INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While
the most advanced technological means to photograph and reproduce this document

have been used, the quality is heavily dependent upon the quality of the original
submitted.

The following explanation of techniques is provided tc help you understand
markings or patterns which may appear on this reproduction.

1.

(4]

The sign or “target’” for pages apparently lacking from the document
photographed is ““Missing Page(s)”’. If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages.
This may have necessitated cutiing thru an image and duplicating adjacent
pages to insure you complete continuity.

. When an image on the film is obliterated with a large round black mark, it

is an indication that the photographer suspected that the copy may have
moved during exposure and thus cause a blurred image. You will find a
good image of the page in the adjacent frame.

.When a map, drawing or chart, etc., was part of the material being

photographed the photographer followed a definite method in

“*sectionina” the material. It is customary to begin photoing at the upper

ieft hand corner of a large sheet and to continue photoing from left to
right in equal sections with a small overiap. If necessary, sectioning is

continued again — beginning below the first row and continuing on until
comnlete,

. The majority of users indicate that the textual conient is of greatest value,

however, a somewhat higher quality reproduction could be made from
“‘photoaraphs” if essential to the understanding of the dissertation. Silver
prints of “‘photographs” may be ordered at additional charge by writing
the Order Department, giving the catalog number, title, author and
specific pages you wish reproduced.

LEASE NOTE: Some pages may- have indistinct print. Filmed as
received,

Herox Universily Microfilms
300 North Zeeb Road
Ann Arbor, Michigan 48106

75-25,355
VILLANUEVA, Julio Estuardo, 1947~
"SOME EXECUTION-TIME PROPERTIES OF OPTIMAL
SCHEDULES IN MULTIPROCESSOR SYSTEMS.

Iowa State University, Ph.D., 1975
Computer Science

Xerox University Microflims, arn Arbor, Michigan 48106

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED.

Some execution-time properties
of optimal schedules in

multiprocessor systems

by

Julio Estuardo Villanueva

A Dissertation Submitted to the
Graduate Faculty in Partial Fulfillment of
The Requirements for the Degree of
DOCTOR OF PHILOSOPHY

Major: Computer Science

Approved:

Signature was redacted for privacy.

In Charge of Major Work

Signature was redacted for privacy.

T A Mo dAav T
o8 W g L W

Signature was redacted for privacy.

For the Grafiiate College

Iowa State University
Ames, Iowa

1975

II.

I1I.

ii

TABLE OF CONTENTS

INTRODUCTION

DESCRIPTION OF THE MODEL AND SURVEY OF LITERATURE

STABILITY PROPERTIES OF OPTIMAL SCHEDULES

Au

B-Schedules

1. Increase in the number of processors
2. Relaxation of the partial order

3. Reduction of task execution times

4, Combined effects

5. Stability of the B-schedule for variants of
tree-structured graphs

A-Schedules

1. 1Increasing the number of processors
2. Relaxation of the partial order

3. Reduction of task execution times

4. Stability of the optimal preemptive schedule
for two-processor systems

C-Schedules for Tree-Structured Graphs
1. Increasing the number of processors
2. Relaxation of the partial order

3. Reduction of task execution times
4, Combined effects

5. Stability of the C-schedule for variants of
tree-structured graphs

Subset Assignment Schedules

1. Increasing the number of processors

Page

24
24
25
26
28

35

36
37
38
42

48

48
50
51
51
52

52

53
54

57

Iv.

VI.

VIiI.

VIII.

IX.

iii

2. Relaxation of the partial order
3. Reduction of task execution times
4, Combined effects

STABILITY PROPERTIES OF OPTIMAL NONPREEMPTIVE SCHEDULES

UNDER WONOPTIMAL CONDITIONS

LOWER BOUNDS ON THE RATIO CT,./CTpq

A. TUnequally Weighted Tasks

B. Equally Weighted Tasks

BOUNDS ON THE RATIO CTésAS/CTéS

CONCLUSTONS

A, Contributions

B. Future Work

BIBLIOGRAPHY

ACKNOWLEDGMENTS

59
64
64

67
76

78

111
113
115

117

Figure

Figure

Figure
Figure
Figure

Figure

Figure

Figure

Figure

Figure
Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

10.
11.

12.

13.

14,

15.

l6°

i7.

18.

19.

iv

LIST OF FIGURES

Example of a graph and a Gantt chart

Examples of the basic, preemptive and general
scheduling disciplines

Example of B-algorithm

Example of A-algorithm

Example of C-algorithm

Illustration of the subset assignment algorithm
Example which exhibits all types of anomalies
Example of relaxation of the partial order

B-schedule for a tree with k leaves and reduced
execution times

Case where Np < Q(Vp + 1)
Case where Np & Q(VP + 1)

Effect of increasing the number of processors in an
A-schedule

Partition of S' in Figure 12 using Algorithm 1

Relaxation of partial order by removing arcs (4, 2)
and (3, 1) from G

Partition of S' using Algorithm 2

Anomaly in A-schedule caused by decrease in execu-
tion times

Illustration of the subset assignment schedule

Typical effect of increasing the number of
processors in a subset sequence

Example of an effective move

Typical effect of relaxing the partial order in a
subset sequence

Page

10
12 -
14
17
19
21

26

29
31

34

39

41

43

45

48

56

60

62

65

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

21.

22,

23'

24,

25.

26.

27'

28.

29.

30.

31.

32.

A system with equally weighted tasks that degrades
with the reduction of execution time of one task 69

A system with unequally weighted tasks that degrades
with the reduction of execution time of one task 70

A system with unequally weighted tasks that degrades
with increasing k (B-schedule) 72

A system with equally weighted tasks that degrades
with increasing k (B-schedule) - 73

A system that degrades when the partial order is

relaxed ‘ : 74
Illustration of the notation used in Chapter V 79
Lower bound for a task system with unequally
weighted tasks 82
Example which achieves the lower bound on CT!_/CT!

= PS’ “7BS
when ¢, = ¢ 86
Lower bounds for a task system with equally weighted
tasks 88
Forms used to construct any subset assignment 92
Example which achieves the apper bound on

1 1 =

CTSSAS/CTBS when k > 2 and e, = ¢ 107

Example which achieves the upper bound on
! 1 - -
CTSSAS/CTBS when k = 2 and 6, = ¢ 109

Table 1.

Table 2.

Table 3.

Table 4.

vi
LIST OF TABLES

Lower bounds on the ratio CT;S/ CT}'3S for any graph G
with equally weighted tasks

Lower bounds on the ratio CTéASS/CTéS for any graph
G with equally weighted tasks

Upper bounds on the ratio CTéASS/CT'S for any graph
G with equally weighted taskS on a E (k > 2) proc-

essor system

Upper bounds on the ratio CT../ CT'S for any graph G
with equally weighted tasks on a two-processor system

Page

87

104

108

110

I, INTRODUCTION

The technological constraints on the speed of computation of
electronic computers have led researchers to seek alternate ways to
decrease the execution time of programs. The minimization of computa-
tion times is important and even necessary in certain application
areas. In some process control applications, the external world places
hard constraints on the length of the interval, real-time, during which
the computations must be performed. Failure to complete the computa-
tion may lead to catastrophy or at least to questionabie or useless
results. The length of the real-time interval, of course, varies with
the application: chemical and nuclear experiments, moon landings,
missile tracking, aircraft control, weather forecasting, moving a
character out of a hardware buffer, etc. In process control applica-
tions, execution of programs are generally repeated. This allows for
measurement of execution times and scheduling of component program
parts in a multiprocessor environment,

The trend in decreasing computer costs increases the importance
of minimum turnaround time for general computer users. While high
costs of computing have, in the past, forced users to share equipment
and hence suffer individual delay due to attempts to optimize overall
utilization and throughput, future trends in some applications seem to
be toward less sharing of processor and memory and a premium will be
placed on turnaround time. Once again, multiprocessing in various
forms, both through distributed arithmetic units and parailel instruc-

tions streams within a single program, will reduce turnaround time.

Here the automatic detection of parallelism and measurement of task
times provided from an analysis of program structure would be extremely
helpful. 1In general, multiprocessing appears to be useful in a wide
spectrum of current and future application areas.

We will be concerned with the scheduling of parallel instruction
streams in a real-time multiprocessor environment in an attempt to
decrease the total computation time. 1In order to specify bounds on
machine performance, we must study the stability of such schedules. By
stability, we mean that the time required for execution will not in-
crease if we relax certain constraints on the set of tasks to be exe-
cuted in parallel, It is natural to avoid imposing additional stabilizing
constraints if at all possible, since additional constraints also limit
the available parallelism,

Preemptive scheduling is appealing because, in theory, it provides
the minimum length schedule. Thus, we are also intérested in the
. DBezcause processor switching times
might not be negligible, we wish to compare the schedule length of
preemptive schedules and nonpreemptive schedules, takiﬁg into con-
sideration the switching time costs. Because of the lack of non-
enumerative algorithms to produce optimal schedules, we want to study
a simple low-cost scheduling technique that produces a near-optimal
preemptive schedule., Our concern will be with the effect of switching
costs on such schedules. The author knows of very little work done
in scheduling systems where switching times are considered nonnegligible,

Results in this area will help make decisions as to what levels of

computing are applicable to multiprocessing und under what circumstances

preemptive scheduling is advantageous. Finally, we mention that the
results reported in this work provide a general feeling for the effects
of preemption costs in general systems where task systems cannot be
estimated in advance,

In Chapter II, we describe the model that will be used to study
scheduling problems and we survey the literature that is relevant to
our interests, In Chapter III, we will study the stability of schedules
produced by the four most important nonenumerative algorithms that pro-
duce an optimal schedule length when certain conditions are satisfied.
In particular, we need assurance that smaller actual execution times,
or increasing the number of processors, or eliminating some precedence
relations does not increase the resulting schedule lengths. This
chapter will report and prove results when all conditions for optimality
are satisfied. Most of the results will show that we do not need to
add Manacher's conditions (15) in order to preserve the stability of
the schedules produced by these aigorithms, HOwWever, the practical
use of some algorithms requires additional constraints that also

limit the available parallelism, In Chapter IV, w

-

«
»
»
=

properties of the schediilles produced by the nonpreemptive algorithms
when the conditions necéssary for optimality are violated. The useful-
ness of these algorithms under nonoptimal conditions has been estab-
lished by simulation byManacher (16), Ramamoorthy, et al. (20), Chandy and
Dickson (3), and Adam, et al, (1). Most of the results reported in
this chapter will show that these schedules are unstable under these
conditions. In order to have stability, we have to add Manacher's

conditions which are stated on pages 20 and 23,

Two of the four optimal algorithms give basic schedules or non-
preemptive schedules in which it is assumed that once a processor is
assigned to a task it must work continuously on this task until it has
been completed. The other two algorithms reflects the results of recent
studies in preemptive scheduling in which run-to-completion constraint
has been relaxed. In particular, with the preemptive scheduling discipline
it 1s possible to interrupt any processor at any time and reassign it
to a different task. In this case we envision the scheduling of con-
current processors at the program or procedure level where preemption
is possible. Chapters V and VI are concerned.with preemption costs.

In Chapter V, we consider the effect of processor switching on
the actual running time if scheduling uses the known optimal algorithms
based on zero switching time. In real-life, processor switching time
might not be negligible, due to other factors such as the need for a

memory swap whenever a processor is switched, We will give some bounds

nonpreemptive schedule for a graph with unequally and equally weighted
tasks in which the cost of switching and preempting tasks is not zero.
In Chapter VI, we will give some bounds for the ratio between a near-

optimal preemptive schedule and the optimal nonpreemptive schedule for
a graph with equally weighted tasks in which the cost of switching and
preempting tasks is not zero., .Some of the results given in Chapter VI
will show that in real-life we can no longer say that the preemptive

scheduling discipline is strictly more powerful than the nonpreemptive

scheduling discipline, and we will have bounds on the effects of these

switching costs on a two-processor system. Finally, in Chapter VII, we

summarize the results of this work and present some ideas for future study.

II. DESCRIPTION OF THE MODEL AND SURVEY OF LITERATURE

In order to study the problems mentioned in the introduction and
to present some results obtained in this area by previous workers, we
shall require a number of definitions.

First, let us assume we are given a set [Pl; P2, cos Pk} of
identical and independent processing units, and a set { = {Tl, Tz, eroy Tn}
of tasks to be executed in the computing system. Since the processors
are identical, a task can be executed on any one of the processors.

A weight 7, is associated with each task T, and denotes the exzecution

i i

time of the corresponding task. We also haye a partial ordering < on (.
The ordering Ti'< 'I’j means that the execution of Tj cannot begin

until the execution of Ti has been completed. Ti is called a predecessor
of Tj’ and Tj a successor of Ti' If there exists no task Tz such that

Ti < T,t < Tj then Ti will be called an immediate predecessor of Tj’

and T, will be called an immediate successor of Ti' A task with no

4

successor is a terminal task, and one with no predecessor is an
initial task, If task Ti is neither a successcr nor predecessor of Tj’
then Ti and Tj are independent and therefore they may be concurrent.
A task is said to be "ready" at some point in time if all of its
predecessors have completed their executions. We also associate with
each set of tasks a priority list &.

Formally, a task system is specified by the ordered quadruple
C=(, T, <KL). Frequently, a task system C = ({, 7, {&) is
represented by a precedence graph G which has the members of { as

its vertices and there is a directed edge from T

4 to Tj if, and only

if, Tj is the immediate successor of Ti' Each node in G is described
by the name of the task and its associated execution time. More pre-
cisely, our computation graphs are acyclic, weighted, directed graphs,
satisfying the connectivity constraint just mentioned. Let Til,

Tiz, vees Ty be the tasks in some given path in G, Then the path

ss

length is 2: LA and the level of a task T, in G is the length of
=1 7

a longest path from T, to a terminal task of G.

i
The schedule for C = {{, 1T, <, &) is uniquely determined by

the following rules:
1) Whenever a processor becomes free for assignment, £ is
scanned from left to right for the first unexecuted ready
task and assigned that task,
2) In case of a tie among processors, they are scheduled in
ascending order of their subscripts,
An accepted way of specifying a schedule is to use a Gantt chart
(4), which consists of a time axis for each processor, with intervals
marked off and lebeled with the name of the task being processed. We
use the symbol ¢ tc represent an idle pericd, Im Figure 1 we chow a
simple graph, G, and a corresponding schedule for k = 2 processors.
There are two interpretations on task execution times that increase
the usefulness of the results when these times are not known exactly.
First, the execution times may be interpreted as maximum processing times,
In this case, the schedule length is the maximum time to complete the
graph, Second, the execution times may be regarded as expected values
of the run times considered as random variables. With this interpreta-

tion, the length of the schedule produced is an estimate of the mean

L= @y Tys Ty T Tl A T
. 72 = T3 =2
T4 2 T1 S:
AENEA
?, T,
T 3 =0]

(@ G
(b) Gantt chart

Figure 1. Example of a graph and a Gantt chart

length of the computation over many runs., Much of the motivation
for studying worst-case behavior is to derive an upper bound on the
typical or expected length of the schedule,

In a Basic Schedule, BS, also called a nonpreemptive schedule, it

is assumed that once a processor is assigned to a task it must work
continuously on this task until it is completed, while in a Preemptive

Schedule, PS, the run-to-completion constraint is relaxed. Next we

but will be useful in our analysis, Suppose that the k processors in
a system comprise a certain amount of computing capability rather than
being discrete units. Assume further that this computing capability
can be assigned to tasks in any amount up to the equivalent of one

processor. If we assign o, 0 <o <1 computing capability to a task,

then we assume that the computaticn time of the task is increased by a
factor of 1/a. We allow the amount of computing capability assigned to
a task to change before the task is completed, including the case where
the task is not worked on at all for some interval, In Figure 2(a)

we show the optimal BS and PS for a very simple graph G, and in

Figure 2(b) we give a GS for G'.

It is argued by Ullman (22) that probably no polynomial bounded
algorithm exists for computing an optimal schedule for the general case.
A polynomial bounded algorithm is one in which the number of steps are
bounded by a polynomial in the number of nmodes n. At this moment,
nonenumerative techniques for finding an optimal schedule for general

graphs in a k-processor system do not exist. In fact, there are only

several known polynomial bounded algorithms that vield optimai schedules
for certain restricted classes of systems. These algorithms and their
constraints are explained in succeeding paragraphs.

For Basic Scheduling, clearly, the problem of finding an optimal
BS for any given graph is effectively sclvable by enumeration. How-
ever, Hu (11) gives a practical algorithm O(n) for an important special
case of graphs with equally weighted tasks in which the precedence
relations define a tree. He assumes that an arbitrary number of processors,
k, are available. A tree is defined as an acyclic directed graph in
which each node, except for the root, has exactly one immediate suc-
cessor,

The algorithm, also known as the B-Algorithm (5), simply follows

the rule: Whenever a processor becomes free, assign it to a task, if

any, all of whose predecessors have completed execution, and which is

10

B Ty Iy
G: @ o] T = 1l fori=1, 2, 3.
S:
Optimal basic schedule
S': '
P1 T1 TZ//
Optimal preemptive schedule
PylTa] T3

(a) Optimal BS and PS for G

T = T = Te = 77 = =1
' ==
R T T k=2 37742 T
/i\ F s" T, @=2/3 T. o=4/5

1 - 5 -

“ i N T, 0=2/3}S J T a=2/5 |t
Ty !{ Ts\ Tﬁ TZ ¢ 6
= T, =/, T
T, Tg e=0 1 2 3 4 5 6

disciplines

>, preemptive and general scheduling

1

at the highest level of those tasks not yet assigned. If there is a
tie among several tasks, then a task is selected arbitrarily. Hu showed
that the given B-algorithm is optimal, and the schedule-length is given
by

t(S) = max {j +{l9£i;t-llL]}

0<I<L K

where |Q(j + 1)| represents the number of tasks at level j + 1 or
greater and L is the length of the longest path in the graph. This
bound comes from the fact that for any j, it is not possible to compute

all of the tasks whose level number is greater than j in less than

(number of such tasks
k

needed to complete the remainder of the graph. When the B-algorithm

) units of time, and at least j units of time are

is applied to a tree graph, G, with unequally weighted tasks, Kaufman

(13) found that the schedule length obtained is at most p units longer

than the optimal preemptive schedule for G, where: p max{Ti} Vi in G,

e

In Figure 3, the operation of the B-algovithm for k = 3 is illustrated

Note that

1=

n this case the tie mentioned in the description of this

algorithm

Q

ccurs during the first two steps, Note also that the B~
schedule is also optimal for forests of trees and for p-restricted

precedence graphs (2) with unit tasks. A p tree-restricted precedence

graph G consists of p tree-structured subgraphs G1, GZ’ eesy G 8uch
- P
that each terminal task of Gi—l is a predecessor of eéach initial task

of Gi fori=2, ..., P
For the case of k = 2 processors, Bauer (2) has discovered an

algorithm that will give am optimal schedule for tree-structured graphs

12

G: 16 17 18 19 T, =1 V, in G
i i
‘ 1
12
‘\13 14 15
10 711
7 8 9
W\ 6
2 3
1
t=0 1 2 3 A it

[7 ot
L Y

~
Iy

w
[

1 19 16 13 | 10 7 4
P 18 15 12 9 6

a
P, 17 14 11 8 5 W

Figure 3. Example of B-algorithm

and p tree-restricted graphs, in which the nodes have weights of one or

two units,

Coffman and Graham (6) present an O(nz) algorithm that finds an

optimal basic schedule for general graphs on twe processors when the

13

tasks have unit execution time. The scheduling algorithm is based on
the following labeling algorithm: ILet N = (nl, cees nt) and N' =

(na, cons né,) denote two decreasing sequences of positive integers.
Define N < N' if either (a) for some i, 1< i < t, we have n, = n; for

i
Let n denote the number of tasks in G, The labeling algorithm assigns

12j<i-landn <mjor (b)) t<t'andn; =nsforl<jst,

to each task T an integer a(T)e{l, 2, cooy n}, The mapping o is de-
fined recursively as follows: Let S(T) denote the set of immediate
successors of T,

S1 — Any arbitrary task TB with S(To) = ¢ is chosen and a(To) is
defined to be 1.

S2 — Suppose for some kK < n that the integers 1, 2, ..., k - 1 have
been assigned. For each task T whose successors have all been labeled,
let N(T) denoﬁe the decreasing sequence of integers formed from the

set {a(T')IT'eS(T)}. At least one of these tasks T* must satisfy

N oo
+ 7

(T) for 2ll such tasks T, and let o(T™) = k.

[x-’l
1=l

IA
b4

S3 — Repeat S2 until all tasks of G have been assigned some
integer.

The scheduling algorithm, also known as the A-Algorithm (5), is
defined as follows: Whenever a processor becomes free, assign that
task all of whose predecessors have already been executed and which
has the largest label among those tasks not yet assigned. An example
11lustrating the A-~algorithm iz provided in Figure 4. This algorithm
is not optimal when the number of processors is greater than two or

when the tasks are of unequal execution time.

14

G:
& = (T19, T18, seeoey Tl)
'ri=1 Vi in G
0 1 2 3 4 : 7 9 1
. 1
S pl19 {17 [16 |1 |12 |10] 9 |7 5 | 2

1
P, 18 6 15 13 11 4 8 W 3 1

Figure 4. Example of A-algorithm

15

Algorithms for finding the optimal-schedule length in the PS discipline
are as rare as results for the BS discipline. An important fundamental
result in preemptive scheduling is presented by McNaughton (16): For
a set of independent tasks with weights ‘Tl, Tos eaes Tn} and k available
homogeneous processors, the optimal PS has length
>

T
i=1 1
k L

max {max {r;},
I &

It is clear that this computation time cannot be improved upon,
since the schedule must be at least as long as the largest task and
cannot be more efficient than to keep all the processors continuously
busy.

Muntz (17) gives an algorithm for constructing an optimal GS for
any number of processors when the computation graph is a rooted tree or
forests of trees, and the node/weights are mutually commensurable,
i.c., there exlists a real mmber, w, such that all node weights axe
integer multiples of w,

The algorithm, also known as the C-Algorithm (5), is the following:
Assign one processor each to the tasks at the highest level, If there
is a tie among b tasks (because they are at the same level) for the
last a(a < b) processors, then assign a/b of a processor to each of
these b tasks, Whenever either of the two events described below
occurs, reaseign the processors to the uncomputed portion of the graph

G according to this rule., These are:

Event 1: A task is completed.

16

Event 2: We reach a point where, if we continue the present as-
signment, we would be executing some tasks at a lower level at a faster
rate than other tasks at a higher level. Note that the C-algorithm,
as it is defined, produces a general schedule, but there is a direct
conversion from the optimal general schedule to the optimal pxeemptive
schedule., Muntz (17) showed that the PS and GS are equally effective,
because for all graphs the optimal schedules according to both disciplines
have the same length., Therefore, the C-algorithm gives an optimal
preemptive schedule for a tree-structured graph G and we write
CTGS(G, k) = CTPS(G, k) = CTC(G, k) where CTd(G, k) represents the
minimum computation time of G with k processors using the «-scheduling
discipline. An example illustrating the C-algorithm is provided in
Figure 5. Define Gw to be the precedence graph derived from G by
replacing each task Ti by n. mutually commensurable task, Ti,l’ cees Ti,ni
each with execution time w.

Muntz and Coffman (18) give an algorithm for finding the optimal
preemptive schedule for gemeral graphs in a two-processor system based
on the notion of a subset sequence. A subset sequence for a graph G,
with equally weighted nodes, is a sequence of nonempty disjoint

subsets of nodes s1, S9, voes ST such that 1) if n is a node of G,

then neSi for some i, and 2) if n, m are nodes of G, with neSi, meSj
and n <m, then i < j. A PS for G constructed using the schedule for
S1 followed immediately by the schedule for 52’ etc., is called a

subset assignment. They showed that for a 2-processor system, an optimal

subset assignment for any graph G, with equally weighted nodes, is an

optimal PS for G.

17

¢ Ty =Ty = Ty = 71/2
T, =1
75 =8
Te = 11/2
T = T8 = 2
Tg = 1/2
S:Evenl:: 2 1 1 1 1
BTy Ty Wl T |%
AR =2 ;—L B
T3 8
P, T, T Ts | 4
t=0 1/2 9 10 12 12
5/6 5/6 1/3 5/6
(a) Optimal GS obtained using C-algorithm
st:
Pt T Ty %l Ts T9l
By 1% T E T1% Ty %
B35 T s 51 Ts _
0 172 IR
5/6 5/0 1/3 5/6

(b) Optimal PS obtained from the optimal GS

Figure 5. Example of C-algorithm

The algorithm for finding the optimal subset assignment for two

processors is as follows: Let G be a graph with mutually commensurable

18

node weights and let G De as defined above. Let L be the length of a
longest path in G.
S1 — Set index j = 1,

S2 — Let J% be the set of all nodes which have not yet been as-

signed to subsets and are at level L - j + 1, Assign all nodes inﬂ-:j

to Sj' If the number of nodes inJii is one then go to Sé4.

83 — If j = L then stop, otherwise, set j = j + 1 and go to S2.

S4 — Let o = {qi} be the set of all nodes which have not been
assigned to subsets but all of whose predecessors are contained in SlUSZU
vee USj-l' If o = ¢ then go to S3. If o # ¢ then assign q, to Sj’
where q, is such that level of q, = max {level of qi}, and go to S3.

q; &
An informal statement of this algorithm is: Nodes are assigned to

subsets level by level, with higher level nodes assigned to subsets
first. The only exception to this rule is when it would result in a

subset containing only one mode while there is at least one cther node,

at 2 lcwer level, which can be agsigned to this gubget without violatin

-

Q

any precedence relations. In this case a second node is selected which
is at the highest possible level. As an example we show in Figure 6,
a graph G and a subset sequence constructed by the algorithm. Imn
spite of its appealing simplicity, it is unfortunate that this algorithm
is not optimal for more than two processors.

In dealing with preemptive schedules, the question arises as to
how many preemptions are necessary to form an optimal preemptive schedule
on a general system {(assuming preemption costs are zero). In general,
we need not consider preemptions at intervals more frequent than one

every w/k! units for any k processor system, MHore precisely, it is

19

Optimal subset sequence for G: ‘Tll}’ {Tg’ TJ, {TS, Tes T7}, (TS’ Tlo}’

LAENRNLY

Figure 6. TIllustration of the subset assignment algorithm

conjectured by Muntz (17) that any preemptive schedule, for a graph G
ig at least as long as the optimal BS for Gw/kf’ i.e., CTPS(G’ k) =
CTBS(Gw/kg:k)-Incidentally, this is equivalent to the conjecture that
an optimal subset assignment for Gw/(k 1! is an optimal PS for G.
These conjectures remain unproved,

Later, Coffman and Graham (6) showed that in the limit, Algorithm A
applied to Gw/r as r » ®, converges to the C- schedule because at each
point in time both give highest priority to those remaining tasks at
the highest level in the graph requiring processing. For that reason,

we know that the C~algorithm is optimal for any number of processors

20

when the computational graph is a tree-structured graph, and for general
graphs on a two-processor system. |

A second important run-time consideration deals with the stability
of schedules. Graham (8, 9, 10) considers four types of changes,
each of which may produce anomalous increases in schedule length:

1) changing the order of tasks in the priority list;

2) removing some of the precedence relations;

3) increasing the number of processors; and

4) reducing the execution time of some tasks,

Cases 1), 3) and 4) were first discussed by Richards (21). A
simple example which exhibits all four conditions has been presented
by Graham (10) as shown in Figures 7(a) through 7(e). Graham proves a
theorem which states that given two schedules, S and S', where S' is
related to S by the application of any combination of the four changes
given above, the schedule lengths t(S) and t(S') are related to one

another by the bound

t(S) k -1

where k, k' are the number of processors in S and S', respectively.
Graham's theorem also states that this bound is the best possible in
the sense that it cannot be replaced by a smaller number, It reduces

to 2 - % when k = k', Since Graham's bound gives %%% < 2, we hure

an absolute bound on "anomalous" behavior.
Rules for stabilizing schedules to prevent such anomalies have
been established by Manacher (15). These rules introduce more precedence

relations and change the priority list to achieve stability. In

21

1 Tg T3 Ty
Ty Tg Te Ty Tg
£= (Tl, T2, ceeay T9)
T = (3] 2 3 2 3 2 3 4 b} 4 b} 4’ 4 b 9)
S
51 T Ty
Bl % T4 Ts 17
Psl T4 Tg Tg
£=0 2 4 8 12

(a) Expected schedule

Run-time schedule S1 when task execution of each task is decreased by

one, i.e.,
tt= (2, 1,1, 1,3 3,3, 3,8
S.:
AN Ts Tg
ARNEANEN
P3mf;% Ty 7
£=0 1 2 5

(b) Decreasing execution times

Figure 7. Example which exhibits all types of anomalies

22

Run-time schedule 82, when the number of processors is increased to 4:
S,

2
pl T T, /
| T, T, T
P

T To V
7 R T,

¥]
£=0 2 3 6 7 15

T T T, T

o }1 2 N
/ \ T=(3’ 2: 2, 2’ 4’ 43 4:4:9)
Iy Ig Te T, Tg

S.:

3

Py T T

Pl T T, T,

Py 3 Ts

£=0 2 3 4 s 7 8 10 16

(d) Relaxing some precedence constraints

Run-time schedule 84, when the priority list is changed:

-
& - (Tla T2’ T ’ TS’ TG’ T3’ Tg: T7; TB)

4 :
Pl Ty Ty
P T, T T, _
P T, T, Tg /
¥ v
£=0 2 3 5 6 10 14

(g)_ Changing the priority

Figure 7. Continued

23

later chapters, where we demonstrate instability, Manacher's constraints
would have to bg added to guarantee stability.

Recently, Kaufman (12) showed that systems with equally weighted
tasks are not anomaly free..

A natural comparison is between the optimal preemptive and optimal
nonpreemptive, basic, schedules, Liu (14) shows that for a given set of

tasks specified by execution times and a partial order,

k + 1
CTps Z 21 CTps

for a k-processor system, Moreover, this bound is the best possible.
In the results stated above, the cost of preemption is considered

to be zero or too negligible to affect the schedule length. 1In real-

systems, preemptions may be significant. In these cases, the useful-

ness of the preemptive models is lost by neglecting preemption costs.

24

IIT. STABILITY PROPERTIES OF OPTIMAL SCHEDULES

In this chapter, we study the stability properties of optimal
nonpreemptive schedules and preemptive schedules. These schedules
are found to be free, in almost all the cases, of three anomalies com-
monly found in multiprocessor systems. Stability allows us to use
these schedules to compute an upper bound on the schedule length under
the most constraining conditions. At run-time, these conditions can
then be relaxed without danger of an increase in the schedule length.

This chapter is divided in four sectiocns, 1In Section A, we study
the stability properties of the B-schedule. Section B studies the
stability of the A-schedules. The last two sections are dedicated to
preemptive schedules. 1In Section C we study the stability of the C-
schedules for tree-structured graphs, and finally, in Section D we

study the stability properties of the Subset Assignment Schedules.

A, B-Schedules

In this section, we study the stability properties of the schedules
produced by the B-algorithm. This algorithm produces optimal nonpre-
emptive schedules for systems in which tasks have equal execution times
and the partial order is defined by a tree-structured precedence graph.
We begin with the optimal B-schedule S for the case where T T 1 for all
i and investigate the stability of this schedule by relaxing the
constraints on Ty and the precedence relations, <, and increasing the

number of processors to form a schedule S'. Since a change in the

priority list can obviously result in increased schedule length, we

25

hold &£ fixed as defined for the optimal B-schedule S. Thus, we show
that the optimal B-schedule S is inherently free from three common

anomalies and additional constraints are not necessary (15).

1. Increase in the number of processors

Let G denote a tree-structured precedence graph which defines the
partial order <. Let Q(j) denote the set of tasks at levels greater
than or equal to j and L be the maximum length path in G, and |Q(j)|
denote the cardinality of Q(j). Hu (11) showed that the length of the

optimal schedule on k processors is

t(S) = max [j +!-l£9—k_tj)—l-“
0<j<L

where [X] denotes the ceiling of X. The following theorem shows the
B-schedule is free of the anomaly caused by increasing the number of
processors,

Theorem 1. Given a tree-structured precedence graph G with equally
weighted tasks, the B-schedule is stable if the number of processors
is increased.

Proof: Let t(S) and t(S') denote the B-schedule length for G

on k and k' processors, respectively, where k' > k., Define

_iJlea ol o TleG + b
tj = j —-——7;——-—— an tj =] ————EF_———- .

Then t(S) = max(tj) and t(S') = max(t;)e Since k' > k implies tj > t3
0<iL 0<I<L |

for all j, it immediately follows that t(S) > £(S').

26

2, Relaxation of the partial order

In order to insure that <' €< and the new precedence graph G'

(which defines <') is a tree or forest, we define an "allowable relaxa-

tion" as the removal of an arc (Ti’ Tj) from G, i.e., Tj is the "im-
mediate" successor of T,. Furthermore, this implies

(i) the addition of an arc (Ti’ Tk) if Tk is the immediate suc-
cessor of Tj in G.
(ii) the addition of no arcs if Tj is the root task in G.
In the first case, the resulting graph G' is a tree while in the second
case G'" is a forest. Figure 8 shows an example of both cases. G' is

formed by removing (T3, TS) from G and G" is the result of removing

(TS’ T6) from G.

T2 T T

T
Ge \/ G': G":
T T T
4o T 5 4 T
T3 3 [3
m \\ //

7)T U T 4 8T
4\/ 5 Te 6 5

6

Figure 8, Examples of relaxation of the partial order

The following theorem shows that removal of a single arc from G will
not cause an anomaly in the B-schedule.

Theorem 2. Given a tree-structured precedence graph G with
equally weighted tasks, the B-schedule is stable under an allowable
relaxation of G.

Proof: Suppose we remove arc (Ts, Tr) from G where Ts is at

ievel £ + 1 and Tr is at level £. 1In the subtree with root Ts, the

27

level of each task is reduced by one and Tr and TS have the same im-

mediate successor in G'. Let ni denote the number of nodes in the sub-

tree with root T, that are at level i in G. Clearly, n, = 0 for

1<i<4,n

441 - Lo M

iZO for £ + 1 <i<L. Let t(5) and t(S8')
denote the B-schedule lengths for G and G', respectively. Since G is

a tree, we have as before

t(s) = max(tj) where tj =]+ [‘Q(jk+ 1)|]
0<i<L

If G' is a tree, then we have
t(8') = max(ta)
0<i<L
where

laGs + 1] - n, -

k - k

The result t(8') < t(S) is immediate, If G' is a forest, we may add
to G' a dummy root task To with execution time zero and define it to
be at level zero in G'. Since the level of all other tasks in G'
remains unchanged, the above analysis may be repeated and, once again,
t£(s') < t(8).

Through successive applications of Theorem 2, we have:

Corollary. Given a tree-structured precedence graph G with equally

welghted tasks, the B-schedule is stable if any number of arcs are

removed from G,

28

3. Reduction of task execution times

In this section, we assume that the actual execution time of the
tasks are given by Ti <lfori=1, ..., n, We also assume that the
Ti form a mutually commensurable set of values with greatest common
devisor 6. Denote the highest level of a task in G by L. For this

case, we consider the level of any task T, to be the level it had in

i
the graph G where = 1, for all T, in G. Define;

T = max {¢i: Ti is the actual execution time of Ti and

Ti is at level £ in G}
The analysis which follows is similar to that presented in (5). The
reader may find Figure 9 helpful in following the next lemma.
lemma 1. Let G be a tree with no more than k leaves (initially

available tasks). Assume unequal execution times Ti as described

above. Then the B-schedule S' for G on k processors has length

L

o i

t8)Y < LT
i=1
1
Proof: Define L 0<i Sﬁg—l - 1, to be the set of tasks
executed in the time interval (i6, (i + 1)8). Since G is a tree, the
R o
sequence \Rol, \Rl\, ceos _Eé§,l - 1| is monotonically decreasing
where iRii denotes the number of tasks in R . This observation fol
from the fact that the execution of an available task can cause at most
one task to become available for execution in the next time interval,
N]

Since lRO‘ < k, we have lRil <k, 0<i< E%—l - 1. Therefore,

Ri+1 S3Ri: or at least one task in Ri+1 is at a lower level than its

?
precedessor in R,, 0 <1< Eﬁ%—l - 1. At time TL, all tasks at level L in
1 =

29

c" Tl, E T2, E k =4
§ =%
Tys % Tso 1 1 2 3 4
T3’}.”: T =2§a7 =3/4,T =1, T':!E
£= (T 3 ecey)
Te» % T,, 3/4 1 8

Tes %
S': 0 oL L2
7
T Ts / Tg
t(s') = 2%
T
5 ////////////////,4
Ry = {Tps Tps Ty Top Ry =Rg {Te, T,
R, = {Tl TS} Rg = {T7}
Ry = By = {TB, Ts} Ry = Rg = {TS;

Figure 9. B-schedule for a tree with k leaves and reduced execution times

30

G are completed and in general, at time TL + TL-l + ..+ Tl, all

tasks whose level is not less than i in G are completed. Hence

L
£ < Lot
i=1
Because TZ <1, this Lemma also says that t(S') < L.
Lemma 2. Let G be a tree in which the tasks have unequal execu-

tion times Ti < 1. 1If S' is a B-schedule for G on k processors,

then

t(S')<max {J +FM]}

| k

Proof: Since the result is trivially true for L = 1, we may as-

sume L > 1. Let Ti be as defined above and let M = max (Ti). Define

I
the following sequence of points in the schedule.
to =0
t =

i ti-l + min { M, time required to complete execution of k
more tasks}

Let ’Ni be the set of tasks which complete execution at or before ti and
INiI be the number of tasks in Ni. Define p to be the least value such
that a time tp some processor is idle or becomes idle. If p = 0, then
Lemma 1 applies and we are done. Therefore, we assume p > 1. Note
that no processor can be idle in the interval (0, tp-l)’ and Ni is
always an integral multiple of k for all i such that 1 <1i <p.
Dafine Vj’ 0 <j<t(S') as the maximum level occupied by tasks in the

tree G which have not completed execution at time ¢,

3417 In other words,

Vj is the smallest level such that Q(Vj + 1) gN.+ Figure 10

jHe

31

=2
Tg
0
S: s
T
Lol T3
£y =1 N, = {1}, T} v,
tz = 1% Nz = {Tl’ ccey T‘,“% ‘V’l
= 21 = =
t, = 2% Ny = {1 s T T) Y,
£, = 3% N4=‘T1, cees T7} v,

Figure 10, Case where Np < Q(\iP + 1)

w

QV, + 1) =

32

illustrates these definitions., From the definition of p and Lemma 1,

the tasks remaining to be executed after t can be completed in no

p p+l
more than Z T1 < Vp time units. Therefore
i=1

t(S')SVp+t SVD+M(p+1)SVp+(p+1)

p+l

At this point we have: |Np| =kP, le+1| >kp and kP<|Np+1| = |Np| +

IN -Npl < kP + k. So

ptl
N
p<—L-k <p+1
N
[—P_—k-*.l‘l =p+1,
Therefore:
IN +1|
£ <V + —-E——-

In order to express the upper bound on t(S') in terms of Q(Vp + 1)
we consider two cases,
Case 1. Np c Q(Vp + 1). Figure 10 illustrates this case, We have:

N - N | <k, V +1) €N
S Sk e+ e,

and N < Q(V + 1),
ptl p+l P"'Q(p)

If Np+l = Q(Vp + 1), the result follows. Suppose Q(Vp + 1)< Np-e-i Then

k2 Ny - N L=, - e+ D) V@, + 1) - W)L since

Q(Vp + 1) < Np+1, we write

k > |Np+1 - Q(vp + 1)

(Q(vP + 1) . le+1| . (Q(vP + 1) +k _ |Q(Vp + 1)

So n X A K +1
N e+ 1) Q(V_+1)
and [i“’lll =[Pk -I . Therefore, t(S') < Vp + EI___EE_I.E

and the result of the lemma follows.

33

Case 2. Np Q Q(Vp +1). Figure 11 illustrates this case. Here

NP contains at least oné task at a level lower than VD + 1. We con-

sider two subcases,

(a) Suppose there exist no integer i, 1 < i < p such that

®)

Combining the result of Lemma 2 with Hu's result, we

Ni < Q(Vi + 1). Then, for 0 < i < p, the number of tasks
executed at the highest level in (ti’ ti +1) is less than
k. This, in turn, implies that the maximum level of tasks
which have not completed after p intervals is no greater
than L - p. Using the definition of p and Lemma 1, we have
t(8")<p+ (L-p) =1L

and the result of the lemma follows.,

- Suppose there exists an integer i, 1 <i < p such that .

Ni < Q(Vi + 1) and let s denote the largest such integer,

By repeating previous analysis,

e oy, oG Dl
T (L =L} T |
P p 8 { K I

[§
-
[Y Al
s
A

But N, & Q(V, +1) for s <1 < p means that the highest level
of task remaining to be executed is reduced by V s~ 'V'p in the
time interval _(ﬁs’ tp) and hence Vp + (;P' - ts) = VS. There-

fore

t(S')SVS-E-!— k

lov, + 1)]

and the results of the lemma follows.

that the optimal B-schedule is free from anomalies caused by reduction

in execution times,

can now conclude

Case where Np ¢ Q(Vp + 1)

G: T Ty TZ T3 TP STy T Ty T %
V Ty ST, T Tg = Tg STy = Typ < 34
T , - = -
5 73 '1‘5 T6 13 1
TT6 &= (Tl’ oo ey T13)
T
9 k =
T,
T
;10 T12
1
T13
0 1 2 3 4 5
S: 2B a1 4 i A Y 8 & Iy A A 9 /]
Tyl T Ts T To)l Tayp Tis
77774
o 1% | T
T, T | T1p
t0=0 P=3 N]_CQ(V]_J-I')
= = 1 =
g, =1 N {1,2,3] Vy=6 N, €QU, +1)
e, = 13/6 N,=1{1,2,3,4,8,9) V=5 QU+ ={T, ..., T,
ty = 2% N, = {1,2,3,4,5,8,9,10,12} V=4 QU,+1)= {Tl, ...,TS}
t, = 3% N, = {1,2,3,4,5,6,8,9,10,12| Vy=3 QU +1)= {Tl, cres T6}
te = 4% N5={1, e, 12} v, =1
Figure 11.

35

Theorem 3. Given a tree-structured precedence graph G, let
S denote the optimal B-schedule if the tasks have equal execution times
(Ti = 1, ¥1i) and S' denote the B-schedule if the tasks have unequal

execution times ('r]!_ <1, Vi), Then t(S") < t(S).

4, Combined effects

So far, in Section A, we have established the weak stability
inherent in the optimal B-schedule S if we relax a single parameter.

It immediately follows that conditions on all parameters may be col-
lectively relaxed according to a specified order without increasing
the schedule length.

Theorem 4, Given a tree-structured nrecedence graph for a system
of tasks with equal execution times, the B-schedule is stable under any
collective increase in the number of processors and allowable relaxation
éf the partial order followed by a decrease in the execution times of
some tasks.

Proof: Suppose we increase the number of processors to k' forming
the schedule S', By Theorem 1, t(S') < t(S). Next, perform the al-
lowable relaxations to form <' and the resulting schedule S". Since S'

is an optimal B-schedule for k' processors and tasks with equal execu-

4 &~ fQny

AN

£(8").
Finally, perform the reductions in execution times to form the schedule
S"'. Since 8" is an optimal B-schedule for k' processors, partial order
<' defined by a forest-structured precedence graph, and tasks with

equal execution times, we know by Theorem 3 that t(S"') < t(S"). There-

fore, t(S"') < t(S). The proof is the same if we relax the partial order

36

first and increase the number of processors second.

The theorem is somewhat restrictive in the sense that at run time,
we would have to recalculate the priority list & after the "allowable
relaxation" of G and before the decrease in the execution times. 1In
the next chapter, we conjecture a more powerful statement which asserts
the stability of the B-schedule under any allowable collective change
in the original parameters without a run-time recalculation of the

priority list 4.

5. Stability of the B-schedule for variants of tree-structured graphs

Here we consider several tasking systems in which the precedence
graph has a tree-like structure,

We define an allowable relaxation in a p tree-restricted precedence
graph G as the removal of an arc from any subgraph Gi’ 1<i<p, such
that the new precedence graph of Gi is a tree or forest. The following
theorems show that for any p tree-restricted precedence graph G, the
B-schedule is free of the three anomalies commonly found in multi-
processor systems,

Theorem 5. Given a p tree-restricted precedence graph G with
equally weighted tasks, the B-schedule is stable if the number of
processors is increased, or under an allowable relaxation of G or if
the execution time of some tasks are reduced.

Proof: Here we only give the proof when the number of processors
is increased because the proofs for the other two cases are similar.

By Theorem 1, the B-schedule is stable for each subgraph Gi of G if

37

the number of processors is increased, Also by the definition of a

p tree-restricted precedence graph, all tasks in Gi-l must be completed
before any task in Gi may begin execution. Since the schedule length
is the sum of the schedules for the Gi’ the result follows.

Theorem 6. Given a p tree-restricted precedence graph G with
equally weighted tasks, the B-schedule is stable under any collective
increase in the number of processors and allowable relaxation of the
partial order followed by a decrease in the execution times of some
tasks.

We omit the proof of this theorem because it is similar ¢o the
proof of Theorem 5.

In conclusion, we point out that the results of Section A also
hold for forests. They also apply to reverse forests and reverse p
tree-restricted precedence graphs if the reverse of the original graph

is considered and the resulting schedule is reversed.

B. A-Schedules

In this section, we study the stability properties of the schedules
produced by the A-algorithm. This algorithm produces optimal schedules
for two-processor systems in which tasks have equal execution times and
are partially ordered by a general precedence graph. These schedules
are found to be free of two of three anomalies commonly found in multi-
processing systems. Apart from some extensions, much of the work re-

ported in this section originated in unpublished 1iterature.1

lM. L. Liu and A. E. Oldehoeft, Department of Computer Science,
Iowa State University, Private communication, 1974.

38

We begin with the optimal A-schedule S for the case where k = 2
and Ty = 1 for all i, and investigate the stability of this schedule
by decreasing some of the Ty relaxing <, and increasing the number of
processors to form the new schedule S'. Since a change in pridrity list
can obviougly result in increased schedule length, we hold £ fixed as
defined for the optimal A-schedule S.

We begin with the following lemma which is valid for any task set
with equal execution times and an arbitrary number of processors,

Recall that «(T) stands for the label assigned to task T by the labeling
algorithm used by the A-algorithm.

Lemma 3. Let t(T) denote the time at which task T begins execution
in an A-schedule. If T is executed on processor Pl’ then for any task
T' such that t(T) < t(T'), we have o(T) > a(T').

The proof is omitted here since it is identical to that given in

(6) for k = 2 processors,

1. Increasing the number of processors

Given a task set with equal execution times, let S and S' denote
the corresponding A-schedule on k = 2 and k' > 2 processors, respectively.,

Figure 12 illustrates the typical effect of increasing the number of

nrocessors, We now deserihe Al

Algorithm 1 which will partition the

schedule S' into disjoint sets X, consisting of 2ni - 1 tasks such that

i
(1) £ =T n
L

(2) each task in X1+1 1s a predecessor of each task in Xi'

The result of the partition will allow us to conclude that the A-

schedule is inherently free of the anomaly caused by increasing the

39

S P13l {30 28126 1241 23§ 2112019 17415 {13 11{ 10} 9| 7 5
Pz% 29| 27125122} 4| 3f 2|18 16|14 12 1% 81 6 %
t=0 5 10 15

processors, t(S) = 17

24

22

A-schedule for G when the number of processors is increased,t(S') = 14

Figure 12,

Effect of increasing the number of processors in an A-schedule

40

number of processors. The trace of applying Algorithm 1 to §' in

Figure 12 is given in Figure 13.

Algorithm 1
let a(p) = 0; let V0 denote the last task executed by Pl’ let

WO denote the (possibly empty) task executed by P2 with t(wo) = t(VO).

begin
L0; X &V 3 tet(S') -2;
o o
while t>0 do

begin let T. denote the task executed by P, 1 < i < k' at time t
begin let Tl AL <1<

if a(T,) <a(V))
then begin de4+1; V,eT;; Wy« T3 Xz‘"{’fll end

else XJ01<—XJ&UT1UT2

while {J?: # 0 and there exists a task T ¢ Xj 0<ji<i¥)
such that t(T) > t and o (T) > a(Vﬁ_l)} do

begin X;’

1
a8

« X, JWXNT; 4«4 -1end

tet-1

end

end

1f we assume the partition of §' to define the sets XJ. for 0 < j<4
at orithm 1, the following lemmas are direct
results of the algorithm.

Lemma 4. For 0 < j < 4, the cardinality of each set X, is odd,

b
i.e. |X,] =20, - 1,
j 3

Lemma 5. The length of the schedule for k' processors is
- Z

t(s') = z n,.
j=0 3

41

X

0
211208 19]17 |14 |12} 10f 9} 7
1 1816 |13 | 11 8l 6
15 5
Trace
4 Partitioning activity t
0 vV «7, X « {7 12
(o] (o]
0 xo<—h,8,9l 1211
0-1 v, <10, W <9, x1<—{10} 1110
1 X, « {10,11,12) 10~9
1 X, ¢ {10-14) 9-8
1-0 X, € {10-14,16,17} 87
X <X VX, U{1s} = {7-17}
0 xoe{7-19} 756
0-1 vV, <20, W <8, X < {20} 6-5
i v, ¢21, W, 1, K« 21} 5.4
253 V, €23, Wy €3, x3<—{23} 43
34 V, <24, W, €22, x,+e{24l 352
423-2 X, «{24,26,27) 2-1
x3<—x3ux4u{25} = {23-27|
x2<—x2ux3U{22} = {21-27}
2 X, < {21-27,29,30}
251 X; <X Ux,U{28} = {20-30] 1-0
1-2 V,€31, W,€0, X, = {31} 0~-1

Figure 13. Partition of S' in Figure 12 using Algorithm 1

42

Lemma 6. For each task Ter, the labels are such that

a(T) 2 oz(Vj) > a(wj+1).

4
Lemma 7. Any task T4 U X, and executed at time t(T) = t(T) for
3=0

some Ter (j > 1) has the property a(T) < a(VJ._l).

The following theorem shows that the optimal A-schedule for two
processors is free of the anomaly caused by increasing the number of
processors.

Theorem 7. Given a precedence graph G with equally weighted nodes,
the A-schedule for two processors is stable if the number of processors
is increased to k' > 2.

Proof: For 0< j< 4, if Ter and T' er_l, then it follows
that T' < T. The proof of this fact makes use of Lemmas 3, 6 and 7,
It is omitted here since it is essentially identical to the argument
in (6) as part of the proof that the A-algorithm is optimal for the
two-processor systems. Consequently, every task in Xj+1’ 0<ji<4,
must be completed before any task in X, can start in schedule § {for
the two processor system) as well as in schedule S' (for the k' > 2

processor system). Using Lemmas 4 and 5, we have
y/
£s) >y, n, =tE")

2, Relaxation of the partial order

A simple relaxation of the partial order < is defined as the re-
moval of the precedence of an immediate predecessor-successor pair
(Ti, TJ.) while preserving the transitivity implied by the presence

of the pair. More precisely, a simple relaxation of T, < TJ. is de-

i

fined by an operation on the precedence graph G in which

43

(1) the arc (Ti’ Tj) is removed from G

(2) for each arc (Tk’ Ti) in G, an arc (Tk’ T,) is added if

3

necessary to insure T <?Tj.

k
(3) for each arc (Tj, Tq) in G, an arc (Ti’ Tq) is added if

necessary to insure Ti <3Tq.
The resulting precedence graph G' defines a new partial order <' which
is contained in <. By a relaxation, we will mean the effect of any

sequence of simple relaxations. Figure 14 illustrates the typical effect

of a relaxation on an A-schedule for a two-processor system,

G: 5 6 S: i
\ / pl6 4] 3]t
(A
Nk 2 £@) = 4
2 3 |
1
! 5 6 ,
k/i st Pl 6141 3
] A]
4 2 B2 eey =3
3l 1

Figure 14, Relaxation of partial order by vemoving arcs (4, 2) and
(3, 1) from G

equally weighted task system, Let S' denote the list schedule for

the task system with the relaxed partial order using the original
priority list &, In a method similar to the previous subsection, we
define an algorithm to partition S'. The result of the partition will

allow us to conclude that the A-schedule is inherently free of the

44

anomaly caused by relaxing the partial order. A trace of applying this

algorithm is given in Figure 15,

Algorithm 2
Let a(9) = 0; let Vo denote the last task executed by Py, let W,
denote the (possibly empty) task executed by P, with t(Wo) = t(Vo).
begin
Leo; x°<—Vo; te(S') -2;
while t > 0 do

begin let Ti denote the task executed by P =1, 2 at time t©

;o i
if a(r,)) < a(V,)
then begin £¢4+15 V,«T.; W,«T,; X, «{1;} end
else X, «X,UT,U T,
while {£#0 and there exists -'féXj, 0 < j <4, such that
@(T) > a(V,), t(T)<t(V,) and T ¢ S(T) in G
for some TeXJZ} do
begin X, , ¢X, ,UX,UT; 4<4-1 end
tet-~1
end

end
As direct results of the partitioning process, we see that
Lemmas 4, 5, and 6 are also valid for the partition of S' produced
by Algorithm 2, These and the following lemma are used in Theorem 8
to show that a relaxation of the partial order will not cause an anomaly

in the two-processor A-schedule.

45

G 9 G': 9 S
8 8
7
5 6 5 6
4 4 g¥
3
1 2 1 2

(G' is constructed from G by ra=nnovi.ng"):‘i < T3 for 4 <1<9.)

Trace:
2 Partitioning Activity t
0 voez,woel,xoﬁgz} 4

05120 v eb W g, X 6] 43

X eXOleufis; = {2,3,4}

0

0 xoe{z-s} 32
0-~1 Ve oo, X e (1) 271
1~2 V, €8, W, <9, X {8 1-0
2~ 3 Vg €9, Wy «3, Xy« {9} 0= -1

Figure 15, Partition of S' using Algorithm 2

46

Lemma 8. For any Ter, j=1, ..., &, there does not exist
Te S(T) in G (original precedence graph) with the properties
t(T) < ;) -y + 1 "E,ij, and o (T) >a).

Proof: The innermost while loop in Algerithm 2 el
possibility of such a T.

Theorem 8. Given a general precedence graph G with equally
weighted tasks, the two-processor A-schedule is stable under any re-
laxation on G.

Proof: The heart of the proof is to show that for T' eX 410 Ve
must have T' < T for all T er. To facilitate the discussion, let
S(T) and S'(T) denote the immediate successors of T in G and G',
respectively. We first establish that Vj+1 < T (according to G)
for all T er, 0 < j <4, There are two cases to consider,

Case 1. Suppose t(Vj) - nj +1<t(T) < t(Vj) for some
0<j<4in$s'., From Lemma 6, a(T) > oz(WJ.+1) so that T was considered
for execution on Pz at time ¢V, +1;. Since it was not exXecuted at
that time, some predecessor T' of T had not vet completed execution,

i.e. £(T') > (¥ But

3

J+1, '<' T implies T' < T so that &(T') > o(T)

¥ ! = = - 1 =
and £(T') < £(T). If t(T") t(VJ.+1) t(VJ.) nJ., then T Vj+1
and we are done. Otherwise, we can follow the discussion in (6) to

establish by induction that V < T,

+1
Case 2. Suppose t(T) < t(Vj+1) in S'. By the design of Algorithm 2,

TeS(T') for some T' er and t(Vj) - nj+l <t(T') <t{V,). By Casel,
J

< t PP
Vj+1 T' and by transitivity Vj+1

Thus, for all T er, we have established that Vj+l <T, Let I,

denote the set of tasks in Xj wihich have no predecessors in Xj. Since

< T.

47

<' = s
Vj+1 T for all Ter, it follows that S(Vj+1)nxj IJ We next

establish that T' eX.+

5+ and T er implies T' < T (according to G)

for 0 < j < 4.

Consider first the case where T' has no successors in Xj+1'
There are two cases.

Case a. Suppose T' has a successor T such that t(T) > t(vj+1) |

- n,

4+ + 1. In this case either Eer_, for some 1 > 0 or T is of no

i
interest of us.

Case b. Suppose T' has a successor T such that t(-’f)<t(vj+1)

-n + 1. By Lemma 8, we note that a(’-f) < O!(Vj) since T £X

j+ j+L°

Then TéXi for i > j + 1 since otherwise by Lemma 6, o (T) > o:(Vi).
But from the first part of the proof, a(Vi) > cx(Vj) which is a

contradiction.

In any case we have established that if Te S(T'), then '—fexj_i

for some 1 > 0 or T is of no interest to us. We now have S(T')ﬁxj+1=¢

o rer AN —_ T - ~42
L

by assumption, D\Vj+l)||Aj = I by the first part of proo

£ o
L aia

N(T') > N(Vj+1) since o (T") Za(vj+l). In a manner identical to (6),
we can show S(T')A Xj = IJ.= Furthermore no T is in Xj-i fori>0
since then for some T" ¢ IJ., we have T' <T" < T contradicting T ¢ S(T').

We have established that T' ¢X.,, with no successor in X,
j+l j+l
and Ter implies T' < T. Consider next the case where T' has a

successor in Xj+1' By transitivity, it follows that T' < T for all

TeX.,.
J

By Lemma &4, Xj consists of 2nj - 1 tasks. Since T' er+1 and

T er implies T' < T, we have

48

) ,
£(S) > 2. n, = t(S")

j=0 3

3. Reduction of task execution times

Here we illustrate the instability of the A-schedule if some of
the task execution times are decreased, Figure 16 presents a specific
example of this type of anomaly. In order to insure stability under
these conditions, additional precedence consiraints (15) would have to
be placed on the task system. This new system, with additional precedence

constraints, is free from all three anomalies.

G: S:
8 7 816 412 Ti =1 for all i
6 5 7151311 t(s) =4
4 3 st f8L|5|4|2| Tg=%k Ty =1, 1#8
°1 Y 716 3 t(S') = 4%

Figure 16, Anomaly in A-schedule caused by decrease in execution times

4, Stability of the optimal preemptive schedule for two-processor
systems

The stability properties of the A-schedule, established in previous

discussion, can be used to derive stability properties of optimal pre-

s Geliadii T o fan femc ammma s e memede A o T, d
empiive schedules for twWo-processor systems. Assume that the execution

times, 7 = (Tl, cees Tn) are mutually commensurable, i.e., there exists

a real number w such that Ty T MV for some integer'ni. Recall Gw to

i
be the precedence graph derived from G by replacing each task Ti by

n, mutually commensurable tasks Ti 17 v Ti a each with execution
- H H i
time w, Define ‘Gw/ml’ m > 1 to be a sequence of precedence graphs

49

derived from Gw by replacing each task with m mutually commensurable
tasks, each with weight w/m, Let Sm denote the A-schedule for Gw/m on
a two-processor system; Sé denote the A-schedule for Gw/m for k' > 2
processors; and S; denote the A-schedule for G;/m on a two-processor
system where G" is derived from G by a relaxation of the partial order
and G;/m is derived from G'" in the manner described above.

From the previous discussion we know that t(Sé) < t(Sm) and
t(S;) < t(Sm). If we take the limit as m approaches infinity, then
Sm, S; and S; converge to general schedules. These general schedules
are equivalent, respectively, to preemptive schedules S, S', and S"
produced by the so-called C-algorithm (5). Furthermore S is an
optimal preemptive schedule. Taking limits on the inequalitiés above,
we have t(S') < t(S) and t(58") < t(S) resulting in the following
theorem, |

Theorem 9. Given a general precedence graph G with unequally
he two-processer schedule produced by the C-2lgoriti

by the C
is stable if the number of processors is increased to k' > 2 or the
partial order is relaxed.

Note that we have stability under the combined effects of first
relaxing the partial order and then increasing the number of processors.
This follows from the fact that S" is an optimal preemptive schedule
for the two-processor system and precedence graph G",

Since the A-schedule is not stable when some execution times are
decreased, we can infer nothing about the corresponding stability of the

optimal preemptive schedule. However, if additional precedence constraints

50

(15) are placed on the task system, our new system is free from all

three anomalies,

C. C-Schedules for Tree-Structured Graphs

In this section, we study the stability properties of the schedules
produced by the C-algorithm when it is applied to tree-structured
graphs., These schedules are found to be free from three anomalies
commonly found in multiprocessor systems. The study of the stability
properties of the C-schedules om a two-processor system is given in two
different sections, Section B and Section D, following two different
approaches. Recall from Chapter II that the C-algorithm produces
an optimal preemptive schedule for a tree-structured graph, i.e.,

CTPS(G, k) = CTC(G, k), and that the execution times are assumed to

be mutually commensurable,

In order to prove the imality of the C-algorithm when it is
applied to tree-structured graphs, Muntz and Coffman (19) show that
if we form Gw/r’ the graph obtained from G by splitting each mutually

commensurable task in r subtasks, then CTBS(G

Sy k) - CTPS(G, k) as

r » @, They also show that there exists an integer v such that:

CTBS(Gw k) = CTC(G, k) form=1, 2, ...

/oy’
In other words, the optimal limit can be achieved in a finite number
of steps.

We invegtigate the stabllity of this schedule by decreasing some

of Ty relaxing <, and increasing the number of processors to form

a new schedule,

51

1. Increasing the number of processors

We know that CTPS @G, k) = CTC(G, k) and CTBS (GW k) = CTC(G, k).

[mv’
It was shown in Theorem 1 that the optimal nonpreemptive schedule for
tree-structured graphs and equally weighted tasks is stable when the

number of processors is increased, i.e., CTBS(G

!
w/mv’ k) < cTBS(G

w/mv’ k).

Also, it is known that the preemptive discipline is more powerful
than the nonpreemptive discipline, i.e., CTPS @G, k) < CTBS(G, k).
Combining all the relations given above, we find CTC(G,k') < CTC(G,k).
. Therefore, we have the following theorem.

Theorem 10. Given a tree-structured precedence graph G, the C-

schedule is stable if the number of processors is increased.

2, Relaxation of the partial order

In this part, we investigate the stability when the partial order

is relaxed. 1In order to insure that <' € < and the new precedence

graph G', defined hy <¢, is a tree or forest, we use the same defini-

5§ = llTo il

tion of an "allowable relaxation' given in Section III.A.

We know that CT..(G, k) = CT.(G, k) and CT_ k) = CT.(G, k).
PS C B C

S (w/imv’

3

s
-
=
[

corcllary of Theorem 2 shows that the optimal nonpreemptive schedule
for tree-structured graphs and equally weighted tasks is stable under

any allowable relaxation in G, i.e. CTBS (e

w/mv’ k) < CTBS(Gw/mv’ k).

. . 1] ? ° .
Also, it is known that CTPS(G , k) < CTBS (Gw/mv’ k). Then, combining
all the relations given above, we find that CT, @G', k) < CTC(G, k).
Therefore, we have the following theorem.

Theorem 1l. Given a tree-structured graph G, the C-schedule is

stable under any allowable relaxation of G.

52

3. Reduction of task execution times

We know that CTPS(G’ k) = CTC(G, k) and CTBS(Gw/mv’

By Theorem 3, the optimal nonpreemptive schedule for equally weighted

k) = CTC(G, k).

tasks and tree-structured graphs is stable when the execution time of

i <
one or more tasks is reduced, i.e., k) < CTBS(Gw/mv’ k) where

]
tBS(GmeV’
1] : y 1 .
tBS(Gw/mv’ k) is the completion time for the new graph G'. Also, it
is known that an optimal preemptive schedule is no longer than a non-
]]
PS(Gw/mv BS(Gw/mv
k). Combining all the relations given above,

preemptive schedule, i.e., CT ,» k)<t , k), and that

Clpg (6's k) = CT5g (6) gy |
we obtain CTC(G', k) < CTC(G, k). Therefore, we have the following
theorem,

Theorem 12. Given a tree-structured precedence graph G, the C-

schedule is stable when the execution time of one or more tasks is

reduced.

4. Combined effects

Thus far, we have established the weak stability inherent in the
optimal C-schedule S if we relax a single parameter. It immediately
follows that conditions on all parameters may be collectively relaxed
without increasing the schedule length.

Theorem 13. Given a tree-structured precedence graph G, the C-
schedule is stable under aﬁy collective increase in the number of
processors, allowable relaxations of the partial order and a decrease
in the execution time of some tasks,

Proof: Suppose we increase the number of processors to k', forming

the schedule 8, By Theorem 10, t(8') < £(S). WNext, perform the

53

allowable relaxations to form <' and the resulting schedule S", By
Theorem 11, £(S") < t(8'). Finally, perform the reductions in execution
time to form the schedule S"'. By Theorem 12, t(S"') < t(S"). There-

fore t(8"') < t(S). The proof for the other five different cases is

similar.

5. Stability of the C-schedule for variants of tree-structured graphs

Here, we consider several tasking systems in which the precedence
graph has a tree-like structure., We also use the same definition of
an allowable relaxation in a p tree-restricted precedence grapnh given
in Section III.A.5., The following theorems show that for amy p tree-
restricted precedence graph, the C-schedule is free of the three
anomalies commonly found in multiprocessor systems,

Theorem 14, Gilven a p tree-restricted precedence graph, the C-
schedule is stable if the number of processors is increased, or under
any allowsble relaxation of G, or if the execution time of some tasks
are reduced.

Proof: Here we only give the proof when the number of processors
is increased because the proofs for the other two cases are similar,
By Theorem 10, the C-schedule is stable for each subgraph Gi of G if
the number of processors is increased. Also, by the defimition of a p
tree-restricted precedence graph, all tasks in Gi-l must be completed
before any task in G; may begin execution. Since the schedule length

is the sum of the schedules for the G,, the result follows.

i’

Theorem 15. Given a p tree-restricted precedence graph G, the C-

schedule is stable under any collective increase in the number of

54

processors, allowable relaxations of the partial order and a decrease

in the execution times of some tasks.,

We omit the proof of this theorem because it is similar to the
proof of Theorem 14,

In conclusion, we point out that the results of Section C also
hold for forests. They also apply to reverse forests and reverse p
tree-restricted precedence graphs if the reverse of the original graph

is considered and the resulting schedule is reversed.

D. Subset Assignment Schedules

In this section, we study the stability properties of preemptive
schedules for k-processor systems in which the tasks are partially
ordered by a general precedence graph. These schedules are found to
be free from three anomalies that commonly occur in multiprocessor
systems. Our interest in these schedules is motivated by the fact
that they are optimal under certain conditions and in general are
expected to be a good heuristic.

Because the subset assignment schedules assume unit tasks, we
start with a general grapn G with mutually commensurable task times.
We then compute the graph Gw and form a schedule using a special subset
sequence for Gw' The algorithm for constructing a subset sequence
for Gw’ to be called Subset Assignment Algorithm, SAA, is defined in
the following manner. Nodes are assigned to subsets level by level,
except when there are u < k nodes at the highest level. In the latter

case, as many as possible of the k - u nodes necessary to "f£ill" the

55

subset are chosen from the executable nodes at lower levels. Of course,
if there are more than k - u nodes to choose from, those at the higher
levels are selected first. Note that the SAA is a generalization of
the algorithm given by Muntz and Coffman (18) that construcis a subset
sequence for G, which corresponds to an optimal subset assignment for
GW with k = 2, Also, an optimal subset assignment for GW is an optimal
preemptive schedule for G when k = 2 (18), The SAA might not produce
an optimal subset assignment for arbitrary graphs when k > 2., 1In the
future, we will use SAS to denote a subset assignment schedule produced
by the SAA. An example illustrating the SAS is givendin Figure 17.

From the definition of the SAS, we see that each subset Si’ for
1<i 5;% , consists of mutually independent nodes. Therefore, using

McNaughton's result (16), the minimum length schedule for Si requires

s, |
ti = max 4= , 1) =w

. - | R RN L n - ~ - . a - L. A R

units, where |si| 1S the numper O tasks 1n bi. Moreover, the SAS will
L/w

have a schedule length £ (8) = 2: ti. We will

show that the SAS is

P = 1. $ 4 L + 1 1
ree from three anomalies that commonly cccur in multiprocessing systems

Mo 3

considering two different cases: 1) using the original subset sequence
of G for the new schedule S', and 2) recalculating the subset sequence
for S'.

Suppose we do not recompute the subset sequence for a k'(k' > k)
processor system. In other words, we use the original subset sequence
for G, as defined for the k-processor system. It is clear that in-
creasing the number of processors will not increase the schedule length.

1f we do not recompute the subset sequence when the partial order is

56

T6 T7
T3 Th

Subset sequence for GW:{TS, Tgs T7}, {TS, T6}, {Tl, Tys Tgs T4}

S:
P Tg Ts I, T,
P2 T9 T6 T2 T3 t(S) =3 1/3
Py) 3 T,

. a1
L=v L

Subset assigument schedule for Gw

Figure 17, Illustration of the subset assignment schedule

relaxed, we will be using the original subset sequence from Gw for

the new graph G&, and, as a result, we obtain exactly the same schedule.
If we do not recompute the subset sequence when the execution time of
some tasks is decreased, we will be using the subset sequence with

unequal weights. 1In this case, we only have to study the behavior of

57

a particular subset when the execution of one or more tasks is reduced.

L/w
First, let t(S) = 2: tj be the completion time for the graph Gw and
L/w j=1
t(s') = Z tl'i be the completion time for G‘; when 'rj'_ <w for all i.
j=1
Using McNaughton's result (16) for independent tasks, we have

s

Ly
- o2)
£) = max :max {ri}s 3 Ti} Sty

i<igls, | ks

Thus, t(S') < t(S) and we have the following theorem.

Theorem 16. The Subset Assignment Schedule, SAS, is stable under
any collective increase in the number of processors, allowable relaxa-
tions of the partial order and a decrease in the execution times of
some tasks if we hold the subset sequence for the graph G fixed.

Because the subset assignment and the C-Algorithm both produce
optimal preemptive schedules for a two-processor system, Theorem 9
could be stated as a corollary of Theorem 16.

From now on, we will study the stability of the Subset Assignment
Schedules, SAS, in the more interesting case when we recalculate the

subset sequence for the new schedule S'.

1. Increasing the number of processors

If we increase the number of processors from k to k', we wish to
show that the resulting schedule length does not increase. Using the
SAA, we form the sequence of subsets Sl’ Sz, ceus SL/w for a k~processor
system. We then consider the sequence {Si} using k'-processors and we
study the schedule length effect of moving nodes between subsets until
we arrive at the subset sequence for k'-processors produced by the SAA.

Since a finite number of moves are needed to form the subset sequence

58

for k'-processors, it will suffice to show that a single move will not
result in an increase in the schedule length. Increasing the number of
processors allows the possibility of moving nodes from a lower-level
subsét to a higher-level subset in a manner described by the following
lemma.

Lemma 9. Let Sj and S, be two subsets obtained by the SAA for
Gw in a k-processor system., Then, any move of a node from S, to Si’
i < j, required by the SAA for a k'-processor system will not result
in an increase in the schedule length,

Proof: Define S; and 53 as the subsets obtained from S, and Sj
after moving a node from Sj to Si' Therefore ISi'_l = ISil + 1 and
lS:"| = ISjl -~ 1. Let t:s tj, tj'_ and t."i be the time needed to execute
Si’ Sj’ Sj'. and 83, respectively. We need not consider cases when
ISj| = 1 since such a node cannot be moved due to precedence constraints.
We also need not consider the cases when [Sil > k' because the movement
¢ frem a lower-level suhset Sj to a higher-level subset Si is
not allowed by the SAA when Isil > k'. There are four possible cases
when a node can be moved from Sj to Si’ i<j.

Case 1. Suppose 2 < |Sj| < k'and lSi| < k. Then clearly t; = t,
and té = tj since k < k', o

Case 2. Suppose |Sj| > %'and |Sil <k. Then clearly t; =t

i

and ti < t, since k < k',

j
Case 3. Suppose 2 < lSjl <k'and k < |Sil <k'. Then clearly t; = t,

and t! = t,.
J
Case 4. Suppose Isj| > k%and k < ISil < k', Then clearly ti =t

and t' < t,.
J 3

59

In each of the above cases, it follows that t{ + t! <t 6 +t,,

L/w L/wi 1]
= : '] i
Also t) = t, for L #1i, j. Therefore EE& ty < 2;% t,.

Figure 18 shows the typical effect of increasing the number of
processors,

Let S and S" denote the SAS for G on a k-processor system and on
a k'-processor system, respectively; and S' denote the schedule for G
in a k'-processor system using the subset sequence produced by the SAA
for a k-processor system,

From previous discussion, we know that t(S') < t(S) when we do
not recalculate the subset sequence. Note that when we recalculate the
subset sequence based on k'-processors, if the number of nodes in

any subset Si is less than k', it is possible to "f{i1ll" S, with ready

i

nodes from lower levels, From Lemma 9 we know that by moving a node
to Si from a lower level we cannot increase the schedule length, Then

by successive applications of Lemma 9 the resulting schedule S" is

At

PR - . rann
sSucn tinat i

L e
Yy < t{8")., Therefore L") < £{(8). This result

IN

+ Q) Thig ragnit oives
b\l.ll. o= ==
us the following theorem.

Theorem 17. The Subset Assignment Schedule, SAS, is stable when

the number of processors is increased from k to k' and the subset

sequence is recomputed,

2. Relaxation of the partial order

In this part, we investigate the stability when the partial order
is relaxed. Here we use the same definition of "simple relaxation"
given in Section III.B., Using the SAA, we form the sequence of subsets

based on a given partial order <. We wish to study the schedule-length

60

G: S1 = {Tl}

5, = {Ty: T3}
S, = A T6}
5, = {Tys Tgl
85 = {Tgs Tyl
56 = 1739
£(S).= 6%

%10 :

T11

a) Subset sequence for G on 2 processors

1 = | - 1
8] {r,} 5, = {Tg» Ty
s) =T, Toy T, st = |7}

y I A LA 5~ 10

1 = | L
sy = {T5» Tgy Ty 5§ = {1y}
t(s') =6

b) Subset sequence for G on 3 processors

Figure 18, Typical effect of increasing the number of processors in

DurLsee. ouyusace

61

effect of moving nodes among these subsets to arrive at the subset
sequence for the relaxed partial order <' produced by the SAA. It is,

of course, assumed that <' is derived from < through a finite sequence

of simple relaxations. A single simple relaxation may result in the
movement of more than one node. Considering only the end result, it is
possible to start with the subset sequence based on < produced by the SAA
and arrive at the subset sequence based on <' produced by the SAA

through a sequence of "effective moves." An "effective move" of a

node between subsets S, and Sj is defined as. the move of a

i
the subset SjU {n} to the subset Si - {n} allowed by the SAA and

node n from S, to Sj and the possible, if any, move of a node from

caused by the first move. An effective move consists of more than one
single move only in the case where ISiI <k and i < j. Any movement of
a node out of Si will be later offset by a move back into Si. An example

illustrating an effective move is provided in Figure 19,

The following lemma studies the effect on the schedule length
caused by an effective move.

Lemma 10. Let Sj and Si be two subsets obtained by the SAA for
Gw in a k-processor system. Then, any effective move of a node between
Si and Sj required by the SAA for the new partial order will not result

in an increase in the schedule length,

Proof: Define Si and S; as the subsets obtained from S, and Sj

i
after an "effective move" of a node from Sj to Si' Therefore
]s£| = |si| + 1 and |S§| = lsj| - 1' if the efiective move consists of one
[
s LB . i | TN — 1
single move, or lSi] = {Si] and]Sjl =]Sj] otherwise. Let £ tj’ t; and

té be the time needed to execute the subsets Si’ Sj’ Si and Sg,

62

c: T, T, s; = {1, T,, T,

2 = (T T5 gl

T T T T e

3° 74 5 6

a) Subset sequence for G on 3 processors

Nt

G': (cbtained from G by removing (Tl, T4))
' =
Ty Ty 81 = {Ty T5» T4!
5, = {Ty> T5» Tyl

T3o T4e : TS T6o

b) Subset sequence for G' on 3 procesgors
(Note that the subset sequence for G' has been obtained from the
subset sequence for G after only one effective move. The move of T

1

from 8, to S, is offset by the move of T, from 5, to Sye)

Figure 19, Example of an effective move
respectively.

We first study the effect of moving a node from S, to §;, 1<,
due to a simple relaxation of the partial order. Here we do not con-

sider the case when 2 < |Sjl and ISil > k because the movement of a

node from a lower-level subset Sj to a higher-level subset Si when

63

|Si| > k is not allowed by the SAA., It is important to mention that
if all the nodes in Si and Sj are mutually independent after the simple
relaxation, then we form a new subset S]!- = SiU Sj' There are four pos-
sible cases when a node can be moved from Sj to Si’ i<j:

Case 1. Suppose |Sjl >k and ISiI < k. Then clearly t:"l <t, and

J
£t = t..
i i .
~ Case 2. Suppose 2 < |Sj| <kand [S;| <k, Then clearly £} =t
' =
and t, =t

Case 3. Suppose |S.| =1 and |S,| > k. Then £y =v, t; = |Si|w/k,
J e

i i°
Case 4, Suppose lsjl =1 and |Sil < k. Then clearly t;'.' < tj

t! =0 and t! = (|S,| + 1)w/k, therefore t! + t! < t, +t
J L J 1 J

o
and ti ti'

Now, we study the different cases that can happen for an "effective
move" of a node from SJ.Ato Si’ j <i. There are three different

cases:
Case 1. Suppose ISjl >k and ISil > k. Then tj = |Sj|w/k, t, =

]Si|wi'k, tg = (]Sjl - 1)w/k and t;_ = (ISil + 1)w/k, therefore t.% + t::‘t =

1:j + ti.

Case 2. Suppose [Sjl >k and ISiI <k. Then clearly t; < €, and

t! = t..
1 L

Case 3. Suppose |SJ.| <k, In this case, after a node n is moved
from Sj to S;, we move a node from the lower-level subset SiU {n} to
"£i11" the higher-level subset Sj - {n}, leaving the cardinality of
both subsets unchanged. Therefore ti' +tf = £, +t..

J J

In each of the above cases, it follows that t] +t! <t

Lw Lw -

. L g s]
Also ty =ty for 4 # 1, j. Therefore zgl %5'4“;“1

+ t,.

i 7

tzo

64

If we recalculate the subset sequence, then by successive applica-
tions of Lemma 10, the resulting schedule S' is such that t(S') < t(S).
Therefore, we have the following thecrem,

Theorem 18. The Subset Assignment Schedule, SAS, is stable under
any relaxation of the partial order i1f we recalculate the subset
sequence.

Figure 20 shows a typical effect of relaxing the partial order

and recalculating the subset sequence,

n

3. Reduction of task execution times

It is conjectured that the Subset Assigmment Schedule, SAS, is
stable when the execution of one or more tasks is reduced and the

subset sequence is recalculated.

4, Combined effects

So far in this section we have established the weak stability

inherent in the Sub

W
[14]
(o3
2>
w
s
fate
au
=]

of processors, or relax the precedence order, if the subset sequence is
recaleculated., Tt immediately follows that conditions on k and < may be
collectively relaxed without increasing the schedule length,

Theorem 19, The Subset Assignment Schedule, SAS, is stable under
any collective increase in the number of processors and relaxations of
the partial order.

Proof: Suppose we increase the number of processors to k' forming

the schedule S', By Theorem 17, t(S') < t(S). Next, perform the

65

G: s, = {1y}
5, = 1Ty> T3s 1)
5, = {TS}
5, = {Tgs Tgs Tgl
t(s) = 4

a) Subset sequence for G on 3 processors

G': (obtained from G by removing (T3, T5))

T1 Sll = iTl}
|
sy = {TZ, Ty Ts}
T T T .
2 5 4 8 = {T4, Tes 1o T8}

[VA Y
m\ £(s') =3 1/3
Te T, Tg

b) Subset sequence for G' on 3 processors
Note that to obtain the subset sequence for G' from the subset
T , T, T from§, tosgand

2% Tt 7 g oM %

Figure 20. Typical effect of relaxing the partial order in a subset
sequence

66

_ relaxations to form <' and the resulting schedule §". By Theorem 18,

t(s") < t(S8')., Therefore t(5") < t(5). The proof is similar for
the other possible case.
We conjecture that Theorem 19 also holds if we allow additional

decrease in the execution time of some tasks.

67

IV, STABILITY PROPERTIES OF OPTIMAL NONPREEMPTIVE

SCHEDULES UNDER NONOPTIMAL CONDITIONS

In this chapter we study the stability of the schedules obtained
from the A-algorithm and B-algorithm when the conditions for optimality
are violated. We will apply the A-algorithm and B-algorithm to general
graphs with unequally weighted tasks on a k-processor syétem, or to
general graphs with equally weighted tasks on a k(k > 2) processor
system, This study was motivated by the results of previous work made
by Manacher (15), Ramamoorthy, et al. (20), Chandy and Dickson (3),
and in particular by the simulation made by Adam, et al. (1), who
found that the algorithms that assign priority depending on the task's
level are near-optimal, i.e., in 90% of the cases these algorithms produced
a schedule that is within 5% of the optimal execution time.

Before we report the results of this chapter, we need to generalize
the labeling algorithm used tc obtain the priority list,ﬁ , for the
A-algorithm, The new labeling algorithm is the following: Let
N = (nl, cens nt) and N' = (ni, coes né,) denote two decreasing se-
quences of positive integers. Define N < N' if either (a) for some i,

1<1i<t, we have n =n3 forlfjgi-landni<ni, or (b) t<t'

o Gt

P, T _ = Oen 1
& 11, = 1, Lur L

J J
The labeling algorithm assigns to each task T an integer label

IN

Gl

IN
t

Q(T)e{l, 2, veeys n}. The mapping o is defined recursively as follows.

Let S(T) denote the set of immediate successors of T and Li denote the

set of tasks at level i in G where i is a real number in the range

0<i<L,

68

S1, Arbitrarily assign a label a(T) to each task Teii starting
from 1, where the subscript i is minimal,.

S2. Select the set of tasks Lj with minimal subscript j from

those sets which have not been assigned labels,

S3. Suppose that (k - 1) tasks have been assigned a label. For
each task T in Lj’ let N(T) denote the decreasing sequence of integers
formed by ordering the set {@(T')|T'eS(T)}. At least one of these
tasks T* must satisfy N(T*) < N(T) for all such tasks T. Choose one
such T* and define a(T*) to be k.

S4. We repeat the assigmment in S3 until all tasks in Lj have
been assigned some integer.

S5. Repeat steps S2, S3 and £4 until all tasks are labeled.

All the examples presented in this chapter show that the A-schedules
and B-schedules are unstable when the conditions for optimality are
violated. 1In order to have stability, we have to add Manacher's

conditions (15).

Example 1. The example in Figure 21 shows an anomaly du

®
o
e}
s\

decrease in the execution time when the A-algorithm or the B-algorithm
is applied to general graphs with equaily weighted tasks on a k-processor
system,

In this example the schedule length is increased by 1/2 unit if
Tokt2 = 1/2 instead of 1 unit.

Example 2. Figure 22 shows an example of an anomaly due to a
decrease in the execution time when the A-algorithm or the B-algorithm

is applied to general graphs with unequally weighted tasks on a

69

G: T, =1, ¥i
t=0 1 2 3
S]?1
P2 t(8) =3
B3
Pk
=%
Now if Tok+2 A
t(s') = 3%

Figure 21, A system with equally weighted tasks that degrades with the
reduction of execution time of one task

70

G:
S t=0 2 _ 5 . ?
Pl Toxso Tito T2 |
Pol Toxd1 Ten B! ///////// (G =9

PkS 43 T3 W////

S t 1 4
Py Tok42 T
Pol Toxnr Teto
Pl Tias Ty

t(s8') =11

Figure 22, A system with unequally weighted tasks that degrades with
the reduction of execution time of one task

71

k-processor system. We see that reducing Tok+2 by 1 unit, the
schedule length is increased by 2 units.

An anomaly due to increasing the number of available processors
is the subject of the next two examples. In these examples we presenﬁ
the anomaly when k is increased from 7 to 8.

Example 3. Figure 23 shows an example of an anomaly due to in-
creasing the number of available processors when the B-algorithm is
applied to a general graph with unequally weighted tasks,

Example 4. Figure 24 shows an example (12, 13) of an anomaly
due to increasing the number of available processors when the B-algorithm
is applied to a general graph with equally weighted tasks.

In the next example we present an anomaly due to relaxing the
partial order, <.

Example 5. The example in Figure 25 shows an anomaly due to
relaxing some precedence relations when the A-algorithm or the B-
algorithm is applied to general graphs with unequally weighted tasks.

We conjecture the following:

1) The B-schedule for a tree-structured graph with unequally
weighted tasks and arbitrary number of processors is stable under any
collective increase in the number of processors, allowable relaxations
of the partial order and a decrease in the execution time of some
tasks.

2) The A-schedule for a general graph with equally weighted
tasks and arbitrary number of processors is stable under any collective

increase in the number of processors and relaxations of the partial

oxrder.

72

G:

T, 1, Vi(i # 18)
Tig = 1%

S t=0 1 2 3 St: t=0 1 2 3 4 5 6
P1 35 28 1 22 Pl 35 127 19 17 101 1
}?2 34 27 21 P2 34 1 26 18 3 2
P3 3% 1 26 | 20 PS 33125 A
p |32 |25] 19 B, | 32
P.i 31 24%3 P 31
5 °5 -

P6 30 23 2 P6 30
P_129 18 1 P, | 29
/ i !
| 28
gl 2

Figure 23, A system with unequally weighted tasks that degrades with
increasing k (B-schedule)

G 23 24
4 5

S: t= 1 2 3
P1 35 28 | 22 18] 10
P2 34 27 21 17 9
P3 33 Z6 Z0 ib 8
P4 32] 25 19 15 7

2 2/, 1 &

P6 30 |23 2 i3 5
P7 29 11 14 12 4

t(S) =5

Figure 24,

73

Ty T 1, vi
t=0 1
Pyj 35| 27
P, 34| 26
P.1 337 25
3
Pl 32| 24
11 2
PS - b ZJ
Po| 30 | 22
129 |2 12
Pg| 28 | 20
t(s') = 6

A system with equally weighted tasks that degrades with in-

creasing k (B-schedule)

T3k-3

T

3k-2

74

T

r,=1for 1<1< 3k -4

and 3k - 1 <1 <4k - 2,

2

3

4 ;

4k-3 T2k-2 Tok-1

Tags

Thx-1

Thre-2

Tok-3

Thk-3

Tk

Tok-4

k-1

“ 1
-~

If we relaxed the precedence relations T

we have §':

St t=0

7

Iz////////‘/éf///llﬁ 3.1 g///////////‘////////////;////I/A
e W 10Ty e LA s s AL r s 7208

K

Tet2

ktl

Figure 25.

3

w

k-1 < Tag

2

A system that degrades when the partial order is relaxed

75

Assuming the conjectures are true, the B-schedule provides an ﬁpper
bound on the schedule length for task systems with tree-structured
graphs. TFor general graphs, we have obtained a negative result because
the A-schedule is not stable when the execution time of some tasks is
decreased, We can only say that the A-schedule is stable if we first
allow any collective increase in the number of processors and relaxa-
tion of the partial order, and then, we add Manacher's precedence
constraints and use the projective task list, PTL, in order to prevent
the third type of anomaly. Recall that adding Manacher's precedence
constraints and using the PTL we cannot have anomalies due to the in-

crease in the number of processors and reduction of the execution time

of some tasks (15).

76
T 1 '
V. LOWER BOUNDS ON THE RATIO CTPS/CTBS

In this chapter, we will give some bounds on the ratio between the
optimal preemptive schedule and the optimal basic schedule when we take
in consideration the cost of switching and the cost of preemption. Bé-
cause we can construct optimal schedules with excessively many pre-
emptions (thereby driving the preemption cost unfairly high), we will
confine our attention to those optimal preemptive schedules which have
a minimum number of preemptions. The first part of this chapter deals
with general precedence graphs G, k > 2 processcrs and unequally
weighted tasks, while the second part deals with equally weighted tasks.
We assume that switching times are positive and constant., While this
is a simplification of the real case (7), it does provide a first
order approximation to the effect of processor switching on the schedule
length.

In order to obtain the bounds we will introduce some notation,

Let €10 € and €, be the cost of starting a task for the first

2’ 3
time, stopping a task permanently, starting a task after preemption

and stopping a task temporarily, respectively. Let CTBS and CTPS be

the length of the optimal basic and preemptive schedule, when we

consider F =0

=h

T all j. Let C
optimal basic and preemptive schedule, when we consider sj # 0 for
any j.

It is important to note that the scheduling is done with the as-
sumption that ej = 0 for all j. Using this schedule, we investigate

the execution time effects of ¢, # 0, for any j. If we do not proceed

3

77

in this way, then the weight of the tasks including the cost of pre-
emption, becomes schedule dependent and this class of problems is more

difficult to solve.

The following definitions apply to a schedule with zero preemption
and switching costs.
Define:

NBl — the number of tasks in the optimal basic schedule that are

performed by processor Pi'

P
Nli — the number of tasks in the optimal PS that are started for
first time in Pi°
P
N2i — the number of tasks in the optimal PS that are stopped

permanently in P

P
N3i - the number of tasks in the optimal PS that are started

io

after preemption in Pi'

P
N41 — the number of tasks in the optimal PS that are stopped

Aeae e e mea® Ve S em T
CEupOrarLy i :i.

|G| — the number of tasks in the graph G.

P
[

P-
B m?x (NBl) where Pi is any processor that finishes last,

% Py
N° = max (N_7) for all i,
B i % .
Nj = m}n (Nji) where Pi is any processor that finishes last and
1<j<4.
FN.) =@t + L) vh h h
{Nj j+2i = min(Nj Nj+2) where Pi is any processor that finishes

last and j = 1, Z.

P
N} = mgx(Nji) for i < j <4 and all i.

We can write

78

4 4
* 1
Clpg + Z: Nje, > CIpo > CTpo + Z Ne,
1=1 i=1
and

m g% > T £L
C.I.BS + I\B(el + ez) > CTBS > CTBS ! I\IB(e1 + ez)

The notation used in this chapter is illustrated in Figure 26.

In this chapter, we will find only lower bounds on the ratio
CTéS/CTéS for any task system. Based on experimentation and apparent
claims in the literature (3), it appears possible to place an upper
bound on the number of preemptions in any processor for an optimal
schedule which has a minimum total number of preemptions. This knowledge
would allow us to derive important upper bounds on the ratio CT%S/CTés’
This derivation is not presented here because the author was not able
to verify the upper bound on the number of preemptions. However, using

a different approach, in the next chapter we will find upper and tighter.

lower bounds on the ratio CT%S/CTQS for equally weighted tasks on a

................

A. Unequally Weighted Tasks

In this section we will find a lower bound on the ratio CT%S/CTés

for any general graph G with unequally weighted tasks on k > 2 pro-

cessors, For our purpose, the following bounds are needed:

sy @
N,
N
>0 @)
N

79

G: = 3/2
737 5T T8 T o T T1p 7 1
"W T T = 2
Ty = 3
Tg = 7/2
t=0 1 2 3 4 5 6
S P1 1 ‘ ; ‘ 4;‘ 11
P2 2 4 9
P3 3 6 8 10 E%Z%%%%Z%
N]I;l Nz3—4 N§2—3 Ny =4 N;=l+
CT1'3S =6.5 + 4(31 + ez)
a) Optimal basic schedule for G
t=0 1 2 3 4 5 6
S': Py 2 4 6 8 10
Pz 4 3 7 o) 11
P3 1 5 9
N?=4 N111:2=4 N?—B N, =3 N;=
Nzl A N23 =3 N, =3 N =
N3Pl 1 N§2= 1 N1;3 =0 N3 =0 N§=
NZ]'-1 NZZ-L NZ‘*—O N, =0 Nf=
{N1+N3}=3
{N2+N4}=3
CTés =6 + 4(61 + ez) + €y + e,

b) Optimal preemptive schedule for G

Figure 26, Illustration of the notation used in Chapter V

80

Relations 1 and 2 come from the fact that the lower bound for the

number of tasks executed by any processcr that finishes last is one,

and the fact that we might not need to preempt any task in order to
obtain the optimal schedule.

Define G' as the normalized graph obtained from G by considering
Ti = Ti/m%n{Ti}, for’all i in G. Therefore our unit of time in G' is
m%n{Ti}. We also assume that the ei's are expfessed in the same nor-
malized unit of time. In this section, we only deal with normalized
graphs and in order to facilitate the notation, in the future, we will
use G and TS to represent the normalized graph and the normalized
execution time of the tasks. For the normalized graph G, the fol-

lowing relations are valid: CT S > N; > NB > 1 and ‘L"rr:.L > CI, 21,

B]
The following theorem gives a lower bound on the ratio CT%S/CTES
for any normalized graph G with unequally weighted tasks on a k-processor

system.

Theorem 20, For any normalized grapn G with un

m
=]
[=
[}
'-J
b=
‘I
[(0]
'-]

-
cr
()

tasks on a k-processor gystem, we have

cr! k(Zr, + 2e. + 2¢,) + &n
TPS> hl? gty o

vy - *
CT 2k (1 + € + ez)ZTi

Proof: We know that

!>
CT CTP

+ + + M, ¢
ps = N.e N,e N,e, + N, ¢

S 171 272 373 474
and

T o + N¥ !
CTpe + Ni(ey +6y) 2 CTpo o

It is also known from (14) that CTps EjYCTBS where vy = (k + 1)/(2k).

Inserting the first two inequalities in the last one we obtain

81

[] - - - - L — % - *
CTpg = Ny&y - Npey - Nyey - Nye, 2 Clpg = vNge, = vNje,

or
1 - * - *
CThg (N1 YNB)e1 (N2 YNB)e2 N333 N,e,
cT! 2v+ CT! + [CT! +CT' :
BS BS BS BS BS
. . * t
Using Relations 1 and 2 and considering that CTBS + NB(e1+eZ) ZCTBS,
we have
. o
CTog . (1 'YNB;(e1 + 62)
1] —
CTBS CTBS + NB(el + €2)

It is easy to check that the expression at the right-hand side

of this inequality is monotonically decreasing with GTBS and Ng. There-

fore, the minimum is obtained when both CTBS and Ng achieve their

maximum value, Then

i -

CTPS oy (1 YZTi)(el + ez)
[} -

CT (T+e + .gz)z»ri

or

omt
UTPS >'k(ZTi + 231 + 2622 + ZTi
CTéS = 2kl + €y + eZ)ETi '

Figure 27 shows an example of a task system with unequally weighted
tasks where we calculate the lower bound and the actual ratio for a

given set of values of ¢ Note that the new schedule may have idle

i.
time necessary for a task awalting the completion of the preemption or
switching time of any of its predecessors. In addition, we assume

deliberate insertion of idle time to keep the same scheduling of tasks

used when we considered the preemptive costs negligible. 1In the

schedule S° given in Figure 27, we insert idle time after Tj finishes

82

G: T = 3/2
I T i TS T Vi
Ty = Tg T 2
T7 =3
Tg = 7/2
S Pl sL 1 €161 5 €,1¢5 7
P2 ey 2 eleg 4 €8¢, 9.
f \
P € 3 €, el 6 ‘€yfeqi 8 €q1 €4
1 —1
CTBS 6.5 + 4(31 + 82)
a) Basic schedule with €y #0
) f
S': Pjle, [€ 8%,
* * i TR
Py &1 € 1¢3
Fgi €1

+ ez) +e, +e

3 4

b) Preemptive schedule with A 0
If € = .02, €, = .1, €y = .01 and g, = D5, we have:
. ! LI =
Actual ratio: CTPS/CTBS 6.54/6.98 = 0.937

Lower bound: 0,601

Figure 27. Lower bound for a task system with unequally weighted tasks

83

and we do not assign the ready task T6 to P

3 in order not to change the

original schedule S' given in Figure 26,

B. Equally Weighted Tasks

In this section, we will find lower bounds on the ratio CT%S/CTES
for any general graph G with equally weighted tasks on k > 2 processors.
We are interested in these systems because most of the literature deals

with unit-task systems. For our purposes, the following bounds are

nesdad-
neegeqg:

N

1 >1 ¢y
N,
N

>0 @)
Ny

In this case, we do not need to normalize G because all the tasks
have the same execution time. Without loss of generality, comsider

v, =1 for all 1 in G, Also, the following relations are valid for

Q
3
]
2
a
Vv
]
-3
Vv
=

and

! =
BS CTBS + NB(e1 + 32) NB(l + e, + e2).

1
Relation 3 comes from the fact that on unit-task systems in order

to improve any basic schedule we can preempt some tasks and ag a result

84

the number of times that tasks are started or stopped in Pl will

increase.

The following theorem gives a lower bound on the ratio CTés/CTés
for the case of unequal switching and preemption costs.

Theorem 21. For any graph G with equally weighted tasks on a
k-processor system,

1
CTPS k(CTBS + 231 + 232) + CT

>
[
CTBS 2kCTBS(1 + el + 32)

BS

Proof: For equally weighted tasking systems, we have

CT! >'CTPS +Ne +Ne +Ne +Ne

PS — 171 272 373 474
and
1 - =
CTBS CTgg + NB(e1 + ez) CTBS(l + € + ez).
It is also known from (14) that CTPS > YCTBS where ¥ = (k + 1)/(2k).
Inserting the first two inequalities in the last one, we obtain
Clpg = Nyoy = Npoy = Nygq = Nyg) 2¥CTq - Ve, - Wpe, (&)
or
1 - -
CTPS (N1 YNB)e1 (N2 YNB)e2 N3e3 N464
a2Vt = o tern -
BS BS BS BS BS
Using Relations 1 and 2 and CTBS = CTBS(L + € “+ ez) in the liast

inequality, we have

' -
CT (1 \(CTBS)(e1 + ¢

PS
.__>'Y+

Tz + ¢, +
CTBS CTBS(l € 62)

9)

But ¥ = (k + 1)/(2k), therefore

85

1]
CTPS k(CTBS + 231 + 232) + CTBS

' — .
CTBS 2k CTBS(l-Fel-Fez)

Corollary: For any graph G with equally weighted tasks on a k-

processor system,

]
CThg >k(|G| +2¢) +2e,) + lc|
CTpe = 2k|G| (1 + e t+¢,)

The proof is immediate if we note that the expression at the right-
hand side of the inequality given in Theorem 21 is monotonically
decreasing with CTBS. Therefore, the minimum will be achieved when
CTBS is equal to |G‘. Replacing CTBs by |G| we obtain the final
result.,

The next theorem gives a lower bound on the ratio CT%S/CTES

when all the ¢, are equal. We are interested in this case because the

bound is easier to calculate.

Theorem 22, For any graph G with equally weighted tasks on a
k-processor system with €; = ¢€ for all i,

1
CThs _ k(L + 4e) + 1

CTBS = Zk(1 + 2¢)

Morecswer, thls iz the bewt possible bound.

£. Tem hdan Anan +h
i . A “hra s

Fxore) e Incquality 4 can be writtenm ag

! ' + + ~ °
CTpg 2 YCTpo + (V) + Ny + Ny + N, - 2vNp)e

Using Relation 3 and CT};S = NB(l + 2¢), we have

m!] -
CTpg 2 YCTpe + 2(1 - Y)lye

or

86

CT!

S 2(1 = Y)e _k+1 2(k - e
CTL Y+ 3T % 5k T 2k(LF2e)
Therefore,
1
CTpg S E(L +be) + 1
oTi. 2 2k(+ 20)

We can show that this is in fact the best possible bound by an
example. Figure 28 shows a graph for which the best nonpreemptive
schedule, S, and preemptive schedule, S', have length 2 + 4¢ and

(k + 1)/k + 4e respectively.

=1 ¥r i
T, T, T, Toup T T, in G
G @ @) e
— |
S Pl T1 Tk+1 S Pl T1 T2
e, T, Bl T, | T,
:)
Py ///////// Pitd Txn
%
“Tps _ k(1 +4e) +1
o 2k(L + 2¢)

BS

Figure 28. Example which achieves the lower bound on CTQS/CTES when
€, = ¢.
1

Table 1 gives the lower bounds on the ratio CT§S/CT£S for any

graph G with equally weighted tasks on a k-processor system for other

possible relations among the ei's. These bounds, derived in (23),

are tighter than the bound given in Theorem 21. 1If we replace CTBS by

|G| in the bounds given in Table 1, we obtain new and easily calculated,

but looser, bounds.

87

Table 1. Lower bounds on the ratio CTpg/CTyg for amy graph G with
equally weighted tasks

Case Lower bound
> . - -
€ 2 €3 EE§S(k(1 + 2e3 + 2e4) + 1) + 2k(e1 + €, = &g 64)
e > ¢ 2kCTBS(1 +ey + ez)
2="4
. \ -

€ > 63 CTBS(k(l - 232 + 233, + 1) + Zk(el e3)
e > ZkCTBS(l + € + ez)
4 = %2
€, > € CTBS(k(l + 261 + 234) + 1) + 2k(e2 - e4)
e >e 2kCTBS(1 +e t ez)
2 4
€, > €y kQ + 2e1 + 2e2) +1

2k(1 + ¢, +¢,)
€, > €y 1 2

In Figure 29, we give an example of a task system with equally
weighted tasks where we calculate the lower bounds and the actual ratio
on CTﬁS/CTéS for a given set of values of the e

While we have produced lower bounds for both umequally weighted
and equally weighted task systems, it does not seem feasible to establish
experimentally the behavior of the ratio CTéS/CTés due to the lack
of polynomial bounded algorithms to produce the optimal schedules.
However, the bounds provided in this chapter allow us to calculate
easily a best value of the optimal preemptive schedule length relative

to the optimal basic schedule length when switching and preemption

costs are positive, Given an estimate of switching and preemption

88

G: Ti = 1, Viin G
t=0 1 2 3 4
S': Pl 1 4 7 10
P2y * ° A N \
7
w2 | o | o W

Pl 3 4 7 8 11

b) Optimal preemptive schedule with g = 0

S": P.Jje, 1 €, | €y 4 e, le, 7 €, €, 10 €9
el I i ' N e A UV !
PSQ €1 3 €y 1€ 6 €€y 9 Méﬁ

8 =
CTBS 4(1 + € + 62)

c) Basic schedule with € #0

Figure 29, Lower bounds for a task system with equally weighted tasks

89

111
sht . P1 lei 1 e:2 €g 2 e2 € 5 e2 93 6 ezgel 9 62
P2 3 2 e4e3 3 €, 1ey 6 €, €3 7 €, Fl 10 €y
P3 ¢y 3 euley 4 Y 2 7 €,0¢y 8 €, Esl 11 €,
11 ’
' - e bid
CTPS =3 +man{361+532+25:3, 3(el+ez) +2(e3+94), Sel+3e2+2€4}

d) Preemptive schedule with ¢ i #0
I1f €y = 02, ¢, = .1, ¢, = .01 and €, = .05, we have:
. t f = . =
Actual ratio: CTPS/CTBS 4.247/4.,48 = 0,948
Lower bound:
General formula: 0,622

Formula for ¢; > ey and €y 2 €, 0.662

Figure 29, Continued

- Y, FSNPNSY JPUE R -~ 2
costs, We now nave someé basis Ifov deciding whether or not to use a pre-

emptive discipline.

90

L]
VI. BOUNDS ON THE RATIO CTSS AS/CTBS

In this chapter, we will study in depth the subset assignment
concept. In particular, we wish te find ratios between the shortest
subset assignment schedule, SSAS, and the optimal basic schedule for
general graphs with equally weighted nodes on a k-processor system
when the cost of switching and the cost of preemption are not negligible.
It is important to the reader to continually bear in mind that unit
tasks are assumed throughout this chapter. We define a SSAS as the
shortest possible preemptive schedule over all possible subset seguences,
Our study is motivated by the probability that SAS, described in
Chapter III, is a good heuristic for the SSAS, just as level algorithms
are good heuristics for optimal nonpreemptive schedules (1). 1In fact
the SSAS could be considered a heuristic for the optimal preemptive
schedule, Rather than determining how good the heuristic is, we study
only the effects of preemption costs. As a by-product, we will find
sharper lower bounds on the ratio CT%S/CTéS for k = 2 than was provided
by the analysis in Chapter V. Before we describe our model, we will
give some lemmas and a theorem that are necessary for our study.

Lemma 11. Let G be an arbitrary graph all of whose nodes have
unit weight. Then any subset assigmment for G using iwo processors can
be transformed into a new assignment which is no longer than the
first and is constructed from forms of type o or B, where n, p, and q

are nodes of G.

91

t=0 1 t=0 1.5
1]
Pl n P1 n p
]
B, P PyiP q
Form o Form B

The proof of this lemma was given in (17).

Lemma 12. Let G be an arbitrary graph all of whose nodes have
unit weight., Then any subset assignment for G using k-processors can
be transformed into a new assignment which ié no.longer than the first
and is constructed from the three forms shown in Figure 30, where m,
n, o, p, q, r, s and t are nodes of G, 1 < 4y < k and 1<u2 < k.

Proof: We know that in a subset assignment each subset of the
subset sequence is scheduled in an optimal way and independently of

the other subsets. Depending on the number of nodes in a subset Si’

\Si], we have three different cases:

Case 1. k> iSi| > 1. In this case, it is clear that ¢t , {8,) = 1
must be a lower bound since no schedule can terminate in less time than
for Si will be an assignment of Form c.

Case 2, 2k >'|Si| > k. 1In this case, by McNaughton's result (16),
we know that tmin(si) = {SiI/k, since a schedule cannot be more efficient
than to keep all the processors busy., Therefore, the optimal preemptive
schedule for Si will be an assignment of Form B or Yy, depending on the

number of nodes in Si°

92

t=0]
P1 m
P2 n
Pk o}
Form o
£=0 1+uq/k t=0 1+us [k
P1 m n" P, m n"
P2 n' o" :
P, |p’ q "
Peegf P | @
Py q' T Py s' t
1< u1<:k 1< u2'< k
Form B Form Y

Figure 30. Forms used to construct any subset assignment

Case 3. [Si[> 2k, 1In this case, we know that ¢ . (S,) = ISil/k,
since a schedule cannot be more efficient than to keep all the processors

busy. Now, we split Si in two subsets Si and SE such that

93

s = (|2 - 1e o

1 if ISiI/k is an integer

where j =
0 otherwise

syl = |s.| = |si].
i i i

Because lsi‘ is a multiple of the number of processors available, k,
we will have assignments of Form o for the optimal preemptive schedule
of Si. It is also easy to check that the number of nodes in S; is either
zero or k < ISE|'< 2k. When |3;| = 0 we do not care, because we do not
have tasks to assign but when k < |S;| < 2k we know, by Case 2, that
the optimal preemptive schedule for S; will be an assignment of Form 8
or ¥ depending on the number of nodes in Sg.
If ¥k < ISi|'< 2k, we can determine if the assigmment of Si is of

Form B or of Form Yy by evaluating the expression

s

1f 4 is equal to zero, then the schedule of S; will be of Form B, other-

wige it will be of Form Y.
In order to obtain the bounds, we make use of the following nota-

. .]] 23
tion., Let ej(l <j<é4), CTpgs CTpgs CTpg and Clgg have the same defini

tion given in Chapter V, Let CTSSAS be the length of the shortest

possible preemptive schedule over all possible subset sequences, when

we consider ej = 0 for all j. Let CTéSAS be the length of the shortest

possible preemptive schedule over all possible subset sequences, when

we consider g # 0 for any j.

9%

It is important to recall that the scheduling is done with the
assuﬁption that ej =0, for all j. Using this schedule, we investigate the
execution time effects of e # 0 for any j. If we do not proceed in
this way, then the weight of the tasks including the cost of preemption,
becomes schedule dependent and this class of problems is more difficult
to solve,

The following definitions apply to a schedule with zero preemption
and switching cost.

Define:

Nf — the number of tasks in the optimal basic schedulé that are

performed by processor P1‘ (Also note that CT

8BS = NB because we are

dealing with unit-task times.)
P.
Nll — the number of tasks in the SSAS that are started for the

first time in Pi'

P:

N21 — the number of tasks in the SSAS that are stopped permanently
N3 — the number of tasks in the SSAS that are started after pre-
NQl — the number of tasks in the SSAS that are stopped temporarily

P.
Nj = min(Nal) where P. is any processor that finishes last and
3 § 77
1<§<b.
{N + N, } = min (N i + NPi) where P, is any processor that
37 gl TN T Ve i v P

finishes last and j=1, 2,

e max(N) for 1< j <4 and all i.

N
{ N¥ } = max(NP) for j =1, 2 and all i
N4 i j+2 ’)

95

P
Lot
3

assignment of form £, for 4 =a, B, Y.

— the number of ej's in Pi if the SSAS consists of one

Let U? and L? be an upper bound and a lower bound on the number
of ej's for any P, when the SSAS, for the entire schedule, is only
composed of assignments of form £, for £ =a, B, Y.

Let {U +U }z and {L + L }L be an upper bound and a lower

3 j+2 i j+2
bound on the number of ej and ej+2, j =1, 2, for any Pi when the SSAS,
for the entire schedule, is only composed of assignments of form £, for
4=a, B, V.
We can then write

1= + + = +
CIpe = CT Noey + Npe, = No(1 + ¢

ps * Ngeqy T Npep +ey)

1
and

4 4
*
> CT! >
CTssas * El Nie; 2 “ssas 2 CTosas * 1§=:1 Nieg

Our next step is to see how the different forms of assignments

given before are influenced by considering ej # 0, for any j.

Form o
t=0 1
P1 m
Pk o
[[-
CTPS CTBS 1+ € + €y

96

Form B
k + u1
t=0 1+ /k t(Pl) = + € + 2e2 + €
Pl m n" k+l11
s — <
P2 n o t(Pi) =7 -+e1-%32-+e3 ey
where: 1< i<k
; " 1<y < k
P q

k-1 ¥ +u

Pk q' T t(Pk) =5 + 2e1 + e, + g,

k + u1
1 =
CT}g — + max {e1+2e2+33, 6 tey te te,, 2el+32+64}

Form Y

t= 1+u2/k

P1 m n"

k + u2
P, p’ q r" CT}'?S =—+ 231 +2¢, t 63 t ¢,
wnere: 1< uy < k
Pk st t

Before, we proceed in our analysis, we give a lemma that is going
to help us to find the bounds for all Ni and N;.

Lemma 13. Suppose the SSAS is only composed of assignments of
Form B or only of Form Y. Then a bound on the minimum number of assign-
ments of Form B or of Form Y in the entire schedule is equal to NB/Z.
Also, a bound on the maximum number of assignments of Form B and of

Form v in the entire schedule is kNB/(k + 1) and kNB/(k + 2), respectively,

97

Proof: Here we only give the'proof_when the entire schedule is
only composed of assignments of Form B because the proof for the other,
case is_similar.

First, we will show that Ny/2 is a lover bound on the minimum
number of assignments of Form P in the entire schedule. Consider that
all the aésignments of Form B have k + Wy nodes, where Ky is constant
for all of them and 1< b <k Then a lower bound on the minimum
number of ass1gnme%f§+ileorm g is given by kCTSSAS (k%-u). But, in
this case CTgg)g —2—12-— CTBS' Therefore a lower bound on the minimum

number of assignments of Form §, each with k + u, nodes, is equal to

1
CTBS,/Z or NB/ 2 because CTBs = NB in an equally weighted task system,
From this it follows that if By is not constant, then a lower bound
on the minimum number of assignments in a schedule which only has

assigmments of Form P is

{bound on the minimum rumber of assign- l

min 4ments in a schedule which only have as- = mdn 1%} = ._B. .
by lsignmem:s of Form § each with k + pq J ';i{"! ;o2
nodes

Now, we will find an upper bound on the maximum number of assign-

ments of Form B in the entire schedule., If all the assignments of Form B
have k + u nodes, 1 <u, <k, then an upper bound on the maximum number
1 1
kCT.M kN
of assignments is given by k—-—f——— or by
%

*ta ™ because CLBS = NB. This
expression achieves its maximum value when Uy has its minimum value.
Therefore, an upper bound on the maximum number of assignments of Form B,
in the entire schedule, is kNB/ (k + 1). The upper bound on the maximum

numbexr of assignments of Form Y in the entire schedule is found in a

similar form. If alil the assignments of Form Y have k + u, nodes,

98

1< u, < k, then an upper bound on the maximum number of assignments

is given by kNB/(k + uz). This expression achieves its maximum value

when u, has its minimum value. Therefore, an upper bound on the maximum

number of assigmnments of Form Y in the entire schedule is kNB/(k + 2).
Now, we proceed to analyze the three possible cases.

SSAS with only assignments of Form o. 1In this case, it is clear

that CTSSAS = CTBS and therefore

%
]
C'Q
]
o
i}
)
]

15U ==L =N
and

U°’=U‘Z=L°’=L°’=o.

SSAS with only assignments of Form B. We can observe that in one

assignment of Form B, we have

milx(le) = m?x(BNZi) =2
m?x(BNEi) = max (BNZi) =1
(BN? + BNii) = (BNEi + BNzi) =2
m%n(BNll)i) - mln(BNP) =1
mm(BN) = m%n(BNZi) = 0.

Then, we will obtain the UB using the relation

UB = max(BN) = (bound on the maximum number of assignments
i of Form B in CTSSAS)

By Lemma 13, we can write

kNB

P
B - By iy, B
Uj m?x(NJ.)%k+1.

99

Therefore:
Ug = UE B E‘%’T Ny
oy +0al® = {o, 4 0fP - ey

Also, L? is given by the expression

P.
L? = m@n(BN.l) X (bound on the minimum number of assignments
J 1 of Form B in CTSSAS)'

By Lemma 13, we can write

N

B . 8. Pi B
L. = n N. x - e
3 mi (3) 3

Therefore:
B_.B_
L =L, NB/Z
B _ B _
L3 L4 0
|l'r :-:t‘n_.‘ 'B..
¥ u3}" = iLz - L4; = JB

SSAS with only assignments of Form Y. We can cbserve that in

one assignment of Form Y, we have

m?x(YNii) = m?x(YNZi) =2
m?x(YNzi) = m?x(YN:i) =1
mix(YNii + YNii) = m?x<YN:i + YNzi) =3
min(YNii) - m%n(YNii) =1
min(YNii) = min(YNZi) =0
m%n(YNii + Yuii) - m%n(YNZi + YNZi) = 2,

100

Then, we will obtain the U? using the relation

U? = m@x(YN,l) X (bound on the maximum number of assignments
i

of Form ¥ in CTSSAS)'

By Lemma 13, we can write:

P kN
o Y. -1 B
= b4 R
Uj m?x(Nj) ——
Therefore:

Y _ .Y _ 2k

U1 =0 " x+2 N

y! =y k_y

3Kk
x+2 V-

fo, + o, = {o, + Ua}Y =

Also, L} is given by the expression

P. N
Y Y. L B
L, = min(N, X—,
j i(J) 2
Therefore:
T
,\'/—L\"—-:‘-‘-B-
Ly=l=5.
Y o 1Y -
L3 L4 0

We note that the general SSAS consists of a mixture of o, B, and
type assignments. In order to find the upper and lower bounds for the

Nz and Ni’ we need to state the following theorem which applies to any

SSAS,

Theorem 23, 1In any SSAS,

max (") > N¥ >\, zmin(L’f‘) for §=1,2,3, 4
4 3 J J A and 4 = o, B, ¥

101

and
4 * 4 Nk L
max Uy +1U;,) Z{Nj +Nj+2}2{Nj +Nj+2}2m%n(Lj+Lj+2)

for j =1, 2
and £ = a, B, Y.

The proof of this theorem is omitted because it is immediate.

Applying Theorem 23 we obtain the following bounds:

{(% %
3 {n + w3}
N> (5) for k > 2.
k+2 BZ
(¥ + N
2 t N,
Iv* + n%}
2% vl 3
SN 2 () for k = 2.
o %
{Nz + NA}
N*
1
2% ,
k+1 0 2{ . @)
N,
o+
K jN3
T+ 1 N; z t (8)
%
(g
N. + N ‘
el
v, + N4};
N N
112 2 (10)
N, |
N
3> o. (11)
N,

Note that the Formula 5 is valid for k > 2, while the Formula 6 is

valid only for k = 2. The reason for these two bounds on {N;' + Ni*+2} .

i =1, 2, is that, in a two-processor system, we cannot have assignments

102

of Form Y. The other bounds are valid for both cases, because the
upper and lower bounds come from the case in which we have assignments
only of Form B, and by Lemmas 11 and 12 we know that this type of as-
signment is possible for any value of k (k > 2).

The following theorem gives a lower bound on the ratio CTSSAS/CT'
for any graph G with equally weighted tasks on a k-processor system.

Theorem 24, For any graph G with equaelly weighted tasks on a k-
processor system, we have

CT;

SSAS/k(1+€1+€2)+1

1 -
CTBS 2k (1 + ey + ez)

Proof: We know that

]
CTSSAS CTSSAS + Nlel + N262 + N3e3 + N4€4
and
¢ -
CTBS TBS + NB(el + 62).
It is also known from (14) CTSSAS > YCTBS where ¥V = (k + 1}/(2k}.
Inserting the first two inequalities in the last ome, we obtain
CT'SAQ Nlel - N?_ez - N3€3 - ’64 >YCT' ‘{NB(G1 + ez) (123
or
] - -
CTssas W) -Npe; O, -YNpey Nyey Ny,
cT!, 2yt CT! o tomroTor ¢
BS BS BS BS BS
Using Relations 10 and 11 and CT};S = B(1 + ey + ¢,), we have
1)
“Tosas _ K + 1 ¢ * e
cIr . =))
TBS 2k 2k(1 + €y + 62)

and the result of the theorem follows.

103

The next theorem gives a lower bound on the ratio CTSSAS/CT

for any graph G with equally weighted tasks on a k-processor system

when all the ¢, are equal, i.e., €, = € for all i.

i
Theorem 25. For any graph G with equally weighted tasks on a

————e

k-processor system and €; = ¢ for all i, we have

1
CTooAs _ k(L + &e) + 1

1 -
CT 2k (L + 2¢)

Moreover, this is the best possible bound.

Proof: In this case the Inequality 12 can be rewritten as

CT! > yCT!

ssas = YCTpg * @y + N

9 + N3 + NL; - ZYNB)e.

Using Relation 9 and CT!

BS NB(l + 2¢), we have

' ' -
CTSSAS >-YCT + 2(1 Y)NBe

or

1
Tssas _k + 1, 20 - L)e
it 2 2k 2k(L+ 26) °

and the result of this theorem follows. We can show that this is, in
fact, the best possible bound by an example. Figure 28, given in
Chapter V, shows a graph for which CT| = (k + 1)/k + 4e and

SSAS

1
CTBS 2 + 4be.

Table 2 gives the lower bounds of the ratio CTSSAS/CT' for any
graph G with equally weighted tasks on a k-processor system for other
possible relations among the ei's. These bounds, derived in (23), are

tighter than the bound given in Theorem 24.

Because CTSSAS = CTSAS CT PS (18) for a two-processor system, we

can use Table 2 with k = 2 to obtain tighter bounds than those given

104

Table 2, Lower bounds on the ratio CT&qpq/CThe for any graph G
SSAS’™*BS
with equally weighted tasks

Case Lower bound

61263 k(1+e1+e2+e3+e4)+1
2k(1 + e, +¢,)

62264 1 2

€1 2 € k(1+el+2€2+33)+1
2k(1 + e, + ¢e,)

€4 2 €9 1 2

e32€1 k(l+2€1+e2+34)+1
2k(1 + e, + ¢,)

62264 1 2

€3 > € k(1 +2c1+231)+1
2k(l + ¢, +e,)

64262 1 2

in Theorem 21 and in Table 1. In particular, for k = 2, Theorems 24

and 25 yield

CTE,S 3+ 2(;,-1 + ez)

> for unequal ¢,'s, and
T ?
CTBS 4(1 + el + ez) 1
1
CTPS 3 + 4e for - v
CTéS =41 + 2¢) €1 T & Ty e

The next theorem gives the corresponding upper bound on the ratio

/cT!

1
CT Bso

SSAS

Theorem 26. For any graph G with equally weighted tasks on a
k~processor systen,
+ 2¢, + ¢ +e¢,) +1 CT!

k(1 + 2e) + 2¢) + ¢4 SSAS

b
(k +1)(1 + e + ez) CTye

Proof: We know that

105

% * % k3]
+
CTggpg T Ny + Ny8p ¥ Njey + Nje, 2 CTogng
and
1 = + .
CTBS CIBS + NB(e1 62)
In general
CTBS Z CTSSAS :

Inserting the first two equations in the last one and collecting

terms, we obtain

' %o L %* * v
CTBS + (N1 NB)el-F(Nz NB)€2-+N393-FN434 E.CTSSAS' (13)

Dividing both sides by CTES

* * % * 1
®y - Nydey O - Np)e, N3y % Tssas
[1 1 [] - [} °
CTBS CTBS CTBS CTBS CTBS

1+

Using Relations 7 and 8 and CT]'3S = NB(l + € + e2) in the last

inequality, we have

- 1 '
&+1(A+e +e,) &+1)(1+e +e) ~CTp °
Therefore,
1
k(1 +2¢ +2, +eyte)tl Clooq
- YL . N - § ®
k + 1A + e; T € CTBS

In the following theorem we give an upper bound on the ratio
CT3gAg! éS for any graph G with equally weighted tasks on a k (k > 2)

processor system when all the 6, are equal,

Theorem 27. For any graph G with equally weighted tasks on a
k (k > 2) processor system where e, = ¢ for all i,
1
k(L + 6¢) +2 _ CTSsAs

\ pati 1]
k + 2)(1 + 2¢) CTBS

106

Proof: When e, = ¢ for all i, Inequality 13 can be rewritten as

(N’i‘ + NF + 8% + nF - 2Ny)e CT

2 3 4 SSAS
L cT! Zem,
BS BS
Using Relation 5 and the fact that CT1'3S = NB(l + 2¢), we have
]
Ly bk - e Tssas
&k +2)(1 + 2¢) = CT1'3S !

and the result of the theorem follows.

We can show that this is, in fact, the best possible bound for
" certain values of k by an example, Figure 31 shows a graph for which
the shortest subset assigmment schedule, S', and the optimal nonpre-
emptive schedule, S, have lengths 5 + 18¢ and 5 + 10e¢, respectively,
for the case k = 3, Therefore, CTéSAS/CTéS = (5 f 18¢)/ (5 + 10¢).

Note that these calculations vary with the nonuniqueness of the SSAS

for k > 2. By interchanging the roles of processors 1, 2 and 3 for

the second and third subset, we obtain CTéSAS =5 + l4e.
Table 3 gives the upper bounds on the ratio Clggpg/ Clpg for auy

graph G with equally weighted tasks on a k (k > 2) processor system
for other possible relations among the ei's, These hounds; derived in
(23), are tighter than the bound given in Theorem 26.

In the following theorem we give an upper bound on the ratio

CTéSAS/CTﬁs for any graph G with equally weighted tasks on a two-

processor system when all the e, are equal,

Theorem 28. For any graph G with equally weighted tasks on a

two-processor system where €, = ¢€ for all i,
cT!
€ s SSAS

—)
€ CTBS

3+38
3+6

107

G 1 2 3 4 5
& -3 v g @
64 74 8o 94 10¢ TS i, Vi in G
118 12¢ 13 ¢ 144 156
t= 1 2 3 4 5
S P1 1 4 7 10 13
P2 2 5 8 11 14 CT];S =5 4+ 10¢
P3 3 6 9 12 15
t=0 5/3 10/3 3
P1 1 2 6 7 11 12
" ' =
P2 2 3 417 78 9 112 13 14 CTSSAS 5 + 18¢
P 4 5 9] 10 14] 15
3 ! i
]
. Tssas _ 5+ 18e
) '
CTBS 5 + 10e

Figure 31. Examnle which achieves the upper bound on CT -
= BS

és“-/CT
when k > 2 and ei = g, A5

Moreover, this represents the best possible bound.
Proof: When e; = ¢ for all i, Inequality 13 can be rewritten as

% * % * - 1
(Nl + 1\]2 + N3 + Nz, ZNB)e S CTSSAS

7 = omi .
CTBS CTBS

1+

108

Table 3. Upper bounds on the ratio CT§gpg/CThg for any graph G with
equally weighted tasks on a k (k > 2) processor system

Case Upper bound

02 2@+ 2¢, + 2, te,+e) Fk(3+be, Fhe -6, me,) +2
1 2 " %37 % 1 27 %37 %

e 2 ¢, (k+1)(k+2)(1+el+ez)

€026 1 (1426, +2, +e, Fe) k(3 +he +o -6, +26) +2
1 275378 1" % " € 4

€, 2 ¢ G+ Dk +2)T +e +ey

©32€)P(l+2e, +2¢, te,te,) tk(3+ e, +he, 2 - 6,) F2
1 2 " 8378 1 2 37 %

€y =€y k+1k+2)(1+e +ey)

€3 2 $1 k2(1 + 2¢, +2¢, te,+e)+k@B+ + e, +2e, +2¢) +2
1 2 %37 % €17 %2 3 4

€, 2 €, k +1)k+2)(1 +e, +e,)

=% - -1

Using Relation 6 and the fact that CT.

1+

2¢ _ 3 + 8¢ > SSAS
= > - .
3+6e 3 + 6¢ CTBS
We can show that this is, in fact, the best bound by an example.
.] 1
Figure 32 shows a graph for which the CTSSAS and CTBS have lengths
3 + 8¢ and 3 + 6¢, respectively.

Corollary. For any graph G with equally weighted tasks on a two-
processor system where e; = ¢ for all i,

1
€ CTPS
€

Moreover, this represents the best bound,

=
(]
QO

G: 1 2 3 Ti =1 ¥iingG
4 5 6
S:
! = €
P1 1 3 5 CTBS 3+6
P, 2 4 6
St
1 =
P1 1 2 4 5 CTSsAS 3 + 8¢
6
PZ 2 3 5

L
. “Tssas 3+ 8¢

"t CTM. 3+ 6e

Figure 32, Example which achieves the upper bound on CT!_.,./CT!
= = SSAS" ""BS
when k = 2 and €; = €.

. o~ . m — < E X e P
Because (T = (T = in & tWwo=processor cystem

SSAS sAS ~ V'Ps
proof is immediate.
Table 4 gives the upper bounds on the ratio CTéS/CTéS for any

graph G with equally weighted tasks on a two-processor system for other

pqgsiblg relations among the si's. These bounds are derived in (23).

110

Table 4. Upper bounds on the ratio CT{’SiCTl'BS for any graph G with
equally weighted tasks on a two-processor system

Case Upper bound
General 3+ 2(261 + 2¢, + €q + eé)
formula 3(L + e T 32)
12 % 3+ ey + ey
€1 2 €, 3+ 2(2) +ey *oey)

3(L + ¢, +¢,)

34 - 32 1 2

€y 2 € 3+ 2(e; +2¢, + ¢,)
3(L + ¢, +¢,)
€2 Z 94 1 2

€y 2 €4 3+2C(, +e,te, te,)

- - L Z 3 4
34232 3(1 +€1+ 62)

[
s
i

VII. CONCLUSIONS

A, Contributions

We have presented a complete study of the stability of the schedules
produced by the three most important polynomial bounded algorithms
that produce an optimal schedule length when certain conditions are
satisfied., The most interesting results are:

1) We have proved that the schedules produced by the optimal
nonpreemptive scheduling algorithm for equally weighted tasks and tree-
structured graphs are free of all three ancmalies commonly found in
multiprocessing systems. Because they are stable, we can bound the
schedule length of a tree-structured graph with unequally weighted
tasks. This bound is obtained assuming equal execution time r* for
all tasks and k processors, where t* = m?x(vi). Then we can be assured
that any schedule based on k' >k, unequal execution times Ti < 7%,
and any allowable relaxation of < will have a schedule length shorter
than the given bound.

2) We have proved that the schedules produced by the optimal
nonpreemptive scheduling algorithm for equally weighted tasks for two-
processor systems are free of two of the three anomalies., Additiomal
constraints would have to be pliaced on the task system t
third type of anomaly. Here we can ensure only that increasing the
number of available processors or eliminating some precedence relation

does not increase the resulting schedule length. However, the new

system with additional constraints is free from all three anomalies,

112

3) We have proved that the schedules produced by the optimal
preemptive scheduling algorithm for general graphs on a two-processor
system and for tree-structured graphs are free of all three anomalies.
Because they are stable, we can bound the schedule length based only on
the maximum execution time of each task, the minimum number of processofs
and the maximally constrained graph.

The subset assignment concept has been studied in depth. The
most important results are:

1) We have proved that the SAS for general graphs with unequally
weighted tasks on a k-processor system is free of three anomalies when
the subset sequence is held fixed, and free of two anomalies when the
subset sequence is recomputed., We conjecture that it is free of the
third type of anomaly. Here we can ensure that increasing the number
of processors, or eliminating some precedence relation, does not
increase the resulting schedule length.

2) We have bounded the performance of SSAS in comparison with
the optimal basic schedule, when we deal with general graphs with
equally weighted tasks on a k-processor system and We consider the
costs of preemption and switching positive. The SSAS is of interest
because the SAS is probably a good heuristic for preemptive schedules
(just as level algorithms are good heuristics for optimal nonpreemptive
schedules) and because the SSAS is shorter than SAS.

Other major results of this research are the bounds given for
the ratio beiween the optimal preemptive schedule to the optimel non-
preemptive schedule for unequally and equally weighted task systems,

when we take in consideration the possible costs of switching and

113

preempting tasks. These bounds show that in reality we can no longer
say that the optimal preemptive scheduling discipline is strictly more
powerful than the optimal nonpreemptive scheduling discipline. These
bounds also suggest that, in some cases, reduction of schedule length
will not be significant, Thus, it may not be worth the effort to
implement an optimal preemptive schedule, due to the great deal of work

demanded by the scheduling algorithm.

B. Future Work

We have noted the scarcity of regsults in the field of static
scheduling. Some of the unsolved problems connected with this study
are:

1) Completion of the study of the stability of B-schedules
under nonoptimal conditions;

2) Completion of the study of the stability of A-schedules under

nonoptimal conditions;

3) Determination of upper bounds of the ratio CT%s/CTﬁS for general
graphs on k (k > 2) processor systems, and for unequally weighted tasks

on a two-processor system;

AN

&) Simulation studies of the hehavior of the ratio CT?S/CT s

BS
taking in consideration cost of preemption and cost of switching;
5) A refinement of the method of comparing scheduling disciplines
when the costs of preemption and switching are not negligible;
6). Resolution of the conjecture that the SAS is anomaly-free when

the execution of one or more tasks is reduced and the subset sequence

is recalculated.

l—d
[
£~

The continued search for simple algorithms and analysis of their
performance is worthy of further study in the overall investigation of

the usefulness of multiprocessing.

10.

11,

12.

13.

|—I
-t
(8]

VIII. BIBLIOGRAPHY

Adam, T. L., Chandy, K. M., and Dickson, J. R. A comparison
of list schedules for parallel processing systems, Unpublished

paper. Computer Science Depariment, University of Texas, Austin,
Texas, 1974,

Bauer, H. Subproblems of the m X n sequencing problem. Unpub-
lished Ph.D. dissertation. Department of Computer Science,
Stanford University, 1972.

Chandy, K. M., and Dickson, J. R, Scheduling unidentical proc-

essors in a stochastic environment. COMCON Proceedings 72 (1972):
171-174,

Clark, N. The Gantt chart. London: Sir Isaac Pitman & Sons,
Ltd., 1952.

Coffman, E, G., and Denning, P. J, Operating systems theory.
Englewood Cliffs, N.,J.: Prentice Hall Publishing Company, 1973.

Coffman, E. G., and Graham, R. L. Optimal scheduling for two-
processor systems. Acta Informatica 1, No. 3 (1972): 200-213,

Gonzalez, M. J., and Ramamoorthy, C. V. Parallel task execution

in a decentralized system. IEEE Transactions on Computers C-21
(1972): 1310-1322. '

T 'lnam D T . RAarnmda £

MNonn " An
Bell System Tech., Journal 45

Graham, R, L. Bounds on multiprocessing timing anomalies., SIAM
Journal on Applied Mathematics 17 (1969): 416-429,

Graham, R, L. Bounds on multiprocessing anomalies and related

packing algorithms, SJCC Conference Proceedings 40 (1972):
205-217.

Hu, T. C. Parallel sequencing and assembly line problems.
Operations Reszarch 9, No. 6 (1961): 841-848,

Kaufman, M, T. Anomalies in scheduling unit-time tasks. Unpub-

lished Technical Report No. 34. Digital Systems Laboratory,
Stanford University, 1972.

Kaufman, M, T. An almost optimal algorithm for the.ééééﬁiiy line

scheduling problem. IEEE Transactions on Computers C-23 (1974):
1169-1174,

14,

15.

16.

17.

18.

19.

20,

21,

22,

23,

116

Liu, C. L. Optimal scheduling on multiprocessor computing sys-
tems. IEEE Switching Automata Theory Symposium Proceedings 13
(1972): 155-160. ,

Manacher, G. K, Production and stabilization of real-time tasks
schedules. Journal of the ACM 14, No. 3 (1967): 435-465.

McNaughiton, R. Scheduling with deadlines and loss functionms,
Management Science 6, No. 1 (1959): 1-12,

Muntz, R. R. Scheduling of computations on multiprocessor systems:
The preemptive assignment discipline. Unpublished Ph.D. disserta-

tion. Electrical Engineering Department, Princeton University,
1969.

Muntz, R. R., and Coffman, E. G. Optimal preemptive scheduling
on two-processor systems. IEEE Transactions on Computers C-18
(1969): 1014-1020.

Muntz, R. R., and Coffman, E. G. Preemptive scheduling of real-
time tasks on multiprocessor systems, Journal of the ACM 17,
No. 2 (1970): 324-328,

Ramamoorthy, C. V., Chandy, K. M., and Gonzalez, M. J. Optimal
scheduling strategies in a multiprocessor system., IEEE Trans-
actions on Computers C-21 (1972): 137-146.

Richards, P. Timing properties of multiprocessor systems. Tech-
nical paper Rep. No. TD-B60-27. Tech. Operations, Inc., Burlington,

Massachugetts, 1060,

Ullman, J. D. Polynomial completeness of the equal execution time
scheduling problem. Unpubiished paper. Computer Science Repor

TR~115, Electrical Engineering Department, Princeton University,
1972,

Villanueva, J. E. Effects of preemptive costs in optimal schedules,
Unpublished paper. Computer Science Department, Iowa State
University, 1975.

117

IX, ACKNOWLEDGMENTS

I wish to express my sincerest gratitude to Dr. Robert M, Stewart
for his confidence, advice, and the support of my program when it was
needed,

My appreciation goes to Dr. Arthur E. Oldehoeft for suggesting
the research topic, for the many hours of assistance, for his advice,
extensive critique and encouragement during the preparation of this
thesis.

Also a special thanks to Mr. Alan Sweet for his comments, and to
all my friends who made my work at Ames pleasurable and rewarding.,

“ I want to express my appreciation to Dr. Fred L. Mann and Dr,
Samuel M, Fahr for their aid in the attaimment of sponsorship from
Peru-Iowa Mission for the first three years of my graduate studies at

Iowa State University. My sincere thanks are offered also to Dr.

Finally, I will thank Dr. Jose H. Portillo for his confidence,

and my parents and brothers for their encouragement during my stay in

Ames,

