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Highlights: 

 Bayesian Networks often cannot be used with small datasets due to accuracy concerns 

 Kriging and Radial-Basis Function meta-models are viable options for augmenting 
datasets 

 Bayesian Network accuracy increases when using meta-model generated data 
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Abstract 

Machine Learning (ML) is increasingly being used by companies like Google, Amazon and Apple 

to help identify market trends and predict customer behavior. Continuous improvement and 

maturing of these ML tools will help improve decision making across a number of industries. 

Unfortunately, before many ML strategies can be utilized the methods often require large 

amounts of data. For a number of realistic situations, however, only smaller subsets of data are 

available (i.e. hundreds to thousands of points). This work explores this problem by 

investigating the feasibility of using meta-models, specifically Kriging and Radial Basis Functions, 

to generate data for training a BN when only small amounts of original data are available. This 

paper details the meta-model creation process and the results of using Particle Swarm 

Optimization (PSO) for tuning parameters for four network structures trained using three 

relatively small data sets. Additionally, a series of experiments augment these small datasets by 

generating ten thousand, one-hundred thousand, and a million synthetic data points using the 

Kriging and RBF meta-models as well as intelligently establishing prior probabilities using PSO. 
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Results show that augmenting limited existing datasets with meta-model generated data can 

dramatically affect network accuracy. Overall, the exploratory results presented in this paper 

demonstrate the feasibility of using meta-model generated data to increase the accuracy of 

small sample set trained BN. Further developing this method will help underserved areas with 

access to only small datasets make use of the powerful predictive analytics of ML. 

 

1. Introduction 

The rise of commodity sensors and economical computing devices has reduced the cost and 

effort associated with data collection. A wealth of information can now be collected on 

manufacturing operations, customers, or even disaster responses. All of this data can provide 

valuable insights to those willing to analyze it. Organizations and decision makers willing to 

analyze the relationships between a multitude of variables can gain tremendous insight into 

previously complicated decisions. These insights can be accomplished by utilizing machine 

learning techniques. ML methods can help use trends in collected data to make predictions and 

forecasts, even in novel situations. In addition to being a decision-making aid, these ML tools 

can help facilitate understanding of systems as a whole, forecasting how different decisions 

may impact an overall operation. Early adopters of ML techniques like Google, Amazon, and 

Microsoft are already using machine learning to their competitive advantage by improving their 

understanding of customers and their products (Biewald, 2016; Reese, 2016; Wilder, 2016). 

One example of a widely utilized ML approach is Bayesian Networks (BN) (Bayes, 1763). 

Bayesian Networks combine flexible Bayesian statistical methods with an easy to understand 

network structure that represents relationships between variables in a concise and transparent 
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manner (Weber, Medina-Oliva, Simon, & Iung, 2012). The transparency of BNs, due to their 

easily understood mathematics and compact representation of variable relationships, allows 

users to understand how changes within a system have the potential to impact the network’s 

behavior. This type of discovery is often limited for other ML methods due to lack of 

transparency, reducing the ability to improve the methods’ accuracy. While ML tools such as 

Bayesian networks are very powerful, large quantities of data are often required (i.e. hundreds-

of-thousands or millions points) to accurately capture behaviors of complex processes. 

Even while sensor data is becoming more economical and prevalent, in many common 

applications sufficient data cannot be collected to utilize ML techniques. In many domains like 

engineering design, high-precision and/or custom manufacturing or even military exercises, 

data collection events occur infrequently throughout the year. Consequently, collecting the 

thousands or millions of data points required for ML is not feasible. Take, for example, aircraft 

manufacturing. Producing such a complex piece of engineered machinery often involves a 

number of different collaborators including unionized labor and suppliers. The intertwined 

performance of the collaborators ultimately impacts the final product. Selecting the right 

workers for each of the intertwined jobs is important to ensure the success of assembly and 

manufacturing outcomes. A competitive edge could be gained by ensuring workers with the 

most suitable skills are assigned to a job (Ong, Ato, Umar, & Oshino, 2016). From a data 

collection perspective, however, the limited quantity of planes (i.e. 20-30) produced a month 

does not provide adequate amounts of worker data required for a model to quantify suitability 

(BBC, 2015). Due to data requirements, for such a low volume task, BNs would not be an ideal 

option. This is due to the limited amounts of data available to model the network’s behavior. 
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Limited data restricts the model’s ability to understand the connections between variables and 

anticipate how changes might impact the overall system. As a result, low volume processes, 

that could benefit from the powerful analytics of BN, cannot use the tool because of limited 

data. However, leveraging meta-models to generate synthetic data from small datasets can 

benefit these low volume processes by increasing the amount of training data needed for BN.  

The presented work takes an exploratory look at how small datasets can be utilized to build 

accurate BNs. Results provided are intended to be exploratory. As a such, results are not 

expected to be considered generalizable, rather the goal is to start addressing the limited 

dataset problem with the hope of leading to more generalizable methods. Hence, the 

overarching contribution of this work is the investigation of data generation methods to 

increase predictive performance capabilities of expert systems when little original data exists. 

The comprehensive aim of this paper contains two parts: (1) evaluate the feasibility of utilizing 

Kriging and RBF meta-models to increase network performance when subjected to small 

amounts of training data and 2) investigate the effectiveness of using PSO to intelligently set 

prior probabilities to avoid the potential skewing of distribution of priors seen when generating 

synthetic training data.  

In the work presented, three different datasets were used. Two of the datasets were 

collected from a widely used university machine learning database. The other dataset was 

gathered from a user study looking at the benefits of augmented reality (AR) work instructions. 

Using these gathered datasets, in total four BNs were created. For the data gathered from the 

AR study, the goal was to correctly categorize a participant’s errors and completion time on the 

assembly. For the university database collected information, one of the network’s goals was to 
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predict the quality of a buyer’s car choice. The second university dataset aimed to classify the 

income level of a census respondent. A small initial training size of around 40 points made the 

work challenging. Due to such a small sample size, usually incompatible with BNs, the authors 

explored the feasibility of using Kriging and Radial Basis Functions (RBF) to augment or increase 

the original dataset. To gauge the feasibility of this approach, results are presented for 

networks trained using various amounts of generated data. The sections below give an 

overview of BNs, describe the data collection methods, describe BN construction, and present 

network testing results. 

 

2. Background 

Analyzing data using statistical methods has for many years helped researchers and 

practitioners understand the relationships between variables within a dataset. Applications of 

statistical analysis can be found in areas spanning from scheduling flights to predicting the 

reliability of a system (Jacobs et al., 2012; Muller, 2003). With the vast amounts of information 

being collected today, these types of tools become invaluable when attempting to forecast 

outcomes for decision making using legacy data. Forecasts, built using collected data, have the 

capability to take into account more interactions between factors than the human mind can 

comprehend. In addition, it can also provide predictions that are more unbiased  (De Martino, 

Kumaran, Seymour, & Dolan, 2009; Hastie, 2001). 

Learning from small datasets can be problematic in terms of predicting specific correlations 

between input samples and outputs as well as making the model susceptible to overfitting. 

However, increasing the size of the training set can improve the generalization and stability of 
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the models (D. Li & Liu, 2009). Generating artificial samples for training has been an effective 

method to improving learning performance, and has been proven to be mathematically 

equivalent to incorporating prior knowledge (Niyogi, Girosi, & Poggio, 1998). Oniśko et al. 

applied a Bayesian network for the diagnosis of liver disorders with a small dataset concerning 

using using Noisy-OR gates to learn the necessary parameters (Oniśko, Druzdzel, & Wasyluk, 

2001). Even though the learned parameters increased network performance, a lack of training 

samples can yield a less robust model. Yang et. Al proposed a novel virtual sample generation 

(VSG) method based on Gaussian distribution, which demonstrated the generalization ability of 

the classifiers on the new training sets can be better than on the original training sets (Yang, Yu, 

Xie, & Zhang, 2011). However, only a limited number of virtual samples were generated for 

training, which can hinder learning performance when using small datasets. To avoid the 

normal distribution assumption, Chen et al. proposed a novel PSO based VSG (PSOVSG) 

approach to take into consideration the integrated effects of attributes, which resulted in 

improved accuracy for the forecast model (Chen, Zhu, He, & Yu, 2017). Nevertheless, the 

PSOVSG method was vulnerable to generating bad samples that lead to a negative impact on 

model accuracy. 

For this portion of the work, Kriging and RBF models were selected to model the data 

because of their ability to efficiently describe the behavior of small datasets. This quality has 

been displayed repeatedly in many optimization publications (Kleijnen, 2009). Mathematically, 

Kriging models are inherently a way to fit a weighted regression model to a collection of data 

points (Bohling, 2005; Lovison, 2007). This model can then be used to approximate the behavior 

of a dataset where little to no data is present. For this application, and in many others, a 
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Gaussian correlation function was used to ensure a smooth fit to the data and minimize the 

impact of any noise commonly seen in real-world datasets. RBF, as opposed to Kriging tends to 

perfectly capture, rather than approximate, dataset behavior. RBFs have great flexibility when 

matching very random fluctuations in dataset behavior. As a result, RBFs can be tuned to high 

degrees of accuracy. However, additional data usually necessitates a completely new model 

because of the high degree of customization. 

 

2.1. Bayesian Statistics 

The resurgence of Bayesian statistical models is partially related to the explosion of 

interest in machine learning research (Pearl, 1988). The theorem underpinning Bayesian 

statistical methods is provided in Equation 1. Bayes Theorem, as it is known, differs from 

more previously popular statistics because the prior probability allows background 

knowledge to be inserted into the probabilistic prediction model (Bayes, 1763). In Equation 

1, the portion on the left side is called the posterior probability, or  ( | ). This term 

represents the probability of some event A occurring given some evidence B is observed. 

On the left side of the equation is the likelihood and prior probability. The likelihood, 

 ( | ), represents some evidence state B occurring given some event A. The prior 

probability,  ( ), is the probability of some event A occurring. The last term,  ( )  

represents the probability of some event B happening at any point in the collected data. 

 ( | )   
 ( | ) ( )

 ( )
 ( )  
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Traditionally, a prior term is not included in more commonly used statistical methods. 

More traditional statistical tools compute probabilities based solely on the collected data 

(Orloff & Bloom, 2014). However, by adding this prior probability term corrections can be 

made to observed data allowing it to more accurately model a system. Frequently, the 

prior probability term is considered expert set parameter. By fusing the data driven 

likelihood and the expert specified prior, a more accurate probability estimate of some 

event occurring can be predicted. This combination of terms, expert experience and data 

driven, results in a robust method for predicting events where only limited information is 

available (Pearl, 1988).  

2.2. Bayesian Networks 

When only dealing with a handful of events and variables, Bayes’ Theorem can be 

easily understood. However, as more variables and events are encountered keeping track 

of all the necessary calculations plus the relationships becomes more difficult. One way to 

help mitigate this problem is to use Directed Acyclic Graphs (DAGs) to visualize all the 

variable dependencies (Nielsen & Jensen, 2007; Stephenson, 2000). DAGs consist of 

elements, known as nodes, comprised of edges and vertices. Nodes are the actual variables 

that make up the datasets and edges represent the casual relationships between them. 

Utilizing DAGs, it is no longer necessary to interpret the complex joint probability 

distributions between variables, rather only the vital relations are represented. This also 

simplifies the required posterior probability calculations, by only using combinations of 

individual probabilities. Equation 2 shows the formulation using only the probabilities of 

individual parent vertices to compute the overall probability value.  
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 (       )  ∏ (  |       (  ))

 

 

 ( )  

Prior probability calculation on the other hand is often more straight forward. Often the 

method of prior calculation is a simple probability that sums to one across a category of 

evidence. The last term, likelihood, was computed for this work using the Laplace 

Smoothing method (MacKay, 1998; Williams, 1995). The Laplace method is popular 

because it accounts for the possibility of an event even if it is not found in the training 

data, a benefit when working with small datasets. A network is trained once the structure 

has been set and the likelihoods and priors have been computed. After training, novel 

points may be passed into the network to test its accuracy, of which the overall accuracy of 

a network is judged by how many points it classifies correctly.  

  
3. Methodology 

The goal of the methodology section is to explain to the reader the collection of the small 

datasets and how the Kriging and RBF models were used to generated additional training data. 

After data collection and creation are described, the methodology then moves to a description 

of network training and testing. 

3.1. Data Collection and Processing 

Exploring generated data’s impact on BN accuracy, first required data collection. For the 

work three datasets were collected and analyzed. The AR assembly dataset was collected 

from a user study where participants were asked to assemble a mockup of an aircraft wing 

using Augmented Reality (Nakanishi, Ozeki, Akasaka, & Okada, 2007; Richardson et al., 

2014; X. Wang, Ong, & Nee, 2016). The mock wing was made of metal fasteners and 
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wooden components. It was designed to resemble an actual aerospace work cell. During 

the study the Augmented Reality application collected data like operation duration, 

number of participant steps, and total completion time. A more detailed description of the 

study can be found in previous academic publications (Hoover et al., 2016; MacAllister, 

Gilbert, Holub, Winer, & Davies, 2016; Richardson et al., 2014). The Car Choice and Census 

datasets were gathered from the machine learning database website at the University of 

California Irvine (UCI) (Asuncion & Newman, 2018). The Car Choice dataset models a 

buyer’s car choice decision based on quality (Bohanec & Zupan, 1997). The Census dataset 

was pulled from a subset of census responses in the 1990’s. The goal of the dataset is to 

predict the income level of a respondent (Kohavi & Becker, 1996). The size of each of the 

datasets is displayed in Table 1.  

Table 1. Datasets 

Dataset # of Points Origin 

AR Assembly 75 User Study 

Car Choice 1,728 UCI Database 

Census 48,842 UCI Database 

 

Notice that the datasets gathered from UCI were much larger than the AR study dataset. 

Since the focus of the work is working with very small datasets, Car Choice and Census 

datasets were down sampled. Approximately two percent of the Car Choice data was 

randomly selected for training. For the Census data, a randomly selected 0.1% subset was 

used for training. The remaining data was used to test network accuracy. Each of the 

networks were trained fifteen different times using randomly allocated training datasets. 

Data was split into testing and training sets fifteen different times because results from 

previous work showed when using small datasets the assignment of points can impact 
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network results (MacAllister, Winer, & Miller, 2017). Creating fifteen different networks 

allowed conclusions to be based off of average performance metrics. 

3.2. Data Generation 

After splitting the data into training and testing sets, metamodels were created using 

Kriging and RBF formulations due to their ability to capture non-linear behavior present in 

datasets. Non-linear behavior is inherent in human performance data, like those used in this 

research. These types of models allowed the authors to fit a mathematical function to the 

limited data available. This mathematical description of the datasets behavior was then 

used to produce more data for training. After the networks were trained with generated 

data, the testing data was then used to gauge network performance which shows if network 

accuracy increases when augmenting the training process with generated data. For this 

portion of the work, Kriging and RBF models were selected to model the data because of 

their ability to efficiently describe the behavior of small datasets. This quality has been 

displayed repeatedly in many optimization publications (Kleijnen, 2009). For each of the 

fifteen different training datasets both Kriging and RBF models were fit to the data.  

3.2.1. Kriging 

Kriging models were fit to each set of datasets using the ooDACE MatLab toolbox 

(Couckuyt, Dhaene, & Demeester, 2014). Figure 1 shows a Kriging model fit to the AR 

assembly data. The black points in Figure 1 are the actual data points, in which the x-axis 

denotes the picking time(s) and y-axis the assembly time(s). Models fit to these points 

allow the entire domain to be approximated, especially in areas where little original data 
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exists. However, in some portions of the model there exists large flat areas where little to 

no actual data exists.  

 

This suggests the approximation in some areas may be more of an extrapolation than 

interpolation. Consequently, this could mean the model does not adequately capture 

dataset behavior in this area, which has the potential to negatively impact network 

accuracy when trained using generated data. 

Mathematically, Kriging models are inherently a way to fit a weighted regression 

model to a collection of data points (Bohling, 2005; Lovison, 2007). This model can then be 

used to approximate behavior of a dataset where little to no data is present. The goal of 

utilizing the Kriging model process is to find some function that approximates the behavior 

of the dataset while minimizing the discrepancy between predicted and expected values. 

 ( )   ∑    (  )

 

   

 ( )  

The basic formulation of a Kriging model is shown in Equation 3.  ( )  represents the 

expected value of a data point inserted into the model. This prediction is generated using a 

Figure 1. Kriging Model Fit to Limited Training Data 
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weighted summation of all the points describing a dataset’s behavior. The weights, or    

values, represent the influence a point in the data set has on a point that is being 

predicted. Usually these weights decrease the further away a point is from the predicted 

position  .  (  ) represents the function selected to approximate the data’s behavior. 

Common functions include linear, exponential, and Gaussian. Selecting this function is a 

critically important step in the Kriging process, especially when the data exhibits non-linear 

behavior. Therefore, it’s important to understand the dataset’s behavior when determining 

the approximation function. For example, if non-linear behavior is approximated with a 

linear function, model predictions could be inaccurate. 

  ( )   [| ( )   ( )| ]     ( )  

Once a function is selected, the goal is to solve for      in Equation 3 that minimize the 

variance between the predicted and actual values. This difference between expected and 

actual values, or      describes how well a model fits the data. The lower the    value 

shown in Equation 4, the better the model fit. 

Each of the developed Kriging models used a Gaussian correlation function to build the 

mathematical representation and to compute the expected vs actual values as shown in 

Equations 3 and 4. Gaussian correlation functions are popular in metamodeling for 

engineering design applications and surface reconstruction (Krishnamurthy, 2005; 

Simpson, Peplinski, & Koch, n.d.). For this application, and in many others, it was used to 

ensure a smooth fit to the data and to minimize the impact of any noise commonly seen in 

real-world datasets. Gaussian correlation functions also are very adept at fitting any 

potential non-linearities present in the data. In addition, ooDACE provides a plot of errors 
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at each point on the model, but these were excluded due to space constraints. The low 

error values in the plots suggest the created models fit the data available relatively 

accurately. During testing many of the models produced mean-squared errors of less than 

one to the negative tenth. However, looking at the example models and the data points 

available, there are large areas comprised of limited data points. This suggests that in some 

areas of the model, the mathematical approximation may be inaccurate. This inaccuracy 

could result in poor quality generated data, negatively impacting network classification 

when using generated training data.  

3.2.2. Radial Basis Functions (RBF) 

Values generated using Radial Basis Functions were created using an RBF MatLab tool 

box (Chirokov, 2006). Figure 2 shows an example RBF model fit to AR Assembly data. The 

red points in Figure 2 are the actual data points. Like Kriging, Radial Basis Functions (RBFs) 

are also inherently a way to fit a weighted regression model to a collection of data points 

(Buhmann, 2000).  

 

However, RBFs incorporate a shape factor that allows the mathematical behavior of the 

model to be closely tuned to dataset behavior. The basic formulation of an RBF is shown in 

Figure 2. RBF Model Fit to Limited Training Data 
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Equation 5. The goal of the process is to find weights, or   ’s, that minimize the difference 

between the model and the actual points    This difference is predicted by the basis 

function  . 

 ( )   ∑   (|    |)   

 

   

 ( )  

One commonly used basis function is Gaussian, since it deals well with noisy data and does 

a good job of smoothing out noise in a collected data set. In addition, the Gaussian 

function is popular due to its ability to mathematically capture non-linearities in a dataset. 

What differentiates RBF from Kriging is that RBF, in general, tend to perfectly capture 

rather than approximate dataset behavior. RBFs have great flexibility when matching very 

random fluctuations in dataset behavior. As a result, RBFs can be tuned to high degrees of 

accuracy. However, additional data usually necessitates a completely new model because 

of the high degree of customization. The Gaussian formulation is shown below in Equation 

6, where   is a user-specified shape factor. The shape factor is a contributing factor to the 

high degree of accuracy exhibited by RBFs. Increasing or decreasing the shape factor 

changes the width of the selected distribution contributing to how well the formulation fits 

the available data. 

 (    )   
 ( |    |)

 
  ( )  

Like the Kriging models, each of the RBF models used a Gaussian correlation function. 

However, the RBF model was tuned to fit the data using the shape parameter, resulting in 

a mesh that very closely described the data’s behavior. As with the graph of the Kriging 

model above, the RBF model contains areas with limited real data points. This suggests 
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that in some areas of the model, the approximation again may be more of an extrapolation 

than interpolation. In addition, randomly sampling the design space could adversely impact 

the distribution of data in each category. This could negatively impact the generated data’s 

ability to represent the system by skewing prior probabilities. To deal with this possibility 

the authors theorized that PSO could help identify the best priors to use for a category. 

This is explored in greater detail in the results section.  

3.3. Network Construction 

After data collection and generation, the next step in the process involved creating a 

DAG for the four networks. For the two UCI datasets, network structures were pulled from 

previous academic publications that dealt with network creation (J Cheng, 2001; Jie Cheng, 

Hatzis, & Page, 2001; Salama & Freitas, 2013). For the AR assembly dataset, there were no 

preexisting network structures. In order to construct a network preliminary regression 

analysis was conducted to determine the strongest relationships between variables. The 

resulting network structure for the Time AR Assembly data network is displayed in Figure 3. 

The prior probabilities for the network structure, displayed in Figure 3, will be discussed in 

the following section. See previous publications for greater detail on the network 

construction (MacAllister et al., 2017). 
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To create the categories, like those seen in Figure 3, Hierarchical Clustering was used to 

discretize the data (Kerber, 1992). Using clustering to group the data with like values, 

establishing lower and upper bounds for each category, makes the likelihood computation 

step less resource intensive. Discretized data, also, is more suited to working with small 

datasets because enough data may not be present to create a continuous distribution 

model. This is particularly relevant if the domain requires a continuous model. Clustering 

results in Figure 3 show that each node contains five categories comprised of lower and 

upper bounds. By discretizing the data, a participant is placed within the category where its 

specific variable value fits inside the bounds. Each of the categories are assigned to the 

participants that fall inside its bounds.  This discretization means that categories, not 

continuous variables, are used to train a network.   

3.4. Training the Bayesian Networks 

Once the data was discretized, training the network necessitated computing the number 

of observed evidence combinations within a predictor node’s categories. Predictor nodes 

varied by network. The predictor nodes for the two AR user study data networks were 

errors made on the assembly and completion time. The predictor node for the Car Choice 

Figure 3. Bayesian Network Structure 
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dataset was the car choice suitability. Finally, for the Census dataset income category was 

the predictor variable. Table 2 contains the likelihood evidence counts for the AR Time 

network.  

Table 2. Likelihood Table for Time Network 

Predictor 

Category 

Evidence- 

Assembly 

Evidence- 

Picking 

Evidence 

Count 

Prior 

Time1 Assemb2 Picking1 1 0.053 

Time1 Assemb3 Picking2 1 

Time2 Assemb3 Picking2 18 0.632 

Time2 Assemb3 Picking3 5 

Time2 Assemb1 Picking5 1 

Time3 Assemb3 Picking3 4 0.158 

Time3 Assemb3 Picking2 2 

Time4 Assemb3 Picking3 1 0.053 

Time4 Assemb4 Picking3 1 

Time5 Assemb3 Picking3 1 0.105 

Time5 Assemb4 Picking4 2 

Time5 Assemb5 Picking3 1 

 

Looking at the counts in Table 2, it’s evident that some categories and combinations 

contain more evidence than others. Specifically, a large portion of the evidence falls into the 

time two category. As a result, the network knows little about behavior outside of this 

category. In addition, with the bulk of the data falling into time category two the prior for 

this category becomes much larger than the others. This could bias the network into 

assigning time category two due to limited information resulting from a small dataset. Only 

having a small dataset means that there are very few likelihood evidence combinations. This 

could result in the prior playing an outsized role in determining classification, resulting in 

miscategorized points. The issues pointed out in Table 2, like limited evidence states and 

over represented categories, are very common for small datasets. As the datasets become 

larger a wider variety of points and evidence states are often introduced. This greater 

degree of evidence ensures that the BN has enough data of adequately model the system.  
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By generating data based on a Kriging or RBF model, a wider variety of evidence states 

can be represented. Due to space constraints all of those evidence combination tables are 

not shown for the other three networks. However, for larger data sets, such as those 

generated using Kriging and RBF, more evidence combinations are generally present. More 

represented states in the Bayesian Network could allow it to better predict events it 

encounters. The next section explores how well Bayesian Networks trained with generated 

data perform, to see if this theory holds. 

3.4.1. Prior Manipulation Using Particle Swarm Optimization (PSO) 

Previous work on BN for small datasets suggested that prior probabilities can have a 

large impact on BN when trained with limited amounts of data (MacAllister, Miller, & 

Winer, 2018). As a result, an intelligent way to set priors to increase network accuracy was 

required. The bounds of the problem, like a concrete objective to achieve greater 

classification accuracy, suggested that optimization methods were well suited to the 

problem. However, due to the wide variety of methods available, care had to be taken to 

select the right one (Arbelaez Garces, Rakotondranaivo, & Bonjour, 2016; Jin & Rahmat-

Samii, 2007; Konak, Coit, & Smith, 2006; Marler & Arora, 2004; Martins & Lambe, 2013; 

Padovan & Manzan, 2014; Thornton, Hutter, Hoos, & Leyton-Brown, 2012; G. G. Wang & 

Shan, 2007). Ultimately, Particle Swarm Optimization (PSO) was the method selected after 

reviewing the options. PSO was selected since its characteristics aligned well with the 

unknown design space, lack of problem constraints, and the singular goal of increasing 

classification accuracy. 
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PSO was initially conceived in 1995 by James Kennedy and Russell Eberhart (Eberhart & 

Kennedy, 1995). At a high level, the PSO method mimics the flocking behavior of birds. 

When in search of food or shelter, birds use both their own experience and the experience 

of the flock to fulfill their goals. The combination of personal and group knowledge to 

accomplish a goal is the inspiration of the PSO routines swarm behavior. Particles in the 

swarm use both the flock knowledge, called the global best (gBest), and their own 

knowledge (pBest) to find the best solution to a problem. As the knowledge of gBest and 

pBest changes the particles change their search paths. Overtime this sharing of information 

guides the swarm to the best-known solution to a problem. The equation that updates the 

search path, known as the velocity equation, is the cornerstone of PSO. Since its debut in 

1995, PSO has been the topic of much research and improvement. More recent research 

has shown the accuracy of the method can be improved by adding weighting and 

constriction factors to the velocity equation (Banks, Vincent, & Anyakoha, 2007; Carlisle & 

Dozier, 2001). The velocity equation with weight and constriction factors used in this paper 

is shown in Equation 6 and 7. For this work, the overall optimization goal of the swarm was 

to select priors that resulted in the highest number of correct category assignments within 

the training dataset. 

 ⃗            ( ⃗               (             )         (            ))  ( )  
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When implementing the PSO method, the swarm was represented by a 

multidimensional vector, in which the dimensions correspond to prior probabilities for a 

predictor node. Take the Time network, a particle for this network would contain a 5D 

vector. This is because the Time network has five different categories a participant can fall 

into, thus five prior probabilities. The swarm as a whole is made of up these individual 

particles, each representing a potential combination of priors. The results presented below 

use a swarm size of ten particles. Each of these particles are repeatedly tested to gauge its 

accuracy. This accuracy is then used to update the pBest and gBest values, which drive the 

swarm’s behavior through the update function shown in Equation 6. The update process 

repeats until the PSO method reaches an accuracy threshold or a set number of updates 

occur. At the termination of the update loop, the prior values from the best performing 

particle are selected. In this case, the best performing particle produces the highest 

network accuracy when using the training dataset. To gauge the overall network accuracy, 

the optimized priors are used to classify the testing data. 

 
4. Results and Discussion 

Following data preparation and creation of the BN topologies, the networks were ready for 

testing. This involved running fifteen different datasets, each containing training and testing 

data, for each one of the four corresponding BNs constructed. Data used for training a network 

during each run was either original, Kriging generated, RBF generated, or a combination of 

original and generated. The average accuracy of these fifteen runs was used to gauge how 

precise each BN performed. Average results across a number of runs were used since previous 

work suggested that when using small datasets the distribution of data has an effect on 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 23 

classification accuracy (MacAllister et al., 2017). By taking the average classification accuracy 

the impact of these slight changes can be minimized when assessing overall outcomes. 

The first portion of results looks at how different proportions of generated and original data 

mixed together in the training dataset can impact network accuracy. A 25% (~10 generated 

pts.), 50% (~20 generated pts.), and a 50/50 (~40 generated pts.) mix of generated data points 

were added to the approximately 40 original training data points to create the test sets. 

The testing results of the first network tested are shown in Figure 4. Each figure contains a 

histogram of the overall accuracy for the 15 different test runs using various amounts of 

generated and original data. In addition, the graphs contain a box plot that shows the 

distribution and the median of the results. For the Time network trained with the AR dataset, 

using only original testing and training data, the baseline maximum was 78%, the maximum 

median was 69%, and the standard deviation of the results was 0.07. The baseline result came 

from training and testing a network using only original data points. Using these baseline 

accuracy metrics, improvements resulting from adding generated data can be gauged. Results 

in Figure 4 show that both Kriging and RBF generated data added to original training data could 

help increase network accuracy slightly. Specifically, Kriging variations 25% and 50% increased 

maximum accuracy to 80.5%. For RBF, the 50/50 variation increased accuracy to 80.5%, slightly 

over the baseline of 78%. However, both generated data types increased the standard 

deviation of results. These results show that some networks produce higher accuracy values, 

but not all trained networks are more accurate than the baseline. In order to increase 

classification accuracy, these high accuracy networks could be hand selected and used as a 

classifier and the lower performing networks discarded. Practically speaking, fifteen networks 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 24 

are not needed in the real-world. It is only necessary to have one highly accurate network to 

perform classifications. By adding a mix of generated data to the original data, such a high-

quality network can be produced, potentially saving significant amounts of time and money for 

industry. 

 

The results above show that adding generated data to original training data can help 

increase accuracy. However, when generating data there is the potential to skew the prior 

distribution. As such, the authors wanted a way to intelligently set the priors in a way that 

maximizes the classification accuracy of the networks. The method selected for this task was 

PSO. The goal of the method is to find prior probabilities that maximize the classification 

Figure 4. Time Network - Original and Generated Testing Results – Max: 

80.5%; Max Median: 69.4%; Max STD: 0.18  
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accuracy of a network. This method was selected because its’ characteristics fit well with the 

problem formulations unbounded optimization requirements. 

Figure 5 shows the results of using PSO to attempt to optimize priors for the Time network. 

Although there are still accuracies above the previous threshold of 78%, PSO does not seem to 

increase the accuracy of the network over and above the previous results. It actually, decreases 

the median network accuracy and increases the standard deviation of the results. This suggests 

that the PSO method in this case is not well suited to help provide additional accuracy gains.  

 

 

Results for the next network, Car Choice, are shown in Figure 6. For this network, academic 

literature suggests that when using a naïve network structure a reasonable accuracy is around 

Figure 5. Time PSO Network - Original and Generated Testing Results – 

Max: 80.5%; Max Median: 60.5%; Max STD: 0.27 
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86% (Jie Cheng & Greiner, 1999; Jie Cheng et al., 2001). The results in Figure 6 show that using 

only around two percent of the data a network can achieve a maximum accuracy of 73%. This 

result is encouraging, showing that even when only small amounts of data are available, a 

somewhat accurate network can be created. Unlike the Time network, however, network 

accuracy seems to degrade as more generated points are added to the training dataset 

(following the histograms from left to right). This could suggest that after a certain point, 

adding additional generated data may stop increasing classification accuracy.  

 

Looking at the PSO results for the Car Choice network in Figure 7, it appears that the 

number of high performing networks increases for the 50/50 variant but does not increase the 

overall accuracy metrics. This coupled with the lack of accuracy gains using PSO seen in the 

Time network results could suggest that the PSO formulation needs further modifications. 

Figure 6. Car Choice Network - Original and Generated Data Testing 

Results - Max: 73%; Max Median: 71.2%; Max STD: 0.18 
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Currently, the PSO implementation used is fairly basic. Modifying the formulation to include 

additional terms that give higher weight to better represented categories could help improve 

results.  

 

Due to space constraints the distributions of the other two networks, Errors and Census, are 

not shown. However, Table 3 shows the maximum accuracy results for all networks along with 

baseline network accuracies when only using original data for training and testing. The table 

shows that for Time and Error networks, mixing generated and original data can slightly 

improve accuracy. For the Time network, adding 25% Kriging generated data to the original 

approximately 40 training points slightly improved the classifications of the network. Results 

from testing the Error network show that adding 50% RBF generated data and manipulating the 

priors using PSO increased network classification accuracy.  

Figure 7. Car Choice Network - Original and Generated Data Testing 

Results - Max: 72.5%; Max Median: 10.2%; Max STD: 0.32 
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Table 3. Maximum Accuracy Results from Generated and Original Training Mix 

 
Baseline 

Maximum 
Baseline 

Median Max 
Generated 
Maximum 

Generated 
Median Max 

Time 
78% 

(Original) 
70% 

(Original) 
80.5% 

(25% Kriging) 
69.4% 

(25% RBF) 

Errors 
47.7% 

(Original PSO) 
40.5% 

(Original PSO) 
51.7% 

(50% RBF PSO) 
38.7% 

(25% RBF PSO) 

Car 
Choice 

72.4% 
(Original) 

71.2% 
(Original) 

73% 
(50/50 RBF) 

71.7% 
(25% Kriging) 

Census 
78% 

(Original) 
76.4% 

(Original) 
78% 

(25% Kriging/RBF) 
76.2% 

(Multiple) 

 

Overall, the error testing accuracy is much less than the other three networks. This could 

suggest that the error network structure does not describe relationships between the data well. 

While the accuracy results for errors are less than hoped, the network and data still are 

representative of a real-world problem and worth including in the results. Results for all four 

network structures, while not overwhelming, do show that it is feasible to use generated data 

to increase network classification accuracy. In addition, it shows that in some cases the data 

generation method, used to increase accuracy, might depend on the network structure, since 

Time and Errors show maximum accuracy gains from two different forms of data generation. 

While the results above show promise, the next step is to gauge if generating even greater 

amounts of data improves accuracy further. Since the approximations (Kriging or RBF) were 

already available as analytical expressions, creating more data is a real-time operation. For this 

section of the results 10,000, 100,000, and 1,000,000 data points were generated using Kriging 

and RBF generated models. Original data was not added to the training set, since the order of 

magnitude increases in training data means the influence of the original would have been 

minimal or non-existent. 
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Figure 8 shows the results of generating varying amounts of synthetic data to train the 

fifteen different networks. Each of the three RBF training size variants were able to produce a 

network that was 83.7% accurate. A slight increase over the previous best of 80.5% and the 

original baseline of 78%. However, the results suggest that for the Time network generating 

additional data might not prove beneficial. 

 

 

Figure 9 shows the results of using PSO to attempt to tune the priors. Results show that the 

tuning was able to produce a maximum accuracy of 82.5%, an improvement over the baseline 

as well as the previous mixed original generated data network. However, this maximum is less 

than the 83.5% obtained by the 10K, 100K, and 1 million RBF generated data trained networks. 

Figure 8. Time Network - 10K, 100K, and 1 Million Generated Points - 

Max: 83.7%; Max Median: 65.7%; Max STD: 0.12 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 30 

This again suggests the PSO method, as formulated, is not as beneficial as generating additional 

data. The increase in standard deviation for all the PSO network results also alludes to the fact 

that the PSO method may require improvements. 

 

The results for the next dataset, Car Choice, are shown in Figure 10. For this network, as the 

number of data points increases so does the median accuracy for both Kriging and RBF, the 

opposite of the results seen for the Time networks. This could be due to the larger number of 

causal variables in the Car Choice network (six) than the Time network (two). Greater numbers 

of variables often require more data to establish the behavior of the network. For the Car 

Choice network, using one-hundred thousand Kriging generated points a maximum accuracy of 

92.4% can be reached, surpassing the 86% accuracy see in previous academic work (Jie Cheng & 

Greiner, 1999; Jie Cheng et al., 2001). This result is encouraging because it shows that it is 

Figure 9. Time PSO Network - 10K, 100K, and 

1 Million Generated Points - Max: 82.5%; Max 

Median: 61.9%; Max STD: 0.27 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 31 

feasible to use meta-models to generate additional training data for BN. Potentially, allowing 

refinements to this method to open up ML techniques to underserved areas with only small 

amounts of data.  

 

The PSO results for Car Choice, shown in Figure 11, are similar to those for the Time 

network. While the maximum accuracy for all runs was near the non-PSO maximum accuracy, 

using PSO seems to greatly increase the standard deviation of the results, as illustrated by the 

box plots. Again, this degradation in behavior when PSO is applied suggests that an alternate 

formulation should be investigated. With the current formulation, all prior categories are given 

the same weight. If the PSO method was adjusted to weight more common categories more 

heavily during the tuning of priors, network accuracy might be able to be increased.  

Figure 10. Car Choice Network - 10K, 100K, and 1 Million 

Generated Points - Max: 92.4%; Max Median: 92.1%; Max STD: 

0.08 
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Again, due to space constraints the graphs for Error and Census networks are not displayed. 

However, Table 4 shows the maximum accuracy results for all networks tests along with 

baseline network accuracies when only using original data for training and testing. The table 

shows that when the mix of generated original data and large-scale data generation are 

tabulated Time, Error, and Car Choice experience accuracy gains. Specifically, Car Choice sees 

the highest gain, jumping from around 72% to 92%. 

  

Figure 11. Car Choice PSO Network - 10K, 

100K, and 1 Million Generated Points - Max: 

92.1%; Max Median: 52.9%; Max STD: 0.27 
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Table 4. Maximum Accuracy Results 

 Baseline 
Maximum 

Baseline 
Median Max 

Generated 
Maximum 

Generated 
Median Max 

Time 78% 
(Original) 

70% 
(Original) 

83.7%  
(10K RBF) 

69.4% 
(25% RBF) 

Errors 47.7% 
(Original PSO) 

40.5% 
(Original PSO) 

51.7% 
(50% RBF PSO) 

38.7% 
(25% RBF PSO) 

Car 
Choice 

72.4% 
(Original) 

71.2% 
(Original) 

92.5% 
(100K Kriging) 

92.1% 
(100K Kriging) 

Census 78% 
(Original) 

76.4% 
(Original) 

78% 
 (25% Kriging/RBF) 

76.2% 
(Multiple) 

 

One theory that did not show promise, though, was using PSO to tune prior probabilities. In 

general, the results show that PSO does not surpass the accuracy metrics of using purely 

generated data. This type of result when using PSO was also seen in previous work (MacAllister 

et al., 2018). In addition, PSO tuning priors seem to increase the standard deviation of results 

and reduce the median accuracy value of the 15 testing runs, except for the Error network. This 

increase of poorly performing networks coupled with the existence of high performing 

networks leads the authors to believe that a more sophisticated method of PSO is required to 

manipulate the priors, one that takes into account more complex relations between variables. 

 
5. Conclusions and Future Work 

Bayesian Networks are a very powerful tool for modelling and predicting complex 

relationships between variables. They provide a transparent way to map and understand 

variable relationships and how changes to networks might impact their accuracy. Their easily 

understandable network structure paired with flexible Bayesian Statistical methods lends itself 
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well to investigating behaviors associated with small data sets for machine learning. Greater 

understanding of how to adapt machine learning tools like BN to use with small datasets will 

ultimately help underserved areas like small volume manufacturing or military applications 

utilize the powerful predictive analytics of machine learning. The work in this paper has taken 

initial steps towards this goal by exploring the feasibility of using Kriging and Radial Basis 

Function models to generate data for four different Bayesian Networks. The goal of the 

network was to predict completion time for workers conducting assembly operations, predict 

the number of errors an assembly worker made, a buyer’s car choice, and the income level of 

an adult. Data for the project was collected from a human-subjects study that used augmented 

reality guided work instructions and from the UCI machine learning database. Small amounts of 

data from each of these datasets were used to train the different BNs. Each of these training 

datasets were fitted with a Kriging and a Radial Basis Function model. Once models were 

created, they were randomly sampled to produce a larger dataset for training. The four 

networks were then tested under multiple conditions including the use of PSO to tune network 

parameters. The first set of results looked at how varying the proportion of generated to 

original training data would impact network accuracy. Results showed that in some cases 

generated data could increase the accuracy of the trained networks. In addition, it showed that 

the varying quantities of original to generated data could also impact the classification 

accuracy.  

From here, the authors generated larger amounts of data. Networks trained using ten 

thousand, one-hundred thousand, and a million data points were tested. Results showed that 

depending on the data set, increasing amounts of data did help increase accuracy for more 
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complex network structures. However, generating too many data points for datasets with a low 

number of casual variables resulted in decreased performance, which could be a result of 

overfitting the network. Therefore, it may not always be advantageous to generate additional 

synthetic training data when trying to increase performance.  

Results from tuning network parameters using PSO showed that it can help to produce 

accurate networks that improve on baseline original data only performance. This is in line with 

previous research presented by Lessmann et al (Lessmann, Caserta, & Montalvo, 2011). 

However, Lessmann et al only used a single dataset for evaluation as multiple datasets and trial 

runs used in this paper.  Another interesting observation was when using PSO, the median 

prediction of the BN  lowered while the standard deviation increased. This result leads the 

authors to believe that an alternate PSO formulation taking into account more information 

about the parameters is necessary to see further accuracy enhancements. The authors also 

demonstrated the utility of meta-models to generate synthetic data from small datasets on a 

real case study compared to other published works in expert systems (D. C. Li, Lin, & Peng, 

2014; D. Li & Liu, 2009). Overall, the exploratory results presented in this paper demonstrate 

the feasibility of using meta-model generated data to increase the accuracy of small sample set 

trained BN.  

There are several areas of future work. First, is exploring a better means of identifying the 

ideal number of synthetic data points to generate for maximum network performance. A 

second would be investigating how an improved PSO formulation could more accurately 

establish prior probabilities. Third, the authors will investigate different ML frameworks that 

can take advantage of these meta-model data generation methods to increase network 
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performance when data limitations hinder the use of these expert systems. Lastly, will be a 

more rigorous investigation to determine the tradeoff of generating synthetic data versus 

manipulating prior probabilities.  
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