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1. INTRODUCTION 

Consider the standard linear model y=Xff  +  e,  where y  is a vector of observed 

values of the dependent variable of length n, X is a fixed known nX/» matrix, jS 

is a length n vector of parameters to be estimated, and e is a length n vector of ran­

dom errors. The most popular method of estimating the parameters is the method of least squares, 

which can be stated as 

where b is the estimator of (3. This least squares problem is considered sparse, if the 

matrix X contains relatively few nonzeros. Typically this means less than 10% nonzeros. The 

problems considered here are large, because some overhead is incurred by taking advantage of spar-

sity , so that a reduction of storage and computation becomes evident only on large problems. 

There are a number of application areas, where large sparse least squares problems arise. 

Perhaps some of the largest problems arise in geodetic network adjustment. One of the largest least 

squares problems attempted is the adjustment of the North American Datum, see Kolata (1978). 

This is a network of some 200,000 reference points on the North .American continent, whose posi­

tions are adjusted by solving iteratively a least squares problem with approximately 6,000,000 

observations and 400,000 parameters. Some other areas, where such problems arise, include photo-

grammetry, econometric models, analysis of seismological data, and finite element structural analy­

sis. Many of these problems are so large, that storage needed for their solution by standard tech­

niques exceeds the virtual address space of the largest computers. 

Before describing how one can take advantage of sparsity, some direct methods for solving the 

standard least squares problem are briefly described. For a more complete description of these 

methods see Kennedy and Gentle (1980). 
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A solution to the least squares problem is given by a solution to the normal equations 

X'Xb = X'y .  

Two of the most popular methods, which solve the least squares problem through the normal equa­

tions, use the sweep operator or Cholesky decomposition on X'X. The generalized sweep oper­

a tor  produces  a  pseudo inverse  (X 'X)~ and then a  solut ion  b i s  g iven by  (X 'X)~X'y .  

Cholesky decomposition can be used when X has full rank, and it produces a lower triangular 

matrix L, such that X'X=LL'. Then, the unique solution is obtained by backsolving two 

t r iangular  sys tems Lc=X'y  and L'b=c.  

Although the above two methods are computationally very efficient, they may perform poorly 

on an ill-conditioned problem. Also, precision can be lost by forming X'X. Methods which 

deal directly with X avoid forming X'X, and are numerically more stable. These include 

the Peters and Wilkinson (1970) decomposition, and orthogonal decompositions. The former gives 

a decomposition of the form X=LU, where L is a unit lower trapezoidal matrix, and 

U is an upper trapezoidal matrix. This leads to equations L'LUb=L'y, which can be 

solved using methods of the preceding paragraph, but which are better conditioned than the normal 

equations. Assuming that the leading columns of X are linearly independent, the orthogonal 

decompositions are of the form 

R T 

0 0 
X = Q 

where R is upper triangular of order r^rankiX) ,  and Q is orthogonal of order n.  

The matrix Q can be a product of Householder transformation matrices, or a product of 

Givens transformation matrices, or it can be produced by the Gram-Schmidt orthogonalization 

process .  A solut ion  b i s  then obta ined by backsolving the  t r iangular  sys tem Ru=Q'y ,  

and setting b = 
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Some of the above methods have been considered by various authors in the case when X 

is sparse. Of course storage methods, where only or nearly only the nonzeros are stored, are used. 

However, there is more that can be done in the above methods to take full advsntage of the sparsity. 

Many methods are developed for specific application areas, where the X matrix is assumed to 

have a particular structure. There are also several general methods, which make little or no 

assumptions on the structure of X. A survey of direct methods for sparse linear systems, applica­

ble here through the normal equations, is given by Duff (1983), and a survey of iterative methods 

for the same is given by Eisenstat (1983). Heath (1983) gives a comprehensive survey of methods 

particularly applicable to sparse least squares problems. He focuses mainly on developments since 

an earlier survey by Bjorck (1976). Three of the most widely applicable direct methods are briefly 

described below. 

The first is the method of Cholesky factorization, which is discussed by George and Liu 

(1981) in their book on the solution of sparse positive definite linear systems. When Cholesky fac­

torization is applied to X'X, the matrix L usually suffers fill-in. That is, some entries 

which are zero in the lower triangular part of X'X become nonzero in L. When a sym­

metric row and column permutation is applied to X'X, the resulting Cholesky factor may have 

a different amount of fill-in. A symmetric row and column permutation amounts to reordering the 

normal equations, and relabelling the parameters. The amount of fill-in produced will have a direct 

effect on the amount of storage and computer time required to solve the least squares problem. 

Thus, in the sparsity context, the solution takes two steps. First, a "good" symmetric permutation 

with a sparse Cholesky factor is found, and then the permuted problem is solved. The two steps 

can be performed simultaneously, but it is advantageous to perform a symbolic step first to find a 

good permutation, and determine the nonzero structure of the matrix L, and then perform the 

numerical factorization in a fixed data structure. This is because otherwise the data structure has 

to be dynamic to accommodate the fill-in, and this can be very inefficient. Finding an optimal 
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permutation is a computationally nearly impossible task for any but the smallest problems, where 

full matrix methods can be used anyway, so heurisrtic algorithms are used to find a "good" permu­

tation. A number of these heuristic algorithms are described by George and Liu. 

Bjorck and Duff (1980) discuss a method based on the Peters and Wilkinson LU decom­

position of the X matrix. Pivot choice during the factorization is used to preserve the sparsity 

of L and U, as well as to enhance the conditioning of L Bjorck and Duff modify the 

Peters-Wilkinson scheme, by observing that if the least squares problem is nearly consistent, an 

adequate solution can be obtained directly from the decomposition without solving 

L 'LUb =L 'y. If the problem is not nearly consistent, then only a correction is computed using 

L 'L This has the advantage that any ill-conditioning in I affects only the correction. 

Sparsity preservation is needed here at two stages. During the LU decomposition, which consists of 

Gaussian elimination, sparsity is preserved by choosing pivots according to the Markowitz (1957) 

scheme. Then during the "correction" phase, a positive definite system is solved, for which the 

methods described by George and Liu can be used. 

Another method by George and Heath (1980) is based on the fact, that the upper triangular 

R factor from orthogonal decomposition of X is mathematically equivalent to L the 

transpose of the factor from Cholesky decomposition of X'X. This means that sparsity preser­

vation methods for Cholesky decomposition of positive definite matrices can be used in a symbolic 

phase, to produce a data structure for orthogonal decomposition of X. George and Heath use 

Givens rotations for the decomposition, since these allow X to be processed by rows. Their 

method thus requires no more storage than the normal equations method, since X can be read 

in by rows from auxiliary storage. 

Obtaining information on the variance covariance structure of the model parameters is quite 

easy in the normal equations and the Givens algorithms, since this is given by 

{R'R)~^=R~HR~^)'. This information is not so readily available from the Peters-Wilkinson 
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algorithm. Of the above three methods, considering stability, flexibility, and efficiency, the 

George-Heath method using the Givens algorithm seems to show the most promise for solving gen­

eral problems and obtaining statistical information about the estimates. For this reason, the 

improvement or extensions of the Givens algorithm was chosen as a topic of this research. A recent 

comparison of the above three methods by George, Heath, and Ng (1983) shows the normal equa­

tions method as the most efficient. However, it often fails on ill-conditioned problems. Of the two 

more stable methods, the Givens algorithm uses less storage, but which method executed faster was 

problem dependent. 

The numerical phase of the George-Heath method operates directly on the X matrix 

without forming X'X. Its symbolic phase, however, forms X'X rather than operate 

directly on X. There are some disadvantages in this, as will be discussed in Chapter 2. In 

Chapter 2, some results on row ordering of X are obtained, and then based on these results a 

symbolic phase is developed for Givens orthogonal decomposition, which operates directly on the 

nonzero  s t ructure  of  X.  

When X contains some relatively dense rows, severe fill-in can result in the R fac­

tor. George and Heath (1980) propose to leave out these rows from the initial factorization, and 

then update only the solution, not the R factor, by these rows. The updating algorithm, also 

described in Heath (1982), assumes that X has full rank. With a very large problem, it may 

not be possible to make this assumption. Chapter 3 extends the updating algorithm to rank 

defficient problems. 

An area, which has not received any attention from sparse matrix technology, is the computa­

tion in fitting a large analysis of variance model. The model matrix associated with a large model 

is quite sparse. Only the unbalanced case is of interest here, since very efficient algorithms exist 

for the balanced case. Chapter 4 discusses what can be done to improve efficiency in these 
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computations with sparse matrix technology. 

Finally, Chapter 5 contains computer testing and implementation of some of the methods 

developed in this research. 
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2. SYMBOLIC GIVENS FACTORIZATION OF A SPARSE MATRIX 

Givens factorization of an n X p  matrix X  of rank r  is of the form 

R rl (2.1) 
^ = 0 

where R is upper triangular of order r, T is  rX{p—r) ,  and Q is a product of 

orthogonal Givens rotation matrices of order n For simplicity of presentation, the first r 

columns of X are assumed linearly independent. Rank is a property of the numerical values of 

X, and the nonzero structure of X contains only partial Information on the numerical values, 

namely whether they are zero or not. A symbolic factorization, thus, should obtain an R of 

order q, where r^q^p, and q is called the structural rank of X. The symbolic factori­

zation is then of the form (2.1), where R is upper triangular of order q, and T is 

qX(p—q).  When the qXq matrix R  is computed numerically using exact arithmetic, it 

wi l l  conta in  q—r zero  rows,  as  was  shown by Heath  (1982)  for  the  case  when q=p.  

George and Heath (1980) have observed that the factor R is mathematically equivalent to 

the  Cholesky fac tor  of  X'X.  They use  th is  fac t  and symbol ic  Cholesky fac tor iza t ion  of  X'X 

to obtain the nonzero structure of R. This approach assumes that X'X is a sparse matrix, 

and always produces an R with q =p. The presence of a single full row in X makes 

X'X a full matrix. Heath (1982) proposes to leave out relatively dense rows from the initial fac­

torization, and then update only the solution with these rows. He also notes that there may be 

other, less obvious, rows which cause X'X to be relatively full. These "problem" rows, when 

present, always cause fill in X'X, but there are cases when R is again a sparse matrix. For 

example ,  see  Figure  2 .1  (a)  and (b) .  The example  in  (a) ,  due  to  Bjorck (1976) ,  shows tha t  X 

and R can be sparse while X'X is full. The example in (b) shows in addition that the 

s t ructura l  rank of  X can be  less  than the  s t ructura l  rank of  X'X.  
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Figure 2.1 Both X and R are sparse in (a), but X'X is full. Same holds in (b), and 
also structural rank of X and R is three, while structural rank of X'X is four 

Clearly, some sparsity information is lost by forming X'X.  In particular, the information 

on the nonzero structure of individual rows is lost. This information can be retained by operating 

directly on the nonzero structure of X. This chapter discusses a symbolic Givens factorization 

algor i thm,  which opera tes  on  a  bipar t i te  graph representa t ion  of  the  nonzero  s t ructure  of  X.  

Section 2.1 presents basic notation of graph theory and its use in the study of sparse matrices. 

Most of the results of this section can be found in George and Liu (1981), and in Tewarson (1973). 
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Section 2.2 then presents a bipartite graph model of Givens reduction, and Sections 2.3 and 2.4 dis­

cuss row orderings and column orderings respectively. Finally in Section 2.5 an algorithm is 

presented, which implements symbolic Givens reduction, and which is based on the results of the 

preceding four sections. 

2.1 The Use of Graph Theory in the Study 
of Sparse Matrices 

The notation of graph theory is useful in the study of the nonzero structure of sparse 

matrices. Here, some basic notions are introduced, which are used throughout Chapter 2. 

Definition 2.1.1 A graph G = (C;£) consists of a finite set of nodes C together with a 

set E of edges, which are unordered pairs of nodes. 

Definition 2.1.2 An ordering or labelling a of G is the mapping of { 1, 2, ..., n} 

onto C, where n is the number of nodes in C. 

A graph G = (C;£) labelled by a will be denoted by G" = (€";£) .  

Definition 2.1.3 The labelled graph associated with a p X p  symmetric matrix A ,  is denoted 

by C* = (C'^;£), and consists of p nodes labelled c, to Cp, and edges 

{Ci ,Cj )eE i f f  f ly  =  aj i  =  0,  f #  j .  

See Figure 2.2 for an example of a sparse symmetric matrix and its associated labelled graph, 

where the i"* diagonal element of the matrix is denoted by i, as it corresponds to node c, 

of the graph, and off diagonal nonzeros are denoted by 

The unlabelled graphs of PAP' ,  where P is a permutation matrix of order p,  are 

the same, but the associated labellings are different. So, applying a symmetric row and column 

permutation to A is the same as relabelling the graph associated with A. Figure 2.3 gives an 
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« * * * 

* 2 

* 3 *  

» 4 * 

* 

* * * 5 * 

* 6 

Matrix A Graph 

Figure 2.2 A symmetric matrix and its associated labelled graph 

example of PAP'  and for a permutation matrix P.  Note that the structure of the 

graphs in Figures 2.2 and 2.3 is the same, only the labellings are different. 

Definition 2.1.4 Nodes x  and y in G are adjacent if {x ,y)€E.  

Definition 2.1.5 The adjacent set of YCC in graph G = (C;£) is 

Adj{Y,G)  = { xeC-V |  (x ,y)€E for some yeV }.  

2 * » 

* • 3 * 

* $ * 4 

•  5 »  

• 6 

Figure 2.3 Graph of Figure 2.2 with a different labelling, and the corresponding permuted matrix 
PAP'  
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When V contains a single node y ,  the adjacent set of Y is simply denoted by 

Adj(y,G). For example, in Figure 2.3 Adj{ci,G'''^') = {03,05}, and 

• )  = {ci,c3,c5}. 

Definition 2.1.6 A path of length X > 1 from node x  to node y  in graph G is 

an ordered set of \+l nodes, (c|,c2,-,0x+i), such that c,+ie/lrfy(c,,G) for 

i  = I,  2 ,  . . . ,  X,  wi th  C]  =  X and cx+i  =  y .  

For example, in Figure 2.3, a path of length 4 from c, to ci is 

Definition 2.1.7 A bipartite graph, or a bigraph, B = (R,C,E)  is a graph whose nodes 

are partitioned into two sets R and C, and each edge has one node from R and one 

node from C 

It should be clear from the context whether R refers to the matrix factor, or the set of 

nodes as above. Note that Adj{R,B) = C, and AdJ{C,B) = R The knowledge of 

either Adj(r ,B)  VreR,  or Adj{c ,B)  VceC completely defines the bigraph. 

* * 

* 

* 

* 

« « 

* $ 

Figure 2.4 A matrix and its associated labelled bigraph 
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Definition 2.1.8 The ordered bipartite graph associated with an /iXp matrix X is denoted 

by consists of n nodes labelled r, to r„ corresponding to 

rows of X.  consists of p nodes labelled c, to  Cp corresponding to columns of 

X.  {r i ,Cj)eE iff Xy # 0. 

Whenever a graph represents a matrix, a labelling is implied. When the associated matrix 

X is clear from the context, will simply be denoted by B. An example of a labelled 

bigraph is in Figure 2.4. The AdJ operator can be used on a bigraph to obtain the set of rows 

or columns with a nonzero in a given column or row respectively. For example in Figure 2.4, 

Adj{c^,B) = {ri.rjj is the set of rows with a nonzero in column 3. 

A row permutation of X is equivalent to a relabelling of nodes associated with rows in 

B^, and a column permutation of X is equivalent to a relabelling of nodes associated with 

columns in B^. Thus for all nXn permutation matrices and all pXp permutation 

matrices P^, the unlabelled bigraphs of PrXPc are identical, but the associated labellings 

change. Bipartite graphs thus provide a convenient tool for the study of row and column permuta­

tions of sparse matrices. Figure 2.5 gives an example of PrXPc and the associated bigraph for 

permutation matrices and Pc. Note that the structure of the bigraphs in Figure 2.4 and 

Figure 2.5 is the same, only the labellings have changed. 

» * 

$ * 

« * 

* * 

$ # * 

* 

Figure 2.5 The bigraph of Figure 2.4 with a different labelling, and the corresponding matrix 
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2.2 Givens Reduction of a Sparse Matrix and 
its Effect on the Associated Bipartite Graph 

Each Givens transformation involves only two rows. If rows i  and j  of X are the 

two rows involved, and the first element of row J is to be annihilated, then the transformation 

takes the form 

c  s  

— s  c  

xn  Xi2 

Xj \  Xj2  VP 

CXi2 +  SXj2 

0 —SXi2 + CXj2 ... 

CXjp "^SXjp  

-SXip + CXjp 

(2.2) 

where c = 

and 

s = 

S = 

S ' 

(x f i+xl ) ' ^  

In this transformation, row i  is called the pivot row, and the element is called the pivot 

element. 

Givens reduction of an n X p  matrix X  into the upper trapezoidal form (2.1) can be 

performed either by rows or by columns. In the following, the processing of an entire row or an 

entire column of X shall be referred to as a major step of the reduction, and the annihilation of 

a single nonzero will be referred to as a minor step of the reduction. 

When processing by rows, the pivots used in each minor step are fixed, as is their order. That 

is, once a row is selected, its elimination sequence is determined, since any other sequence may 

result in filling previously annihilated positions. This sequence is illustrated in Figure 2.6(a). An 

advantage of processing by rows is that each row can be read from auxiliary storage, and only the 

partially formed factor R needs to be accessed during reduction. 

Processing by columns allows much more flexibility within each major step. Each minor step 

can use any eligible row as a pivot, and rows can be processed in any order. During reduction, the 
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completed rows of matrix R do not need to be accessed, however the entire unprocessed portion 

of X needs to be accessed. Processing by columns is equivalent to processing by rows, in terms 

of operations performed, when a particular order is taken within each major step. Each major step 

must use a single pivot row, and rov/s must be processed in the same order within each column. 

Figure 2.6(b) illustrates this order. Only nonzeros on main diagonal of R are shown by 

When a subdiagonal element is zero, the corresponding minor step is omitted. Processing by 

columns is thus more flexible than processing by rows, and in fact is equivalent to processing by 

rows in a special case. For this reason the following will discuss only processing by columns. 

* * 

1 *  I  *  

2  3  *  2  7  •  

4  5  6  *  3  8  12 •  

7 8  9  10 •  4  9  13 16 *  

11 12 13 14 15 5  10 14 17 19 

16 17 18 19 20 6  11 15 18 20 

(a)  (b)  

Figure 2.6 Elimination order in Givens reduction by rows (a), and an equivalent elimination order 
by columns (b) 

Assuming no cancellation in (2.2), the nonzero structure of each of the two rows involved in a 

single Givens transfoimalion becomes the union of their nonzero structures before the transforma­

tion, excluding the annihilated element in the pivot column. Figure 2.7 gives an example. 

Let B = iR,C;E)  be the bigraph associated with a matrix X.  Suppose a Givens 

transformation is applied to rows i and J of X, with x,* as the pivot element and 

Xjif as the element to be annihilated. Both x,* and Xjk must be nonzero. In terms of the 
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© 
» 

» * * 

* * * 

before transformation 

* * * * 

* * * * 

after transformation 

Figure 2.7 An example of the nonzero structure of two rows before and after a Givens transforma­
tion. The pivot element is circled 

bigraph B it is said that a Givens transformation is applied to nodes r,- and rj  of B, 

with as the pivot edge and as the edge to be annihilated. If B'  is the 

bigraph after the Givens transformation, then the structure of S ' is given by adjacency sets 

Adj{rx ,B ' )  = Adj{rx ,B)  V rxsR,  \* i ,  \^j  

Adj{ri ,B ' )  = Adj{n ,B ) \JAdj(r j ,B)  (2.3) 

Adj{rj ,B ' )  = Adj{ri ,B ) [JAdj{rj ,B)  -  q.  

These sets, of course, completely describe B' .  Figure 2.8 gives the bigraph equivalent of Figure 

2.7. 

after transformation before transformation 

Figure 2.8 Bigraph representation of a Givens transformation of the two rows of Figure 2.7 
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Consider now a complete major step sequence of Givens transformations with a fixed pivot 

row. Let Bj = (R,C-,Ej) be the bigraph of only the unprocessed portion of X after the 

minor step within a given major step. After each major step, the pivot row becomes part of 

the R factor, so the unprocessed portion consists of those rows, which were not used as pivots in 

previous major steps. Suppose column node is being processed, and 

Adj{Ca,Bo) = {ry, ..., r,-1. Let be the pivot row, and let J2, -, A be 

the order in which rows are processed. After the first minor step, the structure of Bi is, as in 

(2.3), given by 

Adj{rx ,B{)  =  Adj{rx ,BQ) V r ) ,eR,  

Adj{r i ,Bx)  = Adj{r i ,BQ)\JAdj{r i^ ,BQ) 

^dj{r i^ ,B{)  = Adj( , r i ,BQ)\JAdj{r i^ ,Bt ) )  - c„. 

After the second minor step, the structure of Bi is given by 

Adj{rx,B2) = Adj{r^,Bi) V r^eR,  

Adj{r i ,B2)  = AdJ{r i ,Bi )[JAdj{r i^ ,Bi )  

Adj{r i^ ,B2)  = AdJ{r i ,Bx) \^Adj{r i^ ,Bi )  -

So in terms of Bq 

Adj{rx ,B2)  =  Adj(rx ,Bo)  V r^eR,  \^J2 ,  

Adj(r i ,B2)  = 

Adj{r i ,Bi )  = Adj{r i ,Bo)[JAdj{r i^ ,B( i )  -  c^.  

Adj{r i ,Bi )  = Adj{r i ,Bf i ){JAdj{r i^M<i){JAdj{r i^ ,BQ) -  c^.  

Finally, after completing the k  — l  minor steps, thus completing the major step, the structure 

of Bic-i is given by Lemma 2.2.1. 
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Lemma 2.2.1 

Adj ir i  ,Bk- i )  — 

[JAdj{ri,Bo) for X = 1 

[JAdj{ri_,Bo) - {cj for X = 2,3,...,^ 
i - 1  

Proof: Preceding discussion. D 

After completion of the major step, row becomes the next row of the matrix R,  

and only the remaining rows stay for further processing. The preceding lemma thus gives the 

means of updating the bigraph for each major step of the reduction. As it stands, however, a 

dynamic data structure is needed to represent the bigraph. This is because the adjacency sets are 

growing, as we form new unions in each major step. Section 2.5, with the aid of results of this sec­

tion and Section 2.3, develops a more efficient representation. 

2.3 Row Ordering 

Sparsity of the matrix R depends only on column ordering, and does not depend on the 

row ordering. However, the intermediate fill of the unreduced portion of X can vary substan­

tially with both row order and column order, and thus affect the number of operations or Givens 

rotations needed to produce R. The comparison of two row orderings is meaningful, only if the 

same column order is used for both. The column order, therefore, is assumed fixed in this section. 

When processing by rows, the row ordering is simply a linear ordering of the n rows. 

When processing by columns, however, the situation is much more complex. Each minor step is 

free to choose both rows from the set of rows with a nonzero in the current column at the current 

stage of the reduction. 
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Definition 2.3.1 When processing by columns, a row ordering a is a sequence of ordered pairs 

where each ordered pair corresponds to a minor step of the reduction. Each ordered pair 

{s,t) specifies the two rows involved, where s is the pivot row. 

There are two important restricted row orderings that need to be considered. The first 

restriction is when only a single pivot row is used within each major step of the reduction. An 

example of such row ordering is given in Figure 2.9. 

Definition 2.3.2 A single pivot row ordering is a row ordering, where the pivot row entry of each 

ordered pair is constant within each major step. 

2 8  * 

4 10 14 17 20 

* 

3 9  13 * 

6 11 15 18 19 

1 7  12 16 * 

5 » 

Figure 2.9 A matrix with a specified elimination order. Pivot elements are denoted by The 
corresponding single pivot row ordering is {(3,6), (3,1), (3,4), (3,2), (3,7), (3,5), (7,6), 
(7,1), (7,4), (7,2), (7,5), (1,6), (1,4), (1,2), (1,5), (4,6), (4,2), (4,5), (6,5), (6,2), (5,2)1 

Each major step of a single pivot row ordering induces a partial ordering on the rows of X. 

Definition 2.3.3 Let l(i,Ji),(s,t2),...,(j,it)} be a subsequence of a single pivot row ordering 

corresponding to a major step. The partial ordering induced by this subsequence on the set of n 

rows is s, fi, /2, ..., ft. 
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The second restriction requires that the partial orderings of the n rows, induced within 

each major step of a single pivot row ordering, do not disagree. For example, the single pivot row 

ordering of Figure 2.9 is not of this type, since rows 2 and 5 are taken in different order in major 

steps 4 and 5. 

Definition 2.3.4 A compatible row ordering is a single pivot row ordering, where the partial order­

ings induced within each major step on rows of the matrix are compatible. 

A compatible row ordering corresponds to the elimination order of Figure 2.6(b). With this 

type of row ordering, a linear order of the n rows is produced, and so processing by columns is 

equivalent to processing by rows. 

Each of the successive definitions puts more restrictions on the row ordering. Thus, the class 

of all row orderings contains the class of single pivot row orderings, which contains the class of 

compatible row orderings. This section contains results on the two latter classes of row orderings. 

Suppose Givens reduction by columns with a single pivot row ordering is performed on an 

nXp matrix X. Let Bj = be the bigraph associated with the unreduced 

portion of X after the _/'* minor step following the i'* major step. Thus 5° is associ­

ated with the original matrix X. For notational convenience define 0^ to be the ordered set of 

row nodes involved in major step i under single pivot row ordering a where c, is the pivot 

column node. That is, % = Adj{Ci,B'^^) under row ordering a. After the completion of 

/'* major step, which involved fcj rows, the structure of in terms of the structure of 

5b~' is obtained by applying Lemma 2.2.1: 

K 
(J AdM.X'') for X = 1 

(2 .  

\J  for X = 2,3 
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The bigraph of the unreduced portion of X, Bq = (i?',C';£o), is then obtained by 

removing the two nodes of the pivot edge of major step i. That is, 

R' = R'-^ -  ir,} 

C = C'-' - {c,l (2.5) 

£'o = E[--\ - { (r,-,c) I ceC \ , 

where is the pivot edge of major step a,-. A direct result of Lemma 2.2.1 is the fol­

lowing theorem. 

Theorem 2.3.1 AdMiA) Q AdjiWM) C • • • C Adj{{Qiik,B'o)-

Proof: Lemma 2.2.1 gives 

Adji{ei}^M;-\) = IJ Adjm^B'o-') - Ic,) for X = 2.3,...,. 
5 —I 

But for X = 2,3 ki . • 

Now consider two row nodes r, and r, involved in major step i, which satisfy 

AdJ{rs,BQ~^ ) C Adj(r,,BQ~^ ), where the inclusion is proper. It is natural to process row 

node r, before r, to avoid possible unnecessary local fill-in in this major step. 

Definition 2.3.5 A single pivot row ordering a is locally acceptable, if whenever 

r,,r, e and) C Adj{r„Bo~^), with proper inclusion, r, is ordered 

before r, in 8^ 

The following lemma is useful in proving a theorem about locally acceptable single pivot row 

orderings. The lemma essentially states, that if a previously processed row is involved in a subse­

quent major step, all rows which followed it in the previous major step are also involved. 
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Lemma 2.3.1 Let m be the smallest j>i such that % D 8^ 9^ g. Then, 

{eilx ^ ©o. ^ = 2 u-1, and {0i}x e 0?. X = u, 

for some 2 < u < kj. 

Proof: Adj{r,Bo~^) = AdJ{r,B'Q) V r e 8'„ since these row nodes were not 

altered between major steps i and m Let u be the smallest X such that 

Cm £ Adj({S'^x,Bo), where c„ is the pivot column node of major step m. Then by 

Theorem 2.3.1 c„ e /lJy(jei}x,flo) for X = u, and by definition of 

u, c„ ^ for X = 2, ..., u-1. • 

Theorem 2.3.2 A locally acceptable single pivot row ordering is compatible up to the order of rows 

with identical nonzero structure. 

Proof: Let a be a locally acceptable single pivot row ordering, and consider ©i and 8^ 

of Lemma 2.3.1. The row nodes in ©i satisfy the relationship of Theorem 2.3.1 after completion 

of major step i. So, because a is locally acceptable, the order of row nodes common to major 

steps I and m must be the same in 9" as in 0^ except possibly row nodes with identi­

cal adjacency structure. This holds for any major step /, so a must be compatible up to the 

order of rows with identical nonzero structure. • 

If two rows have an identical nonzero structure, reversing their order will have no effect on 

the fill-in created during the reduction. Thus, any locally acceptable single pivot row ordering can 

be made completely compatible without changing the fill-in created. So a locally acceptable single 

pivot row ordering is essentially compatible. Compatibility is a good property, as it allows process­

ing by rows during the numerical phase of the reduction. Locally acceptable single pivot row order-
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ings are a subset of the class of all single pivot row orderings. What is lost by considering only 

locally acceptable single pivot row orderings? Theorem 2.3.3 will show that nothing is lost. 

Let ^d7a(r,Bo) be the adjacency structure of row node r after major step i  under 

row ordering a. Definition 2.3.6 gives a means of comparing some row orderings. 

Definition 2.3.6 A row ordering jS is at least as good as row ordering a , if 

Adjff{r,B'o) Ç Adja(r,Bo) V r e for i  = 1, 2, . . . ,  p. 

The use of this definition is not in finding a good row ordering, because it cannot compare just any 

two row orderings. But it is sufficient to obtain a result about locally acceptable row orderings, 

without assuming a specific criterion, such as number of operations, or number of Givens transfor­

mations required for the complete reduction. The criterion of Definition 2.3.6 is more conservative 

than more specific criteria. A statement of "at least as good as" in terms of this definition implies 

"at least as good as" in terms of many reasonable specific criteria, such as the two named above. 

Theorem 2.3.3 For every single pivot row ordering a there exists a locally acceptable single 

pivot row ordering which is at least as good. 

Proof: Let 7 and Ô be two single pivot row orderings, which are identical up to major step 

i. That is, 6* = 6* for A = 1, 2, • • • , / — I, so that 

Adjy{r,Bo) = Adji{r,Bo) V r e for/i = 1, 2, • • • , i-l. Sup­

pose Adj^ira^B'a'^ ) C Adjy{ri„Bo~^ ), with proper inclusion, and same holds for ordering 

5. Within major step 1 let y take row node before row node rj, and let 5 take 

them in the reverse order. That is, {Q'y]^ = jSj]* for all h except 

{©y, = {9|}, = To and |e(}, = {e|}, = /-&, s<t. Then, using Lemma 2.2.1, for 

h = max(2,j), • • • , r —1 
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Adj,{\id%,B\>) = M Adj,{[%}„,B'o-') - kl 
m<h 

= \J Adj,i{ei,}„,Bh-')UAdMr,,B'o-') - k,) 
m<h 
m 

Ç y Adj,{{e%,B'o-')UAdji{r^,B'o-') - {c,} 
m<h 
m 

= y AdjmmM'o-') -  k.} 
m<h 

and for h = I, • • • ,  max(2,j)—1, t, ' - ,  k, 

xd)\({e(|AX) = Adj^Ml 

So that AdJy(r,Bo) Ç Adji{,r,Bo) ' i  r e R'. Suppose y and 5 are also 

identical after major step i, except for rows which are omitted in y due to the switch in 

major step i. Since only unions are taken to form new adjacency sets of row nodes, 

Adjy(r,Bo) C Adji{r,BQ) V r sR'' for A = i + l, ,  p. Thus, 

y is at least as good as 5. Given any single pivot row ordering, pairwise row interchanges 

within major steps, such as the change from 5 to y, can produce a locally acceptable single 

pivot row ordering. Each interchange produces a row ordering, which is at least as good. So the 

final locally acceptable single pivot row ordering will be at least as good as the original row order­

ing. • 

Corollary 2.3.1 For every single pivot row ordering a there exists a locally acceptable compati­

ble row ordering ,8, which is at least as good. 

Proof: By Theorem 2.3.2 a locally acceptable single pivot row ordering is compatible up to the 

order of rows with identical nonzero structure. But the order of these rows can be altered without 

affecting the nonzero structure. • 
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The set of locally acceptable compatible row orderings thus contains row ordering; which are 

at least as good as any given single pivot row ordering. Single pivot row orderings in general do not 

allow processing by rows. So locally acceptable compatible row orderings are attractive, since they 

do allow processing by rows, and yet do not restrict opportunities for good orderings. 

A locally acceptable compatible row ordering can be constructed during the symbolic factori­

zation discussed in Section 2.2. In fact, local acceptability is defined in terms of the nonzero struc­

ture of a partially factored matrix. If the rows involved in each major step are ordered according 

to the local acceptability principle, the resulting row ordering will be locally acceptable. Theorem 

2.3.2 assures compatibility of this ordering except for rows with identical nonzero structure. If the 

nonzero structure of two rows becomes identical in any major step, it will remain identical in subse­

quent major steps. By letting the first occurrence of these two rows determine their order in subse­

quent major steps, complete compatibility is ensured. 

Duff (1974) tested three row ordering strategies. Two of the strategies satisfy the local 

acceptability criterion, when ties are handled properly, and their performance on the test matrices 

used was uniformly better than the third strategy. Duff used the number of Givens transformations 

as the criterion of comparison. The two strategies are given below. Strategy 2.3.1 is referred to as 

the minimum pivotal row fill strategy, and Strategy 2.3.2 is referred to as the local minimum fill 

strategy. 

Strategy 2.3.1 Within each major step take the sparsest row as the pivot row, and then for each 

minor step process the row which causes least fill in the pivot row. 

Strategy 2.3.2 Within each major step take the sparsest row as the pivot row, and then for each 

minor step process the row which causes the least fill in all rows remaining in the current major 

step. 
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Note that Strategy 2.3.2 does not count the fill created in the pivot row directly. Rather, it 

counts the fill distributed by the pivot row to remaining rows within the current major step. Duff 

calls this the corrected fill-in count. 

Another strategy, which produces a locally acceptable row ordering, simply considers the 

number of nonzeros in each row locally within each major step. This will be called the minimum 

local row count strategy. 

Strategy 2.3.3 Within each major step take the sparsest row as the pivot row, and then for each 

minor step process the row with the least number of nonzeros. 

It is sometimes the case, that a relatively full row will cause severe fill-in in the matrix R. 

As was pointed out in the beginning of this chapter, it is also possible that some less obvious rows 

will cause this. Leaving out these rows from the initial factorization, and then updating the solu­

tion with these rows, may be advantageous. Chapter 3 deals with the question of updating. Since 

the bigraph contains the information on row structure during Givens reduction, it may be used to 

decide which rows should be left out. Particularly the amount of fill-in a row causes in a minor 

step can be used to make this decision. The last part of Section 2.5 addresses this topic again. 

Only the two restricted classes of row orderings, as defined at the outset of this section, were 

discussed so far. Theoretically, only the class of row orderings allowing variable pivots possibly 

contains better row orderings, than the class of locally acceptable compatible row orderings. Duff 

(1974) has compared a variable pivot row ordering strategy with Strategy 2.3.1, On the test 

matrices considered, there was little to choose between the two strategies tested. There is, however, 

a rather special case, where the matrix structure clearly warrants using a variable pivot row order­

ing strategy. Matrices with this special structure are discussed in Chapter 4. 
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2.4 Column Ordering 

In contrast to the definition of a row ordering, the definition of a column ordering is the same 

whether the matrix is processed by rows or by columns. 

Definition 2.4.1 A column ordering is simply the linear order in which columns are processed. 

The column order affects both the sparsity of the R factor, and the number of operations 

needed to obtain it. A number of the most popular strategies is discussed in George and Liu 

(1981). Some are also discussed by Duff (1974), and Duff and Reid (1976). Rose (1972) gives a 

good graph-theoretic study of the ordering problem for a positive definite matrix. The strategies 

can be divided into two classes. Strategies in one class use only the initial nonzero structure of 

X or X'X to determine the column order. These include band and envelope methods, and 

dissection methods. Strategies in the other class make local decisions, during numerical or symbolic 

factorization, about which column to choose next. These include the minimum degree algorithm 

and other variations or generalizations of the Markowitz (1957) scheme. The strategies discussed 

here are in the latter class. 

It is advantageous to perform the factorization symbolically, in order to obtain a data struc­

ture for the factor R. This speeds up the numerical factorization, as it can be done in a fixed 

rather than dynamic data structure. This chapter develops a symbolic Givens factorization algo­

rithm for this purpose. George and Heath (1980) perform symbolic Choiesky factorization of 

X'X to obtain the nonzero structure of As was pointed out at the beginning of this chap­

ter, this is done because the Cholesky factor and the Givens factor are mathematically equivalent. 

However, they are equivalent only in the numerical phase. When only the positions of nonzeros are 

considered without the information on their values, as is done in symbolic factorization, in general 

the two are no longer equivalent. This is illustrated by the examples in Figure 2.1. The symbolic 
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Cholesky factor provides, in most cases very good, upper bound on the symbolic Givens factor in 

the sense of positions of nonzeros. It would be useful to know how and when exactly do the two 

symbolic factorizations differ. This discussion is included in this section, as it is only the column 

order that affects the nonzero structure during Cholesky factorization. First, the relationship 

between a bipartite graph associated with X and a graph associated with A = X'X will 

be discussed. 

We start by defining the Bireach operator, which gives the set of nodes in a graph reach­

able by a path of length two from a given node. 

Definition 2.4.2 Bireach{c,B) = M Adj{r,B) — {c}, where 
re^icJB) 

B = (R,C-,E) is a bipartite graph. 

This operator can then be used to construct a graph associated with X'X from a bigraph 

associated with X, as can be seen in the following theorem. 

Theorem 2.4.1 Let B = {R,C;E) be a bipartite graph associated with X, and 

G = (C;F) be a graph associated with X'X. Then Adj{c,G) = Bireach{c,B) 

V c e C. 

n 
Proof: Let c, e Adj{cj,G), so that # 0. But a,y = 2 so 

m — i 

columns i and j must have at least one nonzero in a common row. This means that 

Adj(cj,B) n Adj{cj,B) # thus c,- e Bireach(cj,B). With the assumption of no 

cancellation in 2 the reverse of the above argument holds, so that 
m — ï 

Ci  e Bireach {c j ,B) implies c, e  AdJiCj,G). •  
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One step of Cholesky factorization of A using the outer product form, as described in 

George and Liu (1981), takes the form , 

A = Aq = Ho = 
à\ f i '  

"1 ^1 

0 1 0 

0 if, 

"1 

0 4-1 

where H\ = Il\ — 
"l"!' 

=  I i / l i L i ' ,  

. This step is applied recursively to Hi, ..., 

and finally R' = L\Li • • • Lp. One major step of Givens reduction by columns takes 

the form 

/I PI 

0 X — Xq — Q\ 

where Qi is the product of orthogonal Givens rotation matrices, /i is a scalar, and other 

matrices conform. Then, 

/i f \P\ 

/IPI' PI'PI+^I'-YI 

so that if Xi is the unreduced portion of X in Givens reduction by columns after major 

step /, then Hi = One step in Cholesky factorization is thus equivalent to one 

major step of Givens reduction by columns. Let G' = (C';F') be the graph of if, and 

c,- be the pivot column node of major step i. The following algorithm for producing G' 

from is adapted from Parter (1961). 

Algorithm 2.4.1 

1. Add edges to so that Adj(,Ci,G'~^) are pairwise adjacent. That is, 

AdJ{c,G') = Adj{c,G'-^) U Adj{Ci,G'-^) V c e Xdy(c,.C'-'). 
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2. Delete node c, and all edges incident to c,-. 

As in Section 2.3, let fl'o = {R',C'-,Eo) be the bigraph associated with Algo­

rithm 2.4.1 is used to update the unfactored portion of X'X in symbolic Cholesky factorization, 

and (2.4) together with (2.5) is used to update the unreduced portion of X in symbolic Givens 

factorization. If G' represents Hj and B'q represents Xi, then by Theorem 2.4.1 

AdJ{c,G') — Bireach[c,Bo) V c e C. This is clearly the case with 0° and 

3°. Theorem 2.4.2 shows when Adj(c,G') = Bireach{c,B'o) V c e C holds for 

I > 0. When this relationship holds for a given i, the /'* symbolic Cholesky step is 

equivalent to the /'* symbolic Givens major step. 

Theorem 2.4.2 Let Adj{c,G'~^) = Bireach(c,B'~^) V c e C'~'. Then, 

Adjic,G') = Bireach{c,B') V c e C\ except when /lrfy"(c,,5o~') = {rj 

for some row node r„, and there exist two other column nodes cj,c„ e Adj{ra,Bo~^ ) 

such that Adj{Cj,Bo~^) Pi ^d;(c„,Bo~') = {rj. That is, except when only a single row, 

/•„, has a nonzero in the pivot column, and at least one pair of other columns has a nonzero inner 

product only due to row fg. 

Proof: Let = Adj{ci,BQ~^) be the set of ki row nodes involved in major step i. 

By definition, for c 6 C, 

Bireachic,B\i) = Adj(r,B'Q) -  {c} 
reAdJic^^) 

(J Adj{r,B'o) y (J Adjir^B'a) -  (c}. 
r6AdjUj\y) - rEAdJic^g) n » 

The row nodes in the first term are not altered in major step /, so fi'o can be replaced by 

5'o~' giving 
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IJ Adj{r,B'o-') 
reAdjU^^^) -  9' 

u (J Adj{r,B\,) 

reAdjicM'o) n * 

- c, (2.6) 

If c i Adj(Ci,G'-^) = fii>eacA(c„flr') = Adj{.&A~^\ then 

Adj{c,BQ) n 0" = 0, and so the second term of (2.6) is null. Also 

Adj{c,Bo~^) — & = Adj{c,Bo~^), so that (2.6) equals 

Bireach{c,Bo~^) = Adj(c,G'~^) = AdJ{c,G'). 

If c 6 Adj{Cj,G'~^), then two cases must be considered. First, suppose = 1. Then 

0* = {rj for some row node r^, and by (2.5) ^ R', so 

Adj(c,Bo) n Q* = 0. So (2.6) becomes 

U Adj{r,B'o-') - !c}. 

reAdjUJ^a'^) -  » 

Note that in this case Adj{Ci,G'~^) = AdJ{ra,B'Q~^), so that e Adj{c,BQ~^)-

This gives Bireach(c,Bo'^) D Adj{ra,B'o~^) = 5i>eacA(c,,5'o~'), so that 

AdJ{c,G'-^) 2 Adj{ci,G'-^), and Adj{c,G') = Adj{c,G'-\ 

Now if there exists c„ # c, such that Adj{c„,B'^^) fl ^</;(c,5ô~') = W, as 

specified in the "except" clause of the theorem, then Adj{c„,BQ) Pi Adj{c,B'(i) — 0. 

This means that c„ e Bireach(c,B'^^), and c„ ^ Bireach{c,Bo). So 

Bireach{c,B'fi'^) # Bireach{c,B'^), and Adj{c,G') # Bireach{,c,B'q) (in fact 

Adj(c,G') 3 Bireach{c,B'f^)\ thus giving the "except" clause of the theorem. 

Otherwise, if such c„ does not exist, (2.7) equals 

(J AdJ{r,B'o'') -  {c} 
reAdJic^a'^l 

= Bireach{c,Bo'^) 

= Adj{c,G'-^) 

= Adj{c,G'). 

(2.7) 



31 

Now suppose ki > 1. By Lemma 2.2.1 Adj{Qf,Bo ') = Adj({Qf]t,BQ), and 

{G'tt 6 AdJ{c,Bo), so & can be omitted from the first term of (2.6). (2.6) now becomes 

Bireach{c,B'Q-') |J AdjdQ'l^B'o) 

= Bireach(c,B'o-^) y Adj(&,B'o-^) 

= Bireach{c,Bo'^) Bireach{Ci,Bo~^) 

= AdJ{c,G'-') y Adj{Ci,G'-') 

= Adj{c,G'). •  

This is a rather tedious proof. The general idea is, that if more than one row is involved in a 

major step, the nonzero patterns of these rows are copied into the last row involved, which stays in 

the bigraph. If only a single row is involved, it leaves the bigraph, and if its effect on the 

Bireach pattern is not duplicated in other rows, the pattern changes. The graph representation 

does not see that only one row was involved, and fails to record any change in the adjacency pat­

tern. 

In terms of numerical Cholesky factorization, the above situation amounts to a special case of 

numerical cancellation. To illustrate this, consider the outer product form of Cholesky factoriza­

tion, as described earlier in this section. The cancellation occurs when forming 

Hi = . If h^j is the i/* entry of then 
"I 

But 

''iV - LO 
A l l  

m ~ l  
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so that 

n 

2 4; 
m —1 

Now if column 1 of X has a single nonzero in row a, and nonzeros of columns d and 

e of % coincide only in row a, then the de entry of Hi reduces to 

After an occurrence of such cancellation, the two types of symbolic factorization no longer agree, 

since the symbolic Cholesky factorization does not detect the cancellation. 

The most popular algorithm, based on local decisions during Cholesky factorization, is the 

minimum degree algorithm due to Tinney (1969), which is a symmetric matrix variant of the Mar-

kowitz (1957) scheme. 

Definition 2.4.3 The degree of node c in graph G = (C;F) is the number of edges 

incident to c. That is, Deg(c,G) = \Adj{c,G)\. 

At each step of symbolic Cholesky factorization, the node with minimum degree is processed 

next. This minimizes locally the number of nonzeros in the next row added to the matrix factor 

R. In fact, the minimum degree is the number of nonzeros in the row added to R. Using 

Theorem 2.4.1, this algorithm can be adapted to symbolic Givens reduction. The degree of each 

column node c after major step i is given by \Bireach{c,BQ)\. The adapted algorithm 

operating on the bigraph B associated with X should perform better in some cases than the 

algorithm for graph G associated with X'X, since it accounts for the numerical cancellation 

discussed above. 

0 . 
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In a large sparse matrix it is usually the case, that many columns have the same degree. 

When operating on the graph G, there is no information which can be meaningfully used to 

break the minimum degree ties. The bigraph B, however, has information on row nonzero struc­

ture, which can be used for meaningful tiebreaking in the adapted minimum degree algorithm. An 

example of a simple tiebreaking strategy is to take the tied minimum degree column which has the 

least number of nonzeros. This will have the effect of processing columns which involve fewer rows 

early. The number of operations needed to produce R should decrease, but the number of 

nonzeros in R will probably not be greatly affected. Also note that when a column with a single 

nonzero is processed, no fill is produced, since the row simply becomes part of R. Without such 

tiebreaking, columns with a single nonzero may be lost by being filled-in. Both examples of Figure 

2.1 illustrate this. All columns are tied with degree three, but processing first any other column 

than column one will produce fill. Column one is ordered first with the simple tiebreaking strategy. 

Other column ordering strategies for Givens reduction include those given by Duff (1974), 

where he uses them directly during the numerical phase of the reduction without performing a sym­

bolic phase. Some of these are: taking the column with minimum nonzero count; taking the col­

umn with minimum nonzero count in the row with minimum nonzero count; taking the column 

which contains the minimum product of row and column counts (Markowitz (1957)); and taking 

the column which contains the minimum product of the row count and the square of the column 

count. Any of these strategies can be used in the symbolic Givens reduction described in this chap­

ter to generate a data structure for the numerical phase. 

2.5 Implementation of Symbolic Givens Reduction 

The successive bigraphs of the unreduced portion of the matrix after each major step can be 

generated using (2.4) and (2.5). Since we are taking unions, the number of edges in the bigraph 

can grow. As a result of Corollary 2.3.1, we are only interested in locally acceptable compatible 
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row orderings, when the numerical factorization is to be done by rows. Using Theorem 2.3.1, an 

efficient representation can be developed for the successive bigraphs, when a compatible row order­

ing is used. First, a few more definitions are needed. Most of the definitions can be found in 

George and Liu (1981). 

Definitioo 2.5.1 A connected graph is a graph in which there exists a path between all pairs of 

nodes. 

DeflnitioD 2.5.2 A tree T = (%;E) is a connected graph, where 

l%l = |E| + 1 . 

It is easily shown, that every pair of nodes in a tree is connected by exactly one path. 

Definition 2.5.3 A rooted tree is an ordered pair {r,T\ where r is a distinguished node of 

T called the root. 

The path from r to a node % e % is unique. If the path passes through 

y e X, then y is an ancestor of x, and x is a descendant of y. If in addition 

ix,y) € E, then y is the parent of x, and x is a child of y. Another way to 

characterize a rooted tree is that every node has a single parent except the root, which has no par­

ent. A node y together with its descendants and associated edges is a subtree of T, and y 

is the root of this subtree. A rooted tree can be used to impose a partial ordering on its nodes. 

Definition 2.5.4 If node x is a descendant of node y, then x is ordered before y. 

The ordering works, because only a single path exists between every pair of nodes, and thus 

there can be no conflicts. 

Definition 2.5.5 A forest is a collection of rooted trees. 
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Note that every forest can impose a partial ordering on its nodes using Definition 2.5.4, but 

not every partial ordering can be represented by a forest. For example, 

b<a, c<a, d<b, d<c is a partial ordering of {a, b, c, d}, which does not have a 

forest representation, since two paths would exist between d and a. 

Consider a forest of single root nodes, corresponding to the row nodes of a bigraph before 

symbolic Givens reduction begins. This forest imposes the null partial ordering on its nodes. Each 

major step of the reduction, when using a single pivot row ordering a, can be viewed as imposing 

a partial ordering on the row nodes of the bigraph. Definition 2.3.3 gives this ordering. The set of 

nodes ordered, and their order, in major step i is given by 9^ Given the sets 

1 = 1,2, ..., p, Algorithm 2.5.1 can be used to update a forest representation of 

the accumulated partial ordering after each major step i. 

Algorithm 2.5.1 

1. for m = 1 to A:, —1 do 

2. remove edge from to its parent, if present 

3. add edge to make a child of {6^m+i 

4. endfor 

Theorem 2.5.1 If a is a compatible row ordering, then the accumulated partial ordering after 

each major step can be represented by a forest generated by Algorithm 2.5.1. 

Proof: Suppose we have a forest representing the accumulated partial ordering after major step 

/ — 1. First it will be shown that the algorithm produces a forest after major step i, and then 

that the forest represents the accumulated partial ordering. After major step 0, that is before 

major step 1, we have trivially a forest representing the null partial ordering, so by induction the 

theorem holds. 
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Only steps 2 and 3 of the algorithm affect the forest structure. If (8^^ has a parent, then 

{eilm together with Its descendants form a subtree, say T„ = Removing the 

edge to its parent creates two connected components, one of which, T„, is a tree. The other 

component must also be a rooted tree, since the original structure was a rooted tree. So now 

l6i)„ is the root of T„. The node ^ since it cannot be a descendant of 

{8i}m, because a is compatible. Ancestors or descendants of {6i}m+i also do not belong to 

X„, since T„ is connected. Thus and {©ilm+i belong to two disjoint rooted trees, 

and {9i}„ is a root. Making a child of l0^m+i creates a single rooted tree from the 

two disjoint rooted trees. Thus, the algorithm preserves a forest structure. 

To show that the forest represents the accumulated partial ordering, first we show that if 

r £ Q'a, then all ancestors of r must also belong to 0^, and moreover must be ordered 

after r. It is sufficient to show this for the parent of r. If r is a root, then it is trivially 

true. If r has a parent, say s, then there exists j < i such that r = {©^a, 

f = 195A + I. 2 < A < kj—\ (Note that h ^ 2, since h = 1 gives the 

pivot row of major step j, which is no longer present in 5'o~'.). By Theorem 2.3.1 

Adj{r,S'(r^) C Adj{s,Bo~^), so s e di- Since a is compatible, s is ordered 

after r in 8^ Hence if r has an ancestor / before adjusting the forest for ©4, it still 

has the ancestor after adjusting for ©Jj. So, any previous partial ordering information is not altered, 

and clearly any new partial ordering information is recorded by step 3 of the algorithm. Thus the 

forest produced after processing ©i represents the accumulated partial ordering after major step 

J. • 

Let T' = be the sequence of forests generated by Algorithm 2.5.1. This 

sequence of forests together with So> the initial bigraph, can generate the sequence Bq of 

bigraphs. This is stated in a theorem that follows, which is the main result of this section and 
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forms the basis of the implementation of symbolic Givens reduction. 

Definidoo 2.5.6 Fam(r,T) = e % | j is a descendant of r} jr}, where 

T = {X\H) is a forest. That is, Fam{r,T) is the "family" of r in T consisting of 

all the nodes in the subtree of T rooted at r. 

Theorem 2.5.2 Adj{r,Bo) = Adj{Fam{r,T'),Bo) D C "i r € R'. 

Proof: For X = 2, 3, ..., kj, (2.4) can be written as 

= \jAdM„B'o-') - k-L 
j - l  

and note that {9^}, e Fam(!6i}x.7"'), for i = 1, 2, 

Suppose c e Adj{r,Bo), and r e then c e C', and by (2.8) 

c e Adj(Fam{r,T'),Bo~^)- If ^ ©i. then Adj{r,Bo) = AdJ{r,Bo'~^), and 

trivially c s Adj{Fam(r,T'),Bo~^). Now, there exists / e Fam{r,T') such that 

c e /4rf/(r',5'o~'), so by the same argument as above c e AdjiFamir,T'~'),B'(r^)-

But Fam(r',T'~^) C Fam(r,T), so c e AdJ(Fam(r,T'\Bo~^). This can be 

repeated until finally c e Adj{Fam{r,T') ,Bq),  and so 

Adi{r.B\^) Ç Adj[Fam{rT),B°^) fl C. 

Suppose now c e Adj{Fam{r,T'),Bo) D C, where r e R'. There exists an 

r' € Fam{r,T') such that c e Adj{r',BQ). Since the nodes in Fam{r,T') form a 

tree rooted at r, there exists a unique path from / to r. Let this path be 

(f,, f;, ..., r„)_ where f and r„ = r. Each r, is a child of + 

J = 1, 2, ..., nt — l. Since r, is a child of r,+|, then by construction of T' there 

exists j < i such that r,+i follows r, in 0^ So if J e Adj{r„Bi~^), then 
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d £ + Therefore, there exists f < i such that c e Adj{r,B^), so 

that c 6 Adj{r,Bo), and we have Adj{Fam{r,T'),BQ) Ç Adj(r,Bo). •  

The implication of this theorem is that the symbolic Givens reduction can be performed in a 

fixed row oriented data structure. The initial bigraph Bq need not be modified, only each suc­

cessive forest structure T' needs to be updated after each major step. The construction of T 

from r'~' requires 6^, which is the ordered set Adj{Ci,Bo~^), where c, is the pivot 

column node of major step i. Because a row oriented data structure is used, Adj{Ci,Bo~^ ) is 

not available directly, and must be computed. Note that r e Adj{Ci,Bo~^) iff 

Ci e Adi{r,B'(^^), so 9^ can be constructed by checking if 

Ci e /ld[/(r,fl'o"') = Adj{Fam{,r,T~^),BQ) V r e R'. The computational 

effort can be greatly reduced by using the information in F'"' about Adj{r,Bo~^). Particu­

larly, if /•[ is a descendant of r; in T'~\ then Adj{ri,Bo~^) Ç Adj{r2,Bo~^). So 

that if T] 6 9'a, then all ancestors of r, in T'"' belong to 9^. Furthermore, if the 

bigraph is modified after each major step by deleting redundant edges, information about descen­

dants can also be used in reducing the computational effort. Consider generating a sequence of 

bigraphs Wj by Algorithm 2.5.2, defining Bq = 5°. In major step i, {9^y_, 

becomes a descendant of {9jj,', so any column nodes in am(|9^y-1,T'"';) can be 

removed from AdJ(l9i}j,BjZ2), while maintaining the structure of 

Adj(Fam({9ijj,T'~^),BjZ\) unchanged. The array Pj is initialized to all zeros, and keeps 

track of pivot rows, since these become part of the matrix factor R. The pivot row nodes are not 

removed, since they still contribute to the structure of their ancestor nodes through the Fam 

operator. However, in order to have a forest in which every node is "available" (has a zero entry in 

P), a supernode is formed from each pivot row node and its parent (which has a zero entry in 

P), and the parent is the representative of this supernode. Elements of each supernode are 
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represented by a linked list starting with each supernode representative. An exception is when 

ki = 1 in a major step. In this case, the pivot row supernode no longer contributes to the 

structure of any other rows, and the corresponding entries in P are set to 2 to indicate this. 

Algorithm 2.5.2 

1. if A:,- = 1 then set f to 2 for each member of supernode {8^, 

2. else 

3. for J = 2 to ki do 

4. for each r  in supernode {8i}y do 

5. Adj{r , f f jZ\)  Adj{r ,B' jZ\)  -  Adj(Fam{\ei}j- i ,r- ' ) ,WjZ\)  

6. endfor 

7. endfor 

8. link supernode {8^}, to supernode {8^2 

9. for each r  in supernode {8^| do 

10. $ - Fam{{ei}2,r-') - Fam(l8i}„r-') 

11. AdjirM) *- AdjirMrù " - jc,} 

12. endfor 

13. - 1 

Note that, as B^jZ] is formed from in the loop of step 5, only the adjacency 

structure of row nodes in supernode {8^; is modified. Step 8 is accomplished by linking the 

end of supernode {8^2 list to node {8jj]. After this link is made, each r in supernode 
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|6i)i must satisfy Adjir,Bo) Pi AdJ{s,BÔ) = 0, for all 

5 6 Fam({9i)2,r'~') — Fam(\S'Ji,T'~^). The necessary adjustment is in the loop of step 

10. A similar relationship, as in Theorem 2.5.2, holds for this new sequence of bigraphs. 

CoroUary 2.5.1 AdJ{r,B'o) = Adj(.Fam(r,r)M) V r e RK 

Proof: It is enough to prove Adj{Fam{r,T),Bl) H C = Adj{Fam(r,T'),B'o) 

V r E R\ and use Theorem 2.5.2. 

The equation holds for i = 0. Suppose it holds for i = m. If ^ S" then 

it clearly holds for i = m + l. If r e ©a"'"', and say r = {8^ 

h 
then note that Famir,!'"'*'^) = ^Fa/n((8^^ 'L,), 

i - 1  

so that /lrfy(fam(r,7""+'),5§) fl C = Adj 
J —1 

n c 

= (J AdjiFam{{Q^ + \,T'"),B°o) O C 

= y AdJ{Fam({S^'-'l,T'"),BS') D C 
J —1 

= AdjiFamirJ^+^lB^) O C 

= Adj{Fam{r,T'"-^^),BS'-^^). 

Hence, by induction the relationship holds for all i. •  
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The sequence of bigraphs flj has the nice property, that if c, e then 

c, ^ {ancestors and descendants of That is, if r, is an ancestor of then 

Adj(ri,B(i~^) n Adj(r2,Bô~^) = 0. This aids in the search for r such that 

Cj e Adj(r,B'^^). When we Find an r such that c, e Adj{r,Bo~^), then we imme­

diately know that ancestors of r belong to and descendants of r do not belong to 

04. Also note that when forming Q'a, r must be ordered before its ancestors, so it is con­

venient to find it first. These advantages are at the expense of extra work done in generating the 

fly sequence. However, the extra work done in a given major step is useful not only in the next 

major step, but in a number of subsequent major steps. Algorithm 2.5.3 performs symbolic Givens 

reduction incorporating the above ideas. 

Algorithm 2.5.3 

1. - ag = (R°,c°;£S) 

2. R°; H° 0-, r" = 

3. initialize array P to zero 

4. for i = I to p do 

5. initialize array / to zero 

6. choose Ci 

7. for J = 1 to n do 

8. if Ij = 0 and Pj < 2 then 

9. if c, e Adj{rj ,B 'o ') then 

10. if Pj — 0 then r  — rj  
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11. else r — ancestor of rj with zero entry in P 

12. & ^ \J r 

13. set /j 1 V 5 such that r, e Fam(r,T'~^) 

14. set /j 1 V 5 such that ancestor of r in P"' 

15. endif 

16. endif 

17. endfor 

18. order S* and its ancestors in T'"' to form ordered 00 

19. use Algorithm 2.5.1 to form T' from T'"' using 9^ 

20. use Algorithm 2.5.2 to form B 'q from flô~' using 

21. endfor 

The sequence of bigraphs B) is represented in a row oriented data structure. Adjacency 

lists for each r e R° are stored sequentially in a one dimensional array of length |£oi, 

and pointers to the beginning of each adjacency list are stored in an array of length n + 1. 

Steps 5 and 10 of Algorithm 2.5.2 are accomplished by making the appropriate entries in the adja­

cency lists negative. The sequence of forests, T', requires 3n storage locations, and is stored in 

a triply linked tree form (see for example Knuth (1968)) to facilitate fast searching. Steps 6 and 

18 in Algorithm 2.5.3 are dependent on the column ordering and row ordering strategies respec­

tively. 

The representation of symbolic redction in Algorithm 2.5.3 is not simple to explain, and an 

example is needed to aid the above explanations. The computer implementation of the algorithm is 



43 

discussed in Section 5.1, where an example of the reduction process is also given. All of B'o, 

5'o, and T' are displayed for a few stages of the reduction on a sparse matrix. 

Implementation of the minimum degree column ordering strategy requires additional p 

storage locations for the column degree. As outlined in Section 2.4, the degree of a column node 

c after major step i is \Bireach{c,BQ)\, which is given by Definition 2.4.2. Note that after 

each major step, only the degree of column nodes in /!<//( j0i}t ,Bo) needs to be updated. Algo­

rithm 2.5.4 performs this update for a column node c. 

Algorithm 2.5.4 

1. for i = \ to n set Ij = 0 

2. 0 <— 0 

3. for y = 1 to n do 

4. if Ij = 0 then 

5. if c e Adjirj^B'^) then 

6. find root r of tree containing ry 

7. 0 - 6 y AdjiFam(r,r)M) 

8. /, •- 1 V s such that r, s Fam{r,T') 

9. endif 

10. endif 

11. endfor 

12. |9| gives the degree of c 
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Some column ordering strategies, as well as the minimum degree tiebreaking strategy, require 

the number of nonzeros in a given column. This information is not available without some compu­

tation, since a row oriented data structure is used. Algorithm 2.5.5 obtains d the number of 

nonzeros in column c of Bq. 

Algorithm 2.5.5 

1. for y = 1 to n set Ij = 0 

2. d 0 

3. for 7 = 1 to n do 

4. if Ij — 0 then 

5. if ' c 6 Adj(rj,BÔ) then 

6. m *- j 

7. while /„ = 0 do 

8. 

9. d *- d + \  

10. if r„ has a parent then m index of parent 

11.  endwhile 

12. / , • * - !  V  J  s u c h  t h a t  e  Fam{rj,T') 

13. endif 

14. endif 

15. endfor 
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Any row ordering strategy used has to be compatible, as the algorithms of this section are 

based on this assumption, and should be locally acceptable due to the results of Section 2.3. To 

ensure compatibility, S" before step 18 in Algorithm 2.5.3 contains only those row nodes, which 

are competing for the first place under the compatibility restriction. Once the first node is selected, 

it is replaced in 9* by its ancestor, and S* now contains the nodes competing for the second 

place. This continues until all ancestors are exhausted and 8" is empty. A row ordering strategy 

thus decides, at any one time, only between the row nodes in &. Algorithm 2.5.6 performs the 

ordering without explicitly specifying the strategy used in step 2. 

Algorithm 2.5.6 

1. while 8' # 0 do 

2. let r be the next selected row from & 

3. » — 8' - Ir} 

4. S' S* parent{r) 

5. endwhile 

The question of which rows should be left out from the initial factorization can be addressed 

in step 5 of Algorithm 2.5.2. The size of the set Adj{{Q'^jyB'jZ\) measures how "different" the 

row is from rows involved in previous rotations within the current major step. If this set is 

"large", especially for large J, the row should be left out from the initial factorization. 

Changes to Bg were made only by making some entries negative, so the factorization can be res­

tarted by taking absolute values of all entries of and marking {8jjy as unavailable in 

P. It seems that a partial restart should be possible, using the information in T'~', thus sav­

ing some of the previous computations. Further research is needed into this question. 
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As was mentioned at the outset of this chapter, and shown in Figure 2.1 (b), it is possible that 

the matrix X has less than full structural rank. The symbolic Givens factorization algorithm 

will find the structural rank of X, which is an upper bound on the actual rank of X. In step 6 

of Algorithm 2.5.3, if every row node j with Pj = 0 has no edges left, the unreduced por­

tion of the matrix X is a null matrix. The structural rank of X is given by the value of i 

at this point. 

When using one of the row ordering strategies given in Section 2.3, the resulting row ordering 

is determined in two parts. First, the pivot rows are ordered in the order they are marked in P. 

Then, the remainder of the rows is ordered after the pivot rows, as determined by where 

m is the structural rank deficiency. The column order is, of course, determined by step 4 of 

Algorithm 2.5.5, and the structure of each row of the matrix factor R is given by 

U {cil, i = 1, 2, ..., p-m. 



47 

3. UPDATING A LEAST SQUARES SOLUTION 

It is often the case that a few rows of the X matrix are the cause of much fill-in in the 

R factor. To avoid the fill-in, these rows should be left out in the initial factorization, and then 

used to update the solution. Chapter 2 suggests a method for deciding which rows to leave out. 

Equality constraints often consist of a few very dense rows, so they may likely be among the rows 

left out. For example, if all parameters must sum to a constant, then we have a completely full 

row. The constraints can be treated as additional observations, but they have to be satisfied exactly 

rather than in the least squares sense. 

Normally, when operating with full matrices, adding observations is no problem. The R 

factor can be modified by additional Givens transformations, and a new solution computed. How­

ever, when dealing with a sparse matrix, this modification will produce unacceptable fill in the 

R factor, since this is why these rows were left out from the initial factorization. The methods 

discussed in this chapter are special, in the sense that they only modify the solution, not the R 

factor, while using a minimal amount of additional storage. 

Heath (1982) gives a method for updating a solution for the Givens algorithm using the com­

puted R factor. His method allows for equality constraints, but assumes that X, and hence 

R, is full rank. Bjorck and Duff (1980) give an updating method in the context of a different 

basic algorithm (Peters-Wilkinson LU factorization), which also allows for equality constraints. 

Their method is more general, as it makes no assumptions about the rank of X. In this chapter, 

Section 3.1 extends the updating method of Heath to rank deficient problems, and Section 3.2 

discusses the inclusion of equality constraints. 

During research on the methods of this chapter, a result was obtained on the nonzero struc­

ture of the inverse of a triangular matrix. This result was not used in the final version of these 

methods. However, the result is interesting by itself, and so it was put into Appendix B. 
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3.1 Updating with Additional Observations 

The problem considered here is a least squares solution of 

X y 

E 
b =  

z  

(3.1) 

where X is an n X p sparse matrix of rank r < min(n ,p) ,  E  is a X p 

matrix, b is a p X 1 vector, y is a » X 1 vector, and z is a g X 1 

vector. Initially, a least squares solution of XB = y is produced using Heath's (1982) exten­

sion of the Givens algorithm. Then B is updated by the additional rows in E to produce 

b.  

For simplicity of presentation, assume that the first r  columns of X are linearly inde­

pendent. First, X is factored using Givens rotations as 

R T  (3.2) 

^ ^ Q 0 0' 

where Q is a product of orthogonal Givens rotation matrices of order n, and R is upper 

triangular of order r. Partition g as | g, g; j, where g, is nXr. Then, 

! 
Applying the same transformations to the right hand side, we obtain 

= g, [ i? T . 

A solution B =  
5, 

h 

= I 01  Qi \  

is then obtained by solving RB\ = c, and setting 

(3.3) 

S-, = 0. Let r = 

updated solution, and let r = 

y X 

, '•2 z  E  

r i  

f i  

b  be the residual for the 

be the corresponding residual for solution B.  
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Then, 

and 

Fx =  y  — XB 

=  Q\c  +  Qid  -  ôi[  R  

-  Qic  + Qid -  QiRBI  

= Qid,  

f i  =  2  — EB 

5. 

0 

(3.4) 

= z - [ £, £2 ] 
5, 

0 

= z - £I5I, 

where | E, f; j is a conforming partition of E.  

Now define K and M hy  R 'K =  Ei  and RM = T respectively. Then, 

K is an r X q' matrix, and M isan r X p—/• matrix. Also, let 

H = E2 — K'RM. Note that the rank of H is the increase in the rank of the solution 

due to the update. To see this, note that 

(3.5) 

rank  
X  

E  
=  rank  

=  rank  

=  rank  

=  rank  

R  T  

El £2 

R RM 

K'R £2  

Ir  0  

K'  L  

R  RM 

0  E^-K'RM 

R RM 

0  El -K 'RM 

rank{R)  +  rank{Ei  — K 'RM) 

r  +  rank{H) .  
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6, 5. 
Let b — B + Ô, and partition b = 

. ^2 
, S = 

. ^2 
, and 

ô = 
51 

52 
, so that all partitions conform. 

Then 

Si  

h  

and 

r, = ?! — 

= Q^d -  ô,[  T \  

= Qid  — Qi |  Rb\  +  RM5i  

=  Qià  -  QiRf ,  

T i  =  r i  — E5  

= ^2 - - E2Ô2 

=  h  -  K'Rb^  -  Hhj  -  K'RMhi  

=  F2 -  K'Rf  -  HÔ2,  

where / = 5i + MÔ2. 

Since Q is orthogonal, ||r,ll2 = 1102(^112 + llôi^/!l2 

= WII2 + 11^/112-

So the least squares solution of (3.1) is given by 

mm 
b 

r i  
mm 
/.«2 

Rf  

h -K 'Rf -Hi2  

Substituting u = Rf ,  (3.8) becomes 

mm 
«,0211 

For a fixed Ô2, (3.9) can be written as 

r2-K 'u-HÔ2 

mm subject to K'u  +  V =  r2  — H82,  

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 
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and the solution to this is given by the minimum norm solution to 

K'  =  r2 — Hhi .  
(3.11) 

Note that when r  =  p ,  then H = 0  and (3.11) reduces to an expression 

obtained by Heath (1982) for the full rank updating problem. This can be solved by orthogonal 

factorization 

7' 
K L '  

4 0 
and 

U'  
u s  

V t 

(3.12) 

where U is an orthogonal matrix of order q +  r ,  and L is a lower triangular matrix of 

order q. The minimum norm problem now becomes 

[ i  o \  = f i  -  H52,  

which is solved by setting t  = 0 and solving the triangular system Ls  =  Fi  — Hbi .  

In terms of j and t (3.10) now becomes 

mm subject to Ls  =  f i  — Hbi  

So now (3.9) is solved for u in terms of Ô2, and becomes 

- L-^Hb 11^ "1  -  -no2\ \2  

But this is a least squares problem, which can be solved by another orthogonal factorization. Let 

5 = L~^H, and w = £~'r2. so that 

(3.13) 

F'S  =  

F'w =  

B Z  

0 0 

g 

h ' 

(3.14) 
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where F is an orthogonal matrix of order q,  B  is an upper triangular matrix of order 

k = rank{H), g is a vector of length k, and remaining matrices conform. Partition 

62 into 
«21 

522 
, where 621 is a vector of length k .  Then, 62 minimizing (3.13) is 

obtained by setting 622 = 0, and solving the triangular system 

BÔ21 =  g .  (3.15) 

The solution to original problem (3.1) is then obtained by solving for 5, and setting 

b = S + d. The preceding development of the updating problem gives the following algo­

rithm. 

Algorithm 3.1.1 

1. Obtain R,  T ,  and c as defined in (3.2) and (3.3) using the Heath (1982) algo­

rithm. 

2. Solve RB\ = c. 

3. f i  =  z  -  £,5,. 

4. Solve R'K =  E\ ' .  

5. H = E2 -  K'T.  

K L '  

. 4 0 
6. Compute orthogonal factorization V 

7. Solve LS =  H and Lw =  ^2. 

r 1 B Z  g  
8. Compute orthogonal factorization f I 5 w j = o O h  

9. Solve 5021 = g-
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10. Solve Ls  =  f2  ~  H 
«21 

0 

u s  
11. Compute u in 

V 
= U 

0 

12. Solve Rf  =  u .  

13. Solve RM = T.  

14. bx  =  f  -  M 
^21 

0 

15.  b  =  

5i + 5i 

«21 

0 

Note that in step 6 of the algorithm, only the first q rows of the matrix U are needed 

for the calculation of step 11, so only the q rows need to be stored. Any matrix requiring addi­

tional storage, over that needed by R and T, in this algorithm has dimensions at most 

q X p. Assuming that q is small, the calculations can be performed in full storage mode, 

with the exception of those involving R and T,  which are stored in sparse storage mode. 

The development leading to the above algorithm assumes that exact arithmetic is used in all 

calculations. With finite precision arithmetic of a computer, the rank of X and that of H is 

estimated. Heath (1982) discusses the problem of estimating the rank of X in his algorithm, 

and concludes, based on a number of test cases, that the algorithm performs well. In Algorithm 

3.1.1, step 8 estimates the increase in rank due to the update. The orthogonal factorization of the 

q X p—r matrix S can be done by Householder transformations with pivoting for stabil­

ity, so no problem should arise here. However H itself is computed by taking a difference in 

step 5, and potentially some cancellation could occur here due to finite precision arithmetic. Some 

testing of this algorithm will be discussed in Chapter 5. 
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3.2 Updating with Equality Constraints 

Here we consider the least squares solution of 

X 

E 
b =  

(3.16) 
subject to Gb =  a ,  

where X,  E ,  y ,  and z are the same as in Section 3.1, G is an 

m X p (m < p) matrix, and a is an m X 1 vector. Again, for simplicity of 

presentation, it is assumed that the first r columns of X are linearly independent. 

Let G be of full rank m,  and partition G into | G, Gi j, where Gz is 

the first r  columns of G.  Define J  hy  R 'J  =  Gi ' ,  so that J  is an r X m 

matrix, and let N = Gi — J'RM, giving an m X p—r matrix. 

At this point it is convenient to comment on estimability of the constraints. First note that 

the rowspace of X is the same as the rowspace of | /? RM j. Also, from the above 

definitions 

E.  

G, G2 

K 'R  K 'RM-¥H 

J 'R  J 'RM-\ -N 

The first situation of interest occurs when N is a zero matrix. Then, 

G = /'[ /Î /ÎM ], 

and so the constraints are jointly estimable in the initial problem. If N is nonzero, but there 

exists a matrix C such that N = CH, then 

r 1 f /ÎM 
G = \ J - -CK-  C| 

So the constraints are jointly estimable in the problem updated by the additional observations E,  

but not jointly estimable in the initial problem. The third situation of interest is when the con­

straints are all nonestimable. This occurs when no row of iV is a linear combination of the rows 

of  H.  
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The initial solution S is obtained as in Section 3.1. Let r, and f; be as in (3.6) 

and (3.7) respectively, and define and by 

— a  — GB 

=  a —G\Bi  ,  

and r; = f] — Gô 

= F; — G i5i  — GjSî  

= ?3 -  J 'R5 ,  -  NÔ2 -  J 'RMhi  

=  r j  -  J 'Rf  -  Ni l  

=  F} -  J 'u  — Nbi .  

The constraints have to be satisfied exactly, so = 0, and 

J 'u  =  f i  — Nbi .  

This adds a constraint on (3.8), and on (3.9) which becomes 

mm 
subject to J 'u  =  Fi  — Nôi -

r2~K'u  — H bi  

So for a fixed Ô2, for which the above constraints are consistent, this can be written as 

mm 
subject to K'u  +  V =  Fi  — H82 

J 'u  =  F-i  — NÔ2.  

The solution to (3.18) is given by the minimum norm solution to 

K'  /, u F2-H&2 

J '  0  V FÎ- IV52 

(3.17) 

(3.18) 

(3.19) 

Orthogonal factorization as in (3.12) may not be sufficient to solve this minimum norm prob­

lem, since J may not be full rank. The rank of J is the same as the rank of Gj. Assume 
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that m < r ,  and rank{Gi)  =  j  ^  m.  Then, there exists a nonsingular matrix V 

of order m, such that ViG\ = 0, where V\ and Vi are the first j and the last 

m — j rows of V respectively. Then ViJ' = 0, and so 

I Gi Gj ] -
K,G2 

0 V^N 

(3.20) 

Of course if y = m, then is a null matrix, and K, = K can be the identity 

matrix. Premultiplying (3.19) by 

/, 0 

o  K, 

O Kz 

gives 

K'  4 
K.y 0 

0  0  

f i -Hbi  

V ih-V,Nh 

Vih-V^Nb^  

Note that the fixed 5% must satisfy 

Vi f i  = , 

which is the same as 

= V2NÔ2 .  

Now apply orthogonal factorization to (3.22), so that 

I/' 
K /V,' 0 L'  0  

4 0 0  0  0  

and 

U 
u  J 

V t  

(3.21) 

(3.22) 

(3.23) 
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where U is an orthogonal matrix of order r + q, L is a lower triangular matrix of 

order q + J, 5 is a vector of length q + j, and t is a vector of length 

r — j. The minimum norm problem (3.22) now becomes 

r2-H52 

K,r3-K,iV52 

V2Pi-V2N52 

L  0  s  

0  0  t  

(3.24) 

Let e  be the first q +  j  elements of the right hand side of (3.24). The solution is 

then given by setting t = 0, and solving the triangular system Ls = e. Using this 

solution, (3.17) becomes a constrained least squares problem in 6;, 

min 

where 5 = L ' 
H 

ViN 

IIK" — 552II2 subject to v = CSj, 

V = Fjfl, and 

(3.25) 

w = L ' 
r i  

C  =  K2M 

In the case when j  =  m,  the constraints are not present, as K2 is a null matrix, and 

orthogonal decomposition (3.14) will solve the problem. 

If j  <  m,  since G is full rank and rank{Gi)  =  j ,  then by (3.20) V2N has 

full rank m — j. This can be solved using a procedure given in, for example, Lawson and 

Hanson (1974). First, define the partitions 

C = [ C, C2 ], S = [ S, S2 ], and 5% = j. 
where Ci is a square matrix of order m -  j ,  5i is a iq+j )  X {m—J)  matrix, 

and all other  p a r t i t i o n s  c o n f o r m .  F o r  s i m p l i c i t y  o f  p r e s e n t a t i o n  a s s u m e  t h a t  t h e  f i r s t  m — J  

columns of C are linearly independent. Solve the constraints for 621 in terms of 622. and 
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substitute into (3.25) giving an unconstrained least squares problem 

iRw - j.cr'r) - (Sz -

To simplify this, consider a factorization 

[ C, C2 f ] = Z)'[ C, C: ? ], (3.2 

where D is an orthogonal matrix of order m —j,  and C, is upper triangular. Solve a tri­

angular system of equations = Si, and compute w = w — 5]?, and 

Si = Si — S\Ci. So, now the unconstrained least squares problem becomes 

% 11^ -

which is solved by orthogonal decomposition like (3.14). Then, 82, is obtained by solving the tri­

angular system 

^1^21 — V — Cl^ l l .  

The solution to problem (3.16) is then obtained by solving for 6, and setting 

6 = 5  +  5 .  

The preceding development leads to Algorithm 3.2.1. 

Algorithm 3.2.1 

1. Perform steps 1 to 5 of Algorithm 3.1.1. 

2.  f i  =  a  -  Gif i i .  

3. Solve R'J  =  (?[ ' .  

4. N =Gi  -  J 'T .  

5. Compute factorization (3.20) to obtain K,, Vi, and C. If is null, set 

K] = I, skip steps 8 to 12, and 15, and set 82, = 0. 
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6. Compute orthogonal factorization (3.23). 

7. Solve LS =  
H 

ViN 
and Lw =  

r i  

S .  V =  Via .  

9. Compute orthogonal factorization (3.26) 

10. Solve 5i(?i = S]. 

11. )V = W — 5]?. 

12. S2 S2 ^\^2-

13. Compute orthogonal factorization F'| 5^ w j 

14. Solve 06221 = g.  

15. Solve C i52\ = ? — (?; 

B Z  g  

0  0  h 

^221 

0 

16. 5? — 

^21 

^221 

0 

17. Solve Ls  =  f i  — H hi .  

u  s  
18. Compute u in 

V 
= V 

0 

19. Solve Rf  =  u. 

20. Solve RM = T.  

21. g, = / — M5i. 
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22. b = 
5i + 5i 

«2 

Similarly as in Algorithm 3.1.1, any matrix requiring additional storage, over that needed by 

R and T, has dimensions at most q+m X p. So, assuming that g + m is 

small, full storage can again be used. Note that this algorithm is quite similar to Algorithm 3.1.1 

except for the complication due to the constraint in (3.25). Steps 5, 8 through 12, and 15 deal with 

this complication. If K, turns out to be a full rank matrix in step 5, then the constraint is not 

present, and K, can be set to the identity matrix. This has the effect, that steps 8 through 12, 

and 15 are not needed. 
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4. SPARSE MATRIX TECHNIQUES IN ANALYSIS OF VARIANCE 

Regression in balanced designed experiments can be accomplished very efficiently by existing 

algorithms, which do not form the data matrix X explicitly. However, when the design is unbal­

anced,  e i ther  due to  missing observat ions or  heteroschedast ic i ty ,  the  data  matr ix  X QT X'X 

has to be formed explicitly. Generally, the matrices are stored in full storage mode. For a large 

model with many levels and interactions, both X and X'X are very large and sparse 

matrices. 

Gentleman (1973) reports that solving this least squares problem by Givens reduction of X 

has advantages and is quite efficient. His method was simply exploiting zeros in full storage mode, 

without considering any sparse matrix techniques. The matrix X, when the unbalance is due to 

missing observations, has also another property which should be exploited. All the nonzeros are 

ones. 

Section 4.1 discusses sparse matrix techniques in Givens reduction of a model matrix, and 

then Section 4.2 looks at sparse matrix techniques in analysis of variance, and methods of obtaining 

estimable functions. 

4.1 Givens Reduction of a Model Matrix 

Normally, the symbolic reduction only obtains the row and column ordering and passes a data 

structure to the numerical reduction. The bigraph does not have any information on the values of 

nonzeros. In the case of a dummy variable matrix, the situation is different. The initial bipartite 

graph contains all information about the matrix, because all its nonzeros are ones. It may even 

seem that Theorem 2.5.2 can have applications here beyond giving just the nonzero structure of a 
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partially factored matrix. However, as the factorization proceeds, the nonzeros become very rapidly 

diverse. More information is needed, than just the forest structure T, to construct a partially 

factored model matrix from Bg- The situation, though, is not completely hopless. In the initial 

stages of the reduction, the symbolic stage can perform some limited numerical work, although not 

through Theorem 2.5.2, as will be seen below. 

The symbolic reduction of Chapter 2 assumed that no numerical cancellation takes place in 

(2.2.1). When this assumption fails, we simply obtain an upper bound on the nonzero structure. 

This upper bound is very good in general, but in the special case, when reducing a matrix of 

dummy variables, a large amount of cancellation can take place. 

Definition 4.1.1 Numerical cancellation occurs at X/j whenever 

a. x,i is the pivot element, is the element to be annihilated, and 

xnXij = -.XjjtXy, or 

b. Xji is the pivot element, x,i is the element to be annihilated, and 

Since the symbolic stage does not have the values of nonzeros, all possible cancellation, as 

defined above, cannot be implemented. However, a special case, which includes the majority of can­

cellation that occurs in processing a matrix with dummy variables, can be implemented easily. 

Note that if the nonzeros are the same within rows, cancellation of type (b) of Definition 4.1.1 will 

occur. The cancellation occurring in Figure 4.1 is exactly of this type. To obtain (d) in Figure 4.1, 

identical rows are rotated first, giving 

V2 V2 0 0 V2 0 

0 0 0 0 0 0 

V2 0 V2 0 V2 0 

0 0 0 0 0 0 

1 0 0 1 0 1 
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1 0 0 I 0 

1 0 0 1 0 

0 1 0 1 0 

0 1 0 1 0 

0 0 I 0 1 

(a) 

* * * * * *  

*  *  

*  *  *  

*  *  *  

* * * * *  

(b) 

* 

* 

* * 

(c) (d) 

(a) Original matrix with dummy variables (15 nonzeros) 
(b) Nonzero structure of (a) after processing column 1 without 
accounting for cancellation ( 19 nonzeros) 
(c) same as (b) but accounting for cancellation (15 nonzeros) 
(d) same as (c) but using a variable pivot row (13 nonzeros) 

Figure 4.1 A matrix of dummy variables, and resulting nonzero structures after processing column 1 

where again the nonzeros are identical within rows, and then rows 1 & 3, and 1 & 5 are rotated. 

Certainly cancellation is an important factor here, but the use of a variable pivot row is also 

advantageous. The variable pivot above was used to take advantage of cancellation, when a set of 

rows is identical. Identical rows represent multiple observations per cell of a design. The following 

formalize the concepts illustrated in Figure 4.1. 

Lemma 4.1.1 Suppose x,i = x,-,, and Xjx = Xj, for some s in (2.2.1). Let X 

be the matrix X after the single Givens rotation of (2.2.1). Then 

xn = Xi, = {xli + xj{f, and = Xj, = 0. 

Proof: Apply (2.2). • 
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Proposition 4.1.1 Suppose Xj^ i  = Xy, j  = 1, 2, k ,  and x, i is the pivot 

e lement for a sequence of k — 1 Givens rotations involving rows l'i, ii, i^. Then, if 

Z X,., 
m " l  

% 

, and ^ is the matrix X after the rotations, x,, = x, , = 

= 0, y = 2, 3 k .  

Proof: Apply Lemma 4.1.1 k  — I  times. • 

Corollary 4.1.1 Suppose k  identical rows of dummy variables are processed with a sequence of 

k — 1 Givens rotations. The result is fc — 1 rows of zeros, and one row with I's 

replaced by VF. 

Proof: This is a direct result of Proposition 4.4.1. • 

Corollary 4.1.1 thus can be used to reduce a matrix with multiple observations per cell of a 

design to a matrix with a single observation per cell. The resulting matrix still has the property, 

that nonzeros are the same within rows. So additional cancellation, as described by Proposition 

4.1.1, can occur during subsequent steps of the reduction. Since the results of Chapter 2 apply to 

single pivot row orderings, the application of Corollary 4.1.1, which uses a variable pivot, can be 

viewed as a pre-processing step. 

Further cancellation, as described in Proposition 4.1.1 can be partially implemented by modi­

fying Algorithm 2.5.2. Suppose the first j row nodes in are single root nodes in T'"', 

which means that these were not involved in any previous major steps, except possibly the pre­

processing step. An equivalent condition is that these rows have no parent in T'"'. Then, when­

ever  there  ex is t s  an  m e  for  j  =  1,  2 ,  . . . ,  a ,  (m < j ) ,  

cancellation will occur in column m of the first u rows of 0^. Note that with this cancel­

lation, the relationship in Theorem 2.3.1 still holds, thus the results on row orderings in Section 2.3 
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are applicable. Algorithm 4.1.1 is a modification of Algorithm 2.5.2, which partially implements 

the cancellation discussed above. 

Algorithm 4.1.1 

1. if ki = 1 then set P to 2 for each member of supernode j9i}i 

2. else 

3. if |0j}i has no parent in T'"' then 

4. n -

5. - 0 

6. else ÇI *- 0 

7. for j  =  2 to  k i  do 

8. if 0 # 0 then 

9. if {8^y has no parent in T'"' then 

10. A -

11. else A.  — 0  

12. AdJ(W^j .u f f j - . \ )  -  y {a - A} 

13. a — ÎÎ Pi A 

14. endif 

15. for each r in supernode do 

16. Adj{r ,^Z \ )  * -  Adj{r4z[ )  -  AdJiFammj-uT^- ' ) , ^Z \ )  

17. endfor 
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18. endfor 

19. link supernode to supernode {0^2 

20. for each r in supernode do 

21. $ fam({0i}2,r-') - Fam(|0i},,r-') 

22. Adj{r , f f ^ )  -  Adj{r , f f kr{ )  '  "  kl 

23. endfor 

This algorithm carries the cancellation for s  = I, 2, ..., u —1, except when 

u = ki {ki is the number of rows involved in major step i), then the cancellation is 

carried through for s = u. This is done, so that the fixed data structure of Section 2.5 can 

be retained. Note that in step 12 there is room in the data structure to accommodate the union, 

since we are simply putting back what was taken out. 

Symbolic Givens reduction of a pre-processed matrix of dummy variables can thus be accom­

plished using Algorithm 2.5.3 with only step 20 replaced with Algorithm 4.1.1. Since not all can­

cellation is detected in this algorithm, it is possible that during the numerical reduction a null col­

umn is encountered. This is not a problem, since this event can be handled as any other rank defi­

ciency by the Heath (1982) extension of the Givens algorithm. 

Generally, the matrix of dummy variables is not of full rank. The Givens factorization of 

X, assuming that the first columns are linearly independent, takes the form (3.2). Only R is 

needed for computing a solution or a sum of squares for a given hypothesis, sincc 

24. 

R-\R-^y  0  

0 0 

(4.1) 
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is a generalized inverse of X'X.  Identification of a set of r  linearly independent columns of 

A", or at least a set of linearly dependent columns, which can be removed without changing the 

rank of X, would be useful. One way to do this is to discard all columns associated with the 

first level of each main effect in both main effect and interaction columns. This gives a full rank 

subset of columns of X. The problem with this approach is that most of the columns discarded 

are associated with the interactions, which are the columns with greatest sparsity. The model state­

ment contains some other information on linear dependencies among columns of X. For exam­

ple, the columns associated with main effects A and B are linearly dependent on the columns 

associated with the interaction AB. The columns associated with A and B should be 

discarded, since columns associated with AB have fewer nonzeros. Also the sum of columns 

associated with any main effect or interaction is a column of ones. 

Definitioa 4.1.2 An effect E, is contained in an effect E^, if Ei is an interaction contain­

ing  £ [  or  £2  is  nes ted  wi th in  E\ .  

In general thus, if an effect E, is contained in an effect Ej ,  then columns of E\  are 

linear combinations of columns of E-i- This is true regardless of the imbalance in the data. 

Algor i thm 4 .1 .2  uses  these  ideas  to  d i scard  a  se t  o f  re la t ive ly  dense  co lumns  f rom X.  

Algorithm 4.1.2 

1. 5 •- set of all effects in the mode! 

2. while S # 0 do 

3. s an effect in S with most levels 

4. D  —  \  d e S \ d \ s  contained in s  }  

5 .  5 - 5 - l Z ) l J j }  



68 

6. if s  is the first effect selected, then 

7. generate columns for all levels of s  

8. else generate columns for all except the most replicated level of s  

9. endwhile 

Let Xi be the matrix of columns of X generated by Algorithm 4.1.2. Note that if an 

interaction containing all effects is present, the pre-processing step is all that is needed to produce 

R, which will be diagonal. Generally, however this is not the case, and Givens reduction must be 

applied to the pre-processed matrix to obtain R. Let Xw be the nonzero part of the 

pre-processed Thus so far. 

- [-^1 ^2]. and 

^11 

0 
= Q\ 

where Q\ is a product of Givens rotation matrices for the pre-processing step, and rows of Xi 

have been appropriately permuted. The modified Algorithm 2.5.2 can now be used to symbolicaly 

reduce to upper trapezoidal form. Both row and column ordering strategies of Chapter 2 

can be used. Since this is a very structured setting, it may be possible to determine optimal row 

and column orderings for certain classes of designs. 

Some progress can be made by looking at the ordering problem analytically. Partition A'u 

as 

A'li = I £1 ^2 • • • Ek ]. 

where E, are the columns associated with an effect with the most levels, and Ei to 

correspond to the remaining effects. Note that no fill has been produced thus far, and the nonzeros 
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* * 

* * 

* 

(a) 

• * 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* * 

* * 

* * 

* * 

* * 

* * * 

* * 

* * 

(b) 

* 

$ 

* 

(c) 

(a) Original matrix with first four columns corresponding 
to E|, and last three corresponding to E;. 

(b) The resulting matrix after processing £i (36 nonzeros). 

(c) The resulting matrix after processing Ei (42 nonzeros). 

Figure 4.2 Processing one effect of a matrix containing columns of two effects 
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are identical within rows. If k = 1, then Xn is a diagonal matrix, and no further pro­

cessing is needed. For k = 2, rows belonging to one level of one effect each have a nonzero 

in a unique column of the other effect. See Figure 4.2 (a) for an example, when E\ has four 

levels and E2 has three levels. While processing the columns of one effect, it is unavoidable to 

produce fill in columns of the other. It is however better to process the effect with more levels first. 

This is illustrated in Figure 4.2 (b) and (c). Note that all of the column ordering strategies dis­

cussed in Section 2.4 would make the same decision. If any rows were missing in Figure 4.2, the 

same conclusion would be reached. For fc > 2, the situation becomes rapidly very complex, 

but it seems that a similar argument as above could be made for processing E, first. 

Columns of an entire effect should be processed first, rather than mixing effects, since this 

processes rows in disjoint sets, and thus allows for taking advantage of cancellation. Recall that 

cancellation requires that a row was not previously processed. A further benefit of this is that the 

resulting portion of R has a simple form. Let Q2 be the matrix of Givens rotations necessary 

to process f,, then 

D T  

0  Xn ^11 — Qi 

where D corresponds to columns of E , and is diagonal. Normally, Givens reduction without 

square roots, due to Gentleman (1973), would be used. If the initial matrix X has integer 

nonzeros, which is the case with dummy variables, both D and T can be represented by 

integers. This can be seen by factoring out from (2.2.1) each time the transformation is 

applied, and then instead of S is stored at the end of a major step. 

At this point it remains to factor Xn. It no longer has a simple structure as so 

Algorithm 2.5.3 should be used to find a good ordering. It is possible that some experimentation 

with this algorithm will lead to a good ordering obtainable from the structure of E,, ..., Ek, 

or the model statement. 
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The numerical phase of the reduction begins with since can be produced sym­

bolically from Xy. It seems also possible that D, T, and could be produced symboli­

cally, as the diversity of the nonzero entries may still be manageable at this stage. Some additional 

research into this may prove fruitful. 

4.2 Analysis of Variance and Estimable Functions 

The main concern in regression on dummy variables is usually to test hypotheses about model 

parameters. Each hypothesis test has an underlying estimable function of the parameters. That is, 

if we wish to test if = d, where H is a k X p {k < p) matrix of rank 

k, then must be estimable. 

Definition 4.2.1 HP is estimable iff there is a matrix L such that Ejly} = Hfi .  

Kennedy and Gentle (1980) discuss computational methods for testing such hypotheses. The 

sum of squares necessary for testing the above hypothesis is given by 

{Hb -  dy[H( ,X 'X) -HT\Hb -  d) ,  (4.2) 

where (X 'X)~  is any generalized inverse of X'X,  and b is any solution to 

X'Xb = X'y. Thus to calculate the above sum of squares, two basic components are needed. 

First, a generalized inverse of X'X must be obtained either explicitly or implicitly, which in turn 

gives also a solution b. Second, H must be obtained for some hypothesis of interest. 

A generalized inverse of X'X is given by (4.1). Note that this generalized inverse satisfies 

the first two Moore-Penrose conditions. That is, if A = X'X, and A' is the matrix in 

(4.1), then AA'A = A and A'AA' = A'. A generalized inverse, which satisfies these 

two conditions, will be denoted by superscript The final column order of the reduced matrix 

R in (4.1) depends on the initial nonzero structure of X, since row and column permutations 
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are performed to preserve sparsity, and to take advantage of cancellation. Thus the columns, from 

which the R factor is formed, are a subset of the columns selected by Algorithm 4.1.2, whose 

order depends on their nonzero structure. 

Formulating a hypothesis of interest in an unbalanced or incomplete data is not an easy task, 

because a hypothesis is testable only if the underlying H is estimable. And conversely, not all 

estimable functions form "interesting" hypotheses. Since the methods of this chapter are aimed pri­

marily at large models, it is important that H can be computer generated rather than required 

to be defined by the user. This raises the question of which hypotheses are appropriate in a wide 

range of model settings. There is general agreement on what hypotheses should be tested with bal­

anced and complete data. The question of what should be tested in the unbalanced data case has 

recently received considerable attention in the literature. The emerging philosophy seems to be to 

test the hypotheses of the balanced case as much as the data allow. See for example Hocking, 

Speed, and Coleman (1980). The type III, and IV hypotheses of Goodnight (1978) are constructed 

according to this philosophy. With unbalanced data but no missing ceils, the resulting type III, and 

IV hypotheses give the Yates' (1934) weighted squares of means technique, and are the same as the 

"usual" hypotheses for the same size model but with balanced data. When missing cells are present, 

often the "usual" hypotheses of the balanced case cannot be tested because of estimability problems. 

In this case, the type IV hypotheses are constructed to retain a property of the "usual" hypotheses, 

namely that the coefficients for any effect are distributed equitably across higher order effects 

which contain it. The exact procedure will be described below. 

To construct any hypothesis, a generating set of estimable functions is needed. Since 

Ely} =  X0, we have Ej l ) '}  =  LXff .  So HP is  es t imable  i f  there  is  a  matr ix  S 

such that L = SX. The rows of X thus form a generating set for all estimable functions. 

Another generating set is given by the rows of X'X, and also by the rows of |  T j. 

Any matrix with the same rowspace as X can be used as a generating set. Goodnight uses yet 
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another generating set, the rows of i ,X 'X) 'X 'X ,  since this is available as a byproduct of the 

generalized sweep operator, which he uses to obtain a {X'X)~ and a solution. A form of 

{X'X)'X'X can also be obtained from an orthogonal factorization. Suppose the first r 

columns of X are the columns associated with R, then 

{X 'X) 'X 'X  =  
0 

0 
0 %2'%l 

I  R- \R-^ ) 'Xx 'Xi  

0 0 

This can be computed from R by solving two triangular systems R'B = and 

RA = B,  so that A = This generating set, however, need not be 

the same as the one obtained from the generalized sweep operator, since (%'%)' is not unique. 

Which is the best generating set from the sparsity point of view? Consider the operations 

which need to be performed on the generating set to obtain type III, and IV estimable functions. 

Both type III, and IV estimable functions have the property, that those involving an effect E 

will also involve all effects which contain E, and will not involve any effects which do not con­

tain E. This can be accomplished by "adjusting" each effect for all effects that do not contain it. 

For example, consider a three factor model with all interactions. The model statement is 

yijki = /I + a,- + bj  +  Ck +  abi j  + + bcj^  + abc^^ .  (4.3) 

And the required adjustment is 

a for M. b,  c ,  be ,  

b  for f i ,  a ,  c, ac ,  

c  for n,  a ,  b ,  ab ,  

ab  for M. a, b,  c ,  be ,  ac ,  (4.4) 
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ac  for f t ,  a ,  b ,  c ,  ab ,  be ,  

be  for n,  a ,  b ,  c ,  ab ,  ae ,  

abc  for p. ,  a ,  b ,  c ,  ab ,  ac ,  be .  

Goodnight chose (X 'X) 'X 'X  as the generating set, produced by the generalized sweep 

operator, since it has only r nonzero rows, and its elements arc generally 0, 1, or -1. This 

matrix also is upper trapezoidal, with some of the required adjustment already done as a byproduct 

of the sweep operations. The {X'X)'X'X computed from R above, however does not have 

this nice form. The factor R together with T also forms a generating set, where some 

adjustment has already been done. Each effect has been adjusted for all effects whose columns pre­

cede it. However the order of the columns is determined by the sparsity pattern and not by the 

requirement above. In fact a highest order interaction is ordered first, and all effects, including the 

ones contained in it, are adjusted for it. Thus R together with T do not form a good gen­

erating set. Note that the sparsity preservation objective in computing a solution and the required 

adjustment above are in conflict. This is because the solution computations tend to order highest 

order interactions first, whereas the reverse is required to accomplish most of the above adjustment. 

For this reason, it seems wise to separate the two activities. The original matrix X is, of course, a 

generating set of estimable functions. The numerical computation of R will identify a set of 

r linearly independent rows of X, and X has a particularly nice form, since it contains only 

O's and I's. All of the required adjustment remains to be done, but at least a minimal set of rows 

has been identified. 

Let Z\  be a matrix of r  linearly independent rows of X.  Arrange the columns of 

Z1 so that the mean goes first, then all main effects, then all 2-way interactions, then all 3-way 

interactions, etc. Using Gaussian elimination to put Zi into an upper trapezoidal form will 

accomplish most of the required adjustment. In fact if there are no missing cells, no further adjust-
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ment is needed. Let 2% = G,Z,, where G, is the matrix representing the Gaussian elimi­

nation. The remainder of the adjustment can be performed by selective Gaussian elimination above 

the main diagonal. Let Z3 = GiZi, where G2 is the matrix representing the selective 

Gaussian elimination. The nature of this selective elimination is best illustrated by an exampi 

Figure 4.3 gives matrix Z3, partitioned to show the eliminated parts, for the model in (4.3). 

z: Z^ Z^ Z6 7»! ^ac Ẑ c Z&c 

0 z: 0 0 z:6 
7<  ̂
^ac 0 z:k 

0 0 4 0 Z^ 0 zL ZL 

0 0 0 z: 0 z'̂  ^ac z:c Z^tc 

0 0 0 0 •yab 
^ab 0 0 -jab 

^abc 

0 0 0 0 0 yac 
^ac 0 -rac 

^abc 

0 0 0 0 0 0 yrbc 
^bc 

ybc 
^abc 

0 0 0 0 0 0 0 yabc 
^abc 

Figure 4.3 The structure of a generating set of estimable functions for model (4.3) after the adjust­
ment (4.4). Estimable functions for effect e are given by the row containing super­
script e, and the number of rows for an effect gives the degrees of freedom associ­
ated with that effect. The subscripts denote the effects involved in a given set of esti­
mable functions 

Trials with a few Z, matrices for various models and unbalance patterns show that Gaus­

sian elimination as described above will rarely produce entries other than 0, 1, and -1. This sug­

gests that a directed bipartite graph can be used to represent the portions (probably most and in 

many cases all) of the matrix, which have only 0, 1, and -1 entries. 
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Definition 4.2.2 A directed bipartite graph is a bipartite graph where each edge is an ordered pair. 

Definition 4.2.3 The directed bipartite graph, representing an n X p matrix with entries 0, 

1, and -1, is an ordered bipartite graph, where cy) e E iff Xy = 1, and 

6 E iff Xij = -1. 

The computer representation of a directed bipartite graph can take the form of a row adja­

cency list, where the entries are positive or negative to indicate the direction. Figure 4.4 gives an 

y i jk i  M + Qi 4- bj  + Ck 4- abi j  4- acik  

1 0 1 0 1 0 1 0 0 0 1 0 0 0 
1,2,4,6,8,12 

1 0 1 0 0 1 1 0 0 0 0 1 0 0 1,2,4,7,8,13 
1 0 0 1 1 0 0 1 0 0 1 0 0 0 1,2,5.6,9,12 

0 1 1 0 1 0 0 0 1 0 0 0 1 0 1,3,4,6,10,14 

0 1 1 0 0 1 0 0 1 0 0 0 0 1 1,3,4,7,10,15 

0 1 0 1 1 0 0 0 0 1 0 0 1 0 1,3,5,6,11,14 

1,2,4,6,8,12 1,2,4,6,8,12 1,2,4,6,8,12 
-6,7,-12,13 -6,7,-12,13 -6,7,-12,13 
-4,5,-8,9 -4,5,-8,9 -4,5,-8,9 
-2,3,-8,10,-12,14 -2,3,-8,10,-12,14 -2,3,-8,10,-12,14 
-2,3,-6,7,-8,10,-12,15 -6,7,-14,15 -6,7,-14,15 
-2,3,-4,5,-8,11,-12,14 -4,5,-10,11 8,-9,-10,11 

1,2,4,6,8,12 
-6,7,-12,13 
-4,5,-8,9 
-2,3,-8,10,-12,14 
12,-13,-14,15 
8,-9,-10,11 

1  1  0  1  0  1  0  1  0  0  0  1  0  0  0  

0  -1  1 0  0  0  0  -1  0  1  0  -1  0  1  0  

0  0  0  -1  1  0  0  -1  1  0  0  0  0  0  0  

0  0  0  0  0  -1  1 0  0  0  0  -1  1  0  0  

0  0  0  0  0  0  0  1  - 1  -1  1 0  0  0  0  

0  0  0  0  0  0  0  0  0  0  0  1  -1  -1  1 

Figure 4.4 An example of a model, an associated Z, and its row adjacency list representation, fol­

lowed by four successive Gaussian elimination steps, and the resulting matrix with rows 
permuted in the order 1,4,3,2,6,5 to obtain the form of Figure 4.3 
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example of Gaussian elimination performed on an adjacency list of a Zi matrix. The final 

matrix is row permuted into the form of Figure 4.3. This is an example of a situation, where only 

1,-1, and 0 occur. The following two strategies for selecting the pivot row should have the effect of 

completely avoiding, or at least minimizing, the number of nonzeros other than 1 and -1. 

1. If a nonzero other than 1 or -1 occurs, try using a different pivot row. 

2. Avoid using rows with nonzeros other than 1 or -1 as pivots. 

When a nonzero other than 1 or -1 is unavoidable, a flag can be set for that row, or perhaps 

only that entry, and the nonzero stored in additional storage. The test cases considered so far have 

not required any additional storage with the above strategies. On the other hand no proof is availa­

ble that only 1 and -1 nonzeros will occur. Another item, that remains to be resolved, is the actual 

data structure for this representation. The representation, as defined above, will require a dynamic 

data structure. Further research into this problem is required. In particular, some experimentation 

with larger computer generated examples may lead to a better data structure or representation. 

The solution b obtained by the procedure of Section 4.1 has only r nonzero elements. 

It is exactly those r elements, which correspond to the columns of X that produced the 

columns  of  R .  For  s impl ic i ty  o f  p resen ta t ion ,  assume tha t  th i s  i s  the  f i r s t  r  e lements  o f  b,  

and thus partition b into bi and 0. Partition ^ as | | accordingly, so 

that (4.2) becomes 

{Hib i  -  dy[H^R- \HiR-^yr \Hib^  -  d)  (4.5) 

To obtain type III, or IV estimable functions for an effect, take the rows of the adjusted matrix 

Z3 corresponding to that effect, and add appropriate multiples of rows corresponding to effects 

which contain the given effect. In fact it is only columns of the effects which were selected by 

Algorithm 4.1.2 that need to be involved. The columns forming Hy are a subset of these 
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columns. Algorithm 4.1.1 performs this task for effect bq and obtains a set of type III estimable 

functions. The notation used is that of Figure 4.3. The type III estimable functions have the prop­

erty, that estimable functions for an effect e are orthogonal to estimable functions for any effect 

tha t  conta ins  e .  

Algorithm 4.2.1 

1. S set of effects which contain Bq and satisfy Algorithm 4.1.2, excluding 

2.  for each « e S do 

3. z'; - zl'l / - z'AziziT'zi ] 

4. endfor 

5. Hi columns corresponding to bi  from z'°, e  s  S  

To obtain a type IV estimable function for effect eg, Algorithm 4.1.1 can be used with a 

modification to step 3. This step should be replaced with Zj° + AfZJ, where K 

is a set of coefficients, one column for each row of z'/. Each column of coefficients is deter­

mined from a given row of zj° as follows; 

1. If any level of CQ has a zero entry in the given row of Z% and that level of bq has a 

nonzero in Z', then set the coefficients corresponding to the nonzero rows of ZJ to zero. 

2. Check to see if any coefficients corresponding to a level of is zero, when the level of 

eg is nonzero. If this is the case, the type IV estimable functions are not unique. 

3. For each level of bq, which has a nonzero entry in the given row, count the number of times 

that level occurs in effect e, then set each coefficient corresponding to that level to the 

nonzero entry divided by that count. 
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When no missing cells occur, and also for some missing cell patterns, the type IV estimable 

functions are the same as type III estimable functions. 

Suppose H\ has q rows, so that the rank of H\ \% q  <  r .  Given that we have 

R, b\, and Hi, the computation of (4.5) can be done by Algorithm 4.2.2, which follows. 

Algorithm 4.2.2 

1. i  *-  H\b \  — d .  

2. Solve R'lJi - Hi 

3. Compute factorization Hi =  U 

4. Solve T 'v = 3. 

5. v 'v gives the required sum of squares. 

Note that the algorithm does not need any additional storage, since all computations can be 

done  in  p lace .  The  mos t  s to rage  i s  occupied  by  the  mat r ix  Hi,  which  i s  q  X  r .  

Further research is needed into the methods of this section. In particular, as noted earlier, 

the representation of Gaussian elimination to form Z3 can likely be improved. Another question 

is whether it is worthwhile to use sparse matrix rneihods in Algorithm 4.2.2. The answer will 

depend on the size and sparsity of matrices involved. Some experimentation must be done with 

larger computer generated models, since the level of complexity obtained from small hand com­

puted examples is not sufficient to answer these questions. 
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5. COMPUTER IMPLEMENTATION AND TESTING 

The preceding three chapters include computer algorithms, which need implementation and 

testing on the computer. Chapter 2 discusses a bipartite graph model for performing symbolic 

Givens factorization of a sparse matrix. The FORTRAN program implementing this and several 

row and column ordering strategies are discussed in Section 5.1. This program is then used to com­

pare the ordering strategies on a number of test problems in Section 5.2. Section 5.3 then discusses 

the program implementing the updating procedure of Chapter 3. The sparse matrix methods for 

analysis of variance, discussed in Chapter 4, still have a number of problems, which need to be 

researched. For this reason, no implementation is given here. 

5.1 Symbolic Givens Reduction 

Symbolic reduction only manipulates row and column indices, so integer arithmetic is used 

throughout. For this reason, concerns about precision do not arise. Algorithm 2.5.3 and its compo­

nent Algorithms 2.5.1 and 2.5.2 perform the symbolic reduction. All of these were programmed in 

FORTRAN IV, and tested both on a FORTRAN H compiler and a VAX/UNIX FORTRAN 

compiler. Also included in this were row and column ordering strategies. The source code, includ­

ing numerous comments, is in Appendix A. The subprograms are listed in alphabetical order, and 

the main routine is listed first. 

The column ordering strategies programmed are 

• natural ordering (no ordering), 

• minimum column count, first tied 

• minimum column count, last tied, 

• minimum degree, first tied, 
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• minimum degree, last tied, and 

• minimum degree with column count tiebreaking. 

Algorithm 2.5.5 forms an integral part of strategies 2, 3, and 6, as it updates the column counts 

(number of nonzeros in a column). Algorithm 2.5.4 forms an integral part of strategies 4, 5, and 6, 

as it updates the degree of each column. 

The row ordering strategies programmed are 

• natural order (no ordering), 

• minimum row count, and 

• minimum pivotal row fill. 

Here, Algorithm 2.5.6 is used to update the set of rows competing for the next position within a 

given major step. Note that strategy 1 must perform some limited ordering, since the next row 

may not contain a nonzero in the current pivot column. In a case when the next row does not have 

a nonzero in the current pivot column, the first possible subsequent row is taken. The comments in 

the source code should be sufficient to explain the programming details of these strategies. 

Figure 5.1 contains the call tree structure of the program, and some correspondences to the 

algorithms of Section 2.5. Calls to some utility routines have been left out from the tree for simpli­

fication. Note also that the correspondence to the algorithms of Section 2.5 is not exact, however 

the essence is the same. Some loops have been combined to improve efficiency. 

Although a great deal has been done to make the program more efficient compared to its ini­

tial version, there is still much room to improve its efficiency. For example, special handling of 

situations, such as when only a single row is competing for next position, should still achieve large 

gains in speed, particularly in the later stages of a factorization. There are other possibilities, 
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MAIN GETMAT 

SETUP CNZUD 

DEGUD 

INIT 

REDUCE MINDEG 

MINDG1 

MINDG2 

MRJCJF 

MRJCJL 

MAJOR RPIND 

GETNOD 

CFIND 

ANCSTR 

PAM 

MARKIT 

GETUNL 

MININD 

MINRF 

MPFILL 

ANCSTR 

CKCHLD 

REPACK 

CUTREE 

ADJUST 

FAM 

EXTRA 

SETREE 

JOIN 

DISCON 

DEGUD 

CNZUD COLNZ 

NEWDEG CFIND 

FROOT 

FAM 

MARKIT 

EXTRA 

CFIND 

ANCSTR 

GETUNL 

FAM 

MARKIT 

RECORD 

PRTVEC 

PRTX 

generates or reads a matrix 

initialization 

column selection strategies 

Algorithm 2.5.3, steps 7-17 

row selection strategies 

Algorithm 2.5.6 

Algorithm 2.5.1, step 2 

Algorithm 2.5.2, steps 4-6,9-11 

Algorithm 2.5.1, step 3 

Algorithm 2.5.2, step 12 

Algorithm 2.5.2, step 1 

Algorithm 2.5.4 

Algorithm 2.5.5 

records structure of new ro:f of 

printing routine for debugging 

prints partially factored matri 

Figure 5.1 The call tree of the symbolic Givens factorization program, and some correspon­
dences to algorithms of Section 2.5. Note that some calls to routines INIT, ADD, 
ANCSTR, and MARKIT are omitted 
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where special handling of a frequently occurring situation will improve efficiency. These will 

become apparent as more experience is gained with this program. 

No attempt has been made to compare the speed of this algorithm to the Cholesky symbolic 

factorization. The computer package SPARSPAK, developed at the University of Waterloo by 

George, Liu, and Ng (1980), contains a very efficient version of Cholesky symbolic factorization. 

Givens symbolic factorization, as it is now implemented, is expected to be slower than Cholesky 

symbolic factorization except in some special cases. The reasons for this are several. In many 

sparse problems, X contains more nonzeros than half of X'X\ each major step, which con­

tains several minor steps, of Givens factorization is equivalent to one step of Cholesky factorization; 

and, as was pointed out above, the Givens symbolic algorithm is still not "mature", and will undergo 

some improvements. The special cases, where it may be faster, are when X contains consider­

ably fewer nonzeros than half of X'X. This situation can be created, when X consists of sets 

of identical rows. Each set of identical rows can be reduced to a single row before processing. 

Matrices of this type are discussed in Chapter 4, and test problem 3 of the next section is of this 

type. 

For certain classes of problems, the increase in symbolic factorization time should be more 

than offset by better orderings for the numerical stage. Particularly large gains should be made, 

where several least squares problems with the same nonzero structure need to be solved. Such 

situations occur, for example, where a nonlinear least squares problem is solved by several iterations 

of linear least squares problems with identical nonzero structures. Better column orderings are pos­

sible; since some heuristic column ordering algorithms, not available with the Cholesky symbolic 

algorithm, become available. Also, heuristic row ordering algorithms can now be applied. 

Although there is the added cost of sorting the rows into the necessary order, but the bulk of this 

cost would be input/output, since the order is known from the symbolic step, and no comparisons 



Figure 5.2a A matrix with two 

random entries per row 

Figure 5.2b The matrix of Figure 5.2a after six major 

steps and the associated 7^. Only 

nontrivial trees of are displayed 
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0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2  

1 2 a « 5 6 7 S 9 0 U 3 « S 6 7 8 9 0  1 2 3 1 5  

u u u u u u O O O n  1 1 1 1 1 1  1  1 2 2 2 2 2 2  

1 2 3 * 5 6 7 8 9 0 1 2 3 « 5 6 7 8 9 0 1 2 3 « 5  

# x  #  

• •X 

X  X  

X X  

X X  

8  X X  

9  X 

1 0  X X  

1 1  X  X  
1 5  X 

2 0  X  X  
2 1  X  X  

2 2  X X  

2 3  X  

2 6  X  

2 7  K  X  

2 8  X X  

3 2  X  I 

3 3  X  X 

3 8  X  X  

3 9  X % 
4 2  X  X  

4 3  X X  

4 4  X  X  

4 5  X X  
4 7  

4 8  

X 

X 

X  

X  

4 9  X  

5 0  

4 6  

4 1  

4 0  

3 6  

3 4  • • • •• 

3 1  X »  •  •  

2 4  

1 9  

1 8  •  •  X  

1 7  • • 

1 6  X  • • 

1 3  • • 

é  * X  

• 

3 0  X  •  

( 34,27,32,33 ) 

( 31,30,25] 

19,18,7 

f 16,8,3,4,15, \ 
^ 13,12,6,1,5,2 J 

Figure 5.2c The matrix ot Figure 5.2 a 

after seven major steps, 

and the associated 

Figure 5.2d The final R factor and r" after 

completing the reduction of 

the matrix of Figure 5.2a 
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need to be done. In the case where the entire problem is in core, there is no sorting cost, since the 

ordering is done by indexing. Another feature, not yet implemented, is the selection of rows to be 

left out from the initial factorization, and then used to update only the solution. This can also 

potentially speed up the numerical factorization and reduce storage requirements for certain classes 

of problems. 

For purposes of debugging, a capability of printing the nonzero structure of a partially 

reduced matrix was programmed. The output of this capability has proved to be very useful in 

illustrating the row structure described by Theorem 2.3.1. The rows of the unreduced portion of a 

matrix are ordered by trees of the forest T', and in preorder within trees. It is also used to illus­

trate which elements of the matrix are represented by edges in Bq. 

Figure 5.2 gives a random 50 X 25 matrix with two nonzeros per row, two partially reduced 

matrices after 6, and 7 major steps, and the final R factor. Only nontrivial trees of the forests 

r*, r', and are included with each matrix. The representative of each supernode in a 

tree is listed first. Both "X" and represent nonzeros, but only the "X^s are stored in the data 

structure, and the "*"s are generated from the "X^s by the forest structure T'. That is, each "X" 

corresponds to an edge in Bq, but the edges in Bq correspond to both "X^s and "'"s. Note 

that each row still has at most two "X^s, and these are in the positions of nonzeros of the original 

matrix. As the factorization proceeds, there are fewer "X^s. Also note that major step 7 involved 

rows 2, 5, 18, 24, 46, 36, 17, 16, 6, 50, 41, 40, 34, 31, 19, and 13, which form a path from the 

pivot row 2 to the root of the tree in T^. These rows form a structure in Figure 5.2 (c), as 

described by Theorem 2.3.1. 

5.2 Comparison of Ordering Strategies 

The previous section lists the six column ordering and three row ordering strategies pro­

grammed. All 18 combinations of these strategies were compared on a few test problems. There 
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are five test problems, one of which is real, and the other four are artificially generated. 

Two of the generated problems are matrices with three random entries per row. Random 

matrices are generally considered the most difficult, since there are no patterns to exploit. One 

problem is an artificially generated least squares problem on an 8X8 square grid. Such prob­

lems arise in the natural factor formulation of finite element methods. The last artificially gen­

erated problem involves a network, like those arising in geodetic adjustment applications. The real 

problem is from a survey conducted in Sudan. The programs to generate the artificial test prob­

lems, as well as the real problem were kindly provided by M. T. Heath at Oak Ridge National 

Laboratory. For a more detailed description of the generated problems see Heath (1983). Table 

5.1 lists the test problems and their characteristics. 

Table 5.1 Characteristics of the Test Problems 

problem number rows columns nonzeros remarks 

1 100 50 300 random 

2 100 75 300 random 

3 196 64 588 8 X 8  g r i d  p r o b l e m  

4 306 160 1448 4 X 2  n e t w o r k ,  1  =  2 ,  m  =  1  

5 313 176 1557 Sudan survey data 

The row and column ordering strategies are compared on the basis of three criteria. The first 

criterion is the number of nonzeros in the final R factor, which is directly related to the storage 

requirement for the numerical phase. The second and third criteria are the number of Givens rota­

tions and the number of operations required for the factorization respectively. One operation is 

defined as the processing of one column of the two rows involved in a minor step. Thus, the number 
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of operations in a minor step is given by the number of nonzeros in the pivot row after completion 

of the minor step. The time required for a numerical factorization should be approximately a linear 

function of these two counts. Tables 5.2 through 5.6 give these counts for test problems 1 through 

5 respectively. 

Before commenting on overall performance of the orderings, note the counts for natural col­

umn order in Table 5.4. In terms of operation counts the natural row ordering is the best. The 

nonzeros in this problem are in a band from upper left to lower right of the X matrix. A 

Table 5.2 Problem 1 

column ordering r o w  o r d e r i n g  

natural minimum min. pivot 
order row count row fill 

929; 929 929 
natural order 1769 1648 1684 

26297^ 22741 23164 

657 714 722 
min. column count 1268 1157 1112 
(first tied) 14459 12349 11368 

670 665 666 
min. column count 1282 1152 1104 
(last tied) 14971 12192 11311 

642 642 642 
minimum degree 1480 1486 1474 
(first tied) 17792 17818 17396 

631 631 631 
minimum degree 1553 1495 1382 
(last tied) 19598 18181 15356 

629 629 629 
minimum degree 1238 1221 1125 
(col. count tiebr.) 13878 13156 11290 

^ Nonzeros in R factor. 

^ Number of Givens rotations. 

^ Number of operations. 
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Table 5.3 Problem 2 

column ordering r o w  o r d e r i n g  

natural minimum min. pivot 
order row count row fill 

1771 1771 1771 
natural order 1880 1718 1682 

41834 35335 33628 

1002 1036 1076 
min. column count 953 836 827 
(first tied) 13092 10262 9963 

1005 1040 1040 
min. column count 967 838 799 
(last tied) 13017 10304 9394 

944 944 944 
minimum degree 1177 1141 1103 
(first tied) 17826 16676 15476 

935 935 935 
minimum degree 1167 1083 1076 
(last tied) 17306 15302 14813 

934 935 934 
minimum degree 1020 916 853 
(col. count tiebr.) 13965 11859 10234 

closer inspection of the symbolic reduction process with the natural ordering revealed, that the nat­

ural row ordering is not locally acceptable. Since the two locally acceptable row orderings 

performed worse, this seemed like a good test for Corollary 2.3.1. It was found, that when the min­

imum pivot row fill ordering is modified so that a new row (not previously processed) is never taken 

as a pivot (except in the first major step, of course), then a row ordering which is at least as good 

as the natural row ordering is produced. This new ordering gives exactly the same operation and 

rotation counts, and is locally acceptable, thus illustrating Corollary 2.3.1. The superiority of the 

natural row ordering is due to the fact, that when the R factor is formed in this order, some 
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Table 5.4 Problem 3 

column ordering r o w  o r d e r i n g  

natural minimum min. pivot 
order row count row fill 

568 568 568 
natural order 1682 4454 3437 

8956 36161 26321 

672 698 687 
min. column count 2286 2103 1837 
(first tied) 20547 15205 13295 

616 639 694 
min. column count 2176 2061 1994 
(last tied) 18175 15315 15203 

492 492 492 
minimum degree 1749 2017 1766 
(first tied) 10221 12812 10500 

492 492 492 
minimum degree 1666 1925 1741 
(last tied) 9687 11868 10021 

503 485 503 
minimum degree 1938 1940 1847 
(col. count tiebr.) 13004 12134 11782 

rows during processing are structurally dependent on it, and are eliminated before completion of the 

reduction. Their absence during the remainder of the reduction greatly reduces the operations 

count. From the point of view of processing by columns, this can be viewed as symbolic cancella­

tion. This emphasizes that the ordering strategies are only heuristics, and need not produce order-

ings close to the optimum. 

The following are some observations from Tables 5.2 through 5.6: 

• Based on the first criterion, the three minimum degree column ordering variations are better 

than the other strategies. So if storage is of primary concern, minimum degree column order­

ing should be used. 
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Table 5.5 Problem 4 

column ordering r o w  o r d e r  i n g 

natural minimum min. pivot 
order row count row fill 

2648 2648 2648 
natural order 3836 6392 5334 

41082 94882 66147 

1724 1680 1844 
min. column count 2700 3820 3280 
(first tied) 20668 35794 27168 

1636 1660 1664 
min. column count 2634 3426 3006 
(last tied) 18931 29769 22935 

1600 1600 1600 
minimum degree 3196 4016 4356 
(first tied) 24320 34290 37188 

1568 1568 1568 
minimum degree 2694 3520 3048 
(last tied) 18493 28012 22392 

1584 1588 1584 
minimum degree 2604 3682 2880 
(col. count tiebr.) 18212 30925 20656 

The handling of ties in column ordering strategies has little effect on the first criterion. 

The handling of ties in column ordering strategies can have a large effect on operation and 

rotation counts. 

With a few exceptions, the minimum pivotal row fill row ordering strategy performs better 

than the minimum row count row ordering strategy. 

Less structured problems (1, 2, and 5) benefit more from a row ordering strategy than do 

more structured problems. 
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Table 5.6 Problem 5 

column ordering r o w  o r d e r i n g  

natural minimum min. pivot 
order row count row fill 

6794 6794 6794 
natural order 8355 16533 13941 

212687 482035 392239 

2504 2660 2676 
min. column count 3680 3370 3013 
(first tied) 41655 34758 29423 

2547 3095 2899 
min. column count 3720 3596 3268 
(last tied) 40845 39978 32799 

1591 1591 1591 
minimum degree 3890 4694 2693 
(first tied) 29830 37521 17498 

1631 1631 1631 
minimum degree 4058 4575 2883 
(last tied) 32405 37419 19824 

1630 1630 1630 
minimum degree 3682 4138 2596 
(col. count tiebr.) 27868 32312 17112 

• The minimum column count strategy performs well on the random matrices in terms of rota­

tion and operation counts at the expense of a few extra nonzeros in R. When column 

count is used as tiebreaking for minimum degree on the random matrices, rotation and opera­

t ion  counts  a re  reduced  wi thout  adding  nonzeros  to  R.  

Only the first two observations are not problem dependent, although it may be that other 

types of test problems could lead to different conclusions. Perhaps one of the most useful applica­

tions of the symbolic algorithm would be to consider a much larger and broader set of test prob­
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lems, and determine which strategies work best on which classes of problems. The five test prob­

lems considered here are a small step in that direction. 

5.3 Implementation of an Updating Algorithm 

The updating algorithm of Section 3.1 performs matrix operations, where only matrices R 

and T are stored in sparse storage mode, and all other matrices are in full storage mode. For 

the purpose of testing, the algorithm was programmed in the APL programming language. This 

programming language naturally lends itself to matrix operations, and facilitates easy implementa­

tion of the algorithm. Since the test problems used were not very large, both R and T were 

also used in full storage mode, thus eliminating special handling required for sparse storage mode. 

Of course, this APL program is only for testing purposes, and in time a FORTRAN version should 

be programmed. 

Algorithm 3.1.1 is presented with the assumption, that every time a factorization is done, the 

leading rows of the matrix are linearly independent. This eliminates the need to clutter the presen­

tation with permutation matrices, thus giving a clearer picture of of the basic algorithm. However, 

these permutation matrices must be included in the computer implementation, since this assumption 

generally does not hold. Producing the correct permutations is not a trivial matter, but APL pro­

vides an easy facility for performing these. 

Because the APL programs are quite concise, they are included and documented in this sec­

tion. All factorizations are performed using Householder orthogonal transformations with pivoting 

for stability. The APL function HHT performs this factorization, and returns the factors as well as 

the permutations used to obtain them. This function is used by the function UPDATE which com­

putes the initial solution to a least squares problem, updates it by additional rows, and then com­

putes also a complete solution directly for comparison. Both APL functions follow. 
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V VR*-HHT VX;K;T;P;J  ; I  ;Ql  ,M;N;S  ;V .  Ql  ;R(W;RK 
[ J ] Q ORTHOGONAL FACTORIZATION BY HOUSEHOLDER TRANSFORMATIONS 

WITH PIVOTING FOR STABILITY 
2]  0 INPUT MATRIX:  VX 
3] Q OUTPUT:  TRIANGULAR FACTOR -  KR 

'4] 0 RANK DEFFICIENCY FACTOR -  VT 
S]  a  COLUMN PERMUTATION FOR VR -  COLS 
6  0 COLUMN PERMUTATION FOR VT -  CC 
7 0 ROT PERMUTATION -  ROIFS 
8 VR^VX 
9] R0irs*-0?0 
1 0 ]  N<-npVR 
n]  RCW'r-NpJ^ l  
12] VQ<-I*- (N,N)p l  ,NfO 
13] V ^ ( PV R ) PCOLS*-(P*-( -  l ) rpVR)pO 
14] 11 : -^L2 ' ' \T0L>Mi- \  IT<-ROfF* .  'VR 'VR 
15] S*-(T* .  'T<-ROIF' 'VR[  ;COLS[ j]*-T\M] )*0  .  5  
16] RK*-K^( \T) \M'^ \ /  \T  
17] ROF[RK]4-0 
1 8 ]  R O n r S  D R O I T S ,  M  
19] V[ROff/\N;j]^(ROff/T)^ (2-4^T[K]<0 )'S-V\K;J]^(Q . 5-l*M^S)*0 .S 
2 0 ]  0 1 - / - [ ^ [ . J ] . . x 2 . F [ ; / ]  
2 1 ]  VQ*-(N,N)pQl* . ' 'VQ 
2 2 ]  V R ^ ( N , P ) PO I * . ' ' V R  
23] -^Ll'lPyj*-!*! 

' ' 24]  L2:CC*- t .P  
' 2 5 ]  C O L S ^ ( C O L S > 0 ) / C O L S  
[ 2 6  C C [ C O L S ] ^ ( p C O L S ) p O  
[27] CC*-(COO ) /CC 
[2a] VT*-VR\ROIFS ;CC]  
[29 ] VR*-VR[ROIfS ;COLS] 

u UPDATE;UR;K;UU:US ;M;T;CC;Q ;H,W;G:F;D2;D2I;D1;U;S;R2;Bl ;VT;V 
Q ;COLS :R01PS ;COL I  ;CCl  :CC2 ;L  

[1] 0 INPUT:  MATRICES X AND E ,  AND VECTORS Y  AA'D Z  
[ 2 ]  0  OUTPUT:  SOLUTION VECTOR B OBTAINED THROUGH UPDATE 
[ 5 ]  0  SOLUTION VECTOR BC OBTAINED DIRECTLY 
[< ]  0  NUMBERS ON RIGHT REFER TO STEPS OF AWORITm 
[ S ]  P«-C- I ; îpî 

[ 6 ]  R«-1ÎpUR<^HHT X  A  1  
[ 7 ]  T^VT a 1  
[ a ]  B<-P PO Q 2 
[ 9 ]  B[C0L1 ]*-Bl^ (VQ[ROSfS  ; ]* . -Y)WR 0 2 

1 0  R2*-Z-E[  ,COtl<-COIS]+. 'B l  a 3 
1 1  ( - 1  j r  p K ^  f %E[ :COL 1 ]  )E  (WR)  a 4  
12 Hi-E[;CCl^CC]-  ( I^K)*  . -T  0 5 
13 L^kHHT K,[ l ] (Q,Q)pl ,QpQ Q 6  
1 4  UU^i \VQ[RO^S ; \R]  0  6 
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[ 1 5 ]  U S ' - H ^ C C 2 i - C 0 L S  ; ] B L  
i ô ]  W<^R2[CC2]BL 
1 7 ]  U S < - H H T  U S  
j g ]  G * - ( p R ( W S ) p V Q [ R ( W S ; ] * . ' W  
19] D2l^EUS 

' 2 0 ]  D 2 < - ( P - R ) p O  
2 1 ]  D 2 [ C 0 L S ] ^ D 2 l  
2 2 ]  S ' - ( R 2 [ C C 2 ] - H [ C C 2  ; ] *  .  ' D 2  ) B L  

'23]  U'<IU*. ' 'S  
2 4 ]  F < 4 J B U R  
2 5 ]  M*-TEUR 

[ 2 6 ]  Dl^F-M*.'D2 
[ 2 7 ]  B [ C O L i ] « - B [ C O L J ] + D i  
[ 2 8  B [ C C L ] < ^ D 2  
[ 2 9  BC<-P PO 
[ 3 0  B C [ C O L S ] * - ( V Q l R ( W S  : ] * .  ' Y . Z j m H T  X, [ 1 ]E 

Q 7 
0 7 
a 8  
Q 8  
a 9 

Q  1 0  

a 11 
a 12 
a 13 
fl 14 
a 15 
a 15 
a DIRECT 
a SOLUTION 

The program was run under UNIX APL\11 on the VAX 11 /780 computer. This version of 

APL performs all calculations in double precision. Several test problems were artificially gen­

erated, and solved by the program. The solution by updating and a direct solution had a maximum 

relative difference of 10"'^ Although these generated problems were small, and probably well 

conditioned, this shows that the algorithm has promise. More thorough testing should be done with 

known ill-conditioned problems, using a FORTRAN version of the algorithm. 

Algorithm 3.2.1 was not implemented at this time. Its behavior is expected to be similar to 

Algorithm 3.1.1. It is in fact this more general algorithm, which should be programmed in FOR­

TRAN, and subjected to thorough testing. 
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7. APPENDIX A 

7.1 The Symbolic Givens Reduction FORTRAN Program 

INTEGER RADJdOOO) ,ADJNCY( 3000) , PARENT( 1 000) ,CHILD( 1 000) , 

+ SIBLNG(IOOO),NONZER(1000),RFAC(300),FACADJ{6000), 

+ WRKROWOOO ) ,W0HKR1 ( 1 000 ) , RSTAC( 1 000 ) ,WRK2( 300) , 
+ DEGREE(300),CNONZ( 300),CORDER(300 ),CLIST( 300) , 

+ RORDER(300),RSTAT(1000),SUPERN(1000),W0RKR2(1000), 

+ RROH(300),W0RKZ1(3000),W0RKZ2(3 000) 

INTEGER PFAC,TITLE(20),CSTRAT,RSTRAT 

INTEGER NROW,NCOL,NNZER,NMOD,NROWP1,NRZER,IPRINT,NOPER,MINOR 
C 
C (RADJ,ADJNCY) - INPUT ROW ADJACENCY STRUCTURE OF THE MATRIX X 

C (PARENT,CHILD,SIBLNG) - FOREST STRUCTURE T 

C NONZER - NUMBER OF NONZEROS IN EACH ROW 

C (RCFAC,FACADJ) - OUTPUT ROW ADJACENCY STRUCTURE OF R FACTOR 

C DEGREE - DEGREE OF EACH COLUMN 

C CNONZ - NUMBER OF NONZEROS IN EACH COLUMN 

C CORDER,CLIST,RORDER - KEEP TRACK OF COLUMN ORDER 

C SUPERN - VECTOR TO LINK NODES IN SUPERNODES 

C RSTAT - ROW STATUS 0 - IN UNREDUCED PORTION 

C 1 - IN R, BUT CONTRIBUTING TO UNRED. PORTION 

C 2 - IN R, AND NOT CONTRIB. TO UNRED. PORTION 

C RROW - KEPPS TRACK OF PIVOT ROWS 

C W0RKZ1,W0RKZ2 - WORK VECTORS FOR READING A MATRIX IN I-J FORMAT 

C WRKR0W,WRK2 - WORK VECTORS FOR CURRENT ROW STRUCTURE 

C W0RKR1,W0RKR2 - WORK VECTORS FOR ROW INDICES 

C NROW - NUMBER OF ROWS IN X 

C NCOL - NUMBER OF COLUMNS IN X 

C NNZER - NUMBER OF NONZEROS IN X 

C IPRINT - REGULATES AMOUNT OP OUTPUT -3 GIVES MINIMAL OUTPUT 

C 2 GIVES MAXIMAL OUTPUT 

C (SEE SUBROUTINE REDUCE FOR MEANING OF INDIVIDUAL VALUES) 

C NMOD - USED IN CONJUNCTION WITH IPRINT>-1, OUTPUTS NONZERO STRUCT 

C EVERY NMOD MAJOR STEPS 

C NOPER - COUNTS OPERATIONS 

C MINOR - COUNTS GIVENS ROTATIONS 

C NRZER - COUNTS NONZEROS IN R 

C CSTRAT - COLUMN STRATEGY (SEE SUBROUTINE REDUCE FOR VALUES) 

C RSTRAT - ROW STRATEGY (SEE SUBROUTINE GETNOD FOR VALUES) 

C 

COMMON /lO/ NOUT,MOUT,INX,IOUT 

NOUT = 10 
MOUT = 6 

lOUT = 8 

INX = 5 
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PFAC = 1 

MINOR = 0 

NOPER = 0 

READdNX, 102) TITLE 

HRITE(IOUT,20 3) TITLE 

READ(INX,101) IPRINT,IREP,NMOD,CSTRAT,RSTRAT 

CALL GETMAT(NROW,NCOL,NNZER,RADJ,ADJNCY,NONZER,W0RKR1,W0RKZ1, 

+ W0RKZ2,TITLE) 

WRITE(lOUT,204) NROW,NCOL,NNZER,IPRINT,IREP,NMOD,CSTRAT,RSTRAT 

NR0WP1 = NROW + 1 

NRZER = NCOL * (NCOL+1) / 2 

CALL SETUP(NROW,NCOL,NNZER,NROWP1,PARENT,CHILD,SIBLNG,RSTAT, 

+ SUPERN,WRKROW,WRK2,RADJ,ADJNCY,WORKR1,W0RKR2,RSTAC, 

+ NONZER,CNONZ,DEGREE,RORDER,CORDER,CLIST,IPRINT) 

COMPUTE NUMBER OF NONZEROS IN HALF OF X'X 

NZXX = 0 

DO 10 I = 1,NC0L 

NZXX = NZXX + DBGREE(I) 

10 CONTINUE 

NZXX = NZXX / 2 

CALL REDUCE(NROW,NCOL,NNZER,NROWP1,PARENT,CHILD,SIBLNG,RSTAT, 

+ SUPERN,WRKROW,WRK2,RADJ,ADJNCY,WORKR1,W0RKR2,RSTAC, 

+ NONZER,CNONZ,DEGREE,RORDER,CORDER,CLIST,IPRINT,CSTRAT, 

+ NOPER,MINOR,RFAC,FACADJ,RROW,PFAC,NRZER,RSTRAT,NMOD, 

+ IREP) 

PFAC = PFAC - 1 

WRITE(IOUT,201) NNZER,NZXX,PFAC,MINOR,NOPER 

STOP 

101 FORMAT(20I4) 

102 FORMAT(20A4) 

201 FORMAT('1','ORIGINAL MATRIX: ',18,' NONZEROS'/IX, 

+ 'HALF OF X''X; ',18,' NONZEROS'/IX, 

+ 'RFACTOR: ',18,' NONZEROS'/IX, 

+ 'TOTAL OP ',18,' GIVENS ROTATIONS'/IX, 

+ 'TOTAL OF ',18,' OPERATIONS') 

203 FORMAT(1X,20A4) 

204 FORMAT(IX,'ROWS = ',15,' COLUMNS = ',15,' NONZEROS = ',I6/1X, 

+ ' IPRINT = ',12,' IREP = ',12,' NMOD = ',15, 

+ ' COLUMN STRATEGY = ',12,' ROW STRATEGY = ',12) 

END 
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SUBROUTINE ADD(IT,ARRAY,LEN,POINT) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
INTEGER POINT,IT,LEN 

INTEGER ARRAY(LEN) 

C 

POINT = POINT + 1 

ARRAY(POINT) = IT 

RETURN 

END 

SUBROUTINE ADJUST(WRKROW,RADJ,ADJNCY,SUPERN,NR0WP1,NROW,NCOL, 

f NNZER.ROOT) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c 
C ADJUST ADJUSTS SUPERNODE CONTAINING ROOT FOR ALL COLUMNS C 

C IN WRKROW, THEN ADJUSTS WORKROW FOR SUBTREE OP ROOT. C 

C ALSO UPDATES NONZER OF NODE ROOT. C 

C C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

INTEGER NCOL,NROWP1,NNZER,ROOT,START,STOP 

INTEGER WRKROW(NCOL),RADJ(NROWP1),ADJNCY(NNZER),SUPERN(NROW) 

C 

MROW = ROOT 

10 CONTINUE 

START = RADJ(MROW) 

STOP = RADJ(MH0W+1)-1 

DO 100 J = START,STOP 

ICOL = ADJNCY(J) 

IFdCOL .LE. 0)GO TO 100 

IF(WRKROW(ICOL) .EQ. OGO TO 100 

ADJNCY(J) = -ICOL 

100 CONTINUE 

MROW = SUPERN(MROW) 

IP(MROW .GT. 0)GO TO 10 

C 

C 

C 

ADD ADDS IT TO END OP ARRAY 

C 

C 

C 

C 

C ADJUST ROOT SUPERNODE FOR WORKROW 

C 

RETURN 

END 
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INTEGER FUNCTION ANCSTR(NODE,PARENT,RSTAT,NEOW) 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c 
C ANCSTR FINDS THE NEXT LIVING (NOT ELIMINATED) ANCESTOR OF NODE. C 

C IF NODE IS LIVING, RETURNS NODE. C 

C IF NO LIVING ANCESTOR, RETURNS ZERO. C 

C C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

INTEGER PARENT(NROH),RSTAT(NROW) 
C 

ANCSTR = NODE 

C 

10 CONTINUE 

IF(ANCSTR .EQ. 0)RETURN 

IF(RSTAT(ANCSTR) .EQ. 0)RETURN 

ANCSTR = PARENT(ANCSTR) 

GO TO 10 
C 

END 
INTEGER FUNCTION CFIND(COL,ROW,RADJ,ADJNCY,NROW,NR0WP1,NNZER) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

c c 
C CFIND CHECKS ROW FOR COL. RETURNS INDEX IN ADJNCY IF FOUND, C 

C RETURNS ZERO OTHERWISE. C 

C C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

INTEGER COL,ROW,START,STOP 

INTEGER RA0J(NR0WP1).ADJNCY(NNZER) 

C 

START = RADJ(ROW) 

STOP = RADJ(R0W+1)-1 

C 

DO 100 I = START,STOP 

IF(ADJNCY(I) .EQ. CODGO TO 200 

100 CONTINUE 

C 

1 = 0 

200 CONTINUE 

CFIND = I 

RETURN 

END 

INTEGER FUNCTION CKCHLD(NEWNOD,CHILD,SIBLNG,SUPERN,RSTAT, 

+ W0RKR2,NR0W) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

c c 
C CKCHLD RETURNS 0 IP NO CHILDREN OF NEWNOD SUPERNODE ARE MARKED C 

C IN W0RKR2. RETURNS 1 OTHERWISE. C 

C C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
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C 

c 

c 

INTEGER CHILD(NROW),SIBLNG(NROW),W0RKR2(NROW),SUPERN(NROW), 

+ RSTAT(NROW) 

INTEGER CLD 

CKCHLD = 0 

NOD = NEWNOD 

10 CONTINUE 

CLD = CHILD(NOD) 

C 

20 CONTINUE 

IF(CLD .EQ. 0)GO TO 30 

IF(RSTAT(CLD) .EQ. 0 .AND. W0RKR2(CLD) .EQ. 1)G0 TO 40 

CLD = SIBLNG(CLD) 

GO TO 20 

C 

3 0 CONTINUE 

NOD = SUPERN(NOD) 

IP(NOD .GT. 0)GO TO 10 
RETURN 

C 

40 CONTINUE 

CKCHLD = 1 

RETURN 

END 

SUBROUTINE CNZUD(WRKROW,CNONZ,W0RKR1,W0RKH2,RADJ,RSTAT,ADJNCY, 

+ PARENT,CHILD,SIBLNG.NROWPI,NR0W,NNZER,NCOL) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

c c 
C CNZUD UPDATES NONZERO COUNTS FOR COLUMNS MARKED IN WRKROW C 

C C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

INTEGER COLNZ 

INTEGER WRKROW(NCOL),CNONZ(NCOL),WORKR1(NROW),W0RKR2(NROW), 

+ RADJ(NROWP1),ADJNCY(NNZER),PARENT(NROW), 

+ CHILD(NROW),SIBLNG(NROW).RSTAT(NROW) 

C 

C 

C 

DO 100 I = 1,NCOL 

IF(WRKROW(I) .EQ. 0)GO TO 100 

CNZ = COLNZ(I,W0RKR1,W0RKR2,RADJ,RSTAT,ADJNCY,PARENT,CHILD, 

+ SIBLNG,NROW,NROWP1,NNZER) 

IFCCNZ .EQ. 0)CNZ = NROW + 1 

CNONZ(I) = CNZ 

C 

100 CONTINUE 

C 

RETURN 

END 
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INTEGER FUNCTION C0LN2(DCOL,W0RKR1,W0RKR2,RADJ,RSTAT,ADJNCY, 
+ PARENT,CHILD,SIBLNG,NR0H,NR0HP1,NNZER) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c 
C COLNZ RETURNS NUMBER OF NONZEROS IN COLUMN DCOL C 
C C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

INTEGER DCOL,ANCSTR,CFIND,CROW 
INTEGER W0RKR1(NROW),W0RKR2(NROW),RADJ(NROWP1),ADJNCY(NNZER), 

+ PARENT(NROW).CHILD(NROW),SIBLNG(NROW),RSTAT(NROW) 
C 

C 

C 

c 

COLNZ = 0 

CALL INIT(WORKR2,NROW,0) 

DO 100 IROW = I.NROW 

IP(W0RKR2(IR0W) .EQ. 1)GO TO 100 

IF(RSTAT(IROW) .GT. 1)G0 TO 100 

I = CFIND(DCOL,IROW,RADJ,ADJNCY,NROW,NROWP1,NNZER) 

IF(I .EQ. 0)GO TO 100 

CROW = ANCSTR(IROW,PARENT,RSTAT,NROW) 

IF(CROW .EQ. 0)GO TO 100 

COLNZ = COLNZ + 1 

CALL GETUNL(CROW,PARENT,WORKR 2,WORKR1,NWR1,NROW) 

IF(NWR1 .EQ. 0)GO TO 60 
C 

DO 50 L = 1,NWR1 

JROW = WORKR1(L) 

W0RKR2(JROW) = 1 

IF(RSTAT(JROW) .EQ. 0)COLNZ = COLNZ + 1 

5 0 CONTINUE 

C 

60 CONTINUE 

CALL FAN(CHILD,SIBLNG,CROW,WORKR1,NWR1,NROW) 
CALL MARKIT(WORKR2,NROW,WORKR1,NROW,NWR1,1) 

C 

100 CONTINUE 

C 

RETURN 

END 

SUBROUTINE CUTREE(PARENT,CHILD,SIBLNG,NROW,ROOT) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C C 

C CUTREE SEPARATES A SUBTREE ROOTED AT NODE ROOT C 

C C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

INTEGER ROOT 

INTEGER PARENT(NROW),CHILD(NROW),SIBLNG(NROW) 
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INTEGER PAR.SIB.CHLD 

C 

PAR = PARENT(ROOT) 

IF(PAR .EQ. 0)RETURN 

SIB = SIBLNG(ROOT) 

CHLD = CHILD(PAR) 

PARENT(ROOT) = 0 

IF(CHLD .NE. ROOT)GO TO 100 

C 

C DIRECT CHILD 

CHILD(PAR) = SIB 

SIBLNG(ROOT) = 0 

RETURN 

C 

100 CONTINUE 

C CHILD IN SIBLING CHAIN 

C 

C PASS OVER SIBLINGS 

LCHILD = CHLD 

CHLD = SIBLNG(LCHILD) 

IF(CHLD NE. ROOT)GO TO 100 

C 

C REMOVE ROOT FROM SIBLING CHAIN 

SIBLNG(LCHILD) = SIBLNG(ROOT) 

SIBLNG(ROOT) = 0 

RETURN 

C 

END 

SUBROUTINE DEGUD(RADJ,RSTAT,ADJNCY,PARENT,CHILD,SIBLNG,WRKROW, 

+ WRK2,W0RKR1,W0RKR2,DEGREE,NCOL,NROW, 

+ NR0WP1,NNZER) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

c c 
C DEGUD DEGREE UPDATE C 

C UPDATES DEGREE OF ALL COLUMNS IN WRKROW C 

C C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

INTEGER RADJ(NROWP1),ADJNCY(NNZER),PARENT(NROW),WRK2(NCOL), 

+ CHILD(NROW),SIBLNG(NROW),WRKROW(NCOL),DEGREE(NCOL), 

+ W0RKR1(NROW),RSTAT(NROW),W0RKR2(NROW) 

C 

INTEGER NEWDEG 

C 

DO 100 I = 1.NCOL 

C 

IF(WRKR0W(I) .EQ. 0)GO TO 100 

DEG = NEWDEG(I,RADJ,RSTAT,ADJNCY,PARENT,CHILD,SIBLNG,WRK2, 

+ W0RKR1,W0RKR2,NCOL,NROW,NROWP1,NNZER) 
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IFIDEG .LT. 0)DBG = NCOL 

DEGREE(I) = DEG 

C 

100 CONTINUE 

C 

RETURN 

END 

SUBROUTINE DISCON(PROW,SUPERN,CHILD,SIBLNG,PARENT,RSTAT,NROW) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C c 
C DISCON DISMANTLES A SUPERNODE AND MARKS ALL ITS NODES WITH C 

C RSTAT=2, MEANING THAT THESE NODES NO LONGER C 

C CONTRIBUTE TO THE BIGRAPH. C 

C C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

INTEGER PROW,XNODE,CNODE 

INTEGER SUPERN(NROW),CHILD(NROW),SIBLNG(NROW),PARENT(NROW), 

+ RSTAT(NROW) 

C 

XNODE = PROW 

C 

100 CONTINUE 
CNODE = CHILD(XNODE) 
IF(CNODE .EQ. 0)GO TO 300 

C 

20 0 CONTINUE 

CALL CUTREE(PARENT.CHILD,SIBLNG,NROW,CNODE) 

CNODE = CHILD(XNODE) 

IF(CNODE .GT. 0)GO TO 200 

C 
300 CONTINUE 

RSTAT(XNODE) = 2 

XNODE = SUPERN(XNODE) 

IF(XNODE .GT. 0)GO TO 100 

C 

RETURN 

END 
SUBROUTINE EXTRA(WRKROW,RADJ.ADJNCY,NEXTRA,NROWPl,NROW,NCOL, 

+ HORKRI,NWR1,NNZER) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

c c 
C EXTRA COUNTS NUMBER OF DISTINCT NONZERO COLUMNS IN ALL C 

C NODES IN ARRAY WORKRI WHICH ARE NOT RECORDED IN WRKROW. C 

C THE COUNT IS STORED IN NEXTRA. WRKROW IS THEN UPDATED FOR C 

C THESE COLUMNS. C 

C C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

INTEGER WRKROW(NCOL),RADJ(NROWP1),ADJNCY(NNZER),WORKR1(NROW) 

INTEGER START,STOP 

C 
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NEXTRA = 0 

DO 100 I = 1,HWR1 

IROW = WORKRKI) 

START = RADJ(IROW) 

STOP = RADJ(IR0W+1)• 

50 

DO 50 J = START,STOP 

JCOL = ADJNCY(J) 

IF(JCOL .LE. 0)GO TO 

IF(WRKROW(JCOL) .GT. 

NEXTRA = NEXTRA + 

WRKROW(JCOL) = 1 

CONTINUE 

50 

0)GO TO 50 

100 CONTINUE 

C 

RETURN 

END 

SUBROUTINE FAM(CHILD,SIBLNG,IROW,W0RKR1,NWR1,NROW) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

c 
F AM - PREORDER TRAVERSAL OP SUBTREE (USING ITS BINARY TREE 

REP) STARTING AT NODE IROW. COLLECTS ALL NODES IN SUBTREE 

INTO ARRAY W0RKR1. 

C 

C 

C 

C 

C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

INTEGER IROW.NWRI 

INTEGER CHILD(NROW),SIBLNG(NROW),W0RKR1(NROW) 

C NOTE: RSTAC MUST BE DIMENSIONED AT LEAST NROW/2 

INTEGER T,LT,PSTACK,RSTAC(100) 

C 

LT = IROW 

PSTACK = 0 

NWR1 = 1 

WORKRKI) = IROW 

5 0 CONTINUE 

T = CHILD(LT) 

IF(T .GT. 0)GO TO 100 

IF(PSTACK .EQ. 0)RETURN 

T = RSTAC(PSTACK) 

PSTACK = PSTACK - 1 

100 CONTINUE 

CALL ADD(T,WORKR1,NROW,NWR1) 

LT = T 
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T = SIBLNG(LT) 

IP(T .GT. 0)CALL ADD(T,RSTAC,50,PSTACK) 

GO TO 50 

C 

END 

INTEGER FUNCTION FROOT<ROW,PARENT,NROW) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C c 
C RETURNS ROOT OF TREE CONTAINING ROW C 

C C 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
INTEGER ROW,PARENT(NROW) 

c 
NEXT = ROW 

C 

10 CONTINUE 

FROOT = NEXT 

NEXT = PARENT(FROOT) 

IP(NEXT .NE. 0)GO TO 10 

C 

RETURN 

END 

SUBROUTINE GETMAT(NROW,NCOL,NNZER,RADJ,ADJNCY,NONZER,W0RKR1, 

+ W0RKZ1,W0RKZ2,TITLE) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C C 

C GETMAT GETS A MATRIX TO BE REDUCED C 

C C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

INTEGER RADJ(1),ADJNCY(1),NONZER(1),PROBL,W0RKR1(1), 

+ WORKZI(1),W0RKZ2(1),TITLE(20) 

COMMON /lO/ NOUT,MOUT,INX,IOUT 

C 

C HERE BELONGS USER SUPPLIED CODE TO READ IN OR GENERATE THE 

C NONZERO STRUCTURE OP A MATRIX IN ROW ADJACENCY FORM. 

C ADJNCY SHOULD CONTAIN A LIST OF COLUMN INDICES, AND RADJ 

C SHOULD CONTAIN POINTERS TO FIRST ENTRY OP EACH ROW IN ADJNCY. 

C RADJ(NR0W+1) MUST EQUAL NNZER+1. 

C 

RETURN 

END 
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INTEGER FUNCTION GETNOD(RSTAC,PSTAC,NONZER,PARENT,CHILD,SIBLNG, 

+ SUPERN,W0RKR2,NROW,RSTAT,RSTRAT,WRKROW, 

+ WRK2,NCOL,WORKR1,RADJ,NROWP1,ADJNCY, 

+ NNZER,NEWEND) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

c c 
C GETNOD RETURNS THE NEXT NODE TO BE ORDERED, AND REPLACES C 

C IT IN RSTAC BY ITS PARENT. C 

C C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

INTEGER PSTAC,ANCSTR,RSTRAT,CKCHLD 

INTEGER RSTAC(NROW),NONZER(NROW),PARENT(NROW),CHILD(NROW), 

+ SIBLNG(NROW),RSTAT(NROW),W0RKR2(NROW),SUPERN(NROW), 

+ WRKROW(NCOL),WRK2(NCOL),WORKR1(NROW),RADJ(NROWP1), 

+ ADJNCY(NNZER) 

C 

NODIND = 1 

IF(PSTAC .EQ. 1)G0 TO 100 

C 

GOTO (10,20,30).RSTRAT 

C 

10 CONTINUE 

C NATURAL ORDER (SMALLEST INDEX) 

NODIND = MININD(RSTAC.PSTAC.NROW) 

GO TO 100 

C 

20 CONTINUE 

C LEAST NONZEROS (FIRST TIED) 

NODIND = MINRF(RSTAC.PSTAC,NONZER,NROW) 

GO TO 100 

C 

30 CONTINUE 

C LEAST PIVOTAL ROW FILL 

NODIND = MPFILL(RSTAC,PSTAC,WRKROW,WRK2,WORKR1,NROW,NCOL,NONZER, 

+ CHILD,SIBLNG,RADJ,NROWP1.ADJNCY,NNZER) 

C 

100 CONTINUE 

GETNOD = RSTAC(NODIND) 

NEWNOD = ANCSTR(PARENT(GETNOD),PARENT,RSTAT,NROW) 

RSTAC(NODIND) = NEWNOD 

W0RKR2(GETNOD) = 0 

IP(NEWNOD .EQ. 0)GO TO 200 

C 

C CHECK IF CHILDREN OF NEWNOD SUPERNODE ARE MARKED IN WORKR2 (IF MARK 

C THEN NEWNOD HAS A DESCENDANT IN RSTAC, AND CANNOT GO INTO RSTAC) 

IF(CKCHLD(NEWNOD,CHILD,SIBLNG,SUPERN,RSTAT,W0RKR2,NROW) .EQ. 0) 

+ RETURN 
200 CONTINUE 

CALL REPACK(RSTAC,PSTAC,NODIND) 

RETURN 

END 
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SUBROUTINE GETUNL(IROW,LINK,MARK,W0RKR1,NWR1,NROW) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
INTEGER LINK(NROW),W0RKR1(NROW),MARK(NROW) 

C 

NWR1 = 0 

I = LINK(IROW) 

IFtI .EQ. 0)RETURN 

10 CONTINUE 

NWR1 = NWR1 + 1 

WORKRKNWRI) = I 

I = LINK(I) 

IF(I .EQ. 0)RETURN 

IF(MARK(I) .EQ. 1)RETURN 

GO TO 10 

C 

RETURN 

END 

SUBROUTINE INIT(LINE,N,SYMB) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C c 
C INIT INITIALIZES LINE TO SYMB C 

c c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

INTEGER LINE(N),SYMB 

DO 10 I = 1,N 

LINE(I) = SYMB 

10 CONTINUE 

C 

RETURN 

END 

SUBROUTINE JOIN(XNODE,JNODE,SUPERN,NROW) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

c c 
C JOIN SUPERNODE XNODE BECOMES PART OF SUFERNODE JNODE C 

C C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

INTEGER XNODE,JNODE,SUPERN(NROW) 

AJ = JNODE 

C 

C FIND END OF JNODE CHAIN IN SUPERN 

10 CONTINUE 

LAJ = AJ 

AJ = SUPERN(LAJ) 

IF(AJ .GT. 0)GO TO 10 

C 

C 

C 

PUTS ALL UNMARKED NODES LINKED TO IROW INTO W0RKR1 
C 

C 

C 

C 

C 
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c 
c CONNECT JNODE LIST TO XNODE LIST 

SUPERN(LAJ) = XNODE 
C 

RETURN 

END 

SUBROUTINE MAJOR(PCOL,RADJ,RSTAT,ADJNCY,PARENT,CHILD,SIBLNG, 
+ SUPERN,NROW,NROWP1,NCOL,NONZER,WRKROW,WRK2 , 
+ NNZER,W0RKR1,W0RKR2,RSTAC,MINOR,NOPER,RSTRAT, 
+ PROW.PSTAC) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
c c 
c MAJOR PROCESSES A MAJOR STEP (A COLUMN) C 
C C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

INTEGER NROW,NCOL,NNZER,NROWP1,MINOR,NOPER,NZCNT,NEWEND,NEXNOD 
INTEGER RADJ( NROWP 1 ) , ADJNCY (NNZER) , PARENT (NROW ), CHILD( NROW) , 
+ SIBLNG(NROW),NONZER(NROW),WRKROW(NCOL),WRK2(NC0L), 
+ W0RKR1(NROW),W0RKR2(NROW),RSTAC(NROW),RSTAT(NROW), 
+ SUPERN(NROW) 
INTEGER PSTAC,PCOL,PROW,RSTRAT,GETNOD 

C 
C 
C COUNTS # NONZEROS CURRENTLY IN PIVOT ROW 

NZCNT = 0 
C 

C INITIALIZE WORKING ROW FOR ACCUMULATION OP PIVOT ROW STRUCTURE 
CALL INIT(WRKROW,NCOL,0) 

C 
C FIND ALL ROWS INVOLVED IN THIS MAJOR STEP WHICH COMPETE 
C FOR FIRST PLACE, AND DELETE PCOL FROM ALL ROWS 

CALL RFIND(PCOL,RADJ,RSTAT,ADJNCY,PARENT,CHILD,SIBLNG, 
+ NROW,NROWP1,NNZER,RSTAC,PSTAC,W0RKR1,W0RKR2) 

C 

C INITIALIZE ROOT OF TREE BEING CONSTRUCTED 
NEWEND = 0 

C 
IF(PSTAC .GT. 0)GO TO 1 

C NO ROW WITH PCOL FOUND (NOTHING TO BE DONE IN THIS MAJOR STEP) 

PSTAC = -1 

RETURN 

C 
C LOOP UNTIL ALL ROWS PROCESSED (UNTIL PSTAC = 0) 

1 CONTINUE 

C 
C GET NEXT ROW NODE 

NEXNOD = GETNOD(RSTAC,PSTAC,NONZER,PARENT,CHILD,SIBLNG, 
+ SUPERN,W0RKR2,NROW,RSTAT,RSTRAT,WRKROW, 
+ WRK2,NC0L,W0RKR1,RADJ,NROWP1,ADJNCY,NNZER, 

4- NEWEND) 
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IFCNEWEND .EQ. 0)PROW = NEXNOD 

CUT THE SUBTREE ROOTED AT NEXNOD FROM THE FOREST 
CALL CUTREE(PARENT,CHILD,SIBLNG,NROW,NEXNOD) 

IP(NEWEND .EQ. 0)GO TO 30 
ADJUST SUPERNODE OF NEXNOD FOR WORKROW 
CALL ADJUST(WRKROW,RADJ,ADJNCY,SUPERN,NROWP1,NROW,NCOL,NNZER, 

NEXNOD) 

IF(IFLAG2 .EQ. 0)GO TO 30 
ADJUST PIVOT ROW SUPERNODE FOR SUBTREE OF SECOND ROW 
CALL FAM(CHILD,SIBLNG,NEXNOD,W0RKR1,NWR1,NROW) 
IF(NWR1 .EQ. 1)G0 TO 30 
W0RKR1(1) = W0RKR1(NWR1) 
NWR1 = NWR1 - 1 
CALL INIT(WRK2,NCOL,0) 
CALL EXTRA(WRK2,RADJ,ADJNCY,NEXTRA,NROWP1,NROW,NCOL, 

WORKRI,NWR1,NNZER) 
CALL ADJUST(WRK2,RADJ,ADJNCY,SUPERN,NROWP1,NROW,NCOL, 

NNZER,PROW) 

CONTINUE 

ADJUST WORKROW FOR SUBTREE OF NEXNOD 
CALL FAM(CHILD,SIBLNG,NEXNOD,W0RKR1,NWR1,NROW) 
CALL EXTRA(WRKROW,RADJ,ADJNCY,NEXTRA,NROWP1,NROW,NCOL,WORKR1 , 

NWR1,NNZER) 
UPDATE NONZERO COUNT FOR CURRENT ROW 
N2CNT = NZCNT + NEXTRA 
NONZER(NEXNOD) = NZCNT 

IFLAG2 = 1 

NOTE NEWEND = 0 ONLY WHEN 
IFCNEWEND .EQ. 0)GO TO 40 
LOWER SECOND ROW FLAG 
IFLAG2 = 0 
COUNT OPERATIONS 

NOPER = NOPER + NZCNT + 
COUNT ROTATIONS 
MINOR = MINOR + 1 

CONTINUE 

CONNECT THE TREE OF NEXNOD TO THE NEW TREE OF NEWEND 
CALL SETREE(PARENT,CHILD,SIBLNG,NROW,NEXNOD,NEWEND) 

IF(PSTAC .GT. 0)GO TO 1 

RETURN 
END 

PROCESSING PIVOT ROW 

1 
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SUBROUTINE MAHKIT( IT, LEN1 , POS , I.EN2 ,NUM, SYMB ) 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c 
C MARKS POSITIONS POS OF IT BY SYMB C 
C C 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

INTEGER IT ( LEND , POS (I.EN2) , SYMB 
C 

IF(NUM .EQ. 0)RETURN 
C 

DO 10 I = 1,NUM 
IT(POS(I)) = SYMB 

10 CONTINUE 
C 

RETURN 
END 
INTEGER FUNCTION MINDEG(DEGREE,CNONZ,NCOL) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C c 
c MINDEG FINDS UNPROCESSED COLUMN OF MINIMUM DEGREE. C 
C TIEBREAKING DONE WITH # OF NONZEROS IN A COLUMN. C 
C C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

INTEGER DEGREE(NCOL),CNONZ(NCOL) 
C 

MINDEG = 1 
MIN = DEGREE(1 ) 
MINNZ = CNONZ(1) 

C 
DO 50 I = 2,NCOL 

C 
DEG = DEGRBE(I) 
IFCDEG .GT. MIN)GO TO 50 
IFCDEG .EQ. MIN)GO TO «0 
MINDEG = I 
MIN = DEG 
MINNZ = CNONZ(I) 

GO TO 50 
40 CONTINUE 

NZ = CNONZ(I) 

IF(NZ .GE. MINNZ)GO TO 50 
MINDEG = I 
MINNZ = NZ 

C 
50 CONTINUE 

C 
C SET DEGREE TO NCOL (LARGEST POSSIBLE DEGREE IS NCOL-1) 

DEGREE(MINDEG) = NCOL 

RETURN 
END 
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INTEGER FUNCTION MINDG1(DEGREE,NCOL) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c 
C MINDG1 FINDS UNPROCESSED COLUMN OF MINIMUM DEGREE. C 
C FIRST TIED COLUMN IS TAKEN. C 
C C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

INTEGER DEGREE(NCOL) 
C 

MINDG1 = 1 
MIN = DEGREE(1) 

C 
DO 50 I = 2,NCOL 

C 

DEG = DEGREE(I) 
IFCDEG .GE. MIN)GO TO 50 

MINDG1 = I 
MIN = DEG 

C 

50 CONTINUE 
C 
C SET DEGREE TO NCOL (LARGEST POSSIBLE DEGREE IS NCOL-1) 

DEGREE(MINDG1) = NCOL 
C 

RETURN 
END 
INTEGER FUNCTION MINDG2(DEGREE,NCOL) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
c c 
c MINDG2 FINDS UNPROCESSED COLUMN OF MINIMUM DEGREE. C 
C LAST TIED COLUMN IS TAKEN. C 
C C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

INTEGER DEGREE(NCOL) 
C 

MINDG2 = 1 
MIN = DEGREE(1) 

C 
DO 50 I = 2,NCOL 

C 
DEG = DEGREE(I) 
IF(DEG .GT. MIN)GO TO 50 
MINDG2 = I 
MIN = DEG 

C 
50 CONTINUE 

C 
C SET DEGREE TO NCOL (LARGEST POSSIBLE DEGREE IS NCOL-1) 

DEGREE(MINDG2) = NCOL 
RETURN 
END 
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INTEGER FUNCTION MININD(RSTAC,PSTAC,NROW) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c 
C MININD RETURNS INDEX IN RSTAC OF SMALLEST ROW NUMBER C 
C C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 

INTEGER RSTAC(NROW),PSTAC 
C 

MININD = 1 
MIN = RSTAC(1) 

IF(PSTAC .EQ. 1)RETURN 
C 

DO 10 I = 2,PSTAC 
IND = RSTAC(I) 

IFdND .GT. MIN)GO TO 10 
MIN = IND 
MININD = I 

10 CONTINUE 
C 

RETURN 

END 

INTEGER FUNCTION MINRP(RSTAC,PSTAC,NONZER,NROW) 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
c c 
C MINRF RETUNS THE INDEX IN RSTAC OF THE FIRST TIED ROW NODE C 
C WITH THE SMALLEST NONZERO COUNT IN NONZER. C 
C C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

INTEGER RSTAC(NROW),NONZER(NROW),PSTAC 
C 

MINRF = 1 
MINZ = NONZER(RSTAC(1)) 
IF(PSTAC .EQ. 1)RETURN 

C 
DO 10 I = 2,PSTAC 
NONZ = NONZER(RSTAC(I)) 
IF(NONZ .GE. MINZ)GO TO 10 
MINRF = I 
MINZ = NONZ 

10 CONTINUE 
C 

RETURN 
END 
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INTEGER FUNCTION MPFILL(RSTAC,PSTAC,WBKROW,WRK2,W0RKR1,NROW,NCOL, 
+ NONZER,CHILD,SIBLNG,RADJ,NR0WP1.ADJNCY, 
+ NN2ER) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c 
C MPFILL FINDS ROW IN RSTAC CAUSING MINIMUM FILL IN PIVOT ROW C 
C C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

INTEGER RSTAC(NROW),WRKROW(NCOL),WRK2(NCOL),W0RKR1(NROW), 
+ CHILD(NROW),SIBLNG(NROW),RADJ(NROWP1),ADJNCY(NNZER), 
+ NONZER(NROW) 
INTEGER PFILL,PSTAC,FILL 

C 

MPFILL = 1 
MFILL = PFILL(RSTAC(1),WRKROW,WRK2,WORKR1,NROW,NCOL,CHILD,SIBLNG, 
+ RADJ,NROWP1,ADJNCY,NNZER) 
NONZP = NONZER(RSTAC(1)) 

C 
DO 10 I = 2,PSTAC 
IROW = RSTAC(I) 
FILL = PFILLCIROW,WRKROW,WRK2,W0RKR1,NROW,NCOL,CHILD,SIBLNG, 

+ RADJ,NROWP1,ADJNCY,NNZER) 
IF(FILL .GT. MFILL)GO TO 10 

NZERO = NONZER(IROW) 
IF(FILL NE. MFILL)GO TO 5 
IF(NZERO .GE. NONZP)GO TO 10 

5 CONTINUE 
NONZP = NZERO 
MPFILL = I 
MFILL = FILL 

10 CONTINUE 
C 

RETURN 
END 
INTEGER FUNCTION MRJCJF(CNONZ,NCOL,NROW) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
c c 
C MRJCJF FINDS UNPROCESSED COLUMN WITH MINIMUM » OF NONZEROS. C 
C FIRST TIED COLUMN IS TAKEN. C 
C C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

INTEGER CNONZ(NCOL) 
C 

MRJCJF = 1 
MIN = CNONZ(1) 

C 
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DO 50 I = 2,NC0L 
C 

NZ = CNONZ(I) 

IF(HZ .GE. HIN)GO TO 50 
MRJCJF = I 
MIH = NZ 

C 
50 CONTINUE 

C 

C SET CNONZ TO NROW+1 (LARGEST POSSIBLE CNONZ IS NROW) 
CNONZCMRJCJF) = NROW + 1 

C 
RETURN 
END 

INTEGER FUNCTION MRJCJL(CNONZ,NCOL,NROW) 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C C 
C MRJCJL FINDS UNPROCESSED COLUMN WITH MINIMUM # OF NONZEROS. C 
C LAST TIED COLUMN IS TAKEN. C 
C C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

INTEGER CNONZ(NCOL) 
C 

MRJCJL = 1 
MIN = CNONZ(1) 

C 

C 
DO 50 I = 2,NCOL 

NZ = CNONZ(I) 

IF(NZ .GT. MIN)GO TO 50 
MRJCJL = I 
MIN = NZ 

C 
5 0 CONTINUE 

C 
C SET CNONZ TO NROW+1 (LARGEST POSSIBLE CNONZ IS NROW) 

CNONZ(MRJCJL) = NROW + 1 

C 
RETURN 
END 
INTEGER FUNCTION NEWDEG(DCOL,RADJ,RSTAT,ADJNCY,PARENT,CHILD, 
+ SIBLNG,WRK2,W0RKR1,W0RKR2,NC0L, 
+ NROW,NROWP1,NNZ ER) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
c c 
C NEWDEG RETURNS THE DEGREE OF COLUMN DCOL C 
C C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

INTEGER NCOL,NROWP1,NNZER,DCOL,FROOT,TROW,CFIND 
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INTEGER RADJ(NR0HP1),ADJNCY(NNZER),PARENT(NROH),CHILD(NROW), 
+ SIBLNG(NROW),WRK2{NC0L),W0RKR1(NROW), 
+ H0RKR2(NROW),RSTAT(NROH) 

C 

CALL INIT(W0RKR2,NROW,0) 
CALL INIT(WRK2,NCOL,0) 
NEWDBG = 0 

C 
DO 200 IROW = 1,NROW 

C 
IF(W0RKR2(IROW) .EQ. 1)G0 TO 200 
IF(RSTAT(IROW) .GT. 1)G0 TO 200 

I = CFIND(DCOL,IROW,RADJ,ADJNCY,NROW,NROWP1,NNZER) 
IF(I .EQ. 0)GO TO 200 
TROW = FROOT(IROW,PARENT,NROW) 
CALL FAM(CHILD,SIBLNG,TROW,WORKR1,NWR1,NROW) 
CALL MARKIT(WORKR2,NROW,WORKR1,NR0W,NWR1,1) 
CALL EXTRA(WRK2,RADJ,ADJNCY,NEXTRA,NROWP1,NROW,NCOL, 

+ W0RKR1,NWR1,NNZER) 
NEWDEG = NEWDEG + NEXTRA 

C 
200 CONTINUE 

C 
NEWDEG = NEWDEG - 1 

C 
RETURN 
END 
INTEGER FUNCTION PFILL(RNODE,WRKROW,WRK2,W0RKR1,NROW,NCOL,CHILD, 
+ SIBLNG,RADJ,NROWP1,ADJNCY,NNZER) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C c 
C PFILL RETURNS PIVOTAL ROW FILL CAUSED BY RNODE C 
C C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

INTEGER WRKROW(NCOL),WRK2(NCOL),WORKR1(NROW),CHILD(NROW), 
+ SIBLNG(NROW),RADJ(NROWP1),ADJNCY(NNZER) 
INTEGER START,STOP,RNODE 

C 
PFILL = 0 

C 
CALL INIT(WRK2,NCOL,0) 
CALL FAM(CHILD,SIBLNG,RNODE,WORKR1,NWR1,NROW) 

C 
DO 100 I = 1,NWH1 
IROW = WORKR1(I) 
START = RADJ(IROW) 
STOP = RADJ(IR0W+1) - 1 
DO 50 J = START,STOP 
JCOL = ADJNCYCJ) 
IF(JCOL .GT. 0)WRK2{JCOL) = 1 

50 CONTINUE 
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100 CONTINUE 
C 

DO 200 IC = 1,NC0L 

IND = WRK2(IC) - WRKROW(IC) 
IFdND .EQ. DPFILL = PFILL + 1 

20 0 CONTINUE 
C 

RETURN 
END 
SUBROUTINE PRTVEC(VECTOR,LEN,NAME) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
c C 
C PRTVEC PRINTS VECTOR ALONG WITH INDICES C 
C C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

COMMON /lO/ NOUT,MOUT,INX,IOUT 
C 

INTEGER VECTOR(LEN) 
REAL NAME(2) 

C 

WRITE(MOUT,201) NAME 
C 

DO 20 I = 1,LBN,20 
C 

II = MINOtI + 19,LEN) 
WRITE(MOUT,101) (J,J=I,II) 
WRITE(MOUT,102) (VECTOR(J),J=I,II) 

C 

20 CONTINUE 
C 

RETURN 
C 

101 FORMAT('0',3314) 
102 FORMAT(' ',3314) 
201 PORMAT(1X//1X,2A4) 

END 
SUBROUTINE PRTX( RADJ,RSTAT,ADJNCY,CHILD,SIBLNG,PARENT,NROW,NROWP 1 , 
+ NNZER,W0RKR1,RSTAC,RORDER,CORDER,CLIST,II,RFAC, 
+ FACADJ,RROW,NRZER,NCOL,PPAC,IREP) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C C 
C PRTX PRINTS THE NONZERO STRUCTURE OF A PARTIALLY FACTORED C 
C MATRIX STORED IN B-BAR FORM WITH A FOREST ORDERING. C 
C ROWS 0? THE UNFACTORED PORTION ARE PRINTED GROUPED BY C 
C TREES WITHIN THE FOREST, AND NODES OF EACH TREE ARE C 
C PRINTED IN PREORDER. C 
C C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

INTEGER NROWP1,NNZER,PFAC 
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INTEGER RADJ(NROWP1),ADJNCY(NNZER),CHILD(NROW),SIBLNG tNROW), 
+ PARENT(NROW),WORKR1(NROW),RSTAC(NROW),RORDER(NCOL), 
+ CORDER(NCOL),CLIST(NCOL),RFAC(NCOL),PACADJ{NRZER), 
+ RSTAT(NROW),RROW(NCOL) 
INTEGER LINE(125),BLANK,STAR,PSTAC,CNUM 

C 
COMMON /lO/ NOUT,MOUT,INX,lOUT 

C 
DATA BLANK/' '/,STAR/'* '/ 

C 
ICOL =11 
DO 50 K = 1.NCOL 
CNUM = CLIST(K) 
IP(CNUM .EQ, 0)GO TO 50 
ICOL = ICOL + 1 
CORDER(CNUM) = ICOL 

50 CONTINUE 
C 

WRITE(MOUT,103) 
C 

IP(NCOL .LT. 100)GO TO 20 
CALL INIT(LINB,NCOL,0) 
DO 10 I = 100,NCOL 
LINE(CORDBR(I)) = 1 

10 CONTINUE 
WRITE(MOUT,102) (LINB(K),K=1,NCOL) 

C 
20 CONTINUE 

CALL INIT(LINE,NCOL,0) 
DO 30 I = 10,NCOL 
LINE(CORDER(I)) = MOD(1,100 )/10 

30 CONTINUE 
C 

WRITE(MOUT,102) (LINB(K),K=1,NCOL) 
CALL INIT(LINE,NCOL,0) 
DO 40 I = 1,NCOL 
LINE(CORDER(I)) = MOD(I,10) 

aO CONTINUE 
WRITE(MOUT,102) (LINE(K),K=1,NCOL) 

C 
IPdl .LE. 0)GO TO 80 

C 
DO 70 K = 1,11 
ICOL = RORDER(K) 
J S TART = RPACdCOL) 
JSTOP = PFAC - 1 
IF(K .EQ. IDGO TO 55 
IC0L2 = RORDER(K+1) 
JSTOP = RPAC(IC0L2)-1 

55 CONTINUE 
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CALL INIT(LINE,125,BLANK) 
IFCJSTOP .LT. JSTART)GO TO 65 
DO 60 L = JSTART,JSTOP 
LINE(CORDER(FACADJ(L))) = STAR 

60 CONTINUE 
65 CONTINUE 

IROW = RROW(K) 

IFCIREP .GT. 0 .AND. RSTAT(IROW) .LT. 2)CALL REP(LINE,RADJ, 
+ ADJNCY,CORDER,IROW,NCOL,NROWPI,NNZER) 

WRITE(MOUT,101) IROW,LINE 
70 CONTINUE 

C 
80 CONTINUE 

C 
DO 300 I = 1,NROW 
IF(PARENT(I) .GT. 0)GO TO 300 

C NODE WITHOUT PARENT IS ROOT OF A TREE 
C PUT ALL NODES(ROWS) IN THIS TREE INTO RSTAC 

CALL FAM(CHILD,SIBLNG,I,RSTAC,PSTAC,NROW) 
DO 250 J = 1,PSTAC 
IROW = RSTAC(J) 
IF(RSTAT(IROW) .GT. 0)GO TO 250 

C 
CALL FAMCCHILD,SIBLNG,IROW,W0RKR1,NWR1,NROW) 
CALL INIT(LINE,125,BLANK) 

C 
DO 200 IR = 1,NWR1 

C 
JSTART = RADJ(W0RKR1(IR)) 
JSTOP = RADJ(W0RKR1(IR)+1)-1 

C 
DO 100 JPTS = JSTART,JSTOP 
JCOL = ADJNCY(JPTR) 
IF(JCOL .GT. 0)LINE(CORDER(JCOL)) = STAR 

100 CONTINUE 
C 

200 CONTINUE 
C 

IFdREP .GT. 0 ) CALL REP ( LINE, RAD J , AD JNCY, CORDER, IROW, NCOL, 
+ NROWPI,NNZER) 

WRITE(MOUT,101) IROW,LINE 
C 
250 CONTINUE 

C 
300 CONTINUE 

C 
RETURN 

C 
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101 PORMAT(1X,I5,125A1) 
102 FORMAT(6X,12511) 
103 FORMAT('1') 

END 
SUBROUTINE RECORD(WRKROW,NCOL,PCOL,RPAC,FACADJ,PFAC,NHZSR) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
c c 
C RECORD RECORDS NEW ROW OP R-PACTOR IN ROW-ADJACENCY FORM C 
C C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

INTEGER NCOL,PCOL,PFAC 
INTEGER WRKROW(NCOL),RFAC(NCOL),FACADJ(NRZER) 

C 
DO 10 I = 1,NCOL 

C 
IFtWRKROW(I) .EQ. 0)GO TO 10 
FACADJ(PFAC) = I 
PFAC = PFAC + 1 

C 
10 CONTINUE 

C 

RETURN 
END 
SUBROUTINE REDUCE(NROW,NCOL,NNZER,NR0WP1,PARENT,CHILD,SIBLNG, 
+ RSTAT,SUPERN,WRKROW,WRK2,RADJ,ADJNCY,WORKR1, 
+ WORKR2,RSTAC,NONZER,CNONZ,DEGREE,RORDER,CORDER, 
+ CLIST,IPRINT,CSTRAT,NOPER,MINOR,RPAC,FACADJ, 
+ RROW,PFAC,NRZER,RSTRAT,NMOD,IREP) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
c C 
c REDUCE CONTROLS THE SYMBOLIC REDUCTION ACCORDING TO PARAMETERS C 
C SPECIFIED. C 
C C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

INTEGER NROW,NCOL,NNZER,NR0WP1,NOPER,MINOR,NRZER,NMOD 
INTEGER PARSNT(NROW),CKILD(KSOW),SIBLNG(NROW),WRK2(NC0L), 
+ WRKROW(NCOL),RADJ(NROWP1),ADJNCY(NNZER),WORKR1t NROW), 
+ RSTAC(NROW),NONZER(NROW),CNONZ(NCOL),DEGREE(NCOL), 
+ RORDER(NCOL),CORD ER(NCOL),CLIST(NCOL),RPAC(NCOL), 
+ FACADJ(NRZER),RSTAT(NROW),SUPERN(NROW),W0RKR2(NROW), 
+ RROW(NCOL) 

INTEGER PCOL,PROW,CSTRAT,PFAC,RSTRAT,PAR,PSTAC 
COMMON /lO/ NOUT,MOUT,INX,lOUT 

C 
IP(IPRINT .GT. -3)WRITE(NOUT,156) 

C 
DO 500 I = 1,NCOL 
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GO TO (301,302,303,304,305,306).CSTRAT 

CONTINUE 
MINIMUM DEGREE WITH TIEBREAKIN6 
PCOL = MINDEGCDEGREE,CNONZ.NCOL) 
GO TO 200 

CONTINUE 

MINIMUM DEGREE, FIRST TIED 
PCOL = MINDG1(DEGREE,NCOL) 
GO TO 200 

CONTINUE 
MINIMUM DEGREE, LAST TIED 
PCOL = MINDG2(DEGREE,NCOL) 
GO TO 200 

CONTINUE 
MINIMUM COLUMN COUNT, FIRST TIED 
PCOL = MRJCJF(CNONZ,NCOL,NROW) 
GO TO 200 

CONTINUE 
MINIMUM COLUMN COUNT, LAST TIED 
PCOL = MRJCJL(CNONZ,NCOL,NROW) 
GO TO 200 

CONTINUE 
NATURAL ORDER 
PCOL = I 

IF(CNONZ(I) .EQ. NROW+1)G0 TO «00 

CONTINUE 

CALL MAJOR(PCOL,RADJ,RSTAT,ADJNCY,PARENT,CHILD,SIBLNG,SUPERN, 
NR0W,NR0WP1,NCOL,NONZER,WRKROW,WRK2,NNZER,WORKR1, 
W0RKR2,RSTAC,MINOR,NOPER,RSTRAT,PROW,PSTAC) 

CHECK IF ANY PROCESSING DONE 
IF(PSTAC .EQ. -1)G0 TO 400 

MARK PIVOT ROW 
RSTAT(PROW) = 1 
RROW(I) = PROW 

ADD PIVOT ROW SUPBRNODE TO SUPERNODE OF ITS PARENT. IF PIVOT 
ROW HAS NO PARENT, DISCONNECT AND DISMANTLE SUPERNODE, AND 
MARK THESE NODES WITH RSTAT=2. 
PAR = PARENT(PROW) 
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IF(PAR .GT. 0)CALL JOIN(PROW,PAR,SUPERS,NROW) 
IF(PAR .EQ. 0)CALL DISCON(PROW,SUPERN,CHILD,SIBLNG,PARENT, 

RSTAT.NROW) 

C 

C 

C 
C 
C 

+ 

+ 

IFdPRINT .GT. 1)CALL 
IFdPRINT .GT. 1)CALL 
IFdPRINT .GT. 1)CALL 
IFdPRINT .GT. 1)CALL 
IFdPRINT .GT. OCALL 
IFdPRINT .GT. 0)CALL 
IFdPRINT .GT. 0)CALL 
IFdPRINT .GT. 0)CALL 
IFdPRINT .GT. 1)CALL 
IFdPRINT .GT. 1)CALL 

IF(CSTRAT • LT. 4)CALL 

IFdPRINT .GT. OCALL 

IF(CSTRAT .EQ. 4 .OR. 

PRTVEC(RADJ,NROWP1,'RADJ 
PRTVSC(RSTAT,NROW,'RSTAT ': 
PRTVEC(SUPERN,NROW,'SUPERN 
PRTVEC ( ADJNCY, NNZER, ' ADJNCY 
PRTVEC(PARENT,NROW,'PARENT 
PRTVEC(CHILD,NROW,'CHILD ': 
PRTVEC(SIBLNG,NROW,'SIBLNG 
PRTVEC(NONZER,NROW,'NONZER 
PRTVEC(RFAC,NCOL,'RFAC ') 
PRTVEC(FACADJ,PFAC,'FACADJ 

SIBLNG,WRKROW,WRK2,WORKR1,W0RKR2, 
DEGREE,NCOL,NROW,NROWP1,NNZER) 

) 

WORKR1,RSTAC,RADJ,RSTAT,ADJNCY,PARENT, 
CHILD,SIBLNG,NROWP1,NROW,NNZER,NCOL) 

MARK PIVOT COLUMN IN WORKROW 
WRKROW(PCOL) = 1 

400 CONTINUE 
CORDER(PCOL) = I 
RORDERd) = PCOL 
CLXST(PCOL) = 0 

C 
C PFAC POINTS TO NEXT AVAILABLE SPACE IN FACADJ 

RFAC (PCOL) = PFAC 

C 

C 

C 

C 

C 

+ 

+ 

+ 

RECORD THE STRUCTURE OF THE NEW ROW OF R-FACTOR 
CALL RECORD(WRKROW,NCOL,PCOL,RFAC,FACADJ,PFAC,NRZER) 

IFdPRINT .GT. -1 .AND. MOD(I,NMOD) .EQ. 0 ) CALL PRTX(RADJ, 
RSTAT,ADJNCY,CHILD,SIBLNG,PARENT,NROW,NROWP1,NNZER, 
WORKR1,RSTAC,RORDER,CORDER,CLIST,I,RFAC,FACADJ, RROW, 
NRZER,NCOL,PFAC,IREP) 

IFdPRINT .GT. -3)WRITE(N0UT,111 ) I,PCOL,PROW,PFAC,MINOR,NOPER 

500 CONTINUE 

RETURN 
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C 
111 FORMAT(1X,6I10) 
156 FORMATdX,' STEP COLUMN ROW R-NONZEROS ' , 

+ ' ROTATIONS OPERATIONS') 

END 
SUBROUTINE REP(LINE,RADJ,ADJNCY,CORDER,IROW,NCOL,NROWP1, 
+ NNZER) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c 
C HEP PLACES X INTO COLUMNS WHICH ARE REPRESENTED IN B-BAR C 
C C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

INTEGER LINEC125),RADJ(NROWP1),ADJNCY(NNZER),CORDER(NCOL) 

INTEGER START,STOP,EX 
C 

C 
DATA EX/'X '/ 

START = RADJ(IROW) 

STOP = RADJ(IR0W+1) - 1 

DO 100 I = START,STOP 
ICOL = ADJNCY(I) 
IFdCOL .GT. 0)LINK(CORDER(ICOL) ) = EX 

100 CONTINUE 
C 

RETURN 

END 
SUBROUTINE REPACK(IT,LEN,GAP) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
c c 
C REPACK REPACKS IT TO PILL THE GAP C 
C C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

INTEGER IT(LEN),GAP 
C 

LEN = LEN - 1 

C 
DO 10 I = GAP,LEN 
IT(I) = ITd+l ) 

10 CONTINUE 

RETURN 

END 
SUBROUTINE RFIND(PCOL,RADJ,RSTAT,ADJNCY,PARENT,CHILD, 
+ SIBLNG,NR0W,NR0WP1,NNZER,RSTAC,PSTAC,W0RKR1, 
+ W0RKR2) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
c c 
C RFIND FINDS ROWS CONTAINING PCOL COLUMN C 
C C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
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INTEGER PC0L,NR0WP1,NNZER,PSTAC,CFIND 
INTEGER RADJ(NR0WP1),ADJNCY(NNZER),PARENT(NROW),RSTAC(NROW) , 
+ CHILD(NROW),SIBLNG(NROW),W0RKR1(NROW),W0RKR2(NROW) , 
+ RSTAT(NROW) 
INTEGER ANCSTR 

C 
PSTAC = 0 

CALL INIT(W0RKR2,NROW,0) 
C 

DO 200 IROW = 1,NROW 
C 

IF(WORKR2(IROW) .EQ. 1)G0 TO 200 
IP(RSTAT(IROW) .GT. 1)G0 TO 200 

C 

I = CFIND(PCOL,IROW,RADJ,ADJNCY,NROW,NROWP1,NNZER) 
IF(I .EQ. 0)GO TO 200 

C 
C IDENTIFIED ROW WITH PIVOT COLUMN 
C REMOVE PIVOT COLUMN 

ADJNCY(I) = PC0L*-1 

C FIND LIVING ANCESTOR 
JROW = ANCSTR(IROW,PARENT,RSTAT,NROW) 
IF(JROW .EQ. 0)GO TO 200 
CALL ADD(JROW,RSTAC,NROW,PSTAC) 

C MARK DESCENDANTS 

CALL FAM(CHILD,SIBLNG,JROW,WORKR1,NWR1,NROW) 

CALL MARKIT(W0RKR2,NROW,WORKR1,NROW,NWR1,1 ) 
C MARK UNMARKED ANCESTORS 

CALL GETUNL(JROW,PARENT,W0RKR2,WORKR1,NWR1 , NROW ) 
CALL MARKIT(W0RKR2,NROW,WORKR1,NROW,NWR1,1) 
GO TO 200 

C 

200 CONTINUE 
C 

RETURN 

END 

SUBROUTINE SETREE(PARENT,CHILD,SIBLNG,NROW,ROOT,NEWEND) 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C c 
C SETREE CONNECTS THE TREE OP NODE NEWEND TO NODE ROOT C 
C C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

INTEGER ROOT,NEWEND 
INTEGER PARENT(NROW),CHILD(NROW),SIBLNG(NROW) 

C 

IP(NEWEND .EQ. 0)GO TO 10 
PARENT(NEWEND) = ROOT 
SIBLNG(NEWEND) = CHILD(ROOT) 
CHILD(ROOT) = NEWEND 

10 CONTINUE 
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NEWEND = ROOT 

C 

RETURN 

END 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c 
C SETUP INITIALIZES ARRAYS PRIOR TO BEGINNING OF REDUCTION C 

C C 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
SUBROUTINE SETUP(NROH,NCOL,NNZBR,NR0WP1,PARENT,CHILD,SIBLNG, 

+ RSTAT,SUPERN,WRKROW,WRK2,HADJ,ADJNCY,W0RKR1, 

+ W0RKR2,RSTAC,NONZER,CNONZ,DEGREE,ROROER,CORDER, 

+ CLIST,IPRINT) 

C 

INTEGER NROW,NCOL,NNZER,NROWP1,IPRINT 

INTEGER PARENT(NROW),CHILD(NROW),SIBLNG(NROW),WRK2(NCOL), 

+ WRKROW(NCOL),RADJ(NROWP1),ADJNCY(NNZER),WORKR1(NROW), 

+ RSTAC(NROW),NONZER(NROW),CNONZ(NCOL),DEGREE(NCOL), 

+ RORDEH(NCOL),CORDER(NCOL),CLIST(NCOL),RSTAT(NROW), 

+ SUPBRN{NROW),W0RKR2(NROW) 

COMMON /lO/ NOUT,MOUT,INX,IOUT 

C 

CALL INIT(PARENT,NROW,0) 

CALL INIT(CHILD,NROW,0) 

CALL INIT(SIBLNG,NROW,0) 

CALL INIT(RSTAT,NROW,0) 

CALL INIT(SUPERN,NROW,0) 

CALL INIT(WRKROW,NCOL,1) 

CALL DEGUD(RADJ,RSTAT,ADJNCY,PARENT,CHILD,SIBLNG,WRKROW,WRK2, 

+ WORKR1,W0RKR2,DEGREE,NCOL,NROW,NROWP1,NNZER) 

CALL CNZUD(WRKROW,CNONZ,WORKR1,RSTAC,RADJ,RSTAT,ADJNCY,PARENT, 

+ CHILD,SIBLNG,NROWP1,NROW,NNZER,NCOL) 

C 

LP = RADJ(1) 

DO 10 I = 1,NROW 

IP = RADJ(I+1) 

NONZER(I) = IP - LP 

LP = IP 

10 CONTINUE 

C 

IP ( IPRINT .GT. DCALL PP.TVEC ( RAD J, NROWP 1 , ' RAD J ' ) 

IF(IPRINT .GT. 1)CALL PRTVEC(ADJNCY,NNZERADJNCY ') 

IF(IPRINT .GT. 0)CALL PRTVEC(NONZER,NROW,'NONZER ') 

IP(IPRINT .GT. 0)CALL PRTVEC(DEGREE,NCOL,'DEGREE ') 

IF(IPRINT .GT. 0)CALL PRTVEC(CNONZ,NCOL,'CNONZ ') 

C 

DO 60 I = 1,NCOL 

CLIST(I) = I 

CORDER(I) = I 

60 CONTINUE 
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IFdPRINT .GT. -2)CALL PRTX(RADJ,RSTAT, ADJNCY,CHILD, SIBLNG, PARENT, 

+ NR0W,NR0WP1,NNZER,W0RKR1,RSTAC,RORDER,CORDER, 

+ CLIST,0,RFAC,FACADJ,CNONZ,NRZBR,NCOL,PPAC,1) 

RETURN 

END 

SUBROUTINE TREAD(R,ADJNCY,RADJ,NNZER,NROW,NROWP1,C) 

INTEGER R(NNZER),C(NNZER),RADJ(NROWP1),ADJNCY(NNZER) 

READ(5,11) (R(I),C(I),1=1 ,NNZER) 

K = 1 

DO 200 IROW = 1,NROW 

RADJ(I) = K 

DO 100 I = 1,NNZER 

IP(C(I) .NE. IROW)GO TO 100 

ADJNCY(K) = R(I) 

K = K + 1 

100 CONTINUE 

200 CONTINUE 

RADJ(NROWP1) = NNZER + 1 

RETURN 

11 FORMAT( 4(211», 1 2X) ) 

END 
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8. APPENDIX B 

8.1 Structure of the Inverse of a Triangular Sparse Matrix 

Let R be an upper triangular matrix of order n, and let A be its inverse. Then, 

RA = AR = I. Clearly, A must also be upper triangular. Let G = (C;£) be 

the labelled graph associated with R, where (c,-, Cj) e E iff 

r i j  #  0  ( i  <  j ) .  

Definition 8.1.1 A path (c, , q , - , c, ) in C = (C;£) is monotone if 

I, < '2 < •  •  •  <  ' X -

Theorem 8.1.1 A monotone path exists from node i  to node j  in the graph G  iff 

Qij ^ 0 (assuming no cancellation in calculation of the inverse). 

Proof: A  where |/î| is the determinant of R ,  and R a j j  is the adjoint of 

R .  So each element of A  is 

an = (-1)'+^S ± 
p  

where the summation is taken over all permutations p  of 

II, 2, • • • , ;• —1, y + 1, • • • , n } ,  and the sign depends on whether p  is 

even or odd. Since R  is upper triangular, = 0 when u > v, and only permuta­

tions which satisfy />(m)^m, m = l, 2, , n can produce a nonzero 

term in the sum. Now p{m) < m implies that />(1) = 1, p{2) = 2, 

•  •  •  ,  p { i  —  \ )  = i-l, and p { n )  =  n ,  p { n  —  l )  = n —1, • • • , 

pC/+0 = ; + L So 

jt-i 
I'pd).! '/'('""O.' — l 'p(i + l),i + l '"pM, 4 
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au = (-n'+^z ± 'V;'l I''p(/+1 ).i +1 • '"pOW 
p  

It remains to assign /, ,  J - l  to p(/ + l), - , p( j ) ,  such that 

p ( m )  ^  m .  A typical nonzero term in the above sum is produced as follows. Suppose we first 

assign i  to p(fci), where / + 1 < k, < j ,  so p(k,) = i .  This means that 

p { m )  =  m  for / < m < t,, so /, - - , t, —1 are assigned. Next 

assign to p{ki), where ki + \ < < j\ so that piki) = and 

p ( m )  =  m  ( o T  m  =  k l ,  • • • , t;. So at this point i, • • • , t;—1 

are assigned. Suppose this is continued for a total of s  times, thus assigning 

1, • • • , k , - \ .  Finally let p ( J )  =  k „  so that p { m )  =  m  for 

m  =  k s ,  • • • , ] .  T h u s  a l l  z ,  -  -  ,  y  — 1  a r e  a s s i g n e d ,  a n d  t h i s  g i v e s  

where i < < *; < • • • <  k ,  <  j ,  as the form of a typical term in the 

above sum. Note that all elements in the denominator are nonzero, and each nonzero element in 

the numerator is represented by an edge in G. If all the elements in the numerator are nonzero, 

the corresponding edges in G give a monotone path from node i to node j. If 

Oij r 0, then at least one term in the sum must be nonzero, so there exists a monotone path 

from node j to node j in G. Conversely if there is a monotone path from node i to 

node i in (j, this can be represented by a product such as the one in the above numerator 

with all the elements nonzero. Since the summation is over all permutations p, the nonzero 

product must be part of the sum, so assuming that cancellation does not occur in the sum we have 

nk^k^k. 

Oij 0. 0 
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Figure 8.1 gives an example of an upper triangular matrix, and the structure of its inverse 

obtained by this theorem. To apply the result to a lower triangular matrix, simply take its trans­

pose. 

A possible use of the above theorem is in the explicit calculation of a variance-covariance 

matrix of estimated parameters in a sparse least squares problem. This matrix is given by 

where R  is the sparse upper triangular factor from Givens reduction of the data 

matrix X .  

R — 

* * 

* 

* * 

* 

A = 

* * 
monotone paths: 

© © © 
* 

* 

* © 

* * 

(Cs.Cs) 

Figure 8.1 An example of an upper triangular sparse matrix structure R ,  its graph representa­
tion, and the structure of its inverse A. The fill-in entries produced in A are cir­
cled. Note that each monotone path corresponds to exactly one off diagonal nonzero in 

A  
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