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I. INTROKJCTION 

The technological constraints on the speed of computation of 

electronic computers have led researchers to seek alternate ways to 

decrease the execution time of programs. The minimization of computa­

tion times is important and even necessary in certain application 

areas. In some process control applications, the external world places 

hard constraints on the length of the interval, real-time, during which 

the computations must be performed. Failure to complete the computa­

tion may lead to catastrophy or at least to questionable or useless 

results. The length of the real-time interval, of course, varies with 

the application: chemical and nuclear experiments, moon landings, 

missile tracking, aircraft control, weather forecasting, moving a 

character out of a hardware buffer, etc. In process control applica­

tions, execution of programs are generally repeated. This allows for 

measurement of execution times and scheduling of component program 

parts in a multiprocessor environment. 

The trend in decreasing computer costs increases the importance 

of minimum turnaround time for general computer users. While high 

costs of computing have, in the past, forced users to share equipment 

and hence suffer individual delay due to attempts to optimize overall 

utilization and throughput, future trends in some applications seem to 

be toward less sharing of processor and memory and a premium will be 

placed on turnaround time. Once again, multiprocessing in various 

forms, both through distributed arithmetic units and parallel instruc­

tions streams within a single program, will reduce turnaround time. 
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Here the automatic detection of parallelism and measurement of task 

times provided from an analysis of program structure would be extremely 

helpful. In general, multiprocessing appears to be useful in a wide 

spectrum of current and future application areas. 

We will be concerned with the scheduling of parallel instruction 

streams in a real-time multiprocessor environment in an attempt to 

decrease the total computation time. In order to specify bounds on 

machine performance, we must study the stability of such schedules. By 

stability, we mean that the time required for execution will not in­

crease if we relax certain constraints on the set of tasks to be exe­

cuted in parallel. It is natural to avoid imposing additional stabilizing 

constraints if at all possible, since additional constraints also limit 

the available parallelism. 

Preemptive scheduling is appealing because, in theory, it provides 

the minimum length schedule. Thus, we are also interested in the 

stability of preemptiva schedules. Sscauss processor s^jitchlng times 

might not be negligible, we wish to compare the schedule length of 

preemptive schedules and nonpreemptive schedules, taking into con­

sideration the switching time costs. Because of the lack of nnn-

enumerative algorithms to produce optimal schedules, we want to study 

a simple low-cost scheduling technique that produces a near-optimal 

preemptive schedule. Our concern will be with the effect of switching 

costs on such schedules. The author knows of very little work done 

in scheduling systems where switching times are considered nonnegligible. 

Results in this area will help make decisions as to what levels of 

computing are applicable to multiprocessing and under what circumstances 
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preemptive scheduling is advantageous. Finally, we mention that the 

results reported in this work provide a general feeling for the effects 

of preemption costs in general systems where task systems cannot be 

estimated in advance. 

In Chapter II, we describe the model that will be used to study 

scheduling problems and we survey the literature that is relevant to 

our interests. In Chapter III, we will study the stability of schedules 

produced by the four most important nonenumerative algorithms that pro­

duce an optimal schedule length when certain conditions are satisfied. 

In particular, we need assurance that smaller actual execution times, 

or increasing the number of processors, or eliminating some precedence 

relations does not increase the resulting schedule lengths. This 

chapter will report and prove results when all conditions for optimality 

are satisfied. Most of the results will show that we do not need to 

add Manacher's conditions (15) in order to preserve the stability of 

the schedules produced by these algorithms, Kûwêvéïf, the practical 

use of some algorithms requires additional constraints that also 

limit the available parallelism. In Chapter IV, we study the stability 

properties of the schedules produced by the nonpreemptive algorithms 

when the conditions necessary for optimality are violated. The useful­

ness of these algorithms under nonoptimal conditions has been estab­

lished by simulation byManacher (16), Ramamoorthy, etal. (20), Chandyand 

Dickson (3), and Adam, et al. (1). Most of the results reported in 

this chapter will shot-? that these schedules are unstable under these 

conditions. In order to have stability, we have to add Manacher's 

conditions which are stated on pages 20 and 23. 
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Two of the four optimal algorithms give basic schedules or non-

preemptive schedules in which it is assumed that once a processor is 

assigned to a task it must work continuously on this task until it has 

been completed. The other two algorithms reflects the results of recent 

studies in preemptive scheduling in which run-to-completion constraint 

has been relaxed. In particular, with the preemptive scheduling discipline 

it is possible to interrupt any processor at any time and reassign it 

to a different task. In this case we envision the scheduling of con­

current processors at the program or procedure level where preemption 

is possible. Chapters V and VI are concerned with preemption costs. 

In Chapter V, we consider the effect of processor switching on 

the actual running time if scheduling uses the known optimal algorithms 

based on zero switching time. In real-life, processor switching time 

might not be negligible, due to other factors such as the need for a 

memory swap whenever a processor is switched. We will give some bounds 

for the ratio between the optimal preemptive schedule and the optimal 

nonpreemptive schedule for a graph with unequally and equally weighted 

tasks in which the cost of switching and preempting tasks is not zero. 

In Chapter VI, we will give some bounds for the ratio between a near-

optimal preemptive schedule and the optimal nonpreemptive schedule for 

a graph with equally weighted tasks in which the cost of switching and 

preempting tasks is not zero. Some of the results given in Chapter VI 

will show that in real-life we can no longer say that the preemptive 

scheduling discipline is strictly more powerful than the nonpreemptive 

scheduling discipline, and we will have bounds on the effects of these 
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switching costs on a two-processor system. Finally, in Chapter VII, we 

summarize the results of this work and present some ideas for future study. 
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II. DESCRIPTION OF THE MODEL AND SURVEY OF LITERATURE 

In order to study the problems mentioned in the introduction and 

to present some results obtained in this area by previous workers, we 

shall require a number of definitions. 

First, let us assume we are given a set jPj^, P^, ... P^| of 

identical and independent processing units, and a set C = T^, T^| 

of tasks to be executed in the computing system. Since the processors 

are identical, a task can be executed on any one of the processors. 

A weight is associated with each task T^^ and denotes the execution 

time of the corresponding task. We also have a partial ordering <on 

The ordering T^ < Tj means that the execution of T^ cannot begin 

until the execution of T^^ has been completed. T^^ is called a predecessor 

of Tj, and Tj a successor of T^^, If there exists no task T^ such that 

T. <• T/, <"T. then T. will be called an immediate predecessor of T., 
i * J 1 ^ J 

and T. will be called an Immediate successor of T.,. A task with no 
J  ̂

successor is a terminal task, and one with no predecessor is an 

initial task. If task T^^ is neither a successor nor predecessor of Tj, 

then T^ and T. are independent and therefore they may be concurrent, 

A task is said to be "ready" at some point in time if all of its 

predecessors have completed their executions. We also assueiate with 

each set of tasks a priority list <&. 

Formally, a task system is specified by the ordered quadruple 

C = (C, T, Frequently, a task system C = (Ç, T, <*,<L) is 

represented by a precedence graph G which has the members of C as 

its vertices and there is a directed edge from T^ to Tj if, and only 
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if, Tj is the immediate successor of T^. Each node in G is described 

by the name of the task and its associated execution time. More pre­

cisely, our computation graphs are acyclic, weighted, directed graphs, 

satisfying the connectivity constraint just mentioned. Let 

Tj , T. be the tasks in some given path in G. Then the path 
2 ss 

length is T , and the level of a task T. in G is the length of 

j=l j 

a longest path from to a terminal task of G. 

The schedule for C = (C, T, <',£.) is uniquely determined by 

the following rules; 

1) Whenever a processor becomes free for assignment, L is 

scanned from left to right for the first unexecuted ready 

task and assigned that task, 

2) In case of a tie among processors, they are scheduled in 

ascending order of their subscripts. 

An accepted way of specifying a schedule is to use a Gantt chart 

(4), which consists of a time axis for each processor, with intervals 

marked off and labeled with the name of the task being processed. We 

use the symbol 0 to represent an idle period. In Figure 1 we show a 

simple graph, G, and a corresponding schedule for k = 2 processors. 

There are two interpretations on task execution times that increase 

the usefulness of the results when these times are not known exactly. 

First, the execution times may be interpreted as maximum processing times. 

In this case, the schedule length is the maximum time to complete the 

graph. Second, the execution times may be regarded as expected values 

of the run times considered as random variables. With this interpreta­

tion, the length of the schedule produced is an estimate of the mean 
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(b) Gantt chart 

Figure 1. Example of a graph and a Gantt chart 

length of the computation over many runs. Much of the motivation 

for studying worst-case behavior is to derive an upper bound on the 

typical or expected length of the schedule. 

In a Basic Schedule, BS, also called a nonpreemptive schedule, it 

is assumed that once a processor is assigned to a task it must work 

continuously on this task until it is completed, while in a Preemptive 

Schedule, PS, the run-to-completion constraint is relaxed. Next we 

define s General Schedule, GS, which is net realizable in practice, 

but will be useful in our analysis. Suppose that the k processors in 

a system comprise a certain amount of computing capability rather than 

being discrete units. Assume further that this computing capability 

can be assigned to tasks in any amount up to the equivalent of one 

processor. If we assign a, 0 < a < 1 computing capability to a task, 



9 

then we assume that the computation time of the task is increased by a 

factor of l/cx. We allow the amount of computing capability assigned to 

a task to change before the task is completed, including the case where 

the task is not worked on at all for some interval. In Figure 2(a) 

we show the optimal BS and PS for a very simple graph G, and in 

Figure 2(b) we give a GS for G'. 

It is argued by Ullman (22) that probably no polynomial bounded 

algorithm exists for computing an optimal schedule for the general case. 

A polynomial bounded algorithm is one in which the number of steps are 

bounded by a polynomial in the number of nodes n. At this moment, 

nonenumerative techniques for finding an optimal schedule for general 

graphs in a k-processor system do not exist. In fact, there are only 

several known polynomiaTl>oundë9~~àlgorfEhms that yietd^opttinairnschedales 

for certain restricted classes of systems. These algorithms and their 

constraints are explained in succeeding paragraphs. 

For Basic Scheduling, clearly, the problem of finding an optimal 

BS for any given graph is effectively solvable by enumeration. How­

ever, Hu (11) gives a practical algorithm 0(n) for an important special 

case of graphs with equally weighted tasks in which the precedence 

relations define a tree. He assumes that an arbitrary number of processors, 

k, are available. A tree is defined as an acyclic directed graph in 

which each node, except for the root, has exactly one immediate suc­

cessor. 

The algorithm, also knovm as the B-Algorithm (5), simply foliotas 

the rule: Whenever a processor becomes free, assign it to a task, if 

any, all of whose predecessors have completed execution, and which is 
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Figure 2. Examples of the basic ; preemptive and general scheduling 

disciplines 
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at the highest level of those tasks not yet assigned. If there is a 

tie among several tasks, then a task is selected arbitrarily. Hu showed 

that the given B-algorithm is optimal, and the schedule-length is given 

by 

where |Q(j + 1)| represents the number of tasks at level j + 1 or 

greater and L is the length of the longest path in the graph. This 

bound comes from the fact that for any j, it is not possible to compute 

all of the tasks whose level number is greater than j in less than 

^number of such tasks^ units of time, and at least j units of time are 
k 

needed to complete the remainder of the graph. When the B-algorithm 

is applied to a tree graph, G, with unequally weighted tasks, Kaufman 

(13) found that the schedule length obtained is at most p units longer 

than the optimal preemptive schedule for G, where: p = maxjrj in G. 

In Figure 3, the operation or the B-algorithm for k = 3 is illustrated. 

Note that in this case the tie mentioned in the description of this 

algorithm occurs during the first two steps» Note also that the B-

schedule is also optimal for forests of trees and for p-restricted 

precedence graphs (2) with unit tasks. A £ tree-restricted precedence 

graph G consists of p tree-structured subgraphs G,, G^ G such 
- 2  p  

that each terminal task of CL ^ is a predecessor of each initial task 

of G^ for i = 2, ..., p. 

For the case of k = 2 processors, Bauer (2) has discovered an 

algorithm that will give an optimal schedule for tree-structured graphs 
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Figure 3. Example of B-algorithm 

and p tree-restricted graphs, in which the nodes have weights of one or 

two units. 

2 
Coffman and Graham (6) present an 0(n ) algorithm that finds an 

optimal basic schedule for general graphs on tx-jo processors when the 
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tasks have unit execution time. The scheduling algorithm is based on 

the following labeling algorithm: Let N = (n^, ..., n^) and N* = 

(n^, ..., n^,) denote two decreasing sequences of positive integers. 

Define N < N' if either (a) for some i, 1 < i < t, we have n^ = nj for 

1 < j < i - 1 and n^ < n| or (b) t < t' and = nj for 1 < j < t. 

Let n denote the number of tasks in G. The labeling algorithm assigns 

to each task T an integer csf(T)e|l, 2, n|. The mapping a is de­

fined recursively as follows: Let S(T) denote the set of immediate 

successors of T. 

51 - Any arbitrary task with S(T^) = 0 is chosen and O'(T^) is 

defined to be 1, 

52 — Suppose for some k < n that the integers 1, 2, ..., k - 1 have 

been assigned. For each task T whose successors have all been labeled, 

let N(ï) denote the decreasing sequence of integers formed from the 

set {a(T')1T'eS(T)}. At least one of these tasks T* must satisfy 

N(T^) <K(T) for all such tasks T, 2nd let cv(T") = k. 

53 — Repeat 82 until all tasks of G have been assigned some 

integer. 

The scheduling algorithm, also known as the A-Algorithm (5), is 

defined as follows: Whenever a processor becomes free, assign that 

task all of whose predecessors have already been executed and which 

has the largest label among those tasks not yet assigned. An example 

illustrating the A-algorithm is provided in Figure 4. This algorithm 

is not optimal when the number of processors is greater than two or 

when the tasks are of unequal execution time. 
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Figure 4, Example of A-algorithm 
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Algorithms for finding the optimal-schedule length in the PS discipline 

are as rare as results for the BS discipline. An important fundamental 

result in preemptive scheduling is presented by McNaughton (16): For 

a set of independent tasks with weights |tj^j Tg, ..., T^j and k available 

homogeneous processors, the optimal PS has length 

n s -'1 max Tj , -T—[ . 
l<i<n ^ ^ j 

It is clear that this computation time cannot be improved upon, 

since the schedule must be at least as long as che largest task and 

cannot be more efficient than to keep all the processors continuously 

busy. 

Muntz (17) gives an algorithm for constructing an optimal GS for 

any number of processors when the computation graph is a rooted tree or 

forests of trees, and the node weights are mutually commensurable, 

i.e., there exists a real numberj W; such that all node weights are 

integer multiples of w. 

The algorithm, also known as the C-Algorlthm (5), is the following; 

Assign one processor each to the tasks at the highest level. If there 

is a tie among b tasks (because they are at the same level) for the 

last a(a < b) processors, then assign a/b of a processor to each of 

these b tasks. Whenever either of the two events described below 

occurs, reassign the processors to the uncomputed portion of the graph 

G according to this rule. These are: 

Event 1: A task is canpleted. 

max 
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Event 2; We reach a point where, if we continue the present as­

signment, we would be executing sonie tasks at a lower level at a faster 

rate than other tasks at a higher level. Note that the C-algorithm, 

as it is defined, produces a general schedule, but there is a direct 

conversion from the optimal general schedule to the optimal preemptive 

schedule. Muntz (17) showed that the PS and GS are equally effective, 

because for all graphs the optimal schedules according to both disciplines 

have the same length. Therefore, the C-algorithm gives an optimal 

preemptive schedule for a tree-structured graph G and we write 

CTgg(G, k) = CTpg(G, k) = CT^(G, k) where CT^(G, k) represents the 

minimum computation time of G with k processors using the a-scheduling 

discipline. An example illustrating the C-algorithm is provided in 

Figure 5. Define G^ to be the precedence graph derived from G by 

replacing each task T. by n, mutually commensurable task, T. T. 
XX X, i X, n^ 

each with execution time w. 

Muntz and Coffman (18) give an algorithm for finding the optimal 

preemptive schedule for general graphs in a two-processor system based 

on the notion of a subset sequence. A subset sequence for a graph G, 

with equally weighted nodes, is a sequence of nonempty disjoint 

subsets of nodes , S^, ..., such that 1) if n is a node of G, 

then neS^ for some i, and 2) if n, m are nodes of G, with neS^, meS^ 

and n < m, then i < j. A PS for G constructed using the schedule for 

S^ follmzed immediately by the schedule for Sg, etc., is called a 

subset assignment. They showed that for a 2-processor system, an optimal 

subset assignment for any graph G, with equally weighted nodes, is an 

optimal PS for G. 
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(a) Optimal GS obtained using C-algorithm 
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(b) Optimal PS obtained from the optimal GS 

Figure 5. Example of C-algorithm 

9 10 12 12 
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The algorithm for finding the optimal subset assignment for two 

processors is as follows; Let G be a graph with mutually commensurable 
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node weights and let be as defined above. Let L be the length of a 

longest path in G. 

51 - Set index j = 1. 

52 — Let be the set of all nodes which have not yet been as­

signed to subsets and are at level L - j + 1. Assign all nodes inDy 

to Sj. If the number of nodes in/L is one then go to S4. 

53 - If j = L then stop, otherwise, set j = j + 1 and go to S2. 

54 - Let a - |q^| be the set of all nodes which have not been 

assigned to subsets but all of whose predecessors are contained in S^USgU 

... USj 2^. If Q( = 0 then go to S3. If a 0 then assign to , 

where q is such that level of q = max {level of q,l, and go to S3, 
u u qj^gCK < II 

An informal statement of this algorithm is: Nodes are assigned to 

subsets level by level, with higher level nodes assigned to subsets 

first. The only exception to this rule is when it would result in a 

subset containing only one node while there is at least one other node, 

at a Icwer level, which can be assigned to this subset without violating 

any precedence relations. In this case a second node is selected which 

is at the highest possible level. As an example we show in Figure 6, 

a graph G and a subset sequence constructed by the algorithm. In 

spite of its appealing simplicity, it is unfortunate that this algorithm 

is not optimal for more than two processors. 

In dealing with preemptive schedules, the question arises as to 

how many preemptions are necessary to form an optimal preemptive schedule 

on a general system (assuming preemption costs are zero). In general, 

we need not consider preemptions at intervals more frequent than one 

every vj/ki units for any k processor system. More precisely, it is 
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T, 8 

Optimal subset sequence for G: {T^, Tg), (t^, T^, T^}, (t^, T^g}, 

^2' T4). 

Figure 6. Illustration of the subset assignment algorithm 

conjectured by Muntz (17) that any preemptive schedule, for a graph G 

is at least as long as the optimal BS for G^/^,, i.e., CTpg(G, k) = 

CTgg jk). Incidentally, this is equivalent to the conjecture that 

an optimal subset assignment for -1)' optimal PS for G. 

These conjectures remain unproved. 

Later, Coffman and Graham (6) showed that in the limit, Algorithm A 

applied to G^y^ as r -> <», converges to the C- schedule because at each 

point in time both give highest priority to those remaining tasks at 

the highest level in the graph requiring processing. For that reason, 

we know that the C-algorithm is optimal for any number of processors 
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when the computational graph is a tree-structured graph, and for general 

graphs on a two-processor system. 

A second important run-time consideration deals with the stability 

of schedules. Graham (8, 9, 10) considers four types of changes, 

each of which may produce anomalous increases in schedule length: 

1) changing the order of tasks in the priority list; 

2) removing some of the precedence relations; 

3) increasing the number of processors; and 

4) reducing the execution time of some tasks. 

Cases 1), 3) and 4) were first discussed by Richards (21). A 

simple example which exhibits all four conditions has been presented 

by Graham (10) as shown in Figures 7(a) through 7(e). Graham proves a 

theorem which states that given two schedules, S and S', where S' is 

related to S by the application of any combination of the four changes 

given above, the schedule lengths t(S) and t(S') are related to one 

another by the bound 

where k, k' are the number of processors in S and S', respectively. 

Graham's theorem also states that this bound is the best possible in 

the sense that it cannot be replaced by a smaller number. It reduces 

to 2 - ̂  when k = k'. Since Graham's bound gives < 2, we hii"e 

an absolute bound on "anomalous" behavior. 

Rules for stabilizing schedules to prevent such anomalies have 

been established by Manacher (15). These rules introduce more precedence 

relations and change the priority list to achieve stability. In 
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Run-time schedule S-, when the number of processors is increased to 4: 
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later chapters, where we demonstrate instability, Manacher's constraints 

would have to be added to guarantee stability. 

Recently, Kaufman (12) showed that systems with equally weighted 

tasks are not anomaly free., 

A natural comparison is between the optimal preemptive and optimal 

nonpreemptive, basic, schedules. Liu (14) shows that for a given set of 

tasks specified by execution times and a partial order, 

for a k-processor system. Moreover, this bound is the best possible. 

In the results stated above, the cost of preemption is considered 

to be zero or too negligible to affect the schedule length. In real-

systems, preemptions may be significant. In these cases, the useful­

ness of the preemptive models is lost by neglecting preemption costs. 
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III. STABILITY PROPERTIES OF OPTIMAL SCHEDULES 

In this chapter, we study the stability properties of optimal 

nonpreemptive schedules and preemptive schedules. These schedules 

are found to be free, in almost all the cases, of three anomalies com­

monly found in multiprocessor systems. Stability allows us to use 

these schedules to compute an upper bound on the schedule length under 

the most constraining conditions. At run-time, these conditions can 

then be relaxed without danger of an increase in the schedule length. 

This chapter is divided in four sections. In Section A, we study 

the stability properties of the B-schedule. Section B studies the 

stability of the A-schedules. The last two sections are dedicated to 

preemptive schedules. In Section C we study the stability of the C-

schedules for tree-structured graphs, and finally, in Section D we 

study the stability properties of the Subset Assignment Schedules. 

A. B-Schedules 

In this section, we study the stability properties of the schedules 

produced by the B-algorithm. This algorithm produces optimal nonpre­

emptive schedules for systems in which tasks have equal execution times 

and the partial order is defined by a tree-structured precedence graph. 

We begin with the optimal B-schedule S for the case where = 1 

1 and investigate the stability of this schedule by relaxing the 

constraints on and the precedence relations, <, and increasing the 

number of processors to form a schedule S'. Since a change in the 

priority list can obviously result in increased schedule length, we 
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hold £. fixed as defined for the optimal B-schedule S. Thus, we show 

that the optimal B-schedule S is inherently free from three common 

anomalies and additional constraints are not necessary (15). 

1. Increase in the number of processors 

Let G denote a tree-structured precedence graph which defines the 

partial order <•• Let 0(j) denote the set of tasks at levels greater 

than or equal to j and L be the maximum length path in G, and |Q(j)| 

denote the cardinality of Q(j). Hu (11) showed that the length of the 

optimal schedule on k processors is 

t(S) = max 

OSilL 

j + 
Q(3 + 1)1 

k 

where fXl denotes the ceiling of X. The following theorem shows the 

B-schedule is free of the anomaly caused by increasing the number of 

processors. 

Theorem 1. Given a tree-structured precedence graph G with equally 

weighted tasks, the B-schedule is stable if the number of processors 

is increased. 

Proof; Let t(S) and t(S') denote the B-schedule length for G 

on k and k' processors, respectively, where k' > k. Define 

tj = j + j + 
lQ(j + 1)1 

Then t(S) = max(t.) and t(S') = max(tî). Since k' > k implies t. > t! 

for all j, it immediately follows that t(S) > t(S'). 
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2. KfInxatlon of the partial order 

In order to insure that <>' ÇO and the new precedence graph G' 

(which defines <5*) is a tree or forest, we define an "allowable relaxa-

mediate" successor of T^. Furthermore, this implies 

(i) the addition of an arc (T^, T^) if is the immediate sue 

cessor of in G. 

In the first case, the resulting graph G' is a tree while in the second 

case G" is a forest. Figure 8 shows an example of both cases. G' is 

formed by removing (T^, T^) from G and G" is the result of removing 

(Tg, Tg) from G. 

Figure 8. Examples of relaxation of the partial order 

The following theorem shows that removal of a single arc from G will 

not cause an anomaly in the B-schedule. 

Theorem 2. Given a tree-structured precedence graph G with 

equally weighted tasks, the B-schedule is stable under an allowable 

relaxation of G« 

Proof: Suppose we remove arc (T^, T^) from G where is at 

level ^ + 1 and T^ is at level jR. In the subtree with root T^, the 

tion" as the removal of an arc (T^, T^) from G, i.e., is the "im' 

(ii) the addition of no arcs if T^ is the root task in G. 

G: 
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level of each task is reduced by one and and have the same im­

mediate successor in G'. Let n^ denote the number of nodes in the sub­

tree with root Tg that are at level i in G. Clearly, n^ = 0 for 

1 < i < j6, n^^^ = 1, n^ > 0 for ̂  + 1 < i < L. Let t(S) and t(S') 

denote the B-schedule lengths for G and G', respectively. Since G is 

a tree, we have as before 

t(S) = max(t.) where t. = j + 

0<j<L^ ^ 

If G' is a tree, then we have 

t(S') = max(tj) 

0<j<L 

where 

J k I - k ] 

The result t(S') < t(S) is immediate. If G' is a forest, we may add 

to G' a dummy root task with execution time zero and define it to 

be at level zero in G'. Since the level of all other tasks in G' 

remains unchanged, the above analysis may be repeated and, once again, 

t(S') < t(S). 

Through successive applications of Theorem 2, we have: 

Corollary. Given a tree-structured precedence graph G with equally 

weighted tasks, the B-schedule is stable if any number of arcs are 

removed from G, 
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3. Reduction of task execution times 

In this section, we assume that the actual execution time of the 

tasks are given by rj < 1 for i = 1, n. We also assume that the 

form a mutually commensurable set of values with greatest coiranon 

devisor 6. Denote the highest level of a task in G by L. For this 

case, we consider the level of any task to be the level it had in 

the graph G where = 1, for all in G. Define; 

= max {TJ: T! is the actual execution time of T. and 
i i i 

is at level Z in G} 

The analysis which follows is similar to that presented in (5). The 

reader may find Figure 9 helpful in following the next lemma. 

Lemma 1.. Let G be a tree with no more than k leaves (initially 

available tasks). Assume unequal execution times as described 

above. Then the B-schedule S' for G on k processors has length 

t(S') < E T" 
i=l 

Proof; Define R., 0 < i < ^ - 1, to be the set of tasks 
1 — — 0 

executed in the time interval (i6, (i + 1)6). Since G is a tree, the 

\(S') 
is monotonically decreasing sequence 1RqI> |R^|, •••s 

where jR^j denotes the number of tasks in R^, Tit is observation follows 

from the fact that the execution of an available task can cause at most 

one task to become available for execution in the next time interval. 

Since [RQ] < k, we have |r^| < k, 0 < i < ^ - 1. Therefore, 

\+l or at least one task in is at a lower level than its 

precedessor iti R., 0 < i < ^ " 1» At time T , all tasks at level L in 
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Figure 9, B-schedule for a tree with k leaves and reduced execution times 
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G are completed and in general, at time ^ + ... + all 

tasks whose level is not less than i in G are completed. Hence 

, ^ i t ( s ' )  <  L  T  =  
i=l 

Because < 1, this Lemma also says that t(S') < L. 

Lemma 2. Let G be a tree in which the tasks have unequal execu­

tion times T! < 1. If S' is a B-schedule for G on k processors. 

then 

0<j<L I I 
t(S' ) < max I j Ml 

Proof; Since the result is trivially true for L = 1, we may as-

i i 
sume L > 1. Let T be as defined above and let M = max (T ). Define 

1^^ 

the following sequence of points in the schedule. 

'o ° " 

t^ = t^ ^ + min { M, time required to complete execution of k 

more tasks} 

Let be the set of tasks which complete execution at or before t^ and 

|N^j be the number of tasks in Define p to be the least value such 

that a time t^ some processor is idle or becomes idle. If p = 0, then 

Lemma 1 applies and we are done. Therefore, we assume p > 1. Note 

that no processor can be idle in the interval (0, t^ , and is 

always an integral multiple of k for all i such that 1 < i < p. 

Define V^, 0 < j < t(S') as the maximum level occupied by tasks in the 

tree G which have not completed execution at time tj^^. In other words, 

Vj is the smallest level such that Q(Vj + 1) c Figure 10 
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iliustrates these definitions. From the definition of p and Lemma 1, 

the tasks remaining to be executed after t ,, can be completed in no 

more than zZ t < V time units. Therefore 
i=l - P 

t(S') < Vp + <V^+ M(p + 1) < Vp + (p + 1) 

At this point we have: N I =kP, N >kpandkp< N ,.| 
p' p+1 p+1' 

IN - N 1 < kP + k. So 
' p+1 p' -

iNpl + 

P < 
_2+r 

< P + 1 

N 
£±l! = p + 1. 

Therefore : 

t(S') < Vp + JS+11 

In order to express the upper bound on t(S') in terms of Q(Vp + 1) 

we consider two cases. 

Case 1. Np ç Q(Vp + 1). Figure 10 illustrates this case. We have; 

iVi " "pi - ''' ^ Vi "p s 

I f  N = Q(V + 1), the result follows. Suppose QCV^ + Then 

k> iNp+i - »pl = I Wp+1 - + D) " «Wp + 1) - Bp)l - since 

Q(Vp + 1) c Np^^, we write 

" > IVi " + "I 

|q(V^ + 1)1 N |Q(V_ + 1)1 + k |Q(V_ + 1)1 

So 

and 

k < k <- K -— 
k 

rivh 
•|Q(Vp + 1)1-] 

Therefore, 
k k 

Therefore, 

+ 1 

rlQ(^j 

and the result of the letmna follows. 
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Case 2. ^ Q(Vp + 1). Figure 11 illustrates this case. Here 

N contains at least one task at a level lower than V +1. We con-
P P 

sider two subcases. 

(a) Suppose there exist no integer i, 1 < i < p such that 

Ç Q(V^ + 1). Then, for 0 < i < p, the number of tasks 

executed at the highest level in (t^, is less than 

k. This, in turn, implies that the maximum level of tasks 

which have not completed after p intervals is no greater 

than L - p. Using the definition of p and Lemma 1, we have 

t(S') < p + (L - p) = L 

and the result of the lemma follows. 

(b) • Suppose there exists an integer i, 1 < i < p such that . 

Ç Q(V^ + 1) and let s denote the largest such integer. 

By repeating previous analysis, 

riQ(v + i)h 

t(S:)<Vp4.(tp. Y+l 1 

But ^ Q(V^ + 1) for s < i < p means that the highest level 

of task remaining to be executed is reduced by in the 

time interval (£ , t ) and hence V + ft - t ) = V . The re-
s p p p s s 

fore 

4-
1q(v + l)ll 

t(s') S's + !—r 

and the results of the lemma follows. 

Combining the result of Lemma 2 with Hu's result, we can now conclude 

that the optimal B-schedule is free from anomalies caused by reduction 

in execution times. 
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Theorem 3. Given a tree-structured precedence graph G, let 

S denote the optimal B-schedule if the tasks have equal execution times 

(T^ - 1, Vi) and S* denote the B-schedule if the tasks have unequal 

execution times (TÎ^ < 1, Vi). Then t(S') < t(S). 

4. Combined effects 

So far, in Section A, we have established the weak stability 

inherent in the optimal B-schedule S if we relax a single parameter. 

It immediately follows that conditions on all parameters may be col­

lectively relaxed according to a specified order without increasing 

the schedule length. 

Theorem 4. Given a tree-structured precedence graph for a system 

of tasks with equal execution times, the B-schedule is stable under any 

collective increase in the number of processors and allowable relaxation 

of the partial order followed by a decrease in the execution times of 

sane tasks. 

Proof ; Suppose we increase the number of processors to k' forming 

the schedule S'. By Theorem 1, t(S') < t(S). Next, perform the al­

lowable relaxations to form <•' and the resulting schedule S". Since S' 

is an optimal B-schedule for k' processors and tasks with equal execu­

tion times, we knew by the Corollary to Theorem 2 that t(S") < t(S'). 

Finally, perform the reductions in execution times to form the schedule 

S'". Since S" is an optimal B-schedule for k' processors, partial order 

<•' defined by a forest-structured precedence graph, and tasks with 

equal execution times, we know by Theorem 3 that t(S"') < t(S")- There­

fore, t(S"') < t(S). The proof is the same if we relax the partial order 
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first and increase the number of processors second. 

The theorem is somewhat restrictive in the sense that at run time, 

we would have to recalculate the priority list H after the "allowable 

relaxation" of G and before the decrease in the execution times. In 

the next chapter, we conjecture a more powerful statement which asserts 

the stability of the B-schedule under any allowable collective change 

in the original parameters without a run-time recalculation of the 

priority list X. 

5. Stability of the B-schedule for variants of tree-structured graphs 

Here we consider several tasking systems in which the precedence 

graph has a tree-like structure. 

We define an allowable relaxation in a p tree-restricted precedence 

graph G as the removal of an arc from any subgraph G^, 1i p, such 

that the new precedence graph of G^ is a tree or forest. The following 

theorems show that for any p tree-restricted precedence graph G, the 

B-schedule is free of the three anomalies commonly found in multi­

processor systems. 

Theorem Given a p tree-restricted precedence graph G with 

equally weighted tasks, the B-schedule is suable if the number of 

processors is increased, or under an allowable relaxation of G or if 

the execution time of some tasks are reduced. 

Proof : Here we only give the proof when the number of processors 

is increased because the proofs for the other two cases are similar. 

By Theorem 1, the B-schedule is stable for each subgraph G^ of G if 
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the number of processors is increased. Also by the definition of a 

p tree-restricted precedence graph, all tasks in ^ must be completed 

before any task in may begin execution. Since the schedule length 

is the sum of the schedules for the G^,, the result follows. 

Theorem 6. Given a p tree-restricted precedence graph G with 

equally weighted tasks, the B-schedule is stable under any collective 

increase in the number of processors and allowable relaxation of the 

partial order followed by a decrease in the execution times of some 

tasks. 

We omit the proof of this theorem because it is similar to the 

proof of Theorem 5. 

In conclusion, we point out that the results of Section A also 

hold for forests. They also apply to reverse forests and reverse p 

tree-restricted precedence graphs if the reverse of the original graph 

is considered and the resulting schedule is reversed. 

B. A-Schedules 

In this section, we study the stability properties of the schedules 

produced by the A-algorithm. This algorithm produces optimal schedules 

for two-processor systems in which tasks have equal execution times and 

are partially ordered by a general precedence graph. These schedules 

are found to be free of two of three anomalies commonly found in multi­

processing systems. Apart from some extensions, much of the work re­

ported in this section originated in unpublished literature,^ 

L. Liu and A. E. Oldehoeft, Department of Computer Science, 

Iowa State University, Private communication, 1974. 
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We begin with the optimal A-schedule S for the case where k = 2 

and = 1 for all i, and investigate the stability of this schedule 

by decreasing some of the relaxing <•, and increasing the number of 

processors to form the new schedule S'. Since a change in priority list 

can obviously result in increased schedule length, we hold <£ fixed as 

defined for the optimal A-schedule S, 

We begin with the following lemma which is valid for any task set 

with equal execution times and an arbitrary number of processors. 

Recall that a(T) stands for the label assigned to task T by the labeling 

algorithm used by the A-algorithm. 

Lemma 3 .  Let t(T) denote the time at which task T begins execution 

in an A-schedule. If T is executed on processor P^, then for any task 

T' such that t(T) < t(T'), we have a(T) > a(T'). 

The proof is omitted here since it is identical to that given in 

(6) for k = 2 processors. 

1. Increasing the number of processors 

Given a task set with equal execution times, let S and S' denote 

the corresponding A-schedule on k = 2 and k' > 2 processors, respectively. 

Figure 12 illustrates the typical effect of increasing the number of 

processors. We not*? describe Algorithm 1 which will partition the 

schedule S' into disjoint sets consisting of 2n^ - 1 tasks such that 

(1) t(S') = Ç n 

(2) each task in X^^^ is a predecessor of each task in X^. 

The result of the partition will allow us to conclude that the A-

schedule is inherently free of the anomaly caused by increasing the 
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Figure 12, Effect of increasing the number of processors in an A-schedule 
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number of processors. The trace of applying Algorithm 1 to S' in 

Figure 12 is given in Figure 13. 

Algorithm 1^ 

Let a(0) = 0; let denote the last task executed by let 

WQ denote the (possibly empty) task executed by P^ with tCW^) = tCV^). 

begin 

JW; X t^(S') -2; 

while tX) do 

if aCTg) < of(V^) 

then begin X<-i +1 ; X^ |t^| end 

else X^<-X^UT^UTg 

while I# ^ 0 and there exists a task T ^ X^(0 < j < A) 

such that t(T) > t and a(T) > 0'(Vjj_j)| do 

begin <- Xo^iUX^UT; A <- £ - 1 end 

t<-t-l 

end 

end 

If we assume the partition of S' to define the sets X^ for 0 < j < ̂  

at the termination of Algorithm 1; the following lemmas are direct 

results of the algorithm. 

Lemma 4. For 0 < j < X, the cardinality of each set X^ is odd, 

i.e. Ix.l = 2n. - 1. 
'  j '  3  

Lemma _5. The length of the schedule for k' processors is 

t(S') = H n . 
j=0 ^ 
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Figure 13, Partition of S' in Figure 12 using Algorithm 1 
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Lemma 6. For each task TeX., the labels are such that 
J 

a(T) >a(Vj) > ^ 

Lemma 2» Any task T U X. and executed at time t(T) = t(T) for 
j=0 J 

some TsXj (j > 1) has the property a(T) < a(V^_^). 

The following theorem shows that the optimal A-schedule for two 

processors is free of the anomaly caused by increasing the number of 

processors. 

Theorem 2» Given a precedence graph G with equally weighted nodes, 

the A-schedule for two processors is stable if the number of processors 

is increased to k' > 2. 

Proof: For 0 < j < Ji, if TeX. and T'eX. then it follows 
-J _ » J j-1' 

that T' <• T. The proof of this fact makes use of Lemmas 3, 6 and 7. 

It is omitted here since it is essentially identical to the argument 

in (6) as part of the proof that the A-algorithm is optimal for the 

two-processor systems. Consequently, every task in X^^^, 0 < j < A, 

must be completed before any task in can start iu schedule S (for 

the two processor system) as well as in schedule S' (for the k' > 2 

processor system). Using Lemmas 4 and 5, we have 

I  

t(S)>Ç^t>. . t(S') 

2. Relaxation of the partial order 

A simple relaxation of the partial order <• is defined as the re­

moval of the precedence of an immediate predecessor-successor pair 

(T\; Tj) while preserving the transitivity implied by the presence 

of the pair. More precisely, a simple relaxation of T^ <-T^ is de­

fined by an operation on the precedence graph G in which 
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(1) the arc (T^, T^) Is removed from G 

(2) for each arc (T^, T^) in G, an arc (T^, T^) is added if 

necessary to insure <-. 

(3) for each arc (Tj, T^) in G, an arc (T^, T^) is added if 

necessary to insure O T^. 

The resulting precedence graph G' defines a new partial order <•* which 

is contained in O. By a relaxation, we will mean the effect of any 

sequence of simple relaxations. Figure 14 illustrates the typical effect 

of a relaxation on an A-schedule for a two-processor system. 

G: S: 

6 1 4 1 3 1 1 

5 ̂  2 g :(S) = 4 

G' : 5 6 

txi 

3! "4i 

S' : P, 6 4 3 

5 j 2| 1 t(S') = 3 

Figure 14. Relaxation of partial order by removing arcs (4, 2) and 
(3, 1) from G 

As before, we let S denote the two-processor A-scheduls for an 

equally weighted task system. Let S' denote the list schedule for 

the task system with the relaxed partial order using the original 

priority list <£.. In a method similar to the previous subsection, we 

define an algorithm to partition S*. The result of the partition will 

alloif us to conclude that the A-schedule is inherently free of the 
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anomaly caused by relaxing the partial order. A trace of applying this 

algorithm is given in Figure 15. 

Algorithm 2  

Let a(0) = 0; let denote the last task executed by P^, let 

denote the (possibly empty) task executed by Pg with t(W^) = t(V^). 

besin 

4^0; ; t^ (S') - 2; 

while t > 0 do 

begin let denote the task executed by i = 1, 2 at time t 

if oCTg) < otQJ^) 

then begin ̂  j6 +1 ; ^ {t  j) end 

el^X^«-X^UTil/T2 

while (4^0 and there exists T^Xj, 0 < j <4, such that 

a(T) >a(V^_^), t(T)<t(V^) and T e S(T) in G 

for some T e X. I do 

begin X^_^^X^_jU X^li T; 1 end 

t <-1 - 1 

end 

end 

As direct results of the partitioning process, we see that 

Lemmas 4, 5, and 6 are also valid for the partition of S' produced 

by Algorithm 2. These and the following lemma are used in Theorem 8 

to show that a relaxation of the partial order will not cause an anomaly 

in the two-processor A-schedule. 
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S ' : XG X2 XJ 

(G' is constructed from G by removing <5 for 4 < i < 9.) 

Trace : 

Partitioning Activity 

0 

0 1 -) 0 

0 

0 1 

1 -> 2 

2 -» 3 

^ 4, ^ 0, Xj_ {4} 

Xg = {2,3,4; 

Xq ̂  {2-6} 

- 7, <- 0, <- {7} 

Vg <- 8, Wg <- 0, Xg *- (8) 

V, ̂  9, W, e- 3, X3 f- {9| 

t 

4 

4 -> 3 

3 -> 2 

2 1 

1 -> 0 

0  - 1  

Figure 15. Partition of S' using Algorithm 2 
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Lemma 8. For any TeX^, j = 1, there does not exist 

TeS(T) in G (original precedence graph) with the properties 

t(T) < t(Vj) - + 1, T^Xj, and Of(T) 

Proof : The innermost while loop in Algorithm 2 eliminates the 

possibility of such a T. 

Theorem 8. Given a general precedence graph G with equally 

weighted tasks, the two-processor A-schedule is stable under any re­

laxation on G. 

Proof; The heart of the proof is to show that for T' eXj^^, we 

must have T' < T for all TeXj. To facilitate the discussion, let 

S(T) and S*(T) denote the immediate successors of T in G and G', 

respectively. We first establish that <• T (according to G) 

for all TeXj, 0 < j < Z. There are two cases to consider. 

Case 1 .  Suppose t(Vj) - n^ + 1 < t(T) < t(Vj) for some 

0 < j < in S'. From Lemma 6, a(T) > so that T was considered 

for execution on at time t' Since it was not executed at 

that time, some predecessor T' of T had not yet completed execution, 

i.e. t(T') > t(Vj_|_^). But T' <' T implies T' <'T so that e(T') > q?(T) 

and t(T') < t(T). If t(T') = t(Vj^^) = t(Vj) - n^, then T' = 

and we are done. Otherwise, we can follow the discussion in (6) to 

establish by induction that V.., <• T. 
J-ri 

Case 2 .  Suppose t(T) < t(Vj^^) in S'. By the design of Algorithm 2, 

T e S(T') for some T' e X^ and t(Vj) - ny+l < t (T') < t(V^). By Case 1, 

<*T' and by transitivity <« T. 

Thus, for all TeX., we have established that V.,, <*T. Let I, 
J J+1 J 

denote the set of tasks in Xj which have no predecessors in Xj. Since 
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<'T for all T e, it follows that S(Vj^^) . We next 

establish that T' eXj^^ and TeX^ implies T' <'T (according to G) 

for 0 < j < il. 

Consider first the case xjhere T' has no successors in Xj^^. 

There are two cases. 

Case a. Suppose T* has a successor T such that t(T) > 

- n.,- + 1. In this case either T eX, for some i > 0 or T is of no 
J+1 J-i 

interest of us. 

Case b. Suppose T' has a successor T such that t(T)<t(Vj^^) 

- nj^^ + 1. By Lemma 8, we note that a(T) < «(V^ ) since T ̂  

Then T^X^ for i > j + 1 since otherwise by Lemma 6, Qf(T) > Qf(V^). 

But from the first part of the proof, o(V^) > «(V^) which is a 

contradiction. 

In any case we have established that if TeS(T'), then T c X^ ^ 

for some i > 0 or T is of no interest to us. We now have S(T')ftXj^j = 0 

by assumption, S(Vj^^)H by the first part of proof and 

N(T') > since a(T') > . In a manner identical to (6), 

we can show S(T')nXj = I^, Furthermore no T is in X^ ^ for i > 0 

since then for some T" elj, we have T' <°T" <• T contradicting TeS(T'). 

We have established that T' eX.,, with no successor in X.,, 
J+1 J+1 

and TeXj implies T' < T. Consider next the case where T' has a 

successor in X^^^. By transitivity, it follows that T' <• T for all 

TeXj. 

By Lemma 4, X^ consists of In^ - 1 tasks. Since T' and 

TeXj implies T' <°T, we have 
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I 
t(S) > I] n = t(S') 

J=0 ^ 

3. Reduction of task execution times 

Here we illustrate the instability of the A-schedule if some of 

the task execution times are decreased. Figure 16 presents a specific 

example of this type of anomaly. In order to insure stability under 

these conditions, additional precedence constraints (15) would have to 

be placed on the task system. This new system, with additional precedence 

constraints, is free from all three anomalies. 

G: S: 
C

O
 

6 4 2 

7 5 3 1 

S': 8 1 5 4 2 

7 6 
m  

3 

= 1 for all i 

t(S) =4 

T8 = %, Ti = 1, i # 8 

t(S') = 4% 

Figure 16. Anomaly in A-schedule caused by decrease in execution times 

4, Stability of the optimal preemptive schedule for two-processor 

systems 

The stability properties of the A-schedule, established in previous 

discussion, can be used to derive stability properties of optimal pre­

emptive schedules for two-processor systems. Assusie that the execution 

times, T = (t^, t^) are mutually commensurable, i.e., there exists 

a real number w such that T. = n.w for some integer n.. Recall G to 
1 i 1 w 

be the precedence graph derived from G by replacing each task T^ by 

n mutually commensurable tasks T. ., ..., T each with execution 
— 1 5 i JL 5 

time w. Define ()» m > 1 to be a sequence of precedence graphs 
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derived from by replacing each task with m mutually commensurable 

tasks, each with weight w/m. Let denote the A-schedule for on 

a two-processor system; denote the A-schedule for G^y^ for k' > 2 

processors; and denote the A-schedule for on a two-processor 

system where G" is derived from G by a relaxation of the partial order 

and G", is derived from G" in the manner described above. 
w/m 

From the previous discussion we know that t(S') < t(S ) and 
m — m 

t(S^) < t(S^). If we take the limit as m approaches infinity, then 

S , S' and S" converge to general schedules. These general schedules 
mm m 

are equivalent, respectively, to preemptive schedules S, S', and S" 

produced by the so-called C-algorithm (5). Furthermore S is an 

optimal preemptive schedule. Taking limits on the inequalities above, 

we have t(S') < t(S) and t(S") < t(S) resulting in the following 

theorem. 

Theorem 9. Given a general precedence graph G with unequally 

weighted tasks, the two-processor schedule produced by the C-algorithm 

is stable if the number of processors is increased to k' > 2 or the 

partial order is relaxed. 

Note that we have stability under the combined effects of first 

relaxing the partial order and then increasing the number of processors. 

This follows from the fact that S" is an optimal preemptive schedule 

for the two-processor system and precedence graph G". 

Since the A-schedule is not stable when some execution times are 

decreased, we can infer nothing about the corresponding stability of the 

optimal preemptive schedule. However, if additional precedence constraints 
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(15) are placed on the task system, our new system is free from all 

three anomalies, 

C. C-Schedules for Tree-Structured Graphs 

In this section, we study the stability properties of the schedules 

produced by the C-algorithm when it is applied to tree-structured 

graphs. These schedules are found to be free from three anomalies 

commonly found in multiprocessor systems. The study of the stability 

properties of the C-schedules on a two-processor system is given in two 

different sections, Section B and Section D, following two different 

approaches. Recall from Chapter II that the C-algorithm produces 

an optimal preemptive schedule for a tree-structured graph, i.e., 

CTpg(G, k) = CTç,(G, kX and that the execution times are assumed to 

be mutually commensurable. 

In order to prove the optimallty of the C-algorithm when it is 

applied to tree-structured graphs, Muntz and Coffman (19) show that 

if we form G^^^, the graph obtained from G by splitting each mutually 

commensurable task in r subtasks, then CT^g(G^, k) -» CTpg(G, k) as 

r -» They also show that there exists an integer v such that: 

^^BS^Vmv' = GTg(G, k) for m = 1, 2, ... 

In other words, the optimal limit can be achieved in a finite number 

of steps. 

We investigate the stability of this schedule by decreasing s o î î s  

of relaxing <, and increasing the number of processors to form 

a new schedule. 
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1. Increasing the number of processors 

We know that CTpg(G, k) = CT^(G, k) and k) = CT^CC, k). 

It was shown in Theorem 1 that the optimal nonpreemptive schedule for 

tree-structured graphs and equally weighted tasks is stable when the 

number of processors is increased, i.e.. CIgg(G^y^, k') £ ̂"^gg^^w/mv' 

Also, it is known that the preemptive discipline is more powerful 

than the nonpreemptive discipline, i.e., CT^„(G, k) < CT„„(G, k). 
ro J5d 

Combining all the relations given above, we find CT^(G,k') < CT^(G,k). 

Therefore, we have the following theorem. 

Theorem 10. Given a tree-structured precedence graph G, the C-

schedule is stable if the number of processors is increased. 

2. Relaxation of the partial order 

In this part, we investigate the stability when the partial order 

is relaxed. In order to insure that <•* C Oand the new precedence 

graph G'', defined by <'; is a tree or forestj we use the same defini­

tion of an "allowable relaxation" given in Section III.A. 

We know that CT (G, k) = CT„(G, k) and CT^ (G , , k) = CT^(G, k). 
rb Vj Xjb W / t U V  L, 

The corollary of Theorem 2 shows that the optimal nonpreemptive schedule 

for tree-structured graphs and equally weighted tasks is stable under 

any allowable relaxation in G, i.e. CTgg(G^y^^, k) < CT^gk). 

Also, it is known that CTpg(G', k) < CTgg(G^y^^, k). Then, combining 

all the relations given above, we find that CT^(G', k) < CT^,(G, k). 

Therefore, we have the following theorem. 

Theorem 11. Given a tree-structured graph G, the C-schedule is 

stable under any allowable relaxation of G. 
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3. Reduction of task execution times 

We know that CTpg(G, k) = CT^(G, k) and CTgg(G^y^, k) = 01^(0, k). 

By Theorem 3, the optimal nonpreemptive schedule for equally weighted 

tasks and tree-structured graphs is stable when the execution time of 

one or more tasks is reduced, i.e., k) < where 

^BS^^w/mv' Che completion time for the new graph G'. Also, it 

is known that an optimal preemptive schedule is no longer than a non= 

preemptive schedule, i.e., CTpg(G^y^^, k) < tgg(G^y^^, k), and that 

CT—,(G'. k) = CI_^(G' , , k). Combining all the relations given above, 
ra - rS w/mv 

we obtain CTg(G', k) < CTg(G, k). Therefore, we have the following 

theorem. 

Theorem 12. Given a tree-structured precedence graph G, the C-

schedule is stable when the execution time of one or more tasks is 

reduced. 

4^ Combined effects 

Thus far, we have established the weak stability inherent in the 

optimal C-schedule S if we relax a single parameter. It immediately 

follows that conditions on all parameters may be collectively relaxed 

without increasing the schedule length. 

Theorem 13. Given a tree-structured precedence graph G, the C-

schedule is stable under any collective increase in the number of 

processors, allowable relaxations of the partial order and a decrease 

in the execution time of some tasks. 

Proof ; Suppose we Increase the number of processors to k', forming 

the schedule S'. By Theorem 10, t(S') <t(S). Next, perform the 



allowable relaxations to form <•' and the resulting schedule S". By 

Theorem 11, t(S") < t(S'). Finally, perform the reductions in execution 

time to form the schedule S'". By Theorem 12, t(S"') < t(S"). There­

fore t(S'") < t(S). The proof for the other five different cases is 

similar. 

5. Stability of the C-schedule for variants of tree-structured graphs 

Here, we consider several tasking systems in which the precedence 

graph has a tree-like structure. We also use the same definition of 

an allowable relaxation in a p tree-restricted precedence graph given 

in Section III.A.5. The following theorems show that for any p tree-

restricted precedence graph, the C-schedule is free of the three 

anomalies commonly found in multiprocessor systems. 

Theorem 14. Given a p tree-restricted precedence graph, the C-

schedule is stable if the number of processors is increased, or under 

any allowable relaxation of G; or if the execution time of some tasks 

are reduced. 

Proof : Here we only give the proof when the number of processors 

is increased because the proofs for the other two cases are similar. 

By Theorem 10, the C-schedule is stable for each subgraph G^ of G if 

the number of processors is increased. Also, by the definition of a p 

tree-restricted precedence graph, all tasks in G^_^ must be completed 

before any task in Gj; may begin execution. Since the schedule length 

is the sum of the schedules for the G^^, the result follows. 

Theorem 15. Given a p tree-restricted precedence graph G, the C-

schedule is stable under any collective increase in the number of 
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processors, allowable relaxations of the partial order and a decrease 

in the execution times of some tasks. 

We omit the proof of this theorem because it is similar to the 

proof of Theorem 14. 

In conclusion, we point out that the results of Section C also 

hold for forests. They also apply to reverse forests and reverse p 

tree-restricted precedence graphs if the reverse of the original graph 

is considered and the resulting schedule is reversed. 

D. Subset Assignment Schedules 

In this section, we study the stability properties of preemptive 

schedules for k-processor systems in which the tasks are partially 

ordered by a general precedence graph. These schedules are found to 

be free from three anomalies that commonly occur in multiprocessor 

systems= Our interest in these schedules is motivated by the fact 

that they are optimal under certain conditions and in general are 

expected to be a good heuristic. 

Because the subset assignment schedules assume unit tasks, we 

start with a general graph G with mutually commensurable task times. 

We then compute the graph and form a schedule using a special subset 

sequence for G^. The algorithm for constructing a subset sequence 

for G^, to be called Subset Assignment Algorithm, SAA, is defined in 

the following manner. Nodes are assigned to subsets level by level, 

except when there are u < k nodes at the highest level. In the latter 

case, as many as possible of the k - u nodes necessary to "fill" the 
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subset are chosen from the executable nodes at lower levels. Of course, 

if there are more than k - u nodes to choose from, those at the higher 

levels are selected first. Note that the SAA is a generalization of 

the algorithm given by Muntz and Coffman (18) that constructs a subset 

sequence for which corresponds to an optimal subset assignment for 

G with k = 2. Also, an optimal subset assignment for G is an optimal 
w w 

preemptive schedule for G when k = 2 (18). The SAA might not produce 

an optimal subset assignment for arbitrary graphs when k > 2. In the 

future, we will use SAS to denote a subset assignment schedule produced 

by the SAA. An example illustrating the SAS is given in Figure 17. 

From the definition of the SAS, we see that each subset S^, for 

1 < i < ̂  , consists of mutually independent nodes. Therefore, using 

McNaughton's result (16), the minimum length schedule for S^ requires 

pil 1 
ti = max j-Y" , 1> « w 

units, where js.j is the number of tasks in 3., Moreover, the SAS will 

^ L/w ^ 

have a schedule length t(S) = will shoi'? that the SAS is 
i=l ^ 

free from three anomalies that commonly occur in multiprocessing systems, 

considering two different cases: 1) using the original subset sequence 

of G for the new schedule S', and 2) recalculating the subset sequence 

for S'. 

Suppose we do not recompute the subset sequence for a k'(k' > k) 

processor system. In other words, we use the original subset sequence 

for G^ as defined for the k-processor system. It is clear that in­

creasing the number of processors will not increase the schedule length. 

If we do not recompute the subset sequence when the partial order is 
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Gw: k = 3 

1 2 3 % 

Subset sequence for G^:(Tg, Tg, T^|, {t^, Tgj, {T^, T^, T^, T^j 

S: 

"l ^8 ^5 •^1 ^2 

^2 ^9 ^6 ^2 ^3 

^3 ^7 
fMM////////////È 

^3 ^4 
1 

t(S) = 3 1/3 

Subset assignment schedule for G 
w 

Figure 17, Illustration of the subset assignment schedule 

relaxed, we will be using the original subset sequence from for 

the new graph G^, and, as a result, we obtain exactly the same schedule. 

If we do not recompute the subset sequence when the execution time of 

some tasks is decreased, we will be using the subset sequence with 

unequal weights. In this case, we only have to study the behavior of 
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a particular subset when the execution of one or more tasks is reduced. 
L/w 

First, let t(S) = t be the completion time for the graph G and 
L/w j=l J 

t(S') = ^ tj be the completion time for G^ when < w for all i. 

Using McNaughton's result (16) for independent tasks, we have 

Thus, t(S') < t(S) and we have the following theorem. 

Theorem 16. The Subset Assignment Schedule, SAS, is stable under 

any collective increase in the number of processors, allowable relaxa­

tions of the partial order and a decrease in the execution times of 

some tasks if we hold the subset sequence for the graph G fixed. 

Because the subset assignment and the C-Algorithm both produce 

optimal preemptive schedules for a two-processor system, Theorem 9 

could be stated as a corollary of Theorem 16. 

From now on, we will study the stability of the Subset Assignment 

Schedules, SAS, in the more interesting case when we recalculate the 

subset sequence for the new schedule S'. 

1. Increasing the number of processors 

If we increase the number of processors from k to k', we wish to 

show that the resulting schedule length does not increase. Using the 

SAA, we form the sequence of subsets S^, S^, ..., S^y^ for a k-processor 

system. We then consider the sequence |S^| using k'-processors and we 

study the schedule length effect of moving nodes between subsets until 

we arrive at the subset sequence for k'-processors produced by the SAA. 

Since a finite number of moves are needed to form the subset sequence 
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for k'-processors, it will suffice to show that a single move will not 

result in an increase in the schedule length. Increasing the number of 

processors allows the possibility of moving nodes from a lower-level 

subset to a higher-level subset in a manner described by the folloifing 

lemma. 

Lemma 9. Let S. and S, be two subsets obtained by the SAA for 
J i 

in a k-processor system. Then, any move of a noc^e from to S^, 

i < j, required by the SAA for a k'-processor system will not result 

in an increase in the schedule length. 

Proof: Define SÎ and SÎ as the subsets obtained from S. and 8. 
X J i J 

after moving a node from S^ to S^. Therefore |s^| = |Su| +1 and 

Is'. I = Is. I - 1, Let t., t,j t! and tl be the time needed to execute 
' j' J i' J i 3 

S., S., S' and S'., respectively. We need not consider cases when 
^ J 1 J 

|Sj| = 1 since such a node cannot be moved due to precedence constraints. 

We also need not consider the cases when |s.1 > k' because the movement 

of a node frcs a lower-level subset S. to a higher-level subset 3. i s  
j 1 

not allowed by the SAA when | S_. | > k'. There are four possible cases 

when a node can be moved from S^ to S^, i < j. 

Case 1. Suppose 2 < | S^| < k'and |s^| < k. Then clearly tî = t^ 

and t'. = t. since k < k', 
3  3  

Case 2. Suppose |S.| > k'and |S^| < k. Then clearly t| = t^^ 

and tj < tj since k < k'. 

Case 2. Suppose 2 < js^] < k'and k < |s^| < k'. Then clearly t^ ~ t^ 

and t! = t . .  
J J 

Case 4. Suppose |Sj| > k®and k < |s^| < k'. Then clearly t| = t^ 

and t! < t., 
J J 
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In each of the above cases, it follows that tj + t! < t. + t.. 
L/w L/w ^ J 

Also t \  = t. for A i, j. Therefore ^ t' ;< t . .  
^ ^ 4=1 * Z=1 * 

Figure 18 shows the typical effect of increasing the number of 

processors. 

Let S and S" denote the SAS for G on a k-processor system and on 

a k'-processor system, respectively; and S' denote the schedule for G 

in a k'-processor system using the subset sequence produced by the SAA 

for a k-processor system. 

From previous discussion, we know that t(S') < t(S) when we do 

not recalculate the subset sequence. Note that when we recalculate the 

subset sequence based on k'-processors, if the number of nodes in 

any subset S^ is less than k', it is possible to "fill" S^ with ready 

nodes from lower levels. From Lemma 9 we know that by moving a node 

to 8^ from a lower level we cannot increase the schedule length. Then 

by successive applications of Lemma 9 the resulting schedule S" is 

such that t(S") < t(S'). Therefore £(S") < t(S). This result gives 

us the following theorem. 

Theorem 17. The Subset Assignment Schedule, SAS, is stable when 

the number of processors is increased from k to k' and the subset 

sequence is recomputed, 

2. Relaxation of the partial order 

In this part, we investigate the stability when the partial order 

is relaxed. Here we use the same definition of "simple relaxation" 

given in Section III.B. Using the SAA, we form the sequence of subsets 

based on a given partial order <•. We wish to study the schedule-length 
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G: 
h • 

«2 - ̂ 2- I3I 

53 = IT4. T5, ij 

54 =• ^7-

~ (T-o' ^lo) 

=6 - Pli' 

t(S) = 6% 

a) Subset sequence for G on 2 processors 

4 = (Tl) 

?  I  — .  I T »  m  r p  i  

'2 t"2' ""3' '"A' 

s; = (Tg' Tg) 

"5 " >no' 

S' . (Tg, Tg, T^) S' = {T^^} 
b ' 11' 

t(S') = 6 

b) Subset sequence for G on 3 processors 

Figure 18. Typical effect of increasing the number of processors in 
O N 11 ORT O 
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effect of moving nodes among these subsets to arrive at the subset 

sequence for the relaxed partial order <»' produced by the SAA. It is, 

of course, assumed that <•' is derived from <* through a finite sequence 

of simple relaxations. A single simple relaxation may result in the 

movement of more than one node. Considering only the end result, it is 

possible to start with the subset sequence based on <• produced by the SAA. 

and arrive at the subset sequence based on <*' produced by the SAA 

through a sequence of "effective moves." An "effective move" of a 

node between subsets S, and S. is defined as ..the move of a 
- J 

node n from to S^ and the possible, if any, move of a node from 

the subset S.U (n) to the subset S, - (n) allowed by the SAA and 
J i 

caused by the first move. An effective move consists of more than one 

single move only in the case where |Su| < k and i < j. Any movement of 

a node out of will be later offset by a move back into S^. An example 

illustrating an effective move is provided in Figure 19. 

The following lemma studies the effect on the schedule length 

caused by an effective move. 

Lenana 10. Let and S^ be two subsets obtained by the SAA for 

in a k-processor system. Then, any effective move of a node between 

Sj and Sj required by the SAA for the new partial, order will not result 

in an increase in the schedule length. 

Proof: Define Sj and Sj as the subsets obtained from S^ and S^ 

after an "effective move" of a node from S. to S,. Therefore 
J 1 

Is! I = Is, I +1 and |s'.| = |s.| - l' if the effective move consists of one 
1 ' i' ' j' ' j' I 

single move, or js^j = js^j and jSyj = |S^ ] otherwise. Let t^, t^, t^ and 

tj be the time needed to execute the subsets S , S., Sl and SÎ, 
J 1 J 1 ] 
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G: 

T3 . T4 

Si = Tg. T3I 

=2 = 1^4' •'s' 

T3I Y 

a) Subset sequence for G on 3 processors 

/ ->» : (obtained from G by removing (T^, T^)) 

1 ® 

?3" T4' 

2f 4 = {^2' "^3' 

= (T^, Tg, Tgi 

b) Subset sequence for G' on 3 processors 

(Note that the subset sequence for G' has been obtained from the 

subset sequence for G after only one effective move. The move of 

from to Sg is offset by the move of from S^ to S^,) 

Figure 19. Example of an effective move 

respectively. 

We first study the effect of moving a node from to S^, i < jj 

due to a simple relaxation of the partial order. Here we do not con­

sider the case when 2 < |Sj| and |Su| > k because the movement of a 

node from a lower-level subset S. to a higher-level subset S. when 
J 1 
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> k is not allowed by the SAA. It is important to mention that 

if all the nodes in S, and S. are mutually independent after the simple 
^ J 

relaxation, then we form a new subset S!^ = S^USy. There are four pos­

sible cases when a node can be moved from Sj to S^, i < j; 

Case 2» Suppose js^] > k and |EL| < k. Then clearly tj < tj and 

'1 ° 'r 

Case 2. Suppose 2 < |S^| < k and |s^| < k. Then clearly t^ = t^ 

and tj = t^. 

Case 3. Suppose |s.| =1 and | S^. [ > k. Then t^ = w, t^ = js^jw/k, 

t! = 0 and t! = (|s.| + l)w/k, therefore t! + t! < t. + t.. 
3 11 J L J 1 

Case 4. Suppose |Sj| =1 and |s^| < k. Then clearly tj < t^ 

and tj^ = t^. 

Now, we study the different cases that can happen for an "effective 

move" of a node from S^ to S^, j <1. There are three different 

cases : 

Case 1. Suppose |Sj| >k and |S^| > k. Then t^ = |s^|w/k, t^ = 

|s^|w/k, t^ = (|Sj| - l)w/k and t| = (|S^| + l)w/k, therefore tj + t| = 

tj + t^. 

Case 2. Suppose |s.| > k and |s | < k. Then clearly t' < t, and 
i ^ 3 3 

t! = t.. 
2. 1 

Case 3. Suppose |Sj| <k. In this case, after a node n is moved 

from Sj to S^, we move a node from the lower-level subset S^U (n) to 

"fill" the higher-level subset Sj - |n|, leaving the cardinality of 

both subsets unchanged. Therefore t! + tj = t^ + t.. 

In each of the above cases, it follows that t! + t! «Ct, + t.. 

i/» ^ ^ { 
Also tl = t, for -â # i, j. Therefore ^ . 

4=1 ^ 
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If we recalculate the subset sequence, then by successive applica­

tions of Lemma 10, the resulting schedule S' is such that t(S') < t(S). 

Therefore, we have the following theorem. 

Theorem 18. The Subset Assignment Schedule, SAS, is stable under 

any relaxation of the partial order if we recalculate the subset 

sequence. 

Figure 20 shows a typical effect of relaxing the partial order 

and recalculating the subset sequence. 

3. Reduction of task execution times 

It is conjectured that the Subset Assignment Schedule, SAS, is 

stable when the execution of one or more tasks is reduced and the 

subset sequence is recalculated. 

4. Combined effects 

So far in this section we have established the weak stability 

inherent in the Subset Asglgnmaat Schedule when we increase the number 

of processors, or relax the precedence order, if the subset sequence is 

recalculated» It immediately follows that conditions on k and <3 may be 

collectively relaxed without increasing the schedule length. 

Theorem 19. The Subset Assignment Schedule, SAS, is stable under 

any collective increase in the number of processors and relaxations of 

the partial order. 

Proof ; Suppose we increase the number of processors to k' forming 

the schedule S', By Theorem 17, t(S') < t(S). Next, perform the 
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G: 51 - till 

52 = iTj, I3, Ij 

53 - II5I 

54 = iTj. T,, Igl 

t(S) = 4 

a) Subset sequence for G on 3 processors 

G' : (obtained from G by removing (T^, T^)) 

s [  =  ( t ^I 

S' . IT,. T3. T5I 

S3 = 1:4. h '  h -

t(S') = 3 1/3 

8 

b) Subset sequence for G' on 3 processors 

Note that to obtain the subset sequence for G' from the subset 

sequence from G x-?e move Tg from to S2; T^; Tg from to S- and 

from Sg to S^. 

Figure 20. Typical effect of relaxing the partial order in a subset 
sequence 
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relaxations to form <?' and the resulting schedule S".By Theorem 18. 

t(S") < t(S'). Therefore t(S") < t(S). The proof is similar for 

the other possible case. 

We conjecture that Theorem 19 also holds if we allow additional 

decrease in the execution time of some tasks. 



67 

IV. STABILITY PROPERTIES OF OPTIMAL NONPREEMPTIVE 

SCHEDULES UNDER NONOPTIMAL CONDITIONS 

In this chapter we study the stability of the schedules obtained 

from the A-algorithm and B-algorithm when the conditions for optimality 

are violated. We will apply the A-algorithm and B-algorithm to general 

graphs with unequally weighted tasks on a k-processor system, or to 

general graphs with equally weighted tasks on a k(k > 2) processor 

system. This study was motivated by the results of previous work made 

by Manacher (15), Ramamoorthy, et al. (20), Chandy and Dickson (3), 

and in particular by the simulation made by Adam, et al. (1), who 

found that the algorithms that assign priority depending on the task's 

level are near-optimal, i.e., in 90% of the cases these algorithms produced 

a schedule that is within 5% of the optimal execution time. 

Before we report the results of this chapter, we need to generalize 

the labeling algorithm used to obtain the priority list,<Ê , for the 

A-algorithm. The new labeling algorithm is the following: Let 

N = (n^, ..., n^) and N' = (n^, .n^,) denote two decreasing se­

quences of positive integers. Define N < N' if either (a) for some i, 

1 < i < t, we have n. = nl for 1 < j < i - 1 and n, < n!, or (b) t < t' 
— — jj — — i i 

arid 11. - Til for 1 < j < t. Let n denote the number of tasks in G. 
J J - -

The labeling algorithm assigns to each task T an integer label 

a(T)e(l, 2, ..., n). The mapping a is defined recursively as follows. 

Let S(T) denote the set of immediate successors of T and L^ denote the 

set of tasks at level i in G where i is a real number in the range 

0 < i < L. 
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51. Arbitrarily assign a label a(T) to each task TeL^ starting 

from 1, where the subscript i is minimal. 

52. Select the set of tasks with minimal subscript j from 

those sets which have not been assigned labels. 

53. Suppose that (k - 1) tasks have been assigned a label. For 

each task T in L^, let N(T) denote the decreasing sequence of integers 

formed by ordering the set (Qf(T')]T'eS(T)). At least one of these 

tasks T* must satisfy N(T*) < N(T) for all such tasks T. Choose one 

such T* and define Qf(T*) to be k. 

54. We repeat the assignment in S3 until all tasks in have 

been assigned some integer. 

55. Repeat steps S2, S3 and S4 until all tasks are labeled. 

All the examples presented in this chapter show that the A-schedules 

and B-schedules are unstable when the conditions for optimality are 

violated. In order to have stability, we have to add Manacher's 

conditions (15). 

Example 1 .  The example in Figure 21 shows an anomaly due to a 

decrease in the execution time when the A-algorithm or the S=algorithni 

is applied to general graphs with equally weighted tasks on a k-processor 

system. 

In this example the schedule length is increased by 1/2 unit if 

T2k^2 ~ instead of 1 unit. 

Example 2 ,  Figure 22 shows an example of an anomaly due to a 

decrease in the execution time when the A-algorithm or the B-algorithm 

is applied to general graphs with unequally weighted tasks on a 
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t=0 

S: P T 
2k+2 "k+2 "2 

"2k+l "k+l "l 

"2k "k NNË 
"k+3 "3 

t(S) = 3 

Now if T 
2k+2 

= % 

t=0 

Pl "3 "2 

"2k+l 

"2k 

T 
k+3 

t r s M  =  U  

Figure 21. A system with equally weighted tasks that degrades with the 

reduction of execution time of one task 
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Figure 22. A system with unequally weighted tasks that degrades with 

the reduction of execution time of one task 
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k-processor system. We see that reducing T2k+2 ^ unit, the 

schedule length is increased by 2 units. 

An anomaly due to increasing the number of available processors 

is the subject of the next two examples. In these examples we present 

the anomaly when k is increased from 7 to 8. 

Example 3. Figure 23 shows an example of an anomaly due to in­

creasing the number of available processors when the B-algorithm is 

applied to a general graph with unequally weighted tasks. 

Example 4. Figure 24 shows an example (12, 13) of an anomaly 

due to increasing the number of available processors when the B-algorithm 

is applied to a general graph with equally weighted tasks. 

In the next example we present an anomaly due to relaxing the 

partial order, <. 

Example The example in Figure 25 shows an anomaly due to 

relaxing some precedence relations when the A-algorithm or the B-

algorithm is applied to general graphs with unequally weighted casks. 

We conjecture the following: 

1) The B-schedule for a tree-structured graph with unequally 

weighted tasks and arbitrary number of processors is stable under any 

collective increase in the number of processors, allowable relaxations 

of the partial order and a decrease in the execution time of some 

tasks. 

2) The A-schedule for a general graph with equally weighted 

tasks and arbitrary number of processors is stable under any collective 

increase in the number of processors and relaxations of the partial 

order. 
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W/7///A 25 xr/̂ /'///A lu 

Figure 23. A system with unequally weighted tasks that degrades with 

increasing k (B-schedule) 
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G; 
23 24 25 26 27 28 29 30 31 32 33 34 35 

= 1, Vi 

S : t=0 1 

"l 

°5 

35 28 22 18 10 

34 27 21 17 9 

53 26 20 ÎÔ 5 

32 25 19 15 7 

31 24 3 14 6 

30 23 2 13 5 

29 11 1 12 4 

t(S) = 5 

t(S') = 6 

Figure 24. A system with equally weighted tasks that degrades with in­
creasing k (B-schedule) 
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G: 

4k-2 

3k-3 3k-2 

^6k-3 ^2k-2 ^3k-4 

\-l \ 
T T 
2k-3 1 

T .  = 1 for 1 < i < 3k -4 
i - -

and 3k- l<i<4k - 2. 

'^3k-2 ^4k-l " ̂ 

'3k-3 = 2% 

S: t=0 

^4k.l 
T 
4k-2 

1 1 1 
T 
3k-2 1 

^2 ^3k-4 
T 
2k-3 \-2 ^4k-3 ^3k-3 

m 

^3 T^k-S T 
2k-4 \-3 ^4k-4 

t(S) = 7 

'2k-1 3k k-1 

! "2k-2 I "k-1 

If we relaxed the precedence relations T,, , <* T^, „ and T,, _ <3 T„ „ 
fK-i jK-j 4K-Z jiC-J 

we have S': 

S': t=0 1 2 4 5 6 

"i 

>1 1 1 1 

^4k-l ^4k-2 

Pn 
^3k -3 

T T 

1 -

^3 ^3k-4 _E2k-2_ ^4k-3 

^k-1 '2k 

'^2k-l 

\+2 

\+l 

^4 

T3 

^3k+l 

^3k 

t(S') 

Figure 25. A system that degrades when the partial order is relaxed 
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Assuming the conjectures are true, the B-schedule provides an upper 

bound on the schedule length for task systems with tree-structured 

graphs. For general graphs, we have obtained a negative result because 

the A-schedule is not stable when the execution time of some tasks is 

decreased. We can only say that the A-schedule is stable if we first 

allow any collective increase in the number of processors and relaxa­

tion of the partial order, and then, we add Manacher's precedence 

constraints and use the projective task list, PTL, in order to prevent 

the third type of anomaly. Recall that adding Manacher's precedence 

constraints and using the PTL we cannot have anomalies due to the in­

crease in the number of processors and reduction of the execution time 

of some tasks (15). 
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V. LOWER BOUNDS ON THE RATIO CT^g/CT^g 

In this chapter, we will give some bounds on the ratio between the 

optimal preemptive schedule and the optimal basic schedule when we take 

in consideration the cost of switching and the cost of preemption. Be­

cause we can construct optimal schedules with excessively many pre­

emptions (thereby driving the preemption cost unfairly high), we will 

confine our attention to those optimal preemptive schedules which have 

a minimum number of preemptions. The first part of this chapter deals 

with general precedence graphs G, k > 2 processors and unequally 

weighted tasks, while the second part deals with equally weighted tasks. 

We assume that switching times are positive and constant. While this 

is a simplification of the real case (7), it does provide a first 

order approximation to the effect of processor switching on the schedule 

length. 

In order to obtain the bounds we will introduce some notation. 

Let G^, Gg, Gg and be the cost of starting a task for the first 

time, stopping a task pennanently, starting a task after preemption 

and stopping a task temporarily, respectively. Let CT^g and CTpg be 

the length of the optimal basic and preemptive schedule, when we 

consider e. = 0 for all j. Let CT' and GT' be the length of the 
J Bo irb 

optimal basic and preemptive schedule, when we consider gy # 0 for 

any j. 

It is important to note that the scheduling is done with the as­

sumption that Gj = 0 for all j. Using this schedule, we investigate 

the execution time effects of g^ f 0, for any j. If we do not proceed 
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in this way, then the weight of the tasks including the cost of pre­

emption, becomes schedule dependent and this class of problems is more 

difficult to solve. 

The following definitions apply to a schedule with zero preemption 

and switching costs. 

Define : 

Pi 
N — she number of tasks in the optimal basic schedule that are 
B 

performed by processor P^. 

Pi 
— the number of tasks in the optimal PS that are started for 

first time in P., 
1 

Pi 
Ng — the number of tasks in the optimal PS that are stopped 

permanently in P^. 

Pi 
Ng - the number of tasks in the optimal PS that are started 

after preemption in P^. 

Pi 
— the number of tasks in the optimal PS that are stopped 

temporarily in F^. 

(G( — the number of tasks in the graph G, 

Pi 
N = max (N ) where P. is any processor that finishes last. 

ij i D 1 
p * 

N* = max (N_ ) for all i. 

^ Pi 
N. = min (N. ) where P. is any processor that finishes last and 
j i J 1 

1j < 4. 

1 k Pi Pi 
{N. + N J = min(N. + N. .) where P. is any processor that finishes 
' J j+Z' i J j+z 1 

last and j = 1, 2. 

* Pi 
NT = max(N/) for i < j < 4 and all i. 
J i J - -

We can write 
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4 4 

c:,s + Z Ï Î cTps + E «1=1 
1=1 1=1 

and 

CT 
BS 

The notation used in this chapter is illustrated in Figure 26 

In this chapter, we will find only lower bounds on the ratio 

CTpg/CTgg for any task system. Based on experimentation and apparent 

claims in the literature (3), it appears possible to place an upper 

bound on the number of preemptions in any processor for an optimal 

schedule which has a minimum total number of preemptions. This knowledge 

would allow us to derive important upper bounds on the ratio CTpg/CT^g. 

This derivation is not presented here because the author was not able 

to verify the upper bound on the number of preemptions. However, using 

a different approach, in the next chapter we will find upper and tighter 

lower bounds on the ratio CT' /CT' for equally weighted tasks on a 
rb DO 

A. Unequally Weighted Tasks 

In this section we will find a lower bound on the ratio CT^g/CT^g 

for any general graph G with unequally weighted tasks on k > 2 pro­

cessors. For our purpose, the following bounds are needed: 

two-processor system « 

(1) 

N 

> 0 (2) 
N 
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G: » 1 & 1 

6< 1 7< 
I h 

= 3/2 

'̂ 2 "̂ 3 "̂ 5 

"4 = ^6 = : 

t? = 3 

Tg = 7/2 

"^8 = "lO = Tii = 1 

t=0 

S: P, 1 
* 

5 ; in 

^2 
2 4 9 

^3 
3 6 

?! P3 
Ng = Ng = 4 

P2 
« B  = 3  NL = 4 

CT'g = 6.5 + 4(e^ + e^) 

a) Optimal basic schedule for G 

t= =0 2 3 4 5 6 

"1 
2 4 6 

1 ^ 
10 

'1 ' 
7 ii 1 

^3 
1 5 9 

N^- = 4 

= 4 

n!̂  = 1 

ji 

p? 
N^- = 4 

P2 
N2 = 4 

P2 
N, = 1 

P2 
04 = 1 

N, = 3 

P3 
N2 = 3 

= 0 

= 0 
4 

N; = 4 

= 3 

Ng = 3 

N, = 0 

N, = 0 
4 

{Nj + N^} = 3 

{N. + N, } = 3 

CT'g = 6 + 4(6^ + Gg) +63+6^ 

b) Optimal preemptive schedule for G 

Figure 26. Illustration of the notation used in Chapter V 

= 4 

N* = 4 

N* = 1 

N * =  1  
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Relations 1 and 2 come from the fact that the lower bound for the 

number of tasks executed by any processor that finishes last is one, 

and the fact that we might not need to preempt any task in order to 

obtain the optimal schedule. 

Define G' as the normalized graph obtained from G by considering 

= T^/min{T^}, for all i in G. Therefore our unit of time in G' is 

minjT^}. We also assume that the e^'s are expressed in the same nor­

malized unit of time. In this section, we only deal with normalized 

graphs and in order to facilitate the notation, in the future, we will 

use G and to represent the normalized graph and the normalized 

execution time of the tasks. For the normalized graph G, the fol­

lowing relations are valid: CT^g ̂  N* > > 1 and > CT^g > 1« 

The following theorem gives a lower bound on the ratio CTpg/CT^g 

for any normalized graph G with unequally weighted tasks on a k-processor 

system. 

Theorem 20. D'or any normalized graph G with unequally weighted 

tasks on a k-processor system, we have 

CTpS > "(^'i -h 2*2) 

CT^g - 2k(l + + Gg):?; 

Proof: We know that 

CT{,g > CTpg + + Ngs, + a,:, + 

and 

+ '2' i "is 

It is also known from (14) that CTpg > YCT^g where Y = (k + l)/(2k). 

Insèrting the first two inequalities in the last one we obtain 
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CI'5 - Bjej - »2«2 - "3=3 - »4S4>YCi;K " 

or 

CTps (^1 ~ ^2 " ^363 ^64 

CT̂ s - (%;s CT̂ S (%%g ' 

i 

Using Relations 1 and 2 and considering that CT^g + N*(ej^ + e^) >CTgg, 

we have 

CT' (1 - YN*)(e, + ej 
^ > Y  +  _  * % ,  1  ^  

CT^S - oTa; *2) 

It is easy to check that the expression at the right-hand side 

of this inequality is monotonically decreasing with CTgg and N*. There­

fore, the minimum is obtained when both CT^g and N* achieve their 

maximum value. Then 

%  _ . .  ,  ( 1  -  +  « 2 ^  

C^BS - Cl + «1 + 

or 

CT^g kCST^ + 2s^ + Zsg) + 

CT^ - 2k(l + e, + s,):?, • 

Figure 27 shows an example of a task system with unequally weighted 

tasks where we calculate the lot-jer bound and the actual ratio for a 

given set of values of e^. Note that the new schedule may have idle 

time necessary for a task awaiting the completion of the preemption or 

switching time of any of its predecessors. In addition, we assume 

deliberate insertion of idle time to keep the same scheduling of tasks 

used when we considered the preemptive costs negligible. In the 

schedule S' given in Figure 27, we insert idle time after finishes 
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j = l  
1 

'2 h| 5 |«2 fl 
7 k\'i 11 eJ 

b 

2 ®2 ®1 4 ®2 9 

R 
3 

'2 1'^ 
6 ®2 i n i  '  

10 
'2 

CT^g = 6.5 + 4(e^ + s^) 

a) Basic schedule with ^ 0 

^ir®ïr~^ !®2!®3 ^ !®2l®i! ^ 8 
* 

10 y 

^2 ®1 3 Sgje, 7 «2 ̂ 3 * *2!*! 
11 

'2I 

1 5 9 

CT^S - 6 + 4(Si + ep + S3 + 

b) Preemptive schedule with ^ 0 

If Sj = .02, gg = .1, = .01 and 3^ == .05, we have: 

Actual ratio: CT^g/CT^g = 6.54/6.98 = 0.937 

Lower bound: 0.601 

Figure 27. Lower bound for a task system with unequally weighted tasks 



83 

and we do not assign the ready task Tg to in order not to change the 

original schedule S' given in Figure 26. 

B. Equally Weighted Tasks 

In this section, we will find lower bounds on the ratio CTpg/CT^g 

for any general graph G with equally weighted tasks on k > 2 processors. 

We are interested in these systems because most of the literature deals 

with unit-task systems. For our purposes, the following bounds are 

needed : 

^1 

^2 

^3 

«4 

> 1 (1) 

> 0 (2) 

1*1 + 
, H* (3) 

i«2 + 

In this case, we do not need to normalize G because all the tasks 

have the same execution time. Without loss of generality, consider 

= 1 for all i in G. Also, the following relations are valid for 

any basic schedule on unit-task systems 

CIbs = |G| > CTJ3 > 1 

and 

='BS ='=^BS + "B'H + =2> -

Relation 3 comes from the fact that on unit-task systems in order 

to improve any basic schedule we can preempt some tasks and as a result 
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the number of times that tasks are started or stopped in w:ill 

increase. 

The following theorem gives a lower bound on the ratio CTpg/CTgg 

for the case of unequal switching and preemption costs. 

Theorem 21. For any graph G with equally weighted tasks on a 

k-processor system, 

CT»S - ^kCIjgd + + .p 

Proof : For equally weighted tasking systems, we have 

and 

Î CTpS + + "2^2 + "sS + "4^4 

"is = Clgg + Ngki + «2) = + S; + e,). 

It is also known from (14) that CTpg > YCT^g where Y = (k + l)/(2k). 

Inserting the first two inequalities in the last one, we obtain 

- N^ s - ,  - - K3S3 - > ̂CT^s - YNgS, - (4) 

or 

(«1 - YVh , ("2 - V"b"2 .»3«3 . "4:4 

%S %S CTSS • 

Using Relations 1 and 2 and CT^g = CTgg(l i- t- Gg) in the last 

inequality, we have 

CT'3 _ (1 - YCTb^X^I + =2) 

Ss- CTBg(l + + s,) 

But Y = (k + l)/(2k), therefore 
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C^BS - 2k CTBs(l + :l + :2) ' 

Corollary; For any graph G with equally weighted tasks on a k-

processor system, 

CT^G k(|G| + 2E^ + ZE,) + |G| 

CT^g - 2k|G|(l + + Sg) 

The proof is immediate if we note that the expression at the right-

hand side of the inequality given in Theorem 21 is monotonically 

decreasing with CT Therefore, the minimum will be achieved when 
Ob 

CTgg is equal to Ig]. Replacing CT^g by |G| we obtain the final 

result. 

The next theorem gives a lower bound on the ratio CTpg/CT^g 

when all the are equal. We are interested in this case because the 

bound is easier to calculate. 

Th^eorem 22. For any graph G with equally weighted tasks on a 

k-processor system with = e for all i, 

CTps k(l + 4e) + 1 

CT^g - 2k(1 + 2s) 

Moreover, this is the best possible bound. 

Proof : In this ease the Inequality 4 can be written as 

CT^g > YCT'g + (N^ + Ng + Ng + - 2yNg)e. 

Using Relation 3 and CT' = N (1 + 2e), we have 
i5b D 

CT' > YCT' + 2(1 - Y)N_e 

or 
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5 s  
CT 
PS > . + 2(1 - = k_+_l + 2(k -

^ 1 + 2e 2k ^ 2k(l+2e) ' 

Therefore, 

^ kg + 4e) + 1 

CT^g - 2k(l + 2e) ° 

We can show that this is in fact the best possible bound by an 

example. Figure 28 shows a graph for which the best nonpreemptive 

schedule, S, and preemptive schedule, S', have length 2 + 4e and 

(k + l)/k + 4e respectively. 

G: 
Ti T^ Ti = 1 Vt^ in G 

S: 
"l 

T 
k+1 

S'; P^ 
^1 ^2 

^2 ^2 ^2 
T 
3 

\+l 

^ k(l + 4e) + 1 

CT^g 2k(l + 2s) 

Figure 28. Example which achieves the lower bound on CTpg/CT^g when 
= 0. 

Table 1 gives the lower bounds on the ratio CT^g/CT^g for any 

graph G with equally weighted tasks on a k-processor system for other 

possible relations among the e^'s. These bounds, derived in (23), 

are tighter than the bound given in Theorem 21. If we replace CTgg by 

Ig| in the bounds given in Table 1, we obtain new and easily calculated, 

but looser, bounds. 
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Table 1. Lower bounds on the ratio CT^g/CTgg for any graph G with 
equally weighted tasks 

Case Lower bound 

®3 CTfigO^Cl + 2e^ + 2e^) + 1) + 2k(e^ + eg - - e^) 

®2 - ®4 
2kCTgg(l + Gi + Sg) 

®3 CTgg(k(l + 262 ZSg) + 1) + 2k(e^ - Gg) 

I
V
 

®2 
2kCTgg(l + G^ + Gg) 

A
I
 

C
O

 
(l> 

®1 CTgg(k(l + 2e^ + 2e^) + 1) + ZkfGg - e^) 

®2 -
2kCTgg(l + + eg) 

®1 k(l + 2e^ + 2S2) + 1 

®4 > ®2 
2k(l + + Gg) 

In Figure 29, we give an example of a task system with equally 

weighted tasks where we calculate the lower bounds and the actual ratio 

on CT^^/CTgg for a given set of values of the e^. 

While we have produced lower bounds for both unequally weighted 

and equally weighted task systems, it does not seem feasible to establish 

experimentally the behavior of the ratio CT' /CT' due to the lack 

of polynomial bounded algorithms to produce the optimal schedules. 

However, the bounds provided in this chapter allow us to calculate 

easily a best value of the optimal preemptive schedule length relative 

to the optimal basic schedule length when switching and preemption 

costs are positive. Given an estimate of switching and preemption 
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5 

t=0 1 2 3 i 

S' : 1 4 7 10 

^2 
2 5 8 I 11 

^3 
3 6 9 

a) Optimal basic schedule with = 0 

t=0 1 2 3 

S': 1 2 5 6 9 

"2 
2 3 6 7 10 

^3 
4 

'i 
8 11 

b) Optimal preemptive schedule with e. = 0 

S": P.g 1 So 1 Si 4 
:2!*1 

7 S 10 1^2 

2 
®2 1 ®I 5 8 ®2 ®1 11 ®2 

3 ®2 !®1 6 ®2i®l 9 ®2 

c) Basic schedule with r 0 

Figure 29. Lower bounds for a task system with equally weighted tasks 
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Pi Fi 
1 *2 =3 2 ®2 ®1 5 

«2 *3 6 ®2 h 
9 ®2 

f 2 k  2 
'4 ®3 1 ^ ®2 ®1 6 ®4 '3| 7 ®2 ®1 10 ®2 

P3 *1 3 
'4 '1 

4 
'2 

7 ®4 ®1 8 ®2 ®1 11 
'2I 

CTpg = ̂ +mas|3sj^+5S2+202» 3(s^ + Sg) +2(e^ + e^), Ss^+Ssg+Z^j 

d) Preemptive schedule with f 0 

If e, = .02, e, = .1, Sq = .01 and = .05, we have: 

Actual ratio: CT^g/CT^g = 4.247/4.48 = 0.948 

Lower bound: 

General formula : 0.622 

Formula for > 63 and ^2 - %• 0*662 

Figure 29. Continued 

costs, we now hâve some basis for deciding whether or net to usa a pre­

emptive discipline. 



90 

VI. BOUNDS ON THE RATIO CTJG^/CT^G 

In this chapter, we will study in depth the subset assignment 

concept. In particular, we wish to find ratios between the shortest 

subset assignment schedule, SSAS, and the optimal basic schedule for 

general graphs with equally weighted nodes on a k-processor system 

when the cost of switching and the cost of preemption are not negligible. 

It is important to the reader to continually bear in mind that unit 

tasks are assumed throughout this chapter. We define a SSAS as the 

shortest possible preemptive schedule over all possible subset sequences. 

Our study is motivated by the probability that SAS, described in 

Chapter III, is a good heuristic for the SSAS, just as level algorithms 

are good heuristics for optimal nonpreemptive schedules (1). In fact 

the SSAS could be considered a heuristic for the optimal preemptive 

schedule. Rather than determining how good the heuristic is, we study 

only the effects of preemption costs. As a by-product, we will find 

sharper lower bounds on the ratio OTpg/CT^g for k = 2 than was provided 

by the analysis in Chapter V. Before we describe our model, we will 

give some lemmas and a theorem that are necessary for our study. 

Lemma 11. Let G be an arbitrary graph all of whose nodes have 

unit weight. Then any subset assignment for G using two processors can 

be transformed into a new assignment which is no longer than the 

first and is constructed from forms of type a or p, where n, p, and q 

are nodes of G, 
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t=0 1 t=0 1.5 

P 
1 

n P. 
1 

n P" 

P, 
2 P q 

Form a Form p 

The proof of this lemma was given in (17). 

Lenmia 12. Let G be an arbitrary graph all of whose nodes have 

unit weight. Then any subset assignment for G using k-processors can 

be transformed into a new assignment which is no longer than the first 

and is constructed from the three forms shown in Figure 30, where m, 

n, o, p, q, r, s and t are nodes of G, 1 < u^^ < k and Ku^ < k. 

Proof : We know that in a subset assignment each subset of the 

subset sequence is scheduled in an optimal way and independently of 

the other subsets. Depending on the number of nodes in a subset S^, 

I Su], we have three different cases: 

Case i. k > iS, I > 1. In this case, it is clear that t , (S.) = 1 
— ' i' — mm 1 

must be a lower bound since no schedule can terminate in less time than 

it takes to execute any task. Therefore, the optimal preemptive schedule 

for will be an assignment of Form a. 

Case 2. 2k > |Su| > k. In this case, by McNaughton's result (16), 

we know that t . ( S . )  =  | s,|/k, since a schedule cannot be more efficient 
mm 1 ' X ' 

than to keep all the processors busy. Therefore, the optimal preemptive 

schedule for will be an assignment of Form g or y, depending on the 

number of nodes in S^. 
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Form a 

t=0 1-fuj^/k 

m n" 

n' o" 

^k-1 P' q" 

'k 
q ' l  

1 
r 

1 < u, < k 
— 1 

Form p 

l+Uy/k t=0 

1< Ug < k 

Form Y 

Figure 30. Forms used to construct any subset assignment 

Case 3. | s ^ |  > 2k. In this case, we know that = | s^j/k, 

since a schedule cannot be more efficient than to keep all the processors 

busy. Now, we split S, in two subsets SÎ and SV such that 
1 11 
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I S: I = 
I Si I 

-1 + j k 
k 

(l if 1 S_. I /k is art integer 

10 other*] 
where 

otherwise 

Because |s^| is a multiple of the number of processors available, k, 

we will have assignments of Form a for the optimal preemptive schedule 

of S!. It is also easy to check that the number of nodes in is either 

zero or k < |sV| < 2k. When js^l = 0 we do not care, because we do not 

have tasks to assign but when k < |sV| < 2k we know, by Case 2, that 

the optimal preemptive schedule for SV will be an assignment of Form p 

or Y depending on the number of nodes in SV. 

If k < js^l < 2k, we can determine if the assignment of is of 

Form p or of Form Y by evaluating the expression 

|Sjl - k 

^'g.=.d.!!s,!. ki -

If Jh is equal to zero, then the schedule of S. will be of Form p, other­

wise it will be of Form Y. 

In order to obtain the bounds, we make use of the following nota­

tion. Let 6^(1 < j < 4), CT^g, CTpg, CT^g and CT^g have the same defini­

tion given in Chapter V. Let CTgg^^ the length of the shortest 

possible preemptive schedule over all possible subset sequences, when 

we consider gj = 0 for all j. Let CTgg^g be the length of the shortest 

possible preemptive schedule over all possible subset sequences, when 

we consider ey r 0 for any j. 
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It is important to recall that the scheduling is done with the 

assumption that = 0, for all j. Using this schedule, we investigate the 

execution time effects of Sj f 0 for any j. If we do not proceed in 

this way, then the weight of the tasks including the cost of preemption, 

becomes schedule dependent and this class of problems is more difficult 

to solve. 

The following definitions apply to a schedule with zero preemption 

and switching cost. 

Define : 

N_ — the number of tasks in the optimal basic schedule that are 
D 

performed by processor (Also note that CT^g = because we are 

dealing with unit-task times.) 

— the number of tasks in the SSAS that are started for the 

first time in P^. 

— the number of tasks in the SSAS that are stopped permanently 

in P.. 

^ Pi 
— the number of tasks in the SSAS that are started after pre­

emption in P^. 

Pi 
— the number of tasks in the SSAS that are stopped temporarily 

in 

Pi 
N. = min(N^ ) where P. is any processor that finishes last and 

3 i J -

1 <  j < 4 .  

( 1 . ^i 
{N. + N. = min(N. + N. ,„) where P. is any processor that 
I J j+2> ± 3  , 3 +2 1 

finishes last and j = 1, 2. 

Pi 
N. = max(N. ) for 1 < j < 4 and all i. 

J i ^ pT "p. 

|n? + N?,-| = max(N/ + for j = 1, 2 and all i. 
I J J+21 i J J+2 
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— the number of e/s in if the S SAS consists of one 

assignment of form i, for ^ = o, P, Y. 

Let U\ and be an upper bound and a lower bound on the number 

of Sj's for any when the SSAS, for the entire schedule, is only 

composed of assignments of form X, for = a, g, Y. 

Let |Uj + and |l^ + be an upper bound and a lower 

bound on the number of and j = 1, 2, for any P^ when the SSAS, 

for the entire schedule, is only composed of assignments of form X, for 

4 = a, P, Y. 

We can then write 

% ' <=^BS * Vl + "8=2 = "b'I + =1 + «2> 

and 

CESSAS + É > <=^SSAS 5 '=^SSAS + f, 
1=1 i=l 

N.e. . 
1 1 

Our next step is to see how the different forms of assignments 

given before are influenced by considering f 0, for any j. 

Form a 

t=0 

CT^s = CT^s = 1 + + Gr 
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Form 

t=0 

k-l 

k + u-

m 
h" 

n' o" 

P' q" 

q'l 
r 

k +Ui 
t(P^) = 

where: 1 < i < k 

1 < < k 

k + 

= IT" + ̂ ®1 + *2 + =4 

k + u 

CT PS "~k—~ f®! +2e,+ e,, s, +e,+e^ + e^, 26, +e, + e^} 2 *3 %' "1 2 "4/ 

Form y 

t=0 l+u^/k 

m n" 

P' q r" - —T^ + + ̂ «2 + «3 •*• =4 

wnere: i ̂  Ug ^ % 

Before, we proceed in our analysis, we give a lemma that is going 

to help us to find the bounds for all and N*. 

Lemma 13. Suppose the SSAS is only composed of assignments of 

Form p or only of Form Y. Then a bound on the minimum number of assign­

ments of Form p or of Form Y in the entire schedule is equal to N_/2. 
B 

Also, a bound on the maximum number of assignments of Form g and of 

Form Y in the entire schedule is kN„/(k + 1) and kN /(k + 2), respectively. 
D D 
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Proof: Here we only give the proof when the entire schedule is 

only composed of assignments of Form p because the proof for the other, 

case is similar. 

First, we will show that Ng/2 is a lower bound on the minimum 

number of assignments of Form p in the entire schedule. Consider that 

all the assignments of Form p have k + |a^ nodes, where is constant 

for all of them and 1 < < k. Then a lower bound on the minimum 

number of assignments of Form p is given by kCTga&c/Ck + Ui). But, in 
k + 1 

this case CTgg^g >—^— CT^g. Therefore a lower bound on the minimum 

number of assignments of Form p, each with k + nodes, is equal to 

CT_„/2 or N_/2 because CI = N in an equally weighted task system. 
BS D Job D 

From this it follows that if is not constant, then a lower bound 

on the minimum number of assignments in a schedule which only has 

assignments of Form P is 

Abound on the minimum number of assign- | /N \ N 
. iments in a schedule which only have as-> ^ _ _B 

I signments of Form p each with k + 1 "'^'{(2 ) 2 
(nodes ' 

Now, we will find an upper bound on the maximum number of assign­

ments of Form p in the entire schedule. If all the assignments of Form p 

have k + u^ nodes, 1 < u. < k, then an upper bound on the maximum number 

kCT_g kN„ 
of assignments is given by or by ^ ° ' because CT^g = N^. This 

expression achieves its maximum value when u^ has its minimum value. 

Therefore, an upper bound on the maximum number of assignments of Form p, 

in the entire schedule, is kN /(k + 1). The upper bound on the maximum 
D 

number of assignments of Form Y in the entire schedule is found in a 

similar form. If all the assignments of Form Y have k 4- u^ nodes. 
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1 < Ug < k, then an upper bound on the maximum number of assignments 

is given by kN^/ (k + u^). This expression achieves its maximum value 

when Ug has its minimum value. Therefore, an upper bound on the maximum 

number of assignments of Form Y in the entire schedule is kH^/(k + 2). 

Now, we proceed to analyze the three possible cases. 

SSAS with only assignments of Form o. In this case, it is clear 

that CTgg^g = CTgg and therefore 

rij = L« = Be 

and 

s SAS with only assignments of Form We can observe that in one 

assignment of Form p, we have 

g Pi S ^i 
max(^N, ) = maxC^N, ) = 2 
i i. i 

g Pi B ^i 
max ( N_ ) = m^xC'^N, ) = 1 
1 j 1 4 

p. 
= 2 

O Pi Q Pi 
minTN- ) = min(' NL ) = 1 
il j_ I 

minf^Ng^) = min(^N^^) = 0. 

Then, we will obtain the using the relation 

B B 
U, = max(^N. ) % (bound on the maximum number of assignments 

^ ^ ^ of Form p in CTgg^g). 

By Lemma 13, we can write 

S S 

"j = T' i ' ' im 
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Therefore: 

i = «2=1^ "B 

l°i + 03!^ = K + "AP = "B • 

B 
Also, Lj is given by the expression 

B B ^i 
L. = tnin( N. ) X (bound on the minimum number of assignments 
J i J of Form p in Clgg^). 

By Lemma 13, we can write 

l! = min(^N^^) X ^ . 
J i J 6 

Therefore : 

4 = 4 -

i ' i ' O  

i'-i ••• = 1-2 • -4P " »B -

ssAS with only assignments of Form %. We can observe that in 

one assignment of Form Y, we have 

Y ^i Y ^i 
max( NL ) = max( N_ ) = 2 
i i 

Y Pi V Pi 
mpCNg ) = max('N^ ) = 1 

Y ^i Y ^i Y Y ^i 
max( Nj + Ng) = max( ) = 3 

Y ^i Y 
mln( N, ) = min( N ) = 1 
i ^ i ^ 

Y Pi Y Pi 
min( N„ ) = min( N, ) = 0 
i it 

Y Pi Y Pi Y Pi Y Pf 
min( N, + N ) = min( N„ + N. ) = 2. 
i i J 1 • 
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Then, we will obtain the using the relation 

u'^ = max(^N.^) X (bound on the maximum number of assignments 
J i ^ of Form y in CT^g^g). 

By Lemma 13, we can write 

„ "b 

1 

Therefore: 

"l ' "2 ° tfk "B 

"3 • "I • "B 

l"i + "st" • K + "4)' = k + 2 "B • 

Y 
Also, Lj is given by the expression 

Y Y ^i ^B 
Lj = min( ) K — . 

Therefore : 

- 0 

ih + = ih + HI"' "B • 

We note that the general SSAS consists of a mixture of a, P, and Y 

type assignments. In order to find the upper and lower bounds for the 

N? and N^, we need to state the following theorem which applies to any 

SSAS. 

Theorem 23. In any SSAS, 

max(ui^) > N* > N. >min(Lf) for j = 1, 2, 3, 4 
^ ^ J J X J and & = a, p, y 
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and 

T ' " ]  +  ° j + 2 ' ^ ï K S  h  + « 3 + 2 !  + ' • 3 + 2  )' 

for j = 1, 2 
and j6 = a, p, y. 

The proof of this theorem is omitted because it is immediate. 

Applying Theorem 23 we obtain the following bounds: 

fK + "3! 
3k 

k + 2 

2k 

N, > 

K + <1 
K+«3} 

N _ > <  
k + 1 B -

k+<1 

fN! 
2k 

k + 1 B 
N„ > 

(5) 

(6) 

(7) 

for k > 2. 

for k = 2. 

T N. > 
k + 1 B -

r 
1» 

Ml + "sH 

l«2 + 
S ^"B 

(8) 

(9) 

(10) 

> 0. (11) 

Note that the Formula 5 is valid for k > 2, while the Formula 6 is 

valid only for k = 2. The reason for these two bounds on {N^ + N*^^), 

i = 1, 2, is that, in a two-processor system, we cannot have assignments 
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of Form y. The other bounds are valid for both cases, because the 

upper and lower bounds come from the case in which we have assignments 

only of Form p, and by Lemmas 11 and 12 we know that this type of as­

signment is possible for any value of k (k > 2). 

The following theorem gives a lower bound on the ratio CT' .„/CT' 
ODÂO Bb 

for any graph G with equally weighted tasks on a k-processor system. 

Theorem 24. For any graph G with equally weighted tasks on a k-

processor system, we have 

<^JSAS . •''I + + cj) + I 

- 2k(l + + Sj) 

Proof: We know that 

and 

™SSAS - "I'l "2^2 ^3*3 "4^4 

' CTs: + + '2>-

It is also known from (14) CT^ . > YCT_„ where Y = (k + l)/(2k). 
bo as — hs 

Inserting the first two inequalities in the last one, we obtain 

CT SSAS " ̂ 1®1 " ̂ 2®2 • ̂ 3®3 " ̂ 4®4 - ®2^ 

or 

^"^SSAS (^1 " ̂^5)^1 ^2 " ̂^5^*2 ^3*3 \^4 

CTis - C?;; CT^g CT^g ' 

Using Relations 10 and 11 and CT' = N^(l + e, + €„), we have 

^"^SSAS k + 1 ^1 

CTj^ - 2k " 2k(l + + Cg) ' 

and the result of the theorem follows. 
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The next theorem gives a lower bound on the ratio CTgg^g/CTgg 

for any graph G with equally weighted tasks on a k-processor system 

when all the are equal, i.e., = e, for all i. 

Theorem 25. For any graph G with equally weighted tasks on a 

k-processor system and = e for all i, we have 

firpl 
SSAS _ k(l +4e) + 1 

CT^g - 2k (1 + 2e) 

Moreover, this is the best possible bound. 

Proof : In this case the Inequality 12 can be rewritten as 

CESSAS ̂  + «1 + «2 + "3 + \ 

Using Relation 9 and CT* = N (1 + 2e), we have 
DD X> 

'=^SSAS^^<='^BS+2a-V)V 

or 

^^SSAS ̂  k + 1 2_(k - l)e 

CT^g - 2k 2k(l + 2e) ' 

and the result of this theorem follows. We can show that this is, in 

fact, the best possible bound by an example. Figure 28, given in 

Chapter V, shows a graph for which CTgg^g = (k + l)/k + 4e and 

CT^g = 2 + 4e. 

Table 2 gives the lower bounds of the ratio CT^^^^/CT^g for any 

graph G with equally weighted tasks on a k-processor system for other 

possible relations among the s^'s. These bounds, derived in (23), are 

tighter than the bound given in Theorem 24. 

Because CTgg^G = CTg^^ = CT^G (18) for a two-processor system, we 

can use Table 2 with k = 2 to obtain tighter bounds than those given 
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Table 2. Lower bounds on the ratio CTgg^/CTgg for any graph G 
with equally weighted tasks 

Case Lower bound 

®1 - ®3 k(l + Gj^ + G2 + 63 + 6^) + 1 

*2 ̂  =4 
2k(l + + Gg) 

ei> S3 k(l + Gj + 262 ̂  ^ 1 

*4^=2 
2k(1 + G^ + Gg) 

€3 > Gi k(l + 26^ + Gg + e^) + 1 

*2 ̂  =4 
2k(l + Gj^ + Gg) 

S3 > Si k(l + 2^1 + 26%) + 1 

(4 ̂  «2 
2k(1 + Gj + Gg) 

in Theorem 21 and in Table 1. In particular, for k = 2, Theorems 24 

and 25 yield 

CT'j 3 + + «p 
> —T—\ for unequal e.'s, and 
- 4(1 + + Gg) 1 

. 3 +46 . 

CT^g - 4(1 + 2e) ®i " *' ' 

The next theorem gives the corresponding upper bound on the ratio 

C^SSAs/%' 

Theorem 26. For any graph G with equally weighted tasks on a 

k-processor system, 

k(l + 2., + 2=2 + =3 + =4) + 1 . "SSAS 

(k + 1)(1 + Sj + Gg) - CT^g 

Proof; We know that 
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and 

<^^SSAS + ^ "SSAS 

%S ' C'SS + "B*®! + =2'-

In general 

CTfis > CTcg&s ' 

Inserting the first two equations in the last one and collecting 

terms, we obtain 

+ - «B)=2 +''3«3 +«4^4 5 "SSAS- <"> 

SSAS 

Dividing both sides by CT^g 

(^1 " ̂ B^^l ^2 " ^3^3 

CTÈS CT^g - ' 

Using Relations 7 and 8 and CT^g = Ng(l + + Gg) in the last 

inequality, we have 

(k - l)(e^ + Gg) kCsg + e^) ^ CT'g^ 

^ (k + 1)(1 + Si + So) (k + 1)(1 + + e,) ~ CTgs ' 

Therefore, 

k(l + 2e^ + 262 + ̂ 3 + e^) + 1 ̂  

(k + 1)(1 + + eg) - CT^g ° 

In the following theorem we give an upper bound on the ratio 

CTcoAo/CT' for any graph G with equally weighted tasks on a k Oc > 2) 
boÂD Du 

processor system when all the are equal. 

Theorem 27. For any graph G with equally weighted tasks on a 

k (k > 2) processor system where = e for all i, 

tt '  
k(l + 6e) + 2 SSAS 

(k + 2)(I + 2e) - CT^g 
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Proof ; When = e for all i. Inequality 13 can be rewritten as 

W* + Sj + N* + - 2Ng)« 
1 + 

GTÈS - CTÈS ' 

Using Relation 5 and the fact that CT' = N (1 + 2e), we have 
Job 15 

CT ' 
1 + 4(k - l)e . SSAS 
^ (k + 2)(1 + 20) - CT^g ' 

and the result of the theorem follows. 

We can show that this is, in fact, the best possible bound for 

certain values of k by an example. Figure 31 shows a graph for which 

the shortest subset assignment schedule, S', and the optimal nonpre-

emptive schedule, S, have lengths 5 + 18e and 5 + lOe, respectively, 

for the case k = 3. Therefore, CTgg^^/CTgg = (5 + 18e)/(5 + lOe). 

Note that these calculations vary with the nonuniqueness of the SSAS 

for k > 2. By interchanging the roles of processors 1, 2 and 3 for 

the second and third subset, we obtain CTgg^ = 5 + 14e. 

Table 3 gives the upper bounds on the ratio for any 

graph G with equally weighted tasks on a k (k > 2) processor system 

for other possible relations among the s^'s. These bounds, derived in 

(23), are tighter than the bound given in Theorem 26. 

In the following theorem we give an upper bound on the ratio 

CTggAg/^TgS any graph G with equally weighted tasks on a two-

processor system when all the are equal. 

Theorem 28. For any graph G with equally weighted tasks on a 

two-processor system where = e for all i, 

CT ' 
3 + Be > SSAS 

3 + 6s - CT^s 
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G:  
< 1 1 1 1 1 1 1 

7, 8 ' 9, 10' ' Tj = 1, in G 

i 12, 13 . . 14, ' 15 • 

t = =0 1 2 < 

S: P^ 1 4 7 10 13 

"2 
2 5 8 11 14 

^3 
3 6 9 12 15 

CT^g = 5 + 10e 

' h 6 7 11 12 

2 3 4 7 8 9 12 13 U 

4 1 5 9 1 10 
K 1 14 1 15 

= 5 + 18* 

TT ' 
SSAS 5 + 18e 

C^BS 5 + 10e 

Figure 31. Example which achieves the upper bound on CTl /CTl„ 
when k > 2 and = e. 

Moreover, this represents the best possible bound. 

Proof : When — 6 for all i, Inequality 13 can be rewritten as 

- "ÉS • 
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Table 3. Upper bounds on the ratio CT^SAS/^'^BS any graph G with 
equally weighted tasks on a k (k > 2) processor system 

Case Upper bound 

^1 ~ ̂3 k^(l + 2®^^ + 26^ + + e^) + k(3 + 4e^ + 4e^ " ®3 ** 2 

Gg > (k + l)(k + 2)(1 + + Sg) 

®1 — ®3 k^(l + 26^ + 26^ + Gg + e^) + k(3 + 48^  ̂  ®2 "  ̂ 3  ̂  2e^) + 2 

> sg (k + l)(k + 2)(1 + + Gg) 

^3 - ®1 k^(l + 2e^ + 26^ + Gg + e^) + k(3 + + 4e2 + 2e^ - e^) + 2 

^2 - % (k + l)(k + 2)(1 + + Sg) 

®3 — ®1 k^(l + 2s^ + 202 + Gg + e^) + k(3 + + Gg + 2sg + 2e^) + 2 

6/, > G^ (k + 1) (k + 2) (1 + + G^) 

Using Relation ô and the fact that CTl„ = N_(1 + 2e), we have 
iJb B " • • 

CT '  
1 , 2e ^ 3 + 8e _ SSAS 

3 + Se 3 + 6e - CT^g ' 

We can show that this is, in fact, the best bound by an example. 

Figure 32 shows a graph for which the CTgg^g and CT^g have lengths 

3 + Be and 3 + 6e, respectively. 

Corollary. For any graph G with equally weighted tasks on a two-

processor system where = e for all i, 

nrpj 

3 + 8e 

3 + 6s - CT^g ' 

Moreover, this represents the best bound. 
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G: 3 = 1 Vi in G 

é 
5 6 

S: 

1 

^2 

CTjg = 3 + es 

CESSAS - 3 + 

fT ' 
SSAS ̂  3 + 8s 

3 + 6e 

Figure 32. Example which achieves the upper bound on CT' . /CT' 
when k = 2 and e. = e. 

1 

Because = ^^sAS ~ " t%G=pZGcessor system, the 

proof is immediate. 

Table 4 gives the upper bounds on the ratio for any 

graph G with equally weighted tasks on a two-processor system for other 

possible relations among the e^'s. These bounds are derived in (23). 
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Table 4. Upper bounds on the ratio CTpg/CTgg for any graph G with 

equally weighted tasks on a two-processor system 

Case Upper bound 

General 
3 + 2(26^ + 262 + Gg + G, ) 

formula 3(1 + G]^ + Gg) 

- '3 3 + 4(6^ + Gg) 

3(1 + + Gg) 

£I>S3 3 + 2(2e^ + Gg + G^) 

e, > e„ 
3(1 + + Gg) 

4 - 2  

03 >e. 3 + 2(G^ + ZGg + Gg) 

e_ > e. 3(1 + Gj^ + Gg) 
2 - 4  

G.. > Sc 3 + 2 (G, + e„ + + G, ) 
i ^ J 4 

®4-"2 
3(1 + + Gg) 
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VII, CONCLUSIONS 

A, Contributions 

We have presented a complete study of the stability of the schedules 

produced by the three most important polynomial bounded algorithms 

that produce an optimal schedule length when certain conditions are 

satisfied. The most interesting results are: 

1) We have proved that the schedules produced by the optimal 

nonpreemptive scheduling algorithm for equally weighted tasks and tree-

structured graphs are free of all three anomalies commonly found in 

multiprocessing systems. Because they are stable, we can bound the 

schedule length of a tree-structured graph with unequally weighted 

tasks. This bound is obtained assuming equal execution time t* for 

all tasks and k processors, where t* = m^(t^). Then we can be assured 

that any schedule based on k' > k, unequal execution times < t*, 

and any allowable relaxation of <• will have a schedule length shorter 

than the given bound. 

2) We have proved that the schedules produced by the optimal 

nonpreemptive scheduling algorithm for equally weighted tasks for two-

processor systems are free of two of the three anomalies. Additional 

constraints would have to be placed on the task system to prevent the 

third type of anomaly. Here we can ensure only that increasing the 

number of available processors or eliminating some precedence relation 

does not increase the resulting schedule length. However, the new 

system with additional constraints is free from all three anomalies. 
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3) We have proved that the schedules produced by the optimal 

preemptive scheduling algorithm for general graphs on a two-processor 

system and for tree-structured graphs are free of all three anomalies. 

Because they are stable, we can bound the schedule length based only on 

the maximum execution time of each task, the minimum number of processors 

and the maximally constrained graph. 

The subset assignment concept has been studied in depth. The 

most important results are: 

1) We have proved that the SAS for general graphs with unequally 

weighted tasks on a k-processor system is free of three anomalies when 

the subset sequence is held fixed, and free of two anomalies when the 

subset sequence is recomputed. We conjecture that it is free of the 

third type of anomaly. Here we can ensure that increasing the number 

of processors, or eliminating some precedence relation, does not 

increase the resulting schedule length. 

2) We have bounded the performance of SSAS in comparison with 

the optimal basic schedule, when we deal with general graphs with 

equally weighted tasks on a k-processor system and we consider the 

costs of preemption and switching positive. The SSAS is of interest 

because the SAS is probably a good heuristic for preemptive schedules 

(just as level algorithms are good heuristics for optimal nonpreemptive 

schedules) and because the SSAS is shorter than SAS. 

Other major results of this research are the bounds given for 

the ratio between the optimal preemptive schedule to the optimal non-

preemptive schedule for unequally and equally weighted task systems, 

when we take in consideration the possible costs of switching and 
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preempting tasks. These bounds show that in reality we can no longer 

say that the optimal preemptive scheduling discipline is strictly more 

powerful than the optimal nonpreemptive scheduling discipline. These 

bounds also suggest that, in some cases, reduction of schedule length 

will not be significant. Thus, it may not be worth the effort to 

implement an optimal preemptive schedule, due to the great deal of work 

demanded by the scheduling algorithm. 

B. Future Work 

We have noted the scarcity of results in the field of static 

scheduling. Some of the unsolved problems connected with this study 

are: 

1) Completion of the study of the stability of B-schedules 

under nonoptimal conditions; 

2) Completion of the study of the stability of A-schedules under 

nonoptimal conditions; 

3) Determination of upper bounds of the ratio CTpg/CT^g for general 

graphs on k (k > 2) processor systems, and for unequally weighted tasks 

on a two-processor system; 

4) Simulation studies of the behavior of the ratio CT^g/Cr„g, 

taking in consideration cost of preemption and cost of switching; 

5) A refinement of the method of comparing scheduling disciplines 

when the costs of preemption and switching are not negligible; 

6) Resolution of the conjecture that the SAS is anomaly-free when 

the execution of one or more tasks is reduced and the subset sequence 

is recalculated. 
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The continued search for simple algorithms and analysis of their 

performance is worthy of further study in the overall investigation of 

the usefulness of multiprocessing. 
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