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Abstract

There is an urgent need for sound approaches to integratidecallaborative analysis of large,
autonomous (and hence, inevitably semantically hetermées) data sources in several increasingly
data-rich application domains. In this paper, we precisefynulate and solve the problem of learning
classifiers from such data sources, in a setting where eazhsdairce has a hierarchical ontology
associated with it and semantic correspondences betweaarsdarce ontologies and a user ontology
are supplied. given user-supplied semantic corresporddretween data source ontologies and the user
ontology. The proposed approach yields algorithms forniegr a broad class of classifiers (including
Bayesian networks, decision trees, etc.) from semanfi¢eterogeneous distributed data with strong
performance guarantees relative to their centralized teoparts. We illustrate the application of the
proposed approach in the case of learning Naive Bayes fidaissirom distributed, ontology-extended

data sources.

Index Terms

Machine learning, knowledge discovery, semantically togfeneous data, ontologies, attribute value

taxonomies, naive Bayes algorithm.

. INTRODUCTION

The availability of large amounts of data in many applicatitomains has resulted in great op-
portunities for data driven knowledge discovery. Ineyatlata collected by different institutions
could be semantically heterogeneous, making it difficultge traditional knowledge discovery
techniques. The Semantic Web enterprise [1] aims to sugeanmmless and flexible access and
use of semantically heterogeneous data sources by assgaia¢ta-data (e.g., ontologies) with
data available in many application domains. Because u$ens weed to analyze data in different
contexts from different perspectives (e.g., in collabweascientific discovery applications), given
a set of distributed data sources and their associatedogisl| there is no single privileged
perspective that can serve all users, or for that mattem eveingle user, in every context.
Effective use of multiple sources of data in a given conteduires reconciliation of such
semantic differences from a user’s point of view. Hence his paper we address the problem
of learning classifiers from a collection of distributedmsentically heterogeneous data sources
viewed from a user perspective, under the assumption thatinfggration prior to the learning
process is not feasible.
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We will use a practical example to illustrate the problent the are addressing. Consider two
academic departments that independently collect infaonabout theirStudentsn connection
to Internships Suppose that the dat®, collected by the first department is described by the
attributesID, Advisor Position Student LevelMonthly Incomeand Internshipand it is stored
into a table as the one corresponding/?p in Table 1.

The dataD, collected by the second department is described by théowaties Student 1D
Advisor Rank Student ProgramHourly Incomeand Intern and it is stored into a table as the

one corresponding t@, in Table I.

TABLE |

STUDENT DATA COLLECTED BY TWO DEPARTMENTS AND A UNIVERSITY SRATISTICIAN

ID Adv.Pos. St.Level M.Inc. | Intern.
34 | Associate M.S. 1530 yes
Dy 49 None 1st Year 600 no
23 Professor Ph.D. 1800 no
SID | Adv.Rank St.Prog. H.Inc. | Intern
1 Assistant Master 14 yes
Do 2 Professor Doctoral 17 no
3 Associate | Undergraduate 8 yes
SSN| Adv.Status St.Status Y.nc. | Intern
475 | Assistant Master 16000 ?
Dy | 287 | Professor Ph.D. 18000 ?
530 | Associate Undergrad 7000 ?

Consider a university statistician (user) who wants to demme inferences about the two
departments of interest from his or her own perspective revkiee representative attributes are
Student SSNAdvisor StatusStudent StatysYearly Incomeand Internship For example, the
statistician may want to infer a model that can be used to futdwether a student in his or
her own data (represented as in the entry correspondiny;ton Table I) has done an internship
or not.

This requires the ability to perform queries over the twoadsburces associated with the
departments of interest from the user’s perspective (eugnber of doctorate students who did

an internship). However, we notice that the two data sources differ in geofrsemantics from the
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user’s perspective. In order to cope with this heteroggraditsemantics, the user must observe
that the attribute$D in the first data source arstudent IDin the second data source are similar
to the attributeStudent SShh the user data; the attributéglvisor Positionand Advisor Rank
are similar to the attributddvisor Statusthe attributesStudent Leveand Student Progranare
similar to the attributeStudent Statysetc.

To establish the correspondence between values that twiausatiributes can take, we need to
associate types with attributes and to map the domain ofyihe of an attribute to the domain
of the type of the corresponding attribute (e.gqurly Incometo Yearly Incomeor Student
Levelto Student Statys We assume that the type of an attribute can be a standaedstygh
as String, Integer, etc. or it can be given by a simple hi&iaat ontology. Figure 1 shows
examples of attribute value hierarchies for the attribi@asdent LevelStudent Programand
Student Statusn the data source®;, D, and the user datd;, respectively. Examples of
semantical correspondences in this case couldbeduate in Dy is equivalent tazrad in Dy,
1st Yearin D, is equivalent tof'reshman in Dy, M.S. in Dy is smaller than (or hierarchically

below) Master in Dy, etc.

Student Status

Student Level
b D 2 Student Progra D U
1
Comme

G @D Crmo
TS

Cpreims> - aeD

Fig. 1. Hierarchical ontologies associated with the afitésStudent LevelStudent Progranand Student Statuthat appear in

the two data sources of intereBt and D2 and in user datdy, respectively.

Note that data in different data sources could be describdiffarent levels of abstraction. For
instance, the attribut8tudent Levein D, is specified in a greater detail (lower level of abstrac-
tion) than the corresponding attribus¢udent Progranmn D,. Assuming that the desired level of
abstraction for the values of the user attribBtadent Statuis {Undergrad, Master, Prelim, ABD},
then the valudJndergradis over-specifiedn D,, while the valuefrelimsand ABD are under-

specified(or partially specifiedl in both data source®; and D,. Therefore, learning classifiers
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from semantically heterogeneous data sources presentshuthevproblem of learning classifiers
from partially specified data

In this paper, we precisely define the problem introducedrmélly here and present a
sufficient statistics based solution to this problem. Thiitgm can be used to transform a
large class of algorithms for learning from data into algorns for learning from distributed,
semantically heterogeneous data. A performance critéexactness) for evaluating the resulting
algorithms relative to their centralized counterparts$® antroduced. We illustrate the proposed
approach in the case of learning Naive Bayes classifiers flisinbuted, ontology-extended data
sources and we prove that the resulting algorithm is exdative to its centralized counterpart.

The rest of the paper is organized as follows: Section 2 gedciformulates the problem
addressed. Section 3 presents a general approach to thikemroillustrates the application
of this approach to design algorithms for learning Naive €ayglassifiers from semantically
heterogeneous data sources and demonstrates the exafttlessesulting algorithms relative
to their centralized counterparts. Section 4 concludels agummary, discussion of related work

and ideas for future work.

Il. PROBLEM FORMULATION
A. Ontology-extended data sources

Let D, be a data set associated with tlie data source, described by the set of attributes
{AL,--- A"} and O; = {A},---, A’} a simple ontology associated with this data set. The
eIementAj. € O; corresponds to the attribuﬂa;ﬁ and describes the type of that particular attribute.
The type of an attribute can be a (possibly restricted) stahtype (e.g., Positive Integer or
String) or a hierarchical type. A hierarchical type is defims an ordering of a set of terms (e.g.,
the values of an attribute) [2]. Of special interest to ustage structuredsa hierarchiesover
the values of the attributes that describe a data source,calted attribute value taxonomies
(AVT). Examples of AVTs are shown in Figure 1.

The schemaS; of a data source); is given by the set of attribute§A?,---, A’} used to
describe the data together with their respective typgs ---, A’} described by the ontology
O;,i.e,S; = {A - A},--- A" . AL}, An ontology-extended data source defined as a tuple
D; =<D;, S;, O;>, where D, is the actual data in the data sourég,is the schema of the data

source and); is the ontology associated with the data source. Obviotrstyfollowing condition
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needs to be satisfied?; C A} x --- x A}, which means that each attributé can take values

in the setAj- defined in the ontology);.

B. Data Sources from a User perspective

Let <Dy,5,0:>, -+, <D,,S,,0,> be an ordered set qgf ontology-extended data sources
andU a user that poses queries against these heterogeneousudatass After [3], we define
a user perspective as consisting of a user ontoldgyand a set of interoperation constraints
IC that define correspondences between terms,in - -, O, and terms inO;;. The constraints
can take one of the forms:O; = y:Op (x is semanticallyequivalentto y), x:0; = y:Oy (z IS
semanticallybelowy), x:0; = y:Oy (x is semanticallyabovey) [2].

We say that the ontologi€3,, - - -, O, are integrable according to the user ontol@gy in the
presence of the interoperation constraiftsif there existp partial injective mappings., - - -, ¥,
from Oy, - - -, O,, respectively, taD; with the following two properties [2], [3]:

(@) Forallz,y € O;, if x Xy in O; theny;(z) =< 1;(y) in Oy (order preservation property);

(b) Forallz € O; andy € Oy, if (z: O; 0py : Oy) € IC, theny;(x) opy in the ontology
Oy (interoperation constraints preservation property).

A set of candidate mappings that are consistent with therap&ration constraints can be

automatically inferred. A user can inspect the set of caatdidnappings and accept, reject

or modify them [3].

Given<Dy, 51, 0:>,--,<D,, S,, 0,>, a set ofp distributed, ontology-extended data sources,
Oy, a user ontology and, - - -, 1, a set of inter-ontology mappings, the data sets---, D,
specify a virtual data seb, as it will be explained below.

Letl’ = I'(Oy) = {I'(0y), - - -, T(O,) be a cut through the user ontology. Note that|f € Oy
is a standard type (e.g., Integer), then theIC(utjU) through the domaimg’ is the domain itself.
However, if AY is a hierarchical type, theii(AY) defines the level of abstraction at which
the user queries are formulated. A user level of abstradiiaetermines a level of abstraction
I'; = I'(0;) in each distributed data sourde; (by applying the corresponding mappings). We
say that an instance;, € D, is partially specifiedf there exist at least one attribute valuéél;)
in z; which is partially specifiedi.e., v(A?) is above the level of abstractidn in A,.

Thus, if the user ontology describes data at a lower levebsfraction than one or more data

source ontologies, the resulting data gets partially specified from the user’s perspective. In
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order to deal with partially specified values, additionauamptions about the distribution of the
partially specified values need to be made by the user. Fongea in some cases it may be
reasonable to assume a uniform distribution over the plsrsaecified values. In other cases,
the user may assume that all the data sources (or a subsetc$alaces) come from the same
distribution and, hence, the distribution infered from @adsource where all the values are fully
specified can be assumed also for a data source that contairallp specified values.

Once the distributional assumptions concerning partslgcified data are specifiedyatual
data setD can be constructed by generating from each partially specifistance, several
fractionally weighted fully specifiedinstances based on the observed distribution of values of
the corresponding attribute(s) at the desired level ofrabgbn in Oy. In other words, the
distribution of attribute values in the resulting fractidly weighted instances are identical
to the the corresponding distributions in the fully spedifiastances under the user-specified
distributional assumptions.

Two common types of data fragmentation are of interest indis&ibuted setting [4]:

1) Horizontal fragmentation: D is obtained by the multi-set union (i.e., duplicates are
allowed) of D, ... D, viewed from the user perspective (after appropriate maspare
applied). ThusD = ¢(D;) U ---U(D,), wherey(D;) = {¢(z;)|z; € D;} andy(x;) =
w; - (Y(v(AL)), -, ¥(AL)) for eachz; = (v(AY),---,v(AL)) in D;. The weightw; is 1
if all the values iny(x;) are specified, otherwise it is obtained based on the disiwibu
assumed.

2) Vertical fragmentation: Individual data sources store values for (possibly oygilag)
subsets of the attributes used to describe the data. To keegstsimple, we assume
that there is a unique index that can be used to easily assdimblinstances ab from
the corresponding instance fragments storedin - - D, (after applying the appropriate
mappings as in the horizontally fragmented case).

Note that an ontology-extended data sowc®;, O,, S; > can have data specifed at a lower
or higher level of abstraction with respect to the assodiatetology, which can also result in
partially specified data. A detailed description of how wa deaal with such cases can be found
in [5]. Here, we assume only partial specification that appe@a a result of applying mappings,

as this is specific to the distributed case.
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C. Learning classifiers from distributed, ontology-extethdlata sources

The problem of learning from data can be summarized as fell@} Given a data seb, a
hypothesis clas#/, and a performance criteriaf, the learning algorithni. outputs a hypothesis
h € H that optimizesP. In pattern classification applications,is a classifier (e.g., a Naive
Bayes classifiers, a Decision Tree, a Support Vector Macletice). The data typically consists
of a set of training examples. The goal of learning is to poada hypothesis that optimizes the
performance criterion of minimizing some function of thasdification error (on the training
data) and the complexity of the hypothesis. Under apprtgeaasumptions, this is likely to result
in a classifier that assigns correct labels to unlabeledmtsts.

A distributed setting typically imposes a set of constiaifiton the learner that are absent in
the centralized setting. In this paper, we assume that theti@ntsZ prohibit the transfer of
raw data from each of the sites to a central location whilevahg the learner to obtain certain
statistics from the individual sites (e.g., counts of ins&s that have specified values for some
subset of attributes).

Thus, the problem of learning classifiers from ontologyeexied data sources can be formu-
lated as follows: Given a collection of ontology-extendatbdsources: Dy, S1, 01>, - -,<D,, Sp, O,>,
a user perspectiveX;, IC) which implies a set of mappings,, - - -,,, a set of assumptions
A with respect to the distributions of the partially specifiedues resulted as effect of applying
the mappings, a set of constrairifs a hypothesis clas& and a performance criterioR, the
task of the learnel, is to output a hypothesis € H that optimizesP using only operations
allowed by ~.

We say that an algorithmy; for learning from distributed, semantically heterogerseedata
setsDy, - -+, D,, under the assumptiond, is exactrelative to its centralized counterpait if
the hypothesis produced hy; is identical to that obtained b¥ from the complete data sé?
obtained by appropriately integrating the data de{s- - -, D, according to the set of mappings

Y, ---,1, and the assumptiond, as described in the previous section.

[1l. SUFFICIENT STATISTICS BASED APPROACH

Our approach to the problem of learning classifiers from fisistributed, ontology-extended
data sources is based on a general strategy for transforatgogithms for learning classifiers

from data into algorithms for learning classifiers from disited data [4].
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This strategy relies on the decomposition of the learnirgk tento two components: an
information gatheringcomponent, in which the information needed for learningdentified
and gathered from the distributed data sources, ahgpathesis generatiooomponent which
uses this information to generate or refine a partially coegtd hypothesis. The information
gathering component involves a procedure for specifyirgyittiormation needed for learning
as aqueryand a procedure for answering this query from distributeté.d&he procedure for
answering queries from distributed data entails the deositipn of a posed query into sub-
queries that the individual data sources can answer, fellibly the composition of the partial
answers into a final answer to the initial query. If the disited data sources are also semantically
heterogeneous, mappings between the data sources op®kmgil a user ontology need to be
applied in the process of query answering in order to rederibe semantical differences [3]
(Figure 2). The exactness of the solution depends on theaoess of the procedure for query

decomposition and answer composition.

User Ontology O

Learning Algorithm

Mappings
M(Oi->0,

Query
Decompositio

Answer

Composition

Statistical Query o
Formulation Lyqo

Hypothesis Generation Result

Fig. 2. Learning from distributed, semantically hetercgmms data sources.

The strategy described can be applied to a large class oimggalgorithms (e.g., Naive Bayes,
Decision Trees, Support Vector Machines, etc.) whereinrtfegmation needed for constructing
the classifier from data can be obtained using a suitablefssttistical queries from the data.
We illustrate the application of this approach in the caskeafing Naive Bayes classifiers from

distributed, semantically heterogeneous data.

A. Sufficient statistics for Naive Bayes classifiers

According to the classical statistical theory [7], a statis(D) is called asufficient statistic

for a parametef if s(D) captures all the information about the paraméteontained in the data
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D. For example, sample mean is a sufficient statistic for thamw# a Gaussian distribution.
This notion of a sufficient statistic for a paramefiecan be generalized to yield the notion of
a sufficient statistic, (D) for learning a hypothesis using a learning algorithni applied to a
data setD [4]. Thus, a statistic; (D) is asufficient statistic for learning hypothesig: using
a learning algorithm, applied to a data seb if there exists a procedure that takeg D) as
input and outputs:.
We want to identify sufficient statistics for Naive Bayessdidier, a simple and yet effective

classifier that has performance comparable to the perfaena other more sophisticated

classifiers [6]. The Bayesian approach to classifying ataimes = {vy,---,v,} is to assign
it to the most probable class,ap(x). We have:cyap(x) = argmaxp(vy, - - -, v,|c;)p(c;) =
CjEC

argmaxp(c;) [ [ p(vi|c;). Therefore, the task of the Naive Bayes Learner (NBL) is témeste
thcéeglass profﬁabilitieﬁ(cj) and the class conditional probabilitie&;|c;), for all classes:; € C
and for all attribute values; € dom(A;). These probabilities can be estimated from a training
set D using standard probability estimation methods [6] basedetative frequency counts. We
denote byo(v;|c;) the frequency count of the value of the attributeA; given the class label
¢;, and byo(c;) the frequency count of the class lakglin a training setD. These frequency
counts completely summarize the information needed fosttaoting a Naive Bayes classifier
from D, and thus, they constituufficient statisticdor Naive Bayes learner.

As noted above (problem formulation), learning classifi@sd in particular Naive Bayes
classifiers) from semantically heterogeneous data sopressnts us with the problem of partially
specified data. AVT-NBL [5] is an example of an algorithm featning Naive Bayes classifiers
that can handle partially specified data. In addition, AVBiNcan efficiently exploit attribute
value taxonomies as opposed to the traditional Naive Balgsitom, feature that makes it
appropriate for our setting.

We have seen that the sufficient statistics for the Naive Bajgorithm can be computed in
one step. As opposed to this, the sufficient statistics fof-NBL are computed by interleaving
the information gathering and hypothesis generation corapts several times. The sufficient
statistics computed at each step are caiddshement sufficient statisties they are used to refine
a partially construted hypothesis. More precisely(D, h; — h;.1) is a sufficient statistic for

the refinement of; into h;,, if there exists a procedur® that takesh; and sy (D, h; — hiy1)
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as inputs and outputs; | [4].

We show how refinement sufficient statistics can be used tosfitam AVT-NBL into an
algorithm for learning Naive Bayes classifiers from disitdd, semantically heterogeneous data.
AVT-NBL finds a Naive Bayes classifier that optimizes a perfance criterion, called Con-
ditional Minimum Description Length (CMDL) score [8], defid as a tradeoff between the
accuracy and the complexity of the classifier. If we denote|by the size of the data set,
I' a cut through the AVT associated with this data,= h(I') the Naive Bayes classifier

corresponding to the clit, size(h) the number of probabilities used to describendC LL(h|D)
the conditional log-likelihood of the hypothesis given the dataD, then theC'M DL score
can be written asCMDL(h|D) = (*&2!) size(h) — |D|CLL(h|D), Here, CLL(h|D) =

| D| Zﬂ log pr(cilvir - - - vin), Wherepy(c;|vi - - - vi,) represents the conditional probability as-
signed to the class; € C associated with the example = (v;,---,v;,). Because each

attribute is assumed to be independent of the others givenl#ss, we can writ€’ LL(h|D) =

El p(es) T1; pa(vijles)
D] > log (EC' - '

= k=1D(cr) T1; pu(vislcr) 3 .
AVT-NBL starts with a Naive Bayes classifiéy = h(I'y) corresponding to the most abstract

cutl’y in the attribute value taxonomy associated with the data (he most general classifier that
simply assigns each instance to the class that is apriort probable) and it iteratively refines
the classifier by refining the corresponding cut until a best according to the performance
criterion, is found. More precisely, Iét; be the current hypothesis corresponding to the current
cutT (i.e., h; = h(I")) andI” a (one-step) refinement of (see Figure 3). Lek(I") be the Naive

AVT A AVT A

wr N\

Fig. 3. The refinement of a cut through an attribute value taxonomny.

Bayes classifier corresponding to the dutand letCM DL(I'|D) and CM DL(I”|D) be the
CMDL scores corresponding to the hypothe#¢BE) and h(I"”), respectively. IfCMDL(T") >
CMDL(I") then h;y1 = h(I"), otherwiseh;.; = h(I"). This procedure is repeated until no

(one-step) refinement’ of the cutl” results in a significant improvement of the CMDL score,
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and the algorithm ends by outputing the classifiél’). Thus, the classifier that the AVT-NBL
finds is obtained fromk, = h(I'y) through a sequence of refinement operations. The refinement
sufficient statistics (D, h; — h;+1) are identified below.
Let h; be the current hypothesis corresponding to altaind CM DL(T'| D) its score. IfI
is a refinement of the cUt, then the refinement sufficient statistics needed to cortskiy, are
given by the frequency counts needed to constitt) together with the probabilities needed
to computeC'LL(h(I")|D) (calculated once we know(I")). If we denote bydomr/(A;) the
domain of the attributed; when the cutl” is considered, then the frequency counts needed to
constructh(I”) are o(v;|c;) for all valuesv; € domp/(A;) of all attributesA; and for all class
valuesc; € domp(C'), ando(c;) for all class values; € domp (C). To computeC' LL(h(I")|D)
the productg]; pur)(vij|ci) for all examplesr; = (v, - - -, v;,) and for all classes;, € C are
needed.
The step: + 1 of the algorithm corresponding to the dot can be briefly described in terms
of information gathering and hypothesis generation coreptsas follows:
1) Computeo(v;|c;) ando(c;) corresponding to the cdt’ from the training dataD
2) Generate the NB classifié(T")
3) Compute[l; pnrvy(vis|cr) from D
4) Generate the hypothesis,

B. Naive Bayes classifiers from semantically heterogendates

The stepi + 1 (corresponding to the cdt’ in the user ontology) of the algorithm for learning
Naive Bayes classifiers from distributed, semanticallyetegeneous data sourcés, - -, D,,
can be described in terms of information gathering and Hg®$ generation components as

follows:

1) Computeo(v;|c;) ando(c;) corresponding to the cdt’ from the distributed data sources

Dl’ cee Dp
2) Generate the NB classifigr(I”) at the user location and send it to the data sources
l)17 cee Dp

3) Compute]_[j Ph(r) (/Uij‘ck) from Dla ce Dp
4) Generate the hypothesis,; at the user location
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Thus, using the information gathering and hypothesis geiogr decomposition of the AVT-
NBL algorithm, we have reduced the problem of learning NeBages classifiers from dis-
tributed, ontology-extended data sources, to the problegathering the statistics, (D, h; —
hi+1) from such data sources. Next, we show how to answer stafisieriesq(s.(D,h; —
hi+1)) that return statistics:, (D, h; — h;1), from horizontally and vertically fragmented
distributed, semantically heterogeneous data sources.

1) Horizontally fragmented datalf the data are horizontally fragmented, the instances are

distributed among the data sources of interest. Thus, tee gisery ¢(o(v;|c;)) can be de-

composed into the sub-querigs(o(v}|cj)),---,q,(a(v]|c})) corresponding to the distributed
data sourcesD,---, D,, where v} and cé? are the values D, that map to the values;
andc; in Oy. Once the queries, (o(v/cj)), -, g(o(v]|c})) have been answered, the answer

to the initial query can be obtained by adding up the indigldanswers into a final count
o(vile;) = o(vf|c;) + -+ -+ o(v]|¢}). Similarly, we compute the counts(c;). Once the counts
o(vilc;) and o(c;) have been computed, the Naive Bayes classifie= h(I') corresponding

to the cutl” can be generated. The next query that needs to be answeg€d ig (vi;|ck))
corresponding to each (virtual) example= (v;1,- - -, v;,) (in the complete data set) and each
classc, based on the probabilities that defie Because all the attributes of an example are at
the same location in the case of the horizontal data fragatient each query([T; pu (vij|ck))

is answered by the data source that contains the actual é&xamphen all such queries have
been answered, the scat&y/ DL can be computed and thus the hypothesis that will be output
at this step can be generated.

If any of the valuesu? or c;? are partially specified ir0,, we deal with them as described
in Section 2.2, except that we do not explicitly construe thansformed instances (according
to the distribution assumed by the user), but implicitly gsem for the computation of the
(fractional) counts.

Note that the set of class conditional counts;|c;), corresponding to the values of an
attribute A,, can be represented as a tree (whose structure is given lassoeiated AVT) and
can be efficiently computed using the approach describe8]in [

2) Vertically fragmented datain the case of vertical data fragmentation, the attributes a
distributed among the data sources of interest, but all &heeg of an attribute are found at the

same location. We assume that each location contains tbe att@ibute. To answer the user query
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q(o(vi|c;)), this query is sent to the particular data soufgethat contains the attributé; after
being mapped to the queny (o (vf|c})), where the values} andc in O, are the correspondents
of the valuesy; and¢;, respectively, inOy. The answer to the quenry,(o(vf|c))) is the final
answer to the user queryc(v;|c;)). Because the class attribute is present at each location,
the queryq(o(c;)) can be answered by any data soufgg after being appropriately mapped
to the ontologyO,. Because the attributes are distributed at different ionaf the user query
o(TT, pa(vislcx)) is decomposed into the sub-querigsTT,, pu(vh,|ch)). - 4p(TT;, pa (V] 1ch)).
where eachj, (s = 1,p) belongs to set of indices corresponding to the attribubkes are
located at the sité and the valueﬁfjs, c;, are the correspondents @, of the valuesy;;, c; in

Oyp. Once these queries are answered by the distributed dateesptihe answer to the initial
user query is obtained by multiplying the partial answets i final answef]; p;(vi;|cr)) =

[T, pu(viy, lcy) x - < I1;, pu(v; |cf). We deal with partially specified values as in the case of

horizontal data fragmentation.

C. Theoretical Analysis

Theorem [Exactness] The algorithm for learning Naive Bayes classfirom a set of horizon-
tally (or vertically) fragmented distributed, ontologytended data sourcesD,,5,,01>, - -,<D,,,S,,0,>,
from a user perspectiveOy, IC>, in the presence of the mappings, - - -,v,, under a set
of user-specified distributional assumptiadsregarding partially specified data, is exact with
respect to the algorithm for learning Naive Bayes classifieom the complete virtual fully
specified data seb, constructed by integrating the data sourégs- - -, D, according to the
mappingsy, - - -, ¢, and assumptionsl.

Proof sketch: Because of the information gathering and hypothesis ggoerdecomposition

of the the AVT-NBL algorithm, the exactness of the algoritfion learning from distributed,
semantically heterogeneous data sources depends on tieetness of the procedures for de-
composing a user quetyinto sub-querieg, - - -, g, corresponding to the distributed data sources
Dy, ---, D, and for composing the individual answers to the quefies: -, ¢, into a final answer

to the query;. More precisely, we need to show that the conditjoR) = C(q:(D1), - - -, ¢,(Dy))
(exactness conditigris satisfied, where(D), q:(D,),-- -, q,(D,) represent the answers to the
queriesq, ¢1, - - -, g, respectively, and is a procedure for combining the individual answers.

When data is horizontally fragmented the quefy(v;|c;)) is decomposed into sub-queries
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a(o(v}lc})), -, q(o(vf|c})) corresponding to the distributed data sourégs- - -, D, and the
final answer iso(v|c;)(Dy,- -+, Dp) = o(vf|c;)(D1) + -+ + o(vf'|c))(D,). If we denote by
o(vi|c;) (D) the answer to the query(o(v;|c;)) posed to the complete data et we need to
show thato(v;|c;)(Dy,-- -, D,) = o(vc;)(D). This is obviously true when the data sources
D,,---, D, are homogeneous because the addition operation is assecittte equality holds
in the case of semantically heterogeneous data becauselévant counts are computed under
identical distributional assumptions concerning pdjstiapecified data (or equivalently, from the
same fully specified virtual data sé?). A similar argument can be made for the exactness
condition in the case of the queryo(c;)). Because the answer to the quertyT; px(vij|ck))

is obtained from a single data source and no combinationepkge is needed, the exactness
condition is trivially satisfied in this case. Thus, we shdwkat the exactness condition holds
for all queries that are posed in the process of computingtiffecient statistics needed to learn
Naive Bayes classifiers from horizontally fragmented dhsted, semantically heterogeneous
data sources. This completes the proof of the exactneseetheior the horizontally fragmented
case.

A similar argument can be made for the vertically fragmerdase.

V. SUMMARY, DISCUSSION ANDFUTURE WORK
A. Summary

There is an urgent need for algorithms for learning clagsifieom distributed, autonomous
(and hence inevitably, semantically heterogeneous) datacss in several increasingly data-
rich application domains such as bioinformatics, envirental informatics, medical informatics,
social informatics, security informatics, among others.

In this paper, we have precisely formulated the problemafimg classifiers from distributed,
ontology-extended data sourc@ghich make explicit (the typically implicit) ontologiessociated
with autonomous data sources. User-specified semantiespmndences (mappings between the
data source ontologies and the user ontology) are used teeassatistical queries that provide
the information needed for learning classifiers, from suatadources. The resulting framework
yields algorithms for learning classifiers from distrilditentology-extended data sources. These
algorithms are provably exact relative to their centralizeunterparts in the case of the family

of learning classifiers for which the information needed ¢onstructing the classifier can be
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broken down into a set of queries for sufficient statistieg take the form of counts of instances
satisfying certain constraints on the values of the atte®uSuch classifiers include decision trees,
Bayesian network classifiers, classifiers based on a br@ad of probabilistic models including
generalized linear models, among others. We have illestrahe proposed approach in the
case of learning Naive Bayes classifiers from horizontadlg @ertically fragmented distributed,

ontology-extended data sources.

B. Discussion

There is a large body of literature on distributed learni@gg [9] for a survey). However, with
the exception of [4], most algorithms for learning class&i&om distributed data do not offer
performance guarantees (e.g., exactness) relative todéefralized counterparts. Integration of
semantically heterogeneous data has received signifit@mtian in the literature (see [10] for
a survey). Most of this work has focused on bridging semadiifierences between ontologies
associated with the individual data sources and answetypgcélly relational) queries from such
data sources [2], [3].

McClean et al. [11], [12] present an approach to answering aggregate egpidormulated
in a global ontology, from statistical databases. Howetregy do not address the problem of
answering statistical queries from relational data fromsars point of view. Kearns [1998]
describe the use of a statistics oracle to extend samplelegityresults derived in therobably
approximately correc{PAC) learning framework to learning scenarios in which teda is
corrupted by noisy attribute values and class labels. Inipus work [5], we formulated and
solved the problem of learning Naive Bayes classifiers fratadjiven an ontology in the form
of a set of attribute values taxonomies (one AVT per atteluin a setting in which the values
of some of the attributes are partially specified relativéhi® corresponding AVT.

In contrast, this paper precisely formulates and solveptbblem of learning classifiers from
semantically heterogeneous data sources in the impoganiss case where each data source has
associated with it, an ontology that takes the form of a sé&Maf (with one AVT per attribute per
data source). The approach described here builds on ouopsework on a sufficient-statistics
based general strategy for learning classifiers from (s@o@ly homogeneous) distributed data
[4], and on learning Naive Bayes classifiers from (semallyit®@mogeneous) partially specified

data [5] to develop for the first time, a provably sound appihoto learning classifiers from
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semantically heterogeneous distributed data.

C. Future Work

Some promising directions for further work include:

« Application of the general framework described in this pape obtain algorithms for

learning decision trees, Bayesian networks, neural n&sy@upport vector machines and
other types of classifiers, and more generally, predictiages including in particular,
multi-relational models from semantically heterogeneontlogy-extended data sources.
Development of sound approaches to answering statisticaies from ontology-extended
data sources under a broad range of access, bandwidth,@ebsping constraints associated
with the data sources, including methods for resource-tbedrapproximations of answers
to statistical queries

Large scale application of the resulting algorithms to dhtaeen classifier construction

problems that arise in bioinformatics and related appboet
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