
INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfihning.

While the most advanced technology has been used to photograph and reproduce

this document, the quality of the reproduction is heavily dependent upon the

quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or

notations which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document

photographed is "Missing Page(s)". If it was possible to obtain the missing

page(s) or section, they are spHced into the film along with adjacent pages. This

may have necessitated cutting througli an image and duplicating adjacent pages

to assure complete continuity.

2. When an image on the film is obliterated with a round black mark, it is an

indication of either blurred copy because of movement during exposure,

duplicate copy, or copyrighted materials that should not have been filmed. For

blurred pages, a good image of the page can be found in the adjacent frame. If

copyrighted materials were deleted, a target note will appear listing the pages in

the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photographed,

a definite method of "sectioning" the material has been followed. It is

customary to begin filming at the upper left hand comer of a large sheet and to

continue from left to right in equal sections with small overlaps. If necessary,

sectioning is continued again-beginning below the first row and continuing on

until complete.

4. For illustrations that cannot be satisfactorily reproduced by xerographic

means, photographic prints can be purchased at additional cost and inserted

into your xerographic copy. These prints are available upon request from the

Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases the best

available copy has been filmed.

University
Microfilms

International
300 N. Zeeb Road
Ann Arbor, Ml 48106

8505858

Ostrouchov, George

LARGE SPARSE LEAST SQUARES COMPUTATIONS

Iowa State University PH.D. 1984

University
Microfilms

I n t6 r n ât 10 n â I 300 W. Zeeb Road, Ann Arbor, Ml 48106

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy.
Problems encountered with this document have been identified here with a check mark V .

1. Glossy photographs or pages

2. Colored illustrations, paper or print

3. Photographs with dark background

4. Illustrations are poor copy

5. Pages with black marks, not original copy

6. Print shows through as there is text on both sides of page

7. Indistinct, broken or small print on several pages \j/

8. Print exceeds margin requirements

9. Tightly bound copy with print lost in spine

10. Computer printout pages with indistinct" print

11. Page(s) lacking when material received, and not available from school or
author.

12. Page(s) seem to be missing in numbering only as text follows.

13. Two pages numbered . Text follows.

14. Curling and wrinkled pages

15. Dissertation contains pages with print at a slant, filmed as received

16. Other

University
Microfilms

International

Large sparse least squares computations

by

George Ostrouchov

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfilment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Approved:

In Charge of^ajor Work

For the Major Department

For the Graduat^ollege

Major; Statistics

Iowa State University
Ames, Iowa

1984

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

i i

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

2. SYMBOLIC GIVENS FACTORIZATION OF A SPARSE MATRIX 7

2.1 The Use of Graph Theory in the Study of Sparse Matrices 9

2.2 Givens Reduction of a Sparse Matrix and its Effect on
the Associated Bipartite Graph 13

2.3 Row Ordering 17

2.4 Column Ordering 26

2.5 Implementation of Symbolic Givens Reduction 33

3. UPDATING A LEAST SQUARES SOLUTION 47

3.1 Updating with Additional Observations 48

3.2 Updating with Equality Constraints 54

4. SPARSE MATRIX TECHNIQUES IN ANALYSIS OF VARIANCE 61

4.1 Givens Reduction of a Model Matrix 61

4.2 Analysis of Variance and Estimable Functions 71

5. COMPUTER IMPLEMENTATION AND TESTING 80

5.1 Symbolic Givens Reduction 80

5.2 Comparison of Ordering Strategics 86

5.3 Implementation of an Updating Algorithm 93

6. BIBLIOGRAPHY 96

i i i

7. APPENDIX A 98

7.1 The Symbolic Givens Reduction FORTRAN Program 98

8. APPENDIX B 128

8.1 Structure of the Inverse of a Triangular Sparse Matrix 128

9. ACKNOWLEDGEMENTS 131

1

1. INTRODUCTION

Consider the standard linear model y=Xff + e, where y is a vector of observed

values of the dependent variable of length n, X is a fixed known nX/» matrix, jS

is a length n vector of parameters to be estimated, and e is a length n vector of ran­

dom errors. The most popular method of estimating the parameters is the method of least squares,

which can be stated as

where b is the estimator of (3. This least squares problem is considered sparse, if the

matrix X contains relatively few nonzeros. Typically this means less than 10% nonzeros. The

problems considered here are large, because some overhead is incurred by taking advantage of spar-

sity , so that a reduction of storage and computation becomes evident only on large problems.

There are a number of application areas, where large sparse least squares problems arise.

Perhaps some of the largest problems arise in geodetic network adjustment. One of the largest least

squares problems attempted is the adjustment of the North American Datum, see Kolata (1978).

This is a network of some 200,000 reference points on the North .American continent, whose posi­

tions are adjusted by solving iteratively a least squares problem with approximately 6,000,000

observations and 400,000 parameters. Some other areas, where such problems arise, include photo-

grammetry, econometric models, analysis of seismological data, and finite element structural analy­

sis. Many of these problems are so large, that storage needed for their solution by standard tech­

niques exceeds the virtual address space of the largest computers.

Before describing how one can take advantage of sparsity, some direct methods for solving the

standard least squares problem are briefly described. For a more complete description of these

methods see Kennedy and Gentle (1980).

2

A solution to the least squares problem is given by a solution to the normal equations

X'Xb = X'y .

Two of the most popular methods, which solve the least squares problem through the normal equa­

tions, use the sweep operator or Cholesky decomposition on X'X. The generalized sweep oper­

a tor produces a pseudo inverse (X 'X)~ and then a solut ion b i s g iven by (X 'X)~X'y .

Cholesky decomposition can be used when X has full rank, and it produces a lower triangular

matrix L, such that X'X=LL'. Then, the unique solution is obtained by backsolving two

t r iangular sys tems Lc=X'y and L'b=c.

Although the above two methods are computationally very efficient, they may perform poorly

on an ill-conditioned problem. Also, precision can be lost by forming X'X. Methods which

deal directly with X avoid forming X'X, and are numerically more stable. These include

the Peters and Wilkinson (1970) decomposition, and orthogonal decompositions. The former gives

a decomposition of the form X=LU, where L is a unit lower trapezoidal matrix, and

U is an upper trapezoidal matrix. This leads to equations L'LUb=L'y, which can be

solved using methods of the preceding paragraph, but which are better conditioned than the normal

equations. Assuming that the leading columns of X are linearly independent, the orthogonal

decompositions are of the form

R T

0 0
X = Q

where R is upper triangular of order r^rankiX) , and Q is orthogonal of order n.

The matrix Q can be a product of Householder transformation matrices, or a product of

Givens transformation matrices, or it can be produced by the Gram-Schmidt orthogonalization

process . A solut ion b i s then obta ined by backsolving the t r iangular sys tem Ru=Q'y ,

and setting b =

3

Some of the above methods have been considered by various authors in the case when X

is sparse. Of course storage methods, where only or nearly only the nonzeros are stored, are used.

However, there is more that can be done in the above methods to take full advsntage of the sparsity.

Many methods are developed for specific application areas, where the X matrix is assumed to

have a particular structure. There are also several general methods, which make little or no

assumptions on the structure of X. A survey of direct methods for sparse linear systems, applica­

ble here through the normal equations, is given by Duff (1983), and a survey of iterative methods

for the same is given by Eisenstat (1983). Heath (1983) gives a comprehensive survey of methods

particularly applicable to sparse least squares problems. He focuses mainly on developments since

an earlier survey by Bjorck (1976). Three of the most widely applicable direct methods are briefly

described below.

The first is the method of Cholesky factorization, which is discussed by George and Liu

(1981) in their book on the solution of sparse positive definite linear systems. When Cholesky fac­

torization is applied to X'X, the matrix L usually suffers fill-in. That is, some entries

which are zero in the lower triangular part of X'X become nonzero in L. When a sym­

metric row and column permutation is applied to X'X, the resulting Cholesky factor may have

a different amount of fill-in. A symmetric row and column permutation amounts to reordering the

normal equations, and relabelling the parameters. The amount of fill-in produced will have a direct

effect on the amount of storage and computer time required to solve the least squares problem.

Thus, in the sparsity context, the solution takes two steps. First, a "good" symmetric permutation

with a sparse Cholesky factor is found, and then the permuted problem is solved. The two steps

can be performed simultaneously, but it is advantageous to perform a symbolic step first to find a

good permutation, and determine the nonzero structure of the matrix L, and then perform the

numerical factorization in a fixed data structure. This is because otherwise the data structure has

to be dynamic to accommodate the fill-in, and this can be very inefficient. Finding an optimal

4

permutation is a computationally nearly impossible task for any but the smallest problems, where

full matrix methods can be used anyway, so heurisrtic algorithms are used to find a "good" permu­

tation. A number of these heuristic algorithms are described by George and Liu.

Bjorck and Duff (1980) discuss a method based on the Peters and Wilkinson LU decom­

position of the X matrix. Pivot choice during the factorization is used to preserve the sparsity

of L and U, as well as to enhance the conditioning of L Bjorck and Duff modify the

Peters-Wilkinson scheme, by observing that if the least squares problem is nearly consistent, an

adequate solution can be obtained directly from the decomposition without solving

L 'LUb =L 'y. If the problem is not nearly consistent, then only a correction is computed using

L 'L This has the advantage that any ill-conditioning in I affects only the correction.

Sparsity preservation is needed here at two stages. During the LU decomposition, which consists of

Gaussian elimination, sparsity is preserved by choosing pivots according to the Markowitz (1957)

scheme. Then during the "correction" phase, a positive definite system is solved, for which the

methods described by George and Liu can be used.

Another method by George and Heath (1980) is based on the fact, that the upper triangular

R factor from orthogonal decomposition of X is mathematically equivalent to L the

transpose of the factor from Cholesky decomposition of X'X. This means that sparsity preser­

vation methods for Cholesky decomposition of positive definite matrices can be used in a symbolic

phase, to produce a data structure for orthogonal decomposition of X. George and Heath use

Givens rotations for the decomposition, since these allow X to be processed by rows. Their

method thus requires no more storage than the normal equations method, since X can be read

in by rows from auxiliary storage.

Obtaining information on the variance covariance structure of the model parameters is quite

easy in the normal equations and the Givens algorithms, since this is given by

{R'R)~^=R~HR~^)'. This information is not so readily available from the Peters-Wilkinson

5

algorithm. Of the above three methods, considering stability, flexibility, and efficiency, the

George-Heath method using the Givens algorithm seems to show the most promise for solving gen­

eral problems and obtaining statistical information about the estimates. For this reason, the

improvement or extensions of the Givens algorithm was chosen as a topic of this research. A recent

comparison of the above three methods by George, Heath, and Ng (1983) shows the normal equa­

tions method as the most efficient. However, it often fails on ill-conditioned problems. Of the two

more stable methods, the Givens algorithm uses less storage, but which method executed faster was

problem dependent.

The numerical phase of the George-Heath method operates directly on the X matrix

without forming X'X. Its symbolic phase, however, forms X'X rather than operate

directly on X. There are some disadvantages in this, as will be discussed in Chapter 2. In

Chapter 2, some results on row ordering of X are obtained, and then based on these results a

symbolic phase is developed for Givens orthogonal decomposition, which operates directly on the

nonzero s t ructure of X.

When X contains some relatively dense rows, severe fill-in can result in the R fac­

tor. George and Heath (1980) propose to leave out these rows from the initial factorization, and

then update only the solution, not the R factor, by these rows. The updating algorithm, also

described in Heath (1982), assumes that X has full rank. With a very large problem, it may

not be possible to make this assumption. Chapter 3 extends the updating algorithm to rank

defficient problems.

An area, which has not received any attention from sparse matrix technology, is the computa­

tion in fitting a large analysis of variance model. The model matrix associated with a large model

is quite sparse. Only the unbalanced case is of interest here, since very efficient algorithms exist

for the balanced case. Chapter 4 discusses what can be done to improve efficiency in these

6

computations with sparse matrix technology.

Finally, Chapter 5 contains computer testing and implementation of some of the methods

developed in this research.

7

2. SYMBOLIC GIVENS FACTORIZATION OF A SPARSE MATRIX

Givens factorization of an n X p matrix X of rank r is of the form

R rl (2.1)
^ = 0

where R is upper triangular of order r, T is rX{p—r) , and Q is a product of

orthogonal Givens rotation matrices of order n For simplicity of presentation, the first r

columns of X are assumed linearly independent. Rank is a property of the numerical values of

X, and the nonzero structure of X contains only partial Information on the numerical values,

namely whether they are zero or not. A symbolic factorization, thus, should obtain an R of

order q, where r^q^p, and q is called the structural rank of X. The symbolic factori­

zation is then of the form (2.1), where R is upper triangular of order q, and T is

qX(p—q). When the qXq matrix R is computed numerically using exact arithmetic, it

wi l l conta in q—r zero rows, as was shown by Heath (1982) for the case when q=p.

George and Heath (1980) have observed that the factor R is mathematically equivalent to

the Cholesky fac tor of X'X. They use th is fac t and symbol ic Cholesky fac tor iza t ion of X'X

to obtain the nonzero structure of R. This approach assumes that X'X is a sparse matrix,

and always produces an R with q =p. The presence of a single full row in X makes

X'X a full matrix. Heath (1982) proposes to leave out relatively dense rows from the initial fac­

torization, and then update only the solution with these rows. He also notes that there may be

other, less obvious, rows which cause X'X to be relatively full. These "problem" rows, when

present, always cause fill in X'X, but there are cases when R is again a sparse matrix. For

example , see Figure 2 .1 (a) and (b) . The example in (a) , due to Bjorck (1976) , shows tha t X

and R can be sparse while X'X is full. The example in (b) shows in addition that the

s t ructura l rank of X can be less than the s t ructura l rank of X'X.

8

* * * *

*

*

*

*

*

$ $ * *

* $ * *

* * * *

* * * *

X'X

* * * *

*

*

*

(a)

* * * *

*

*

*

*

*

* *

* *

* *

• *

* *

*

*

(b)

Figure 2.1 Both X and R are sparse in (a), but X'X is full. Same holds in (b), and
also structural rank of X and R is three, while structural rank of X'X is four

Clearly, some sparsity information is lost by forming X'X. In particular, the information

on the nonzero structure of individual rows is lost. This information can be retained by operating

directly on the nonzero structure of X. This chapter discusses a symbolic Givens factorization

algor i thm, which opera tes on a bipar t i te graph representa t ion of the nonzero s t ructure of X.

Section 2.1 presents basic notation of graph theory and its use in the study of sparse matrices.

Most of the results of this section can be found in George and Liu (1981), and in Tewarson (1973).

9

Section 2.2 then presents a bipartite graph model of Givens reduction, and Sections 2.3 and 2.4 dis­

cuss row orderings and column orderings respectively. Finally in Section 2.5 an algorithm is

presented, which implements symbolic Givens reduction, and which is based on the results of the

preceding four sections.

2.1 The Use of Graph Theory in the Study
of Sparse Matrices

The notation of graph theory is useful in the study of the nonzero structure of sparse

matrices. Here, some basic notions are introduced, which are used throughout Chapter 2.

Definition 2.1.1 A graph G = (C;£) consists of a finite set of nodes C together with a

set E of edges, which are unordered pairs of nodes.

Definition 2.1.2 An ordering or labelling a of G is the mapping of { 1, 2, ..., n}

onto C, where n is the number of nodes in C.

A graph G = (C;£) labelled by a will be denoted by G" = (€";£) .

Definition 2.1.3 The labelled graph associated with a p X p symmetric matrix A , is denoted

by C* = (C'^;£), and consists of p nodes labelled c, to Cp, and edges

{Ci ,Cj)eE i f f f ly = aj i = 0, f # j .

See Figure 2.2 for an example of a sparse symmetric matrix and its associated labelled graph,

where the i"* diagonal element of the matrix is denoted by i, as it corresponds to node c,

of the graph, and off diagonal nonzeros are denoted by

The unlabelled graphs of PAP' , where P is a permutation matrix of order p, are

the same, but the associated labellings are different. So, applying a symmetric row and column

permutation to A is the same as relabelling the graph associated with A. Figure 2.3 gives an

10

« * * *

* 2

* 3 *

» 4 *

*

* * * 5 *

* 6

Matrix A Graph

Figure 2.2 A symmetric matrix and its associated labelled graph

example of PAP' and for a permutation matrix P. Note that the structure of the

graphs in Figures 2.2 and 2.3 is the same, only the labellings are different.

Definition 2.1.4 Nodes x and y in G are adjacent if {x ,y)€E.

Definition 2.1.5 The adjacent set of YCC in graph G = (C;£) is

Adj{Y,G) = { xeC-V | (x ,y)€E for some yeV }.

2 * »

* • 3 *

* $ * 4

• 5 »

• 6

Figure 2.3 Graph of Figure 2.2 with a different labelling, and the corresponding permuted matrix
PAP'

II

When V contains a single node y , the adjacent set of Y is simply denoted by

Adj(y,G). For example, in Figure 2.3 Adj{ci,G'''^') = {03,05}, and

•) = {ci,c3,c5}.

Definition 2.1.6 A path of length X > 1 from node x to node y in graph G is

an ordered set of \+l nodes, (c|,c2,-,0x+i), such that c,+ie/lrfy(c,,G) for

i = I, 2 , . . . , X, wi th C] = X and cx+i = y .

For example, in Figure 2.3, a path of length 4 from c, to ci is

Definition 2.1.7 A bipartite graph, or a bigraph, B = (R,C,E) is a graph whose nodes

are partitioned into two sets R and C, and each edge has one node from R and one

node from C

It should be clear from the context whether R refers to the matrix factor, or the set of

nodes as above. Note that Adj{R,B) = C, and AdJ{C,B) = R The knowledge of

either Adj(r ,B) VreR, or Adj{c ,B) VceC completely defines the bigraph.

* *

*

*

*

« «

* $

Figure 2.4 A matrix and its associated labelled bigraph

12

Definition 2.1.8 The ordered bipartite graph associated with an /iXp matrix X is denoted

by consists of n nodes labelled r, to r„ corresponding to

rows of X. consists of p nodes labelled c, to Cp corresponding to columns of

X. {r i ,Cj)eE iff Xy # 0.

Whenever a graph represents a matrix, a labelling is implied. When the associated matrix

X is clear from the context, will simply be denoted by B. An example of a labelled

bigraph is in Figure 2.4. The AdJ operator can be used on a bigraph to obtain the set of rows

or columns with a nonzero in a given column or row respectively. For example in Figure 2.4,

Adj{c^,B) = {ri.rjj is the set of rows with a nonzero in column 3.

A row permutation of X is equivalent to a relabelling of nodes associated with rows in

B^, and a column permutation of X is equivalent to a relabelling of nodes associated with

columns in B^. Thus for all nXn permutation matrices and all pXp permutation

matrices P^, the unlabelled bigraphs of PrXPc are identical, but the associated labellings

change. Bipartite graphs thus provide a convenient tool for the study of row and column permuta­

tions of sparse matrices. Figure 2.5 gives an example of PrXPc and the associated bigraph for

permutation matrices and Pc. Note that the structure of the bigraphs in Figure 2.4 and

Figure 2.5 is the same, only the labellings have changed.

» *

$ *

« *

* *

$ # *

*

Figure 2.5 The bigraph of Figure 2.4 with a different labelling, and the corresponding matrix

13

2.2 Givens Reduction of a Sparse Matrix and
its Effect on the Associated Bipartite Graph

Each Givens transformation involves only two rows. If rows i and j of X are the

two rows involved, and the first element of row J is to be annihilated, then the transformation

takes the form

c s

— s c

xn Xi2

Xj \ Xj2 VP

CXi2 + SXj2

0 —SXi2 + CXj2 ...

CXjp "^SXjp

-SXip + CXjp

(2.2)

where c =

and

s =

S =

S '

(x f i+xl) ' ^

In this transformation, row i is called the pivot row, and the element is called the pivot

element.

Givens reduction of an n X p matrix X into the upper trapezoidal form (2.1) can be

performed either by rows or by columns. In the following, the processing of an entire row or an

entire column of X shall be referred to as a major step of the reduction, and the annihilation of

a single nonzero will be referred to as a minor step of the reduction.

When processing by rows, the pivots used in each minor step are fixed, as is their order. That

is, once a row is selected, its elimination sequence is determined, since any other sequence may

result in filling previously annihilated positions. This sequence is illustrated in Figure 2.6(a). An

advantage of processing by rows is that each row can be read from auxiliary storage, and only the

partially formed factor R needs to be accessed during reduction.

Processing by columns allows much more flexibility within each major step. Each minor step

can use any eligible row as a pivot, and rows can be processed in any order. During reduction, the

14

completed rows of matrix R do not need to be accessed, however the entire unprocessed portion

of X needs to be accessed. Processing by columns is equivalent to processing by rows, in terms

of operations performed, when a particular order is taken within each major step. Each major step

must use a single pivot row, and rov/s must be processed in the same order within each column.

Figure 2.6(b) illustrates this order. Only nonzeros on main diagonal of R are shown by

When a subdiagonal element is zero, the corresponding minor step is omitted. Processing by

columns is thus more flexible than processing by rows, and in fact is equivalent to processing by

rows in a special case. For this reason the following will discuss only processing by columns.

* *

1 * I *

2 3 * 2 7 •

4 5 6 * 3 8 12 •

7 8 9 10 • 4 9 13 16 *

11 12 13 14 15 5 10 14 17 19

16 17 18 19 20 6 11 15 18 20

(a) (b)

Figure 2.6 Elimination order in Givens reduction by rows (a), and an equivalent elimination order
by columns (b)

Assuming no cancellation in (2.2), the nonzero structure of each of the two rows involved in a

single Givens transfoimalion becomes the union of their nonzero structures before the transforma­

tion, excluding the annihilated element in the pivot column. Figure 2.7 gives an example.

Let B = iR,C;E) be the bigraph associated with a matrix X. Suppose a Givens

transformation is applied to rows i and J of X, with x,* as the pivot element and

Xjif as the element to be annihilated. Both x,* and Xjk must be nonzero. In terms of the

15

©
»

» * *

* * *

before transformation

* * * *

* * * *

after transformation

Figure 2.7 An example of the nonzero structure of two rows before and after a Givens transforma­
tion. The pivot element is circled

bigraph B it is said that a Givens transformation is applied to nodes r,- and rj of B,

with as the pivot edge and as the edge to be annihilated. If B' is the

bigraph after the Givens transformation, then the structure of S ' is given by adjacency sets

Adj{rx ,B ') = Adj{rx ,B) V rxsR, * i , \^j

Adj{ri ,B ') = Adj{n ,B) \JAdj(r j ,B) (2.3)

Adj{rj ,B ') = Adj{ri ,B) [JAdj{rj ,B) - q.

These sets, of course, completely describe B' . Figure 2.8 gives the bigraph equivalent of Figure

2.7.

after transformation before transformation

Figure 2.8 Bigraph representation of a Givens transformation of the two rows of Figure 2.7

16

Consider now a complete major step sequence of Givens transformations with a fixed pivot

row. Let Bj = (R,C-,Ej) be the bigraph of only the unprocessed portion of X after the

minor step within a given major step. After each major step, the pivot row becomes part of

the R factor, so the unprocessed portion consists of those rows, which were not used as pivots in

previous major steps. Suppose column node is being processed, and

Adj{Ca,Bo) = {ry, ..., r,-1. Let be the pivot row, and let J2, -, A be

the order in which rows are processed. After the first minor step, the structure of Bi is, as in

(2.3), given by

Adj{rx ,B{) = Adj{rx ,BQ) V r) ,eR,

Adj{r i ,Bx) = Adj{r i ,BQ)\JAdj{r i^ ,BQ)

^dj{r i^ ,B{) = Adj(, r i ,BQ)\JAdj{r i^ ,Bt)) - c„.

After the second minor step, the structure of Bi is given by

Adj{rx,B2) = Adj{r^,Bi) V r^eR,

Adj{r i ,B2) = AdJ{r i ,Bi)[JAdj{r i^ ,Bi)

Adj{r i^ ,B2) = AdJ{r i ,Bx) \^Adj{r i^ ,Bi) -

So in terms of Bq

Adj{rx ,B2) = Adj(rx ,Bo) V r^eR, \^J2 ,

Adj(r i ,B2) =

Adj{r i ,Bi) = Adj{r i ,Bo)[JAdj{r i^ ,B(i) - c^.

Adj{r i ,Bi) = Adj{r i ,Bf i){JAdj{r i^M<i){JAdj{r i^ ,BQ) - c^.

Finally, after completing the k — l minor steps, thus completing the major step, the structure

of Bic-i is given by Lemma 2.2.1.

17

Lemma 2.2.1

Adj ir i ,Bk- i) —

[JAdj{ri,Bo) for X = 1

[JAdj{ri_,Bo) - {cj for X = 2,3,...,^
i - 1

Proof: Preceding discussion. D

After completion of the major step, row becomes the next row of the matrix R,

and only the remaining rows stay for further processing. The preceding lemma thus gives the

means of updating the bigraph for each major step of the reduction. As it stands, however, a

dynamic data structure is needed to represent the bigraph. This is because the adjacency sets are

growing, as we form new unions in each major step. Section 2.5, with the aid of results of this sec­

tion and Section 2.3, develops a more efficient representation.

2.3 Row Ordering

Sparsity of the matrix R depends only on column ordering, and does not depend on the

row ordering. However, the intermediate fill of the unreduced portion of X can vary substan­

tially with both row order and column order, and thus affect the number of operations or Givens

rotations needed to produce R. The comparison of two row orderings is meaningful, only if the

same column order is used for both. The column order, therefore, is assumed fixed in this section.

When processing by rows, the row ordering is simply a linear ordering of the n rows.

When processing by columns, however, the situation is much more complex. Each minor step is

free to choose both rows from the set of rows with a nonzero in the current column at the current

stage of the reduction.

18

Definition 2.3.1 When processing by columns, a row ordering a is a sequence of ordered pairs

where each ordered pair corresponds to a minor step of the reduction. Each ordered pair

{s,t) specifies the two rows involved, where s is the pivot row.

There are two important restricted row orderings that need to be considered. The first

restriction is when only a single pivot row is used within each major step of the reduction. An

example of such row ordering is given in Figure 2.9.

Definition 2.3.2 A single pivot row ordering is a row ordering, where the pivot row entry of each

ordered pair is constant within each major step.

2 8 *

4 10 14 17 20

*

3 9 13 *

6 11 15 18 19

1 7 12 16 *

5 »

Figure 2.9 A matrix with a specified elimination order. Pivot elements are denoted by The
corresponding single pivot row ordering is {(3,6), (3,1), (3,4), (3,2), (3,7), (3,5), (7,6),
(7,1), (7,4), (7,2), (7,5), (1,6), (1,4), (1,2), (1,5), (4,6), (4,2), (4,5), (6,5), (6,2), (5,2)1

Each major step of a single pivot row ordering induces a partial ordering on the rows of X.

Definition 2.3.3 Let l(i,Ji),(s,t2),...,(j,it)} be a subsequence of a single pivot row ordering

corresponding to a major step. The partial ordering induced by this subsequence on the set of n

rows is s, fi, /2, ..., ft.

19

The second restriction requires that the partial orderings of the n rows, induced within

each major step of a single pivot row ordering, do not disagree. For example, the single pivot row

ordering of Figure 2.9 is not of this type, since rows 2 and 5 are taken in different order in major

steps 4 and 5.

Definition 2.3.4 A compatible row ordering is a single pivot row ordering, where the partial order­

ings induced within each major step on rows of the matrix are compatible.

A compatible row ordering corresponds to the elimination order of Figure 2.6(b). With this

type of row ordering, a linear order of the n rows is produced, and so processing by columns is

equivalent to processing by rows.

Each of the successive definitions puts more restrictions on the row ordering. Thus, the class

of all row orderings contains the class of single pivot row orderings, which contains the class of

compatible row orderings. This section contains results on the two latter classes of row orderings.

Suppose Givens reduction by columns with a single pivot row ordering is performed on an

nXp matrix X. Let Bj = be the bigraph associated with the unreduced

portion of X after the _/'* minor step following the i'* major step. Thus 5° is associ­

ated with the original matrix X. For notational convenience define 0^ to be the ordered set of

row nodes involved in major step i under single pivot row ordering a where c, is the pivot

column node. That is, % = Adj{Ci,B'^^) under row ordering a. After the completion of

/'* major step, which involved fcj rows, the structure of in terms of the structure of

5b~' is obtained by applying Lemma 2.2.1:

K
(J AdM.X'') for X = 1

(2 .

\J for X = 2,3

20

The bigraph of the unreduced portion of X, Bq = (i?',C';£o), is then obtained by

removing the two nodes of the pivot edge of major step i. That is,

R' = R'-^ - ir,}

C = C'-' - {c,l (2.5)

£'o = E[--\ - { (r,-,c) I ceC \ ,

where is the pivot edge of major step a,-. A direct result of Lemma 2.2.1 is the fol­

lowing theorem.

Theorem 2.3.1 AdMiA) Q AdjiWM) C • • • C Adj{{Qiik,B'o)-

Proof: Lemma 2.2.1 gives

Adji{ei}^M;-\) = IJ Adjm^B'o-') - Ic,) for X = 2.3,...,.
5 —I

But for X = 2,3 ki . •

Now consider two row nodes r, and r, involved in major step i, which satisfy

AdJ{rs,BQ~^) C Adj(r,,BQ~^), where the inclusion is proper. It is natural to process row

node r, before r, to avoid possible unnecessary local fill-in in this major step.

Definition 2.3.5 A single pivot row ordering a is locally acceptable, if whenever

r,,r, e and) C Adj{r„Bo~^), with proper inclusion, r, is ordered

before r, in 8^

The following lemma is useful in proving a theorem about locally acceptable single pivot row

orderings. The lemma essentially states, that if a previously processed row is involved in a subse­

quent major step, all rows which followed it in the previous major step are also involved.

21

Lemma 2.3.1 Let m be the smallest j>i such that % D 8^ 9^ g. Then,

{eilx ^ ©o. ^ = 2 u-1, and {0i}x e 0?. X = u,

for some 2 < u < kj.

Proof: Adj{r,Bo~^) = AdJ{r,B'Q) V r e 8'„ since these row nodes were not

altered between major steps i and m Let u be the smallest X such that

Cm £ Adj({S'^x,Bo), where c„ is the pivot column node of major step m. Then by

Theorem 2.3.1 c„ e /lJy(jei}x,flo) for X = u, and by definition of

u, c„ ^ for X = 2, ..., u-1. •

Theorem 2.3.2 A locally acceptable single pivot row ordering is compatible up to the order of rows

with identical nonzero structure.

Proof: Let a be a locally acceptable single pivot row ordering, and consider ©i and 8^

of Lemma 2.3.1. The row nodes in ©i satisfy the relationship of Theorem 2.3.1 after completion

of major step i. So, because a is locally acceptable, the order of row nodes common to major

steps I and m must be the same in 9" as in 0^ except possibly row nodes with identi­

cal adjacency structure. This holds for any major step /, so a must be compatible up to the

order of rows with identical nonzero structure. •

If two rows have an identical nonzero structure, reversing their order will have no effect on

the fill-in created during the reduction. Thus, any locally acceptable single pivot row ordering can

be made completely compatible without changing the fill-in created. So a locally acceptable single

pivot row ordering is essentially compatible. Compatibility is a good property, as it allows process­

ing by rows during the numerical phase of the reduction. Locally acceptable single pivot row order-

22

ings are a subset of the class of all single pivot row orderings. What is lost by considering only

locally acceptable single pivot row orderings? Theorem 2.3.3 will show that nothing is lost.

Let ^d7a(r,Bo) be the adjacency structure of row node r after major step i under

row ordering a. Definition 2.3.6 gives a means of comparing some row orderings.

Definition 2.3.6 A row ordering jS is at least as good as row ordering a , if

Adjff{r,B'o) Ç Adja(r,Bo) V r e for i = 1, 2, . . . , p.

The use of this definition is not in finding a good row ordering, because it cannot compare just any

two row orderings. But it is sufficient to obtain a result about locally acceptable row orderings,

without assuming a specific criterion, such as number of operations, or number of Givens transfor­

mations required for the complete reduction. The criterion of Definition 2.3.6 is more conservative

than more specific criteria. A statement of "at least as good as" in terms of this definition implies

"at least as good as" in terms of many reasonable specific criteria, such as the two named above.

Theorem 2.3.3 For every single pivot row ordering a there exists a locally acceptable single

pivot row ordering which is at least as good.

Proof: Let 7 and Ô be two single pivot row orderings, which are identical up to major step

i. That is, 6* = 6* for A = 1, 2, • • • , / — I, so that

Adjy{r,Bo) = Adji{r,Bo) V r e for/i = 1, 2, • • • , i-l. Sup­

pose Adj^ira^B'a'^) C Adjy{ri„Bo~^), with proper inclusion, and same holds for ordering

5. Within major step 1 let y take row node before row node rj, and let 5 take

them in the reverse order. That is, {Q'y]^ = jSj]* for all h except

{©y, = {9|}, = To and |e(}, = {e|}, = /-&, s<t. Then, using Lemma 2.2.1, for

h = max(2,j), • • • , r —1

23

Adj,{\id%,B\>) = M Adj,{[%}„,B'o-') - kl
m<h

= \J Adj,i{ei,}„,Bh-')UAdMr,,B'o-') - k,)
m<h
m

Ç y Adj,{{e%,B'o-')UAdji{r^,B'o-') - {c,}
m<h
m

= y AdjmmM'o-') - k.}
m<h

and for h = I, • • • , max(2,j)—1, t, ' - , k,

xd)\({e(|AX) = Adj^Ml

So that AdJy(r,Bo) Ç Adji{,r,Bo) ' i r e R'. Suppose y and 5 are also

identical after major step i, except for rows which are omitted in y due to the switch in

major step i. Since only unions are taken to form new adjacency sets of row nodes,

Adjy(r,Bo) C Adji{r,BQ) V r sR'' for A = i + l, , p. Thus,

y is at least as good as 5. Given any single pivot row ordering, pairwise row interchanges

within major steps, such as the change from 5 to y, can produce a locally acceptable single

pivot row ordering. Each interchange produces a row ordering, which is at least as good. So the

final locally acceptable single pivot row ordering will be at least as good as the original row order­

ing. •

Corollary 2.3.1 For every single pivot row ordering a there exists a locally acceptable compati­

ble row ordering ,8, which is at least as good.

Proof: By Theorem 2.3.2 a locally acceptable single pivot row ordering is compatible up to the

order of rows with identical nonzero structure. But the order of these rows can be altered without

affecting the nonzero structure. •

24

The set of locally acceptable compatible row orderings thus contains row ordering; which are

at least as good as any given single pivot row ordering. Single pivot row orderings in general do not

allow processing by rows. So locally acceptable compatible row orderings are attractive, since they

do allow processing by rows, and yet do not restrict opportunities for good orderings.

A locally acceptable compatible row ordering can be constructed during the symbolic factori­

zation discussed in Section 2.2. In fact, local acceptability is defined in terms of the nonzero struc­

ture of a partially factored matrix. If the rows involved in each major step are ordered according

to the local acceptability principle, the resulting row ordering will be locally acceptable. Theorem

2.3.2 assures compatibility of this ordering except for rows with identical nonzero structure. If the

nonzero structure of two rows becomes identical in any major step, it will remain identical in subse­

quent major steps. By letting the first occurrence of these two rows determine their order in subse­

quent major steps, complete compatibility is ensured.

Duff (1974) tested three row ordering strategies. Two of the strategies satisfy the local

acceptability criterion, when ties are handled properly, and their performance on the test matrices

used was uniformly better than the third strategy. Duff used the number of Givens transformations

as the criterion of comparison. The two strategies are given below. Strategy 2.3.1 is referred to as

the minimum pivotal row fill strategy, and Strategy 2.3.2 is referred to as the local minimum fill

strategy.

Strategy 2.3.1 Within each major step take the sparsest row as the pivot row, and then for each

minor step process the row which causes least fill in the pivot row.

Strategy 2.3.2 Within each major step take the sparsest row as the pivot row, and then for each

minor step process the row which causes the least fill in all rows remaining in the current major

step.

25

Note that Strategy 2.3.2 does not count the fill created in the pivot row directly. Rather, it

counts the fill distributed by the pivot row to remaining rows within the current major step. Duff

calls this the corrected fill-in count.

Another strategy, which produces a locally acceptable row ordering, simply considers the

number of nonzeros in each row locally within each major step. This will be called the minimum

local row count strategy.

Strategy 2.3.3 Within each major step take the sparsest row as the pivot row, and then for each

minor step process the row with the least number of nonzeros.

It is sometimes the case, that a relatively full row will cause severe fill-in in the matrix R.

As was pointed out in the beginning of this chapter, it is also possible that some less obvious rows

will cause this. Leaving out these rows from the initial factorization, and then updating the solu­

tion with these rows, may be advantageous. Chapter 3 deals with the question of updating. Since

the bigraph contains the information on row structure during Givens reduction, it may be used to

decide which rows should be left out. Particularly the amount of fill-in a row causes in a minor

step can be used to make this decision. The last part of Section 2.5 addresses this topic again.

Only the two restricted classes of row orderings, as defined at the outset of this section, were

discussed so far. Theoretically, only the class of row orderings allowing variable pivots possibly

contains better row orderings, than the class of locally acceptable compatible row orderings. Duff

(1974) has compared a variable pivot row ordering strategy with Strategy 2.3.1, On the test

matrices considered, there was little to choose between the two strategies tested. There is, however,

a rather special case, where the matrix structure clearly warrants using a variable pivot row order­

ing strategy. Matrices with this special structure are discussed in Chapter 4.

26

2.4 Column Ordering

In contrast to the definition of a row ordering, the definition of a column ordering is the same

whether the matrix is processed by rows or by columns.

Definition 2.4.1 A column ordering is simply the linear order in which columns are processed.

The column order affects both the sparsity of the R factor, and the number of operations

needed to obtain it. A number of the most popular strategies is discussed in George and Liu

(1981). Some are also discussed by Duff (1974), and Duff and Reid (1976). Rose (1972) gives a

good graph-theoretic study of the ordering problem for a positive definite matrix. The strategies

can be divided into two classes. Strategies in one class use only the initial nonzero structure of

X or X'X to determine the column order. These include band and envelope methods, and

dissection methods. Strategies in the other class make local decisions, during numerical or symbolic

factorization, about which column to choose next. These include the minimum degree algorithm

and other variations or generalizations of the Markowitz (1957) scheme. The strategies discussed

here are in the latter class.

It is advantageous to perform the factorization symbolically, in order to obtain a data struc­

ture for the factor R. This speeds up the numerical factorization, as it can be done in a fixed

rather than dynamic data structure. This chapter develops a symbolic Givens factorization algo­

rithm for this purpose. George and Heath (1980) perform symbolic Choiesky factorization of

X'X to obtain the nonzero structure of As was pointed out at the beginning of this chap­

ter, this is done because the Cholesky factor and the Givens factor are mathematically equivalent.

However, they are equivalent only in the numerical phase. When only the positions of nonzeros are

considered without the information on their values, as is done in symbolic factorization, in general

the two are no longer equivalent. This is illustrated by the examples in Figure 2.1. The symbolic

27

Cholesky factor provides, in most cases very good, upper bound on the symbolic Givens factor in

the sense of positions of nonzeros. It would be useful to know how and when exactly do the two

symbolic factorizations differ. This discussion is included in this section, as it is only the column

order that affects the nonzero structure during Cholesky factorization. First, the relationship

between a bipartite graph associated with X and a graph associated with A = X'X will

be discussed.

We start by defining the Bireach operator, which gives the set of nodes in a graph reach­

able by a path of length two from a given node.

Definition 2.4.2 Bireach{c,B) = M Adj{r,B) — {c}, where
re^icJB)

B = (R,C-,E) is a bipartite graph.

This operator can then be used to construct a graph associated with X'X from a bigraph

associated with X, as can be seen in the following theorem.

Theorem 2.4.1 Let B = {R,C;E) be a bipartite graph associated with X, and

G = (C;F) be a graph associated with X'X. Then Adj{c,G) = Bireach{c,B)

V c e C.

n
Proof: Let c, e Adj{cj,G), so that # 0. But a,y = 2 so

m — i

columns i and j must have at least one nonzero in a common row. This means that

Adj(cj,B) n Adj{cj,B) # thus c,- e Bireach(cj,B). With the assumption of no

cancellation in 2 the reverse of the above argument holds, so that
m — ï

Ci e Bireach {c j ,B) implies c, e AdJiCj,G). •

28

One step of Cholesky factorization of A using the outer product form, as described in

George and Liu (1981), takes the form ,

A = Aq = Ho =
à\ f i '

"1 ^1

0 1 0

0 if,

"1

0 4-1

where H\ = Il\ —
"l"!'

= I i / l i L i ' ,

. This step is applied recursively to Hi, ...,

and finally R' = L\Li • • • Lp. One major step of Givens reduction by columns takes

the form

/I PI

0 X — Xq — Q\

where Qi is the product of orthogonal Givens rotation matrices, /i is a scalar, and other

matrices conform. Then,

/i f \P\

/IPI' PI'PI+^I'-YI

so that if Xi is the unreduced portion of X in Givens reduction by columns after major

step /, then Hi = One step in Cholesky factorization is thus equivalent to one

major step of Givens reduction by columns. Let G' = (C';F') be the graph of if, and

c,- be the pivot column node of major step i. The following algorithm for producing G'

from is adapted from Parter (1961).

Algorithm 2.4.1

1. Add edges to so that Adj(,Ci,G'~^) are pairwise adjacent. That is,

AdJ{c,G') = Adj{c,G'-^) U Adj{Ci,G'-^) V c e Xdy(c,.C'-').

29

2. Delete node c, and all edges incident to c,-.

As in Section 2.3, let fl'o = {R',C'-,Eo) be the bigraph associated with Algo­

rithm 2.4.1 is used to update the unfactored portion of X'X in symbolic Cholesky factorization,

and (2.4) together with (2.5) is used to update the unreduced portion of X in symbolic Givens

factorization. If G' represents Hj and B'q represents Xi, then by Theorem 2.4.1

AdJ{c,G') — Bireach[c,Bo) V c e C. This is clearly the case with 0° and

3°. Theorem 2.4.2 shows when Adj(c,G') = Bireach{c,B'o) V c e C holds for

I > 0. When this relationship holds for a given i, the /'* symbolic Cholesky step is

equivalent to the /'* symbolic Givens major step.

Theorem 2.4.2 Let Adj{c,G'~^) = Bireach(c,B'~^) V c e C'~'. Then,

Adjic,G') = Bireach{c,B') V c e C\ except when /lrfy"(c,,5o~') = {rj

for some row node r„, and there exist two other column nodes cj,c„ e Adj{ra,Bo~^)

such that Adj{Cj,Bo~^) Pi ^d;(c„,Bo~') = {rj. That is, except when only a single row,

/•„, has a nonzero in the pivot column, and at least one pair of other columns has a nonzero inner

product only due to row fg.

Proof: Let = Adj{ci,BQ~^) be the set of ki row nodes involved in major step i.

By definition, for c 6 C,

Bireachic,B\i) = Adj(r,B'Q) - {c}
reAdJic^^)

(J Adj{r,B'o) y (J Adjir^B'a) - (c}.
r6AdjUj\y) - rEAdJic^g) n »

The row nodes in the first term are not altered in major step /, so fi'o can be replaced by

5'o~' giving

30

IJ Adj{r,B'o-')
reAdjU^^^) - 9'

u (J Adj{r,B\,)

reAdjicM'o) n *

- c, (2.6)

If c i Adj(Ci,G'-^) = fii>eacA(c„flr') = Adj{.&A~^\ then

Adj{c,BQ) n 0" = 0, and so the second term of (2.6) is null. Also

Adj{c,Bo~^) — & = Adj{c,Bo~^), so that (2.6) equals

Bireach{c,Bo~^) = Adj(c,G'~^) = AdJ{c,G').

If c 6 Adj{Cj,G'~^), then two cases must be considered. First, suppose = 1. Then

0* = {rj for some row node r^, and by (2.5) ^ R', so

Adj(c,Bo) n Q* = 0. So (2.6) becomes

U Adj{r,B'o-') - !c}.

reAdjUJ^a'^) - »

Note that in this case Adj{Ci,G'~^) = AdJ{ra,B'Q~^), so that e Adj{c,BQ~^)-

This gives Bireach(c,Bo'^) D Adj{ra,B'o~^) = 5i>eacA(c,,5'o~'), so that

AdJ{c,G'-^) 2 Adj{ci,G'-^), and Adj{c,G') = Adj{c,G'-\

Now if there exists c„ # c, such that Adj{c„,B'^^) fl ^</;(c,5ô~') = W, as

specified in the "except" clause of the theorem, then Adj{c„,BQ) Pi Adj{c,B'(i) — 0.

This means that c„ e Bireach(c,B'^^), and c„ ^ Bireach{c,Bo). So

Bireach{c,B'fi'^) # Bireach{c,B'^), and Adj{c,G') # Bireach{,c,B'q) (in fact

Adj(c,G') 3 Bireach{c,B'f^)\ thus giving the "except" clause of the theorem.

Otherwise, if such c„ does not exist, (2.7) equals

(J AdJ{r,B'o'') - {c}
reAdJic^a'^l

= Bireach{c,Bo'^)

= Adj{c,G'-^)

= Adj{c,G').

(2.7)

31

Now suppose ki > 1. By Lemma 2.2.1 Adj{Qf,Bo ') = Adj({Qf]t,BQ), and

{G'tt 6 AdJ{c,Bo), so & can be omitted from the first term of (2.6). (2.6) now becomes

Bireach{c,B'Q-') |J AdjdQ'l^B'o)

= Bireach(c,B'o-^) y Adj(&,B'o-^)

= Bireach{c,Bo'^) Bireach{Ci,Bo~^)

= AdJ{c,G'-') y Adj{Ci,G'-')

= Adj{c,G'). •

This is a rather tedious proof. The general idea is, that if more than one row is involved in a

major step, the nonzero patterns of these rows are copied into the last row involved, which stays in

the bigraph. If only a single row is involved, it leaves the bigraph, and if its effect on the

Bireach pattern is not duplicated in other rows, the pattern changes. The graph representation

does not see that only one row was involved, and fails to record any change in the adjacency pat­

tern.

In terms of numerical Cholesky factorization, the above situation amounts to a special case of

numerical cancellation. To illustrate this, consider the outer product form of Cholesky factoriza­

tion, as described earlier in this section. The cancellation occurs when forming

Hi = . If h^j is the i/* entry of then
"I

But

''iV - LO
A l l

m ~ l

32

so that

n

2 4;
m —1

Now if column 1 of X has a single nonzero in row a, and nonzeros of columns d and

e of % coincide only in row a, then the de entry of Hi reduces to

After an occurrence of such cancellation, the two types of symbolic factorization no longer agree,

since the symbolic Cholesky factorization does not detect the cancellation.

The most popular algorithm, based on local decisions during Cholesky factorization, is the

minimum degree algorithm due to Tinney (1969), which is a symmetric matrix variant of the Mar-

kowitz (1957) scheme.

Definition 2.4.3 The degree of node c in graph G = (C;F) is the number of edges

incident to c. That is, Deg(c,G) = \Adj{c,G)\.

At each step of symbolic Cholesky factorization, the node with minimum degree is processed

next. This minimizes locally the number of nonzeros in the next row added to the matrix factor

R. In fact, the minimum degree is the number of nonzeros in the row added to R. Using

Theorem 2.4.1, this algorithm can be adapted to symbolic Givens reduction. The degree of each

column node c after major step i is given by \Bireach{c,BQ)\. The adapted algorithm

operating on the bigraph B associated with X should perform better in some cases than the

algorithm for graph G associated with X'X, since it accounts for the numerical cancellation

discussed above.

0 .

33

In a large sparse matrix it is usually the case, that many columns have the same degree.

When operating on the graph G, there is no information which can be meaningfully used to

break the minimum degree ties. The bigraph B, however, has information on row nonzero struc­

ture, which can be used for meaningful tiebreaking in the adapted minimum degree algorithm. An

example of a simple tiebreaking strategy is to take the tied minimum degree column which has the

least number of nonzeros. This will have the effect of processing columns which involve fewer rows

early. The number of operations needed to produce R should decrease, but the number of

nonzeros in R will probably not be greatly affected. Also note that when a column with a single

nonzero is processed, no fill is produced, since the row simply becomes part of R. Without such

tiebreaking, columns with a single nonzero may be lost by being filled-in. Both examples of Figure

2.1 illustrate this. All columns are tied with degree three, but processing first any other column

than column one will produce fill. Column one is ordered first with the simple tiebreaking strategy.

Other column ordering strategies for Givens reduction include those given by Duff (1974),

where he uses them directly during the numerical phase of the reduction without performing a sym­

bolic phase. Some of these are: taking the column with minimum nonzero count; taking the col­

umn with minimum nonzero count in the row with minimum nonzero count; taking the column

which contains the minimum product of row and column counts (Markowitz (1957)); and taking

the column which contains the minimum product of the row count and the square of the column

count. Any of these strategies can be used in the symbolic Givens reduction described in this chap­

ter to generate a data structure for the numerical phase.

2.5 Implementation of Symbolic Givens Reduction

The successive bigraphs of the unreduced portion of the matrix after each major step can be

generated using (2.4) and (2.5). Since we are taking unions, the number of edges in the bigraph

can grow. As a result of Corollary 2.3.1, we are only interested in locally acceptable compatible

34

row orderings, when the numerical factorization is to be done by rows. Using Theorem 2.3.1, an

efficient representation can be developed for the successive bigraphs, when a compatible row order­

ing is used. First, a few more definitions are needed. Most of the definitions can be found in

George and Liu (1981).

Definitioo 2.5.1 A connected graph is a graph in which there exists a path between all pairs of

nodes.

DeflnitioD 2.5.2 A tree T = (%;E) is a connected graph, where

l%l = |E| + 1 .

It is easily shown, that every pair of nodes in a tree is connected by exactly one path.

Definition 2.5.3 A rooted tree is an ordered pair {r,T\ where r is a distinguished node of

T called the root.

The path from r to a node % e % is unique. If the path passes through

y e X, then y is an ancestor of x, and x is a descendant of y. If in addition

ix,y) € E, then y is the parent of x, and x is a child of y. Another way to

characterize a rooted tree is that every node has a single parent except the root, which has no par­

ent. A node y together with its descendants and associated edges is a subtree of T, and y

is the root of this subtree. A rooted tree can be used to impose a partial ordering on its nodes.

Definition 2.5.4 If node x is a descendant of node y, then x is ordered before y.

The ordering works, because only a single path exists between every pair of nodes, and thus

there can be no conflicts.

Definition 2.5.5 A forest is a collection of rooted trees.

35

Note that every forest can impose a partial ordering on its nodes using Definition 2.5.4, but

not every partial ordering can be represented by a forest. For example,

b<a, c<a, d<b, d<c is a partial ordering of {a, b, c, d}, which does not have a

forest representation, since two paths would exist between d and a.

Consider a forest of single root nodes, corresponding to the row nodes of a bigraph before

symbolic Givens reduction begins. This forest imposes the null partial ordering on its nodes. Each

major step of the reduction, when using a single pivot row ordering a, can be viewed as imposing

a partial ordering on the row nodes of the bigraph. Definition 2.3.3 gives this ordering. The set of

nodes ordered, and their order, in major step i is given by 9^ Given the sets

1 = 1,2, ..., p, Algorithm 2.5.1 can be used to update a forest representation of

the accumulated partial ordering after each major step i.

Algorithm 2.5.1

1. for m = 1 to A:, —1 do

2. remove edge from to its parent, if present

3. add edge to make a child of {6^m+i

4. endfor

Theorem 2.5.1 If a is a compatible row ordering, then the accumulated partial ordering after

each major step can be represented by a forest generated by Algorithm 2.5.1.

Proof: Suppose we have a forest representing the accumulated partial ordering after major step

/ — 1. First it will be shown that the algorithm produces a forest after major step i, and then

that the forest represents the accumulated partial ordering. After major step 0, that is before

major step 1, we have trivially a forest representing the null partial ordering, so by induction the

theorem holds.

36

Only steps 2 and 3 of the algorithm affect the forest structure. If (8^^ has a parent, then

{eilm together with Its descendants form a subtree, say T„ = Removing the

edge to its parent creates two connected components, one of which, T„, is a tree. The other

component must also be a rooted tree, since the original structure was a rooted tree. So now

l6i)„ is the root of T„. The node ^ since it cannot be a descendant of

{8i}m, because a is compatible. Ancestors or descendants of {6i}m+i also do not belong to

X„, since T„ is connected. Thus and {©ilm+i belong to two disjoint rooted trees,

and {9i}„ is a root. Making a child of l0^m+i creates a single rooted tree from the

two disjoint rooted trees. Thus, the algorithm preserves a forest structure.

To show that the forest represents the accumulated partial ordering, first we show that if

r £ Q'a, then all ancestors of r must also belong to 0^, and moreover must be ordered

after r. It is sufficient to show this for the parent of r. If r is a root, then it is trivially

true. If r has a parent, say s, then there exists j < i such that r = {©^a,

f = 195A + I. 2 < A < kj—\ (Note that h ^ 2, since h = 1 gives the

pivot row of major step j, which is no longer present in 5'o~'.). By Theorem 2.3.1

Adj{r,S'(r^) C Adj{s,Bo~^), so s e di- Since a is compatible, s is ordered

after r in 8^ Hence if r has an ancestor / before adjusting the forest for ©4, it still

has the ancestor after adjusting for ©Jj. So, any previous partial ordering information is not altered,

and clearly any new partial ordering information is recorded by step 3 of the algorithm. Thus the

forest produced after processing ©i represents the accumulated partial ordering after major step

J. •

Let T' = be the sequence of forests generated by Algorithm 2.5.1. This

sequence of forests together with So> the initial bigraph, can generate the sequence Bq of

bigraphs. This is stated in a theorem that follows, which is the main result of this section and

37

forms the basis of the implementation of symbolic Givens reduction.

Definidoo 2.5.6 Fam(r,T) = e % | j is a descendant of r} jr}, where

T = {X\H) is a forest. That is, Fam{r,T) is the "family" of r in T consisting of

all the nodes in the subtree of T rooted at r.

Theorem 2.5.2 Adj{r,Bo) = Adj{Fam{r,T'),Bo) D C "i r € R'.

Proof: For X = 2, 3, ..., kj, (2.4) can be written as

= \jAdM„B'o-') - k-L
j - l

and note that {9^}, e Fam(!6i}x.7"'), for i = 1, 2,

Suppose c e Adj{r,Bo), and r e then c e C', and by (2.8)

c e Adj(Fam{r,T'),Bo~^)- If ^ ©i. then Adj{r,Bo) = AdJ{r,Bo'~^), and

trivially c s Adj{Fam(r,T'),Bo~^). Now, there exists / e Fam{r,T') such that

c e /4rf/(r',5'o~'), so by the same argument as above c e AdjiFamir,T'~'),B'(r^)-

But Fam(r',T'~^) C Fam(r,T), so c e AdJ(Fam(r,T'\Bo~^). This can be

repeated until finally c e Adj{Fam{r,T') ,Bq), and so

Adi{r.B\^) Ç Adj[Fam{rT),B°^) fl C.

Suppose now c e Adj{Fam{r,T'),Bo) D C, where r e R'. There exists an

r' € Fam{r,T') such that c e Adj{r',BQ). Since the nodes in Fam{r,T') form a

tree rooted at r, there exists a unique path from / to r. Let this path be

(f,, f;, ..., r„)_ where f and r„ = r. Each r, is a child of +

J = 1, 2, ..., nt — l. Since r, is a child of r,+|, then by construction of T' there

exists j < i such that r,+i follows r, in 0^ So if J e Adj{r„Bi~^), then

38

d £ + Therefore, there exists f < i such that c e Adj{r,B^), so

that c 6 Adj{r,Bo), and we have Adj{Fam{r,T'),BQ) Ç Adj(r,Bo). •

The implication of this theorem is that the symbolic Givens reduction can be performed in a

fixed row oriented data structure. The initial bigraph Bq need not be modified, only each suc­

cessive forest structure T' needs to be updated after each major step. The construction of T

from r'~' requires 6^, which is the ordered set Adj{Ci,Bo~^), where c, is the pivot

column node of major step i. Because a row oriented data structure is used, Adj{Ci,Bo~^) is

not available directly, and must be computed. Note that r e Adj{Ci,Bo~^) iff

Ci e Adi{r,B'(^^), so 9^ can be constructed by checking if

Ci e /ld[/(r,fl'o"') = Adj{Fam{,r,T~^),BQ) V r e R'. The computational

effort can be greatly reduced by using the information in F'"' about Adj{r,Bo~^). Particu­

larly, if /•[is a descendant of r; in T'~\ then Adj{ri,Bo~^) Ç Adj{r2,Bo~^). So

that if T] 6 9'a, then all ancestors of r, in T'"' belong to 9^. Furthermore, if the

bigraph is modified after each major step by deleting redundant edges, information about descen­

dants can also be used in reducing the computational effort. Consider generating a sequence of

bigraphs Wj by Algorithm 2.5.2, defining Bq = 5°. In major step i, {9^y_,

becomes a descendant of {9jj,', so any column nodes in am(|9^y-1,T'"';) can be

removed from AdJ(l9i}j,BjZ2), while maintaining the structure of

Adj(Fam({9ijj,T'~^),BjZ\) unchanged. The array Pj is initialized to all zeros, and keeps

track of pivot rows, since these become part of the matrix factor R. The pivot row nodes are not

removed, since they still contribute to the structure of their ancestor nodes through the Fam

operator. However, in order to have a forest in which every node is "available" (has a zero entry in

P), a supernode is formed from each pivot row node and its parent (which has a zero entry in

P), and the parent is the representative of this supernode. Elements of each supernode are

39

represented by a linked list starting with each supernode representative. An exception is when

ki = 1 in a major step. In this case, the pivot row supernode no longer contributes to the

structure of any other rows, and the corresponding entries in P are set to 2 to indicate this.

Algorithm 2.5.2

1. if A:,- = 1 then set f to 2 for each member of supernode {8^,

2. else

3. for J = 2 to ki do

4. for each r in supernode {8i}y do

5. Adj{r , f f jZ\) Adj{r ,B' jZ\) - Adj(Fam{\ei}j- i ,r- ') ,WjZ\)

6. endfor

7. endfor

8. link supernode {8^}, to supernode {8^2

9. for each r in supernode {8^| do

10. $ - Fam{{ei}2,r-') - Fam(l8i}„r-')

11. AdjirM) *- AdjirMrù " - jc,}

12. endfor

13. - 1

Note that, as B^jZ] is formed from in the loop of step 5, only the adjacency

structure of row nodes in supernode {8^; is modified. Step 8 is accomplished by linking the

end of supernode {8^2 list to node {8jj]. After this link is made, each r in supernode

40

|6i)i must satisfy Adjir,Bo) Pi AdJ{s,BÔ) = 0, for all

5 6 Fam({9i)2,r'~') — Fam(\S'Ji,T'~^). The necessary adjustment is in the loop of step

10. A similar relationship, as in Theorem 2.5.2, holds for this new sequence of bigraphs.

CoroUary 2.5.1 AdJ{r,B'o) = Adj(.Fam(r,r)M) V r e RK

Proof: It is enough to prove Adj{Fam{r,T),Bl) H C = Adj{Fam(r,T'),B'o)

V r E R\ and use Theorem 2.5.2.

The equation holds for i = 0. Suppose it holds for i = m. If ^ S" then

it clearly holds for i = m + l. If r e ©a"'"', and say r = {8^

h
then note that Famir,!'"'*'^) = ^Fa/n((8^^ 'L,),

i - 1

so that /lrfy(fam(r,7""+'),5§) fl C = Adj
J —1

n c

= (J AdjiFam{{Q^ + \,T'"),B°o) O C

= y AdJ{Fam({S^'-'l,T'"),BS') D C
J —1

= AdjiFamirJ^+^lB^) O C

= Adj{Fam{r,T'"-^^),BS'-^^).

Hence, by induction the relationship holds for all i. •

41

The sequence of bigraphs flj has the nice property, that if c, e then

c, ^ {ancestors and descendants of That is, if r, is an ancestor of then

Adj(ri,B(i~^) n Adj(r2,Bô~^) = 0. This aids in the search for r such that

Cj e Adj(r,B'^^). When we Find an r such that c, e Adj{r,Bo~^), then we imme­

diately know that ancestors of r belong to and descendants of r do not belong to

04. Also note that when forming Q'a, r must be ordered before its ancestors, so it is con­

venient to find it first. These advantages are at the expense of extra work done in generating the

fly sequence. However, the extra work done in a given major step is useful not only in the next

major step, but in a number of subsequent major steps. Algorithm 2.5.3 performs symbolic Givens

reduction incorporating the above ideas.

Algorithm 2.5.3

1. - ag = (R°,c°;£S)

2. R°; H° 0-, r" =

3. initialize array P to zero

4. for i = I to p do

5. initialize array / to zero

6. choose Ci

7. for J = 1 to n do

8. if Ij = 0 and Pj < 2 then

9. if c, e Adj{rj ,B 'o ') then

10. if Pj — 0 then r — rj

42

11. else r — ancestor of rj with zero entry in P

12. & ^ \J r

13. set /j 1 V 5 such that r, e Fam(r,T'~^)

14. set /j 1 V 5 such that ancestor of r in P"'

15. endif

16. endif

17. endfor

18. order S* and its ancestors in T'"' to form ordered 00

19. use Algorithm 2.5.1 to form T' from T'"' using 9^

20. use Algorithm 2.5.2 to form B 'q from flô~' using

21. endfor

The sequence of bigraphs B) is represented in a row oriented data structure. Adjacency

lists for each r e R° are stored sequentially in a one dimensional array of length |£oi,

and pointers to the beginning of each adjacency list are stored in an array of length n + 1.

Steps 5 and 10 of Algorithm 2.5.2 are accomplished by making the appropriate entries in the adja­

cency lists negative. The sequence of forests, T', requires 3n storage locations, and is stored in

a triply linked tree form (see for example Knuth (1968)) to facilitate fast searching. Steps 6 and

18 in Algorithm 2.5.3 are dependent on the column ordering and row ordering strategies respec­

tively.

The representation of symbolic redction in Algorithm 2.5.3 is not simple to explain, and an

example is needed to aid the above explanations. The computer implementation of the algorithm is

43

discussed in Section 5.1, where an example of the reduction process is also given. All of B'o,

5'o, and T' are displayed for a few stages of the reduction on a sparse matrix.

Implementation of the minimum degree column ordering strategy requires additional p

storage locations for the column degree. As outlined in Section 2.4, the degree of a column node

c after major step i is \Bireach{c,BQ)\, which is given by Definition 2.4.2. Note that after

each major step, only the degree of column nodes in /!<//(j0i}t ,Bo) needs to be updated. Algo­

rithm 2.5.4 performs this update for a column node c.

Algorithm 2.5.4

1. for i = \ to n set Ij = 0

2. 0 <— 0

3. for y = 1 to n do

4. if Ij = 0 then

5. if c e Adjirj^B'^) then

6. find root r of tree containing ry

7. 0 - 6 y AdjiFam(r,r)M)

8. /, •- 1 V s such that r, s Fam{r,T')

9. endif

10. endif

11. endfor

12. |9| gives the degree of c

44

Some column ordering strategies, as well as the minimum degree tiebreaking strategy, require

the number of nonzeros in a given column. This information is not available without some compu­

tation, since a row oriented data structure is used. Algorithm 2.5.5 obtains d the number of

nonzeros in column c of Bq.

Algorithm 2.5.5

1. for y = 1 to n set Ij = 0

2. d 0

3. for 7 = 1 to n do

4. if Ij — 0 then

5. if ' c 6 Adj(rj,BÔ) then

6. m *- j

7. while /„ = 0 do

8.

9. d *- d + \

10. if r„ has a parent then m index of parent

11. endwhile

12. / , • * - ! V J s u c h t h a t e Fam{rj,T')

13. endif

14. endif

15. endfor

45

Any row ordering strategy used has to be compatible, as the algorithms of this section are

based on this assumption, and should be locally acceptable due to the results of Section 2.3. To

ensure compatibility, S" before step 18 in Algorithm 2.5.3 contains only those row nodes, which

are competing for the first place under the compatibility restriction. Once the first node is selected,

it is replaced in 9* by its ancestor, and S* now contains the nodes competing for the second

place. This continues until all ancestors are exhausted and 8" is empty. A row ordering strategy

thus decides, at any one time, only between the row nodes in &. Algorithm 2.5.6 performs the

ordering without explicitly specifying the strategy used in step 2.

Algorithm 2.5.6

1. while 8' # 0 do

2. let r be the next selected row from &

3. » — 8' - Ir}

4. S' S* parent{r)

5. endwhile

The question of which rows should be left out from the initial factorization can be addressed

in step 5 of Algorithm 2.5.2. The size of the set Adj{{Q'^jyB'jZ\) measures how "different" the

row is from rows involved in previous rotations within the current major step. If this set is

"large", especially for large J, the row should be left out from the initial factorization.

Changes to Bg were made only by making some entries negative, so the factorization can be res­

tarted by taking absolute values of all entries of and marking {8jjy as unavailable in

P. It seems that a partial restart should be possible, using the information in T'~', thus sav­

ing some of the previous computations. Further research is needed into this question.

46

As was mentioned at the outset of this chapter, and shown in Figure 2.1 (b), it is possible that

the matrix X has less than full structural rank. The symbolic Givens factorization algorithm

will find the structural rank of X, which is an upper bound on the actual rank of X. In step 6

of Algorithm 2.5.3, if every row node j with Pj = 0 has no edges left, the unreduced por­

tion of the matrix X is a null matrix. The structural rank of X is given by the value of i

at this point.

When using one of the row ordering strategies given in Section 2.3, the resulting row ordering

is determined in two parts. First, the pivot rows are ordered in the order they are marked in P.

Then, the remainder of the rows is ordered after the pivot rows, as determined by where

m is the structural rank deficiency. The column order is, of course, determined by step 4 of

Algorithm 2.5.5, and the structure of each row of the matrix factor R is given by

U {cil, i = 1, 2, ..., p-m.

47

3. UPDATING A LEAST SQUARES SOLUTION

It is often the case that a few rows of the X matrix are the cause of much fill-in in the

R factor. To avoid the fill-in, these rows should be left out in the initial factorization, and then

used to update the solution. Chapter 2 suggests a method for deciding which rows to leave out.

Equality constraints often consist of a few very dense rows, so they may likely be among the rows

left out. For example, if all parameters must sum to a constant, then we have a completely full

row. The constraints can be treated as additional observations, but they have to be satisfied exactly

rather than in the least squares sense.

Normally, when operating with full matrices, adding observations is no problem. The R

factor can be modified by additional Givens transformations, and a new solution computed. How­

ever, when dealing with a sparse matrix, this modification will produce unacceptable fill in the

R factor, since this is why these rows were left out from the initial factorization. The methods

discussed in this chapter are special, in the sense that they only modify the solution, not the R

factor, while using a minimal amount of additional storage.

Heath (1982) gives a method for updating a solution for the Givens algorithm using the com­

puted R factor. His method allows for equality constraints, but assumes that X, and hence

R, is full rank. Bjorck and Duff (1980) give an updating method in the context of a different

basic algorithm (Peters-Wilkinson LU factorization), which also allows for equality constraints.

Their method is more general, as it makes no assumptions about the rank of X. In this chapter,

Section 3.1 extends the updating method of Heath to rank deficient problems, and Section 3.2

discusses the inclusion of equality constraints.

During research on the methods of this chapter, a result was obtained on the nonzero struc­

ture of the inverse of a triangular matrix. This result was not used in the final version of these

methods. However, the result is interesting by itself, and so it was put into Appendix B.

48

3.1 Updating with Additional Observations

The problem considered here is a least squares solution of

X y

E
b =

z

(3.1)

where X is an n X p sparse matrix of rank r < min(n ,p) , E is a X p

matrix, b is a p X 1 vector, y is a » X 1 vector, and z is a g X 1

vector. Initially, a least squares solution of XB = y is produced using Heath's (1982) exten­

sion of the Givens algorithm. Then B is updated by the additional rows in E to produce

b.

For simplicity of presentation, assume that the first r columns of X are linearly inde­

pendent. First, X is factored using Givens rotations as

R T (3.2)

^ ^ Q 0 0'

where Q is a product of orthogonal Givens rotation matrices of order n, and R is upper

triangular of order r. Partition g as | g, g; j, where g, is nXr. Then,

!
Applying the same transformations to the right hand side, we obtain

= g, [i? T .

A solution B =
5,

h

= I 01 Qi \

is then obtained by solving RB\ = c, and setting

(3.3)

S-, = 0. Let r =

updated solution, and let r =

y X

, '•2 z E

r i

f i

b be the residual for the

be the corresponding residual for solution B.

49

Then,

and

Fx = y — XB

= Q\c + Qid - ôi[R

- Qic + Qid - QiRBI

= Qid,

f i = 2 — EB

5.

0

(3.4)

= z - [£, £2]
5,

0

= z - £I5I,

where | E, f; j is a conforming partition of E.

Now define K and M hy R 'K = Ei and RM = T respectively. Then,

K is an r X q' matrix, and M isan r X p—/• matrix. Also, let

H = E2 — K'RM. Note that the rank of H is the increase in the rank of the solution

due to the update. To see this, note that

(3.5)

rank
X

E
= rank

= rank

= rank

= rank

R T

El £2

R RM

K'R £2

Ir 0

K' L

R RM

0 E^-K'RM

R RM

0 El -K 'RM

rank{R) + rank{Ei — K 'RM)

r + rank{H) .

50

6, 5.
Let b — B + Ô, and partition b =

. ^2
, S =

. ^2
, and

ô =
51

52
, so that all partitions conform.

Then

Si

h

and

r, = ?! —

= Q^d - ô,[T \

= Qid — Qi | Rb\ + RM5i

= Qià - QiRf ,

T i = r i — E5

= ^2 - - E2Ô2

= h - K'Rb^ - Hhj - K'RMhi

= F2 - K'Rf - HÔ2,

where / = 5i + MÔ2.

Since Q is orthogonal, ||r,ll2 = 1102(^112 + llôi^/!l2

= WII2 + 11^/112-

So the least squares solution of (3.1) is given by

mm
b

r i
mm
/.«2

Rf

h -K 'Rf -Hi2

Substituting u = Rf , (3.8) becomes

mm
«,0211

For a fixed Ô2, (3.9) can be written as

r2-K 'u-HÔ2

mm subject to K'u + V = r2 — H82,

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

51

and the solution to this is given by the minimum norm solution to

K' = r2 — Hhi .
(3.11)

Note that when r = p , then H = 0 and (3.11) reduces to an expression

obtained by Heath (1982) for the full rank updating problem. This can be solved by orthogonal

factorization

7'
K L '

4 0
and

U'
u s

V t

(3.12)

where U is an orthogonal matrix of order q + r , and L is a lower triangular matrix of

order q. The minimum norm problem now becomes

[i o \ = f i - H52,

which is solved by setting t = 0 and solving the triangular system Ls = Fi — Hbi .

In terms of j and t (3.10) now becomes

mm subject to Ls = f i — Hbi

So now (3.9) is solved for u in terms of Ô2, and becomes

- L-^Hb 11^ "1 - -no2\ \2

But this is a least squares problem, which can be solved by another orthogonal factorization. Let

5 = L~^H, and w = £~'r2. so that

(3.13)

F'S =

F'w =

B Z

0 0

g

h '

(3.14)

52

where F is an orthogonal matrix of order q, B is an upper triangular matrix of order

k = rank{H), g is a vector of length k, and remaining matrices conform. Partition

62 into
«21

522
, where 621 is a vector of length k . Then, 62 minimizing (3.13) is

obtained by setting 622 = 0, and solving the triangular system

BÔ21 = g . (3.15)

The solution to original problem (3.1) is then obtained by solving for 5, and setting

b = S + d. The preceding development of the updating problem gives the following algo­

rithm.

Algorithm 3.1.1

1. Obtain R, T , and c as defined in (3.2) and (3.3) using the Heath (1982) algo­

rithm.

2. Solve RB\ = c.

3. f i = z - £,5,.

4. Solve R'K = E\ ' .

5. H = E2 - K'T.

K L '

. 4 0
6. Compute orthogonal factorization V

7. Solve LS = H and Lw = ^2.

r 1 B Z g
8. Compute orthogonal factorization f I 5 w j = o O h

9. Solve 5021 = g-

53

10. Solve Ls = f2 ~ H
«21

0

u s
11. Compute u in

V
= U

0

12. Solve Rf = u .

13. Solve RM = T.

14. bx = f - M
^21

0

15. b =

5i + 5i

«21

0

Note that in step 6 of the algorithm, only the first q rows of the matrix U are needed

for the calculation of step 11, so only the q rows need to be stored. Any matrix requiring addi­

tional storage, over that needed by R and T, in this algorithm has dimensions at most

q X p. Assuming that q is small, the calculations can be performed in full storage mode,

with the exception of those involving R and T, which are stored in sparse storage mode.

The development leading to the above algorithm assumes that exact arithmetic is used in all

calculations. With finite precision arithmetic of a computer, the rank of X and that of H is

estimated. Heath (1982) discusses the problem of estimating the rank of X in his algorithm,

and concludes, based on a number of test cases, that the algorithm performs well. In Algorithm

3.1.1, step 8 estimates the increase in rank due to the update. The orthogonal factorization of the

q X p—r matrix S can be done by Householder transformations with pivoting for stabil­

ity, so no problem should arise here. However H itself is computed by taking a difference in

step 5, and potentially some cancellation could occur here due to finite precision arithmetic. Some

testing of this algorithm will be discussed in Chapter 5.

54

3.2 Updating with Equality Constraints

Here we consider the least squares solution of

X

E
b =

(3.16)
subject to Gb = a ,

where X, E , y , and z are the same as in Section 3.1, G is an

m X p (m < p) matrix, and a is an m X 1 vector. Again, for simplicity of

presentation, it is assumed that the first r columns of X are linearly independent.

Let G be of full rank m, and partition G into | G, Gi j, where Gz is

the first r columns of G. Define J hy R 'J = Gi ' , so that J is an r X m

matrix, and let N = Gi — J'RM, giving an m X p—r matrix.

At this point it is convenient to comment on estimability of the constraints. First note that

the rowspace of X is the same as the rowspace of | /? RM j. Also, from the above

definitions

E.

G, G2

K 'R K 'RM-¥H

J 'R J 'RM-\ -N

The first situation of interest occurs when N is a zero matrix. Then,

G = /'[/Î /ÎM],

and so the constraints are jointly estimable in the initial problem. If N is nonzero, but there

exists a matrix C such that N = CH, then

r 1 f /ÎM
G = \ J - -CK- C|

So the constraints are jointly estimable in the problem updated by the additional observations E,

but not jointly estimable in the initial problem. The third situation of interest is when the con­

straints are all nonestimable. This occurs when no row of iV is a linear combination of the rows

of H.

55

The initial solution S is obtained as in Section 3.1. Let r, and f; be as in (3.6)

and (3.7) respectively, and define and by

— a — GB

= a —G\Bi ,

and r; = f] — Gô

= F; — G i5i — GjSî

= ?3 - J 'R5 , - NÔ2 - J 'RMhi

= r j - J 'Rf - Ni l

= F} - J 'u — Nbi .

The constraints have to be satisfied exactly, so = 0, and

J 'u = f i — Nbi .

This adds a constraint on (3.8), and on (3.9) which becomes

mm
subject to J 'u = Fi — Nôi -

r2~K'u — H bi

So for a fixed Ô2, for which the above constraints are consistent, this can be written as

mm
subject to K'u + V = Fi — H82

J 'u = F-i — NÔ2.

The solution to (3.18) is given by the minimum norm solution to

K' /, u F2-H&2

J ' 0 V FÎ- IV52

(3.17)

(3.18)

(3.19)

Orthogonal factorization as in (3.12) may not be sufficient to solve this minimum norm prob­

lem, since J may not be full rank. The rank of J is the same as the rank of Gj. Assume

56

that m < r , and rank{Gi) = j ^ m. Then, there exists a nonsingular matrix V

of order m, such that ViG\ = 0, where V\ and Vi are the first j and the last

m — j rows of V respectively. Then ViJ' = 0, and so

I Gi Gj] -
K,G2

0 V^N

(3.20)

Of course if y = m, then is a null matrix, and K, = K can be the identity

matrix. Premultiplying (3.19) by

/, 0

o K,

O Kz

gives

K' 4
K.y 0

0 0

f i -Hbi

V ih-V,Nh

Vih-V^Nb^

Note that the fixed 5% must satisfy

Vi f i = ,

which is the same as

= V2NÔ2 .

Now apply orthogonal factorization to (3.22), so that

I/'
K /V,' 0 L' 0

4 0 0 0 0

and

U
u J

V t

(3.21)

(3.22)

(3.23)

57

where U is an orthogonal matrix of order r + q, L is a lower triangular matrix of

order q + J, 5 is a vector of length q + j, and t is a vector of length

r — j. The minimum norm problem (3.22) now becomes

r2-H52

K,r3-K,iV52

V2Pi-V2N52

L 0 s

0 0 t

(3.24)

Let e be the first q + j elements of the right hand side of (3.24). The solution is

then given by setting t = 0, and solving the triangular system Ls = e. Using this

solution, (3.17) becomes a constrained least squares problem in 6;,

min

where 5 = L '
H

ViN

IIK" — 552II2 subject to v = CSj,

V = Fjfl, and

(3.25)

w = L '
r i

C = K2M

In the case when j = m, the constraints are not present, as K2 is a null matrix, and

orthogonal decomposition (3.14) will solve the problem.

If j < m, since G is full rank and rank{Gi) = j , then by (3.20) V2N has

full rank m — j. This can be solved using a procedure given in, for example, Lawson and

Hanson (1974). First, define the partitions

C = [C, C2], S = [S, S2], and 5% = j.
where Ci is a square matrix of order m - j , 5i is a iq+j) X {m—J) matrix,

and all other p a r t i t i o n s c o n f o r m . F o r s i m p l i c i t y o f p r e s e n t a t i o n a s s u m e t h a t t h e f i r s t m — J

columns of C are linearly independent. Solve the constraints for 621 in terms of 622. and

58

substitute into (3.25) giving an unconstrained least squares problem

iRw - j.cr'r) - (Sz -

To simplify this, consider a factorization

[C, C2 f] = Z)'[C, C: ?], (3.2

where D is an orthogonal matrix of order m —j, and C, is upper triangular. Solve a tri­

angular system of equations = Si, and compute w = w — 5]?, and

Si = Si — S\Ci. So, now the unconstrained least squares problem becomes

% 11^ -

which is solved by orthogonal decomposition like (3.14). Then, 82, is obtained by solving the tri­

angular system

^1^21 — V — Cl^ l l .

The solution to problem (3.16) is then obtained by solving for 6, and setting

6 = 5 + 5 .

The preceding development leads to Algorithm 3.2.1.

Algorithm 3.2.1

1. Perform steps 1 to 5 of Algorithm 3.1.1.

2. f i = a - Gif i i .

3. Solve R'J = (?[' .

4. N =Gi - J 'T .

5. Compute factorization (3.20) to obtain K,, Vi, and C. If is null, set

K] = I, skip steps 8 to 12, and 15, and set 82, = 0.

59

6. Compute orthogonal factorization (3.23).

7. Solve LS =
H

ViN
and Lw =

r i

S . V = Via .

9. Compute orthogonal factorization (3.26)

10. Solve 5i(?i = S].

11.)V = W — 5]?.

12. S2 S2 ^\^2-

13. Compute orthogonal factorization F'| 5^ w j

14. Solve 06221 = g.

15. Solve C i52\ = ? — (?;

B Z g

0 0 h

^221

0

16. 5? —

^21

^221

0

17. Solve Ls = f i — H hi .

u s
18. Compute u in

V
= V

0

19. Solve Rf = u.

20. Solve RM = T.

21. g, = / — M5i.

60

22. b =
5i + 5i

«2

Similarly as in Algorithm 3.1.1, any matrix requiring additional storage, over that needed by

R and T, has dimensions at most q+m X p. So, assuming that g + m is

small, full storage can again be used. Note that this algorithm is quite similar to Algorithm 3.1.1

except for the complication due to the constraint in (3.25). Steps 5, 8 through 12, and 15 deal with

this complication. If K, turns out to be a full rank matrix in step 5, then the constraint is not

present, and K, can be set to the identity matrix. This has the effect, that steps 8 through 12,

and 15 are not needed.

61

4. SPARSE MATRIX TECHNIQUES IN ANALYSIS OF VARIANCE

Regression in balanced designed experiments can be accomplished very efficiently by existing

algorithms, which do not form the data matrix X explicitly. However, when the design is unbal­

anced, e i ther due to missing observat ions or heteroschedast ic i ty , the data matr ix X QT X'X

has to be formed explicitly. Generally, the matrices are stored in full storage mode. For a large

model with many levels and interactions, both X and X'X are very large and sparse

matrices.

Gentleman (1973) reports that solving this least squares problem by Givens reduction of X

has advantages and is quite efficient. His method was simply exploiting zeros in full storage mode,

without considering any sparse matrix techniques. The matrix X, when the unbalance is due to

missing observations, has also another property which should be exploited. All the nonzeros are

ones.

Section 4.1 discusses sparse matrix techniques in Givens reduction of a model matrix, and

then Section 4.2 looks at sparse matrix techniques in analysis of variance, and methods of obtaining

estimable functions.

4.1 Givens Reduction of a Model Matrix

Normally, the symbolic reduction only obtains the row and column ordering and passes a data

structure to the numerical reduction. The bigraph does not have any information on the values of

nonzeros. In the case of a dummy variable matrix, the situation is different. The initial bipartite

graph contains all information about the matrix, because all its nonzeros are ones. It may even

seem that Theorem 2.5.2 can have applications here beyond giving just the nonzero structure of a

62

partially factored matrix. However, as the factorization proceeds, the nonzeros become very rapidly

diverse. More information is needed, than just the forest structure T, to construct a partially

factored model matrix from Bg- The situation, though, is not completely hopless. In the initial

stages of the reduction, the symbolic stage can perform some limited numerical work, although not

through Theorem 2.5.2, as will be seen below.

The symbolic reduction of Chapter 2 assumed that no numerical cancellation takes place in

(2.2.1). When this assumption fails, we simply obtain an upper bound on the nonzero structure.

This upper bound is very good in general, but in the special case, when reducing a matrix of

dummy variables, a large amount of cancellation can take place.

Definition 4.1.1 Numerical cancellation occurs at X/j whenever

a. x,i is the pivot element, is the element to be annihilated, and

xnXij = -.XjjtXy, or

b. Xji is the pivot element, x,i is the element to be annihilated, and

Since the symbolic stage does not have the values of nonzeros, all possible cancellation, as

defined above, cannot be implemented. However, a special case, which includes the majority of can­

cellation that occurs in processing a matrix with dummy variables, can be implemented easily.

Note that if the nonzeros are the same within rows, cancellation of type (b) of Definition 4.1.1 will

occur. The cancellation occurring in Figure 4.1 is exactly of this type. To obtain (d) in Figure 4.1,

identical rows are rotated first, giving

V2 V2 0 0 V2 0

0 0 0 0 0 0

V2 0 V2 0 V2 0

0 0 0 0 0 0

1 0 0 1 0 1

63

1 0 0 I 0

1 0 0 1 0

0 1 0 1 0

0 1 0 1 0

0 0 I 0 1

(a)

* * * * * *

* *

* * *

* * *

* * * * *

(b)

*

*

* *

(c) (d)

(a) Original matrix with dummy variables (15 nonzeros)
(b) Nonzero structure of (a) after processing column 1 without
accounting for cancellation (19 nonzeros)
(c) same as (b) but accounting for cancellation (15 nonzeros)
(d) same as (c) but using a variable pivot row (13 nonzeros)

Figure 4.1 A matrix of dummy variables, and resulting nonzero structures after processing column 1

where again the nonzeros are identical within rows, and then rows 1 & 3, and 1 & 5 are rotated.

Certainly cancellation is an important factor here, but the use of a variable pivot row is also

advantageous. The variable pivot above was used to take advantage of cancellation, when a set of

rows is identical. Identical rows represent multiple observations per cell of a design. The following

formalize the concepts illustrated in Figure 4.1.

Lemma 4.1.1 Suppose x,i = x,-,, and Xjx = Xj, for some s in (2.2.1). Let X

be the matrix X after the single Givens rotation of (2.2.1). Then

xn = Xi, = {xli + xj{f, and = Xj, = 0.

Proof: Apply (2.2). •

64

Proposition 4.1.1 Suppose Xj^ i = Xy, j = 1, 2, k , and x, i is the pivot

e lement for a sequence of k — 1 Givens rotations involving rows l'i, ii, i^. Then, if

Z X,.,
m " l

%

, and ^ is the matrix X after the rotations, x,, = x, , =

= 0, y = 2, 3 k .

Proof: Apply Lemma 4.1.1 k — I times. •

Corollary 4.1.1 Suppose k identical rows of dummy variables are processed with a sequence of

k — 1 Givens rotations. The result is fc — 1 rows of zeros, and one row with I's

replaced by VF.

Proof: This is a direct result of Proposition 4.4.1. •

Corollary 4.1.1 thus can be used to reduce a matrix with multiple observations per cell of a

design to a matrix with a single observation per cell. The resulting matrix still has the property,

that nonzeros are the same within rows. So additional cancellation, as described by Proposition

4.1.1, can occur during subsequent steps of the reduction. Since the results of Chapter 2 apply to

single pivot row orderings, the application of Corollary 4.1.1, which uses a variable pivot, can be

viewed as a pre-processing step.

Further cancellation, as described in Proposition 4.1.1 can be partially implemented by modi­

fying Algorithm 2.5.2. Suppose the first j row nodes in are single root nodes in T'"',

which means that these were not involved in any previous major steps, except possibly the pre­

processing step. An equivalent condition is that these rows have no parent in T'"'. Then, when­

ever there ex is t s an m e for j = 1, 2 , . . . , a , (m < j) ,

cancellation will occur in column m of the first u rows of 0^. Note that with this cancel­

lation, the relationship in Theorem 2.3.1 still holds, thus the results on row orderings in Section 2.3

65

are applicable. Algorithm 4.1.1 is a modification of Algorithm 2.5.2, which partially implements

the cancellation discussed above.

Algorithm 4.1.1

1. if ki = 1 then set P to 2 for each member of supernode j9i}i

2. else

3. if |0j}i has no parent in T'"' then

4. n -

5. - 0

6. else ÇI *- 0

7. for j = 2 to k i do

8. if 0 # 0 then

9. if {8^y has no parent in T'"' then

10. A -

11. else A. — 0

12. AdJ(W^j .u f f j - . \) - y {a - A}

13. a — ÎÎ Pi A

14. endif

15. for each r in supernode do

16. Adj{r ,^Z \) * - Adj{r4z[) - AdJiFammj-uT^- ') , ^Z \)

17. endfor

66

18. endfor

19. link supernode to supernode {0^2

20. for each r in supernode do

21. $ fam({0i}2,r-') - Fam(|0i},,r-')

22. Adj{r , f f ^) - Adj{r , f f kr{) ' " kl

23. endfor

This algorithm carries the cancellation for s = I, 2, ..., u —1, except when

u = ki {ki is the number of rows involved in major step i), then the cancellation is

carried through for s = u. This is done, so that the fixed data structure of Section 2.5 can

be retained. Note that in step 12 there is room in the data structure to accommodate the union,

since we are simply putting back what was taken out.

Symbolic Givens reduction of a pre-processed matrix of dummy variables can thus be accom­

plished using Algorithm 2.5.3 with only step 20 replaced with Algorithm 4.1.1. Since not all can­

cellation is detected in this algorithm, it is possible that during the numerical reduction a null col­

umn is encountered. This is not a problem, since this event can be handled as any other rank defi­

ciency by the Heath (1982) extension of the Givens algorithm.

Generally, the matrix of dummy variables is not of full rank. The Givens factorization of

X, assuming that the first columns are linearly independent, takes the form (3.2). Only R is

needed for computing a solution or a sum of squares for a given hypothesis, sincc

24.

R-\R-^y 0

0 0

(4.1)

67

is a generalized inverse of X'X. Identification of a set of r linearly independent columns of

A", or at least a set of linearly dependent columns, which can be removed without changing the

rank of X, would be useful. One way to do this is to discard all columns associated with the

first level of each main effect in both main effect and interaction columns. This gives a full rank

subset of columns of X. The problem with this approach is that most of the columns discarded

are associated with the interactions, which are the columns with greatest sparsity. The model state­

ment contains some other information on linear dependencies among columns of X. For exam­

ple, the columns associated with main effects A and B are linearly dependent on the columns

associated with the interaction AB. The columns associated with A and B should be

discarded, since columns associated with AB have fewer nonzeros. Also the sum of columns

associated with any main effect or interaction is a column of ones.

Definitioa 4.1.2 An effect E, is contained in an effect E^, if Ei is an interaction contain­

ing £ [or £2 is nes ted wi th in E\ .

In general thus, if an effect E, is contained in an effect Ej , then columns of E\ are

linear combinations of columns of E-i- This is true regardless of the imbalance in the data.

Algor i thm 4 .1 .2 uses these ideas to d i scard a se t o f re la t ive ly dense co lumns f rom X.

Algorithm 4.1.2

1. 5 •- set of all effects in the mode!

2. while S # 0 do

3. s an effect in S with most levels

4. D — \ d e S \ d \ s contained in s }

5 . 5 - 5 - l Z) l J j }

68

6. if s is the first effect selected, then

7. generate columns for all levels of s

8. else generate columns for all except the most replicated level of s

9. endwhile

Let Xi be the matrix of columns of X generated by Algorithm 4.1.2. Note that if an

interaction containing all effects is present, the pre-processing step is all that is needed to produce

R, which will be diagonal. Generally, however this is not the case, and Givens reduction must be

applied to the pre-processed matrix to obtain R. Let Xw be the nonzero part of the

pre-processed Thus so far.

- [-^1 ^2]. and

^11

0
= Q\

where Q\ is a product of Givens rotation matrices for the pre-processing step, and rows of Xi

have been appropriately permuted. The modified Algorithm 2.5.2 can now be used to symbolicaly

reduce to upper trapezoidal form. Both row and column ordering strategies of Chapter 2

can be used. Since this is a very structured setting, it may be possible to determine optimal row

and column orderings for certain classes of designs.

Some progress can be made by looking at the ordering problem analytically. Partition A'u

as

A'li = I £1 ^2 • • • Ek].

where E, are the columns associated with an effect with the most levels, and Ei to

correspond to the remaining effects. Note that no fill has been produced thus far, and the nonzeros

69

* *

* *

*

(a)

• *

*

*

*

*

*

*

*

*

*

* *

* *

* *

* *

* *

* * *

* *

* *

(b)

*

$

*

(c)

(a) Original matrix with first four columns corresponding
to E|, and last three corresponding to E;.

(b) The resulting matrix after processing £i (36 nonzeros).

(c) The resulting matrix after processing Ei (42 nonzeros).

Figure 4.2 Processing one effect of a matrix containing columns of two effects

70

are identical within rows. If k = 1, then Xn is a diagonal matrix, and no further pro­

cessing is needed. For k = 2, rows belonging to one level of one effect each have a nonzero

in a unique column of the other effect. See Figure 4.2 (a) for an example, when E\ has four

levels and E2 has three levels. While processing the columns of one effect, it is unavoidable to

produce fill in columns of the other. It is however better to process the effect with more levels first.

This is illustrated in Figure 4.2 (b) and (c). Note that all of the column ordering strategies dis­

cussed in Section 2.4 would make the same decision. If any rows were missing in Figure 4.2, the

same conclusion would be reached. For fc > 2, the situation becomes rapidly very complex,

but it seems that a similar argument as above could be made for processing E, first.

Columns of an entire effect should be processed first, rather than mixing effects, since this

processes rows in disjoint sets, and thus allows for taking advantage of cancellation. Recall that

cancellation requires that a row was not previously processed. A further benefit of this is that the

resulting portion of R has a simple form. Let Q2 be the matrix of Givens rotations necessary

to process f,, then

D T

0 Xn ^11 — Qi

where D corresponds to columns of E , and is diagonal. Normally, Givens reduction without

square roots, due to Gentleman (1973), would be used. If the initial matrix X has integer

nonzeros, which is the case with dummy variables, both D and T can be represented by

integers. This can be seen by factoring out from (2.2.1) each time the transformation is

applied, and then instead of S is stored at the end of a major step.

At this point it remains to factor Xn. It no longer has a simple structure as so

Algorithm 2.5.3 should be used to find a good ordering. It is possible that some experimentation

with this algorithm will lead to a good ordering obtainable from the structure of E,, ..., Ek,

or the model statement.

71

The numerical phase of the reduction begins with since can be produced sym­

bolically from Xy. It seems also possible that D, T, and could be produced symboli­

cally, as the diversity of the nonzero entries may still be manageable at this stage. Some additional

research into this may prove fruitful.

4.2 Analysis of Variance and Estimable Functions

The main concern in regression on dummy variables is usually to test hypotheses about model

parameters. Each hypothesis test has an underlying estimable function of the parameters. That is,

if we wish to test if = d, where H is a k X p {k < p) matrix of rank

k, then must be estimable.

Definition 4.2.1 HP is estimable iff there is a matrix L such that Ejly} = Hfi .

Kennedy and Gentle (1980) discuss computational methods for testing such hypotheses. The

sum of squares necessary for testing the above hypothesis is given by

{Hb - dy[H(,X 'X) -HT\Hb - d) , (4.2)

where (X 'X)~ is any generalized inverse of X'X, and b is any solution to

X'Xb = X'y. Thus to calculate the above sum of squares, two basic components are needed.

First, a generalized inverse of X'X must be obtained either explicitly or implicitly, which in turn

gives also a solution b. Second, H must be obtained for some hypothesis of interest.

A generalized inverse of X'X is given by (4.1). Note that this generalized inverse satisfies

the first two Moore-Penrose conditions. That is, if A = X'X, and A' is the matrix in

(4.1), then AA'A = A and A'AA' = A'. A generalized inverse, which satisfies these

two conditions, will be denoted by superscript The final column order of the reduced matrix

R in (4.1) depends on the initial nonzero structure of X, since row and column permutations

72

are performed to preserve sparsity, and to take advantage of cancellation. Thus the columns, from

which the R factor is formed, are a subset of the columns selected by Algorithm 4.1.2, whose

order depends on their nonzero structure.

Formulating a hypothesis of interest in an unbalanced or incomplete data is not an easy task,

because a hypothesis is testable only if the underlying H is estimable. And conversely, not all

estimable functions form "interesting" hypotheses. Since the methods of this chapter are aimed pri­

marily at large models, it is important that H can be computer generated rather than required

to be defined by the user. This raises the question of which hypotheses are appropriate in a wide

range of model settings. There is general agreement on what hypotheses should be tested with bal­

anced and complete data. The question of what should be tested in the unbalanced data case has

recently received considerable attention in the literature. The emerging philosophy seems to be to

test the hypotheses of the balanced case as much as the data allow. See for example Hocking,

Speed, and Coleman (1980). The type III, and IV hypotheses of Goodnight (1978) are constructed

according to this philosophy. With unbalanced data but no missing ceils, the resulting type III, and

IV hypotheses give the Yates' (1934) weighted squares of means technique, and are the same as the

"usual" hypotheses for the same size model but with balanced data. When missing cells are present,

often the "usual" hypotheses of the balanced case cannot be tested because of estimability problems.

In this case, the type IV hypotheses are constructed to retain a property of the "usual" hypotheses,

namely that the coefficients for any effect are distributed equitably across higher order effects

which contain it. The exact procedure will be described below.

To construct any hypothesis, a generating set of estimable functions is needed. Since

Ely} = X0, we have Ej l) '} = LXff . So HP is es t imable i f there is a matr ix S

such that L = SX. The rows of X thus form a generating set for all estimable functions.

Another generating set is given by the rows of X'X, and also by the rows of | T j.

Any matrix with the same rowspace as X can be used as a generating set. Goodnight uses yet

73

another generating set, the rows of i ,X 'X) 'X 'X , since this is available as a byproduct of the

generalized sweep operator, which he uses to obtain a {X'X)~ and a solution. A form of

{X'X)'X'X can also be obtained from an orthogonal factorization. Suppose the first r

columns of X are the columns associated with R, then

{X 'X) 'X 'X =
0

0
0 %2'%l

I R- \R-^) 'Xx 'Xi

0 0

This can be computed from R by solving two triangular systems R'B = and

RA = B, so that A = This generating set, however, need not be

the same as the one obtained from the generalized sweep operator, since (%'%)' is not unique.

Which is the best generating set from the sparsity point of view? Consider the operations

which need to be performed on the generating set to obtain type III, and IV estimable functions.

Both type III, and IV estimable functions have the property, that those involving an effect E

will also involve all effects which contain E, and will not involve any effects which do not con­

tain E. This can be accomplished by "adjusting" each effect for all effects that do not contain it.

For example, consider a three factor model with all interactions. The model statement is

yijki = /I + a,- + bj + Ck + abi j + + bcj^ + abc^^ . (4.3)

And the required adjustment is

a for M. b, c , be ,

b for f i , a , c, ac ,

c for n, a , b , ab ,

ab for M. a, b, c , be , ac , (4.4)

74

ac for f t , a , b , c , ab , be ,

be for n, a , b , c , ab , ae ,

abc for p. , a , b , c , ab , ac , be .

Goodnight chose (X 'X) 'X 'X as the generating set, produced by the generalized sweep

operator, since it has only r nonzero rows, and its elements arc generally 0, 1, or -1. This

matrix also is upper trapezoidal, with some of the required adjustment already done as a byproduct

of the sweep operations. The {X'X)'X'X computed from R above, however does not have

this nice form. The factor R together with T also forms a generating set, where some

adjustment has already been done. Each effect has been adjusted for all effects whose columns pre­

cede it. However the order of the columns is determined by the sparsity pattern and not by the

requirement above. In fact a highest order interaction is ordered first, and all effects, including the

ones contained in it, are adjusted for it. Thus R together with T do not form a good gen­

erating set. Note that the sparsity preservation objective in computing a solution and the required

adjustment above are in conflict. This is because the solution computations tend to order highest

order interactions first, whereas the reverse is required to accomplish most of the above adjustment.

For this reason, it seems wise to separate the two activities. The original matrix X is, of course, a

generating set of estimable functions. The numerical computation of R will identify a set of

r linearly independent rows of X, and X has a particularly nice form, since it contains only

O's and I's. All of the required adjustment remains to be done, but at least a minimal set of rows

has been identified.

Let Z\ be a matrix of r linearly independent rows of X. Arrange the columns of

Z1 so that the mean goes first, then all main effects, then all 2-way interactions, then all 3-way

interactions, etc. Using Gaussian elimination to put Zi into an upper trapezoidal form will

accomplish most of the required adjustment. In fact if there are no missing cells, no further adjust-

75

ment is needed. Let 2% = G,Z,, where G, is the matrix representing the Gaussian elimi­

nation. The remainder of the adjustment can be performed by selective Gaussian elimination above

the main diagonal. Let Z3 = GiZi, where G2 is the matrix representing the selective

Gaussian elimination. The nature of this selective elimination is best illustrated by an exampi

Figure 4.3 gives matrix Z3, partitioned to show the eliminated parts, for the model in (4.3).

z: Z^ Z^ Z6 7»! ^ac Ẑ c Z&c

0 z: 0 0 z:6
7< ̂
^ac 0 z:k

0 0 4 0 Z^ 0 zL ZL

0 0 0 z: 0 z'̂ ^ac z:c Z^tc

0 0 0 0 •yab
^ab 0 0 -jab

^abc

0 0 0 0 0 yac
^ac 0 -rac

^abc

0 0 0 0 0 0 yrbc
^bc

ybc
^abc

0 0 0 0 0 0 0 yabc
^abc

Figure 4.3 The structure of a generating set of estimable functions for model (4.3) after the adjust­
ment (4.4). Estimable functions for effect e are given by the row containing super­
script e, and the number of rows for an effect gives the degrees of freedom associ­
ated with that effect. The subscripts denote the effects involved in a given set of esti­
mable functions

Trials with a few Z, matrices for various models and unbalance patterns show that Gaus­

sian elimination as described above will rarely produce entries other than 0, 1, and -1. This sug­

gests that a directed bipartite graph can be used to represent the portions (probably most and in

many cases all) of the matrix, which have only 0, 1, and -1 entries.

76

Definition 4.2.2 A directed bipartite graph is a bipartite graph where each edge is an ordered pair.

Definition 4.2.3 The directed bipartite graph, representing an n X p matrix with entries 0,

1, and -1, is an ordered bipartite graph, where cy) e E iff Xy = 1, and

6 E iff Xij = -1.

The computer representation of a directed bipartite graph can take the form of a row adja­

cency list, where the entries are positive or negative to indicate the direction. Figure 4.4 gives an

y i jk i M + Qi 4- bj + Ck 4- abi j 4- acik

1 0 1 0 1 0 1 0 0 0 1 0 0 0
1,2,4,6,8,12

1 0 1 0 0 1 1 0 0 0 0 1 0 0 1,2,4,7,8,13
1 0 0 1 1 0 0 1 0 0 1 0 0 0 1,2,5.6,9,12

0 1 1 0 1 0 0 0 1 0 0 0 1 0 1,3,4,6,10,14

0 1 1 0 0 1 0 0 1 0 0 0 0 1 1,3,4,7,10,15

0 1 0 1 1 0 0 0 0 1 0 0 1 0 1,3,5,6,11,14

1,2,4,6,8,12 1,2,4,6,8,12 1,2,4,6,8,12
-6,7,-12,13 -6,7,-12,13 -6,7,-12,13
-4,5,-8,9 -4,5,-8,9 -4,5,-8,9
-2,3,-8,10,-12,14 -2,3,-8,10,-12,14 -2,3,-8,10,-12,14
-2,3,-6,7,-8,10,-12,15 -6,7,-14,15 -6,7,-14,15
-2,3,-4,5,-8,11,-12,14 -4,5,-10,11 8,-9,-10,11

1,2,4,6,8,12
-6,7,-12,13
-4,5,-8,9
-2,3,-8,10,-12,14
12,-13,-14,15
8,-9,-10,11

1 1 0 1 0 1 0 1 0 0 0 1 0 0 0

0 -1 1 0 0 0 0 -1 0 1 0 -1 0 1 0

0 0 0 -1 1 0 0 -1 1 0 0 0 0 0 0

0 0 0 0 0 -1 1 0 0 0 0 -1 1 0 0

0 0 0 0 0 0 0 1 - 1 -1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 -1 -1 1

Figure 4.4 An example of a model, an associated Z, and its row adjacency list representation, fol­

lowed by four successive Gaussian elimination steps, and the resulting matrix with rows
permuted in the order 1,4,3,2,6,5 to obtain the form of Figure 4.3

77

example of Gaussian elimination performed on an adjacency list of a Zi matrix. The final

matrix is row permuted into the form of Figure 4.3. This is an example of a situation, where only

1,-1, and 0 occur. The following two strategies for selecting the pivot row should have the effect of

completely avoiding, or at least minimizing, the number of nonzeros other than 1 and -1.

1. If a nonzero other than 1 or -1 occurs, try using a different pivot row.

2. Avoid using rows with nonzeros other than 1 or -1 as pivots.

When a nonzero other than 1 or -1 is unavoidable, a flag can be set for that row, or perhaps

only that entry, and the nonzero stored in additional storage. The test cases considered so far have

not required any additional storage with the above strategies. On the other hand no proof is availa­

ble that only 1 and -1 nonzeros will occur. Another item, that remains to be resolved, is the actual

data structure for this representation. The representation, as defined above, will require a dynamic

data structure. Further research into this problem is required. In particular, some experimentation

with larger computer generated examples may lead to a better data structure or representation.

The solution b obtained by the procedure of Section 4.1 has only r nonzero elements.

It is exactly those r elements, which correspond to the columns of X that produced the

columns of R . For s impl ic i ty o f p resen ta t ion , assume tha t th i s i s the f i r s t r e lements o f b,

and thus partition b into bi and 0. Partition ^ as | | accordingly, so

that (4.2) becomes

{Hib i - dy[H^R- \HiR-^yr \Hib^ - d) (4.5)

To obtain type III, or IV estimable functions for an effect, take the rows of the adjusted matrix

Z3 corresponding to that effect, and add appropriate multiples of rows corresponding to effects

which contain the given effect. In fact it is only columns of the effects which were selected by

Algorithm 4.1.2 that need to be involved. The columns forming Hy are a subset of these

78

columns. Algorithm 4.1.1 performs this task for effect bq and obtains a set of type III estimable

functions. The notation used is that of Figure 4.3. The type III estimable functions have the prop­

erty, that estimable functions for an effect e are orthogonal to estimable functions for any effect

tha t conta ins e .

Algorithm 4.2.1

1. S set of effects which contain Bq and satisfy Algorithm 4.1.2, excluding

2. for each « e S do

3. z'; - zl'l / - z'AziziT'zi]

4. endfor

5. Hi columns corresponding to bi from z'°, e s S

To obtain a type IV estimable function for effect eg, Algorithm 4.1.1 can be used with a

modification to step 3. This step should be replaced with Zj° + AfZJ, where K

is a set of coefficients, one column for each row of z'/. Each column of coefficients is deter­

mined from a given row of zj° as follows;

1. If any level of CQ has a zero entry in the given row of Z% and that level of bq has a

nonzero in Z', then set the coefficients corresponding to the nonzero rows of ZJ to zero.

2. Check to see if any coefficients corresponding to a level of is zero, when the level of

eg is nonzero. If this is the case, the type IV estimable functions are not unique.

3. For each level of bq, which has a nonzero entry in the given row, count the number of times

that level occurs in effect e, then set each coefficient corresponding to that level to the

nonzero entry divided by that count.

79

When no missing cells occur, and also for some missing cell patterns, the type IV estimable

functions are the same as type III estimable functions.

Suppose H\ has q rows, so that the rank of H\ \% q < r . Given that we have

R, b\, and Hi, the computation of (4.5) can be done by Algorithm 4.2.2, which follows.

Algorithm 4.2.2

1. i *- H\b \ — d .

2. Solve R'lJi - Hi

3. Compute factorization Hi = U

4. Solve T 'v = 3.

5. v 'v gives the required sum of squares.

Note that the algorithm does not need any additional storage, since all computations can be

done in p lace . The mos t s to rage i s occupied by the mat r ix Hi, which i s q X r .

Further research is needed into the methods of this section. In particular, as noted earlier,

the representation of Gaussian elimination to form Z3 can likely be improved. Another question

is whether it is worthwhile to use sparse matrix rneihods in Algorithm 4.2.2. The answer will

depend on the size and sparsity of matrices involved. Some experimentation must be done with

larger computer generated models, since the level of complexity obtained from small hand com­

puted examples is not sufficient to answer these questions.

80

5. COMPUTER IMPLEMENTATION AND TESTING

The preceding three chapters include computer algorithms, which need implementation and

testing on the computer. Chapter 2 discusses a bipartite graph model for performing symbolic

Givens factorization of a sparse matrix. The FORTRAN program implementing this and several

row and column ordering strategies are discussed in Section 5.1. This program is then used to com­

pare the ordering strategies on a number of test problems in Section 5.2. Section 5.3 then discusses

the program implementing the updating procedure of Chapter 3. The sparse matrix methods for

analysis of variance, discussed in Chapter 4, still have a number of problems, which need to be

researched. For this reason, no implementation is given here.

5.1 Symbolic Givens Reduction

Symbolic reduction only manipulates row and column indices, so integer arithmetic is used

throughout. For this reason, concerns about precision do not arise. Algorithm 2.5.3 and its compo­

nent Algorithms 2.5.1 and 2.5.2 perform the symbolic reduction. All of these were programmed in

FORTRAN IV, and tested both on a FORTRAN H compiler and a VAX/UNIX FORTRAN

compiler. Also included in this were row and column ordering strategies. The source code, includ­

ing numerous comments, is in Appendix A. The subprograms are listed in alphabetical order, and

the main routine is listed first.

The column ordering strategies programmed are

• natural ordering (no ordering),

• minimum column count, first tied

• minimum column count, last tied,

• minimum degree, first tied,

81

• minimum degree, last tied, and

• minimum degree with column count tiebreaking.

Algorithm 2.5.5 forms an integral part of strategies 2, 3, and 6, as it updates the column counts

(number of nonzeros in a column). Algorithm 2.5.4 forms an integral part of strategies 4, 5, and 6,

as it updates the degree of each column.

The row ordering strategies programmed are

• natural order (no ordering),

• minimum row count, and

• minimum pivotal row fill.

Here, Algorithm 2.5.6 is used to update the set of rows competing for the next position within a

given major step. Note that strategy 1 must perform some limited ordering, since the next row

may not contain a nonzero in the current pivot column. In a case when the next row does not have

a nonzero in the current pivot column, the first possible subsequent row is taken. The comments in

the source code should be sufficient to explain the programming details of these strategies.

Figure 5.1 contains the call tree structure of the program, and some correspondences to the

algorithms of Section 2.5. Calls to some utility routines have been left out from the tree for simpli­

fication. Note also that the correspondence to the algorithms of Section 2.5 is not exact, however

the essence is the same. Some loops have been combined to improve efficiency.

Although a great deal has been done to make the program more efficient compared to its ini­

tial version, there is still much room to improve its efficiency. For example, special handling of

situations, such as when only a single row is competing for next position, should still achieve large

gains in speed, particularly in the later stages of a factorization. There are other possibilities,

82

MAIN GETMAT

SETUP CNZUD

DEGUD

INIT

REDUCE MINDEG

MINDG1

MINDG2

MRJCJF

MRJCJL

MAJOR RPIND

GETNOD

CFIND

ANCSTR

PAM

MARKIT

GETUNL

MININD

MINRF

MPFILL

ANCSTR

CKCHLD

REPACK

CUTREE

ADJUST

FAM

EXTRA

SETREE

JOIN

DISCON

DEGUD

CNZUD COLNZ

NEWDEG CFIND

FROOT

FAM

MARKIT

EXTRA

CFIND

ANCSTR

GETUNL

FAM

MARKIT

RECORD

PRTVEC

PRTX

generates or reads a matrix

initialization

column selection strategies

Algorithm 2.5.3, steps 7-17

row selection strategies

Algorithm 2.5.6

Algorithm 2.5.1, step 2

Algorithm 2.5.2, steps 4-6,9-11

Algorithm 2.5.1, step 3

Algorithm 2.5.2, step 12

Algorithm 2.5.2, step 1

Algorithm 2.5.4

Algorithm 2.5.5

records structure of new ro:f of

printing routine for debugging

prints partially factored matri

Figure 5.1 The call tree of the symbolic Givens factorization program, and some correspon­
dences to algorithms of Section 2.5. Note that some calls to routines INIT, ADD,
ANCSTR, and MARKIT are omitted

83

where special handling of a frequently occurring situation will improve efficiency. These will

become apparent as more experience is gained with this program.

No attempt has been made to compare the speed of this algorithm to the Cholesky symbolic

factorization. The computer package SPARSPAK, developed at the University of Waterloo by

George, Liu, and Ng (1980), contains a very efficient version of Cholesky symbolic factorization.

Givens symbolic factorization, as it is now implemented, is expected to be slower than Cholesky

symbolic factorization except in some special cases. The reasons for this are several. In many

sparse problems, X contains more nonzeros than half of X'X\ each major step, which con­

tains several minor steps, of Givens factorization is equivalent to one step of Cholesky factorization;

and, as was pointed out above, the Givens symbolic algorithm is still not "mature", and will undergo

some improvements. The special cases, where it may be faster, are when X contains consider­

ably fewer nonzeros than half of X'X. This situation can be created, when X consists of sets

of identical rows. Each set of identical rows can be reduced to a single row before processing.

Matrices of this type are discussed in Chapter 4, and test problem 3 of the next section is of this

type.

For certain classes of problems, the increase in symbolic factorization time should be more

than offset by better orderings for the numerical stage. Particularly large gains should be made,

where several least squares problems with the same nonzero structure need to be solved. Such

situations occur, for example, where a nonlinear least squares problem is solved by several iterations

of linear least squares problems with identical nonzero structures. Better column orderings are pos­

sible; since some heuristic column ordering algorithms, not available with the Cholesky symbolic

algorithm, become available. Also, heuristic row ordering algorithms can now be applied.

Although there is the added cost of sorting the rows into the necessary order, but the bulk of this

cost would be input/output, since the order is known from the symbolic step, and no comparisons

Figure 5.2a A matrix with two

random entries per row

Figure 5.2b The matrix of Figure 5.2a after six major

steps and the associated 7^. Only

nontrivial trees of are displayed

85

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2

1 2 a « 5 6 7 S 9 0 U 3 « S 6 7 8 9 0 1 2 3 1 5

u u u u u u O O O n 1 1 1 1 1 1 1 1 2 2 2 2 2 2

1 2 3 * 5 6 7 8 9 0 1 2 3 « 5 6 7 8 9 0 1 2 3 « 5

x #

• •X

X X

X X

X X

8 X X

9 X

1 0 X X

1 1 X X
1 5 X

2 0 X X
2 1 X X

2 2 X X

2 3 X

2 6 X

2 7 K X

2 8 X X

3 2 X I

3 3 X X

3 8 X X

3 9 X %
4 2 X X

4 3 X X

4 4 X X

4 5 X X
4 7

4 8

X

X

X

X

4 9 X

5 0

4 6

4 1

4 0

3 6

3 4 • • • ••

3 1 X » • •

2 4

1 9

1 8 • • X

1 7 • •

1 6 X • •

1 3 • •

é * X

•

3 0 X •

(34,27,32,33)

(31,30,25]

19,18,7

f 16,8,3,4,15, \
^ 13,12,6,1,5,2 J

Figure 5.2c The matrix ot Figure 5.2 a

after seven major steps,

and the associated

Figure 5.2d The final R factor and r" after

completing the reduction of

the matrix of Figure 5.2a

86

need to be done. In the case where the entire problem is in core, there is no sorting cost, since the

ordering is done by indexing. Another feature, not yet implemented, is the selection of rows to be

left out from the initial factorization, and then used to update only the solution. This can also

potentially speed up the numerical factorization and reduce storage requirements for certain classes

of problems.

For purposes of debugging, a capability of printing the nonzero structure of a partially

reduced matrix was programmed. The output of this capability has proved to be very useful in

illustrating the row structure described by Theorem 2.3.1. The rows of the unreduced portion of a

matrix are ordered by trees of the forest T', and in preorder within trees. It is also used to illus­

trate which elements of the matrix are represented by edges in Bq.

Figure 5.2 gives a random 50 X 25 matrix with two nonzeros per row, two partially reduced

matrices after 6, and 7 major steps, and the final R factor. Only nontrivial trees of the forests

r*, r', and are included with each matrix. The representative of each supernode in a

tree is listed first. Both "X" and represent nonzeros, but only the "X^s are stored in the data

structure, and the "*"s are generated from the "X^s by the forest structure T'. That is, each "X"

corresponds to an edge in Bq, but the edges in Bq correspond to both "X^s and "'"s. Note

that each row still has at most two "X^s, and these are in the positions of nonzeros of the original

matrix. As the factorization proceeds, there are fewer "X^s. Also note that major step 7 involved

rows 2, 5, 18, 24, 46, 36, 17, 16, 6, 50, 41, 40, 34, 31, 19, and 13, which form a path from the

pivot row 2 to the root of the tree in T^. These rows form a structure in Figure 5.2 (c), as

described by Theorem 2.3.1.

5.2 Comparison of Ordering Strategies

The previous section lists the six column ordering and three row ordering strategies pro­

grammed. All 18 combinations of these strategies were compared on a few test problems. There

87

are five test problems, one of which is real, and the other four are artificially generated.

Two of the generated problems are matrices with three random entries per row. Random

matrices are generally considered the most difficult, since there are no patterns to exploit. One

problem is an artificially generated least squares problem on an 8X8 square grid. Such prob­

lems arise in the natural factor formulation of finite element methods. The last artificially gen­

erated problem involves a network, like those arising in geodetic adjustment applications. The real

problem is from a survey conducted in Sudan. The programs to generate the artificial test prob­

lems, as well as the real problem were kindly provided by M. T. Heath at Oak Ridge National

Laboratory. For a more detailed description of the generated problems see Heath (1983). Table

5.1 lists the test problems and their characteristics.

Table 5.1 Characteristics of the Test Problems

problem number rows columns nonzeros remarks

1 100 50 300 random

2 100 75 300 random

3 196 64 588 8 X 8 g r i d p r o b l e m

4 306 160 1448 4 X 2 n e t w o r k , 1 = 2 , m = 1

5 313 176 1557 Sudan survey data

The row and column ordering strategies are compared on the basis of three criteria. The first

criterion is the number of nonzeros in the final R factor, which is directly related to the storage

requirement for the numerical phase. The second and third criteria are the number of Givens rota­

tions and the number of operations required for the factorization respectively. One operation is

defined as the processing of one column of the two rows involved in a minor step. Thus, the number

88

of operations in a minor step is given by the number of nonzeros in the pivot row after completion

of the minor step. The time required for a numerical factorization should be approximately a linear

function of these two counts. Tables 5.2 through 5.6 give these counts for test problems 1 through

5 respectively.

Before commenting on overall performance of the orderings, note the counts for natural col­

umn order in Table 5.4. In terms of operation counts the natural row ordering is the best. The

nonzeros in this problem are in a band from upper left to lower right of the X matrix. A

Table 5.2 Problem 1

column ordering r o w o r d e r i n g

natural minimum min. pivot
order row count row fill

929; 929 929
natural order 1769 1648 1684

26297^ 22741 23164

657 714 722
min. column count 1268 1157 1112
(first tied) 14459 12349 11368

670 665 666
min. column count 1282 1152 1104
(last tied) 14971 12192 11311

642 642 642
minimum degree 1480 1486 1474
(first tied) 17792 17818 17396

631 631 631
minimum degree 1553 1495 1382
(last tied) 19598 18181 15356

629 629 629
minimum degree 1238 1221 1125
(col. count tiebr.) 13878 13156 11290

^ Nonzeros in R factor.

^ Number of Givens rotations.

^ Number of operations.

89

Table 5.3 Problem 2

column ordering r o w o r d e r i n g

natural minimum min. pivot
order row count row fill

1771 1771 1771
natural order 1880 1718 1682

41834 35335 33628

1002 1036 1076
min. column count 953 836 827
(first tied) 13092 10262 9963

1005 1040 1040
min. column count 967 838 799
(last tied) 13017 10304 9394

944 944 944
minimum degree 1177 1141 1103
(first tied) 17826 16676 15476

935 935 935
minimum degree 1167 1083 1076
(last tied) 17306 15302 14813

934 935 934
minimum degree 1020 916 853
(col. count tiebr.) 13965 11859 10234

closer inspection of the symbolic reduction process with the natural ordering revealed, that the nat­

ural row ordering is not locally acceptable. Since the two locally acceptable row orderings

performed worse, this seemed like a good test for Corollary 2.3.1. It was found, that when the min­

imum pivot row fill ordering is modified so that a new row (not previously processed) is never taken

as a pivot (except in the first major step, of course), then a row ordering which is at least as good

as the natural row ordering is produced. This new ordering gives exactly the same operation and

rotation counts, and is locally acceptable, thus illustrating Corollary 2.3.1. The superiority of the

natural row ordering is due to the fact, that when the R factor is formed in this order, some

90

Table 5.4 Problem 3

column ordering r o w o r d e r i n g

natural minimum min. pivot
order row count row fill

568 568 568
natural order 1682 4454 3437

8956 36161 26321

672 698 687
min. column count 2286 2103 1837
(first tied) 20547 15205 13295

616 639 694
min. column count 2176 2061 1994
(last tied) 18175 15315 15203

492 492 492
minimum degree 1749 2017 1766
(first tied) 10221 12812 10500

492 492 492
minimum degree 1666 1925 1741
(last tied) 9687 11868 10021

503 485 503
minimum degree 1938 1940 1847
(col. count tiebr.) 13004 12134 11782

rows during processing are structurally dependent on it, and are eliminated before completion of the

reduction. Their absence during the remainder of the reduction greatly reduces the operations

count. From the point of view of processing by columns, this can be viewed as symbolic cancella­

tion. This emphasizes that the ordering strategies are only heuristics, and need not produce order-

ings close to the optimum.

The following are some observations from Tables 5.2 through 5.6:

• Based on the first criterion, the three minimum degree column ordering variations are better

than the other strategies. So if storage is of primary concern, minimum degree column order­

ing should be used.

91

Table 5.5 Problem 4

column ordering r o w o r d e r i n g

natural minimum min. pivot
order row count row fill

2648 2648 2648
natural order 3836 6392 5334

41082 94882 66147

1724 1680 1844
min. column count 2700 3820 3280
(first tied) 20668 35794 27168

1636 1660 1664
min. column count 2634 3426 3006
(last tied) 18931 29769 22935

1600 1600 1600
minimum degree 3196 4016 4356
(first tied) 24320 34290 37188

1568 1568 1568
minimum degree 2694 3520 3048
(last tied) 18493 28012 22392

1584 1588 1584
minimum degree 2604 3682 2880
(col. count tiebr.) 18212 30925 20656

The handling of ties in column ordering strategies has little effect on the first criterion.

The handling of ties in column ordering strategies can have a large effect on operation and

rotation counts.

With a few exceptions, the minimum pivotal row fill row ordering strategy performs better

than the minimum row count row ordering strategy.

Less structured problems (1, 2, and 5) benefit more from a row ordering strategy than do

more structured problems.

92

Table 5.6 Problem 5

column ordering r o w o r d e r i n g

natural minimum min. pivot
order row count row fill

6794 6794 6794
natural order 8355 16533 13941

212687 482035 392239

2504 2660 2676
min. column count 3680 3370 3013
(first tied) 41655 34758 29423

2547 3095 2899
min. column count 3720 3596 3268
(last tied) 40845 39978 32799

1591 1591 1591
minimum degree 3890 4694 2693
(first tied) 29830 37521 17498

1631 1631 1631
minimum degree 4058 4575 2883
(last tied) 32405 37419 19824

1630 1630 1630
minimum degree 3682 4138 2596
(col. count tiebr.) 27868 32312 17112

• The minimum column count strategy performs well on the random matrices in terms of rota­

tion and operation counts at the expense of a few extra nonzeros in R. When column

count is used as tiebreaking for minimum degree on the random matrices, rotation and opera­

t ion counts a re reduced wi thout adding nonzeros to R.

Only the first two observations are not problem dependent, although it may be that other

types of test problems could lead to different conclusions. Perhaps one of the most useful applica­

tions of the symbolic algorithm would be to consider a much larger and broader set of test prob­

93

lems, and determine which strategies work best on which classes of problems. The five test prob­

lems considered here are a small step in that direction.

5.3 Implementation of an Updating Algorithm

The updating algorithm of Section 3.1 performs matrix operations, where only matrices R

and T are stored in sparse storage mode, and all other matrices are in full storage mode. For

the purpose of testing, the algorithm was programmed in the APL programming language. This

programming language naturally lends itself to matrix operations, and facilitates easy implementa­

tion of the algorithm. Since the test problems used were not very large, both R and T were

also used in full storage mode, thus eliminating special handling required for sparse storage mode.

Of course, this APL program is only for testing purposes, and in time a FORTRAN version should

be programmed.

Algorithm 3.1.1 is presented with the assumption, that every time a factorization is done, the

leading rows of the matrix are linearly independent. This eliminates the need to clutter the presen­

tation with permutation matrices, thus giving a clearer picture of of the basic algorithm. However,

these permutation matrices must be included in the computer implementation, since this assumption

generally does not hold. Producing the correct permutations is not a trivial matter, but APL pro­

vides an easy facility for performing these.

Because the APL programs are quite concise, they are included and documented in this sec­

tion. All factorizations are performed using Householder orthogonal transformations with pivoting

for stability. The APL function HHT performs this factorization, and returns the factors as well as

the permutations used to obtain them. This function is used by the function UPDATE which com­

putes the initial solution to a least squares problem, updates it by additional rows, and then com­

putes also a complete solution directly for comparison. Both APL functions follow.

94

V VR*-HHT VX;K;T;P;J ; I ;Ql ,M;N;S ;V . Ql ;R(W;RK
[J] Q ORTHOGONAL FACTORIZATION BY HOUSEHOLDER TRANSFORMATIONS

WITH PIVOTING FOR STABILITY
2] 0 INPUT MATRIX: VX
3] Q OUTPUT: TRIANGULAR FACTOR - KR

'4] 0 RANK DEFFICIENCY FACTOR - VT
S] a COLUMN PERMUTATION FOR VR - COLS
6 0 COLUMN PERMUTATION FOR VT - CC
7 0 ROT PERMUTATION - ROIFS
8 VR^VX
9] R0irs*-0?0
1 0] N<-npVR
n] RCW'r-NpJ^ l
12] VQ<-I*- (N,N)p l ,NfO
13] V ^ (PV R) PCOLS*-(P*-(- l) rpVR)pO
14] 11 : -^L2 ' ' \T0L>Mi- \ IT<-ROfF* . 'VR 'VR
15] S*-(T* . 'T<-ROIF' 'VR[;COLS[j]*-T\M])*0 . 5
16] RK*-K^(\T) \M'^ \ / \T
17] ROF[RK]4-0
1 8] R O n r S D R O I T S , M
19] V[ROff/\N;j]^(ROff/T)^ (2-4^T[K]<0)'S-V\K;J]^(Q . 5-l*M^S)*0 .S
2 0] 0 1 - / - [^ [. J] . . x 2 . F [; /]
2 1] VQ*-(N,N)pQl* . ' 'VQ
2 2] V R ^ (N , P) PO I * . ' ' V R
23] -^Ll'lPyj*-!*!

' ' 24] L2:CC*- t .P
' 2 5] C O L S ^ (C O L S > 0) / C O L S
[2 6 C C [C O L S] ^ (p C O L S) p O
[27] CC*-(COO) /CC
[2a] VT*-VR\ROIFS ;CC]
[29] VR*-VR[ROIfS ;COLS]

u UPDATE;UR;K;UU:US ;M;T;CC;Q ;H,W;G:F;D2;D2I;D1;U;S;R2;Bl ;VT;V
Q ;COLS :R01PS ;COL I ;CCl :CC2 ;L

[1] 0 INPUT: MATRICES X AND E , AND VECTORS Y AA'D Z
[2] 0 OUTPUT: SOLUTION VECTOR B OBTAINED THROUGH UPDATE
[5] 0 SOLUTION VECTOR BC OBTAINED DIRECTLY
[<] 0 NUMBERS ON RIGHT REFER TO STEPS OF AWORITm
[S] P«-C- I ; îpî

[6] R«-1ÎpUR<^HHT X A 1
[7] T^VT a 1
[a] B<-P PO Q 2
[9] B[C0L1]*-Bl^ (VQ[ROSfS ;]* . -Y)WR 0 2

1 0 R2*-Z-E[,COtl<-COIS]+. 'B l a 3
1 1 (- 1 j r p K ^ f %E[:COL 1])E (WR) a 4
12 Hi-E[;CCl^CC]- (I^K)* . -T 0 5
13 L^kHHT K,[l] (Q,Q)pl ,QpQ Q 6
1 4 UU^i \VQ[RO^S ; \R] 0 6

95

[1 5] U S ' - H ^ C C 2 i - C 0 L S ;] B L
i ô] W<^R2[CC2]BL
1 7] U S < - H H T U S
j g] G * - (p R (W S) p V Q [R (W S ;] * . ' W
19] D2l^EUS

' 2 0] D 2 < - (P - R) p O
2 1] D 2 [C 0 L S] ^ D 2 l
2 2] S ' - (R 2 [C C 2] - H [C C 2 ;] * . ' D 2) B L

'23] U'<IU*. ' 'S
2 4] F < 4 J B U R
2 5] M*-TEUR

[2 6] Dl^F-M*.'D2
[2 7] B [C O L i] « - B [C O L J] + D i
[2 8 B [C C L] < ^ D 2
[2 9 BC<-P PO
[3 0 B C [C O L S] * - (V Q l R (W S :] * . ' Y . Z j m H T X, [1]E

Q 7
0 7
a 8
Q 8
a 9

Q 1 0

a 11
a 12
a 13
fl 14
a 15
a 15
a DIRECT
a SOLUTION

The program was run under UNIX APL\11 on the VAX 11 /780 computer. This version of

APL performs all calculations in double precision. Several test problems were artificially gen­

erated, and solved by the program. The solution by updating and a direct solution had a maximum

relative difference of 10"'^ Although these generated problems were small, and probably well

conditioned, this shows that the algorithm has promise. More thorough testing should be done with

known ill-conditioned problems, using a FORTRAN version of the algorithm.

Algorithm 3.2.1 was not implemented at this time. Its behavior is expected to be similar to

Algorithm 3.1.1. It is in fact this more general algorithm, which should be programmed in FOR­

TRAN, and subjected to thorough testing.

96

6. BIBLIOGRAPHY

Bjorck, Âke. 1976. Methods for sparse linear least squares problems. Pp.177-199 in Sparse
Matrix Computations. J. R. Bunch and D. J. Rose, eds. Academic Press, New York.

Bjorck, Âke and Duff, Iain S. 1980. A direct method for the solution of sparse linear least squares
problems. Linear Algebra and Its Applications 34:43-67.

Duff, Iain S. 1974. Pivot selection and row ordering in Givens reduction on sparse matrices.
Computing 13:239-248.

Duff, Iain S. 1983. Direct methods for solving sparse systems of linear equations. AERE Report
CSS 131. (Computer Science and Systems Division, A.E.R.E., Harwell, England)

Duff, Iain S. and Reid, J. K. 1976. A comparison of some methods for the solution of sparse over-
determined systems of linear equations. Journal of the Institute of Mathematics and its
Applications 17:267-280.

Eisenstat, S. C. 1983. Iterative methods for solving large sparse linear systems. Invited paper at
Sparse Matrix Symposium 1982, Fairfield Glade, Tennessee, October 24-27, 1982.

Gentleman, W. Morven. 1973. Least squares computations by Givens transformations without
square roots. Journal of the Institute of Mathematics and Its Applications 12:329-336.

George, J. Alan and Heath, Michael T. 1980. Solution of sparse least squares problems using
Givens rotations. Linear Algebra and Its Applications 34:69-83.

George, J. Alan and Liu, Joseph W. H. 198:. Computer Solution of Large Sparse Positive

Definite Systems. Prentice-Hall, Englewood Cliffs, New Jersey. 324pp.

George, J. Alan, Heath, Michael T. and Ng, Esmond. 1983. A Comparison of some methods for
solving sparse linear least-squares problems. SIAM Journal of Scientific and Statistical Com­
puting 4(2): 177-187.

George, J. Alan, Heath, Michael T. and Plemmons, Robert J. 1981. Solution of large-scale least
squares problems using auxilliary storage. SIAM Journal of Scientific and Statistical Com­
puting 2(4):416-429.

George, J. Alan, Liu, Joseph W. H., and Ng, Esmond. 1980. User's Guide for SPARSPAK:
Waterloo sparse linear equations package. Research Report CS-78-30 (revised). Department
of Computer Science, University of Waterloo, Waterloo, Ontario, Canada.

Goodnight, James H. 1978. Tests of hypothesis in fixed effects linear models. SAS Technical
Report R-101. SAS Institute Inc., Cary, North Carolina.

97

Heath, Michael T. 1982. Some extentions of an algorithm for sparse linear least squares prob­
lems. SIAM Journal of Scientific and Statistical Computing 3(2):223-237.

Heath, Michael T. 1983. Numerical methods for large sparse linear least squares problems.
Technical Report ORNL/CSD-114. Union Carbide Corp., Oak Ridge, Tennessee.

Hocking, R. R. and Speed, F. M. 1975. A full rank analysis of some linear model problems.
Journal of the American Statistical Association 70(351):706-712.

Hocking, R, R., Speed, F. M. and Coleman, A. T. 1980. Hypotheses to be tested with unbalanced
data. Communications in Statistics - Theory and Methods A9(2):117-129.

Kennedy, William J., Jr. and Gentle James E. 1980. Statistical Computing. Marcel Dekker, New
York. 591pp.

Knuth, D. E. 1968. The Art of Computer Programming, Vol. 1: Algorithms and Data Structures.
Addison-Wesley, Reading, Mass.

Kolata, G. B. 1978. Geodesy: Dealing with an enormous computer task. Science 200:421-422.

Lawson, C. L. and Hanson, R. J. 1974. Solving Least Squares Problems. Prentice-Hall, Engle-
wood Cliffs, New Jersey.

Markowitz, Harry M. 1957. The elimination form of the inverse and its application to linear pro­
gramming. Management Science 3:255-269.

Parter, S. V. 1961. The use of linear graphs in Gauss elimination. SIAM Review 3:119-130.

Peters, G. and Wilkinson, J. H. 1970. The least squares problem and pseudo-inverses. The Com­
puter Journal 13(3):309-316.

Rose, Donald J. 1972. A graph-theoretic study of the numerical solution of sparse positive definite
systems of linear equations. Pp. 183-217 in Graph Theory and Computing. R. C. Read, ed.
Academic Press, New York.

Tewarson, Reginald P. 1973. Sparse Matrices. Academic Press, New York. 160pp.

Tinney, W. F. 1969. Comments on using sparsity techniques for power system problems. Sparse
Matrix Proceedings, IBM Research Report, RAI 3-12-69.

Yates, F. 1934. The analysis of multiple classifications with unequal numbers in different
classes. Journal of the American Statistical Assocation 29:51-66.

98

7. APPENDIX A

7.1 The Symbolic Givens Reduction FORTRAN Program

INTEGER RADJdOOO) ,ADJNCY(3000) , PARENT(1 000) ,CHILD(1 000) ,

+ SIBLNG(IOOO),NONZER(1000),RFAC(300),FACADJ{6000),

+ WRKROWOOO) ,W0HKR1 (1 000) , RSTAC(1 000) ,WRK2(300) ,
+ DEGREE(300),CNONZ(300),CORDER(300),CLIST(300) ,

+ RORDER(300),RSTAT(1000),SUPERN(1000),W0RKR2(1000),

+ RROH(300),W0RKZ1(3000),W0RKZ2(3 000)

INTEGER PFAC,TITLE(20),CSTRAT,RSTRAT

INTEGER NROW,NCOL,NNZER,NMOD,NROWP1,NRZER,IPRINT,NOPER,MINOR
C
C (RADJ,ADJNCY) - INPUT ROW ADJACENCY STRUCTURE OF THE MATRIX X

C (PARENT,CHILD,SIBLNG) - FOREST STRUCTURE T

C NONZER - NUMBER OF NONZEROS IN EACH ROW

C (RCFAC,FACADJ) - OUTPUT ROW ADJACENCY STRUCTURE OF R FACTOR

C DEGREE - DEGREE OF EACH COLUMN

C CNONZ - NUMBER OF NONZEROS IN EACH COLUMN

C CORDER,CLIST,RORDER - KEEP TRACK OF COLUMN ORDER

C SUPERN - VECTOR TO LINK NODES IN SUPERNODES

C RSTAT - ROW STATUS 0 - IN UNREDUCED PORTION

C 1 - IN R, BUT CONTRIBUTING TO UNRED. PORTION

C 2 - IN R, AND NOT CONTRIB. TO UNRED. PORTION

C RROW - KEPPS TRACK OF PIVOT ROWS

C W0RKZ1,W0RKZ2 - WORK VECTORS FOR READING A MATRIX IN I-J FORMAT

C WRKR0W,WRK2 - WORK VECTORS FOR CURRENT ROW STRUCTURE

C W0RKR1,W0RKR2 - WORK VECTORS FOR ROW INDICES

C NROW - NUMBER OF ROWS IN X

C NCOL - NUMBER OF COLUMNS IN X

C NNZER - NUMBER OF NONZEROS IN X

C IPRINT - REGULATES AMOUNT OP OUTPUT -3 GIVES MINIMAL OUTPUT

C 2 GIVES MAXIMAL OUTPUT

C (SEE SUBROUTINE REDUCE FOR MEANING OF INDIVIDUAL VALUES)

C NMOD - USED IN CONJUNCTION WITH IPRINT>-1, OUTPUTS NONZERO STRUCT

C EVERY NMOD MAJOR STEPS

C NOPER - COUNTS OPERATIONS

C MINOR - COUNTS GIVENS ROTATIONS

C NRZER - COUNTS NONZEROS IN R

C CSTRAT - COLUMN STRATEGY (SEE SUBROUTINE REDUCE FOR VALUES)

C RSTRAT - ROW STRATEGY (SEE SUBROUTINE GETNOD FOR VALUES)

C

COMMON /lO/ NOUT,MOUT,INX,IOUT

NOUT = 10
MOUT = 6

lOUT = 8

INX = 5

99

PFAC = 1

MINOR = 0

NOPER = 0

READdNX, 102) TITLE

HRITE(IOUT,20 3) TITLE

READ(INX,101) IPRINT,IREP,NMOD,CSTRAT,RSTRAT

CALL GETMAT(NROW,NCOL,NNZER,RADJ,ADJNCY,NONZER,W0RKR1,W0RKZ1,

+ W0RKZ2,TITLE)

WRITE(lOUT,204) NROW,NCOL,NNZER,IPRINT,IREP,NMOD,CSTRAT,RSTRAT

NR0WP1 = NROW + 1

NRZER = NCOL * (NCOL+1) / 2

CALL SETUP(NROW,NCOL,NNZER,NROWP1,PARENT,CHILD,SIBLNG,RSTAT,

+ SUPERN,WRKROW,WRK2,RADJ,ADJNCY,WORKR1,W0RKR2,RSTAC,

+ NONZER,CNONZ,DEGREE,RORDER,CORDER,CLIST,IPRINT)

COMPUTE NUMBER OF NONZEROS IN HALF OF X'X

NZXX = 0

DO 10 I = 1,NC0L

NZXX = NZXX + DBGREE(I)

10 CONTINUE

NZXX = NZXX / 2

CALL REDUCE(NROW,NCOL,NNZER,NROWP1,PARENT,CHILD,SIBLNG,RSTAT,

+ SUPERN,WRKROW,WRK2,RADJ,ADJNCY,WORKR1,W0RKR2,RSTAC,

+ NONZER,CNONZ,DEGREE,RORDER,CORDER,CLIST,IPRINT,CSTRAT,

+ NOPER,MINOR,RFAC,FACADJ,RROW,PFAC,NRZER,RSTRAT,NMOD,

+ IREP)

PFAC = PFAC - 1

WRITE(IOUT,201) NNZER,NZXX,PFAC,MINOR,NOPER

STOP

101 FORMAT(20I4)

102 FORMAT(20A4)

201 FORMAT('1','ORIGINAL MATRIX: ',18,' NONZEROS'/IX,

+ 'HALF OF X''X; ',18,' NONZEROS'/IX,

+ 'RFACTOR: ',18,' NONZEROS'/IX,

+ 'TOTAL OP ',18,' GIVENS ROTATIONS'/IX,

+ 'TOTAL OF ',18,' OPERATIONS')

203 FORMAT(1X,20A4)

204 FORMAT(IX,'ROWS = ',15,' COLUMNS = ',15,' NONZEROS = ',I6/1X,

+ ' IPRINT = ',12,' IREP = ',12,' NMOD = ',15,

+ ' COLUMN STRATEGY = ',12,' ROW STRATEGY = ',12)

END

100

SUBROUTINE ADD(IT,ARRAY,LEN,POINT)

cc

cc
INTEGER POINT,IT,LEN

INTEGER ARRAY(LEN)

C

POINT = POINT + 1

ARRAY(POINT) = IT

RETURN

END

SUBROUTINE ADJUST(WRKROW,RADJ,ADJNCY,SUPERN,NR0WP1,NROW,NCOL,

f NNZER.ROOT)

cc
c c
C ADJUST ADJUSTS SUPERNODE CONTAINING ROOT FOR ALL COLUMNS C

C IN WRKROW, THEN ADJUSTS WORKROW FOR SUBTREE OP ROOT. C

C ALSO UPDATES NONZER OF NODE ROOT. C

C C

CC

INTEGER NCOL,NROWP1,NNZER,ROOT,START,STOP

INTEGER WRKROW(NCOL),RADJ(NROWP1),ADJNCY(NNZER),SUPERN(NROW)

C

MROW = ROOT

10 CONTINUE

START = RADJ(MROW)

STOP = RADJ(MH0W+1)-1

DO 100 J = START,STOP

ICOL = ADJNCY(J)

IFdCOL .LE. 0)GO TO 100

IF(WRKROW(ICOL) .EQ. OGO TO 100

ADJNCY(J) = -ICOL

100 CONTINUE

MROW = SUPERN(MROW)

IP(MROW .GT. 0)GO TO 10

C

C

C

ADD ADDS IT TO END OP ARRAY

C

C

C

C

C ADJUST ROOT SUPERNODE FOR WORKROW

C

RETURN

END

101

INTEGER FUNCTION ANCSTR(NODE,PARENT,RSTAT,NEOW)
cc
c c
C ANCSTR FINDS THE NEXT LIVING (NOT ELIMINATED) ANCESTOR OF NODE. C

C IF NODE IS LIVING, RETURNS NODE. C

C IF NO LIVING ANCESTOR, RETURNS ZERO. C

C C

CC

INTEGER PARENT(NROH),RSTAT(NROW)
C

ANCSTR = NODE

C

10 CONTINUE

IF(ANCSTR .EQ. 0)RETURN

IF(RSTAT(ANCSTR) .EQ. 0)RETURN

ANCSTR = PARENT(ANCSTR)

GO TO 10
C

END
INTEGER FUNCTION CFIND(COL,ROW,RADJ,ADJNCY,NROW,NR0WP1,NNZER)

CC

c c
C CFIND CHECKS ROW FOR COL. RETURNS INDEX IN ADJNCY IF FOUND, C

C RETURNS ZERO OTHERWISE. C

C C

CC

INTEGER COL,ROW,START,STOP

INTEGER RA0J(NR0WP1).ADJNCY(NNZER)

C

START = RADJ(ROW)

STOP = RADJ(R0W+1)-1

C

DO 100 I = START,STOP

IF(ADJNCY(I) .EQ. CODGO TO 200

100 CONTINUE

C

1 = 0

200 CONTINUE

CFIND = I

RETURN

END

INTEGER FUNCTION CKCHLD(NEWNOD,CHILD,SIBLNG,SUPERN,RSTAT,

+ W0RKR2,NR0W)

CC

c c
C CKCHLD RETURNS 0 IP NO CHILDREN OF NEWNOD SUPERNODE ARE MARKED C

C IN W0RKR2. RETURNS 1 OTHERWISE. C

C C

CC

102

C

c

c

INTEGER CHILD(NROW),SIBLNG(NROW),W0RKR2(NROW),SUPERN(NROW),

+ RSTAT(NROW)

INTEGER CLD

CKCHLD = 0

NOD = NEWNOD

10 CONTINUE

CLD = CHILD(NOD)

C

20 CONTINUE

IF(CLD .EQ. 0)GO TO 30

IF(RSTAT(CLD) .EQ. 0 .AND. W0RKR2(CLD) .EQ. 1)G0 TO 40

CLD = SIBLNG(CLD)

GO TO 20

C

3 0 CONTINUE

NOD = SUPERN(NOD)

IP(NOD .GT. 0)GO TO 10
RETURN

C

40 CONTINUE

CKCHLD = 1

RETURN

END

SUBROUTINE CNZUD(WRKROW,CNONZ,W0RKR1,W0RKH2,RADJ,RSTAT,ADJNCY,

+ PARENT,CHILD,SIBLNG.NROWPI,NR0W,NNZER,NCOL)

CC

c c
C CNZUD UPDATES NONZERO COUNTS FOR COLUMNS MARKED IN WRKROW C

C C

CC

INTEGER COLNZ

INTEGER WRKROW(NCOL),CNONZ(NCOL),WORKR1(NROW),W0RKR2(NROW),

+ RADJ(NROWP1),ADJNCY(NNZER),PARENT(NROW),

+ CHILD(NROW),SIBLNG(NROW).RSTAT(NROW)

C

C

C

DO 100 I = 1,NCOL

IF(WRKROW(I) .EQ. 0)GO TO 100

CNZ = COLNZ(I,W0RKR1,W0RKR2,RADJ,RSTAT,ADJNCY,PARENT,CHILD,

+ SIBLNG,NROW,NROWP1,NNZER)

IFCCNZ .EQ. 0)CNZ = NROW + 1

CNONZ(I) = CNZ

C

100 CONTINUE

C

RETURN

END

103

INTEGER FUNCTION C0LN2(DCOL,W0RKR1,W0RKR2,RADJ,RSTAT,ADJNCY,
+ PARENT,CHILD,SIBLNG,NR0H,NR0HP1,NNZER)

cc
c c
C COLNZ RETURNS NUMBER OF NONZEROS IN COLUMN DCOL C
C C
CC

INTEGER DCOL,ANCSTR,CFIND,CROW
INTEGER W0RKR1(NROW),W0RKR2(NROW),RADJ(NROWP1),ADJNCY(NNZER),

+ PARENT(NROW).CHILD(NROW),SIBLNG(NROW),RSTAT(NROW)
C

C

C

c

COLNZ = 0

CALL INIT(WORKR2,NROW,0)

DO 100 IROW = I.NROW

IP(W0RKR2(IR0W) .EQ. 1)GO TO 100

IF(RSTAT(IROW) .GT. 1)G0 TO 100

I = CFIND(DCOL,IROW,RADJ,ADJNCY,NROW,NROWP1,NNZER)

IF(I .EQ. 0)GO TO 100

CROW = ANCSTR(IROW,PARENT,RSTAT,NROW)

IF(CROW .EQ. 0)GO TO 100

COLNZ = COLNZ + 1

CALL GETUNL(CROW,PARENT,WORKR 2,WORKR1,NWR1,NROW)

IF(NWR1 .EQ. 0)GO TO 60
C

DO 50 L = 1,NWR1

JROW = WORKR1(L)

W0RKR2(JROW) = 1

IF(RSTAT(JROW) .EQ. 0)COLNZ = COLNZ + 1

5 0 CONTINUE

C

60 CONTINUE

CALL FAN(CHILD,SIBLNG,CROW,WORKR1,NWR1,NROW)
CALL MARKIT(WORKR2,NROW,WORKR1,NROW,NWR1,1)

C

100 CONTINUE

C

RETURN

END

SUBROUTINE CUTREE(PARENT,CHILD,SIBLNG,NROW,ROOT)

CC

C C

C CUTREE SEPARATES A SUBTREE ROOTED AT NODE ROOT C

C C

CC

INTEGER ROOT

INTEGER PARENT(NROW),CHILD(NROW),SIBLNG(NROW)

104

INTEGER PAR.SIB.CHLD

C

PAR = PARENT(ROOT)

IF(PAR .EQ. 0)RETURN

SIB = SIBLNG(ROOT)

CHLD = CHILD(PAR)

PARENT(ROOT) = 0

IF(CHLD .NE. ROOT)GO TO 100

C

C DIRECT CHILD

CHILD(PAR) = SIB

SIBLNG(ROOT) = 0

RETURN

C

100 CONTINUE

C CHILD IN SIBLING CHAIN

C

C PASS OVER SIBLINGS

LCHILD = CHLD

CHLD = SIBLNG(LCHILD)

IF(CHLD NE. ROOT)GO TO 100

C

C REMOVE ROOT FROM SIBLING CHAIN

SIBLNG(LCHILD) = SIBLNG(ROOT)

SIBLNG(ROOT) = 0

RETURN

C

END

SUBROUTINE DEGUD(RADJ,RSTAT,ADJNCY,PARENT,CHILD,SIBLNG,WRKROW,

+ WRK2,W0RKR1,W0RKR2,DEGREE,NCOL,NROW,

+ NR0WP1,NNZER)

CC

c c
C DEGUD DEGREE UPDATE C

C UPDATES DEGREE OF ALL COLUMNS IN WRKROW C

C C

CC

INTEGER RADJ(NROWP1),ADJNCY(NNZER),PARENT(NROW),WRK2(NCOL),

+ CHILD(NROW),SIBLNG(NROW),WRKROW(NCOL),DEGREE(NCOL),

+ W0RKR1(NROW),RSTAT(NROW),W0RKR2(NROW)

C

INTEGER NEWDEG

C

DO 100 I = 1.NCOL

C

IF(WRKR0W(I) .EQ. 0)GO TO 100

DEG = NEWDEG(I,RADJ,RSTAT,ADJNCY,PARENT,CHILD,SIBLNG,WRK2,

+ W0RKR1,W0RKR2,NCOL,NROW,NROWP1,NNZER)

105

IFIDEG .LT. 0)DBG = NCOL

DEGREE(I) = DEG

C

100 CONTINUE

C

RETURN

END

SUBROUTINE DISCON(PROW,SUPERN,CHILD,SIBLNG,PARENT,RSTAT,NROW)

CC

C c
C DISCON DISMANTLES A SUPERNODE AND MARKS ALL ITS NODES WITH C

C RSTAT=2, MEANING THAT THESE NODES NO LONGER C

C CONTRIBUTE TO THE BIGRAPH. C

C C

CC

INTEGER PROW,XNODE,CNODE

INTEGER SUPERN(NROW),CHILD(NROW),SIBLNG(NROW),PARENT(NROW),

+ RSTAT(NROW)

C

XNODE = PROW

C

100 CONTINUE
CNODE = CHILD(XNODE)
IF(CNODE .EQ. 0)GO TO 300

C

20 0 CONTINUE

CALL CUTREE(PARENT.CHILD,SIBLNG,NROW,CNODE)

CNODE = CHILD(XNODE)

IF(CNODE .GT. 0)GO TO 200

C
300 CONTINUE

RSTAT(XNODE) = 2

XNODE = SUPERN(XNODE)

IF(XNODE .GT. 0)GO TO 100

C

RETURN

END
SUBROUTINE EXTRA(WRKROW,RADJ.ADJNCY,NEXTRA,NROWPl,NROW,NCOL,

+ HORKRI,NWR1,NNZER)

CC

c c
C EXTRA COUNTS NUMBER OF DISTINCT NONZERO COLUMNS IN ALL C

C NODES IN ARRAY WORKRI WHICH ARE NOT RECORDED IN WRKROW. C

C THE COUNT IS STORED IN NEXTRA. WRKROW IS THEN UPDATED FOR C

C THESE COLUMNS. C

C C

CC

INTEGER WRKROW(NCOL),RADJ(NROWP1),ADJNCY(NNZER),WORKR1(NROW)

INTEGER START,STOP

C

106

NEXTRA = 0

DO 100 I = 1,HWR1

IROW = WORKRKI)

START = RADJ(IROW)

STOP = RADJ(IR0W+1)•

50

DO 50 J = START,STOP

JCOL = ADJNCY(J)

IF(JCOL .LE. 0)GO TO

IF(WRKROW(JCOL) .GT.

NEXTRA = NEXTRA +

WRKROW(JCOL) = 1

CONTINUE

50

0)GO TO 50

100 CONTINUE

C

RETURN

END

SUBROUTINE FAM(CHILD,SIBLNG,IROW,W0RKR1,NWR1,NROW)

CC

c
F AM - PREORDER TRAVERSAL OP SUBTREE (USING ITS BINARY TREE

REP) STARTING AT NODE IROW. COLLECTS ALL NODES IN SUBTREE

INTO ARRAY W0RKR1.

C

C

C

C

C

CC

INTEGER IROW.NWRI

INTEGER CHILD(NROW),SIBLNG(NROW),W0RKR1(NROW)

C NOTE: RSTAC MUST BE DIMENSIONED AT LEAST NROW/2

INTEGER T,LT,PSTACK,RSTAC(100)

C

LT = IROW

PSTACK = 0

NWR1 = 1

WORKRKI) = IROW

5 0 CONTINUE

T = CHILD(LT)

IF(T .GT. 0)GO TO 100

IF(PSTACK .EQ. 0)RETURN

T = RSTAC(PSTACK)

PSTACK = PSTACK - 1

100 CONTINUE

CALL ADD(T,WORKR1,NROW,NWR1)

LT = T

107

T = SIBLNG(LT)

IP(T .GT. 0)CALL ADD(T,RSTAC,50,PSTACK)

GO TO 50

C

END

INTEGER FUNCTION FROOT<ROW,PARENT,NROW)

cc
C c
C RETURNS ROOT OF TREE CONTAINING ROW C

C C

cc
INTEGER ROW,PARENT(NROW)

c
NEXT = ROW

C

10 CONTINUE

FROOT = NEXT

NEXT = PARENT(FROOT)

IP(NEXT .NE. 0)GO TO 10

C

RETURN

END

SUBROUTINE GETMAT(NROW,NCOL,NNZER,RADJ,ADJNCY,NONZER,W0RKR1,

+ W0RKZ1,W0RKZ2,TITLE)

CC

C C

C GETMAT GETS A MATRIX TO BE REDUCED C

C C

CC

INTEGER RADJ(1),ADJNCY(1),NONZER(1),PROBL,W0RKR1(1),

+ WORKZI(1),W0RKZ2(1),TITLE(20)

COMMON /lO/ NOUT,MOUT,INX,IOUT

C

C HERE BELONGS USER SUPPLIED CODE TO READ IN OR GENERATE THE

C NONZERO STRUCTURE OP A MATRIX IN ROW ADJACENCY FORM.

C ADJNCY SHOULD CONTAIN A LIST OF COLUMN INDICES, AND RADJ

C SHOULD CONTAIN POINTERS TO FIRST ENTRY OP EACH ROW IN ADJNCY.

C RADJ(NR0W+1) MUST EQUAL NNZER+1.

C

RETURN

END

108

INTEGER FUNCTION GETNOD(RSTAC,PSTAC,NONZER,PARENT,CHILD,SIBLNG,

+ SUPERN,W0RKR2,NROW,RSTAT,RSTRAT,WRKROW,

+ WRK2,NCOL,WORKR1,RADJ,NROWP1,ADJNCY,

+ NNZER,NEWEND)

CC

c c
C GETNOD RETURNS THE NEXT NODE TO BE ORDERED, AND REPLACES C

C IT IN RSTAC BY ITS PARENT. C

C C

CC

INTEGER PSTAC,ANCSTR,RSTRAT,CKCHLD

INTEGER RSTAC(NROW),NONZER(NROW),PARENT(NROW),CHILD(NROW),

+ SIBLNG(NROW),RSTAT(NROW),W0RKR2(NROW),SUPERN(NROW),

+ WRKROW(NCOL),WRK2(NCOL),WORKR1(NROW),RADJ(NROWP1),

+ ADJNCY(NNZER)

C

NODIND = 1

IF(PSTAC .EQ. 1)G0 TO 100

C

GOTO (10,20,30).RSTRAT

C

10 CONTINUE

C NATURAL ORDER (SMALLEST INDEX)

NODIND = MININD(RSTAC.PSTAC.NROW)

GO TO 100

C

20 CONTINUE

C LEAST NONZEROS (FIRST TIED)

NODIND = MINRF(RSTAC.PSTAC,NONZER,NROW)

GO TO 100

C

30 CONTINUE

C LEAST PIVOTAL ROW FILL

NODIND = MPFILL(RSTAC,PSTAC,WRKROW,WRK2,WORKR1,NROW,NCOL,NONZER,

+ CHILD,SIBLNG,RADJ,NROWP1.ADJNCY,NNZER)

C

100 CONTINUE

GETNOD = RSTAC(NODIND)

NEWNOD = ANCSTR(PARENT(GETNOD),PARENT,RSTAT,NROW)

RSTAC(NODIND) = NEWNOD

W0RKR2(GETNOD) = 0

IP(NEWNOD .EQ. 0)GO TO 200

C

C CHECK IF CHILDREN OF NEWNOD SUPERNODE ARE MARKED IN WORKR2 (IF MARK

C THEN NEWNOD HAS A DESCENDANT IN RSTAC, AND CANNOT GO INTO RSTAC)

IF(CKCHLD(NEWNOD,CHILD,SIBLNG,SUPERN,RSTAT,W0RKR2,NROW) .EQ. 0)

+ RETURN
200 CONTINUE

CALL REPACK(RSTAC,PSTAC,NODIND)

RETURN

END

109

SUBROUTINE GETUNL(IROW,LINK,MARK,W0RKR1,NWR1,NROW)

cc

cc
INTEGER LINK(NROW),W0RKR1(NROW),MARK(NROW)

C

NWR1 = 0

I = LINK(IROW)

IFtI .EQ. 0)RETURN

10 CONTINUE

NWR1 = NWR1 + 1

WORKRKNWRI) = I

I = LINK(I)

IF(I .EQ. 0)RETURN

IF(MARK(I) .EQ. 1)RETURN

GO TO 10

C

RETURN

END

SUBROUTINE INIT(LINE,N,SYMB)

cc
C c
C INIT INITIALIZES LINE TO SYMB C

c c
cc

INTEGER LINE(N),SYMB

DO 10 I = 1,N

LINE(I) = SYMB

10 CONTINUE

C

RETURN

END

SUBROUTINE JOIN(XNODE,JNODE,SUPERN,NROW)

CC

c c
C JOIN SUPERNODE XNODE BECOMES PART OF SUFERNODE JNODE C

C C

CC

INTEGER XNODE,JNODE,SUPERN(NROW)

AJ = JNODE

C

C FIND END OF JNODE CHAIN IN SUPERN

10 CONTINUE

LAJ = AJ

AJ = SUPERN(LAJ)

IF(AJ .GT. 0)GO TO 10

C

C

C

PUTS ALL UNMARKED NODES LINKED TO IROW INTO W0RKR1
C

C

C

C

C

110

c
c CONNECT JNODE LIST TO XNODE LIST

SUPERN(LAJ) = XNODE
C

RETURN

END

SUBROUTINE MAJOR(PCOL,RADJ,RSTAT,ADJNCY,PARENT,CHILD,SIBLNG,
+ SUPERN,NROW,NROWP1,NCOL,NONZER,WRKROW,WRK2 ,
+ NNZER,W0RKR1,W0RKR2,RSTAC,MINOR,NOPER,RSTRAT,
+ PROW.PSTAC)

CC
c c
c MAJOR PROCESSES A MAJOR STEP (A COLUMN) C
C C
CC

INTEGER NROW,NCOL,NNZER,NROWP1,MINOR,NOPER,NZCNT,NEWEND,NEXNOD
INTEGER RADJ(NROWP 1) , ADJNCY (NNZER) , PARENT (NROW), CHILD(NROW) ,
+ SIBLNG(NROW),NONZER(NROW),WRKROW(NCOL),WRK2(NC0L),
+ W0RKR1(NROW),W0RKR2(NROW),RSTAC(NROW),RSTAT(NROW),
+ SUPERN(NROW)
INTEGER PSTAC,PCOL,PROW,RSTRAT,GETNOD

C
C
C COUNTS # NONZEROS CURRENTLY IN PIVOT ROW

NZCNT = 0
C

C INITIALIZE WORKING ROW FOR ACCUMULATION OP PIVOT ROW STRUCTURE
CALL INIT(WRKROW,NCOL,0)

C
C FIND ALL ROWS INVOLVED IN THIS MAJOR STEP WHICH COMPETE
C FOR FIRST PLACE, AND DELETE PCOL FROM ALL ROWS

CALL RFIND(PCOL,RADJ,RSTAT,ADJNCY,PARENT,CHILD,SIBLNG,
+ NROW,NROWP1,NNZER,RSTAC,PSTAC,W0RKR1,W0RKR2)

C

C INITIALIZE ROOT OF TREE BEING CONSTRUCTED
NEWEND = 0

C
IF(PSTAC .GT. 0)GO TO 1

C NO ROW WITH PCOL FOUND (NOTHING TO BE DONE IN THIS MAJOR STEP)

PSTAC = -1

RETURN

C
C LOOP UNTIL ALL ROWS PROCESSED (UNTIL PSTAC = 0)

1 CONTINUE

C
C GET NEXT ROW NODE

NEXNOD = GETNOD(RSTAC,PSTAC,NONZER,PARENT,CHILD,SIBLNG,
+ SUPERN,W0RKR2,NROW,RSTAT,RSTRAT,WRKROW,
+ WRK2,NC0L,W0RKR1,RADJ,NROWP1,ADJNCY,NNZER,

4- NEWEND)

I l l

IFCNEWEND .EQ. 0)PROW = NEXNOD

CUT THE SUBTREE ROOTED AT NEXNOD FROM THE FOREST
CALL CUTREE(PARENT,CHILD,SIBLNG,NROW,NEXNOD)

IP(NEWEND .EQ. 0)GO TO 30
ADJUST SUPERNODE OF NEXNOD FOR WORKROW
CALL ADJUST(WRKROW,RADJ,ADJNCY,SUPERN,NROWP1,NROW,NCOL,NNZER,

NEXNOD)

IF(IFLAG2 .EQ. 0)GO TO 30
ADJUST PIVOT ROW SUPERNODE FOR SUBTREE OF SECOND ROW
CALL FAM(CHILD,SIBLNG,NEXNOD,W0RKR1,NWR1,NROW)
IF(NWR1 .EQ. 1)G0 TO 30
W0RKR1(1) = W0RKR1(NWR1)
NWR1 = NWR1 - 1
CALL INIT(WRK2,NCOL,0)
CALL EXTRA(WRK2,RADJ,ADJNCY,NEXTRA,NROWP1,NROW,NCOL,

WORKRI,NWR1,NNZER)
CALL ADJUST(WRK2,RADJ,ADJNCY,SUPERN,NROWP1,NROW,NCOL,

NNZER,PROW)

CONTINUE

ADJUST WORKROW FOR SUBTREE OF NEXNOD
CALL FAM(CHILD,SIBLNG,NEXNOD,W0RKR1,NWR1,NROW)
CALL EXTRA(WRKROW,RADJ,ADJNCY,NEXTRA,NROWP1,NROW,NCOL,WORKR1 ,

NWR1,NNZER)
UPDATE NONZERO COUNT FOR CURRENT ROW
N2CNT = NZCNT + NEXTRA
NONZER(NEXNOD) = NZCNT

IFLAG2 = 1

NOTE NEWEND = 0 ONLY WHEN
IFCNEWEND .EQ. 0)GO TO 40
LOWER SECOND ROW FLAG
IFLAG2 = 0
COUNT OPERATIONS

NOPER = NOPER + NZCNT +
COUNT ROTATIONS
MINOR = MINOR + 1

CONTINUE

CONNECT THE TREE OF NEXNOD TO THE NEW TREE OF NEWEND
CALL SETREE(PARENT,CHILD,SIBLNG,NROW,NEXNOD,NEWEND)

IF(PSTAC .GT. 0)GO TO 1

RETURN
END

PROCESSING PIVOT ROW

1

112

SUBROUTINE MAHKIT(IT, LEN1 , POS , I.EN2 ,NUM, SYMB)
cc
c c
C MARKS POSITIONS POS OF IT BY SYMB C
C C
cc

INTEGER IT (LEND , POS (I.EN2) , SYMB
C

IF(NUM .EQ. 0)RETURN
C

DO 10 I = 1,NUM
IT(POS(I)) = SYMB

10 CONTINUE
C

RETURN
END
INTEGER FUNCTION MINDEG(DEGREE,CNONZ,NCOL)

CC
C c
c MINDEG FINDS UNPROCESSED COLUMN OF MINIMUM DEGREE. C
C TIEBREAKING DONE WITH # OF NONZEROS IN A COLUMN. C
C C
CC

INTEGER DEGREE(NCOL),CNONZ(NCOL)
C

MINDEG = 1
MIN = DEGREE(1)
MINNZ = CNONZ(1)

C
DO 50 I = 2,NCOL

C
DEG = DEGRBE(I)
IFCDEG .GT. MIN)GO TO 50
IFCDEG .EQ. MIN)GO TO «0
MINDEG = I
MIN = DEG
MINNZ = CNONZ(I)

GO TO 50
40 CONTINUE

NZ = CNONZ(I)

IF(NZ .GE. MINNZ)GO TO 50
MINDEG = I
MINNZ = NZ

C
50 CONTINUE

C
C SET DEGREE TO NCOL (LARGEST POSSIBLE DEGREE IS NCOL-1)

DEGREE(MINDEG) = NCOL

RETURN
END

113

INTEGER FUNCTION MINDG1(DEGREE,NCOL)

cc
c c
C MINDG1 FINDS UNPROCESSED COLUMN OF MINIMUM DEGREE. C
C FIRST TIED COLUMN IS TAKEN. C
C C
CC

INTEGER DEGREE(NCOL)
C

MINDG1 = 1
MIN = DEGREE(1)

C
DO 50 I = 2,NCOL

C

DEG = DEGREE(I)
IFCDEG .GE. MIN)GO TO 50

MINDG1 = I
MIN = DEG

C

50 CONTINUE
C
C SET DEGREE TO NCOL (LARGEST POSSIBLE DEGREE IS NCOL-1)

DEGREE(MINDG1) = NCOL
C

RETURN
END
INTEGER FUNCTION MINDG2(DEGREE,NCOL)

CC
c c
c MINDG2 FINDS UNPROCESSED COLUMN OF MINIMUM DEGREE. C
C LAST TIED COLUMN IS TAKEN. C
C C
CC

INTEGER DEGREE(NCOL)
C

MINDG2 = 1
MIN = DEGREE(1)

C
DO 50 I = 2,NCOL

C
DEG = DEGREE(I)
IF(DEG .GT. MIN)GO TO 50
MINDG2 = I
MIN = DEG

C
50 CONTINUE

C
C SET DEGREE TO NCOL (LARGEST POSSIBLE DEGREE IS NCOL-1)

DEGREE(MINDG2) = NCOL
RETURN
END

114

INTEGER FUNCTION MININD(RSTAC,PSTAC,NROW)

cc
c c
C MININD RETURNS INDEX IN RSTAC OF SMALLEST ROW NUMBER C
C C
CC
C

INTEGER RSTAC(NROW),PSTAC
C

MININD = 1
MIN = RSTAC(1)

IF(PSTAC .EQ. 1)RETURN
C

DO 10 I = 2,PSTAC
IND = RSTAC(I)

IFdND .GT. MIN)GO TO 10
MIN = IND
MININD = I

10 CONTINUE
C

RETURN

END

INTEGER FUNCTION MINRP(RSTAC,PSTAC,NONZER,NROW)
CC
c c
C MINRF RETUNS THE INDEX IN RSTAC OF THE FIRST TIED ROW NODE C
C WITH THE SMALLEST NONZERO COUNT IN NONZER. C
C C
CC

INTEGER RSTAC(NROW),NONZER(NROW),PSTAC
C

MINRF = 1
MINZ = NONZER(RSTAC(1))
IF(PSTAC .EQ. 1)RETURN

C
DO 10 I = 2,PSTAC
NONZ = NONZER(RSTAC(I))
IF(NONZ .GE. MINZ)GO TO 10
MINRF = I
MINZ = NONZ

10 CONTINUE
C

RETURN
END

115

INTEGER FUNCTION MPFILL(RSTAC,PSTAC,WBKROW,WRK2,W0RKR1,NROW,NCOL,
+ NONZER,CHILD,SIBLNG,RADJ,NR0WP1.ADJNCY,
+ NN2ER)

cc
c c
C MPFILL FINDS ROW IN RSTAC CAUSING MINIMUM FILL IN PIVOT ROW C
C C
CC

INTEGER RSTAC(NROW),WRKROW(NCOL),WRK2(NCOL),W0RKR1(NROW),
+ CHILD(NROW),SIBLNG(NROW),RADJ(NROWP1),ADJNCY(NNZER),
+ NONZER(NROW)
INTEGER PFILL,PSTAC,FILL

C

MPFILL = 1
MFILL = PFILL(RSTAC(1),WRKROW,WRK2,WORKR1,NROW,NCOL,CHILD,SIBLNG,
+ RADJ,NROWP1,ADJNCY,NNZER)
NONZP = NONZER(RSTAC(1))

C
DO 10 I = 2,PSTAC
IROW = RSTAC(I)
FILL = PFILLCIROW,WRKROW,WRK2,W0RKR1,NROW,NCOL,CHILD,SIBLNG,

+ RADJ,NROWP1,ADJNCY,NNZER)
IF(FILL .GT. MFILL)GO TO 10

NZERO = NONZER(IROW)
IF(FILL NE. MFILL)GO TO 5
IF(NZERO .GE. NONZP)GO TO 10

5 CONTINUE
NONZP = NZERO
MPFILL = I
MFILL = FILL

10 CONTINUE
C

RETURN
END
INTEGER FUNCTION MRJCJF(CNONZ,NCOL,NROW)

CC
c c
C MRJCJF FINDS UNPROCESSED COLUMN WITH MINIMUM » OF NONZEROS. C
C FIRST TIED COLUMN IS TAKEN. C
C C
CC

INTEGER CNONZ(NCOL)
C

MRJCJF = 1
MIN = CNONZ(1)

C

116

DO 50 I = 2,NC0L
C

NZ = CNONZ(I)

IF(HZ .GE. HIN)GO TO 50
MRJCJF = I
MIH = NZ

C
50 CONTINUE

C

C SET CNONZ TO NROW+1 (LARGEST POSSIBLE CNONZ IS NROW)
CNONZCMRJCJF) = NROW + 1

C
RETURN
END

INTEGER FUNCTION MRJCJL(CNONZ,NCOL,NROW)
CC
C C
C MRJCJL FINDS UNPROCESSED COLUMN WITH MINIMUM # OF NONZEROS. C
C LAST TIED COLUMN IS TAKEN. C
C C
CC

INTEGER CNONZ(NCOL)
C

MRJCJL = 1
MIN = CNONZ(1)

C

C
DO 50 I = 2,NCOL

NZ = CNONZ(I)

IF(NZ .GT. MIN)GO TO 50
MRJCJL = I
MIN = NZ

C
5 0 CONTINUE

C
C SET CNONZ TO NROW+1 (LARGEST POSSIBLE CNONZ IS NROW)

CNONZ(MRJCJL) = NROW + 1

C
RETURN
END
INTEGER FUNCTION NEWDEG(DCOL,RADJ,RSTAT,ADJNCY,PARENT,CHILD,
+ SIBLNG,WRK2,W0RKR1,W0RKR2,NC0L,
+ NROW,NROWP1,NNZ ER)

CC
c c
C NEWDEG RETURNS THE DEGREE OF COLUMN DCOL C
C C
CC

INTEGER NCOL,NROWP1,NNZER,DCOL,FROOT,TROW,CFIND

117

INTEGER RADJ(NR0HP1),ADJNCY(NNZER),PARENT(NROH),CHILD(NROW),
+ SIBLNG(NROW),WRK2{NC0L),W0RKR1(NROW),
+ H0RKR2(NROW),RSTAT(NROH)

C

CALL INIT(W0RKR2,NROW,0)
CALL INIT(WRK2,NCOL,0)
NEWDBG = 0

C
DO 200 IROW = 1,NROW

C
IF(W0RKR2(IROW) .EQ. 1)G0 TO 200
IF(RSTAT(IROW) .GT. 1)G0 TO 200

I = CFIND(DCOL,IROW,RADJ,ADJNCY,NROW,NROWP1,NNZER)
IF(I .EQ. 0)GO TO 200
TROW = FROOT(IROW,PARENT,NROW)
CALL FAM(CHILD,SIBLNG,TROW,WORKR1,NWR1,NROW)
CALL MARKIT(WORKR2,NROW,WORKR1,NR0W,NWR1,1)
CALL EXTRA(WRK2,RADJ,ADJNCY,NEXTRA,NROWP1,NROW,NCOL,

+ W0RKR1,NWR1,NNZER)
NEWDEG = NEWDEG + NEXTRA

C
200 CONTINUE

C
NEWDEG = NEWDEG - 1

C
RETURN
END
INTEGER FUNCTION PFILL(RNODE,WRKROW,WRK2,W0RKR1,NROW,NCOL,CHILD,
+ SIBLNG,RADJ,NROWP1,ADJNCY,NNZER)

CC
C c
C PFILL RETURNS PIVOTAL ROW FILL CAUSED BY RNODE C
C C
CC

INTEGER WRKROW(NCOL),WRK2(NCOL),WORKR1(NROW),CHILD(NROW),
+ SIBLNG(NROW),RADJ(NROWP1),ADJNCY(NNZER)
INTEGER START,STOP,RNODE

C
PFILL = 0

C
CALL INIT(WRK2,NCOL,0)
CALL FAM(CHILD,SIBLNG,RNODE,WORKR1,NWR1,NROW)

C
DO 100 I = 1,NWH1
IROW = WORKR1(I)
START = RADJ(IROW)
STOP = RADJ(IR0W+1) - 1
DO 50 J = START,STOP
JCOL = ADJNCYCJ)
IF(JCOL .GT. 0)WRK2{JCOL) = 1

50 CONTINUE

118

100 CONTINUE
C

DO 200 IC = 1,NC0L

IND = WRK2(IC) - WRKROW(IC)
IFdND .EQ. DPFILL = PFILL + 1

20 0 CONTINUE
C

RETURN
END
SUBROUTINE PRTVEC(VECTOR,LEN,NAME)

CC
c C
C PRTVEC PRINTS VECTOR ALONG WITH INDICES C
C C
CC

COMMON /lO/ NOUT,MOUT,INX,IOUT
C

INTEGER VECTOR(LEN)
REAL NAME(2)

C

WRITE(MOUT,201) NAME
C

DO 20 I = 1,LBN,20
C

II = MINOtI + 19,LEN)
WRITE(MOUT,101) (J,J=I,II)
WRITE(MOUT,102) (VECTOR(J),J=I,II)

C

20 CONTINUE
C

RETURN
C

101 FORMAT('0',3314)
102 FORMAT(' ',3314)
201 PORMAT(1X//1X,2A4)

END
SUBROUTINE PRTX(RADJ,RSTAT,ADJNCY,CHILD,SIBLNG,PARENT,NROW,NROWP 1 ,
+ NNZER,W0RKR1,RSTAC,RORDER,CORDER,CLIST,II,RFAC,
+ FACADJ,RROW,NRZER,NCOL,PPAC,IREP)

CC
C C
C PRTX PRINTS THE NONZERO STRUCTURE OF A PARTIALLY FACTORED C
C MATRIX STORED IN B-BAR FORM WITH A FOREST ORDERING. C
C ROWS 0? THE UNFACTORED PORTION ARE PRINTED GROUPED BY C
C TREES WITHIN THE FOREST, AND NODES OF EACH TREE ARE C
C PRINTED IN PREORDER. C
C C
CC

INTEGER NROWP1,NNZER,PFAC

119

INTEGER RADJ(NROWP1),ADJNCY(NNZER),CHILD(NROW),SIBLNG tNROW),
+ PARENT(NROW),WORKR1(NROW),RSTAC(NROW),RORDER(NCOL),
+ CORDER(NCOL),CLIST(NCOL),RFAC(NCOL),PACADJ{NRZER),
+ RSTAT(NROW),RROW(NCOL)
INTEGER LINE(125),BLANK,STAR,PSTAC,CNUM

C
COMMON /lO/ NOUT,MOUT,INX,lOUT

C
DATA BLANK/' '/,STAR/'* '/

C
ICOL =11
DO 50 K = 1.NCOL
CNUM = CLIST(K)
IP(CNUM .EQ, 0)GO TO 50
ICOL = ICOL + 1
CORDER(CNUM) = ICOL

50 CONTINUE
C

WRITE(MOUT,103)
C

IP(NCOL .LT. 100)GO TO 20
CALL INIT(LINB,NCOL,0)
DO 10 I = 100,NCOL
LINE(CORDBR(I)) = 1

10 CONTINUE
WRITE(MOUT,102) (LINB(K),K=1,NCOL)

C
20 CONTINUE

CALL INIT(LINE,NCOL,0)
DO 30 I = 10,NCOL
LINE(CORDER(I)) = MOD(1,100)/10

30 CONTINUE
C

WRITE(MOUT,102) (LINB(K),K=1,NCOL)
CALL INIT(LINE,NCOL,0)
DO 40 I = 1,NCOL
LINE(CORDER(I)) = MOD(I,10)

aO CONTINUE
WRITE(MOUT,102) (LINE(K),K=1,NCOL)

C
IPdl .LE. 0)GO TO 80

C
DO 70 K = 1,11
ICOL = RORDER(K)
J S TART = RPACdCOL)
JSTOP = PFAC - 1
IF(K .EQ. IDGO TO 55
IC0L2 = RORDER(K+1)
JSTOP = RPAC(IC0L2)-1

55 CONTINUE

120

CALL INIT(LINE,125,BLANK)
IFCJSTOP .LT. JSTART)GO TO 65
DO 60 L = JSTART,JSTOP
LINE(CORDER(FACADJ(L))) = STAR

60 CONTINUE
65 CONTINUE

IROW = RROW(K)

IFCIREP .GT. 0 .AND. RSTAT(IROW) .LT. 2)CALL REP(LINE,RADJ,
+ ADJNCY,CORDER,IROW,NCOL,NROWPI,NNZER)

WRITE(MOUT,101) IROW,LINE
70 CONTINUE

C
80 CONTINUE

C
DO 300 I = 1,NROW
IF(PARENT(I) .GT. 0)GO TO 300

C NODE WITHOUT PARENT IS ROOT OF A TREE
C PUT ALL NODES(ROWS) IN THIS TREE INTO RSTAC

CALL FAM(CHILD,SIBLNG,I,RSTAC,PSTAC,NROW)
DO 250 J = 1,PSTAC
IROW = RSTAC(J)
IF(RSTAT(IROW) .GT. 0)GO TO 250

C
CALL FAMCCHILD,SIBLNG,IROW,W0RKR1,NWR1,NROW)
CALL INIT(LINE,125,BLANK)

C
DO 200 IR = 1,NWR1

C
JSTART = RADJ(W0RKR1(IR))
JSTOP = RADJ(W0RKR1(IR)+1)-1

C
DO 100 JPTS = JSTART,JSTOP
JCOL = ADJNCY(JPTR)
IF(JCOL .GT. 0)LINE(CORDER(JCOL)) = STAR

100 CONTINUE
C

200 CONTINUE
C

IFdREP .GT. 0) CALL REP (LINE, RAD J , AD JNCY, CORDER, IROW, NCOL,
+ NROWPI,NNZER)

WRITE(MOUT,101) IROW,LINE
C
250 CONTINUE

C
300 CONTINUE

C
RETURN

C

121

101 PORMAT(1X,I5,125A1)
102 FORMAT(6X,12511)
103 FORMAT('1')

END
SUBROUTINE RECORD(WRKROW,NCOL,PCOL,RPAC,FACADJ,PFAC,NHZSR)

CC
c c
C RECORD RECORDS NEW ROW OP R-PACTOR IN ROW-ADJACENCY FORM C
C C
CC

INTEGER NCOL,PCOL,PFAC
INTEGER WRKROW(NCOL),RFAC(NCOL),FACADJ(NRZER)

C
DO 10 I = 1,NCOL

C
IFtWRKROW(I) .EQ. 0)GO TO 10
FACADJ(PFAC) = I
PFAC = PFAC + 1

C
10 CONTINUE

C

RETURN
END
SUBROUTINE REDUCE(NROW,NCOL,NNZER,NR0WP1,PARENT,CHILD,SIBLNG,
+ RSTAT,SUPERN,WRKROW,WRK2,RADJ,ADJNCY,WORKR1,
+ WORKR2,RSTAC,NONZER,CNONZ,DEGREE,RORDER,CORDER,
+ CLIST,IPRINT,CSTRAT,NOPER,MINOR,RPAC,FACADJ,
+ RROW,PFAC,NRZER,RSTRAT,NMOD,IREP)

CC
c C
c REDUCE CONTROLS THE SYMBOLIC REDUCTION ACCORDING TO PARAMETERS C
C SPECIFIED. C
C C
CC

INTEGER NROW,NCOL,NNZER,NR0WP1,NOPER,MINOR,NRZER,NMOD
INTEGER PARSNT(NROW),CKILD(KSOW),SIBLNG(NROW),WRK2(NC0L),
+ WRKROW(NCOL),RADJ(NROWP1),ADJNCY(NNZER),WORKR1t NROW),
+ RSTAC(NROW),NONZER(NROW),CNONZ(NCOL),DEGREE(NCOL),
+ RORDER(NCOL),CORD ER(NCOL),CLIST(NCOL),RPAC(NCOL),
+ FACADJ(NRZER),RSTAT(NROW),SUPERN(NROW),W0RKR2(NROW),
+ RROW(NCOL)

INTEGER PCOL,PROW,CSTRAT,PFAC,RSTRAT,PAR,PSTAC
COMMON /lO/ NOUT,MOUT,INX,lOUT

C
IP(IPRINT .GT. -3)WRITE(NOUT,156)

C
DO 500 I = 1,NCOL

122

GO TO (301,302,303,304,305,306).CSTRAT

CONTINUE
MINIMUM DEGREE WITH TIEBREAKIN6
PCOL = MINDEGCDEGREE,CNONZ.NCOL)
GO TO 200

CONTINUE

MINIMUM DEGREE, FIRST TIED
PCOL = MINDG1(DEGREE,NCOL)
GO TO 200

CONTINUE
MINIMUM DEGREE, LAST TIED
PCOL = MINDG2(DEGREE,NCOL)
GO TO 200

CONTINUE
MINIMUM COLUMN COUNT, FIRST TIED
PCOL = MRJCJF(CNONZ,NCOL,NROW)
GO TO 200

CONTINUE
MINIMUM COLUMN COUNT, LAST TIED
PCOL = MRJCJL(CNONZ,NCOL,NROW)
GO TO 200

CONTINUE
NATURAL ORDER
PCOL = I

IF(CNONZ(I) .EQ. NROW+1)G0 TO «00

CONTINUE

CALL MAJOR(PCOL,RADJ,RSTAT,ADJNCY,PARENT,CHILD,SIBLNG,SUPERN,
NR0W,NR0WP1,NCOL,NONZER,WRKROW,WRK2,NNZER,WORKR1,
W0RKR2,RSTAC,MINOR,NOPER,RSTRAT,PROW,PSTAC)

CHECK IF ANY PROCESSING DONE
IF(PSTAC .EQ. -1)G0 TO 400

MARK PIVOT ROW
RSTAT(PROW) = 1
RROW(I) = PROW

ADD PIVOT ROW SUPBRNODE TO SUPERNODE OF ITS PARENT. IF PIVOT
ROW HAS NO PARENT, DISCONNECT AND DISMANTLE SUPERNODE, AND
MARK THESE NODES WITH RSTAT=2.
PAR = PARENT(PROW)

123

IF(PAR .GT. 0)CALL JOIN(PROW,PAR,SUPERS,NROW)
IF(PAR .EQ. 0)CALL DISCON(PROW,SUPERN,CHILD,SIBLNG,PARENT,

RSTAT.NROW)

C

C

C
C
C

+

+

IFdPRINT .GT. 1)CALL
IFdPRINT .GT. 1)CALL
IFdPRINT .GT. 1)CALL
IFdPRINT .GT. 1)CALL
IFdPRINT .GT. OCALL
IFdPRINT .GT. 0)CALL
IFdPRINT .GT. 0)CALL
IFdPRINT .GT. 0)CALL
IFdPRINT .GT. 1)CALL
IFdPRINT .GT. 1)CALL

IF(CSTRAT • LT. 4)CALL

IFdPRINT .GT. OCALL

IF(CSTRAT .EQ. 4 .OR.

PRTVEC(RADJ,NROWP1,'RADJ
PRTVSC(RSTAT,NROW,'RSTAT ':
PRTVEC(SUPERN,NROW,'SUPERN
PRTVEC (ADJNCY, NNZER, ' ADJNCY
PRTVEC(PARENT,NROW,'PARENT
PRTVEC(CHILD,NROW,'CHILD ':
PRTVEC(SIBLNG,NROW,'SIBLNG
PRTVEC(NONZER,NROW,'NONZER
PRTVEC(RFAC,NCOL,'RFAC ')
PRTVEC(FACADJ,PFAC,'FACADJ

SIBLNG,WRKROW,WRK2,WORKR1,W0RKR2,
DEGREE,NCOL,NROW,NROWP1,NNZER)

)

WORKR1,RSTAC,RADJ,RSTAT,ADJNCY,PARENT,
CHILD,SIBLNG,NROWP1,NROW,NNZER,NCOL)

MARK PIVOT COLUMN IN WORKROW
WRKROW(PCOL) = 1

400 CONTINUE
CORDER(PCOL) = I
RORDERd) = PCOL
CLXST(PCOL) = 0

C
C PFAC POINTS TO NEXT AVAILABLE SPACE IN FACADJ

RFAC (PCOL) = PFAC

C

C

C

C

C

+

+

+

RECORD THE STRUCTURE OF THE NEW ROW OF R-FACTOR
CALL RECORD(WRKROW,NCOL,PCOL,RFAC,FACADJ,PFAC,NRZER)

IFdPRINT .GT. -1 .AND. MOD(I,NMOD) .EQ. 0) CALL PRTX(RADJ,
RSTAT,ADJNCY,CHILD,SIBLNG,PARENT,NROW,NROWP1,NNZER,
WORKR1,RSTAC,RORDER,CORDER,CLIST,I,RFAC,FACADJ, RROW,
NRZER,NCOL,PFAC,IREP)

IFdPRINT .GT. -3)WRITE(N0UT,111) I,PCOL,PROW,PFAC,MINOR,NOPER

500 CONTINUE

RETURN

124

C
111 FORMAT(1X,6I10)
156 FORMATdX,' STEP COLUMN ROW R-NONZEROS ' ,

+ ' ROTATIONS OPERATIONS')

END
SUBROUTINE REP(LINE,RADJ,ADJNCY,CORDER,IROW,NCOL,NROWP1,
+ NNZER)

cc
c c
C HEP PLACES X INTO COLUMNS WHICH ARE REPRESENTED IN B-BAR C
C C
CC

INTEGER LINEC125),RADJ(NROWP1),ADJNCY(NNZER),CORDER(NCOL)

INTEGER START,STOP,EX
C

C
DATA EX/'X '/

START = RADJ(IROW)

STOP = RADJ(IR0W+1) - 1

DO 100 I = START,STOP
ICOL = ADJNCY(I)
IFdCOL .GT. 0)LINK(CORDER(ICOL)) = EX

100 CONTINUE
C

RETURN

END
SUBROUTINE REPACK(IT,LEN,GAP)

CC
c c
C REPACK REPACKS IT TO PILL THE GAP C
C C
CC

INTEGER IT(LEN),GAP
C

LEN = LEN - 1

C
DO 10 I = GAP,LEN
IT(I) = ITd+l)

10 CONTINUE

RETURN

END
SUBROUTINE RFIND(PCOL,RADJ,RSTAT,ADJNCY,PARENT,CHILD,
+ SIBLNG,NR0W,NR0WP1,NNZER,RSTAC,PSTAC,W0RKR1,
+ W0RKR2)

CC
c c
C RFIND FINDS ROWS CONTAINING PCOL COLUMN C
C C
CC

125

INTEGER PC0L,NR0WP1,NNZER,PSTAC,CFIND
INTEGER RADJ(NR0WP1),ADJNCY(NNZER),PARENT(NROW),RSTAC(NROW) ,
+ CHILD(NROW),SIBLNG(NROW),W0RKR1(NROW),W0RKR2(NROW) ,
+ RSTAT(NROW)
INTEGER ANCSTR

C
PSTAC = 0

CALL INIT(W0RKR2,NROW,0)
C

DO 200 IROW = 1,NROW
C

IF(WORKR2(IROW) .EQ. 1)G0 TO 200
IP(RSTAT(IROW) .GT. 1)G0 TO 200

C

I = CFIND(PCOL,IROW,RADJ,ADJNCY,NROW,NROWP1,NNZER)
IF(I .EQ. 0)GO TO 200

C
C IDENTIFIED ROW WITH PIVOT COLUMN
C REMOVE PIVOT COLUMN

ADJNCY(I) = PC0L*-1

C FIND LIVING ANCESTOR
JROW = ANCSTR(IROW,PARENT,RSTAT,NROW)
IF(JROW .EQ. 0)GO TO 200
CALL ADD(JROW,RSTAC,NROW,PSTAC)

C MARK DESCENDANTS

CALL FAM(CHILD,SIBLNG,JROW,WORKR1,NWR1,NROW)

CALL MARKIT(W0RKR2,NROW,WORKR1,NROW,NWR1,1)
C MARK UNMARKED ANCESTORS

CALL GETUNL(JROW,PARENT,W0RKR2,WORKR1,NWR1 , NROW)
CALL MARKIT(W0RKR2,NROW,WORKR1,NROW,NWR1,1)
GO TO 200

C

200 CONTINUE
C

RETURN

END

SUBROUTINE SETREE(PARENT,CHILD,SIBLNG,NROW,ROOT,NEWEND)
CC
C c
C SETREE CONNECTS THE TREE OP NODE NEWEND TO NODE ROOT C
C C
CC

INTEGER ROOT,NEWEND
INTEGER PARENT(NROW),CHILD(NROW),SIBLNG(NROW)

C

IP(NEWEND .EQ. 0)GO TO 10
PARENT(NEWEND) = ROOT
SIBLNG(NEWEND) = CHILD(ROOT)
CHILD(ROOT) = NEWEND

10 CONTINUE

126

NEWEND = ROOT

C

RETURN

END

cc
c c
C SETUP INITIALIZES ARRAYS PRIOR TO BEGINNING OF REDUCTION C

C C

cc
SUBROUTINE SETUP(NROH,NCOL,NNZBR,NR0WP1,PARENT,CHILD,SIBLNG,

+ RSTAT,SUPERN,WRKROW,WRK2,HADJ,ADJNCY,W0RKR1,

+ W0RKR2,RSTAC,NONZER,CNONZ,DEGREE,ROROER,CORDER,

+ CLIST,IPRINT)

C

INTEGER NROW,NCOL,NNZER,NROWP1,IPRINT

INTEGER PARENT(NROW),CHILD(NROW),SIBLNG(NROW),WRK2(NCOL),

+ WRKROW(NCOL),RADJ(NROWP1),ADJNCY(NNZER),WORKR1(NROW),

+ RSTAC(NROW),NONZER(NROW),CNONZ(NCOL),DEGREE(NCOL),

+ RORDEH(NCOL),CORDER(NCOL),CLIST(NCOL),RSTAT(NROW),

+ SUPBRN{NROW),W0RKR2(NROW)

COMMON /lO/ NOUT,MOUT,INX,IOUT

C

CALL INIT(PARENT,NROW,0)

CALL INIT(CHILD,NROW,0)

CALL INIT(SIBLNG,NROW,0)

CALL INIT(RSTAT,NROW,0)

CALL INIT(SUPERN,NROW,0)

CALL INIT(WRKROW,NCOL,1)

CALL DEGUD(RADJ,RSTAT,ADJNCY,PARENT,CHILD,SIBLNG,WRKROW,WRK2,

+ WORKR1,W0RKR2,DEGREE,NCOL,NROW,NROWP1,NNZER)

CALL CNZUD(WRKROW,CNONZ,WORKR1,RSTAC,RADJ,RSTAT,ADJNCY,PARENT,

+ CHILD,SIBLNG,NROWP1,NROW,NNZER,NCOL)

C

LP = RADJ(1)

DO 10 I = 1,NROW

IP = RADJ(I+1)

NONZER(I) = IP - LP

LP = IP

10 CONTINUE

C

IP (IPRINT .GT. DCALL PP.TVEC (RAD J, NROWP 1 , ' RAD J ')

IF(IPRINT .GT. 1)CALL PRTVEC(ADJNCY,NNZERADJNCY ')

IF(IPRINT .GT. 0)CALL PRTVEC(NONZER,NROW,'NONZER ')

IP(IPRINT .GT. 0)CALL PRTVEC(DEGREE,NCOL,'DEGREE ')

IF(IPRINT .GT. 0)CALL PRTVEC(CNONZ,NCOL,'CNONZ ')

C

DO 60 I = 1,NCOL

CLIST(I) = I

CORDER(I) = I

60 CONTINUE

127

IFdPRINT .GT. -2)CALL PRTX(RADJ,RSTAT, ADJNCY,CHILD, SIBLNG, PARENT,

+ NR0W,NR0WP1,NNZER,W0RKR1,RSTAC,RORDER,CORDER,

+ CLIST,0,RFAC,FACADJ,CNONZ,NRZBR,NCOL,PPAC,1)

RETURN

END

SUBROUTINE TREAD(R,ADJNCY,RADJ,NNZER,NROW,NROWP1,C)

INTEGER R(NNZER),C(NNZER),RADJ(NROWP1),ADJNCY(NNZER)

READ(5,11) (R(I),C(I),1=1 ,NNZER)

K = 1

DO 200 IROW = 1,NROW

RADJ(I) = K

DO 100 I = 1,NNZER

IP(C(I) .NE. IROW)GO TO 100

ADJNCY(K) = R(I)

K = K + 1

100 CONTINUE

200 CONTINUE

RADJ(NROWP1) = NNZER + 1

RETURN

11 FORMAT(4(211», 1 2X))

END

128

8. APPENDIX B

8.1 Structure of the Inverse of a Triangular Sparse Matrix

Let R be an upper triangular matrix of order n, and let A be its inverse. Then,

RA = AR = I. Clearly, A must also be upper triangular. Let G = (C;£) be

the labelled graph associated with R, where (c,-, Cj) e E iff

r i j # 0 (i < j) .

Definition 8.1.1 A path (c, , q , - , c,) in C = (C;£) is monotone if

I, < '2 < • • • < ' X -

Theorem 8.1.1 A monotone path exists from node i to node j in the graph G iff

Qij ^ 0 (assuming no cancellation in calculation of the inverse).

Proof: A where |/î| is the determinant of R , and R a j j is the adjoint of

R . So each element of A is

an = (-1)'+^S ±
p

where the summation is taken over all permutations p of

II, 2, • • • , ;• —1, y + 1, • • • , n } , and the sign depends on whether p is

even or odd. Since R is upper triangular, = 0 when u > v, and only permuta­

tions which satisfy />(m)^m, m = l, 2, , n can produce a nonzero

term in the sum. Now p{m) < m implies that />(1) = 1, p{2) = 2,

• • • , p { i — \) = i-l, and p { n) = n , p { n — l) = n —1, • • • ,

pC/+0 = ; + L So

jt-i
I'pd).! '/'('""O.' — l 'p(i + l),i + l '"pM, 4

129

au = (-n'+^z ± 'V;'l I''p(/+1).i +1 • '"pOW
p

It remains to assign /, , J - l to p(/ + l), - , p(j) , such that

p (m) ^ m . A typical nonzero term in the above sum is produced as follows. Suppose we first

assign i to p(fci), where / + 1 < k, < j , so p(k,) = i . This means that

p { m) = m for / < m < t,, so /, - - , t, —1 are assigned. Next

assign to p{ki), where ki + \ < < j\ so that piki) = and

p (m) = m (o T m = k l , • • • , t;. So at this point i, • • • , t;—1

are assigned. Suppose this is continued for a total of s times, thus assigning

1, • • • , k , - \ . Finally let p (J) = k „ so that p { m) = m for

m = k s , • • • ,] . T h u s a l l z , - - , y — 1 a r e a s s i g n e d , a n d t h i s g i v e s

where i < < *; < • • • < k , < j , as the form of a typical term in the

above sum. Note that all elements in the denominator are nonzero, and each nonzero element in

the numerator is represented by an edge in G. If all the elements in the numerator are nonzero,

the corresponding edges in G give a monotone path from node i to node j. If

Oij r 0, then at least one term in the sum must be nonzero, so there exists a monotone path

from node j to node j in G. Conversely if there is a monotone path from node i to

node i in (j, this can be represented by a product such as the one in the above numerator

with all the elements nonzero. Since the summation is over all permutations p, the nonzero

product must be part of the sum, so assuming that cancellation does not occur in the sum we have

nk^k^k.

Oij 0. 0

130

Figure 8.1 gives an example of an upper triangular matrix, and the structure of its inverse

obtained by this theorem. To apply the result to a lower triangular matrix, simply take its trans­

pose.

A possible use of the above theorem is in the explicit calculation of a variance-covariance

matrix of estimated parameters in a sparse least squares problem. This matrix is given by

where R is the sparse upper triangular factor from Givens reduction of the data

matrix X .

R —

* *

*

* *

*

A =

* *
monotone paths:

© © ©
*

*

* ©

* *

(Cs.Cs)

Figure 8.1 An example of an upper triangular sparse matrix structure R , its graph representa­
tion, and the structure of its inverse A. The fill-in entries produced in A are cir­
cled. Note that each monotone path corresponds to exactly one off diagonal nonzero in

A

131

9. ACKNOWLEDGEMENTS

I wish to acknowledge and thank Professor William J. Kennedy for suggesting this area of

research, and for his advice and encouragement during the research.

The Mathematics and Statistics Research Department at Oak Ridge National Laboratory has

provided support during preparation of this manuscript, and I wish to thank them also.

Finally, I wish to express my sincere thanks to my parents for their encouragement and moral

support throughout the years of my education.

