 0.68-0.72(1 \mathrm{H}, \mathrm{m}) ; 75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 136.5,121.2,117.5,70.1,38.6$, 29.5, 28.2, 22.1, 18.9, 7.9, 7.4. HRMS m / z for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}$ calcd 177.1151, found 117.1154.

Compound 4

To a solution of $\mathbf{2 b}(456 \mathrm{mg}, 1.0 \mathrm{mmol})$ in 5 mL THF at $-78{ }^{\circ} \mathrm{C}$ was added a solution of LiTMP generated using tetramethylpiperidine ($296 \mathrm{mg}, 2.1 \mathrm{mmol}$) and 0.8 mL of $n-\mathrm{BuLi}$ (2.5 M solution in hexane) in 10 mL of THF. The solution was allowed to rise to $-20^{\circ} \mathrm{C}$ and stirred at $-20^{\circ} \mathrm{C}$ for a period of 90 min . The above solution was cooled to $-78^{\circ} \mathrm{C}$ and $2,2-$ diacetylcyclopropane ($105 \mathrm{mg}, 0.82 \mathrm{mmol}$) in 3 mL THF was added. The solution was warmed to $0{ }^{\circ} \mathrm{C}$ and was stirred at that temperature for additional 1 h . The reaction was quenched with saturated ammonium chloride solution .The organic layer was extracted with ether ($3 \times 10 \mathrm{~mL}$) and dried over MgSO_{4}. The crude product was chromatographed on silica gel ($\mathrm{H}: \mathrm{EA}=5: 1$) to afford compound 4 as mixture of isomers. 4a: $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.34(1 \mathrm{H}, \mathrm{m}), 4.17(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 2.77(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}), 2.33-2.41(2 \mathrm{H}$, $\mathrm{m}), 1.42(3 \mathrm{H}, \mathrm{m}), 1.27(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.25(3 \mathrm{H}, \mathrm{s}), 1.01-1.1(1 \mathrm{H}, \mathrm{m}), 0.80-0.90(2 \mathrm{H}, \mathrm{m})$, $0.49-0.52(1 \mathrm{H}, \mathrm{m}) ; 75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 174.8,136.2,119.0,70.1,60.9,49.3,31.4$, $27.7,21.5,19.0,14.8,8.3,6.1 .4 \mathrm{~b}: 5.42(1 \mathrm{H}, \mathrm{bs}), 4.18(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 2.58-2.69(2 \mathrm{H}, \mathrm{m})$, $2.24-2.34(1 \mathrm{H}, \mathrm{m}), 1.42(3 \mathrm{H}, \mathrm{m}), 1.30(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 0.82-0.94(1 \mathrm{H}, \mathrm{m}), 0.60-0.75(3 \mathrm{H}$,
m); $75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 175.0,135.8,119.3,70.3,61.4,49.0,31.5,26.4,25.0,19.0$, 14.8, 8.3, 6.3. HRMS m / z for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3}$ calcd 224.1412, found 224.1415.

Compound 5

To a solution of $2 \mathrm{a}(457 \mathrm{mg}, 1 \mathrm{mmol})$ in 5 mL THF at $-78{ }^{\circ} \mathrm{C}$ was added a solution of LiTMP generated using tetramethylpiperidine ($296 \mathrm{mg}, 2.1 \mathrm{mmol}$) and 0.8 mL of $n-\mathrm{BuLi}$ (2.5 M solution in hexane) in 10 mL of THF. The solution was allowed to rise to $-20^{\circ} \mathrm{C}$ and stirred at $-20^{\circ} \mathrm{C}$ for a period of 90 min . The above solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and $2,2-$ diacetylcyclopentane ($126 \mathrm{mg}, 0.82 \mathrm{mmol}$) in 3 mL THF was added. The solution was warmed to $0{ }^{\circ} \mathrm{C}$ and was stirred at that temperature for additional 1 h . The reaction was quenched with saturated ammonium chloride solution. The organic layer was extracted with ether ($3 \times 10 \mathrm{~mL}$) and dried over MgSO_{4}. The crude product was chromatographed on silica gel ($\mathrm{H}: \mathrm{EA}=5: 1$) to afford mixture of alcohols. $300 \mathrm{MHz}{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.04(1 \mathrm{H}$, bs), $2.99(1 \mathrm{H}, \mathrm{dd}, J=11.6 \mathrm{~Hz}, J=6 \mathrm{~Hz}), 2.23-2.78(2 \mathrm{H}, \mathrm{m}), 1.92-2.01(2 \mathrm{H}, \mathrm{m}), 1.51-1.81(6 \mathrm{H}$, m), 1.38-1.50(3H, m), $1.27(3 \mathrm{H}, \mathrm{s}) ; 75 \mathrm{MHz}{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 142.5,121.4,115.8,74.3$, 53.9, 37.1, 36.4, 31.0, 28.8, 28.4, 27.8, 20.3, 19.8. HRMS m / z for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}$ calcd 205.1467, found 205.1469.

Compound 6

To a solution of $2 \mathrm{a}(457 \mathrm{mg}, 1.0 \mathrm{mmol})$ in 5 mL THF at $-78^{\circ} \mathrm{C}$ was added a solution of LiTMP, generated using tetramethylpiperidine ($296 \mathrm{mg}, 2.1 \mathrm{mmol}$) and 0.8 mL of $n-\mathrm{BuLi}$ (2.5 M solution in hexane) in 10 mL THF. The solution was allowed to rise to $-20^{\circ} \mathrm{C}$ and stirred at $-20^{\circ} \mathrm{C}$ for a period of 90 min . The above solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and $3,3-$
dimethyl-2,4-pentanedione ($105 \mathrm{mg}, 0.82 \mathrm{mmol}$) in 3 mL of THF was added. The solution was warmed to $0{ }^{\circ} \mathrm{C}$ and was stirred at that temperature for additional 1 h . The reaction was quenched with saturated ammonium chloride solution. The organic layer was extracted with ether ($3 \times 10 \mathrm{~mL}$) and dried over MgSO_{4}. The crude product was chromatographed on silica gel $(\mathrm{H}: \mathrm{EA}=5: 1)$ to afford $6.300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.16(1 \mathrm{H}, \mathrm{bs}), 3.13(1 \mathrm{H}$, dd, J $=11.6 \mathrm{~Hz}, J=6 \mathrm{~Hz}), 2.18-2.50(2 \mathrm{H}, \mathrm{m}), 1.64-1.64(3 \mathrm{H}, \mathrm{m}), 1.32(3 \mathrm{H}, \mathrm{s}), 1.08(3 \mathrm{H}, \mathrm{s}), 1.04$ $(3 \mathrm{H}, \mathrm{s}) ; 75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 141.72,121.7,116.7,73.6,42.5,35.6,28.4,23.7,20.6$, 20.4, 19.5. $\mathrm{HRMS} m / z$ for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}$ calcd 179.1310, found 179.1312.

Compound 7:

To a solution of $\mathbf{2 a}(457 \mathrm{mg}, 1 \mathrm{mmol})$ in 5 mL of THF at $-78^{\circ} \mathrm{C}$ was added a solution of LiTMP generated using tetramethylpiperidine ($296 \mathrm{mg}, 2.1 \mathrm{mmol}$) and 0.8 mL of $n-\mathrm{BuLi}$ (2.5 M solution in hexane) in 10 mL of THF. The solution was allowed to rise to $-20^{\circ} \mathrm{C}$ and stirred at $-20^{\circ} \mathrm{C}$ for a period of 90 min . The above solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and $2,2-$ dimethyl-3-oxo-3-phenylpropanaldehde ($144 \mathrm{mg}, 0.82 \mathrm{mmol}$) in 3 mL THF was added. The solution was warmed to $0{ }^{\circ} \mathrm{C}$ and was stirred at that temperature for additional 1 h . The reaction was quenched with saturated ammonium chloride solution. The organic layer was extracted with e ther ($3 \times 10 \mathrm{~mL}$) a nd dried o ver MgSO_{4}. The c rude p roduct was flushed through a pad of silica to get crude mixture of 7. The mixture was dissolved in 4 mL of acetone and 0.5 mL of 2.7 M Jones reagent was added at $0{ }^{\circ} \mathrm{C}$. After stirring at that temperature for 30 min quenched with 1 mL of isopropanol. Solvent was evaporated, dissolved in 5 mL of water and extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). Organic layer was dried with MgSO_{4} and the crude product was chromatographed on silica gel $(\mathrm{H}: \mathrm{EA}=5: 1)$ to
yield compound 7a. $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.28-7.40(3 \mathrm{H}, \mathrm{m}), 7.11-7.15(2 \mathrm{H}, \mathrm{m})$, $5.61(1 \mathrm{H}, \mathrm{dd}, J=5.7 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}), 4.06(1 \mathrm{H}, \mathrm{dd}, J=11.7, J=6.7 \mathrm{~Hz}), 2.71-3.03(2 \mathrm{H}, \mathrm{m})$, $1.42(3 \mathrm{H}, \mathrm{s}), 1.25(3 \mathrm{H}, \mathrm{s}) ; 75 \mathrm{MHz}{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 203,147.9,139.5,129.3,128.2$, 128.1, 127.7, 122.0, 116.6, 48.8, 38.2, 30.2, 27.2, 22.8. HRMS m / z for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}$ calcd 225.1157, found 225.1157.

Compound 8:

To a solution of $\mathbf{2 b}(457 \mathrm{mg}, 1 \mathrm{mmol})$ in 5 mL THF at $-78^{\circ} \mathrm{C}$ was added a solution of LiTMP generated using tetramethylpiperidine ($296 \mathrm{mg}, 2.1 \mathrm{mmol}$) and 0.8 mL of $n-\mathrm{BuLi}$ (2.5 M solution in hexane) in 10 mL of THF. The solution was allowed to rise to $-20^{\circ} \mathrm{C}$ and stirred at $-20^{\circ} \mathrm{C}$ for a period of 90 min . The above solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and $2,2-$ dimethyl-3-oxo-3-phenylpropanaldehde ($144 \mathrm{mg}, 0.82 \mathrm{mmol}$) in 3 mL THF was added. The solution was warmed to $0^{\circ} \mathrm{C}$ and was stirred at that temperature for additional 1 h . The reaction was quenched with saturated ammonium chloride solution .The organic layer was extracted with ether (3 X 10 mL) and dried over MgSO_{4}. The c rude product was flushed through a pad of silica to get crude mixture of 8. The mixture was dissolved in 4 mL of acetone and 0.5 mL of 2.7 M Jones reagent was added at $0{ }^{\circ} \mathrm{C}$. After stirring at that temperature for 30 min quenched with 1 mL of isopropanol. Solvent was evaporated, dissolved in 5 mL of water and extracted with ethyl acetate (3 X 10 mL). Organic layer was dried with MgSO_{4} and the crude product was chromatographed on silica gel $(\mathrm{H}: \mathrm{EA}=5: 1)$ to yield compound 8a. $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 12.62(1 \mathrm{H}, \mathrm{s}), 7.25-7.30(3 \mathrm{H}, \mathrm{m}), 7.15-$ $7.18(2 \mathrm{H}, \mathrm{m}), 5.51(1 \mathrm{H}, \mathrm{t}, J=3.6 \mathrm{~Hz}), 4.27(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 3.01(2 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}), 1.32$ $(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.29(6 \mathrm{H}, \mathrm{s}) ; 75 \mathrm{MHz}{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 175.6,172.7,143.6,141.4$,
129.8, 127.5, 126.7, 122.3, 93.6, 60.5, 39.86, 25.7, 25.1, 14.4. HRMS m / z for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3}$ calcd 272.1412, found 272.1416.

Compound 9

To a solution of $2 \mathrm{a}(457 \mathrm{mg}, 1 \mathrm{mmol})$ in 5 mL THF at $-78{ }^{\circ} \mathrm{C}$ was added a solution of LiTMP generated using tetramethylpiperidine ($296 \mathrm{mg}, 2.1 \mathrm{mmol}$) and 0.8 mL of $n-\mathrm{BuLi}$ (2.5 M solution in hexane) in 10 mL of THF. The solution was allowed to rise to $-20^{\circ} \mathrm{C}$ and stirred at $-20^{\circ} \mathrm{C}$ for a period of 90 min . The above solution was cooled to $-78^{\circ} \mathrm{C}$ and butane-2,3-dione ($70 \mathrm{mg}, 0.82 \mathrm{mmol}$) in 3 mL THF was added. The solution was warmed to $0{ }^{\circ} \mathrm{C}$ and was stirred at that temperature for additional 1 h . The reaction was quenched with saturated ammonium chloride solution .The organic layer was extracted with ether (3 X 10 mL) and dried over MgSO_{4}. The crude product was chromatographed on silica gel ($\mathrm{H}: \mathrm{EA}=$ 4:1) to afford 9 as mixture of alcohols. $9 \mathrm{a}: 300 \mathrm{MHz}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.49(1 \mathrm{H}, \mathrm{bs}), 3.12$ $(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 2.49-2.78(2 \mathrm{H}, \mathrm{m}), 1.71-1.78(3 \mathrm{H}, \mathrm{m}), 1.49(3 \mathrm{H}, \mathrm{s}) ; 75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 144.5,125.2,120.5,84.4,42.3,33.6,24.8,11.9 .9 \mathbf{b}: 300 \mathrm{MHz}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $5.39(1 \mathrm{H}, \mathrm{bs}), 2.98(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 2.49-2.78(2 \mathrm{H}, \mathrm{m}), 1.71-1.78(3 \mathrm{H}, \mathrm{m}), 1.49(3 \mathrm{H}, \mathrm{s}) ; 75$ $\mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 143.7,122.9,119.9,83.1,41.2,33.5,22.8,11.7$. HRMS m / z for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}$ calcd 137.0841, found 137.0843.

Compound 10

To a solution of $2 \mathrm{a}(457 \mathrm{mg}, 1 \mathrm{mmol})$ in 5 mL THF at $-78{ }^{\circ} \mathrm{C}$ was added a solution of LiTMP generated using tetramethylpiperidine ($296 \mathrm{mg}, 2.1 \mathrm{mmol}$) and 0.8 mL of $n-\mathrm{BuLi}$ (2.5 M solution in hexane) in 10 mL of THF. The solution was allowed to rise to $-20^{\circ} \mathrm{C}$ and
stirred at $-20^{\circ} \mathrm{C}$ for a period of 90 min . The above solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and benzil ($172 \mathrm{mg}, 0.82 \mathrm{mmol}$) in 3 mL THF was added. The solution was warmed to $0^{\circ} \mathrm{C}$ and was stirred at that temperature for additional 1 h . The reaction was quenched with saturated ammonium chloride solution. The organic layer was extracted with ether (3 X 10 mL) and dried over MgSO_{4}. The crude product was chromatographed on silica gel ($\mathrm{H}: \mathrm{EA}=3: 1$) to afford 10 as mixture of alcohols. 10a: $300 \mathrm{MHz}^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 7.18-7.45 $(10 \mathrm{H}, \mathrm{m}), 6.45$ $(1 \mathrm{H}, \mathrm{m}), 3.38(1 \mathrm{H}, \mathrm{m}), 2.70-2.98(2 \mathrm{H}, \mathrm{m}) ; 75 \mathrm{MHz}{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 146.2,142.5,132.9$, $129.2,128,9,128.6,128.2,127.4,127.2,125.4,119.1,87.01,46.3,34.2$. HRMS m / z for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}$ calcd 261.1154, found 261.1156. 10b: $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 7.18-7.45 $(10 \mathrm{H}, \mathrm{m}), 6.40(1 \mathrm{H}, \mathrm{m}), 3.58(1 \mathrm{H}, \mathrm{m}), 2.71-2.98(2 \mathrm{H}, \mathrm{m}) ; 75 \mathrm{MHz}^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 146.2$, $143.5,131.9,129.1,128.7,128.6,128.1,127.4,127.2,125.4,119.1,87.01,45.3,33.2$.

Compound 11

To a solution of $\mathbf{2 a}$ ($457 \mathrm{mg}, 1 \mathrm{mmol}$) in 5 mL THF was added a solution of LiTMP generated using tetramethylpiperidine ($296 \mathrm{mg}, 2.1 \mathrm{mmol}$) and 0.8 mL of $n-\mathrm{BuLi}(2.5 \mathrm{M}$ solution in hexane) in 10 mL of THF. The solution was allowed to rise to $-20^{\circ} \mathrm{C}$ and stirred at $-20^{\circ} \mathrm{C}$ for a period of 90 min . The above solution was cooled to $-78^{\circ} \mathrm{C}$ and fluril $(162 \mathrm{mg}$, $0.82 \mathrm{mmol})$ in 3 mL THF was added. The solution was warmed to $0^{\circ} \mathrm{C}$ and was stirred at that temperature for additional 1 h . The reaction was quenched with saturated a mmonium chloride solution .The organic layer was extracted with ether (3 X 10 mL) and dried over MgSO_{4}. The crude product was chromatographed on silica gel ($\mathrm{H}: \mathrm{EA}=4: 1$) to afford 11 as mixture of alcohols. 11a: $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.44(1 \mathrm{H}, \mathrm{t}, J=1.5 \mathrm{~Hz}), 7.35(1 \mathrm{H}, \mathrm{s})$, $6.39(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 6.33(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 6.30(1 \mathrm{H}, \mathrm{t}, J=3 \mathrm{~Hz}), 3.50(1 \mathrm{H}, \mathrm{t}, J=8.7$
$\mathrm{Hz})$, 2.84-3.00 $(2 \mathrm{H}, \mathrm{m}) ; 75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 153.7,148.1,143.1,142.8,135.3$, 126.7, 118.6, 111.5, 110.9, 108.1, 107.9, 83.0, 41.9, 34.4. HRMS m / z for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{3}$ calcd 261.1154, found 261.1157. 11b: $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.34-7.38(2 \mathrm{H}, \mathrm{m}), 6.40-6.53$ $(1 \mathrm{H}, \mathrm{m}), 6.34-6.40(2 \mathrm{H}, \mathrm{m}), 6.27-6.33(1 \mathrm{H}, \mathrm{m}), 5.98(1 \mathrm{H}, \mathrm{t}, J=3 \mathrm{~Hz}), 3.64(1 \mathrm{H}, \mathrm{t}, J=8.7 \mathrm{~Hz})$, 2.98-3.02 ($2 \mathrm{H}, \mathrm{m}$); $75 \mathrm{MHz}{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 152.7, 147.1, 143.1, 142.1, 134.3, 125.7, $117.6,111.5,110.9,108.1,107.9,83.0,41.9,34.4$.

Compound 12

To a solution of $\mathbf{2 b}(457 \mathrm{mg}, 1 \mathrm{mmol})$ in 5 mL THF at $-78{ }^{\circ} \mathrm{C}$ was added a solution of LiTMP generated using tetramethylpiperidine ($296 \mathrm{mg}, 2.1 \mathrm{mmol}$) and 0.8 mL of $n-\mathrm{BuLi}$ (2.5 M solution in hexane) in 10 mL of THF. The solution was allowed to rise to $-20^{\circ} \mathrm{C}$ and stirred at $-20^{\circ} \mathrm{C}$ for a period of 90 min . The above solution was cooled to $-78^{\circ} \mathrm{C}$ and butane-2,3-dione ($70 \mathrm{mg}, 0.82 \mathrm{mmol}$) in 3 mL THF was added. The solution was warmed to $0{ }^{\circ} \mathrm{C}$ and was stirred at that temperature for additional 1 h . The reaction was quenched with saturated ammonium chloride solution.The organic layer was extracted with ether (3 X 10 mL) and dried over MgSO_{4}. The crude product was chromatographed on silica gel ($\mathrm{H}: \mathrm{EA}=$ 4:1) to afford 12 as mixture of alcohols. 12a: $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.15-7.30(10 \mathrm{H}$, $\mathrm{m}), 6.45(1 \mathrm{H}, \mathrm{m}), 3.71(2 \mathrm{H}, \mathrm{m}), 3.57(1 \mathrm{H}, \mathrm{t}, J=8.4 \mathrm{~Hz}), 2.98-3.10(1 \mathrm{H}, \mathrm{m}), 2.71-2.22(1 \mathrm{H}$, m), $0.95(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) . \mathbf{1 2 b}: 300 \mathrm{MHz}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.15-7.30(10 \mathrm{H}, \mathrm{m}), 6.43$ $(1 \mathrm{H}, \mathrm{m}), 3.61-3.78(2 \mathrm{H}, \mathrm{m}), 3.47(1 \mathrm{H}, \mathrm{t}, J=8.4 \mathrm{~Hz}), 2.98-3.10(1 \mathrm{H}, \mathrm{m}), 2.71-2.22(1 \mathrm{H}, \mathrm{m})$, $0.95(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$.

Compound 13

To a solution of $\mathbf{2 b}(456 \mathrm{mg}, 1 \mathrm{mmol})$ in 5 mL THF at $-78^{\circ} \mathrm{C}$ was added a solution of LiTMP generated using tetramethylpiperidine ($296 \mathrm{mg}, 2.1 \mathrm{mmol}$) and 0.8 mL of $n-\mathrm{BuLi}$ (2.5 M solution in hexane) in 10 mL of THF. The solution was allowed to rise to $-20^{\circ} \mathrm{C}$ and stirred at $-20^{\circ} \mathrm{C}$ for a period of 90 min . The above solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and pthalaldehyde ($110 \mathrm{mg}, 0.82 \mathrm{mmol}$) in 3 mL THF was added. The solution was warmed to 0 ${ }^{\circ} \mathrm{C}$ and was stirred at that temperature for additional 1 h . The reaction was quenched with saturated ammonium chloride solution. The organic layer was extracted with ether (3×10 mL) and dried over MgSO_{4}. The crude product was flushed through a pad of silica to get crude mixture of alcohols. The mixture was dissolved in 4 mL of acetone and 0.5 mL of 2.7 M Jones reagent was added at $0{ }^{\circ} \mathrm{C}$. After stirring at that temperature for 30 min quenched with 1 mL of isopropanol. Solvent was evaporated, dissolved in 5 mL of water and extracted with ethyl acetate (3 X 10 mL). Organic layer was dried with MgSO_{4} and chromatographed ($\mathrm{H}: \mathrm{EA}=3: 1$) to yield compound 13. $300 \mathrm{MHz}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.98(1 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz})$, 7.23-7.43 ($10 \mathrm{H}, \mathrm{m}$), $6.57(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 6.17-6.24(1 \mathrm{H}, \mathrm{m}), 4.28(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz})$, $2.60(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}), 1.34(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) .75 \mathrm{MHz}{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right) \delta 171.8,167.5$, 137.7, 134.0, 133.2, 129.8, 129.7, 129.5, 128.7, 126.6, 102.0, 61.2, 21.6, 14.5 HRMS m / z for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3}$ calcd 230.0943, found 230.0948 .

Compound 14

To a solution of $2 \mathrm{a}(456 \mathrm{mg}, 1 \mathrm{mmol})$ in 5 mL THF at $-78^{\circ} \mathrm{C}$ was added a solution of LiTMP generated using tetramethylpiperidine ($296 \mathrm{mg}, 2.1 \mathrm{mmol}$) and 0.8 mL of $n-\mathrm{BuLi}$ (2.5 M solution in hexane) in 10 mL of THF. The solution was allowed to rise to $-20^{\circ} \mathrm{C}$ and
stirred at $-20^{\circ} \mathrm{C}$ for a period of 90 min . The above solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and pthalaldehyde ($110 \mathrm{mg}, 0.82 \mathrm{mmol}$) in 3 mL THF was added. The solution was warmed to 0 ${ }^{\circ} \mathrm{C}$ and was stirred at that temperature for additional 1 h . The reaction was quenched with saturated ammonium chloride solution. The organic layer was extracted with ether (3 X 10 mL) and dried over MgSO_{4}. The crude product was flushed through a pad of silica to get crude mixture of alcohols. The mixture was dissolved in 4 mL of acetone and 0.5 mL of 2.7 M Jones reagent was added at $0^{\circ} \mathrm{C}$. After stirring at that temperature for 30 min quenched with 1 mL of isopropanol. Solvent was evaporated, dissolved in 5 mL of water and extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). Organic layer was dried with MgSO_{4} and chromatographed ($\mathrm{H}: \mathrm{EA}=3: 1$) to yield compound 14. $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.01(1 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz})$, 7.23-7.43 ($10 \mathrm{H}, \mathrm{m}$), $6.57(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 6.17-6.24(1 \mathrm{H}, \mathrm{m}), 2.6(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz})$, $1.34(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$.

Compound 16

To a solution of $15(458 \mathrm{mg}, 1 \mathrm{mmol})$ in 5 mL of THF at $-78{ }^{\circ} \mathrm{C}$ was added a solution of LiTMP generated using tetramethylpiperidine ($296 \mathrm{mg}, 2.1 \mathrm{mmol}$) and 0.8 mL of $n-\mathrm{BuLi}$ (2.5 M solution in hexane) in 10 mL of THF. The solution was allowed to rise to $-20^{\circ} \mathrm{C}$ and stirred at $-20^{\circ} \mathrm{C}$ for a period of 90 min . The above solution was cooled to $-78^{\circ} \mathrm{C}$ and 2,3-butanedione ($70 \mathrm{mg}, 0.82 \mathrm{mmol}$) in 3 mL of THF was added. The solution was warmed to $0^{\circ} \mathrm{C}$ and was stirred at that temperature for additional 1 h . The reaction was quenched with saturated ammonium chloride solution. The organic layer was extracted with ether (3 X 10 mL) and dried over MgSO_{4}. The crude product was chromatographed on silica gel (H:EA $=6: 1)$ to afford $16.300 \mathrm{MHz}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.13(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.51-7.77(4 \mathrm{H}, \mathrm{m})$,
$2.68(3 \mathrm{H}, \mathrm{s}), 2.46(3 \mathrm{H}, \mathrm{s})$.

Compound 17

To a solution of $15(458 \mathrm{mg}, 1 \mathrm{mmol})$ in 5 mL THF at $-78{ }^{\circ} \mathrm{C}$ was added a solution of LiTMP generated using tetramethylpiperidine ($296 \mathrm{mg}, 2.1 \mathrm{mmol}$) and 0.8 mL of $n-\mathrm{BuLi}$ (2.5 M solution in hexane) in 10 mL of THF. The solution was allowed to rise to $-20^{\circ} \mathrm{C}$ and stirred at $-20^{\circ} \mathrm{C}$ for a period of 90 min . The above solution was cooled to $-78^{\circ} \mathrm{C}$ and benzil ($172 \mathrm{mg}, 0.82 \mathrm{mmol}$) in 3 mL THF was added. The solution was warmed to $0^{\circ} \mathrm{C}$ and was stirred at that temperature for additional 1 h . The reaction was quenched with saturated ammonium chloride solution .The organic layer was extracted with ether (3 X 10 mL) and dried over MgSO 4 . The crude product was chromatographed on silica gel $(\mathrm{H}: \mathrm{EA}=7: 1)$ to afford 17. 300 MHz 1 H NMR $(\mathrm{CDCl} 3) \delta 8.33(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 8.10(1 \mathrm{H}, \mathrm{m}), 7.98(1 \mathrm{H}, \mathrm{d}$, $J=7.2 \mathrm{~Hz}), 7.51-7.77(2 \mathrm{H}, \mathrm{m}), 7.10-7.31(10 \mathrm{H}, \mathrm{m})$.

Compound 18:

To a solution of $\mathbf{2 b}(457 \mathrm{mg}, 1 \mathrm{mmol})$ in 5 mL THF at $-78{ }^{\circ} \mathrm{C}$ was added a solution of LiTMP generated using tetramethylpiperidine ($296 \mathrm{mg}, 2.1 \mathrm{mmol}$) and 0.8 mL of $n-\mathrm{BuLi}$ (2.5 M solution in hexane) in 10 mL of THF. The solution was allowed to rise to $-20^{\circ} \mathrm{C}$ and stirred at $-20^{\circ} \mathrm{C}$ for a period of 90 min . The above solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and $(105$ $\mathrm{mg}, 0.82 \mathrm{mmol}$) in 3 mL THF was added. The solution was warmed to $0^{\circ} \mathrm{C}$ and was stirred at that temperature for additional 1 h . The reaction was quenched with saturated ammonium chloride solution. The organic layer was extracted with ether (3 X 10 mL) and dried over MgSO_{4}. The crude product was chromatographed on silica gel (H:EA $=3: 1$) to afford 18 as
mixture of alcohols: $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.24-5.39(2 \mathrm{H}, \mathrm{m}), 4.08-4.18(2 \mathrm{H}, \mathrm{m})$, 2.70-3.67 $(1 \mathrm{H}, \mathrm{m}), 2.23-2.73(3 \mathrm{H}, \mathrm{m}), 1.35-2.01(6 \mathrm{H}, \mathrm{m}), 1.31-1.35(3 \mathrm{H}, \mathrm{m}), 0.92-1.21(2 \mathrm{H}$, m).

References:

1. Hauser, C. R.; Harris, T. M. J. Am. Chem. Soc. 1958, 80, 6360.
2. Thompson, C. M.; Green, D. L. C. Tetrahedron 1991, 47, 4223.
3. Rabinovitz, M.; Cohen, Y. Tetrahedron 1988, 44, 6957.
4. Kaiser, E. M.; Petty, J. D.; Knutson, P.L.A. Synthesis 1979, 509.
5. Tanaka, K.; Kaji, A. Sulfur Rep. 1980, 1, 97.
6. von Rague Schleyer, P. Pure Appl. Chem. 1983, 55, 355.
7. Evans, D. A.; Johnson, J. S. Compr. Asymmetric Catal. I-III. 1999, 3, 1177.
8. Innocenti, A.; Dembech, P.; Mordini, A.; Ricci, A.; Seconi, G. Synthesis 1991, 4, 267.
9. Molander, G.; Shubert, C. J. Am. Chem. Soc. 1987, 109, 576.
10. Moorhoff, C.; Schineider, D. F. Tetrahedron Lett. 1987, 28, 559.
11. Cooke, F.; Magnus, P. J. Chem. Soc., Chem., Commun. 1976, 519.
12. Kraus, G. A.; Wang, X. Bioorg. Med. Chem. 2000, 10, 895.
13. a) Matsumoto, T.; Shirahama, H.; Ichihara, A.; Fukuoka, Y.; Takahashi, Y.; Mori, Y.; Watanabe, M. Tetrahedron 1965, 21, 2671. b) Arnone, A.; Cardillo, R.; Nasini, G.; de Pava, O. V. J. Chem. Soc., Perkin Trans. 1. 1991, 733. c) Arnone, A.; Cardillo, R.; Modugno, V.; Nasin, G. Gazz. Chim. Ital. 1991, 121, 345. d) Lee, I.-K.; Jeong, C. Y.; Cho, S. M.; Yun, B. S.; Kim, Y. S.; Yu, S. H.; Koshino,
H.; Yoo, I. D. J. Antibiot. 1996, 49, 821. e) Dufresne, C.; Young, K.; Pelaez, F.; Gonzalez, A.; Valentino, D.; Graham, A.; Platas, F.; Bernard, A.; Zink, D. J. Nat. Prod. 1997, 60, 188.
14. a) Kelner, M. J.; McMorris, T. C.; Estes, L.; Rutherford, M.; Montoya, M.; Goldstein, J.; Samson, K.; Starr, R.; Taetle, R. Biochem. Pharmacol. 1994, 48, 403. b) Tanaka, K.; Inoue, T.; Tezuka, Y.; Kikuchi, T. Chem. Pharm. Bull. 1996, 44, 273. c) McMorris, T. C.; Kelner, M. J.; Wang, W.; Moon, S.; Taetle, R. Chem. Res. Toxicol. 1990, 3, 574.
15. Choudhary, A.; Baumstark, A. L. Synthesis 1989, 9, 688.
16. a) Weinerb, S. M.; McMorris, T. C.; A nchel, M. Tetrahedron Lett. 1971, 12, 3489. b) McMorris, T. C.; Yu, J.; Ngo, H. T.; Wang, H.; Kelner, M. J. J. Med. Chem. 2000, 43, 3577.
17. Beaulieu, P. L.; Duceppe, J. S.; Johnson, C. J. Org. Chem. 1991, 56, 4196.
18. Inukai, T.; Yoshizawa, R. J. Org. Chem. 1967, 32, 404.
19. Stefancich, G..; Artico, M.; Massa, S.; Vomero, S. J. Heterocycl. Chem. 1979, 16, 1443.
20. Goksu, S.; Altundas, R.; Sutbeyaz, Y. Synth. Commun. 2000, 30, 1615.
21. Nicolaou, K. C.; Pfefferkorn, J.; Xu, J.; Winssinger, N.; Ohshima, T.; Kim, S.; Hosokawa, S.; Vourlourmis, D.; van Delft, F.; Li, T. Chem. Pharm. Bull. 1999, 47, 1199.

CHAPTER 2

SYNTHETIC APPROACH TOWARDS METHYLLYCACONITINE

Introduction

Larkspur is a toxic plant on western U.S ranges. About 5-15\% of cattle poisoning on North American mountain lands are due to larkspur poisoning. Toxic alkaloids constitute 30$50 \%$ of total alkaloid content in tall larkspur. ${ }^{1}$ Larkspur (Delphinium species) alkaloids can be divided into two structural types, namely lycactonine and 7,8-methylenedioxylycoctonine (deltaline) as shown in Figure 1.

Lycoctonine (1)

Deltaline (2)

Figure 1. Representative alkaloids of Delphinium species.

Among the numerous alkaloids, the lycoctonine type norditerpenoid alkaloid methyllycacoctonine (MLA) appears to be most toxic. Toxicity is attributed to its ability to act as a potent inhibitor of the acetylcholine receptor (nAChR) binding, thus leading to neuromuscular paralysis. ${ }^{2}$ Clinical signs include labored breathing, rapid and irregular heartbeat, muscular weakness and collapse. ${ }^{3}$

Methyllycaconitine (3)

Acetylcholine

Figure 2.

Recently, nicotinic acetylcholine receptor chemistry and biology have gained enormous interest in the field of drug development. ${ }^{4}$ The nAChRs are large family of ligand gated ion channels located throughout the body in the central nervous system, peripheral nervous system and at the neuromuscular junction. The family contains numerous receptor subtypes consisting of pentameric arrays made up from a variety of distinct peptide subunits. Isolation/synthesis of subtype selective agonists and antagonists could elucidate the biological roles of the subtypes and eventually lead to candidates for drug development. Pharmacological studies have shown MLA to selectively bind to the $\alpha 7$ subtype nAChRs in mammalian brain. ${ }^{5}$ The $\alpha 7$ subtype is amongst the most prevalent nAChR in the brain and has been implicated as playing a key role in conditions such as schizophrenia, Alzheimer's disease a nd epilepsy. ${ }^{6}$ The combined qualities of h igh a ffinity binding, functional potency and subtype selectivity renders MLA as a primary lead for the development of new therapeutic agents targeting $\alpha 7 \mathrm{nAChR}$.

Structure-activity relationship investigations have indicated that the N-methyl succinimidobenznzoate ester at C-18 affects alkaloid interactions with nAChRs at neuromuscular junctions and the substituent at C-14 determines the potency and the
mechanism of nAChR blockade at neuromuscular synapses. ${ }^{7}$ The methyl group on the succinimido ring and the ethyl group of the tertiary amine were also found to be structural requirements for its biological activity. The pharmacological specificity of MLA seems to arise from the fact that the tertiary nitrogen atom of MLA and quaternary nitrogen atom of acetylcholine may undergo equivalent electrostatic interaction with the receptor binding site.

Numerous Delphinium alkaloids, have been proposed as lead compounds for pharmaceutical research and development. Several structurally less complex analogs of MLA have been synthesized to establish the structural requirements necessary for biological activity. From the synthetic point of view, only a few partial syntheses of MLA have been attempted; key studies were reported by Van der Bann, ${ }^{8}$ Whiting ${ }^{9}$ and Kraus. ${ }^{10,11}$ Earliest work on norditerpenoid alkaloid by Van der Bann and coworkers led to an efficient construction of the right hand portion of the molecule, the BCDA-carbocycle part (Figure $3) .{ }^{7}$

Methyllycaconitine (3)

4

Figure 3.

Synthesis of the ABCD ring system began with the efficient transformation of 7-tert-
butoxynorbornadiene 5 to tricyclic ketone 6, which was then converted to tricyclic enaminoester 7. The construction of the BCD ring system was accomplished by ring expansion (Scheme 1) to yield compound 8. Michael additions of β-keto ester 9 to benzyl acrylate lead to compound 10 . Cleavage of the benzyl group followed by one-carbon homologation and Dieckman condensation leads to the ABCD ring system. This work represents a solid synthesis of the right-hand portion of C_{19}-diterpene alkaloids skeleton. However, their inability to make the biologically significant E and F rings decreases the synthetic value of this approach.

Scheme 1.

Scheme 2.

The synthesis of ABDE ring system employing the addition reactions of bridgehead radicals to alkenyltributylstannanes and α, β-unsturated ketones and esters has been accomplished by Kraus et al. ${ }^{10}$ Initially, the bicyclic ketone 11 was reacted with allyltributyl in the presence of AIBN to afford the alkene 12 in good yield (Scheme 3). Ozonolysis of the double b ond and a Wittig reaction of the resulting a ldehyde yielded 13, which underwent Diels Alder reaction with 1 -trimethylsiloxy-1,3-butadiene. Intramolecular aldol cyclization with potassium hexamethyldisilazane furnished the ABDE ring system of the C_{19}-diterpene alkaloids.

In 1998, Whitting and co-workers reported the synthesis of AEF tricyclic fragment. ${ }^{9}$ The stereocenters of the AEF segment were set by two key reactions: the intramolecular 1,3dipolar addition to the alkene and the Diels-Alder reaction. Diels-Alder reaction of the
sodium salt of acid 15 and acrylate 16 yielded compound 17 . Compound 17 was converted to the isoxazolidine 19 via the nitrone in a one-pot process. Cleavage of isoxazolidine liberates an amine, which underwent intermolecular reaction with ester to yield the tricyclic segment 20 as shown in Scheme 3.

Scheme 3.

In 1998, Kraus reported a direct route to ABE tricyclic segment (Scheme 4). ${ }^{11}$ His synthesis began with selective protection of enone in spirocyclic diketone 21 with trimethylsilyl triflate. Introduction of carbomethoxy group followed by hydrolysis yielded compound 22. Treatment of the compound 22 with ethylamine and formaldehyde in aqueous methanol furnished the tricyclic ABE segment. Unfortunately, unusual inertness of the carbonyl group in the one carbon bridge to a variety of nucleophiles prevented the elaboration of the tricylic segment to the ABEF ring system.

21
22
23

Scheme 4.

Results and Discussion

In our studies towards C_{19}-ditepenoid alkaloids, we envisioned the synthesis of an ABEF ring system possessing all necessary functionality to allow us to easily incorporate the C and D rings. Scheme 5 suggests the synthetic strategy for the ABEF ring system. The key reaction is the hydrolytic skeletal rearrangement of compound $\mathbf{2 5}$ to aldehyde 27. Hydrolysis of the imine leads to an aminal 26, which should rearrange to aldehyde 27. An intramolecular aldol reaction could generate the required ABEF carbocycle.

28

Scheme 5.

Our first approach to intermediate 25 was from compound 24 (Scheme 6). ${ }^{11}$ Treatment of 24 with variety of halides led to the formation of enones $\mathbf{2 9 - 3 1}$. Attempts to facilitate intramolecular cyclization to generate the tricyclic intermediate using excess base were unsuccessful. Hence, an alternate strategy was conceived for the construction of ABEF ring system.

31

Scheme 6.

The ABEF ring system could be envisioned from dienone 32 through hydrolytic skeletal rearrangement. Intramolecular para-C-alkylation ${ }^{12}$ of p henol 33 could lead to dienone 32. Keto ester $\mathbf{3 4}$ could act as a precursor for phenol 33.

Scheme 7.
To test the feasibility of intramolecular cyclization, a model study was undertaken as shown in Scheme 8. Thus β-ketoester $\mathbf{3 6}^{13}$ was reacted with the aryllithium generated from bromoether 36a to produce alcohol 37 as mixture of isomers. Dehydration of alcohol 36 using thionyl chloride and subsequent removal of silyl protection from compound 38 using TBAF yielded phenol 39. Heating phenol 39 in tert-butanol with 1.2 equivalents of potassium tert-butoxide yielded the dienone 40 through an intramolecular spirocyclization. ${ }^{12}$

41
34

42

85\%

Scheme 9.

With dienone in our hand we turned our attention towards the hydrolytic skeletal rearrangement. However, many attempts to hydrolyze carbamate 32 were unsuccessful. Prolonged exposure of compound $\mathbf{3 2}$ to acidic conditions only led to the decomposition of $\mathbf{3 2}$.

Scheme 10.

Since hydrolysis was unsuccessful, we decided to change the protecting group on nitrogen to a readily-cleavable BOC group. Thus, dienone 49 was synthesized from carbamate $48 .{ }^{13}$ Unfortunately, our attempts to hydrolyze enone 49 were also unsuccessful, leading to a complex mixture.

Scheme 11.

Meanwhile, dihydroxylation of enone 32 led to isolation of phenol 51. This reaction occurs probably through diol 50 which undergoes a retro-aldol reaction to give 51.

Scheme 12.
In order to solve the problem of hydrolysis we decided to change the order of the steps. Phenol 33 was converted to dithiane 52. Surprisingly, all of our attempts to facilitate the intramolecular cyclization only led to decomposition of starting material.

Scheme 13.
Meanwhile, we sought to synthesize phenol 54. Reductive removal of the benzyl group from 55, ${ }^{17}$ followed by treatment with BOC anhydride led to compound 56. The lithium enolate of $\mathbf{5 6}$ was treated with aldehyde $\mathbf{5 7}$ to get the aldol adduct, which was subsequently oxidized with Jones reagent to get compound 58 . Treatment of compound 58 with pivaloyl chloride and triethylamine led to the isolation of compound 59. Methyl cuprate addition to compound 59 led to the formation 60 in modest yield. Efforts to convert 60 to 54 were futile.

Scheme 14.

Even though we were unable to synthesize the required ABEF ring system, our unsuccessful routes did give us some valuable insights. We learned that there is need for an early F ring construction. We need to introduce the required carbon appendages for F ring construction quite early in our synthesis. Secondly, the para-C-alkylation could be a useful tool for an efficient construction of the AB ring system and a simple substituted phenol could act as a precursor for the B ring.

Second Generation Approach

In spite of the failure of the approaches discussed previously, the knowledge gained through the previous approaches decreased the synthetic challenge considerably. Scheme 15 gives the retrosynthesis.

Scheme 15

Scheme 15 provides us an opportunity to construct the F through an aldol reaction. The ABE segment could be constructed from BE segment through the para-C-alkylation reaction. Finally, substituted 3-aminophenol could act as the B ring.

The synthesis began from 3-aminophenol. Protection of the amino group with BOC anhydride followed by protection of the phenol as a TBS ether gave compound $\mathbf{6 2}$. Regioselective ortho-metalation ${ }^{18}$ of the aryl ring followed by treatment with excess DMF led to the production of aldehyde $\mathbf{6 3}$ as shown in Scheme 16 . The BOC group acts as an ortho-directing group. One of the ortho positions is selectively blocked by bulky the TBS group, leading to selective ortho-metallation. The silyl ether was deprotected using TBAF to yield phenol 64.

Scheme 16.

The phenol was converted to a MOM ether using methoxymethyl chloride and diisopropylethylamine to give compound 65. heating aldehyde 65 with dimethyl malonate in presence of piperidene led to the isolation of lactam 66 in 90% yield. This reaction occurs through $\alpha-\beta$-unsaturated diester which subsequently loses the BOC protecting group to cyclize to the lactam 66 . The N-ethyl group was introduced using potassium carbonate and ethyl iodide to give compound 67 as shown in Scheme 17. The lactam 67 represents the BE segment of lycoctonine alkaloid.

Scheme 17.

With the BE segment in hand, the next goal was to synthesize the ABE ring system of lycoctonine. However, we decided to introduce the carbon units required for the F ring at this stage. The carbon units required for the construction of the F ring were introduced by way of a vinyl unit, which could be oxidatively cleaved to an aldehyde group later in the synthesis. Conjugate addition of vinylcuprate (generated from vinyl magnesium bromide and copper(I) iodide) yielded ketoester 68 in fairly modest yield. Ultimately, vinylcuprate stabilized using dimethyl sulfide as the additive (entry 4, Table 1) was chosen for the conjugate addition.

Table 1. Conjugate addition experiments

Copper Source	Additive	\% yield
CuI	None	43
CuCN	None	47
CuI	TMSCl	55
CuI	$\mathrm{Me}_{2} \mathrm{~S}$	60
None	None	17

Synthesis of the ABE segment began by steroselectively alkylating ${ }^{19}$ compound 68 using NaH and 1,3 -dibromopropane to yield compound 69. The cis-relationship of the vinyl and ester groups was determined by 2D NOESY NMR. Treatment of compound 69 with 4 N HCl led to the isolation of phenol 70 as shown in Scheme 18.

Scheme 18.
Having achieved the synthesis of phenol 70 with the desired stereochemistry, we turned our attention towards the appendage of the A ring. However we were unable to effect the desired para-C-alkylation using standard conditions $\left(t-\mathrm{BuO}^{-} \mathrm{K}^{+}, t-\mathrm{BuOH}\right)$. Finally we were able to achieve the much-needed cyclization using 18-crown-6 and NaH. Heating phenol 70 in THF with the presence of NaH and crown ether led to an intramolecular cyclization leading to the formation of compound 71 in modest yield as shown in Scheme 19. Compound 71 represents the ABE segment of lycoctonine.

70

Scheme 19

Construction of the ABEF segment required the selective oxidation of the terminal double bond in the presence of enone as shown in Scheme 20. Unfortunately, we were unable to oxidize the terminal double bond selectively. We decided on a detour as shown in Scheme 21.

Scheme 20.

Ozonolysis of compound 69 gave an aldehyde in 92% yield. Treatment of the aldehyde with timethylorthoformate in methanol with the presence of a catalytic amount of PTSA led
to the protection of the aldehyde as a dimethyl acetal with a subsequent removal of the MOM group to liberate phenol 73 in 62% yield. Heating phenol 73 in THF in the presence of NaH and crown-ether led to an intramolecular cyclization leading to the formation of ABE segment of lycoctonine as shown in Scheme 21.

69

72
p-TsOH. $\mathrm{H}_{2} \mathrm{O}$
$\mathrm{CH}(\mathrm{OMe})_{3}, \mathrm{MeOH}$
62\%

73

Scheme 21.

Having constructed the ABE ring system (compound 74), we went towards the addition of the F ring. Surprisingly, the reduction of dienone proved difficult. Hydrogenation of the dienone led to the reduction of only the less hindered double bond. Use of reducing agents
like Zn /acetic acid ${ }^{20}$ and K -selectride ${ }^{21}$ led to the isolation of complex mixtures. Finally, we were able to reduce the enone double bond using $\mathrm{Li} / \mathrm{NH}_{3}{ }^{22}$ along with concomitant reduction of the ester group to an aldehyde to yield compound 76 as shown in Scheme 22.

76

Scheme 22.

Having achieved our 1,4-reduction, we tried converting the tricyclic intermediate 76 to the ABEF ring system. Attempts to do an intramolecular aldol reaction under acidic conditions led to the decomposition of the ketoaldehyde. We attributed the failure of this reaction to the aldehyde group present in the molecule. Surprisingly, we were unable to oxidize the sterically hindered aldehyde. Hence, we turned our attention to a selective reduction. Hydrolysis of the methyl ester using LiOH gave acid 77 in modest yield. $\mathrm{Li} / \mathrm{NH}_{3}$
reduction of the acid led to selective reduction of the enone to yield acid 78, which was treated with diazomethane to yield methyl ester 79 as $3: 1$ mixture of isomers. The major isomer was crystallized and its structure was confirmed using X-ray crystallography.

Scheme 23.

Treatment of compound 79 with 4 N HCl led to the isolation of compound $\mathbf{8 0}$ in 58% yield plus 17% of ketoaldehyde 81 arising from the minor isomer. Compound 80 represents the ABEF carbocycle of methyllycaconitine as shown in Scheme 24.

Scheme 24.

Compound 80 was elaborated to enone 84 as shown in Scheme 25. Treatment of compound 80 with CSA and para-methoxybenzylacetamidate ${ }^{23}$ gave compound 82. The silyl enol ether (generated using LDA, and TMSCl) of 82 was converted to enone 83 using $\mathrm{Pd}(\mathrm{OAc})_{2} .{ }^{24}$

1) LDA
2) TMSCl

Scheme 25.
The enone 84 represents the ABEF carbocycle skeleton of the aconitine alkaloids with all the functionality necessary to install the C and D rings as shown in Scheme 26. Finally, the biologically significant 2-methylsuccinimido benzoate ester on the C_{19} neopentyl alcohol would be introduced to yield the core structure of MLA.

Hexacyclic Core Structure of Lycoctonine

Core Structure of MLA

Scheme 26.

Recently a novel C_{20}-diterpenoid alkaloid was isolated from Aconitum racemulosum. ${ }^{25}$ To test the generality of our approach we synthesized the ABE segment of this alkaloid as shown in Scheme 27.

Racemulsonine

ABE Ring Analog
of Racemulsonine

Scheme 27.

Alkylating compound 68 using NaH and 1,3-dibromoethane afforded compound $\mathbf{8 5}$. Treatment of compound 85 with 4 N HCl led to the isolation of phenol 86 which was subsequently transformed to the ABE segment of racemulosomine using NaH and 18-crown6.

In conclusion, we developed a direct synthetic route to ABEF segment of methyllycaconitine using intramolecular anionic spiro cyclization. Construction of the ABE segment of methyllycaconitine and racemulosine through a common bicyclic intermediate was achieved. Elaboration of the ABEF segment of lycoctonine alkaloid to the pentacyclic intermediate is under progress.

Experimental Section

Unless otherwise noted, materials were obtained from commercial suppliers and used without purification. Tetrahydrofuran was distilled from sodium benzophenone ketyl. Dichloromethane and benzene were distilled over calcium hydride. All experiments were performed under argon atmosphere unless otherwise noted. Nuclear magnetic resonance experiments were performed with either a Varian 300 MHz or Bruker 400 MHz instrument. All chemical shifts are reported relative to CDCl_{3} (7.26 ppm for ${ }^{1} \mathrm{H}$ and 77.06 ppm for ${ }^{13} \mathrm{C}$), unless o therwise noted. Coupling constants (J) a re reported in Hz w ith abbreviations: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet. High resolution mass spectra were recorded on a Kratos model MS-50 spectrometer and low resolution mass spectra were performed with a Finnegan 4023 mass spectrometer. Standard grade silica gel ($60 \mathrm{~A}^{\circ}, 32-63$ $\mu \mathrm{m}$) was used for a flash column chromatography.

Compound 29

A mixture of $24(100 \mathrm{mg}, 0.326 \mathrm{mmol})$ and 1 mL 2-bromomethyl acetate were heated at $60^{\circ} \mathrm{C}$ for 24 h . The mixture was concentrated in vacuo, the residue was diluted with ethyl acetate and washed with brine. The organic layer was dried over MgSO_{4}, filtered, and evaporated in vacuo. The residue was purified by chromatography ($\mathrm{H}: \mathrm{EA}=1: 1$) to afford compound 29 ($85 \mathrm{mg}, 69 \%$). $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.07(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}), 6.04$ $(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}), 4.29-4.25(2 \mathrm{H}, \mathrm{m}), 3.83(3 \mathrm{H}, \mathrm{s}), 3.59(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}), 3.2-3.3(2 \mathrm{H}$, m), $3.04(1 \mathrm{H}, J=12.3 \mathrm{~Hz}), 2.6-2.7(1 \mathrm{H}, \mathrm{d}, J=15 \mathrm{~Hz}), 2.3-2.5(4 \mathrm{H}, \mathrm{m}), 1.8-2.2(5 \mathrm{H}, \mathrm{m}), 1.5$ $(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.3(3 \mathrm{H}, \mathrm{t}, J=9 \mathrm{~Hz})$.

Compound 30

A mixture of $24(100 \mathrm{mg}, 0.326 \mathrm{mmol})$ and 1 mL 2-bromoacetonitrile was heated at 60 ${ }^{\circ} \mathrm{C}$ for 36 h . The mixture was concentrated in vacuo, the residue was diluted with ethyl acetate and washed with brine. The organic layer was dried over MgSO_{4}, filtered, and evaporated in vacuo. The residue was purified by chromatography ($\mathrm{H}: \mathrm{EA}=1: 1$) to afford 30 ($80 \mathrm{mg}, 71 \%$). $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.7(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}), 6.08(1 \mathrm{H}, \mathrm{d}, J=10.2$ $\mathrm{Hz}), 4.1-4.3(2 \mathrm{H}, \mathrm{m}), 3.83(3 \mathrm{H}, \mathrm{s}), 3.61(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}), 3.2-3.3(2 \mathrm{H}, \mathrm{m}) 3.04(1 \mathrm{H}, J=$ $12.3 \mathrm{~Hz}), 2.6-2.7(1 \mathrm{H}, \mathrm{d}, J=15 \mathrm{~Hz}), 2.3-2.5(4 \mathrm{H}, \mathrm{m}), 1.8-2.2(5 \mathrm{H}, \mathrm{m}), 1.5(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz})$.

Compound 31

A mixture of $24(100 \mathrm{mg}, 0.326 \mathrm{mmol})$ and 1 mL ethylbromomethyl phosphonate were heated at $60^{\circ} \mathrm{C}$ for 36 h . The mixture was concentrated in vacuo, the residue was diluted with ethyl acetate and washed with brine. The organic layer was dried over MgSO_{4}, filtered, and evaporated in vacuo. The residue was purified by chromatography ($\mathrm{H}: \mathrm{EA}=3: 1$) to afford $\mathbf{3 1}$ $(97 \mathrm{mg}, 65 \%) .300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.70(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}), 6.08(1 \mathrm{H}, \mathrm{d}, J=10.2$ $\mathrm{Hz}), 4.10-4.30(6 \mathrm{H}, \mathrm{m}), 3.81-3.95(2 \mathrm{H}, \mathrm{m}) 3.83(3 \mathrm{H}, \mathrm{s}), 3.61(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}), 3.04(1 \mathrm{H}, J$ $=12.3 \mathrm{~Hz}), 2.60-2.70(1 \mathrm{H}, \mathrm{d}, J=15 \mathrm{~Hz}), 2.3-2.5(4 \mathrm{H}, \mathrm{m}), 1.8-2.2(5 \mathrm{H}, \mathrm{m}), 1.50-165(9 \mathrm{H}, \mathrm{m})$.

Compound 37

To a solution of ether $\mathbf{3 6}(173 \mathrm{mg}, 0.60 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added 2.42 mL of $n-\operatorname{BuLi}(2.5 \mathrm{M}$ in hexanes, 0.6 mmol$)$. After 30 min at that temperature, a solution of bromide 36 ($168 \mathrm{mg}, 0.58 \mathrm{mmol}$) in 1 mL THF was added dropwise. The reaction mixture was gradually warmred to rt and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The organic
solvent was evaporated in vacuo. The residue was diluted with ethyl acetate and washed with brine. The organic layer was dried over MgSO_{4}, filtered, and evaporated in vacuo. The residue was purified by chromatography $(\mathrm{H}: \mathrm{EA}=4: 1)$ to afford 37 as mixture of isomers ($255 \mathrm{mg}, 85 \%$ yield). $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.37(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}$), $7.12(2 \mathrm{H}, \mathrm{d}, J$ $=8.7 \mathrm{~Hz}), 3.90-4.20(2 \mathrm{H}, \mathrm{m}), 3.30-3.50(2 \mathrm{H}, \mathrm{m}), 2.10-2.40(4 \mathrm{H}, \mathrm{m}), 1.20-2.0(8 \mathrm{H}, \mathrm{m}), 1.22$ $(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 0.90(9 \mathrm{H}, \mathrm{s}), 0.21(6 \mathrm{H}, \mathrm{s})$.

Compound 38

To a solution of alcohol $37(163 \mathrm{mg}, 0.32 \mathrm{mmol})$ in 0.5 mL of pyridine at $0^{\circ} \mathrm{C}$ was added $116 \mathrm{mg}(0.978 \mathrm{mmol})$ of SOCl_{2}. After being stirred at $0^{\circ} \mathrm{C}$ for 45 min 2 mL of ice cold water was poured into the reaction mixture. The organic layer was extracted with ethyl acetate (3 X 5 mL) and dried over MgSO_{4}, filtered, and evaporated in vacuo. The residue was purified by chromatography $(\mathrm{H}: \mathrm{EA}=4: 1)$ to afford $38(92 \mathrm{mg}, 60 \%) .300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.99$ $(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.71(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 5.94(1 \mathrm{H}, \mathrm{t}, J=4.8 \mathrm{~Hz}), 4.12-4.20(2 \mathrm{H}, \mathrm{m})$, $3.07-3.11(2 \mathrm{H}, \mathrm{m}), 2.10-2.30(2 \mathrm{H}, \mathrm{m}), 1.80-2.10(2 \mathrm{H}, \mathrm{m}), 1.50-1.80(6 \mathrm{H}, \mathrm{m}), 1.24(3 \mathrm{H}, \mathrm{t}, J=$ $7.2 \mathrm{~Hz}), 0.96(9 \mathrm{H}, \mathrm{s}), 0.18(6 \mathrm{H}, \mathrm{s})$.

Compound 39

To a solution of $39(61 \mathrm{mg}, 0.127 \mathrm{mmol})$ in THF $(3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $130 \mu \mathrm{~L}$ of TBAF (1 M in THF). The reaction mixture was stirred at that temperature for 30 min and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The organic solvent was evaporated in vacuo. The residue was diluted with ethyl acetate and washed with brine. The organic layer was dried over MgSO_{4}, filtered, and evaporated in vacuo. The residue was purified by chromatography
($\mathrm{H}: \mathrm{EA}=2: 1$) to afford $39\left(46 \mathrm{mg}\right.$, quantitative yield). $300 \mathrm{MHz}{ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right) \delta 7.11(2 \mathrm{H}$, d, $J=8.7 \mathrm{~Hz}), 6.79(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.01(1 \mathrm{H}, \mathrm{t}, J=4.8 \mathrm{~Hz}), 4.12-4.20(2 \mathrm{H}, \mathrm{m}), 3.00-3.11$ $(2 \mathrm{H}, \mathrm{m}), 2.10-2.40(2 \mathrm{H}, \mathrm{m}), 1.80-2.10(2 \mathrm{H}, \mathrm{m}), 1.50-1.80(6 \mathrm{H}, \mathrm{m}), 1.25(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$.

Compound 40

To a solution of $39(37 \mathrm{mg}, 0.1 \mathrm{mmol})$ in 10 mL freshly distilled $t-\mathrm{BuOH}$ at room temperature was added t-BuOK ($13 \mathrm{mg}, 0.11 \mathrm{mmol}$). The above solution was refluxed under argon for 24 h . The reaction mixture was cooled to room temperature and then quenched with 1 mL of saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The organic solvent was evaporated in vacuo. The residue was diluted with ethyl acetate and washed with brine. The organic layer was dried over MgSO_{4}, filtered, and evaporated in vacuo. The residue was purified by chromatography ($\mathrm{H}: \mathrm{EA}=2: 1$) to afford $40(17 \mathrm{mg}, 58 \%$ yield $) .300 \mathrm{MHz}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.07(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz})$, $6.89(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}), 6.26(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}), 6.09(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}), 5.69(1 \mathrm{H}, \mathrm{t}, J$ $=3.6 \mathrm{~Hz}), 4.16-4.24(2 \mathrm{H}, \mathrm{m}), 2.53(1 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}), 2.01-2.10(3 \mathrm{H}, \mathrm{m}), 1.63-1.74(4 \mathrm{H}$, m), $1.42-1.58(4 \mathrm{H}, \mathrm{m}), 1.26(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) ; 75 \mathrm{MHz}{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 186.6,176.4$, $156.4,153.3,135.6,129.3,128.1,125.5,61.3,46.9,46.4,37.6,36.4,36.2,25.9,19.4,18.5$, 14.4.

Compound 42

To a suspension of $\mathrm{KH}(197 \mathrm{mg}, 4.49 \mathrm{mmol})$ in 10 mL of THF at $0^{\circ} \mathrm{C}$ was added a solution of ketoester $34(900 \mathrm{mg}, 4.47 \mathrm{mmol})$ in THF (45 mL). After $30 \mathrm{~min}, \mathrm{PhN}(\mathrm{Tf})_{2}(1.92$ $\mathrm{g}, 5.36 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ in one portion. The reaction mixture was stirred at rt for 4 h . The mixture was diluted with petroleum ether and flushed through a pad of silica gel. The
filtrate was concentrated in vacuo to afford 42 ($895 \mathrm{mg}, 62 \%$ yield) $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.4(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 6.80(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 4.40-4.60(4 \mathrm{H}, \mathrm{m}), 3.73(3 \mathrm{H}, \mathrm{s})$, $3.66(3 \mathrm{H}, \mathrm{s})$.

Compound 44

A solution of $42(1.51 \mathrm{~g}, 4.68 \mathrm{mmol})$ in toluene $(60 \mathrm{~mL})$ was treated with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{3}$ ($540 \mathrm{mg}, 0.468 \mathrm{mmol}$), boronic acid $43(1.3 \mathrm{~g}, 5.15 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(970 \mathrm{mg}, 7.02 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. The reaction was boiled for 12 h at $85^{\circ} \mathrm{C}$. After cooling the reaction mixture, it was partioned with ethyl acetate and sat. $\mathrm{Na}_{2} \mathrm{CO}_{3}$. The combined organic layers were dried over MgSO_{4}, filtered, and evaporated in vacuo. The residue was purified by chromatography ($\mathrm{H}: \mathrm{EA}=3: 1$) to afford $44(1.55 \mathrm{~g}, 85 \%)$ as a yellow oil. $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.32$ $(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 6.81(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 4.50-4.70(4 \mathrm{H}, \mathrm{m}), 3.71(3 \mathrm{H}, \mathrm{s}), 3.66(3 \mathrm{H}, \mathrm{s})$, $0.94(9 \mathrm{H}, \mathrm{s}), 0.21(6 \mathrm{H}, \mathrm{s})$.

Compound 45

To a solution of diisopropylamine ($298 \mu \mathrm{~L}, 2.13 \mathrm{mmol}$) in THF (10 mL) was added n $\mathrm{BuLi}\left(2.5 \mathrm{M}\right.$ solution in hexanes, $850 \mu \mathrm{~L}, 2.12 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. After 15 min at $0^{\circ} \mathrm{C}$, the solution was taken back to $-70^{\circ} \mathrm{C}$ and hexamethylphosphoric triamide ($435 \mu \mathrm{~L}, 2.5 \mathrm{mmol}$) was added. A solution of compound $44(750 \mathrm{mg}, 1.97 \mathrm{mmol})$ in 20 mL of THF was slowly transferred to the mixture at $-78^{\circ} \mathrm{C}$ via cannula. After 30 min 1,3-dibromopropane (486 $\mu \mathrm{L}$, 4.79 mmol) was added to reaction mixture. After being gradually warmed up to rt , the mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$. The mixture was diluted with ethyl a cetate and washed with brine. The organic layer was dried over MgSO_{4}, filtered, and evaporated in vacuo. The
residue was purified by chromatography ($\mathrm{H}: \mathrm{EA}=5: 1$) to give 45 ($569 \mathrm{mg}, 58 \%$). 300 MHz ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.11(2 \mathrm{H}$, d. $J=8.7 \mathrm{~Hz}), 6.96(1 \mathrm{H}, \mathrm{s}), 6.74(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 4.10-$ $4.20(2 \mathrm{H}, \mathrm{m}), 3.82(3 \mathrm{H}, \mathrm{s}), 3.72(3 \mathrm{H}, \mathrm{s}), 3.31(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 1.71-2.08(4 \mathrm{H}, \mathrm{m}), 0.96$ $(9 \mathrm{H}, \mathrm{s}), 0.18(6 \mathrm{H}, \mathrm{s})$.

Compound 33:

To a solution of $\mathbf{4 5}(400 \mathrm{mg}, 0.97 \mathrm{mmol})$ in THF (3 mL) at $0^{\circ} \mathrm{C}$ was added 1 mL of TBAF (1 M in THF). The reaction mixture was stirred at that temperature for 30 m in and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The organic solvent was evaporated in vacuo. The residue was diluted with ethyl acetate and washed with brine. The organic layer was dried over MgSO_{4}, filtered, and evaporated in vacuo. The residue was purified by chromatography ($\mathrm{H}: \mathrm{EA}=2: 1$) to afford $33(385 \mathrm{mg}$, Quantitative yield $) .300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.15$ $(2 \mathrm{H}, \mathrm{d} . J=8.7 \mathrm{~Hz}), 6.96(1 \mathrm{H}, \mathrm{s}), 6.75(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 4.18-4.21(1 \mathrm{H}, \mathrm{m}), 3.82(3 \mathrm{H}, \mathrm{s})$, $3.79-3.83(1 \mathrm{H}, \mathrm{m}), 3.72(3 \mathrm{H}, \mathrm{s}), 3.31(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 2.03-2.13(2 \mathrm{H}, \mathrm{m}), 1,82-1.88(1 \mathrm{H}$, m), 1.78-1.82 ($1 \mathrm{H}, \mathrm{m}$).

Compound 32:

To a solution of $\mathbf{3 3}(370 \mathrm{mg}, 0.92 \mathrm{mmol})$ in 90 mL freshly distilled $t-\mathrm{BuOH}$ at rt was added t - BuOK ($130 \mathrm{mg}, 1.1 \mathrm{mmol}$). The above solution was refluxed under argon for 24 h . The reaction mixture was cooled to room temperature and then quenched with 1 mL of saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The organic solvent was evaporated in vacuo. The residue was diluted with ethyl acetate and washed with brine. The organic layer was dried over MgSO_{4}, filtered, and evaporated in vacuo. The residue was purified by chromatography ($\mathrm{H}: \mathrm{EA}=2: 1$) to afford 32
$(180 \mathrm{mg}, 63 \%) .300 \mathrm{MHz}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.93(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}), 6.82(1 \mathrm{H}, \mathrm{d}, J=9.9$ $\mathrm{Hz}), 6.42(1 \mathrm{H}, \mathrm{s}), 6.37(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}), 6.17(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}), 4.07-4.15(1 \mathrm{H}, \mathrm{m}), 3.73$ $(6 \mathrm{H}, \mathrm{s}), 3.55-3.59(1 \mathrm{H}, \mathrm{m}), 2.65-2.71(1 \mathrm{H}, \mathrm{m}), 1.76-1.91(2 \mathrm{H}, \mathrm{m}), 1.64-1.69(2 \mathrm{H}, \mathrm{m}), 1.42-$ $1.49(1 \mathrm{H}, \mathrm{m}) ; 75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 186.8,172.3,155.1,153.8,153.2,130.6,127.8$, $126.9,58.3,52.8,52.1,51.5,50.3,37.3,32.8,19.5$. HRMS m / z for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{5}$ calcd 317.1342, found 317.1311.

Compound 49

$300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.91(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}), 6.72(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}), 6.45$ $(1 \mathrm{H}, \mathrm{s}), 6.31(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}), 6.05(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}), 4.07-4.15(1 \mathrm{H}, \mathrm{m}), 3.73(3 \mathrm{H}, \mathrm{s})$, $3.55-3.59(1 \mathrm{H}, \mathrm{m}), 2.65-2.71(1 \mathrm{H}, \mathrm{m}), 1.76-1.91(2 \mathrm{H}, \mathrm{m}), 1.64-1.69(2 \mathrm{H}, \mathrm{m}), 1.42-1.49(1 \mathrm{H}$, m), $1.23(9 \mathrm{H}, \mathrm{s})$.

Compound 51

To a solution $32(15 \mathrm{mg}, 0.047 \mathrm{mmol})$ in $t-\mathrm{BuOH} / \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL} / 0.5 \mathrm{~mL} / 0.3 \mathrm{~mL})$ was added $7 \mathrm{mg}(0.052 \mathrm{mmol})$ of NMO and 0.26 mL of $\mathrm{OsO}_{4}(0.005 \mathrm{mmol})$ solution $(5 \mathrm{mg} / \mathrm{mL})$. The mixture was stirred at room temperature for 3 h and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. Diluted with ethyl acetate and the organic layer washed with brine. The organic layer was dried over MgSO_{4}, filtered, and evaporated in vacuo. The residue was purified by chromatography ($\mathrm{H}: \mathrm{EA}=2: 1$) to afford $51\left(10 \mathrm{mg}, 60 \%\right.$ yield). $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 6.97(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.73(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 5.22(1 \mathrm{H}, \mathrm{bs}), 4.13-4.20(1 \mathrm{H}, \mathrm{m}), 3.79$ $(3 \mathrm{H}, \mathrm{s}), 3.65(3 \mathrm{H}, \mathrm{m}), 3.62-3.68(1 \mathrm{H}, \mathrm{m}), 2.52(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.40-1.81(4 \mathrm{H}, \mathrm{m})$.

Compound 52

To a solution of compound $32(28 \mathrm{mg}, 0.088 \mathrm{mmol})$ in $3 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ was added $12.3 \mu \mathrm{~L}$ $\mathrm{BF}_{3}: \mathrm{Et}_{2} \mathrm{O}$ and $9.7 \mu \mathrm{~L}$ propane-1,3-dithiol at $0{ }^{\circ} \mathrm{C}$. The reaction was raised to room temperature and stirred at that temperature for 16 h , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with ethyl acetate and the organic layer washed with brine. The organic layer was dried over MgSO_{4}, filtered, and evaporated in vacuo. The residue was purified by chromatography ($\mathrm{H}: \mathrm{EA}=3: 1$) to afford $52(19 \mathrm{mg}, 45 \%)$ as a mixture of isomers. $300 \mathrm{MHz}{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 7.05(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.85(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 5.22(1 \mathrm{H}, \mathrm{m}), 4.13-4.20(1 \mathrm{H}, \mathrm{m}), 3.80-$ $4.01(4 \mathrm{H}, \mathrm{m}) 3.79(3 \mathrm{H}, \mathrm{s}), 3.62-3.68(2 \mathrm{H}, \mathrm{m}), 3.32(2 \mathrm{H}, \mathrm{m}), 1.40-1.80(6 \mathrm{H}, \mathrm{m})$.

Compound 58

To a solution of diisopropylamine ($461 \mu \mathrm{~L}, 3.3 \mathrm{mmol}$) in THF (15 mL) was added n $\mathrm{BuLi}\left(2.5 \mathrm{M}\right.$ solution in hexanes, $1.3 \mathrm{~mL}, 3.2 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$. After 15 min at $0{ }^{\circ} \mathrm{C}$, the solution was cooled to $-78^{\circ} \mathrm{C}$ and a solution of compound $55(690 \mathrm{mg}, 3 \mathrm{mmol})$ in 5 mL THF was added slowly to the mixture. After 20 min , a solution of $57(792 \mathrm{mg}, 3.6 \mathrm{mmol})$ in THF (2 mL) was slowly added to this mixture at $-78^{\circ} \mathrm{C}$ and the mixture was allowed to raise to room temperature and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The organic solvent was evaporated in vacuo. The residue was diluted with ethyl acetate and washed with brine. The organic layer was dried over MgSO_{4}, filtered, and evaporated in vacuo. The crude mixture was dissolved in acetone $(10 \mathrm{~mL})$ and 2.0 mL of Jones reagent was added to the reaction mixture at $0^{\circ} \mathrm{C}$. After stirring at that temperature for $45 \mathrm{~min}, 2 \mathrm{~mL}$ isopropanol was added to quench the reaction. The organic solvent was evaporated and the residue was diluted with saturated ammonium chloride. The aqueous layer was extracted with ethyl acetate. The organic layer
was dried over MgSO_{4}, filtered, and evaporated in vacuo. The residue was purified by chromatography $(\mathrm{H}: \mathrm{EA}=4: 1)$ to afford $58\left(1.19 \mathrm{~g}, 89 \%\right.$ yield). $300 \mathrm{MHz}{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 7.97(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.87(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 3.74-3.80(2 \mathrm{H}, \mathrm{m}), 3.66(3 \mathrm{H}, \mathrm{s}), 3.67-$ $3.72(1 \mathrm{H}, \mathrm{m}), 3.12-3.29(2 \mathrm{H}, \mathrm{m}), 1.43(9 \mathrm{H}, \mathrm{s}), 1.10-1.20(3 \mathrm{H}, \mathrm{m}), 0.91(9 \mathrm{H}, \mathrm{m}), 0.22(6 \mathrm{H}, \mathrm{s})$.

Compound 59

To a solution of compound $58(640 \mathrm{mg}, 1.42 \mathrm{mmol})$, in 5 mL HMPA was added 575 mg (5.68 mmol) triethylamine and $667 \mathrm{mg}(5.53 \mathrm{mmol})$ pivaloyl chloride. The above mixture was allowed to stir at rt for 24 h . The reaction mixture was poured into half saturated NaCl solution, extracted with ethyl acetate. The organic layer was dried over MgSO_{4}, filtered, and evaporated in vacuo. The residue was purified by chromatography ($\mathrm{H}: \mathrm{EA}=4: 1$) to afford 59 $(580 \mathrm{mg}, 81 \%) .300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.36(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.05(2 \mathrm{H}, \mathrm{d}, J=8.4$ $\mathrm{Hz}), 4.18-4.28(2 \mathrm{H}, \mathrm{m}), 3.54(3 \mathrm{H}, \mathrm{s}), 3.27-3.34(2 \mathrm{H}, \mathrm{m}), 1.45(9 \mathrm{H}, \mathrm{s}), 1.33(9 \mathrm{H}, \mathrm{s}), 1.21(9 \mathrm{H}$, s), $1.10(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$.

Compound 60

To a suspension of $\mathrm{CuI}(96.55 \mathrm{mg}, 0.506 \mathrm{mmol})$ in 3 mL THF at $-78^{\circ} \mathrm{C}$ was added 0.75 mL MeLi (1.4 M in THF). The mixture was brought up to $0^{\circ} \mathrm{C}$ and stirred at that temperature for 15 min . The above mixture was taken back to $-78{ }^{\circ} \mathrm{C}$ and a solution of $59(203 \mathrm{mg}, 0.41$ mmol) in 5 mL of THF was cannulated to the reaction mixture. After stirring at $-78^{\circ} \mathrm{C}$ for 1 h , the temperature was gradually raised to $0{ }^{\circ} \mathrm{C}$. The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ethyl acetate. The organic layer was dried over MgSO_{4}, filtered, and evaporated in vacuo. The residue was purified by chromatography ($\mathrm{H}: \mathrm{EA}=3: 1$) to afford
$60(144 \mathrm{mg}, 85 \%) .400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.12(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.03(2 \mathrm{H}, \mathrm{d}, J=$ $8.4 \mathrm{~Hz}), 3.99(2 \mathrm{H}, \mathrm{s}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.12-3.23(2 \mathrm{H}, \mathrm{m}), 2.11(3 \mathrm{H}, \mathrm{s}), 1.32(9 \mathrm{H}, \mathrm{s}), 1.30(9 \mathrm{H}, \mathrm{s})$, $1.06(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$.

Compound 62

To a solution of 3 -aminophenol $(12.0 \mathrm{~g}, 110 \mathrm{mmol})$ in $250 \mathrm{~mL} t-\mathrm{BuOH}$ was added di- t butyldicarbonate ($24 \mathrm{~g}, 110 \mathrm{mmol}$). The above mixture was heated at $80^{\circ} \mathrm{C}$ for 23 h . The solvent was e vaporated and the residue was dissolved in 300 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried and evaporated to give protected phenol which was taken directly to the next step. The crude mixture was dissolved in 200 mL of DMF. Imidazole ($10.02 \mathrm{~g}, 165 \mathrm{mmol}$) and $\operatorname{TBSCl}(16.85 \mathrm{~g}, 110 \mathrm{mmol})$ was added and the reaction mixture was stirred at room temperature for 12 h . The mixture was poured into half saturated NaCl solution, extracted with ethyl ether. The organic layer was dried over MgSO_{4}, filtered, and evaporated in vacuo. The residue was purified by chromatography ($\mathrm{H}: \mathrm{EA}=2: 1$) to afford 62 $(32.6 \mathrm{~g}, 92 \%) .400 \mathrm{MHz}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.12(1 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}), 6.88(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz})$, $6.85(1 \mathrm{H}, \mathrm{s}), 6.49(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.39(1 \mathrm{H}, \mathrm{s}), 1.49(9 \mathrm{H}, \mathrm{s}), 0.95(9 \mathrm{H}, \mathrm{s}), 0.18(6 \mathrm{H}, \mathrm{s})$.

Compound 63

To solution of $62(10 \mathrm{~g}, 31 \mathrm{mmol})$ in 300 mL ethyl ether was degassed for 20 min and cooled to $-78{ }^{\circ} \mathrm{C}$. To the above solution $46 \mathrm{~mL} t-\mathrm{BuLi}(1.7 \mathrm{M}$ solution in pentane) was added and temperature was gradually brought up to $-40^{\circ} \mathrm{C}$. After stirring at this temperature for 2 h , the mixture was taken back to $-78^{\circ} \mathrm{C} .10 \mathrm{~mL}$ DMF was added and the reaction mixture was gradually warmed to $0{ }^{\circ} \mathrm{C}$. The mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and mixture was
poured into 100 mL of water and extracted with ether. The combined ether extracts was washed with brine, dried and evaporated under reduced pressure to give $63,400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 10.45(1 \mathrm{H}, \mathrm{s}), 9.66(1 \mathrm{H}, \mathrm{s}), 7.93(1 \mathrm{H}, \mathrm{s}), 7.39(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.70(1 \mathrm{H}, \mathrm{d}$, $J=8.4 \mathrm{~Hz}), 1.49(9 \mathrm{H}, \mathrm{s}), 0.96(9 \mathrm{H}, \mathrm{s}), 0.19(6 \mathrm{H}, \mathrm{s})$.

Compound 64

The crude mixture of $\mathbf{6 3}$ was dissolved in 100 mL of THF. 30 mL of TBAF (1 M solution in THF) was added at $0^{\circ} \mathrm{C}$. After stirring at that temperature for 30 min the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was poured into 60 mL of water and extracted with ethyl acetate. The combined organic extracts was washed with brine, dried and evaporated under reduced pressure. The crude product was purified by chromatography ($\mathrm{H}: \mathrm{EA}=2: 1$) to give $64\left(4.92 \mathrm{~g}, 69 \%\right.$ yield over two steps). $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $10.66(1 \mathrm{H}, \mathrm{s}), 9.69(1 \mathrm{H}, \mathrm{s}), 7.94(1 \mathrm{H}, \mathrm{s}), 7.70(1 \mathrm{H}, \mathrm{s}), 7.49(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.61(1 \mathrm{H}, \mathrm{d}, J$ $=8.4 \mathrm{~Hz}), 1.52(9 \mathrm{H}, \mathrm{s}) ; 75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 193.3,163.5,153.8,143.9,139.2$, 115.6, 110.3, 104.8, 81.9, 28.5.

Compound 65

To a solution of $64(5.00 \mathrm{~g}, 21.5 \mathrm{mmol})$ in $300 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ was added 11.3 mL of diisopropylethylamine (64.5 mmol). The mixture was cooled to $0^{\circ} \mathrm{C}$ and 3.26 mL MOMCl was added slowly. The mixture was warmed to room temperature and stirred at that temperature for 8 h . The mixture was diluted with $100 \mathrm{mLCH}_{2} \mathrm{Cl}_{2}$ and the organic layer was washed with saturated NaHCO_{3} and brine. The organic extracts were dried over MgSO_{4}, filtered, and evaporated in vacuo. The residue was purified by chromatography $(\mathrm{H}: \mathrm{EA}=5: 1)$ to afford $\mathbf{6 5}$
(5.13 g, 85% yield). $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 10.52(1 \mathrm{H}, \mathrm{s}), 9.66(1 \mathrm{H}, \mathrm{s}), 8.06(1 \mathrm{H}, \mathrm{s})$, $7.46(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.69(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 5.19(2 \mathrm{H}, \mathrm{s}), 3.44(3 \mathrm{H}, \mathrm{s}), 1.52(9 \mathrm{H}, \mathrm{s}) ; 100$ $\mathrm{MHz}{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right) \delta 193.4,163.5,153,144.1,138.45,116.4,109.64,105.1,94.2,81.2$, 56.7, 28.4.

Compound 66

To a solution of $65(4.00 \mathrm{~g}, 14.2 \mathrm{mmol})$ in 25 mL methanol was added dimethylmalomate ($5.63 \mathrm{~g}, 42.6 \mathrm{mmol}$) and piperidine ($604 \mathrm{mg}, 7.1 \mathrm{mmol}$). The mixture was refluxed for 24 h . The reaction mixture was cooled to room temperature and the organic solvents were evaporated to give solid residue. The solid residue was washed with hexane/ethyl ether (3:1) mixture and filtered to get pure 66 as a white solid $(3.89 \mathrm{~g}, 90 \%$ yield). $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.41(1 \mathrm{H}, \mathrm{s}), 7.75(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.10(1 \mathrm{H}, \mathrm{s}), 6.94$ $(1 \mathrm{H}, \mathrm{s}), 5.36(2 \mathrm{H}, \mathrm{s}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.45(3 \mathrm{H}, \mathrm{s})$.

Compound 67

To a solution of compound $66(3.6 \mathrm{~g}, 13 \mathrm{mmol})$ in 250 mL of acetone was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(10 \mathrm{~g}, 104 \mathrm{mmol})$ and ethyl iodide ($6.84 \mathrm{~g}, 39 \mathrm{mmol}$). After being refluxed under argon for 15 h , the mixture was filtered and organic solvent was evaporated in vacuo. The residue was diluted with ethyl acetate and washed with brine. The organic layer was dried over MgSO_{4}, filtered, and evaporated in vacuo. The residue was purified by chromatography ($\mathrm{EA}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $=1: 1)$ to afford $67(3.21 \mathrm{~g}, 85 \%) .300 \mathrm{MHz}{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.41(1 \mathrm{H}, \mathrm{s}), 7.71(1 \mathrm{H}, \mathrm{d}, J=$ $8.4 \mathrm{~Hz}), 7.02(1 \mathrm{H}, \mathrm{s}), 6.94(1 \mathrm{H}, \mathrm{s}), 5.36(2 \mathrm{H}, \mathrm{s}), 4.27(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.45$ $(3 \mathrm{H}, \mathrm{s}), 1.21(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$.

Compound 68

To a suspension of $\mathrm{CuI}(2.29 \mathrm{~g}, 12 \mathrm{mmol})$ in 25 mL of THF at $-78^{\circ} \mathrm{C}$ was added 3 mL of dimethyl sulfide and 24 mL of vinylmagnesium bromide (1 M solution in THF). The mixture was brought up to $0^{\circ} \mathrm{C}$ and stirred at that temperature for 15 min . The above mixture was taken back to $-78^{\circ} \mathrm{C}$ and a solution of $67(1.85 \mathrm{~g}, 6 \mathrm{mmol})$ in 75 mL of THF was cannulated to the reaction mixture. After stirring at $-78^{\circ} \mathrm{C}$ for 1 h , the temperature was gradually raised to $0{ }^{\circ} \mathrm{C}$. The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ethyl acetate. The organic layer was dried over MgSO_{4}, filtered, and evaporated in vacuo. The residue was purified by chromatography ($\mathrm{H}: \mathrm{EA}=5: 1$) to afford $68\left(1.19 \mathrm{~g}, 60 \%\right.$ yield). $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.11(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.71-6.79(2 \mathrm{H}, \mathrm{m}), 5.78(1 \mathrm{H}, \mathrm{dt}, J=12 \mathrm{~Hz}, J=$ $8 \mathrm{~Hz}), 5.21(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 5.18(2 \mathrm{H}, \mathrm{s}), 5.06(1 \mathrm{H}, \mathrm{d}, J=12 \mathrm{~Hz}), 3.88-4.09(3 \mathrm{H}, \mathrm{m}), 3.68$ $(3 \mathrm{H}, \mathrm{s}), 3.52(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 3.49(3 \mathrm{H}, \mathrm{s}), 1.26(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) ; 100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 169.0,164.9,157.5,138.9,136.2,128.9,119.0,118.2,109.9,94.5,55.95,53.4$, 52.2, 42.7, 37.6, 12.3.

Compound 69

To a suspension of $\mathrm{NaH}(90 \mathrm{mg}, 3.6 \mathrm{mmol})$ in 5 mL of THF was added a solution of compound $68(1.01 \mathrm{~g}, 3.05 \mathrm{mmol})$ in 25 mL of THF at $0^{\circ} \mathrm{C}$. After stirring for 20 min, HMPA ($530 \mu \mathrm{~L}, 3.06 \mathrm{mmol}$) and 1,3-dibromopropane ($1.81 \mathrm{~g}, 9 \mathrm{mmol}$) was added. The mixture was refluxed for 16 h the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was poured into 10 mL of water and extracted with ethyl a cetate. The combined organic extracts was washed with brine, dried and evaporated under reduced pressure. The crude product was
purified by chromatography ($\mathrm{H}: \mathrm{EA}=4: 1$) to give $69(1.02 \mathrm{~g}, 79 \%) .300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.99(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.66-6.72(2 \mathrm{H}, \mathrm{m}), 6.13(1 \mathrm{H}, \mathrm{dt}, J=12 \mathrm{~Hz}, J=8 \mathrm{~Hz})$, $5.38(1 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}), 5.21(1 \mathrm{H}, \mathrm{d}, J=12 \mathrm{~Hz}), 5.14(2 \mathrm{H}, \mathrm{s}) 4.02-4.18(1 \mathrm{H}, \mathrm{m}), 3.78-3.89(1 \mathrm{H}$, $\mathrm{m}), 3.49(3 \mathrm{H}, \mathrm{s}), 3.42(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 3.35(3 \mathrm{H}, \mathrm{s}), 3.38-3.48(2 \mathrm{H}, \mathrm{m}), 2.01-2.19(2 \mathrm{H}, \mathrm{m})$, $1.84-1.93(2 \mathrm{H}, \mathrm{m}), 1.26(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$.

Compound 70

To a solution of $69(450 \mathrm{mg}, 1.03 \mathrm{mmol})$ in 10 mL of ethyl acetate at $0^{\circ} \mathrm{C}$ was added 1 mL of 4 N HCl . The reaction mixture was stirred at that temperature for 30 min . Diluted with ethyl acetate (10 mL) and washed with $10 \% \mathrm{NaHCO}_{3}$ solution and brine. The organic layer was dried over MgSO_{4}, filtered, and evaporated in vacuo. The residue was purified by chromatography ($\mathrm{H}: \mathrm{EA}=2: 1$) to afford $70\left(400 \mathrm{mg}\right.$, Quantitative yield). $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.97(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.60(1 \mathrm{H}, \mathrm{s}), 6.52(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.15(1 \mathrm{H}, \mathrm{dt}, J=$ $12 \mathrm{~Hz}, J=8 \mathrm{~Hz}), 5.41(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 5.25(1 \mathrm{H}, \mathrm{d}, J=12 \mathrm{~Hz}), 4.08-4.18(1 \mathrm{H}, \mathrm{m}), 3.81-$ $3.92(1 \mathrm{H}, \mathrm{m}), 3.51(3 \mathrm{H}, \mathrm{s}), 3.47(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 3.41-3.52(2 \mathrm{H}, \mathrm{m}), 2.01-2.19(2 \mathrm{H}, \mathrm{m})$, $1.84-1.93(2 \mathrm{H}, \mathrm{m}), 1.26(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) ; 100 \mathrm{MHz}{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 170.65,167.4$, 157.3, 139.0, 134.2, 127.8, 120.2, 109.7, 103.6, 94.6, 56.1, 52.1, 47.3, 38.4, 33.6, 31.6, 27.6, 12.1

Compound 71

To a suspension of $\mathrm{NaH}(29 \mathrm{mg}, 1.2 \mathrm{mmol})$ in 5 mL of THF was added a solution of compound $70(390 \mathrm{mg}, 1.00 \mathrm{mmol})$ in 10 mL of THF at $0^{\circ} \mathrm{C}$. After stirring for $20 \mathrm{~min}, 18$ -crown-6 ($270 \mathrm{mg}, 1.02 \mathrm{mmol}$) and 80 mL of THF was added and the reaction mixture was
refluxed for 24 h under argon. The reaction mixture was cooled to room temperature and then quenched with 1 mL of saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The organic solvent was evaporated in vacuo. The residue was diluted with ethyl acetate and washed with brine. The organic layer was dried over MgSO_{4}, filtered, and evaporated in vacuo. The residue was purified by chromatography ($\mathrm{H}: \mathrm{EA}=1: 1$) to afford 71 as white solid ($130 \mathrm{mg}, 42 \%$ yield). $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $6.47(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}), 6.17(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}), 5.91(1 \mathrm{H}, \mathrm{s}), 5.43(1 \mathrm{H}, \mathrm{m}), 5.02-5.09(2 \mathrm{H}$, m), 3.93-4.01 $(2 \mathrm{H}, \mathrm{m}), 3.65(3 \mathrm{H}, \mathrm{s}), 2.57(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}), 2.11-2.28(2 \mathrm{H}, \mathrm{m}), 1.81-1.98$ $(2 \mathrm{H}, \mathrm{m}), 1.51-1.71(2 \mathrm{H}, \mathrm{m}), 1.23(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) ; 100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ 186.7, $170.7,167.4,157.6,151.3,134.1,127.7,119.4,108.9,56.2,53.2,52.2,42.9,38.6,38.0,33.3$, 18.9, 12.1. HRMS m / z for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{5}$ calcd 315.1471, found 315.1478.

Compound 72

To a solution of compound $69(440 \mathrm{mg}, 1.01 \mathrm{mmol})$ in $25 \mathrm{mLCH} \mathrm{Cl}_{2} /$ Methanol (5/1) at $-78^{\circ} \mathrm{C}$, o zone w as b ubbled till the disappearance of s tarting material in TLC. A rgon w as bubbled to remove excess ozone, and 170 mg of $\mathrm{Me}_{2} \mathrm{~S}$ was added to the mixture. The reaction mixture was gradually brought up to room temperature and was stirred at that temperature for additional 4 h . The mixture was diluted with 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with brine. The organic layer was dried over MgSO_{4}, filtered, and evaporated in vacuo. The residue was purified by chromatography $(\mathrm{H}: \mathrm{EA}=2: 1)$ to afford $72(400 \mathrm{mg}, 92 \%$ yield $) .400$ $\mathrm{MHz}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 9.54(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 7.08(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.76(1 \mathrm{H}, \mathrm{d}, J=$ $8.4 \mathrm{~Hz}), 6.73(1 \mathrm{H}, \mathrm{s}), 5.16(2 \mathrm{H}, \mathrm{s}), 3.89-3.98(2 \mathrm{H}, \mathrm{m}), 3.79(3 \mathrm{H}, \mathrm{s}), 3.58(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz})$, $3.25(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}), 2.01-2.19(2 \mathrm{H}, \mathrm{m}), 1.84-1.93(2 \mathrm{H}, \mathrm{m}), 1.26(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$.

Compound 73

To a solution of compound $72(350 \mathrm{mg}, 0.9 \mathrm{mmol})$ in 10 mL of methanol was added trimethylorthoformate ($385 \mathrm{mg}, 3.6 \mathrm{mmol}$) and PTSA ($35 \mathrm{mg}, 0.18 \mathrm{mmol}$). The reaction mixture was stirred under argon for 24 h . The solvent was concentrated and the residue was dissolved in 50 mL of ethyl acetate. The organic layer was washed with $10 \% \mathrm{NaHCO}_{3}$ and brine. The organic layer was dried, concentrated and purified by column chromatography $(\mathrm{H}: \mathrm{EA}=1: 1)$ to give $73(275 \mathrm{mg}, 69 \%)$ as white solid. $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.97$ $(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.60(1 \mathrm{H}, \mathrm{s}), 6.52(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 4.14(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}), 4.08-4.18$ $(1 \mathrm{H}, \mathrm{m}), 3.81-3.92(1 \mathrm{H}, \mathrm{m}), 3.51(3 \mathrm{H}, \mathrm{s}), 3.23(6 \mathrm{H}, \mathrm{s}), 3.47(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 3.41-3.52$ $(2 \mathrm{H}, \mathrm{m}), 2.44(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}), 2.01-2.19(2 \mathrm{H}, \mathrm{m}), 1.84-1.93(2 \mathrm{H}, \mathrm{m}), 1.26(3 \mathrm{H}, \mathrm{t}, J=7.2$ Hz).

Compound 74

To a suspension of $\mathrm{NaH}(29 \mathrm{mg}, 1.2 \mathrm{mmol})$ in 5 mL of THF was added a solution of compound $73(450 \mathrm{mg}, 1.00 \mathrm{mmol})$ in 10 mL of THF at $0^{\circ} \mathrm{C}$. After stirring for $20 \mathrm{~min}, 18$ -crown- $6(270 \mathrm{mg}, 1.02 \mathrm{mmol}$) and 80 mL of THF was added and the reaction mixture was refluxed for 24 h under argon. The reaction mixture was cooled to room temperature and then quenched with 1 mL of saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The organic solvent was evaporated in vacuo. The residue was diluted with ethyl acetate and washed with brine. The organic layer was dried over MgSO_{4}, filtered, and evaporated in vacuo. The residue was purified by chromatography ($\mathrm{EA}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 2$) to afford $74\left(265 \mathrm{mg}, 72 \%\right.$ yield). $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.71(1 \mathrm{H}$, $\mathrm{d}, J=9.9 \mathrm{~Hz}), 6.17(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}), 5.81(1 \mathrm{H}, \mathrm{s}), 4.14(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}), 3.98-4.19(1 \mathrm{H}$, $\mathrm{m}), 3.82-3.91(1 \mathrm{H}, \mathrm{m}) 3.73(3 \mathrm{H}, \mathrm{s}), 3.24(6 \mathrm{H}, \mathrm{s}) 2.44(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}), 2.11-2.28(2 \mathrm{H}, \mathrm{m})$,
$1.91-1.98(1 \mathrm{H}, \mathrm{m}), 1.78-1.89(1 \mathrm{H}, \mathrm{m}) 1.51-1.71(2 \mathrm{H}, \mathrm{m}), 1.23(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) ; 100 \mathrm{MHz}$ ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 170.6,167.5,157.4,139.0,134.3,127.8,120.2,120.1,109.7,103.6$, $94.6,56.1,56.0,52.1,47.3,38.4,33.5,31.6,27.7,12.1$.

Compound 75

To a solution of $74(265 \mathrm{mg}, 0.72 \mathrm{mmol})$ in ethyl acetate was carefully added $10 \% \mathrm{Pd} / \mathrm{C}$ $(76 \mathrm{mg}, 0.07 \mathrm{~m} \mathrm{~mol}) \mathrm{at} \mathrm{rt}$. After being stirred under H_{2} b alloon p ressure at rt for 3 h , the mixture was filtered through celite and rinsed with ethyl acetate. The filtrate was evaporated in vacuo to give $75(265 \mathrm{mg}, 100 \%) .400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.51(1 \mathrm{H}, \mathrm{s}), 4.29(1 \mathrm{H}, \mathrm{d}$, $J=4.4 \mathrm{~Hz}), 3.98-4.19(2 \mathrm{H}, \mathrm{m}), 3.63(3 \mathrm{H}, \mathrm{s}), 3.24(6 \mathrm{H}, \mathrm{s}) 2.52-2.61(2 \mathrm{H}, \mathrm{m}), 2.38-2.43(1 \mathrm{H}$, $\mathrm{m}), 2.10-2.29(4 \mathrm{H}, \mathrm{m}), 1.51-1.81(4 \mathrm{H}, \mathrm{m}), 1.23(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) ; 100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 198.1,171.65,167.9,161.6,106.3,57.3,55.8,53.2,52.5,51.2,37.9,37.3,37.0$, 36.1, 33.2, 32.4, 19.5, 11.9.

Compound 75

Liquid ammonia (10 mL) was collected in a three-neck flask at $-78^{\circ} \mathrm{C}$ containing compound $74(50 \mathrm{mg}, 0.13 \mathrm{mmol})$ and $t-\mathrm{BuOH}(48 \mathrm{mg}, 0.65 \mathrm{mmol})$ in 2 mL of THF. Freshly cut lithium metal ($9 \mathrm{mg}, 1.3 \mathrm{mmol}$) was added to get a deep blue solution and mixture was stirred at that temperature for 30 min . Quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ and the solution turned colorless. The mixture was warmed to room temperature and ammonia was evaporated. The residue was diluted with water and extracted with ethyl acetate, dried and purified by chromatography $\left(\mathrm{EA}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 1\right)$ to yield $76(18 \mathrm{mg}, 45 \%)$ as $3: 1$ mixture of isomers.

Major isomer: $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 10.04(1 \mathrm{H}, \mathrm{s}), 4.69(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz})$,
3.60-3.70(2H, m), 3.43(3H,s), 3.33-3.37(1H, m), 3.24(3H, s) 2.41-2.82(4H, m), 2.38-2.43 $(1 \mathrm{H}, \mathrm{m}), 2.10-2.29(2 \mathrm{H}, \mathrm{m}), 1.51-1.81(4 \mathrm{H}, \mathrm{m}), 1.23(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) ; 100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 210.0,201.1,171.7,104.3,59.2,56.5,55.0,53.4,52.7,43.1,42.3,36.7,35.5,35.2$, $33.0,32.5,19.5,13.8$.

Minor isomer: $400 \mathrm{MHz}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 9.96(1 \mathrm{H}, \mathrm{s}), 4.49(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz})$, 3.61-3.70 ($2 \mathrm{H}, \mathrm{m}$), $3.43(3 \mathrm{H}, \mathrm{s}), 3.33-3.37(1 \mathrm{H}, \mathrm{m}), 3.24(3 \mathrm{H}, \mathrm{s}) 2.41-2.82(4 \mathrm{H}, \mathrm{m}), 2.38-2.43$ $(1 \mathrm{H}, \mathrm{m}), 2.10-2.29(2 \mathrm{H}, \mathrm{m}), 1.5-1.8(4 \mathrm{H}, \mathrm{m}), 1.19(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) ; 100 \mathrm{MHz} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 207.7,200.8,171.5,104.2,56.7,56.4,53.8,53.2,51.2,42.5,40.7,36.5,35.3,33.9$, $32.8,30.6,19.2,12.7$.

Compound 77

To a solution of compound $74(200 \mathrm{mg}, 0.54 \mathrm{mmol})$ in 10 mL of MeOH was added $\mathrm{LiOH}(65 \mathrm{mg}, 2.6 \mathrm{mmol}$) at room temperature. After stirring for 4 h the solvent was concentrated and the residue was dissolved in 5 mL water and then carefully acidified to pH 2 with 20% aqueous HCl . The suspension was immediately extracted with ethyl acetate (5 X 10 mL) and the combined organic extracts are dried over MgSO_{4} and evaporated under vacuo to yield $77(111 \mathrm{mg}, 59 \%) .400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.51(1 \mathrm{H}, \mathrm{s}), 4.29(1 \mathrm{H}, \mathrm{d}, J=4.4$ $\mathrm{Hz})$, 3.98-4.19 ($2 \mathrm{H}, \mathrm{m}$), $3.24(6 \mathrm{H}, \mathrm{s}), ~ 2.52-2.61(2 \mathrm{H}, \mathrm{m}), 2.38-2.43(1 \mathrm{H}, \mathrm{m}), 2.10-2.29(4 \mathrm{H}$, $\mathrm{m}), 1.51-1.81(4 \mathrm{H}, \mathrm{m}), 1.23(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$.

Compound 78

Liquid ammonia (10 mL) was collected in a three-neck flask at $-78^{\circ} \mathrm{C}$ containing compound 77 ($111 \mathrm{mg}, 0.32 \mathrm{mmol}$) and $t-\mathrm{BuOH}(118 \mathrm{mg}, 1.6 \mathrm{mmol})$ in 2 mL of THF.

Freshly cut lithium metal ($22.4 \mathrm{mg}, 3.2 \mathrm{mmol}$) was added to get a deep blue solution and mixture was stirred at that temperature for 30 min , quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ and the solution turned colorless. The mixture was warmed to room temperature and ammonia was evaporated. The residue was diluted with 5 mL of water and then carefully acidified to pH 2 with 20% aqueous HCl . The suspension was immediately extracted with ethyl acetate (5 X 10 mL) and the combined organic extracts are dried over MgSO_{4} and evaporated under vacuo to yield 78 as $3: 1$ mixture of isomers.

Major isomer: $400 \mathrm{MHz}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 4.69(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}), 3.6-3.7(2 \mathrm{H}, \mathrm{m})$, $3.43(3 \mathrm{H}, \mathrm{s}), 3.33-3.37(1 \mathrm{H}, \mathrm{m}), 3.24(3 \mathrm{H}, \mathrm{s}) 2.41-2.82(4 \mathrm{H}, \mathrm{m}), 2.38-2.43(1 \mathrm{H}, \mathrm{m}), 2.10-2.29$ $(2 \mathrm{H}, \mathrm{m}), 1.51-1.80(4 \mathrm{H}, \mathrm{m}), 1.23(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$.

Minor Isomer: $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.49(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}), 3.61-3.70(2 \mathrm{H}$, m), $3.43(3 \mathrm{H}, \mathrm{s}), 3.33-3.37(1 \mathrm{H}, \mathrm{m}), 3.24(3 \mathrm{H}, \mathrm{s}) 2.41-2.82(4 \mathrm{H}, \mathrm{m}), 2.38-2.43(1 \mathrm{H}, \mathrm{m}), 2.10-$ $2.29(2 \mathrm{H}, \mathrm{m}), 1.50-1.81(4 \mathrm{H}, \mathrm{m}), 1.19(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$.

Compound 79

To a solution of compound 78 in 10 mL of ethyl acetate was treated with freshly prepared $\mathrm{CH}_{2} \mathrm{~N}_{2}$ (solution in ether) at $0{ }^{\circ} \mathrm{C}$. After stirring at that temperature for 20 min the organic solvent was evaporated in vacuo. The residue was diluted with ethyl acetate and washed with brine. The organic layer was dried over MgSO_{4}, filtered, and evaporated in vacuo. The residue was purified by chromatography $\left(\mathrm{EA}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 2\right)$ to afford $79(58 \mathrm{mg}$, 49% for two steps) as 3:1 mixture of isomers.

Major isomer: $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.35(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}), 3.75(3 \mathrm{H}, \mathrm{s}), 3.60-$ $3.70(2 \mathrm{H}, \mathrm{m}), 3.43(3 \mathrm{H}, \mathrm{s}), 3.33-3.37(1 \mathrm{H}, \mathrm{m}), 3.24(3 \mathrm{H}, \mathrm{s}) 2.41-2.82(4 \mathrm{H}, \mathrm{m}), 2.38-2.43(1 \mathrm{H}$,
$\mathrm{m}), 2.10-2.29(2 \mathrm{H}, \mathrm{m}), 1.51-1.80(4 \mathrm{H}, \mathrm{m}), 1.23(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$.
Minor Isomer : $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.29(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}), 3.75(3 \mathrm{H}, \mathrm{s})$, 3.60-3.70 ($2 \mathrm{H}, \mathrm{m}$), 3.46(3H, s), 3.33-3.37(1H, m), $3.21(3 \mathrm{H}, \mathrm{s}) 2.41-2.82(4 \mathrm{H}, \mathrm{m}), 2.38-2.43$ $(1 \mathrm{H}, \mathrm{m}), 2.10-2.29(4 \mathrm{H}, \mathrm{m}), 1.51-1.80(4 \mathrm{H}, \mathrm{m}), 1.23(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$.

Compound 80

To a solution of ester $79(50 \mathrm{mg}, 0.13 \mathrm{mmol})$ in 2 mL of THF at $0^{\circ} \mathrm{C}$ was added 0.5 mL of 4 N HCl . The reaction mixture was stirred at that temperature for 4 h , diluted with ethyl acetate (10 mL) and washed with $10 \% \mathrm{NaHCO}_{3}$ solution and brine. The organic layer was dried over MgSO_{4}, filtered, and evaporated in vacuo. The residue was purified by chromatography ($\mathrm{EA}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 2$) to afford $80(23 \mathrm{mg}, 57 \%)$ as white powder and compound 81 ($7 \mathrm{mg}, 17 \%$)

Compound 80: $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.83(1 \mathrm{H}, \mathrm{dd}, J=7.2 \mathrm{~Hz}, 4.0 \mathrm{~Hz}), 3.90-4.00$ $(1 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.39(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}), 3.08(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 2.70-2.84(2 \mathrm{H}, \mathrm{m})$, $2.42(1 \mathrm{H}, \mathrm{d}, J=4 \mathrm{~Hz}), 2.27-2.33(2 \mathrm{H}, \mathrm{m}), 2.17(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}), 1.90-2.04(2 \mathrm{H}, \mathrm{m}), 1.70-$ $1.90(4 \mathrm{H}, \mathrm{m}), 1.20(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) ; 75 \mathrm{MHz}{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 209.6, 172.7, 166.6, $75.2,68.7,62.2,57.4,55.6,53.0,41.7,41.4,35.9,34.89,33.8,33.4,20.1,12.8 ;$ HRMS m/z for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~N}$ calcd 321.15762, found 321.15810 .

Compound 81

$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.59(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}), 3.75(3 \mathrm{H}, \mathrm{s}), 3.60-3.70(2 \mathrm{H}, \mathrm{m})$, 3.33-3.37 ($1 \mathrm{H}, \mathrm{m}$), 2.41-2.82 ($4 \mathrm{H}, \mathrm{m}$), $2.38(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}), 2.10-2.29(4 \mathrm{H}, \mathrm{m}), 1.50-1.80$ $(4 \mathrm{H}, \mathrm{m}), 1.23(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$.

Compound 82

To a solution of compound $\mathbf{8 0}(15 \mathrm{mg}, 0.045 \mathrm{mmol})$ in 3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added acetamidate ($26 \mathrm{mg}, 0.09 \mathrm{mmol}$) and 5 mg of CSA. The reaction mixture was stirred at room temperature for 24 h . The organic solvent was evaporated in vacuo. The residue was diluted with ethyl acetate and washed with brine. The organic layer was dried over MgSO_{4}, filtered, and evaporated in vacuo. The residue was purified by chromatography ($\mathrm{H}: \mathrm{EA}=1: 1$) to afford to yield $82(15 \mathrm{mg}, 85 \%) .400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.11(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.82(2 \mathrm{H}, \mathrm{d}$, $J=8.4 \mathrm{~Hz}), 4.65(1 \mathrm{H}, \mathrm{dd}, J=7.2 \mathrm{~Hz}), 4.25(2 \mathrm{H}, \mathrm{s}), 3.90-4.00(1 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.65$ $(3 \mathrm{H}, \mathrm{s}), 3.39(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}), 3.08(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 2.70-2.84(2 \mathrm{H}, \mathrm{m}), 2.42(1 \mathrm{H}, \mathrm{d}, J=$ $4 \mathrm{~Hz}), 2.27-2.33(2 \mathrm{H}, \mathrm{m}), 2.17(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}), 1.90-2.04(2 \mathrm{H}, \mathrm{m}), 1.70-1.90(4 \mathrm{H}, \mathrm{m}), 1.20$ $(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$.

Compound 84

To a solution of compound $82(15 \mathrm{mg}, 0.04 \mathrm{mmol})$ was added freshly prepared LDA ($0.4 \mathrm{~mL}, 0.1 \mathrm{M}$ solution) at $-78^{\circ} \mathrm{C}$. After stirring for $30 \mathrm{~min} \mathrm{TMSCl}(11 \mathrm{mg}, 0.1 \mathrm{mmol})$ was added and reaction mixture was allowed to stir at that temperature for 30 min , the mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$. The mixture was diluted with ethyl acetate and washed with brine. The organic layer was dried over MgSO_{4}, filtered, and evaporated in vacuo to get crude $\mathbf{8 3}$ and taken directly to next step. To a solution of 83 in 1 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was added 5 mg of $\operatorname{Pd}(\mathrm{OAc})_{2}$. The mixture was stirred at room temperature for 8 h . The organic solvent was evaporated in vacuo. The residue was diluted with ethyl acetate and washed with brine. The organic layer was dried over MgSO_{4}, filtered, and evaporated in vacuo. The residue was purified by chromatography $\left(\mathrm{EA}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 2\right)$ to afford to yield $84(10 \mathrm{mg}, 65 \%) .400$
$\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.11(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.77(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.75(1 \mathrm{H}, \mathrm{d}, J=$ $9.6 \mathrm{~Hz}), 6.10(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 4.18(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 4.32(2 \mathrm{H}, \mathrm{s}), 3.90-4.00(1 \mathrm{H}, \mathrm{m})$, $3.80(3 \mathrm{H}, \mathrm{s}), 3.65(3 \mathrm{H}, \mathrm{s}), 3.39(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}), 3.08(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 2.70-2.84(2 \mathrm{H}$, $\mathrm{m}), 2.42(1 \mathrm{H}, \mathrm{d}, J=4 \mathrm{~Hz}), 2.27-2.33(2 \mathrm{H}, \mathrm{m}), 2.17(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}), 1.71-1.90(4 \mathrm{H}, \mathrm{m})$, $1.22(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$.

Compound 85

To a suspension of $\mathrm{NaH}(30 \mathrm{mg}, 1.2 \mathrm{mmol})$ in 5 mL of THF was added a solution of compound $68(311 \mathrm{mg}, 1.05 \mathrm{mmol})$ in 25 mL of THF at $0^{\circ} \mathrm{C}$. A fter stirring for 20 min , HMPA ($176 \mu \mathrm{~L}, 1.02 \mathrm{mmol}$) and 1,3-dibromopropane ($600 \mathrm{mg}, 3 \mathrm{mmol}$) was added. The mixture was refluxed for 16 h the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was poured into 10 mL of water and extracted with ethyl acetate. The combined organic extracts was washed with brine, dried and evaporated under reduced pressure. The crude product was purified by chromatography ($\mathrm{H}: \mathrm{EA}=4: 1$) to give $85(310 \mathrm{mg}, 79 \%) .300 \mathrm{MHz}$ ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.99(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.66-6.72(2 \mathrm{H}, \mathrm{m}), 6.28(1 \mathrm{H}, \mathrm{dt}, J=12 \mathrm{~Hz}, J=$ $8 \mathrm{~Hz}), 5.38(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 5.21(1 \mathrm{H}, \mathrm{d}, J=12 \mathrm{~Hz}), 5.14(2 \mathrm{H}, \mathrm{s}) 4.02-4.18(1 \mathrm{H}, \mathrm{m}), 3.78-$ $3.89(1 \mathrm{H}, \mathrm{m}), 3.49(3 \mathrm{H}, \mathrm{s}), 3.42(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 3.35(3 \mathrm{H}, \mathrm{s}), 3.38-3.48(2 \mathrm{H}, \mathrm{m}), 2.01-$ $2.19(1 \mathrm{H}, \mathrm{m}), 1.84-1.93(1 \mathrm{H}, \mathrm{m}), 1.26(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$.

Compound 86

To a solution of $69(300 \mathrm{mg}, 0.68 \mathrm{mmol})$ in 10 mL of ethyl acetate at $0^{\circ} \mathrm{C}$ was added 1 mL of 4 N HCl . The reaction mixture was stirred at that temperature for 30 min , diluted with ethyl acetate (10 mL) and washed with $10 \% \mathrm{NaHCO}_{3}$ solution and brine. The organic layer
was dried over MgSO_{4}, filtered, and evaporated in vacuo. The residue was purified by chromatography ($\mathrm{H}: \mathrm{EA}=1: 1$) to afford $70\left(270 \mathrm{mg}\right.$, quantitative yield). $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.99(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.66-6.72(2 \mathrm{H}, \mathrm{m}), 6.28(1 \mathrm{H}, \mathrm{dt}, J=12 \mathrm{~Hz}, J=8 \mathrm{~Hz})$, $5.38(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 5.21(1 \mathrm{H}, \mathrm{d}, J=12 \mathrm{~Hz}), 4.02-4.18(1 \mathrm{H}, \mathrm{m}), 3.78-3.89(1 \mathrm{H}, \mathrm{m}), 3.49$ $(3 \mathrm{H}, \mathrm{s}), 3.42(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 3.38-3.48(2 \mathrm{H}, \mathrm{m}), 2.01-2.19(1 \mathrm{H}, \mathrm{m}), 1.84-1.93(1 \mathrm{H}, \mathrm{m})$, $1.26(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$.

Compound 87

To a suspension of $\mathrm{NaH}(20 \mathrm{mg}, 0.81 \mathrm{mmol})$ in 5 mL of THF were added a solution of compound $70(270 \mathrm{mg}, 0.68 \mathrm{mmol})$ in 10 mL at $0^{\circ} \mathrm{C}$. After stirring for $20 \mathrm{~min}, 18$-crown- 6 ($200 \mathrm{mg}, 0.81 \mathrm{mmol}$) and 60 mL of THF was added and the reaction mixture was refluxed for 24 h under argon. The reaction mixture was cooled to room temperature and then quenched with 1 mL of saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The organic solvent was evaporated in vacuo. The residue was diluted with ethyl acetate and washed with brine. The organic layer was dried over MgSO_{4}, filtered, and evaporated in vacuo. The residue was purified by chromatography ($\mathrm{H}: \mathrm{EA}=1: 1$) to afford 87 as white solid ($180 \mathrm{mg}, 79 \%$ yield). $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $6.93(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.57(1 \mathrm{H}, \mathrm{s}), 6.50(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.15(1 \mathrm{H}, \mathrm{dt}, J=12 \mathrm{~Hz}, J=8$ $\mathrm{Hz}), 5.41(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 5.25(1 \mathrm{H}, \mathrm{d}, J=12 \mathrm{~Hz}), 4.08-4.18(1 \mathrm{H}, \mathrm{m}), 3.81-3.92(1 \mathrm{H}, \mathrm{m})$, $3.51(3 \mathrm{H}, \mathrm{s}), 3.47(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 2.01-2.19(2 \mathrm{H}, \mathrm{m}), 1.84-1.93(2 \mathrm{H}, \mathrm{m}), 1.26(3 \mathrm{H}, \mathrm{t}, J=$ 7.2 Hz).

References

1. Cronin, E. H.; Nielsen, D. B. In Effects of Poisonous Plants on Livestock, Keeler, R. F.; Van Kampen, K. R.; and James, L. F., Eds.; Academic Press: New York, 1978, pp. 521-534.
2. a) Benn, M. H.; Jacyno, J. In Alkaloids: Chemical and Biological Prespective, Pelletier, S.W., Eds.; John Wiley and Sons: New York, 1983, Vol. 1, pp. 153-210. b) Olsen, J. D.; Manners, G. D. Toxicants of Plant Origin. Volume I: Alkaloids, Cheeke, P. R., Eds.; CRC Press: Boca Raton, FL, 1989, pp. 291-326. c) Manners, G. D.; Panter, K. E.; Ralphs, M. H.; Pfister, J. A.; James, L. F. J. Agric. Food Chem. 1993, 41, 96.
3. a) Dozortseva-Kubanova, P. M. Farmakol. Toksikol. $1959,22,30$. b) Aiyar, V. N.; Benn, M. H.; Hanna, T.; Jacyno, J.; Roth, S.; Wilkens, J. K. Experimentia 1979, 35, 1367. c) Drasdo, A.; Caulfield, M.; Bertrand, D.; Bertrand, S.; Wonnacott, S. Mol. Cell. Neurosci. 1992, 3, 237.
4. Mashkovsky, M. D.; Churyukanov, V. V. In Handbook of Experimental Pharmacy, Kharkevich, D. A., Eds.; Springer-Verlag: Heidelberg, 1986, 79, pp. 391-397. b) Wonnacott, S.; Albuquerque, E. X.; Bertrand, D. Methods in Neurosciences 1993, 12, 263.
5. a) Palma, E.; Bertrand, T.; Binzolini, T.; Bertrand, D. J. Physiol. 1996, 49, 151. b) Clarke, P. B. S. Trends Pharmacol. Sci. 1992, 13, 407.
6. Arneric, S. P.; Sullivan, J. P.; Decker, M. W.; Brioni, J. D.; Bannon, C. A.; Briggs, C. A.; Donnelly-Roberts, D.; Radek, R. J.; Marsh, K. C.; Kyncle, J.; Williams, M.; Buccafusco, J. J. Alzheimer Dis. Assoc. Disord. 1995, 9, 50.
7. Dobelis, P.; Madl, J. E.; Pfister, J. A.; Manners, G. D.; Walrond, J. P. J. Pharmacol.

Exp. Ther. 1999, 291, 538.
8. Van der Bann, J. L.; Barnick, J. W. F. K.; Van Beek, G; Bickelhaupt, F. Tetrahedron 1992, 48, 2773.
9. Baillie, L. C.; Bearder, J. R.; Li, W. S.; Sherringham, J. A.; Whiting, D. A. J. Chem. Soc., Perkin Trans. 1. 1997, 2687.
10. Kraus, G. A.; Siclovan, T. M.; Watson, B. W. Synlett 1995, 201.
11. Kraus, G. A.; Dneprovskaia, E. Tetrahedron Lett. 1998, 39, 2451.
12. Murphy, W. S.; Wattanasin, S. Chem. Soc. Rev. 1983, 12, 213.
13. Shono, T.; Kise, N.; Uematsu, N.; Morimoto, S.; Okazaki, E. J. Org. Chem. 1990, 55, 5037.
14. Yadav, J. S.; Sarkar, S.; Chandrasekhar, S. Tetrahedron 1999, 55, 5449.
15. a) Suzuki, A. In Metal-catalyzed Cross-coupling Reactions, Diederich, F., and Stang, P. J., Eds.; Wiley-VCH: New York, 1998, pp. 49-97. b) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. c) Suzuki, A. J. Organomet. Chem. 1999, 576, 147.
16. Stohjmeyer, M. M.; Tanaka, H.; Wandless, T. J. J. Am. Chem. Soc. 1999, 121, 6100.
17. Johnson, M. R. J. Org. Chem. 1986, 51, 833.
18. Kondo, Y.; Kajima, S.; Sakamoto, T. J. Org. Chem. 1997, 62, 6507.
19. Dowd, P.; Choi, S. C. Tetrahedron 1989, 45, 77.
20. Comins, D. L.; Clinton A. B.; Charles L. I. J. Org. Chem. 2001, 66, 2181.
21. a) Comins, D. L.; Williams, A. L. Tetrahedron Lett. 2000, 41, 2839. (b) Huang, S.; Comins, D. L. Chem. Commun. 2000, 569. (c) Comins, D. L.; Hong, H. J. Org. Chem. 1993, 58, 5035.
22. Ramesh, N. G.; Klunder, A. J. H.; Zwanenburg, B. J. Org. Chem. 1999, 64, 3635.
23. Nakajima, N.; Horita, K.; Abe, R.; Yonemitsu, O. Tetrahedron Lett. 1988, 29, 4139.
24. Hauser, F. M.; Zhou, M.; Sun, Y. Synth. Commun. 2001, I, 77.
25. Wang, F. P.; Peng, C. S.; Yu, K.-B. Tetrahedron 2000, 56, 7443.

GENERAL CONCLUSIONS

In this dissertation, we have investigated direct and concise strategies for natural products. Chapter 1 described the development of efficient annulation reaction. Phosphonium salts bearing an electron-withdrawing groups at gamma position as synthons for [$3+3]$, [3+2] and $[3+4]$ annulations. Reactions of dianions generated from phosphonium salts with biselectrophiles yielded five, six and seven membered rings.

Chapter 2 described a direct approach to the synthesis of methyllycaconitine, a representative of the aconitine alkaloids, has been developed. A tetracyclic intermediate, possessing the ABEF-carbocycle skeleton has been synthesized as a result of the research described in this dissertation. Construction of ABE segment of methyllycaconitine and racemulosine through a common bicyclic intermediate was also achieved.

ACKNOWLEDGEMENTS

First, I would like to express my deepest gratitude to Dr. George A. Kraus for his constant support and guidance. With his support, the stay in his lab was an interesting, enjoyable and unforgettable experience in my life.

I would like to thank all the members of the Kraus' group who made my life in the lab pleasant and full of interesting conversations, helpful suggestions and smiles.

I would also like to extend my appreciation to all faculty and graduate students in our department for keeping friendly environment.

Finally, I give my deepest appreciation to my parents for their endless love and sacrifice.

