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A bootstrap approach is proposed for assessing significance in the clustering of multi-dimensional datasets. The
developed procedure compares two models and declares the more complicated model a better candidate if there is
significant evidence in its favor. The performance of the procedure is illustrated on two well-known classification
datasets and comprehensively evaluated in terms of its ability to estimate the number of components via extensive
simulation studies, with excellent results. The methodology is also applied to the problem of k-means color quan-
tization of several standard images in the literature, and demonstrated to be a viable approach for determining the
minimal and optimal numbers of colors needed to display an image without significant loss in resolution.
Keywords: bootstrap, overlap, hierarchical clustering, k-means algorithm, Prohorov metric, p-value quanti-
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1. INTRODUCTION

Cluster analysis partitions datasets into groups such that observations within each class share common proper-
ties, but are also considerably different from those in other groups. This is a difficult problem with many diverse
applications eg, taxonomical classification (Michener and Sokal, 1957), market segmentation (Hinneburg and Keim,
1999) or software management (Maitra, 2001) with consequently, a large body of literature in statistics and machine
learning (see eg. Murtagh, 1985; Ramey, 1985; McLachlan and Basford, 1988; Kaufman and Rousseuw, 1990; Everitt
et al., 2001; Fraley and Raftery, 2002; Tibshirani and Walther, 2005; Kettenring, 2006; Xu and Wunsch, 2009).

One popular approach to clustering is model-based: here, a probability model specifies the distribution of an
observation in terms of a mixture of parametric distributions (Fraley and Raftery, 2002), with each mixture component
describing properties of a particular group in the dataset. We refer to Titterington et al. (1985) and McLachlan and
Peel (2000) for details, but note that clustering in such contexts requires a final assignment step that allocates each
observation to the group for which its posterior probability of classification is highest.

The other main approach to clustering is largely heuristic and model-free. Prominent among these are the distance-
based methods, with a distance measure between every pair of observations (or groups of observations). These algo-
rithms are further sub-divided into the hierarchical (Johnson, 1967; Everitt et al., 2001; Jain and Dubes, 1988) and
the partitional clustering algorithms which optimize some target function for a pre-specified number of clusters. Ex-
amples of the latter range from the classical k-means (Forgy, 1965; MacQueen, 1967) and k-medoids (Kaufman and
Rousseuw, 1990) algorithms to the more modern approaches of competitive learning (Rumelhart and Zipser, 1985) or
kernel-based clustering (Haykin, 1999; Xu and Wunsch, 2009).

An issue defying researchers in clustering is that of quantifying significance in the obtained groupings. Significance
assessment in the clustering context itself needs to be defined: we address this in terms of whether a more complicated
model (in terms of numbers of clusters, variables, estimable quantities, etc) is significantly better, in terms of its fit to a
dataset, than a simpler model or whether any improvement can be explained purely as a matter of chance. We develop
methodology in this paper for the case of the model-free clustering methods using the bootstrap.

Closely related to our look at significance assessment is that of estimating the number of clusters (in this paper,
K) in a dataset: this long-standing issue (Everitt, 1979) has many suggested approaches (Milligan and Cooper, 1985;
McLachlan and Peel, 2000). Suggestions in the distance-based case include Marriott (1971)’s criterion and its variants
and the popular Gap statistic (Tibshirani et al., 2003). McLachlan (1987) suggests some approaches for model-based
clustering that successively test for K against K∗(> K) components, stopping when the null hypothesis can no
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longer be rejected, but development here has been muted by the need to account for possible regularity condition
violations (Cramer, 1946). Challenges in implementation notwithstanding however, testing-based approaches provide
at least one major advantage over the others, in that the results can be quantified in terms of the p-value, which is an
universally understood measure between 0 and 1. Other approaches, while also quantitative, provide numerical values
that are data- and context-dependent. For instance, Marriott’s criterion which penalizes the logarithm of the deter-
minant of the within-sums-of-squares-and-products matrix (W ) by twice the log of the number of clusters provides
a numerical value: however, the magnitude changes from one dataset to the other. There is thus no context-free and
readily-interpretable quantification of the derived values, with no clear guidance on what differences in values are large
and what are not. It is this more-interpretable quantification of the p-value that encourages us to give testing-based
approaches another look at quantifying significance.

There has been some recent work in assessing significance in the derived clusterings. McShane et al. (2002)
and Liu et al. (2008) use parametric mixture model assumptions and the bootstrap to individually test whether each
of the derived groups can be further sub-divided into two, with allowances for high-dimensional low sample size
(HDLSS) datasets, which forms the sole focus of their papers. (The use of the bootstrap in clustering is, however,
of less recent vintage, having been employed (Kerr and Churchill, 2001; Dudoit and Fridlyand, 2003) to improve the
reliability of clustering algorithms.) More recently, Maitra and Melnykov (2010a) derived an approximate approach
for significance assessment in mixture models and model-based clustering. They developed a quantitation map which
provides a researcher with a detailed quantitative measure summarizing evidence against simpler models and in favor
of more complicated alternatives. Their derivations are however inapplicable in the context of more heuristic and
parametric-model-free clustering methods.

In this paper, we provide a bootstrap approach for quantifying such clustering methods. We assume that we have
compact groups which after some local transformation are spherical and similar to the other clusters. Under this
framework, we develop in Section 2 a distribution-free bootstrap strategy for testing a particular clustering setup vis-
a-vis a more complicated one, i.e., we test between a null K- and an alternative K∗-clusters model. To fix ideas for
the development of our methodology here, we assume that K∗ > K and that data partitions with more clusters are
somehow always more complicated than those with fewer groups. We emphasize that this assumption is solely for
expediency and ease of presentation in this paper: our methodology also applies to other scenarios. The performance
of our approach is illustrated on two well-known classification datasets in Section 3 and evaluated in terms of its
ability to estimate the number of significant groups through a series of simulation experiments in Section 4. The
consistency of the bootstrap methodology for our problem is theoretically explored in Section 5. We next illustrate
utility of our methodology in Section 6 to the novel application of determining the number of colors required to
adequately represent a digital image. This paper concludes with some discussion in Section 7 along with an outline
of some possible directions for future work. We also have a supplement providing some additional illustrations and
performance evaluations. Sections, figures and tables in the supplement referred to in this paper are labeled with the
prefix “S-”.

2. METHODOLOGY

2.1 Background and Preliminaries

LetX1,X2, . . . ,Xn be a random sample of n p-dimensional observations. We assume that eachXi ∼
∑K
k=1 ζikfk(x),

where K is the number of groups, ζik = I(Xi∈Gk), and fk is the density of an observation in the kth cluster. Here I(·)
is the indicator function and Gk is the set of observations in the sample belonging to the k-th cluster. The primary objec-
tive is to estimateK and ζiks for i = 1, 2, . . . , n and k = 1, 2, . . . ,K in the presence of the nuisance parameters fk(·).
We assume that for each k = 1, 2, . . . ,K, there exists a function Ψk : IRp → IRp such that g(x) = fk(Ψk(x))|JΨk

|
where |JΨk

| is the Jacobian of Ψk and g(x) is a density centered at the origin with spherical level hyper-surfaces, i.e.
for any orthogonal p × p-matrix Γ, g(x) = g(Γx). Further g(y) =

∏p
j=1 h(yj) for y = (y1, y2, . . . , yp) where h(·)

is an univariate density symmetric about zero. This is the most general formulation, but in this paper, we consider
only those cases which result in center-based clusterings. For instance, when Ψk(x) ≡ x − µk, then each group has
the same density but for location given by µk and we essentially assume that we have homogeneous spherical clus-
ters. This is the putative framework underlying the k-means and other Euclidean distance-based clustering algorithms.
When Ψk(x) ≡ Σ−

1
2 (x−µk), we assume having ellipsoidal clusters of different shapes and orientations centered at

the µks and Mahalanobis’ distance-based clustering methods would be most appropriate.
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2.2 A Hypothesis-testing Framework

Suppose we want to investigate if there is significant evidence that the given dataset is better described by K∗

compact groups than by K clusters, where K∗ > K. The null and alternative hypotheses can then be prescribed in
the form H0 : F ∈ FK vs. Ha : F ∈ FK∗ ,where F represents the true distribution of the observations in the dataset,
and FK and FK∗ represents the family of distributions under the null and alternative hypothesis respectively. The ith
observation has density of the form

∑K
k=1 ζ

(K)
ik f

(K)
k (x) under H0 and

∑K∗

k=1 ζ
(K∗)
ik f

(K∗)
k (x) under Ha.

2.2.1 Test statistic

This paper uses as the test statistic the improvement in the within-cluster-sum-of-squares sK;K∗ = WK −WK∗ ,
where WK =

∑n
i=1

∑K
k=1 ζ

(K)
ik (xi − µk)′(xi − µk), the optimized objective function for terminated k-means al-

gorithms that is obtained as its by-product when used to group a dataset into K clusters. Note, however, that while
we develop methodology here using sK;K∗ as our test statistic, our development is general enough to also extend to
other reasonable test statistics. Note also that sK;K∗ ≥ 0 always, since Wk decreases as K increases: our objective is
to assess the significance in the improvement of WK upon fitting the dataset with a K∗-cluster model over that with
only K components. To do so, we have to calculate the p-value of the test statistic in terms of the probability that a
sK;K∗ from a true K-cluster model is greater than the sK;K∗ calculated from the dataset. We develop approaches to
estimating this p-value next.

2.3 Obtaining a reference distribution

2.3.1 Homogeneous spherical clusters

We first develop methodology for homogeneous clusters. Under the null hypothesis ofK groups, we have a sample
Ξ = {X1,X2, . . . ,Xn} from the joint distribution

n∏
i=1

K∑
k=1

ζ
(K)
ik

1

σ
g

(
xi − µk

σ

)
, (1)

where g : IRp → IRp is invariant under orthogonal transformations. Our objective is to obtain the null distribution of
sK;K∗ under the assumption that the data are realizations from (1).

In obtaining the null distribution, we note that µks, ζ(K)
ik s, σ and g(·) are all parameters of our null distribu-

tion. We use the K-clusters solution to the dataset to obtain estimates ζ̂(K)
ik s, µ̂k =

∑n
i=1 ζ̂

(K)
ik Xi/

∑n
i=1 ζ̂

(K)
ik and

σ̂ = 1
np

∑n
i=1

∑K
k=1 ζ̂

(K)
ik (Xi − µ̂k)′(Xi − µ̂k). Note that once the effects of the assigned centers µ̂k and common

scale σ̂ have been removed from each observation (using the K-clusters solution), then the residuals ε̂1, ε̂2, . . . , ε̂n,
where ε̂i = (Xi −

∑K
k=1 ζ̂

(K)
ik µ̂k)/σ̂ for i = 1, 2, . . . , n, form a sample from the common density g(·). A naı̈ve

approach to estimating g(·) and using the bootstrap would resample from these ε̂is. This naı̈ve approach would,
specifically, involve obtaining ε̂?1, ε̂

?
2, . . . , ε̂

?
n by sampling with replacement from ε̂1, ε̂2, . . . , ε̂n, and then constructing

the resampled realizations X?
i =

∑K
k=1 ζ̂

(K)
ik µ̂k + ε?i , i = 1, 2, . . . , n. Theorem 5.1 shows that such a resampling

strategy has low power, especially in the case when H0 specifies far fewer groups than the true. Additional illustra-
tion of these claims is provided in the supplemental file: in particular, see Figure S-1. Thus, a carefully-designed
resampling strategy is needed.

Note that g(·) is assumed to have spherical level hyper-surfaces and is defined through the univariate density h(·).
Given this special structure for g(·), we note that the ordered set of normed residuals ‖ε̂(1)‖ ≤ ‖ε̂(2)‖ ≤ . . . ≤
‖ε̂(n)‖ is sufficient for g(·). Thus, the conditional distribution of ε̂1, ε̂2, . . . , ε̂n given the ordered set of normed
residuals ‖ε̂(1)‖, ‖ε̂(2)‖, . . . , ‖ε̂(n)‖ is free of g(·). We use this fact to obtain our resampled realizations. Note also that
transforming ε̂i to Γiε̂i, i = 1, 2, . . . , n, where Γi is any p× p orthogonal matrix, maintains the ordered set of normed
residuals ‖ε̂(1)‖, ‖ε̂(2)‖, . . . , ‖ε̂(n)‖. Thus, a resampling strategy for the residuals would involve randomly sampling
p-dimensional unit direction vectors, scaling them first with the magnitude of the residuals ‖ε̂(i)‖ and then with σ̂ and
shifting by the appropriate µ̂k corresponding to ζ̂(K)

ik .
Formally therefore, we propose the following: for each i = 1, 2, . . . , n, first generate a random unit direction

in p-dimensional space. We do so by simulating a p-variate standard normal random vector Zi, and let W i =
Zi/‖Zi‖. Note that we use a standard p-variate Gaussian distribution random to obtain our normed realization, but
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(a) K = 2,R = 0.5 (b) K = 3,R = 0.746 (c) K = 4,R = 1.0 (d) K = 5,R = 0.958

Figure 1. Ruspini dataset: k-means clustering solutions for different K. In each figure, colors represent true cluster-
ings while characters represent the predicted groupings.

any distribution spherically symmetric around zero would also be appropriate, following Theorem 1 of Cambanis
et al. (1981). We next obtain a random permutation (`1, `2, . . . , `n) of {1, 2, . . . , n}. Then, the ith resampled residual
is given by ε∗i = ‖ε̂`i‖W i. Note that ‖ε∗i ‖ = ‖ε̂`i‖‖W i‖ = ‖ε̂`i‖‖Zi‖/‖Zi‖ = ‖ε̂`i‖, so that the resampled
residuals in the set {ε∗i ; i = 1, 2, . . . , n} maintain the norms in the set {εi; i = 1, 2, . . . , n}. (The directions of ε∗i s
are however different from those in ε̂is, following the effect of W i.) Adding these ε̂∗i s, after scaling with σ̂, to the
means of the corresponding cluster centers yields X∗i =

∑K
k=1 ζ̂

(K)
ik µ̂k + σ̂ε∗i for each i = 1, 2, . . . , n. Thus, we

get a resampled realization of the dataset under H0: Ξ∗ = {X∗1,X
∗
2, . . . ,X

∗
n}. We replicate the procedure M times

to obtain resampled realizations of the dataset Ξ∗1,Ξ
∗
2, . . . ,Ξ

∗
M . From each Ξ∗j , we obtain the test statistic given

by s∗j,(K;K∗), for j = 1, 2, . . . ,M . The p-value of sK;K∗ is then estimated by the proportion of cases in which
it is exceeded by the resampled s∗j,(K;K∗). Formally therefore, the p-value of the test statistic is calculated from
1
M

∑M
j=1 I

(
s∗j,(K;K∗) > sK;K∗

)
, where I(·) is again the indicator function.

An Illustration We illustrate performance of our resampling mechanism on the synthetic Ruspini (1970) dataset
which contains 75 bivariate observations from four well-separated groups that are each fairly spherical in their spread.
This dataset, also available in the CLUSTER package in R, is popular for investigating clustering algorithms (Struyf
et al., 1997). Figure 1 shows the optimal 2-, 3-, 4- and 5-cluster solutions obtained using the k-means algorithm,
initialized here – as in all experiments reported in this paper – using the best (in terms of the smallest WK) of the
deterministic approach of Maitra (2009) and the partitioning obtained by using the hierarchical clustering algorithm
with Ward’s linkage. For each clustering, we also report the Adjusted Rand index (R) (Hubert and Arabie, 1985) which
measures similarity between two partitionings – in this case, the derived grouping and the true. (Note that R takes its
maximum value of 1 when the two partitionings match perfectly. In general, values of R close to unity indicate good
clustering performance while those far below 1 are indicative of poorer performance.) In testing for the adequacy of a
1-, 2-, 3-cluster solution vis-a-vis a solution with (say) 4 clusters, we need resampled datasets from the corresponding
null distribution. Figures S-2 (in the supplemental file) provide four resampled datasets each under null hypothesis
assumptions of 1, 2, 3 and 4 clusters. The realizations for the first three sets appear quite different from the Ruspini
data so that any reasonable test statistic should have low probability of accepting H0 when challenged by a 4-group
model. On the other hand, when testing under a H0 of four true groups in the dataset, resampled datasets (refer again
to Figures S-2) look quite similar to that of the observed data so that the test statistic will have a lower chance of
rejecting H0. We return to this dataset a little later in Section 3, moving instead to generalizing our methodology for
cases beyond homogeneous spherical clusters.

2.3.2 Extension to the case of general ellipsoidal clusters

The entire process can be easily adapted for the case of general ellipsoidal clusters. Under H0, our sample Ξ =
{X1,X2, . . . ,Xn} is from the joint distribution with K groups given by

n∏
i=1

K∑
k=1

ζ
(K)
ik

1

det (Σk)
g
(
Σ
− 1

2

k (xi − µk)
)
, (2)
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where g : IRp → IRp is as in (1). Once again, noting that µks, ζ(K)
ik s, Σks and g are all parameters under H0,

we use the K-clusters solution to the dataset and obtain estimates ζ̂(K)
ik s, µ̂k =

∑n
i=1 ζ̂

(K)
ik Xi/

∑n
i=1 ζ̂

(K)
ik and

Σ̂k =
∑n
i=1 ζ̂

(K)
ik (Xi − µ̂k)(Xi − µ̂k)′/

∑n
i=1 ζ̂

(K)
ik . After the effects of the assigned center and individual scale

have been removed from each observation, and writing each residual ε̂i =
∑K
k=1 ζ̂

(K)
ik Σ̂

− 1
2

k (Xi −
∑K
k′=1 ζ̂

(K)
ik′ µ̂k′)

for i = 1, 2, . . . , n, we are left with the same scenario as in Section 2.3.1. That is, we have ε̂1, ε̂2, . . . , ε̂n from
the common density g with spherical level hyper-surfaces and defined through the univariate density h. We obtain
resampled residuals ε∗1, ε

∗
2, . . . , ε

∗
n in the same manner as before. Combining, our resampled realization from the null

distribution is given by Ξ∗ = {X∗1,X
∗
2, . . . ,Xn∗}, where X∗i =

∑K
k=1 ζ̂

(K)
ik (µ̂k + Σ̂

1
2

k ε
∗
i ) for each i = 1, 2, . . . , n.

As before, the procedure is replicated M times to obtain resampled realizations Ξ∗1,Ξ
∗
2, . . . ,Ξ

∗
M under H0, from

each of which we get s∗j,(K;K∗), for j = 1, 2, . . . ,M . The p-value of the observed test statistic is again estimated by
1
M

∑M
j=1 I

(
s∗j,(K;K∗) > sK;K∗

)
.

We refer to the supplemental file for an illustrative example of the methodology developed here (see Section S-
2 and, in particular, Figures S-3 and S-4). Note that while the development here has been for the case of general
ellipsoidal clusters, it is also potentially valid for clusters that are more general-shaped, as long as an appropriate
transformation Ψ, e.g. the multivariate Box-Cox transform, can be found (see Section S-5 for an illustrative two-
dimensional example). We also note that our methodology is applicable only to the case of multi-dimensional datasets
(i.e., p ≥ 2). It is, by construction, unlikely to be able to generate a rich ensemble of realizations from the null
distribution for one-dimensional observations, without additional assumptions.

2.3.3 Null distribution with no clusters

Sections 2.3.1 and 2.3.2 developed methodology for simulating realizations from the null distribution with K
clusters. This methodology is however inapplicable for the case where the null distribution specifies no clustering in
the data (a case which we refer to here as K = 0). This is a scenario where the null distribution is uniform over
the support of the data, so we propose adopting Tibshirani et al. (2003)’s proposal of sampling from the uniform
distribution on the p-dimensional hyper-rectangle (used by the authors to decide on the number of clusters for the Gap
statistic).

2.4 Summarizing Significance via Quantitation Maps

Maitra and Melnykov (2010a) also developed the p-value quantitation map to provide comprehensive visualization
of the p-values for different tests in the context of mixture models. The rows of these two-dimensional upper-triangular
maps index the model under H0 while the columns denote the model under Ha. The intersection of a particular row-
column pair yields the p-value of the test statistic for testing the corresponding H0 against the corresponding Ha.
To address the issue of multiple significance, the authors proposed controlling for the expected false discovery rates
(FDR) using Benjamini and Hochberg (1995), giving rise to the q-value quantitation map. We note that, as cautioned
by a reviewer, these derived q-values are somewhat ad hoc because the simultaneous hypothesis tests being tested
have to be approximately independent for the methodology of Benjamini and Hochberg (1995) to apply. Our detailed
experiments in Sections 3 and 4, however, show that these quantitation maps work quite well in practice.

2.4.1 Application to choosing K

The p- and q-value quantitation maps allow us to assess the significance of a host of clustering solutions. One im-
portant application of these maps is to obtain an optimal estimate ofK, from among a pre-specified range [Kmin,Kmax].
The quantitation map drawn represents p- and q-values with K corresponding to the simpler model in H0 and the one
(K∗) corresponding to the more complicated model as Ha. In this application, we assume that K∗ > K, though this
is not a constraining requirement – see Section 2.4.2. Maitra and Melnykov (2010a) suggest choosing the optimal K
from within the range [Kmin,Kmax] by sequential testing using the following algorithm:

1. Let K = Kmin and K∗ = Kmin + 1.

2. If the q-value for testing H0 : K versus Ha : K∗ is less than the desired FDR (q0, say), reassign K ← K + 1
and K∗ ← K∗ + 1. Otherwise, reassign K∗ ← K∗ + 1.
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3. Reiterate Step 2 until K∗ > Kmax. Report the current (null) K as the number of clusters.

This scenario is less conservative than sequentially testing H0 : K versus Ha : K+ 1 clusters for K = Kmin,Kmin +
2, . . . ,Kmax − 1 until the first instance for which q ≥ q0. We prefer the above approach because the failure to detect
significance for some H0 : K versus Ha : K + 1 for some K does not necessarily rule out the possibility that another
K∗-clustering solution for some K∗ > K + 1 would be significantly better than the K-solution.

2.4.2 Choosing between different clustering solutions

We conclude our discussion in this section by mentioning that the methodology in Section 2.4.1 can be readily
generalized to make statements on the significance of many aspects of models. As a specific example, note that we
can use the above development to identify whether a more general K∗-clusters model is significantly better than a less
complicated model with K-groups, where complexity is determined based on a number of factors, eg. the number
of parameters being estimated under each hypothesis. We illustrate this generalization in Section 3.2.1 where we
investigate groupings of the Iris dataset assuming spherical and general-shaped clusters.

3. ILLUSTRATIVE EXAMPLES

3.1 The Ruspini dataset
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Figure 2. The q-value quantitation
map for the Ruspini dataset.

Our first illustration is on the dataset of Section 2.3.1, clustered via k-
means for different K. (For all cases in this paper, M = 1000.) The q-value
quantitation map (Figure 2) indicates that any clustering solution (K∗ > 0)
is preferable over one with no clustering (K = 0), and that any of the K∗-
group (K∗ > 1) partitions is significantly better (q < 0.05) than assuming a
homogeneous structure in the data (K = 1). Indeed, it appears that any of the
partitions obtained using K∗ > K groups for K∗ ≤ 7 is also significantly
better than theK-groups partition, forK = 2, 3, but the same can not be said
for when K = 4. Thus, we are led to prefer the model with K = 4 as it is
the first instance over which more complicated models are not significantly
preferred. Indeed, for this solution, we get a perfect match (R = 1.0), while
R = 0.5 and 0.746 for the 2- and 3-clusters solutions, respectively.

3.2 Iris dataset

Our next illustration is on the celebrated Iris dataset (Anderson, 1935;
Fisher, 1936) having measurements on each of petal length and width and
sepal length and width on 50 observations each drawn from three Iris species,
namely I. setosa, I. versicolor and I. virginica. It is known that I. setosa is very clearly distinguished from the other two
species while I. versicolor and I. virginica are more closely related and not as easily separated. We partition the dataset
for differentK using Gaussian model-based clustering with general dispersions – initialized using the emEM approach
of Biernacki et al. (2003) – and then bootstrap for significance as per Section 2.3.2. Figures 3a–d present modified
Andrews (1972) curves (formal description also provided in the supplemental file, vide Section S-3.1) for the 2-, 3-,
4- and 5-groups partitionings, along with their R-values relative to the true group identifications. The distinctiveness
of I. setosa from the other two species is very clear (supported by Figure S-3a of the supplement, which displays
the true classification). The 3-group solution also shows some overlap between I. versicolor and I. virginica, while
the 4- and 5- group solutions show these two species as being sub-divided further. Figure 3e displays the q-value
quantitation map: the no clustering assumption is clearly not tenable. We also notice significant improvements upon
fitting larger K∗-groups-models (K∗ ≤ 6) over models with one or two groups. (In particular, q = 0.005 for testing
H0 : K = 2 versusHa : K∗ = 3. The quantitation map also informs us that more complicated clustering solutions are
not significantly preferred over the 3-cluster model (q > 0.1 in all cases), thus three groups are adequate to describe
the heterogeneity in the data. This solution also most closely matches the known classification (R = 0.904) for the
dataset.
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3.2.1 Choice of clustering algorithm

A reviewer wondered about the choice of mixtures-of-Gaussians-model-based clustering with general group-
specific dispersions instead of, for instance, k-means clustering which inherently assumes a common spherical disper-
sion structure for all groups. This interesting question can be answered by the development of Section 2.4.2. Figure 3f
provides the q-value quantitation map for comparing models fit using k-means (K ranging from 1 through 8) and
model-based clustering (K varying from 1 through 4): here the models are ordered according to the number of param-
eters reflecting model complexity. Thus, the model with fewer parameters (Kp for k-means,

(
K+1

2

)
p+Kp+K − 1

for model-based clustering) is in H0 (row) while that with the larger number of parameters is in Ha (column). Further
supporting evidence in the form of Andrew’s curves andR-values of the k-means clustering solutions is in Figure S-5
of the supplement. Figure 3f provides us with an understanding of several aspects: for instance, the solution with seven
homogeneous spherical groups is significantly better (0.02 < q < 0.03) than the solution that places the I. setosa ob-
servations in one cluster and the others in one other group. Also, if we restrict to only homogeneous spherical groups,
no larger model fits the dataset significantly better (q > 0.10) than the 7-groups solution. (For clarity of presentation,
Figure 3f does not display models with more than 8 homogeneous spherical groups.) But the 3-cluster model with
general group-specific dispersions is our optimal choice, and most appropriately so, since its R-value again indicates
that it most closely fits the data.

(a) K = 2,R = 0.568 (b) K = 3,R = 0.904 (c) K = 4,R = 0.840

(d) K = 5,R = 0.732
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(f) q-value quantitation map for various models

Figure 3. (a-d) Andrews’ curves of Iris data colored according to the groupings obtained using Gaussian model-based
clustering with general group-specific dispersions for 2, 3, 4 and 5 groups, respectively. (e) The corresponding q-
value quantitation map. (f) The q-value quantitation map for models fit using k-means and model-based clustering
with different K. The letters “s” and “g” in the row and column labels are for k-means-obtained and model-based-
clustering-obtained groupings respectively, while the numerals indicate the number of groups.
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4. EXPERIMENTAL EVALUATIONS

We performed extensive simulation experiments to evaluate performance of our methodology. Although not the
only application of our algorithm, in order to facilitate comparisons with other methods, we evaluated performance by
using the methodology of Section 2.4.1 to estimate K in datasets of many combinations of p, K and n, with both ho-
mogeneous spherical and nonhomogeneous ellipsoidal clusters. Datasets were obtained using the R package MIXSIM
which provides a convenient way to simulate clustered data from Gaussian mixture models with pre-specified over-
lap characteristics as a surrogate for clustering complexity (Maitra and Melnykov, 2010b). These overlap measures
are summarized in the form of the average (ω̄) and/or maximum (ω̌) of all pairwise overlaps, with larger values cor-
responding to greater clustering difficulty. In the general case (with nonhomogeneous ellipsoidal clusters) MIXSIM
can simulate clustered data after controlling for both ω̌ and ω̄ yielding a wide range of cluster geometries (Maitra
and Melnykov, 2010b). We therefore controlled both ω̌ and ω̄ for these cases. However, computational limitations
in MIXSIM make it infeasible to generate datasets with homogeneous spherical clusters while controlling both ω̌
and ω̄, so then we only set ω̌. We obtained 100 simulated datasets at each combination of (p,K, n, (ω̄, ω̌)) for the
general nonhomogeneous ellipsoidal clusters case, and at each combination of (p,K, n, ω̌) for the case with homoge-
neous spherical clusters. For all experiments, performance was compared with results obtained using the gap statistic
proposed by Tibshirani et al. (2003) which estimates the number of clusters in datasets by comparing the change in
observed within-cluster variation with the expected under a null (no-groups) model. Our implementation of the gap
statistic used both the untransformed data (Gap) and the more commonly-used variant that applies it on the dataset
transformed using its singular value decomposition (GapSVD). For each simulated dataset and method, we calculated
R for the derived grouping (obtained at the estimated K̂) relative to the true. We compared these values with the best
possible R that could be obtained using the clustering algorithm: this was obtained by applying the corresponding
clustering algorithm (k-means for the homogeneous spherical case, hierarchical clustering with Ward’s criterion for
the more general case) for each K, calculatingR of the derived grouping relative to the true, and taking the maximum
of theseRs. We define the difference between this maximumR and theR obtained from the grouping at the estimated
K̂ to be the adjusted Rand Index deficiency and denote this deficiency byD. We evaluated performance of all methods
in terms of these D-values.

4.1 The Case with Homogeneous Spherical Clusters

In all experiments reported in this section, we partitioned each dataset for differentK using k-means. In addition to
Section 2.3.1, Gap and GapSVD, we also compared with Krzanowski and Lai (1985)’s approach (KL) which chooses
K̂ = argmaxk{KL(k) : 2 ≤ k ≤ Kmax}, where

KL(k) =

∣∣∣∣∣ (k − 1)
2
pWk−1 − k

2
pWk

k
2
pWk − (k + 1)

2
pWk+1

∣∣∣∣∣ .
Note that KL assumes that there is more than one group in the data: thus, it is constrained to only choose among
models that have K̂ > 1 components.

4.1.1 Datasets with Compact Clusters

Our combinations of (K, p, n, ω̌) set K = 6 or 11, p = 5 or 10, n = 500 or 1000, and ω̌ = 0.01, 0.05 or 0.01.
Table 1 displays the mean and standard deviation of K̂ (left block) and D (right block) summarized over the 100
simulated datasets at each setting for each methodology. Additional supporting evidence in the form of a graphical
display of the distributions of K̂’s and theDs for each methodology at each setting is provided in the supplement – see
Figure S-6. The table and the figure both indicate that performance of our proposed bootstrap-based procedure was
slightly better than Gap, but both methods performed much better than either GapSVD and KL. Interestingly, GapSVD
sometimes detected only one cluster, even in cases with low clustering difficulty but Gap and our bootstrap-based
approach did not share this shortcoming.

4.1.2 Datasets with Heavier-tailed Clusters

We also investigated performance with heavier-tailed clusters than the Gaussian. Since the theoretical develop-
ments underpinning MIXSIM are only valid for Gaussian mixtures, we used it only to simulate bivariate Gaussian
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Table 1. Performance of the bootstrap-based methodology, gap statistic with and without svd, and KL method for
estimating K homogeneous spherical clusters for different settings. The left half of the table provides the mean (K̄)
and the corresponding standard deviation (σK̂) of the estimated number of clusters, while the right half shows the
mean (D̄) and standard deviation (σD) of the adjusted Rand index deficiencies.

ω̌

K̄(σK̂) D̄(σD)

K = 6, n = 500 K = 11, n = 1000 K = 6, n = 500 K = 11, n = 1000

p = 5 p = 10 p = 5 p = 10 p = 5 p = 10 p = 5 p = 10

B
oo

ts
tr

ap 0.010 6.00 (0.00) 6.00 (0.00) 11.00 (0.00) 11.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
0.050 5.94 (0.58) 6.00 (0.00) 10.80 (0.45) 11.00 (0.00) 0.00 (0.03) 0.00 (0.00) 0.01 (0.02) 0.00 (0.00)
0.100 5.96 (0.28) 5.97 (0.22) 10.81 (0.49) 10.71 (0.57) 0.01 (0.03) 0.01 (0.03) 0.01 (0.02) 0.02 (0.03)

G
ap

0.010 5.99 (0.10) 6.00 (0.00) 10.96 (0.40) 11.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.02) 0.00 (0.00)
0.050 5.91 (0.55) 6.00 (0.00) 10.77 (0.63) 11.00 (0.00) 0.00 (0.01) 0.00 (0.00) 0.01 (0.03) 0.00 (0.00)
0.100 5.85 (0.52) 6.00 (0.00) 10.34 (1.67) 10.90 (1.00) 0.01 (0.04) 0.00 (0.00) 0.03 (0.12) 0.01 (0.09)

G
ap

SV
D 0.010 5.69 (1.20) 5.90 (0.70) 9.00 (4.02) 10.50 (2.19) 0.06 (0.23) 0.02 (0.14) 0.20 (0.40) 0.05 (0.22)

0.050 5.77 (0.93) 5.75 (1.10) 10.16 (2.56) 10.20 (2.73) 0.02 (0.14) 0.05 (0.20) 0.07 (0.24) 0.08 (0.26)
0.100 5.14 (1.67) 5.46 (1.55) 9.11 (3.55) 9.50 (3.59) 0.12 (0.27) 0.09 (0.27) 0.15 (0.31) 0.13 (0.31)

K
L

0.010 5.99 (0.30) 6.02 (0.20) 10.89 (0.65) 11.05 (0.30) 0.01 (0.02) 0.00 (0.01) 0.01 (0.04) 0.00 (0.01)
0.050 5.94 (0.75) 6.17 (0.53) 10.51 (1.48) 11.13 (0.44) 0.02 (0.07) 0.01 (0.03) 0.03 (0.07) 0.00 (0.01)
0.100 5.68 (1.02) 6.46 (0.81) 10.01 (2.38) 11.21 (0.70) 0.05 (0.09) 0.03 (0.04) 0.07 (0.17) 0.01 (0.02)

mixtures with homogeneous spherical dispersions for ω̌ = 0.01, 0.05 and 0.10. To generate datasets however, we
replaced the Gaussian distribution in each coordinate with a tν distribution, where ν is the degrees of freedom. To
facilitate illustration, we only considered K = 5, p = 2, n = 100. Our experimental suite consisted of the cases
for which ν = 3, 10 and ∞; the latter case is equivalent to realizations from a normal mixture. (Note that since
MIXSIM is designed to simulate Gaussian mixtures, the actual overlap will be moderately to substantially higher, with
decreasing ν, than the pre-specified levels of Gaussian overlap as the tails of the tν distribution are heavier than those
of the normal distribution.) Nevertheless, performance evaluations on these datasets provide us with an opportunity to
investigate the performance of the bootstrap-based procedure in assessing significance in the presence of heavy-tailed
clusters vis-a-vis ν. Figure 4 provides k-means-clustered datasets to illustrate the level of complexity associated with
tν-distributed clusters, for ν = 3 and 10, and notional overlap ω̌ = 0.005, 0.05, and 0.25. Figure 4 also provides
the q-value quantitation maps (first columns) and the partitioning (second columns) at the corresponding bootstrap-
significance-estimated K̂ for each dataset. Clearly, the cases with ν = 3 present substantially more complicated
datasets to partition than those for ν = 10. Note also that the quantitation maps in Figure 4 reflect clustering com-
plexity very well. When ω̌ is smaller, we are more confident about the choice of K. The increase in ν also makes this
choice easier. Thus, the two figures are also good illustrations of the use of quantitation maps in assessing significance
in clustering.

The results of a more comprehensive simulation study over 100 datasets at each setting are summarized in Table 2
and in the supplement (Figure S-7). Clearly, the overall results agree with our expectations and with the initial im-
pressions from Figure 4: the performance of our procedure is substantially better than that of all three competitors –
Gap, GapSVD or KL. The improvement in performance of our approach becomes more pronounced with increased
clustering complexity.

4.1.3 Performance with HDLSS datasets

Our next set of experiments in this setup of homogeneous spherical groups is a small-scale study for the case of
clustering in high-dimensional datasets, specifically for when we have low sample sizes. For this set of experiments, we
obtained 100 80-dimensional datasets that were simulated from 4-component Gaussian mixtures with ω̌ = 0.001 and
0.01. Each dataset contained only 20 observations. The average number of detected clusters is 3.79 with σK̂ = 0.40
for ω̌ = 0.001 and 3.52 with ω̌ = 0.52 for ω̌ = 0.01 correspondingly. Further, D̄ was 0.08 with σD = 0.11 for
ω̌ = 0.01 while D̄ was 0.03 with σD = 0.05 for ω̌ = 0.001. Thus, we have some indication that our procedure also
works well in clustering datasets that fall within the large p, small n framework.

4.2 Nonhomogeneous compact clusters

We used MIXSIM to generate 100 simulated datasets at each setting of (p,K, n, (ω̄, ω̌)), where p, K and n were
as before, while (ω̄, ω̌) = (0.001, 0.005), (0.001, 0.01), (0.01, 0.05), (0.01, 0.1) and (0.05, 0.25). For every simulated
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Figure 4. Quantitation maps and estimated classifications (for the optimal K̂) for t-distributed datasets with 3 (left
panel) and 10 (right panel) degrees of freedom with true K = 5, p = 2 and n = 100. In the figures representing the
classification of the datasets, symbols represent true classification while colors illustrate estimated classification.

dataset, we used hierarchical clustering with Ward’s criterion to partition the dataset into K groups for each K, fol-
lowed by our bootstrap-based approach, Gap, and GapSVD to determine the suggested K̂ by that method. For each of
these datasets, we also used model-based clustering together with the Bayesian Information Criterion (BIC) to choose
K. We denote this method by BIC. Table 3 provides numerical summaries of the performance of our bootstrap-based
methodology, Gap and GapSVD and BIC, with further supporting evidence provided in the supplement (specifically,
Figure S-7). For datasets with low (ω̄, ω̌), or high separation between clusters, we observe low values of D and good
estimates for K. Expectedly, increased levels of overlap correspond to degraded performance all-around. Indeed, the
proposed procedure underestimates K when overlap is substantial. That this is owing to clustering complexity and
algorithm becomes clear when we note that D-values remain remarkably low: this means that not all the clusters are
always clearly distinguishable. The comparison of our bootstrap-based approach with Gap, GapSVD and BIC suggests
that the bootstrap procedure performed better in many cases, and even when clusters are poorly-separated. This points
to a clear preference for our bootstrap-based method over the gap statistic and BIC in complicated clustering cases.
Gap and GapSVD. We remark again that as per Figure S-8, the latter often chooses K̂ = 1, especially when the overlap
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Table 2. Performance of the bootstrap-based methodology, gap statistic with and without svd and KL method for
estimating K with heavy-tailed clusters from the marginal tν distribution where ν represents the degrees of freedom
of the t-distributions. Summaries are as in Table 1.

ω̌
K̄(σK̂) D̄(σD)

ν = 3 ν = 10 ν =∞ ν = 3 ν = 10 ν =∞

B
oo

ts
tr

ap 0.010 4.77 (0.97) 4.86 (0.47) 4.90 (0.33) 0.03 (0.07) 0.01 (0.04) 0.01 (0.03)
0.050 4.49 (1.17) 4.71 (0.70) 4.81 (0.49) 0.06 (0.10) 0.02 (0.06) 0.01 (0.04)
0.100 4.15 (1.25) 4.54 (0.89) 4.76 (0.55) 0.09 (0.10) 0.04 (0.08) 0.02 (0.04)

G
ap

0.010 3.72 (1.68) 4.08 (1.48) 4.31 (1.32) 0.23 (0.33) 0.18 (0.33) 0.13 (0.31)
0.050 3.20 (1.56) 3.95 (1.44) 4.07 (1.37) 0.27 (0.30) 0.16 (0.28) 0.16 (0.30)
0.100 2.95 (1.44) 3.78 (1.37) 3.91 (1.44) 0.28 (0.28) 0.16 (0.25) 0.17 (0.29)

G
ap

SV
D 0.010 3.47 (1.81) 3.66 (1.74) 4.22 (1.42) 0.30 (0.37) 0.28 (0.41) 0.16 (0.34)

0.050 2.87 (1.57) 3.85 (1.59) 4.11 (1.48) 0.34 (0.34) 0.19 (0.33) 0.17 (0.34)
0.100 2.69 (1.56) 3.69 (1.49) 3.87 (1.50) 0.35 (0.31) 0.19 (0.30) 0.18 (0.32)

K
L

0.010 4.76 (1.30) 4.75 (1.08) 4.86 (0.68) 0.10 (0.15) 0.08 (0.14) 0.03 (0.07)
0.050 4.21 (1.31) 4.55 (1.14) 4.53 (1.22) 0.13 (0.17) 0.09 (0.12) 0.12 (0.16)
0.050 4.19 (1.35) 4.14 (1.33) 4.48 (1.33) 0.12 (0.13) 0.14 (0.16) 0.13 (0.15)

Table 3. Performance of the methodology in estimating the number of heterogeneous compact clusters. Summaries
are as in Table 1.

ω̄ : ω̌
K̄(σK̂) D̄(σD)

K = 6, n = 500 K = 11, n = 1000 K = 6, n = 500 K = 11, n = 1000
p = 5 p = 10 p = 5 p = 10 p = 5 p = 10 p = 5 p = 10

B
oo

ts
tr

ap

0.001 : 0.005 6.00 (0.00) 6.00 (0.00) 10.96 (0.35) 11.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.03) 0.00 (0.00)
0.001 : 0.01 5.99 (0.10) 6.00 (0.00) 11.01 (0.56) 11.00 (0.14) 0.00 (0.02) 0.00 (0.00) 0.01 (0.04) 0.00 (0.01)
0.01 : 0.05 5.66 (0.74) 5.75 (0.54) 10.63 (1.36) 10.61 (0.99) 0.04 (0.05) 0.02 (0.03) 0.05 (0.05) 0.02 (0.04)
0.01 : 0.1 5.69 (0.83) 5.68 (0.95) 10.24 (1.30) 10.70 (1.10) 0.04 (0.05) 0.04 (0.04) 0.03 (0.04) 0.03 (0.04)
0.05 : 0.25 4.80 (1.31) 5.01 (1.71) 8.15 (2.29) 8.20 (2.16) 0.06 (0.06) 0.06 (0.07) 0.05 (0.03) 0.04 (0.04)

G
ap

0.001 : 0.005 6.29 (0.54) 6.16 (0.37) 11.10 (0.98) 11.20 (0.40) 0.04 (0.07) 0.03 (0.06) 0.03 (0.08) 0.03 (0.06)
0.001 : 0.01 6.25 (0.46) 6.26 (0.48) 11.23 (0.51) 11.22 (0.44) 0.03 (0.06) 0.03 (0.05) 0.02 (0.04) 0.03 (0.05)
0.01 : 0.05 6.15 (0.61) 6.20 (0.45) 9.00 (2.33) 10.46 (0.99) 0.03 (0.06) 0.03 (0.05) 0.08 (0.15) 0.03 (0.04)
0.01 : 0.1 6.38 (0.93) 6.74 (0.85) 9.11 (2.28) 10.62 (0.98) 0.04 (0.09) 0.03 (0.04) 0.08 (0.16) 0.03 (0.04)
0.05 : 0.25 4.25 (1.60) 4.00 (1.92) 4.06 (2.03) 5.08 (2.14) 0.12 (0.18) 0.13 (0.18) 0.18 (0.16) 0.12 (0.12)

G
ap

SV
D

0.001 : 0.005 5.89 (1.31) 6.00 (0.55) 10.59 (2.64) 11.14 (0.35) 0.08 (0.24) 0.02 (0.11) 0.10 (0.24) 0.02 (0.06)
0.001 : 0.01 6.14 (0.89) 6.10 (0.33) 10.61 (2.72) 11.00 (1.07) 0.05 (0.15) 0.02 (0.05) 0.10 (0.24) 0.03 (0.10)
0.01 : 0.05 5.91 (1.15) 5.98 (0.79) 6.97 (3.96) 8.81 (3.42) 0.06 (0.16) 0.04 (0.12) 0.26 (0.32) 0.13 (0.26)
0.01 : 0.1 5.99 (1.64) 6.25 (1.09) 8.11 (3.43) 9.61 (2.55) 0.10 (0.22) 0.04 (0.12) 0.17 (0.26) 0.08 (0.19)
0.05 : 0.25 3.03 (1.80) 2.45 (1.62) 2.91 (2.07) 2.64 (1.94) 0.26 (0.25) 0.28 (0.21) 0.29 (0.18) 0.26 (0.15)

B
IC

0.001 : 0.005 5.99 (0.30) 3.74 (0.56) 10.18 (1.02) 6.19 (0.68) 0.01 (0.07) 0.26 (0.10) 0.03 (0.04) 0.23 (0.06)
0.001 : 0.01 6.09 (0.62) 3.96 (0.60) 10.37 (0.88) 6.10 (0.67) 0.02 (0.09) 0.24 (0.09) 0.03 (0.08) 0.24 (0.07)
0.01 : 0.05 5.29 (0.83) 2.84 (0.44) 8.06 (1.13) 4.01 (0.64) 0.07 (0.11) 0.34 (0.10) 0.06 (0.06) 0.32 (0.09)
0.01 : 0.1 5.27 (0.65) 3.47 (0.69) 7.90 (1.13) 4.27 (0.68) 0.05 (0.07) 0.21 (0.10) 0.06 (0.05) 0.29 (0.09)
0.05 : 0.25 3.80 (0.62) 2.02 (0.35) 4.80 (0.99) 2.10 (0.44) 0.06 (0.07) 0.24 (0.11) 0.09 (0.07) 0.27 (0.07)

between groups is high.

4.3 Experiments with one or no clusters

A reviewer wondered whether our proposed procedure is too liberal with a propensity to overestimate the number
of clusters. To investigate this possibility, we evaluated performance in 100 simulated datasets with no clustering
and with one cluster present. The settings for n and p were the same as above, with Kmax = 7 for all cases. Our
bootstrap-based approach had cent percent accuracy, identifying correctly, none or one cluster in all cases. Being
unable to identify zero clusters, both Gap and GapSVD methods were consistent in suggesting K̂ = 1 when presented
with datasets having completely ungrouped observations. However, when the true K = 1, GapSVD was accurate but
Gap substantially overestimated K.

The results of our simulation studies suggest that the proposed procedure is a useful parametric-distribution-free
tool that allows for assessing p-values without introducing strict model assumptions about the distribution of the data.
The method compares very well, especially in relation to some common competitors, actually often outperforming
them for the case of highly overlapping clusters. We next provide some theoretical underpinning to our methodology.
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5. CONSISTENCY RESULTS

5.1 On the inconsistency of the naı̈ve bootstrap

Here we show that the naı̈ve residuals-based bootstrap typically fails to reproduce the null distribution of the test
statistic. For concreteness, we work with p = 2 as in Figure S-1, and assume that there are K0-many true spherical
clusters, G1, . . . ,GK0 . For simplicity, we suppose that the points in the jth cluster are uniformly distributed over the
disc B(µj ; r), centered at unknown µj ∈ R2 and that the clusters are well-separated and also that they all have the
same scaling parameter.

Let Ĝ(K)
j , i = 1, 2, . . . ,K denote the estimated partitions from a K-groups solution of the clustering algorithm.

Denote the jth cluster center by µ̂j and as before, let ε̂i = Xi −
∑K
k=1 ζ̂

(K)
ik µ̂k, i = 1, 2, . . . , n be the residuals. In

order to approximate the null distribution of the test statistic sK,K∗ , the null distribution of the resampled bootstrap
variables must generate K spherical clusters. This, in particular, requires that the normalized residuals ε̂i/‖ε̂i‖,
i = 1, . . . , n represent a random sample from the uniform distribution on the unit circle. Let Ĝ(K)(·) denote the
empirical distribution of the normalized residuals ε̂i/‖ε̂i‖, i = 1, 2, . . . , n and let G denote the uniform distribution
on the unit circle. The following theorem shows that for any K < K∗, and under some mild regularity conditions, the
naı̈ve bootstrap method fails to approximate G consistently.

Theorem 5.1. Let Gj = {Xij : i = 1, 2, . . . , nj} denote the data in the jth cluster, so thatXij = µj +εij and {εij :
i = 1, 2, . . . , nj , j = 1, . . . ,K0} are independently and uniformly distributed onB(0; r). Let n = n1+n2+. . .+nK0

and let |B| denote the size of a finite setB. Suppose, further, that the following conditions hold for some 1 ≤ K < K0:

(C.1) There exists ∆ > 0 such that B(µj , r + ∆) ∩H−j = ∅ where H−j is the convex hull of {µk : k 6= j, 1 ≤ k ≤
K0}.

(C.2) Suppose that for all j = 1, 2, . . . ,K0, nj/n → π0
j ∈ (0, 1) and that ∆ >

(
π

2(π0
min)2

− 1
)
r where π0

min =

min{π0
j : 1 ≤ j ≤ K0}.

(C.3) Suppose that Ĝ(K)
j ⊂ cone(θj(K), φj(K)) for some 0 ≤ θ

(K)
1 < φ

(K)
1 < θ

(K)
2 < φ

(K)
2 < . . . < θ

(K)
K <

φ
(K)
K ≤ 2π} where cone(θ, φ) is the set of all points in R2 that lie in the cone emanating from the origin with

an angle ∈ [θ, φ] (with the x-axis).

Then, ∃ a constant δ0 > 0, depending only on {(µj , π0
j ) : j = 1, . . . ,K0}, r, and K such that

P
(

lim inf
n→∞

ρ(Ĝ(K), G) > δ0

)
= 1,

where ρ(·) denotes the Prohorov metric (Billingsley, 1999) on the set of all probability measures on the unit circle and
where π0

j ’s are as in Condition (C.2).

Proof. See Appendix A.

We discuss the implications of Theorem 5.1 and its conditions. Note that (C.1) above requires that the clusters
be well-separated while (C.2) says that in the limit there are K0 nontrivial clusters and that the parameter ∆ is large
compared to the radius r of each population cluster. Condition (C.3) stipulates that the clustering algorithm groups
points from the adjacent clusters Gj’s and that the resulting clusters each contain one or more complete clusters Gjs.
(We note that it is possible to prove a version of the theorem for clusters formed with split Gj-s, but only under
additional conditions on the structure of the clustering algorithm.) However, when the original clusters Gjs are well-
separated, Condition (C.3) holds for many clustering algorithms. In particular, it always holds for any clustering
algorithm when K = 1 and for any given K < K0 for the k-means algorithm, under suitable configurations of
µ1, . . . ,µK0

.
It also follows from Theorem 5.1 that the empirical distribution of the normalized residuals from the naı̈ve bootstrap

fails to approximate the uniform distribution on the unit circle even in the (weak) form of convergence in distribution,
as the sample size becomes infinitely large. As a result, the naı̈ve bootstrap method fails to give a valid approximation
to the null distribution of the test statistic sK,K∗ when the conditions of the Theorem are satisfied, and therefore, any
step-up procedure based on the naı̈ve bootstrap method for quantitation is inconsistent. In comparison, the uniformity
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of the normalized residuals is directly built into the formulation of the modified bootstrap method proposed in this
paper and satisfies the key consistency condition:

ρ(G̃(K), G)→ 0 as n→∞, a.s. (3)

for all K < K0 where G̃(K) is the conditional distribution of the resampled error variable ε∗1 under the modified
bootstrap method. Indeed, as the modified bootstrap error variables have the same distribution as Z/‖Z‖, where Z
has the standard multivariate normal distribution on Rd, it follows that ρ(G̃(K), G) = 0 for every K and every n, so
that (3) holds trivially.

5.2 Consistency of our suggested bootstrap procedure

Next we consider consistency of our suggested bootstrap procedure in somewhat more generality than in Section
5.1. Specifically, we suppose that under the null hypothesis, there are K0 independent groups Gj = {Xij : i =

1, . . . , nj}, 1 ≤ j ≤ K0 and Xij has density g(x − µj) for all i, j, where g(·) is as in (1). Let Ĝj , j = 1, 2, . . . ,K0

denote the estimated groups from the K0-cluster solution, with respective cluster centers µ̂j’s. To approximate the
null distribution of the test statistic SK0,K by our modified bootstrap, we follow the steps described in Section 2.3.
Specifically, we generate the bootstrap error variables {ε∗1, ε∗2, . . . , ε∗n} as ε∗i = ‖ε̂`i‖Wi, i = 1, 2, . . . , n, where
the residuals {ε̂i : i = 1, 2, . . . , n} are obtained from the K0-cluster solution of the clustering algorithm and where
{`1, `2, . . . , `n} is a (nonrandom) permutation of {1, 2, . . . , n}. We next show that under some regularity conditions,
the (conditional) distribution of the bootstrap error variable ε∗1 under the modified bootstrap scheme provides a valid
approximation to the null distribution of the error variable ε1. To that end, for j, k = 1, 2, . . . ,K0, let π̂j,k =

n−1
∑nj

i=1 I(Xi ∈ Ĝk) denote the proportion of Xi’s from group Gj falling in the estimated cluster Ĝk. Also, let P∗
denote the bootstrap probability and G denote the collection of all convex measurable subsets of Rp. Then we have
the following

Theorem 5.2. Suppose that under H0, Gj = {Xij : i = 1, 2, . . . , nj}, 1 ≤ j ≤ K0 are independent and Xij has
density g(x − µj) for all i, j, where g(·) is as in (1) and where nj/n → π0

j ∈ (0, 1) for all j. Further, assume the
following conditions:

(C.4) (i) For all j = 1, 2, . . . ,K0, µ̂j → µj almost surely.

(ii) For all j, k = 1, 2, . . . ,K0, ∃ πj,k ∈ [0, 1] with πj,j = π0
j 3 π̂j,k → πj,k almost surely.

Then,
sup
C∈G

∣∣∣P∗(ε∗1 ∈ C)− P (ε1 ∈ C)
∣∣∣→ 0 as n→∞, almost surely.

Proof. See Appendix B.

Condition (C.4) is a condition on the clustering algorithm: Specifically, Part (i) of (C.4) says that under H0, the
cluster centers converge to the true cluster centers almost surely. (In particular, this condition holds for the k-means
algorithm (cf. Pollard, 1981)). Additionally, Part (ii) of Condition (C.4) says that the clustering algorithm reproduces
the proportion of points in the true clusters, asymptotically. Since

∑K0

k=1 π̂j,k = nj/n→ π0
j = πj,j∀j, it follows that∑

k 6=j πj,k = 0. As a result, under (C.4)(ii), the number of points in the jth cluster that are wrongly clustered is o(n)
for every j = 1, 2, . . . ,K0. This is a weak requirement on the clustering algorithm which allows a large number of
points to be clustered incorrectly, for large n.

Theorem 5.2 shows that under the conditions stated above, the modified bootstrap algorithm can successfully
capture the distribution of the error variables, almost surely. Since the test statistic sK0,K is a smooth function of the
error variables {ε1, ε2, . . . , εn} (given, in the case of this paper, by a difference of sums of squares), it follows that
the modified bootstrap method can be used to approximate the null distribution of sK0,K . In contrast, as shown by
Theorem 5.1. the naı̈ve bootstrap method typically fails to reproduce the null distribution of the errors and hence, fails
to provide a valid reference distribution for the test statistic sK0,K .

6. APPLICATION TO COLOR QUANTIZATION

Color quantization is used in computer graphics to reduce the number of colors in an image without appreciably
losing its visual quality. The importance of this process comes from a need to display images on devices that are not
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completely capable of dealing with multicolor images. It is also used for some image storing standards such as the
Graphics Interchange Format (GIF).

Each pixel in an image is represented in terms of a mixture of red, green and blue colors with different intensities.
This way of storing a color is known as RGB format. Hence, every picture can be presented as a three-dimensional
dataset with the number of observations depending on the size of the picture. For example, an image of size 256×256
can be transformed into a dataset with 65,536 observations and a 512 × 512 image can be represented as a dataset of
size 262,144. k-means color quantization applies the k-means algorithm, suitably initialized, to such a dataset to yield
a palette of k colors for representing the image. Further, while k-means represents one of several approaches to color
quantization (Emre Celebi, 2011), note also that K needs to be specified in k-means color quantization.

We apply our bootstrapping-for-significance procedure of Section 2.3.1 to several images from the USC-SIPI
Image Database. Using our quantitation map provides us with two approaches to representing images with a certain
number of colors. For instance, the conservative approach (of choosing the K for which we fail to reject the null
hypothesis against the alternative of K + 1 for the first time) provides us with the largest number of colors which
represents the image significantly better than lesser number of colors. In some sense therefore, we may regard this
K as providing the “minimal palette” or the minimum number of colors needed to display the image. Our preferred
approach, applied with a Kmax = 100, on the other hand provides us with the fewest number of colors in the palette
above which there is not much significant improvement in image quality. This may be regarded, in the same spirit as
the minimal palette, as providing the “optimal palette” for the image. Figure 5 provides results for six images in the

Figure 5. Color quantization results for Tree, Couple, House, Lena, Baboon and Peppers images. The first
row represents original images, the second row provides images obtained using a minimal palette of K colors
(K = 6, 7, 6, 8, 7, 9 respectively), while the last row displays images using our optimal palette, with K colors
(K = 26, 39, 27, 21, 31, 17, respectively).

database: these are Tree, Couple, House (each on a grid of 256× 256 pixels) and Lena, Baboon and Peppers (each on
a grid of 512× 512 pixels). The first row presents the original images, while the second row provides images obtained
with pixel values replaced by the colors in our minimal palette, which consisted ofK = 6 for Tree, K = 7 for Couple,
K = 6 for House, K = 8 for Lena, K = 7 for Baboon and K = 9 for Peppers. The third row provides images using
our optimal palette which chose K = 26 colors for Tree, K = 39 for Couple, K = 27 for House, K = 21 for Lena,
K = 31 for Baboon, and K = 17 for Peppers. As we can see, the images from the middle row are reasonable but not
of excellent quality. The images in the third row represented using our optimal palette are each of much better quality,
and mostly visually very close to the originals. Overall, the performance of our procedure produced pictures of very

14
This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of the American Statistical Association on 

January 30, 2012, available online: http://www.tandf.com/10.1080/01621459.2011.646935.



reasonable quality given the number of colors involved.

7. CONCLUSION

In this paper, we develop methodology for assessing significance in compact clusters through a nonparametric
bootstrap procedure. The basic strategy compares any two models in a testing framework and recommends the more
complicated model only if we observe a significant p-value. The naı̈ve bootstrap approach for this problem has the
drawback of having very low power, so we develop an approach that exploits the compactness of groups inherent in a
clustering model. We first develop methodology for the case of spherical homogeneous clusters and then extend it to
the more general case of nonhomogeneous ellipsoidal groups. We also develop quantitation maps based on the p- and
q-values which can provide researchers with a comprehensive display of the relative strengths of a complicated model
vis-a-vis a simpler one. It can also be used to estimate the total number of groups in a dataset. Our methodology
was illustrated on two classification datasets and evaluated very thoroughly in a series of simulation experiments. For
comparative purposes, we evaluated performance of our methodology in terms of its ability to estimate the number
of clusters in the dataset. The proposed approach was seen to edge out its competitors quite often: the improvement
was very emphatic even when the clustering complexity of the dataset was high. Further, we developed theoretical
results to show that our developed bootstrap methodology was consistent. Finally, we also applied our methodology
to determine the minimum and optimal number of colors in a palette to represent RGB images, with excellent results.

There are several additional areas in which we could use our methodology. For instance we could use the develop-
ment to study the importance of each coordinate in clustering a dataset. We could also modify our approach to assess
significance in the case of semi-supervised clustering where some of the class information has been observed in the
labeled part of the dataset, but it is not known if, for instance, there are classes that have not yet been observed at
all. Another issue would be to investigate, as pointed out by a reviewer, how to extend the methodology to the case
for general non-Euclidean non-Mahalanobis distance clustering, eg, where the observations are discrete. Such gener-
alization may be possible in certain cases. For instance, it may be possible to apply our methodology in the context
of certain versions of spectral clustering (von Luxburg, 2007), where the problem reduces to k-means clustering of
the first k-eigenvectors of the similarity matrix. In other scenarios, our methodology may need to be substantially
developed and extended further. In any case, this is another interesting area for further investigation.

There are some other areas that are in need of further study. For instance, another reviewer has asked about the fate
of our methodology for the general (ellipsoidal) case with HDLSS data. In such cases, of course, the group-specific
dispersion matrices can not be inverted. However, it is our view that clustering based on formal procedures in this
setting is meaningful only within the framework of additional assumptions (eg, a lower-dimensional representation for
the dispersions) and those assumptions can then make it possible to obtain an alternative representation of Σ−1. Our
methodology should then be possible to apply using these modifications. Of course, it would be important to explore
this aspect further. Of interest also would be to explore the case when clusters are more general than ellipsoidal,
as commented on by a third reviewer. In Section S-5, we presented an example where it was possible to find an
appropriate Ψ (via the multivariate Box-Cox transform) and where our methodology provided very good results. It
would be important to investigate and see if this performance is sustained in more cases. Thus, we see that while our
paper has made a significant contribution to developing and using the bootstrap for assessing significance of compact
clusterings, a few interesting issues worthy of further attention remain.

APPENDIX A: PROOF OF THEOREM 5.1

Since K < K0, by Condition (C.3), ∃ a cluster Ĝ (in {Ĝ1, Ĝ2, . . . , ĜK}) that contains at least two of the clusters
G1,G2, . . . ,GK0

. Fix such a Ĝ and without loss of generality (w.l.g.), suppose that Ĝ = ∪sj=1Gj for some 2 ≤ s ≤ K0.
Then the residuals from the cluster Ĝ are given by

ε̂ij = Xij − µ̂ = εij + [µj − µ̂],

where i = 1, 2, . . . , nj , j = 1, 2, . . . , s. By the Laws of Large Numbers and Condition (C.2), we have

µ̂ =
s∑
j=1

nj∑
i=1

Xij/
s∑
j=1

nj =
s∑
j=1

nj∑
i=1

εij/
s∑
j=1

nj +
s∑
j=1

njµj/
s∑
j=1

nj =
s∑
j=1

pjµj + o(1) a.s.
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where pj ≡ π0
j /
∑s
k=1 π

0
k ∈ (0, 1), j = 1, 2, . . . , s.

Next using (A.1) and Condition (C.2), it can be shown that there exists a sequence tn ↓ 0 as n→∞ such that for
any Borel set A of the unit circle

Ĝ(A) ≥ n−1
s∑
j=1

nj∑
i=1

I(ε̂ij/‖ε̂ij‖ ∈ A)

≥ n−1n1P (ε̂11/‖ε̂11‖ ∈ A) + o(1) a.s.
≥ π0

1 · P ([ε11 + µ1 − µ̂]/‖ε11 + µ1 − µ̂‖ ∈ A) + o(1) a.s.,
≥ π0

1 · P (U/‖U‖ ∈ A−tn) + o(1) a.s., (A.1)

where A−t = {x ∈ A : B(x; t) ⊂ A}, t > 0, and where U has the uniform distribution on B(a; r) with a =
µ −

∑s
j=1 pjµj . W.l.g, suppose that a = (a1, a2)′ ∈ (0,∞)2. Then, using Conditions (C.1) and (C.2), it can be

shown that B(a; r) ⊂ (0,∞)2 and that ‖a‖ > r. Further, it is not difficult to check that the distribution of U/‖U‖
has a density, given by

f(θ) =
2A(θ)B(θ)

πr2[1 +m(θ)2]
I(|θ − θ0| ≤ θ1)

where θ0 = tan−1(a2/a1), θ1 = sin−1(r/‖a‖), m(θ) = tan θ, and A(θ) = a1 +m(θ)a2 and B(θ) = (A(θ0)2− [1 +

m(θ)2](‖a‖2 − r2))
1
2 . Using Condition (C.2), choose a ρ ∈ (0, 1) such that

ρ(∆ + r) > πr/[2(π0
min)2]. (A.2)

Since f(θ0) = 2‖a‖
πr , there exists a η > 0 (depending only on a r and ρ) such that f(θ) > 2ρ‖a‖

πr for all |θ − θ0| ≤ η.
Then, from (A.1), it follows that with A = (θ0 − η, θ0 + η),

Ĝ(A) ≥ π0
1 · P (U/‖U‖ ∈ A−tn) + o(1) a.s.,

≥ π0
1 ·

2ρ‖a‖
πr

· (2η) + o(1) a.s.,

≥ G(A) + δ1 + +o(1) a.s., (A.3)

where δ1 = 2η
(

2π0
1ρ‖a‖
πr − 1

)
.

Next, note that by Condition (C.1),

‖
s∑
j=1

pjµj − µ1‖ = ‖(1− p1)µ1 −
s∑
j=2

pjµj‖

= (1− p1)‖µ1 +
s∑
j=2

(1− p1)−1pjµj‖

≥ (1− p1) · inf{‖µ1 − x‖ : x ∈ H−1}
≥ (1− p1)[r + ∆]. (A.4)

Hence, by (A.2) and Condition (C.2),

δ1 ·
πr

2η
= 2π0

1ρ‖a‖ − πr

≥ 2π0
1ρ(1− p1)[r + ∆]− πr

> 2π0
1(1− p1)

πr

[2(π0
min)2]

− πr

= πr
[π0

1(1− p1)

(π0
min)2

− 1
]
≥ 0,

as π0
1(1 − p1) = π0

1

∑s
j=2 π

0
j /
∑s
j=1 π

0
j ≥ π0

1π
0
2/1 ≥ (π0

min)2. Hence, δ1 > 0 and Theorem 5.1 follows from (A.3)
by taking δ0 ∈ (0, δ1).
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APPENDIX B: PROOF OF THEOREM 5.2

Let τ denote the inverse permutation to {`1, `2, . . . , `n}, i.e., τ(`i) = i for i = 1, 2, . . . , n. Let I(·) denote the
indicator function. Also, for any set C ⊂ Rp and t ∈ (0,∞), let Ct = {x ∈ Rp : ‖x − y‖ ≤ t for some y ∈ C}
denote the t-enlargement of C, and similarly, define C−t = {x ∈ C : B(x; t) ⊂ C} where B(x; t) is the closed ball
of radius t centered at x.

Note that by construction,

P∗(ε
∗
1 ∈ C) = n−1

n∑
i=1

I(‖ε̂`i‖Wi ∈ C)

= n−1
n∑
i=1

I(‖ε̂i‖Wτ(i) ∈ C)

= n−1
K0∑
j=1

K0∑
k=1

n∑
i=1

I(Xi ∈ Gj)I(Xi ∈ Ĝk)I(‖εi + µj − µ̂k‖Wτ(i) ∈ C)

= n−1
K0∑
j=1

n∑
i=1

I(Xi ∈ Gj)I(‖εi + µj − µ̂j‖Wτ(i) ∈ C) +R1n(C), (say)

≡ F̂n(C) +R1n(C), say, (A.5)

where R1n(C) is defined by subtraction and admits the bound

sup
C∈G
|R1n(C)| ≤ n−1

∑
1≤j 6=k≤K0

|Ĝj ∩ Gk|+ n−1
K0∑
j=1

|Ĝj∆Gj |

≤
∑

1≤j 6=k≤K0

π̂j,k +

K0∑
j=1

|π̂j,j − πj,j |

= o(1) as n→∞, almost surely,

by Condition (C.4)(ii).
Next fix δ ∈ (0,∞) and define the event An = {‖µ̂j − µj‖ ≤ δ}. Also, for notational consistency, for j =

1, 2, . . . ,K0, denote the set of Wτ(i)s corresponding to the indices i from the jth cluster (i.e., for all i withXi ∈ Gj)
by {W̃ij : i = 1, 2, . . . , nj}. Then, by Condition (C.4)(i), it follows that

P (An infinite often ) = 0. (A.6)

Further, on An,

n−1
K0∑
j=1

nj∑
i=1

I(‖εij‖W̃ij ∈ C−δ) ≤ F̂n(C) ≤ n−1
K0∑
j=1

nj∑
i=1

I(‖εij‖W̃ij ∈ Cδ). (A.7)

Since τ is a nonrandom permutation, it follows that ‖εij‖W̃ij are iid, with the same distribution as that of ε1. Hence,
by the (generalized) Glivenko-Cantelli theorem (cf. Elker et al., 1979; van der Vaart and Wellner, 1996),

sup
C∈G

∣∣∣n−1
K0∑
j=1

nj∑
i=1

I(‖εij‖W̃ij ∈ C)− P (ε1 ∈ C)
∣∣∣ = o(1) as n→∞, a.s. (A.8)

Since {C±δ : C ∈ G, δ > 0} = G and sup{P (ε1 ∈ Cδ \ C−δ) : C ∈ G} = o(1) as δ ↓ 0 (cf. Bhattacharya and Rao,
2010), the theorem now follows from (A.5), (A.6), (A.7) and (A.8).
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Supplement to “Bootstrapping for Significance of Compact Clusters
in Multi-dimensional Datasets”

Ranjan Maitra, Volodymyr Melnykov and Soumendra N. Lahiri ∗
S-1. HOMOGENEOUS SPHERICAL CLUSTERS

We provide several illustrations for the case of homogeneous spherical clusters obtained using the k-means algo-
rithm. Figure S-1 represents sets of four replications, each set obtained under the null distribution with H0 : K =
1, 2, 3, 4, respectively and by resampling with replacement Ruspini (Ruspini, 1970) dataset using the naı̈ve approach
described in Section 2.3.1 of the manuscript. Figures S-1a-d display sample replications under the null distribution
assuming only one cluster, but we note that there are clearly four distinct clusters in all cases. Therefore, the naı̈ve
approach cannot be relied upon for simulating a meaningful null distribution. In particular, the test H0 : K = 1 versus
Ha : K = 4 will have low power and the null hypothesis is not likely to be rejected, even with a carefully chosen
test statistic. A similar situation is observed for H0 : K = 2. From Figure S-1, we can see that reference samples
for H0 : K = 1, H0 : K = 2, and H0 : K = 4 are similar. Things improve somewhat for H0 : K = 3, in that
the reference samples are much less similar than the original dataset. On the contrary, Figure S-2 provides datasets
resampled from Ruspini dataset based on the proposed methodology for homogeneous spherical clusters employing
k-means algorithm. The first row represents datasets simulated under the null hypothesis H0 : K = 1, the second,
third and forth rows assume H0 : K = 2, H0 : K = 3, and H0 : K = 4 correspondingly. It can be clearly seen,
that the null distribution for K = 1 (first row of Figure S-2) makes substantially more sense compared with the one
illustrated in Figure S-1. There is one large cluster in all four cases. The lack of observations in the middle of the
cluster follows from the fact that the geometrical center of the four true clusters is located in the area with no neigh-
boring observations. The second and third rows of Figure S-2 also provide reasonable null distributions for K = 2
and K = 3 respectively. Meanwhile, they are very different in appearance from the original Ruspini dataset. At the
same time, the datasets from the last row of plots are very much alike the original dataset they were resampled from.
It explains why any null hypothesis with H0 : K = 1, 2, 3 has to be rejected in favor of the alternative hypothesis
Ha : K = 4.

S-2. GENERAL ELLIPSOIDAL CLUSTERS

In this section, we illustrate the proposed methodology on a simulated dataset presented at Figure S-3. The dataset
consists of four clusters with 100 bivariate observations. Four plots provide true and estimated groupings obtained by
model-based clustering for K = 2, 3, 4, and 5. True groupings are illustrated by color while estimated clustering is
provided by different characters. As we can see, the clusters are fairly distinct but are far from being homogeneous
spherical clusters. Figure S-4 illustrates datasets resampled from the original dataset using our methodology for
general ellipsoidal clusters. Similarly to Figure S-2 illustrating an example with Ruspini dataset, we can see that the
null distributions under K = 1, 2, and 3 (see the first three rows of Figure S-4 correspondingly) are all meaningful.
However, only the last row of plots provides datasets that are very similar to the original dataset. Indeed, this explains
why any of the null hypothesis H0 : K = 1, 2, 3 has to be rejected in favor of the alternative Ha : K = 4.

S-3. ADDITIONAL DETAILS ON ILLUSTRATION USING IRIS DATA

S-3.1 A note on Andrews’ curves

There are many ways of representing multivariate data (Wegman and Carr, 1993; Wegman et al., 1993; Theus,
2008). However they are all either heuristic or reduce the data into two or three dimensions and then display these

∗Ranjan Maitra is Professor in the Department of Statistics and Statistical Laboratory, Iowa State University, Ames, IA 50011-1210, Volodymyr
Melnykov is Assistant Professor in the Department of Statistics, North Dakota State University, Fargo, ND 50373, and Soumendra N. Lahiri is
Professor in the Department of Statistics at Texas A& M University. This research was supported in part by the National Science Foundation
CAREER Grant # DMS-0437555. and the National Institutes of Health Grant # DC-006740.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure S-1. Datasets simulated with the naı̈ve approach for spherical clusters under the null hypotheses H0 : K = 1
(first row), H0 : K = 2 (second row), H0 : K = 3 (third row), and H0 : K = 4 (last row).
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Figure S-2. Ruspini dataset: datasets resampled with the proposed method for spherical clusters under the null
hypotheses H0 : K = 1 (first row), H0 : K = 2 (second row), H0 : K = 3 (third row), and H0 : K = 4 (last row).

observations in reduced space (Khattree and Naik, 2002). A different approach to representing multivariate data is
provided by Andrews (1972) who suggested representing each multivariate observation in terms of a curve, much
like a Fourier transform. Khattree and Naik (2002) contend that Andrews’ curves are unique in that they alone have
some mathematical justification in their construction, besides being also known to possess some invariance properties.
In doing so, they go a considerable distance in removing the ambiguities that arise from representing multivariate
observations using methodologies such as trellis plots, parallel coordinate plots, biplots, etc where ordering of the
observations may end up impacting visual interpretation. Note that Andrews (1972) postulated a set of properties
governing such curves and provided two possible functional relationships that could be used. Other Andrews curve
representations have been provided by Kulkarni and Paranjpe (1984), Tukey – as related in Gnanadesikan (1997) –
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(a) (b) (c) (d)

Figure S-3. Simulated dataset: Model-based clustering solutions obtained for (a) K = 2, (b) K = 3, (c) K = 4, and
(d) K = 5. Colors represent true clusterings while characters represent the predicted groupings.

and Wegman and Shen (1993). A particularly useful variant was provided by Khattree and Naik (2002) who defined
their version of the Andrews’ curve for a multi-dimensional observation x = (x1, x2, . . .)

′ to be given by the function

gx(t) =
1√
2
{x1 + x2 [sin(t) + cos(t)] + x3 [sin(t)− cos(t)] + x4 [sin(2t) + cos(2t)]

+x5 [sin(2t)− cos(2t)] + . . .} , −π ≤ t ≤ π.

The advantage of this particular functional representation over the others is that gx(t) is more faithfully descriptive in
the sense that data variation is less mixed with wave variation than that in the other Andrews’ functions (Khattree and
Naik, 2002). We use this particular representation for our displays in Section 3.2.

S-3.2 Clustering the Iris dataset using the k-means algorithm

Figure S-5a provides a display of the Iris’ dataset with the true class (species) identities. Figures S-5b-h display
partitionings of the Iris’ dataset obtained using the k-means algorithm using different numbers of clusters K, along
with the quality of each grouping relative to the true in terms of R. The indifferent quality of the partitionings using
k-means is reflective of the well-known fact that each of the Iris’ species have very dissimilar dispersion structures,
in both magnitude and orientation. The assumption of homogeneous spherical clusters, as required by the k-means
algorithms often results in grossly incorrect partitionings, as seen by the Andrews curves in Figure S-5.

S-4. EXPERIMENTAL EVALUATIONS

Figures S-6, S-7, and S-8 illustrate the results summarized in Tables 1,2,3 respectively. The figures provide box-
plots on the estimated K̂ obtained using each of the methods being evaluated as well as of their R-deficiencies D.
Overall, we note that the proposed bootstrap procedure outperforms both versions of the gap statistic as well as the
method of Krzanowski and Lai (1985) and the approach based on BIC for the k-means and model-based clustering
solutions, respectively.

S-4.1 Time Taken

Table S-1 provides the average times needed to construct a quantitation map for one dataset for our experiments
with n = 500. We note that our entire methodology can be parallelized, however, we have not used parallel processing
in our calculations or in reporting these computation times.

S-5. ILLUSTRATION ON A DATASET WITH NON-ELLIPSOIDAL CLUSTERS

We finally investigate the possibility of using our dataset in clustering within the framework of non-ellipsoidal
clusters. We used the Clustering Algorithms Referee Package (CARP) of Melnykov and Maitra (2011) to simulate a
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Figure S-4. Simulated dataset: datasets resampled with the proposed method for general clusters under the null
hypotheses H0 : K = 1 (first row), H0 : K = 2 (second row), H0 : K = 3 (third row), and H0 : K = 4 (last row).

two-dimensional dataset of 500 observations from three nonhomogeneous non-ellipsoidal clusters using the Clustering
Algorithms Referee Package (CARP) of Melnykov and Maitra (2011). This dataset is displayed in Figure S-9a. We
used hierarchical clustering with single linkage to parition this dataset into one through six groups. For each case,
we applied a multivariate Box-Cox transform (Hernandez and Johnson, 1980; Mardia, 1980; Gnanadesikan, 1997) to
the observations in each individual cluster: the result for three clusters is displayed in Figure S-9b. We then applied
our methodology of Section 2.3.2 and obtained bootstrapped realizations from the null distribution for the ellipsoidal
cluster case. Each observation thus obtained was then transformed back using the inverse multivariate Box-Cox
transform to yield a sample from the null distribution in the original data space. Each resampled dataset was clustered
using hierarchical clustering with single linkage and the q-value quantitation map of Figure S-9c was obtained. The
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(a) true (b) K = 2,R = 0.540 (c) K = 3,R = 0.730 (d) K = 4,R = 0.650

(e) K = 5,R = 0.608 (f) K = 6,R = 0.448 (g) K = 7,R = 0.475 (h) K = 8,R = 0.436

Figure S-5. Andrews’ curves of Iris data colored according to (a) the true class identities and (b–h) groupings obtained
using k-means clustering with 2 through 8 groups, along with their clustering performance relative to the true as
calculated by the adjusted Rand index (R). In (a), red curves denote the I. setosa observations, green curves are the I.
versicolor observations while blue curves display the I. virginica observations.

quantitation map indicates that no groups more than three significantly better describe the data. Although small-scale
in scope, this example illustrates the possibility of employing our methodology when we are able to find a suitable
function Ψ as mentioned in Section 2.3.2. In this case, the function Ψ was provided by the multivariate Box-Cox
transform: we note however that this may not always be the case. Nevertheless it provides us with some pointers as to
possible approaches that may be employed for datasets with groups that are more general in shape and structure than
ellipsoidal clusters.

References

Andrews, D. F. (1972), “Plots of High-dimensional Data,” Biometrics, 28, 125–136.

Gnanadesikan, R. (1997), Methods for Statistical Analysis of Multivariate Observations, New York: Wiley, 2nd ed.

Hernandez, F. and Johnson, R. A. (1980), “The Large-sample behavior of transformations to normality,” Journal of
the American Statistical Association, 75, 855–861.

Khattree, R. and Naik, D. N. (2002), “Andrews Plots for Multivariate Data: Some New Suggestions and Applications,”
Journal of Statistical Planning and Inference, 100, 411–425.

Krzanowski, W. J. and Lai, Y. T. (1985), “A criterion for determining the number of groups in a data set using sum of
squares clustering,” Biometrics, 44, 23–34.

Kulkarni, S. R. and Paranjpe, S. R. (1984), “Use of Andrews’ function plot technique to construct control curves for
multivariate process,” Communications in Statistics: A - Theory and Methods, 13, 2511–2533.

Mardia, K. V. (1980), “Tests of Univariate and Multivariate Normality,” in Handbook of Statistics, ed. Krishnaiah,
P. R., New York: North-Holland, vol. 1, pp. 279–320.

6
This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of the American Statistical Association on 

January 30, 2012, available online: http://www.tandf.com/10.1080/01621459.2011.646935.



2

4

6

8

B
oo

ts
tra

p

G
ap

G
ap

S
V

D K
L

0.010
p =  5

B
oo

ts
tra

p

G
ap

G
ap

S
V

D K
L

0.050
p =  5

B
oo

ts
tra

p

G
ap

G
ap

S
V

D K
L

0.100
p =  5

0.010
p = 10

0.050
p = 10

2

4

6

8

0.100
p = 10

(a) K̂

0.0

0.2

0.4

0.6

0.8

1.0

Bo
ot

st
ra

p

G
ap

G
ap

SV
D KL

0.010
p =  5

Bo
ot

st
ra

p

G
ap

G
ap

SV
D KL

0.050
p =  5

Bo
ot

st
ra

p

G
ap

G
ap

SV
D KL

0.100
p =  5

0.010
p = 10

0.050
p = 10

0.0

0.2

0.4

0.6

0.8

1.0
0.100
p = 10

(b) D

2

4

6

8

10

12

14

B
oo

ts
tra

p

G
ap

G
ap

S
V

D K
L

0.010
p =  5

B
oo

ts
tra

p

G
ap

G
ap

S
V

D K
L

0.050
p =  5

B
oo

ts
tra

p

G
ap

G
ap

S
V

D K
L

0.100
p =  5

0.010
p = 10

0.050
p = 10

2

4

6

8

10

12

14
0.100
p = 10

(c) K̂

0.0

0.2

0.4

0.6

0.8

1.0

Bo
ot

st
ra

p

G
ap

G
ap

SV
D KL

0.010
p =  5

Bo
ot

st
ra

p

G
ap

G
ap

SV
D KL

0.050
p =  5

Bo
ot

st
ra

p

G
ap

G
ap

SV
D KL

0.100
p =  5

0.010
p = 10

0.050
p = 10

0.0

0.2

0.4

0.6

0.8

1.0
0.100
p = 10

(d) D

Figure S-6. Distribution of K̂ and D for each of the methods corresponding to Table 1 for ω̌ = 0.01, 0.05, 0.1 for true
(a-b) K = 6 and (c-d) K = 11.

Melnykov, V. and Maitra, R. (2011), “CARP: Software for Fishing Out Good Clustering Algorithms,” Journal of
Machine Learning Research, 12, 69–73.

Ruspini, E. (1970), “Numerical methods for fuzzy clustering,” Information Science, 2, 319–350.

Theus, M. (2008), “High-dimensional data visualization,” in Handbook of Data Visualization, eds. Chen, C.-H.,

7
This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of the American Statistical Association on 

January 30, 2012, available online: http://www.tandf.com/10.1080/01621459.2011.646935.



2

4

6

8

B
oo

ts
tra

p

G
ap

G
ap

S
V

D K
L

0.010
df =  3

B
oo

ts
tra

p

G
ap

G
ap

S
V

D K
L

0.050
df =  3

B
oo

ts
tra

p

G
ap

G
ap

S
V

D K
L

0.100
df =  3

0.010
df = 10

0.050
df = 10

2

4

6

8
0.100

df = 10

2

4

6

8
0.010

df = Inf
0.050

df = Inf
0.100

df = Inf

(a) K̂

0.0

0.2

0.4

0.6

0.8

1.0

B
oo

ts
tra

p

G
ap

G
ap

S
V

D K
L

0.010
df =  3

B
oo

ts
tra

p

G
ap

G
ap

S
V

D K
L

0.050
df =  3

B
oo

ts
tra

p

G
ap

G
ap

S
V

D K
L

0.100
df =  3

0.010
df = 10

0.050
df = 10

0.0

0.2

0.4

0.6

0.8

1.0
0.100

df = 10
0.0

0.2

0.4

0.6

0.8

1.0
0.010

df = Inf
0.050

df = Inf
0.100

df = Inf

(b) D

Figure S-7. Distribution of K̂ and D for each of the methods corresponding to Table 2 for ω̌ = 0.01, 0.05, 0.1.
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Figure S-8. Distribution of K̂ and D for each of the methods corresponding to Table 1 for ω̄:ω̌ = 0.001:0.005,
0.001:0.01, 0.010:0.05, 0.01:0.1, 0.05:0.25, for true (a-b) K = 6 and (c-d) K = 11.
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Table S-1. Average time needed to construct a quantitation map for the case of (top block) spherical clusters, (middle
block) heavier-tailed spherical clusters and (lower block) general ellipsoidal clusters.

ω̌ K = 6, p = 5 K = 6, p = 10 K = 11, p = 5 K = 11, p = 10

0.01 25.166s 30.805s 6m 17.594s 6m 42.154s
0.05 26.136s 29.819s 6m 23.264s 6m 42.269s
0.1 26.2s 30.912s 5m 57.463s 6m 24.834s

ω̌ ν = 3 ν = 10 ν =∞
0.01 7.866s 7.553s 7.447s
0.05 7.912s 7.882s 7.463s
0.1 7.988s 7.780s 7.488s

ω̄ : ω̌ K = 6, p = 5 K = 6, p = 10 K = 11, p = 5 K = 11, p = 10

0.001 : 0.005 2m 11.039s 2m 30.157s 32m 40.601s 37m 30.292s
0.001 : 0.01 2m 7.475s 2m 29.791s 35m 39.282s 37m 34.564s
0.01 : 0.05 2m 9.504s 2m 32.964s 35m 45.787s 38m 25.425s
0.01 : 0.1 2m 8.422s 2m 31.096s 34m 17.423s 35m 18.247s
0.05 : 0.25 2m 11.989s 2m 35.338s 36m 0.167s 35m 37.949s

(a) Simulated dataset (b) Box-Cox transformed dataset
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(c) q-value map

Figure S-9. Example 2. Performance of the proposed procedure for non-Gaussian data.
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