
1

Learning Classifiers from Distributed,

Ontology-Extended Data Sources

Doina Caragea, Jun Zhang, Jyotishman Pathak, and Vasant Honavar

Artificial Intelligence Research Laboratory

Department of Computer Science

Iowa State University

226 Atanasoff Hall

Ames, IA 50011, USA

{dcaragea,jzhang,jpathak,honavar}@cs.iastate.edu.

December 12, 2005 DRAFT



2

Abstract

There is an urgent need for sound approaches to integrative and collaborative analysis of large,

autonomous (and hence, inevitably semantically heterogeneous) data sources in several increasingly

data-rich application domains. In this paper, we preciselyformulate and solve the problem of learning

classifiers from such data sources, in a setting where each data source has a hierarchical ontology

associated with it and semantic correspondences between data source ontologies and a user ontology

are supplied. given user-supplied semantic correspondences between data source ontologies and the user

ontology. The proposed approach yields algorithms for learning a broad class of classifiers (including

Bayesian networks, decision trees, etc.) from semantically heterogeneous distributed data with strong

performance guarantees relative to their centralized counterparts. We illustrate the application of the

proposed approach in the case of learning Naive Bayes classifiers from distributed, ontology-extended

data sources.

Index Terms

Machine learning, knowledge discovery, semantically heterogeneous data, ontologies, attribute value

taxonomies, naive Bayes algorithm.

I. INTRODUCTION

The availability of large amounts of data in many application domains has resulted in great op-

portunities for data driven knowledge discovery. Inevitably, data collected by different institutions

could be semantically heterogeneous, making it difficult touse traditional knowledge discovery

techniques. The Semantic Web enterprise [1] aims to supportseamless and flexible access and

use of semantically heterogeneous data sources by associating meta-data (e.g., ontologies) with

data available in many application domains. Because users often need to analyze data in different

contexts from different perspectives (e.g., in collaborative scientific discovery applications), given

a set of distributed data sources and their associated ontologies, there is no single privileged

perspective that can serve all users, or for that matter, even a single user, in every context.

Effective use of multiple sources of data in a given context requires reconciliation of such

semantic differences from a user’s point of view. Hence, in this paper we address the problem

of learning classifiers from a collection of distributed, semantically heterogeneous data sources

viewed from a user perspective, under the assumption that data integration prior to the learning

process is not feasible.
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We will use a practical example to illustrate the problem that we are addressing. Consider two

academic departments that independently collect information about theirStudentsin connection

to Internships. Suppose that the dataD1 collected by the first department is described by the

attributesID, Advisor Position, Student Level, Monthly Incomeand Internshipand it is stored

into a table as the one corresponding toD1 in Table I.

The dataD2 collected by the second department is described by the attributesStudent ID,

Advisor Rank, Student Program, Hourly Incomeand Intern and it is stored into a table as the

one corresponding toD2 in Table I.

TABLE I

STUDENT DATA COLLECTED BY TWO DEPARTMENTS AND A UNIVERSITY STATISTICIAN

ID Adv.Pos. St.Level M.Inc. Intern.

34 Associate M.S. 1530 yes

D1 49 None 1st Year 600 no

23 Professor Ph.D. 1800 no

SID Adv.Rank St.Prog. H.Inc. Intern

1 Assistant Master 14 yes

D2 2 Professor Doctoral 17 no

3 Associate Undergraduate 8 yes

SSN Adv.Status St.Status Y.Inc. Intern

475 Assistant Master 16000 ?

DU 287 Professor Ph.D. 18000 ?

530 Associate Undergrad 7000 ?

Consider a university statistician (user) who wants to drawsome inferences about the two

departments of interest from his or her own perspective, where the representative attributes are

Student SSN, Advisor Status, Student Status, Yearly Incomeand Internship. For example, the

statistician may want to infer a model that can be used to find out whether a student in his or

her own data (represented as in the entry corresponding toDU in Table I) has done an internship

or not.

This requires the ability to perform queries over the two data sources associated with the

departments of interest from the user’s perspective (e.g.,number of doctorate students who did

an internship). However, we notice that the two data sources differ in terms of semantics from the
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user’s perspective. In order to cope with this heterogeneity of semantics, the user must observe

that the attributesID in the first data source andStudent IDin the second data source are similar

to the attributeStudent SSNin the user data; the attributesAdvisor Positionand Advisor Rank

are similar to the attributeAdvisor Status; the attributesStudent LevelandStudent Programare

similar to the attributeStudent Status, etc.

To establish the correspondence between values that two similar attributes can take, we need to

associate types with attributes and to map the domain of the type of an attribute to the domain

of the type of the corresponding attribute (e.g.,Hourly Incometo Yearly Incomeor Student

Level to Student Status). We assume that the type of an attribute can be a standard type such

as String, Integer, etc. or it can be given by a simple hierarchical ontology. Figure 1 shows

examples of attribute value hierarchies for the attributesStudent Level, Student Program, and

Student Statusin the data sourcesD1, D2 and the user dataDU , respectively. Examples of

semantical correspondences in this case could be:Graduate in D2 is equivalent toGrad in DU ,

1st Yearin D1 is equivalent toFreshman in DU , M.S. in D2 is smaller than (or hierarchically

below)Master in DU , etc.

U Student Status

Undergrad Grad

Freshman

Sophomore
Junior

Senior

Prelims ABD

Ph.D.Master

Student Level

1st year

2nd year
3rd year

4th year Ph.D.

GradUndergrad

M.S.

Student Program

Undergraduate Graduate

Master Doctoral

M.S. M.A.

D1
D2

D

Fig. 1. Hierarchical ontologies associated with the attributesStudent Level, Student ProgramandStudent Statusthat appear in

the two data sources of interestD1 andD2 and in user dataDU , respectively.

Note that data in different data sources could be described at different levels of abstraction. For

instance, the attributeStudent Levelin D1 is specified in a greater detail (lower level of abstrac-

tion) than the corresponding attributeStudent Programin D2. Assuming that the desired level of

abstraction for the values of the user attributeStudent Statusis {Undergrad,Master, P relim,ABD},

then the valueUndergradis over-specifiedin D1, while the valuesPrelimsandABD areunder-

specified(or partially specified) in both data sourcesD1 andD2. Therefore, learning classifiers
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from semantically heterogeneous data sources presents us with the problem of learning classifiers

from partially specified data.

In this paper, we precisely define the problem introduced informally here and present a

sufficient statistics based solution to this problem. The solution can be used to transform a

large class of algorithms for learning from data into algorithms for learning from distributed,

semantically heterogeneous data. A performance criterion(exactness) for evaluating the resulting

algorithms relative to their centralized counterparts is also introduced. We illustrate the proposed

approach in the case of learning Naive Bayes classifiers fromdistributed, ontology-extended data

sources and we prove that the resulting algorithm is exact relative to its centralized counterpart.

The rest of the paper is organized as follows: Section 2 precisely formulates the problem

addressed. Section 3 presents a general approach to this problem, illustrates the application

of this approach to design algorithms for learning Naive Bayes classifiers from semantically

heterogeneous data sources and demonstrates the exactnessof the resulting algorithms relative

to their centralized counterparts. Section 4 concludes with a summary, discussion of related work

and ideas for future work.

II. PROBLEM FORMULATION

A. Ontology-extended data sources

Let Di be a data set associated with theith data source, described by the set of attributes

{Ai
1, · · · , A

i
n} and Oi = {Λi

1, · · · ,Λ
i
n} a simple ontology associated with this data set. The

elementΛi
j ∈ Oi corresponds to the attributeAi

j and describes the type of that particular attribute.

The type of an attribute can be a (possibly restricted) standard type (e.g., Positive Integer or

String) or a hierarchical type. A hierarchical type is defined as an ordering of a set of terms (e.g.,

the values of an attribute) [2]. Of special interest to us aretree structuredisa hierarchiesover

the values of the attributes that describe a data source, also calledattribute value taxonomies

(AVT). Examples of AVTs are shown in Figure 1.

The schemaSi of a data sourceDi is given by the set of attributes{Ai
1, · · · , A

i
n} used to

describe the data together with their respective types{Λi
1, · · · ,Λ

i
n} described by the ontology

Oi, i.e., Si = {Ai
1 : Λi

1, · · · , A
i
n : Λi

n}. An ontology-extended data sourceis defined as a tuple

Di =<Di, Si, Oi>, whereDi is the actual data in the data source,Si is the schema of the data

source andOi is the ontology associated with the data source. Obviously,the following condition
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needs to be satisfied:Di ⊆ Λi
1 × · · · × Λi

n, which means that each attributeAi
j can take values

in the setΛi
j defined in the ontologyOi.

B. Data Sources from a User perspective

Let <D1,S1,O1>,· · ·, <Dp, Sp, Op> be an ordered set ofp ontology-extended data sources

andU a user that poses queries against these heterogeneous data sources. After [3], we define

a user perspective as consisting of a user ontologyOU and a set of interoperation constraints

IC that define correspondences between terms inO1, · · · , Op and terms inOU . The constraints

can take one of the forms:x:Oi ≡ y:OU (x is semanticallyequivalentto y), x:Oi � y:OU (x is

semanticallybelowy), x:Oi � y:OU (x is semanticallyabovey) [2].

We say that the ontologiesO1, · · · , Op are integrable according to the user ontologyOU in the

presence of the interoperation constraintsIC if there existp partial injective mappingsψ1, · · · , ψp

from O1, · · · , Op, respectively, toOU with the following two properties [2], [3]:

(a) For allx, y ∈ Oi, if x � y in Oi thenψi(x) � ψi(y) in OU (order preservation property);

(b) For all x ∈ Oi and y ∈ OU , if (x : Oi op y : OU) ∈ IC, thenψi(x) op y in the ontology

OU (interoperation constraints preservation property).

A set of candidate mappings that are consistent with the interoperation constraints can be

automatically inferred. A user can inspect the set of candidate mappings and accept, reject

or modify them [3].

Given<D1, S1, O1>,· · ·,<Dp, Sp, Op>, a set ofp distributed, ontology-extended data sources,

OU , a user ontology andψ1, · · · , ψp, a set of inter-ontology mappings, the data setsD1, · · · , Dp

specify a virtual data setD, as it will be explained below.

Let Γ = Γ(OU) = {Γ(O1), · · · ,Γ(Op) be a cut through the user ontology. Note that ifΛU
j ∈ OU

is a standard type (e.g., Integer), then the cutΓ(ΛU
j ) through the domainΛU

j is the domain itself.

However, if ΛU
j is a hierarchical type, thenΓ(ΛU

j ) defines the level of abstraction at which

the user queries are formulated. A user level of abstractionΓ determines a level of abstraction

Γi = Γ(Oi) in each distributed data sourceDi (by applying the corresponding mappings). We

say that an instancexi ∈ Di is partially specifiedif there exist at least one attribute valuev(Ai
j)

in xi which is partially specified, i.e., v(Ai
j) is above the level of abstractionΓi in Λi.

Thus, if the user ontology describes data at a lower level of abstraction than one or more data

source ontologies, the resulting data setD is partially specified from the user’s perspective. In
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order to deal with partially specified values, additional assumptions about the distribution of the

partially specified values need to be made by the user. For example, in some cases it may be

reasonable to assume a uniform distribution over the partially specified values. In other cases,

the user may assume that all the data sources (or a subset of data sources) come from the same

distribution and, hence, the distribution infered from a data source where all the values are fully

specified can be assumed also for a data source that contains partially specified values.

Once the distributional assumptions concerning partiallyspecified data are specified, avirtual

data setD can be constructed by generating from each partially specified instance, several

fractionally weighted, fully specifiedinstances based on the observed distribution of values of

the corresponding attribute(s) at the desired level of abstraction in OU . In other words, the

distribution of attribute values in the resulting fractionally weighted instances are identical

to the the corresponding distributions in the fully specified instances under the user-specified

distributional assumptions.

Two common types of data fragmentation are of interest in thedistributed setting [4]:

1) Horizontal fragmentation: D is obtained by the multi-set union (i.e., duplicates are

allowed) ofD1 . . . Dp viewed from the user perspective (after appropriate mappings are

applied). Thus,D = ψ(D1) ∪ · · · ∪ ψ(Dp), whereψ(Di) = {ψ(xi)|xi ∈ Di} andψ(xi) =

wi · (ψ(v(Ai
1)), · · · , ψ(Ai

n)) for eachxi = (v(Ai
1), · · · , v(A

i
n)) in Di. The weightwi is 1

if all the values inψ(xi) are specified, otherwise it is obtained based on the distribution

assumed.

2) Vertical fragmentation: Individual data sources store values for (possibly overlapping)

subsets of the attributes used to describe the data. To keep things simple, we assume

that there is a unique index that can be used to easily assemble the instances ofD from

the corresponding instance fragments stored inD1 · · ·Dp (after applying the appropriate

mappings as in the horizontally fragmented case).

Note that an ontology-extended data source< Di, Oi, Si > can have data specifed at a lower

or higher level of abstraction with respect to the associated ontology, which can also result in

partially specified data. A detailed description of how we can deal with such cases can be found

in [5]. Here, we assume only partial specification that appears as a result of applying mappings,

as this is specific to the distributed case.
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C. Learning classifiers from distributed, ontology-extended data sources

The problem of learning from data can be summarized as follows [6]: Given a data setD, a

hypothesis classH, and a performance criterionP , the learning algorithmL outputs a hypothesis

h ∈ H that optimizesP . In pattern classification applications,h is a classifier (e.g., a Naive

Bayes classifiers, a Decision Tree, a Support Vector Machine, etc.). The dataD typically consists

of a set of training examples. The goal of learning is to produce a hypothesis that optimizes the

performance criterion of minimizing some function of the classification error (on the training

data) and the complexity of the hypothesis. Under appropriate assumptions, this is likely to result

in a classifier that assigns correct labels to unlabeled instances.

A distributed setting typically imposes a set of constraints Z on the learner that are absent in

the centralized setting. In this paper, we assume that the constraintsZ prohibit the transfer of

raw data from each of the sites to a central location while allowing the learner to obtain certain

statistics from the individual sites (e.g., counts of instances that have specified values for some

subset of attributes).

Thus, the problem of learning classifiers from ontology-extended data sources can be formu-

lated as follows: Given a collection of ontology-extended data sources<D1, S1, O1>,· · ·,<Dp, Sp, Op>,

a user perspective (OU , IC) which implies a set of mappingsψ1, · · · , ψp, a set of assumptions

A with respect to the distributions of the partially specifiedvalues resulted as effect of applying

the mappings, a set of constraintsZ, a hypothesis classH and a performance criterionP , the

task of the learnerLd is to output a hypothesish ∈ H that optimizesP using only operations

allowed byZ.

We say that an algorithmLd for learning from distributed, semantically heterogeneous data

setsD1, · · · , Dp, under the assumptionsA, is exact relative to its centralized counterpartL if

the hypothesis produced byLd is identical to that obtained byL from the complete data setD

obtained by appropriately integrating the data setsD1, · · · , Dp according to the set of mappings

ψ1, · · · , ψp and the assumptionsA, as described in the previous section.

III. SUFFICIENT STATISTICS BASED APPROACH

Our approach to the problem of learning classifiers from fromdistributed, ontology-extended

data sources is based on a general strategy for transformingalgorithms for learning classifiers

from data into algorithms for learning classifiers from distributed data [4].
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This strategy relies on the decomposition of the learning task into two components: an

information gatheringcomponent, in which the information needed for learning is identified

and gathered from the distributed data sources, and ahypothesis generationcomponent which

uses this information to generate or refine a partially constructed hypothesis. The information

gathering component involves a procedure for specifying the information needed for learning

as aquery and a procedure for answering this query from distributed data. The procedure for

answering queries from distributed data entails the decomposition of a posed query into sub-

queries that the individual data sources can answer, followed by the composition of the partial

answers into a final answer to the initial query. If the distributed data sources are also semantically

heterogeneous, mappings between the data sources ontologies and a user ontology need to be

applied in the process of query answering in order to reconcile the semantical differences [3]

(Figure 2). The exactness of the solution depends on the correctness of the procedure for query

decomposition and answer composition.

p

     
Statistical Query

Decomposition
Query 

Answer
Composition

q

q

1

2

Query Formulation

User Ontology O

D

D
2

1

User Ontology O

, O

, O

1

2

O1

O2

Mappings

Dq

Hypothesis Generation Result 

Oq 

Learning Algorithm

M(Oi−>O)

...

p, O
p

Op

Fig. 2. Learning from distributed, semantically heterogeneous data sources.

The strategy described can be applied to a large class of learning algorithms (e.g., Naive Bayes,

Decision Trees, Support Vector Machines, etc.) wherein theinformation needed for constructing

the classifier from data can be obtained using a suitable set of statistical queries from the data.

We illustrate the application of this approach in the case oflearning Naive Bayes classifiers from

distributed, semantically heterogeneous data.

A. Sufficient statistics for Naive Bayes classifiers

According to the classical statistical theory [7], a statistic s(D) is called asufficient statistic

for a parameterθ if s(D) captures all the information about the parameterθ contained in the data
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D. For example, sample mean is a sufficient statistic for the mean of a Gaussian distribution.

This notion of a sufficient statistic for a parameterθ can be generalized to yield the notion of

a sufficient statisticsL(D) for learning a hypothesish using a learning algorithmL applied to a

data setD [4]. Thus, a statisticsL(D) is a sufficient statistic for learninga hypothesish using

a learning algorithmL applied to a data setD if there exists a procedure that takessL(D) as

input and outputsh.

We want to identify sufficient statistics for Naive Bayes classifier, a simple and yet effective

classifier that has performance comparable to the performance of other more sophisticated

classifiers [6]. The Bayesian approach to classifying an instancex = {v1, · · · , vn} is to assign

it to the most probable classcMAP (x). We have:cMAP (x) = argmax
cj∈C

p(v1, · · · , vn|cj)p(cj) =

argmax
cj∈C

p(cj)
∏

i

p(vi|cj). Therefore, the task of the Naive Bayes Learner (NBL) is to estimate

the class probabilitiesp(cj) and the class conditional probabilitiesp(vi|cj), for all classescj ∈ C

and for all attribute valuesvi ∈ dom(Ai). These probabilities can be estimated from a training

setD using standard probability estimation methods [6] based onrelative frequency counts. We

denote byσ(vi|cj) the frequency count of the valuevi of the attributeAi given the class label

cj , and byσ(cj) the frequency count of the class labelcj in a training setD. These frequency

counts completely summarize the information needed for constructing a Naive Bayes classifier

from D, and thus, they constitutesufficient statisticsfor Naive Bayes learner.

As noted above (problem formulation), learning classifiers(and in particular Naive Bayes

classifiers) from semantically heterogeneous data sourcespresents us with the problem of partially

specified data. AVT-NBL [5] is an example of an algorithm for learning Naive Bayes classifiers

that can handle partially specified data. In addition, AVT-NBL can efficiently exploit attribute

value taxonomies as opposed to the traditional Naive Bayes algorithm, feature that makes it

appropriate for our setting.

We have seen that the sufficient statistics for the Naive Bayes algorithm can be computed in

one step. As opposed to this, the sufficient statistics for AVT-NBL are computed by interleaving

the information gathering and hypothesis generation components several times. The sufficient

statistics computed at each step are calledrefinement sufficient statisticsas they are used to refine

a partially construted hypothesis. More precisely,sL(D, hi → hi+1) is a sufficient statistic for

the refinement ofhi into hi+1 if there exists a procedureR that takeshi andsL(D, hi → hi+1)
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as inputs and outputshi+1 [4].

We show how refinement sufficient statistics can be used to transform AVT-NBL into an

algorithm for learning Naive Bayes classifiers from distributed, semantically heterogeneous data.

AVT-NBL finds a Naive Bayes classifier that optimizes a performance criterion, called Con-

ditional Minimum Description Length (CMDL) score [8], defined as a tradeoff between the

accuracy and the complexity of the classifier. If we denote by|D| the size of the data set,

Γ a cut through the AVT associated with this data,h = h(Γ) the Naive Bayes classifier

corresponding to the cutΓ, size(h) the number of probabilities used to describeh andCLL(h|D)

the conditional log-likelihood of the hypothesish given the dataD, then theCMDL score

can be written asCMDL(h|D) =
(

log |D|
2

)

size(h) − |D|CLL(h|D), Here, CLL(h|D) =

|D|
∑|D|

i=1 log ph(ci|vi1 · · · vin), whereph(ci|vi1 · · · vin) represents the conditional probability as-

signed to the classci ∈ C associated with the examplexi = (vi1, · · · , vin). Because each

attribute is assumed to be independent of the others given the class, we can writeCLL(h|D) =

|D|
|D|
∑

i=1

log





p(ci)
∏

j ph(vij |ci)
∑|C|

k=1 p(ck)
∏

j ph(vij |ck)



 .

AVT-NBL starts with a Naive Bayes classifierh0 = h(Γ0) corresponding to the most abstract

cutΓ0 in the attribute value taxonomy associated with the data (i.e., the most general classifier that

simply assigns each instance to the class that is apriori most probable) and it iteratively refines

the classifier by refining the corresponding cut until a best cut, according to the performance

criterion, is found. More precisely, lethi be the current hypothesis corresponding to the current

cut Γ (i.e.,hi = h(Γ)) andΓ′ a (one-step) refinement ofΓ (see Figure 3). Leth(Γ′) be the Naive

Λ

ΓCut

ΓCut ’

AVT Λ AVT

Fig. 3. The refinement of a cutΓ through an attribute value taxonomyΛ.

Bayes classifier corresponding to the cutΓ′ and letCMDL(Γ|D) andCMDL(Γ′|D) be the

CMDL scores corresponding to the hypothesesh(Γ) andh(Γ′), respectively. IfCMDL(Γ) >

CMDL(Γ′) then hi+1 = h(Γ′), otherwisehi+1 = h(Γ). This procedure is repeated until no

(one-step) refinementΓ′ of the cutΓ results in a significant improvement of the CMDL score,
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and the algorithm ends by outputing the classifierh(Γ). Thus, the classifier that the AVT-NBL

finds is obtained fromh0 = h(Γ0) through a sequence of refinement operations. The refinement

sufficient statisticssL(D, hi → hi+1) are identified below.

Let hi be the current hypothesis corresponding to a cutΓ andCMDL(Γ|D) its score. IfΓ′

is a refinement of the cutΓ, then the refinement sufficient statistics needed to construct hi+1 are

given by the frequency counts needed to constructh(Γ′) together with the probabilities needed

to computeCLL(h(Γ′)|D) (calculated once we knowh(Γ′)). If we denote bydomΓ′(Ai) the

domain of the attributeAi when the cutΓ′ is considered, then the frequency counts needed to

constructh(Γ′) areσ(vi|cj) for all valuesvi ∈ domΓ′(Ai) of all attributesAi and for all class

valuescj ∈ domΓ′(C), andσ(cj) for all class valuescj ∈ domΓ′(C). To computeCLL(h(Γ′)|D)

the products
∏

j ph(Γ′)(vij |ck) for all examplesxi = (vi1, · · · , vin) and for all classesck ∈ C are

needed.

The stepi+ 1 of the algorithm corresponding to the cutΓ′ can be briefly described in terms

of information gathering and hypothesis generation components as follows:

1) Computeσ(vi|cj) andσ(cj) corresponding to the cutΓ′ from the training dataD

2) Generate the NB classifierh(Γ′)

3) Compute
∏

j ph(Γ′)(vij|ck) from D

4) Generate the hypothesishi+1

B. Naive Bayes classifiers from semantically heterogeneousdata

The stepi+1 (corresponding to the cutΓ′ in the user ontology) of the algorithm for learning

Naive Bayes classifiers from distributed, semantically heterogeneous data sourcesD1, · · · , Dp,

can be described in terms of information gathering and hypothesis generation components as

follows:

1) Computeσ(vi|cj) andσ(cj) corresponding to the cutΓ′ from the distributed data sources

D1, · · · , Dp

2) Generate the NB classifierh(Γ′) at the user location and send it to the data sources

D1, · · · , Dp

3) Compute
∏

j ph(Γ′)(vij|ck) from D1, · · · , Dp

4) Generate the hypothesishi+1 at the user location
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Thus, using the information gathering and hypothesis generation decomposition of the AVT-

NBL algorithm, we have reduced the problem of learning NaiveBayes classifiers from dis-

tributed, ontology-extended data sources, to the problem of gathering the statisticssL(D, hi →

hi+1) from such data sources. Next, we show how to answer statistical queriesq(sL(D, hi →

hi+1)) that return statisticssL(D, hi → hi+1), from horizontally and vertically fragmented

distributed, semantically heterogeneous data sources.

1) Horizontally fragmented data:If the data are horizontally fragmented, the instances are

distributed among the data sources of interest. Thus, the user query q(σ(vi|cj)) can be de-

composed into the sub-queriesq1(σ(v1
i |c

1
j)), · · · , qp(σ(vp

i |c
p
j )) corresponding to the distributed

data sourcesD1, · · · , Dp, where vk
i and ckj are the values inOk that map to the valuesvi

and cj in OU . Once the queriesq1(σ(v1
i |c

1
j)), · · · , qp(σ(vp

i |c
p
j)) have been answered, the answer

to the initial query can be obtained by adding up the individual answers into a final count

σ(vi|cj) = σ(v1
i |c

1
j) + · · · + σ(vp

i |c
p
j ). Similarly, we compute the countsσ(cj). Once the counts

σ(vi|cj) and σ(cj) have been computed, the Naive Bayes classifierh′ = h(Γ′) corresponding

to the cutΓ′ can be generated. The next query that needs to be answered isq(
∏

j ph′(vij |ck))

corresponding to each (virtual) examplexi = (vi1, · · · , vin) (in the complete data set) and each

classck based on the probabilities that defineh′. Because all the attributes of an example are at

the same location in the case of the horizontal data fragmentation, each queryq(
∏

j ph′(vij |ck))

is answered by the data source that contains the actual example xi. When all such queries have

been answered, the scoreCMDL can be computed and thus the hypothesis that will be output

at this step can be generated.

If any of the valuesvk
i or ckj are partially specified inOk, we deal with them as described

in Section 2.2, except that we do not explicitly construct the transformed instances (according

to the distribution assumed by the user), but implicitly usethem for the computation of the

(fractional) counts.

Note that the set of class conditional countsσ(vi|cj), corresponding to the valuesvi of an

attributeAk, can be represented as a tree (whose structure is given by theassociated AVT) and

can be efficiently computed using the approach described in [5].

2) Vertically fragmented data:In the case of vertical data fragmentation, the attributes are

distributed among the data sources of interest, but all the values of an attribute are found at the

same location. We assume that each location contains the class attribute. To answer the user query
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q(σ(vi|cj)), this query is sent to the particular data sourceDk that contains the attributeAi after

being mapped to the queryqk(σ(vk
i |c

k
j )), where the valuesvk

i andckj in Ok are the correspondents

of the valuesvi and cj , respectively, inOU . The answer to the queryqk(σ(vk
i |c

k
j )) is the final

answer to the user queryq(σ(vi|cj)). Because the class attribute is present at each location,

the queryq(σ(cj)) can be answered by any data sourceDk after being appropriately mapped

to the ontologyOk. Because the attributes are distributed at different locations, the user query

q(
∏

j ph(vij |ck)) is decomposed into the sub-queriesq1(
∏

j1 ph(v
1
ij1
|c1k)), · · · , qp(

∏

jp
ph(v

p
ij1
|cpk)),

where eachjs (s = 1, p) belongs to set of indices corresponding to the attributes that are

located at the sitek and the valuesvs
ijs

, csk are the correspondents inOs of the valuesvij, ck in

OU . Once these queries are answered by the distributed data sources, the answer to the initial

user query is obtained by multiplying the partial answers into a final answer
∏

j ph(vij |ck)) =
∏

j1 ph(v
1
ij1
|c1k) × · · · ×

∏

jp
ph(v

p
ijp
|cpk). We deal with partially specified values as in the case of

horizontal data fragmentation.

C. Theoretical Analysis

Theorem [Exactness] The algorithm for learning Naive Bayes classifiers from a set of horizon-

tally (or vertically) fragmented distributed, ontology-extended data sources<D1,S1,O1>,· · ·,<Dp,Sp,Op>,

from a user perspective<OU , IC>, in the presence of the mappingsψ1, · · · , ψp, under a set

of user-specified distributional assumptionsA regarding partially specified data, is exact with

respect to the algorithm for learning Naive Bayes classifiers from the complete virtual fully

specified data setD, constructed by integrating the data sourcesD1, · · · , Dp according to the

mappingsψ1, · · · , ψp and assumptionsA.

Proof sketch: Because of the information gathering and hypothesis generation decomposition

of the the AVT-NBL algorithm, the exactness of the algorithmfor learning from distributed,

semantically heterogeneous data sources depends on the correctness of the procedures for de-

composing a user queryq into sub-queriesq1, · · · , qp corresponding to the distributed data sources

D1, · · · , Dp and for composing the individual answers to the queriesq1, · · · , qp into a final answer

to the queryq. More precisely, we need to show that the conditionq(D) = C(q1(D1), · · · , qp(Dp))

(exactness condition) is satisfied, whereq(D), q1(D1), · · · , qp(Dp) represent the answers to the

queriesq, q1, · · · , qp, respectively, andC is a procedure for combining the individual answers.

When data is horizontally fragmented the queryq(σ(vi|cj)) is decomposed into sub-queries
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q1(σ(v1
i |c

1
j)), · · · , qp(σ(vp

i |c
p
j )) corresponding to the distributed data sourcesD1, · · · , Dp and the

final answer isσ(vi|cj)(D1, · · · , Dp) = σ(v1
i |c

1
j)(D1) + · · · + σ(vp

i |c
p
j)(Dp). If we denote by

σ(vi|cj)(D) the answer to the queryq(σ(vi|cj)) posed to the complete data setD, we need to

show thatσ(vi|cj)(D1, · · · , Dp) = σ(vi|cj)(D). This is obviously true when the data sources

D1, · · · , Dp are homogeneous because the addition operation is associative. The equality holds

in the case of semantically heterogeneous data because the relevant counts are computed under

identical distributional assumptions concerning partially specified data (or equivalently, from the

same fully specified virtual data setD). A similar argument can be made for the exactness

condition in the case of the queryq(σ(cj)). Because the answer to the queryq(
∏

j ph(vij |ck))

is obtained from a single data source and no combination procedure is needed, the exactness

condition is trivially satisfied in this case. Thus, we showed that the exactness condition holds

for all queries that are posed in the process of computing thesufficient statistics needed to learn

Naive Bayes classifiers from horizontally fragmented distributed, semantically heterogeneous

data sources. This completes the proof of the exactness theorem for the horizontally fragmented

case.

A similar argument can be made for the vertically fragmentedcase.

IV. SUMMARY, DISCUSSION ANDFUTURE WORK

A. Summary

There is an urgent need for algorithms for learning classifiers from distributed, autonomous

(and hence inevitably, semantically heterogeneous) data sources in several increasingly data-

rich application domains such as bioinformatics, environmental informatics, medical informatics,

social informatics, security informatics, among others.

In this paper, we have precisely formulated the problem of learning classifiers from distributed,

ontology-extended data sources, which make explicit (the typically implicit) ontologies associated

with autonomous data sources. User-specified semantic correspondences (mappings between the

data source ontologies and the user ontology) are used to answer statistical queries that provide

the information needed for learning classifiers, from such data sources. The resulting framework

yields algorithms for learning classifiers from distributed, ontology-extended data sources. These

algorithms are provably exact relative to their centralized counterparts in the case of the family

of learning classifiers for which the information needed forconstructing the classifier can be

December 12, 2005 DRAFT



16

broken down into a set of queries for sufficient statistics that take the form of counts of instances

satisfying certain constraints on the values of the attributes. Such classifiers include decision trees,

Bayesian network classifiers, classifiers based on a broad class of probabilistic models including

generalized linear models, among others. We have illustrated the proposed approach in the

case of learning Naive Bayes classifiers from horizontally and vertically fragmented distributed,

ontology-extended data sources.

B. Discussion

There is a large body of literature on distributed learning (See [9] for a survey). However, with

the exception of [4], most algorithms for learning classifiers from distributed data do not offer

performance guarantees (e.g., exactness) relative to their centralized counterparts. Integration of

semantically heterogeneous data has received significant attention in the literature (see [10] for

a survey). Most of this work has focused on bridging semanticdifferences between ontologies

associated with the individual data sources and answering (typically relational) queries from such

data sources [2], [3].

McClean et al. [11], [12] present an approach to answering aggregate queries formulated

in a global ontology, from statistical databases. However,they do not address the problem of

answering statistical queries from relational data from a user’s point of view. Kearns [1998]

describe the use of a statistics oracle to extend sample complexity results derived in theprobably

approximately correct(PAC) learning framework to learning scenarios in which thedata is

corrupted by noisy attribute values and class labels. In previous work [5], we formulated and

solved the problem of learning Naive Bayes classifiers from data given an ontology in the form

of a set of attribute values taxonomies (one AVT per attribute), in a setting in which the values

of some of the attributes are partially specified relative tothe corresponding AVT.

In contrast, this paper precisely formulates and solves theproblem of learning classifiers from

semantically heterogeneous data sources in the important special case where each data source has

associated with it, an ontology that takes the form of a set ofAVT (with one AVT per attribute per

data source). The approach described here builds on our previous work on a sufficient-statistics

based general strategy for learning classifiers from (semantically homogeneous) distributed data

[4], and on learning Naive Bayes classifiers from (semantically homogeneous) partially specified

data [5] to develop for the first time, a provably sound approach to learning classifiers from
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semantically heterogeneous distributed data.

C. Future Work

Some promising directions for further work include:

• Application of the general framework described in this paper to obtain algorithms for

learning decision trees, Bayesian networks, neural networks, support vector machines and

other types of classifiers, and more generally, predictive models including in particular,

multi-relational models from semantically heterogeneousontology-extended data sources.

• Development of sound approaches to answering statistical queries from ontology-extended

data sources under a broad range of access, bandwidth, and processing constraints associated

with the data sources, including methods for resource-bounded approximations of answers

to statistical queries

• Large scale application of the resulting algorithms to data-driven classifier construction

problems that arise in bioinformatics and related applications.
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