
This article has been accepted for inclusion in a future issue.

On-chip Adaptive Circuits for Fast Media Processing
Rama Sangireddy, Member, IEEE and Arun K. Somani, Fellow, IEEE

Abstract— Applications depending on their nature demand either
higher computing capacity or larger data storage capacity or both. Hence,
providing on-chip memory and computing resources that are fixed in
nature is expensive and does not enable an efficient utilization of on-chip
silicon real estate. In this paper, we design the circuit of an Adaptive
Register File Computing (ARC) unit, a novel on-chip dual-role circuit
with a minimal area overhead of 0.233 ����� at

�����
	��
technology. It

supplements the conventional register bank to provide larger register
storage capacity, or acts as a specialized computing unit to provide
higher on-chip computing capacity, depending on the requirement of a
specific application. The paper discusses the circuit level details for the
implementation of the dual-role ARC unit, its integration in a wide-issue
processor pipeline and the corresponding performance enhancement in
various multimedia applications.

I. INTRODUCTION

Most current day applications like multimedia and digital signal
processing applications demand higher computing power. The widely
known 90-10 rule predicates that 90% of the execution time is
expended by about 10% of the application code which is compute-
intensive. Spatial structures (specialized computing unit designed
for a specific function) excel in the execution of such compute-
intensive functions as compared to temporal structures (such as a
general purpose processor). However, allocation of additional budget
of silicon real-estate on the chip to increase the computing power or
for an increase in the on-chip data storage capacity, irrespective of
the characteristics of an application being executed will not always
enhance the performance. Instead, the additional silicon resources
on the chip can be utilized more adaptively for enhancing either
computing power or the storage capacity, as the application demands.

Based on the above observations, we have designed an Adaptive
Register file Computing (ARC) unit at the circuit level. The unit strives
towards achieving greater performance by providing a larger register
storage capacity or higher on-chip computing power, depending on the
requirements of an application. One of the significant contributions
of the paper is the design of a dual-role on-chip component that can
be a register bank or a specialized computing unit that accelerates
matrix operations, and the investigation of the hypothesis that different
applications need different amounts of on-chip memory capacity and
computing power based on their characteristics. The adaptive unit can
adapt to either role based on the needs of the application, and enhances
the performance of various multimedia applications.

A. Related Research

Genov ������ [1] had presented a digital architecture for parallel
vector-matrix multiplication with a die size overhead of 9 ��� � at�������

CMOS technology. Shen-Fu ������ [2] had proposed recursive
algorithms for DFT computation to reduce the number of multipliers
during matrix multiplication implementation, with a core area over-
head of 3791x3828

� � � for a 64-pt radix-4 DFT processor. On the
other hand, our proposed design implements a dual-role component
with only an area of 0.233 ��� � at

������� �
, for enhancing performance

of various multimedia applications.

Copyright (c) 2006 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

R. Sangireddy is with the department of Electrical Engineering, University
of Texas at Dallas, USA.

A. K. Somani is with the department of Electrical and Computer Engineer-
ing, Iowa State University, Ames, IA, USA.

Earlier, the first known attempts to use the memory elements for
computation are that of by Kautz [3] and Stone [4]. During the past
decade, attention has been drawn towards the significance of design-
ing a reconfigurable coprocessor coupled with the general purpose
processor [5]. Ye et al [6] developed Chimaera, a micro-architecture
that integrates a reconfigurable functional unit (RFU) into the pipeline
of a dynamically scheduled superscalar processor. Razdan ��!��� [7]
explored ways to incorporate hardware-programmable resources and
described compilation/synthesis system that automatically exploits the
resources to improve the performance of general purpose applications.
The Garp architecture [8] combines reconfigurable hardware with
a standard MIPS processor on the same die to exploit the better
features of both. A Reconfigurable Computing Cache (RFC) based
architectures were proposed for low-power media processing in [9].

The proposed architecture in this paper is different from these
reconfigurable computing architectures in that, all these architectures
focus on the design of reconfigurable computing elements that can
process a multiple set of functions according to the needs of ap-
plications. In this paper we have proposed and designed at circuit-
level, a dual-role on-chip component that can be a register bank
or a specialized computing unit depending on the needs of the
application. Further, the register file architecture and its organization
has been widely researched to enhance the performance of wide-issue
processors. However, this paper is the first work to the best of our
knowledge, that proposes a dual-role register organization that can
enhance the on-chip register storage capacity or provide higher on-
chip computing bandwidth, as demanded by an an application.

The rest of the paper is organized as follows. Section II presents the
design and implementation of the ARC unit. Section III presents the
performance analysis of a wide-issue processor supplemented with an
ARC unit. Section IV concludes the discussion.

II. DESIGN OF ARC UNIT

The development of the proposed architecture first involved the
design of a dual bank register file and suitable schemes for logical to
physical register mapping in such design. In the dual register bank
organization, shown in Figure 1, the RF1 register bank acts as a
conventional register file bank that supplies the operand values to
the functional units. The RF2 bank is designed as an ARC unit, to
act as an additional bank of registers, or as a specialized computing
unit. When the RF2 acts as a register bank in tandem with the RF1
bank, the physical registers in RF1 are used for logical to physical
register mapping at dispatch stage. Results from the functional units
are always written to registers in RF1. The register values in RF1 are
written to RF2 whenever RF2 has free registers and thus simultane-
ously freeing the corresponding registers in RF1. Thus, the register
in RF1 is freed up much earlier than that is done in a conventional
monolithic register file. Subsequently the freed register in RF1 joins
the free pool of registers used to map to subsequent logical destination
registers. This leverages the processor to process a larger number of
in-flight instructions to draw higher instruction level parallelism (ILP).
A register in RF2 is freed according to the conditions followed in the
case of a conventional monolithic register file. That is, for a current
logical to physical register mapping, the physical register in RF2 is
freed when a subsequent instruction with same logical destination
commits. The freed register in RF2 is again ready to assume another
register value from RF1. The mode of operation of the architecture
when RF2 acts as a register bank in tandem with the RF1 bank is

This article has been accepted for inclusion in a future issue.

further discussed in detail in [10]. In this paper, we focus on the next
step that involves the identification and design of a suitable compute-
intensive function to fit into the ARC unit.

RF1

Units

FunctionalISSUE
Queue

DECODE

ROB

Register rename

RF2 is designed
as an ARC unit

register bank
RF1 is a conventional

RF2

Fig. 1. ARC unit placement in the processor pipeline.

A. ARC as a Computing Unit

The Adaptive Register file Computing (ARC) unit is designed to
spatially process a compute-intensive function to accelerate the ap-
plication processing. In order for such an architecture to be effective,
both the compute-intensive function and the ARC unit must possess
certain desirable characteristics as follows.� The compute-intensive function should be generic and widely

used in most applications. Else, the on-chip hardware resources
allocated for computing such a function will be under-utilized.� Design and implementation of such a function should provide
reasonable speedups over a general purpose processor.� The time to load the configuration (configuration overhead) prior
to the computations in the ARC unit should be minimal for it
not to become a bottleneck.� The overall minimal hardware complexity in the circuit should
be such that the access time of the ARC unit is low.

For the above reasons, the circuit-level design and implementation of
the ARC as a computing unit is a challenging task.

Areas such as signal processing and imaging require enormous
computing power, and thus more on-chip computing resources. A
dissection of the algorithms used in these, and related applications,
reveal that many of the fundamental actions involve matrix opera-
tions. Most of these operations are matrix multiplications, which are
frequently occurring operations in a wide variety of real world algo-
rithms. The Discrete Cosine Transform (DCT), the Discrete Fourier
Transform (DFT), and Singular Values Decomposition (SVD), used
in digital image/signal processing including compression and beam-
forming applications are some of those applications [11], [12]. The
multiplication of two matrices of size NxN each, in a general purpose
processor consumes

�
(���) operations, requiring

�
(���) addition and�

(� �) integer multiplication operations (considering the elements in
the matrix to be integers), and hence becomes a bottleneck to the
performance of the processor. Therefore, larger number of on-chip
processing elements that compute in parallel are required.

Subsequently, we choose the integer matrix multiplication function
as a compute-intensive function to be implemented in the ARC unit.
Consider two NxN matrices A = [��� �] and B = [
� �]. The product
C = [� � �] of the two matrices is given by

�� ����	 (1)

such that

� � � �
������ �
��� � �

�
	
�
� (2)

To reduce the complexity of the matrix multiplication operations,
we design a 3-LUT based computation, wherein the time to configure
the LUTs would be a maximum of eight clock cycles. The design
of the ARC unit is shown in Figure 2. It consists of eleven 3-LUTs
addressed by the 32-bit integer multiplicand (the sign bit is extended
by one bit to make it a 33-bit integer). The RF2 register bank has 128
registers, same as the RF1 bank. But, in this case only 88 of those
128 registers in RF2 are used for computing as shown in the Figure 2.

The addition of the partial products (PPs) obtained from the LUTs is
performed by multiple stage carry save adders (CSA).

35x3−LUT

AR[2:0] D[34:0]

35x3−LUT

AR[2:0] D[34:0]

35x3−LUT

AR[2:0] D[34:0]

35x3−LUT

AR[2:0] D[34:0]

35x3−LUT

AR[2:0] D[34:0]

35x3−LUT

AR[2:0] D[34:0]

35x3−LUT

AR[2:0] D[34:0]

35x3−LUT

AR[2:0] D[34:0]

35x3−LUT

AR[2:0] D[34:0]

35x3−LUT

AR[2:0] D[34:0]

35x3−LUT

AR[2:0] D[34:0]

35−bit Accumulate 64−bit Register

A[2:0]A[5:3]A[8:6]A[11:9]A[14:12]A[17:15]A[23:21] A[20:18]A[32:30] A[29:27] A[26:24]

3−bit counter

clockclear A[32:0] B[31:0]

[2:0]WE

CSA CSA CSA

CSA CSA CSA

CSA CSA

CSA

CSA

CSA

CPA

[63:32]

[31:0]35−bit Subtract

B[34:3]

Mux
A32

Pipeline Stage1
Pipeline Stage2

Pipeline Stage3
Stage4

Pipeline registers

Fig. 2. 32-bit 8-cycle Reconfigurable Matrix Multiplier. The write enable
(WE) and clock signals are connected (not shown in figure) to all the LUTs.
The multi-stage addition of partial products using CSAs is pipelined as shown.
The end result is computed in a carry propagate adder (CPA).

The matrix multiplication operation in the ARC unit consists of two
stages - configuration and computation. For this purpose we introduce
two new instructions - ARC-CONF with one operand � , and ARC-
COMP with three operands � , 	 , and � (������ , ���! �"�# , ���! �"�#). The
instruction (ARC-CONF �) when invoked, performs a write operation
for eight clock cycles controlled by a 3-bit counter. The eight rows
in each of the ten right-most 3-LUTs are loaded with the values of�

, � , $%� , &�� , '(� ,
� � ,)�� , *%� , respectively, as addressed by the

output from the 3-bit counter. Simultaneously, the eight rows in the
left-most 3-LUT are configured with

�
, � , $%� , &(� , +,'(� , +,&(� ,+-$.� , +,� , respectively, to facilitate a signed integer multiplication

operation. Since we assume a single LUT cannot be loaded in parallel,
we partially load all the LUTs each cycle. Thus all the LUTs in the
ARC unit are configured in parallel and hence the total configuration
time for each element of matrix � is eight clock cycles.

When the configuration of the LUTs is completed, the instruction
(ARC-COMP � , 	 , �) is invoked. The operation consumes two
source operands, wherein the first source operand is used to lookup
the contents of the LUTs, while the second source operand is an
intermediate result obtained from the earlier ARC-COMP operations.
The eleven partial products obtained from the current lookup operation
are combined with the two 32-bit parts of the intermediate result
(it can be seen in Figure 2 that a proper bit-alignment is made to
perform the addition of the thirteen partial products, i.e., the lower
32-bit value of the intermediate result is added to the least significant
partial product, while the higher 32-bit value of the intermediate
result is added to the most significant partial product). Subsequently,
the addition of the thirteen PPs is performed in five stages of
addition using CSAs and the result obtained thereafter is stored in
the designated destination operand.

The addition of PPs using CSAs and a carry propagate adder (CPA)
is pipelined as shown in the Figure 2. The first stage constitutes the
lookup operation and first level of CSA computation. Subsequently,
four levels of CSA computations are placed in two stages (two CSA
levels in each stage). Due to the higher computation latency in a CPA
as compared to a CSA, one CPA computation is placed in a single

This article has been accepted for inclusion in a future issue.

stage. The pseudo code for a multiplication of two NxN matrices and
a sequence of instructions generated for the multiplication of two 2x2
matrices in the ARC unit is shown in Figure 3.

Algorithm 1: Matrix multiplication in ARC
for i=0 to (N-1)

for j=0 to (N-1)
ARC-CONF ��� �

for k=0 to (N-1)
ARC-COMP ��� � , ���	� , ��� �

for N=2, the sequence of operations for execution in ARC:
Initialize ��
	
 = ���
 = ��
�� = ����� = 0;
ARC-CONF �
�

ARC-COMP ��
	
 , ��
�
 , ��
	

ARC-COMP ��
�� , ��
�� , ��
��
ARC-CONF �
��
ARC-COMP �
	
 , � �
 , �
	

ARC-COMP �
�� , � ��� , �
��
ARC-CONF � �

ARC-COMP � ��
 , �
�
 , � ��

ARC-COMP � �	� , �
�� , � �	�
ARC-CONF �����
ARC-COMP ����
 , ���
 , ����

ARC-COMP � �	� , � ��� , � �	�

Fig. 3. Matrix multiplication in a ARC unit (shown excluding load/store and
branch instructions).

Alternatively, the lookup operation can be performed using 4-LUTs.
In that case, the addition of 10 PPs (eight from lookup and two from
earlier intermediate result) still requires five stages of CSAs and hence
results in same pipeline latency. However, the total number of memory
elements (registers) in the ARC unit required for computing purposes
would be 128, as compared to 88 in the 3-LUT based design, and the
lookup time for a 4-LUT is slightly higher than that for the 3-LUT.
Thus, the 4-LUT based design results in a larger area overhead and
with a slightly higher computation latency. Hence we prefer a 3-LUT
based design for the implementation. Similarly, the lookup operations
can be performed using 5-LUTs wherein the addition of nine PPs
(seven from lookup and two from earlier intermediate result) can be
performed in a four-stage CSAs. However, the lookup time for the
5-LUT is much larger and offsets the advantage of reduced stages in
addition. Further, the total number of registers required in RF2 for
such operation is 224, which results in a very large area overhead on
the chip.

The implementation of the ARC unit can further be modified to
reduce the configuration time to 4 and 2 clock cycles, in line with
the design of a self configuring binary multiplier proposed by Wojko
and ElGindy [13]. The lookup operation with a configuration time of
4 cycles is shown in Figure 4. A 3-LUT is divided into two segments
and the two segments of each 3-LUT are loaded with the respective
contents in parallel. This is achieved with an additional 35-bit adder
that adds a value of '(� to each of the consecutive outputs from the
34-bit accumulate. Thus it takes 4 clock cycles to load the values of�

, � , $%� , and &�� into the rows in first segment, and simultaneously
write the values of '�� ,

� � ,)(� , and *%� into the rows of second
segment. Among the three bits to perform the lookup in a 3-LUT, the
two least significant bits (LSBs) are used for address lookup while the
most significant bit (MSB) acts as a select signal for the multiplexer
to choose either of the outputs from the two segments. Note that this
is similar to a design where sixteen 2-LUTs are used for the lookup
operation (with a total of 64 memory elements). However, in the 2-
LUT implementation, the addition of 18 PPs (16 from lookup and
2 from earlier intermediate result) requires six stages of CSAs and
hence results in a larger computation latency.

The lookup operation with a configuration time of 2 cycles is
performed with the further segmentation of the 3-LUT, however with
a larger area overhead due to the requirement of additional adders
and decoders. The partial implementation of the design is shown in
Figure 5. The total on-chip area consumed by the ARC unit, designed

35−bit Add

D[34:0]AR[1:0]

35x2−LUT D[34:0]

35x2−LUT

D[34:0]AR[1:0]

35x2−LUT D[34:0]

35x2−LUT

D[34:0]AR[1:0]

35x2−LUT D[34:0]

35x2−LUT

D[34:0]AR[1:0]

35x2−LUT D[34:0]

35x2−LUT

D[34:0]AR[1:0]

35x2−LUT D[34:0]

35x2−LUT

D[34:0]AR[1:0]

35x2−LUT D[34:0]

35x2−LUT

D[34:0]AR[1:0]

35x2−LUT D[34:0]

35x2−LUT

D[34:0]AR[1:0]

35x2−LUT D[34:0]

35x2−LUT

D[34:0]AR[1:0]

35x2−LUT D[34:0]

35x2−LUT

D[34:0]AR[1:0]

35x2−LUT D[34:0]

35x2−LUT

D[34:0]AR[1:0]

35x2−LUT D[34:0]

35x2−LUT

2−bit counter

clockclear A[32:0]

[1:0]WE

To Carry Save Adders To Carry Save Adders To Carry Save Adders To Carry Save Adders

B[31:0] B[33:2]

A[32:30] A[29:27] A[26:24] A[23:21] A[20:18] A[17:15] A[14:12] A[8:6]A[11:9] A[2:0]A[5:3]

A32

34−bit Accumulate

A2

35−bit Subtract

B[33:2]

Fig. 4. 32-bit 4-cycle Reconfigurable Matrix Multiplier. The write enable
(WE) and clock signals are connected (not shown in figure) to all the LUTs.
The pipelined addition of partial products using CSAs is performed as shown
in Figure 2.

according to the above described three different configuration schemes
and implemented at

������� �
technology, is shown in Table I. The

three designs have been implemented using Verilog and the hardware
synthesis to measure the area is performed using the standard design
analyzer tools from Synopsys [14]. The amount of area overhead
due to the integration of ARC unit in a conventional processor is
around 0.1% of the total chip area (Intel Pentium 4 die size of
217 ��� � or AMD Opteron die size of 193 ��� � in 2004), and it
will be around 0.2% in a MIPS32 Intrinsity FastMATH embedded
processor (die size of 122 ��� �). To make an evenhanded comparison
of our design with the architectures already implementing a large
register file (with same number of registers as the combination of
main register bank and the ARC unit), we measure the overhead
of the area only due to additional logic (CSAs, Add/Sub units and
routing) required to perform matrix multiplication computation. The
corresponding results are shown in the third column of the table,
which on average is 0.03206 ��� � . The table shows that the area
overhead we incur, due to the added logic to the register file for
performing matrix multiplication, is significantly less. On the other
hand, to have a separate matrix multiplier on the chip in addition to
the full register file capacity, it consumes considerable amount of area
overhead depending on the implementation [1], [2].

35−bit Add

35−bit Add

35−bit Add

35−bit Add

AR D[34:0]

35x1−LUT

AR D[34:0]

35x1−LUT

AR D[34:0]

35x1−LUT

AR D[34:0]

35x1−LUT

AR D[34:0]

35x1−LUT

AR D[34:0]

35x1−LUT

AR D[34:0]

35x1−LUT

AR D[34:0]

35x1−LUT

1−bit counter

clockclear A[32:0]

WE

B[31:0]

33−bit Accumulate

B[33:2]

B[34:3]

Decode

To Carry Save Adders

A[2:1]

B[34:3]

35−bit Subtract

35−bit Subtract

A[32:31]

Decode

To Carry Save Adders

A30 A0

Fig. 5. 32-bit 2-cycle Reconfigurable Matrix Multiplier (partially shown). The
write enable (WE) and clock signals are connected (not shown in figure) to all
the LUTs. The pipelined addition of partial products using CSAs is performed
as shown in Figure 2.

B. ARC unit as a register bank

A lookup-table (LUT) is a segment of SRAM, e.g. a 3-LUT is an
SRAM logic with a bitline width of eight cells. The width of the

This article has been accepted for inclusion in a future issue.

TABLE I
ON-CHIP AREA FOR ARC DESIGN USING 3-LUTS, IMPLEMENTED AT�����
	��

TECHNOLOGY. AREA OVERHEAD IS ARC UNIT AREA EXCLUDING

LUTS (REGISTERS).

����� ������	�
����� ��������� � � ��� � ����� � ��� � ���
(
���

) (
���

)� ��!���" �$#
0.233 0.04241%���!���" �$#
0.199 0.03206&���!���" �$#
0.178 0.02622

8 Registers3-LUT

D[34:0]WEclkAR[2:0]

ARC
flag

lookup address for matrix mult.

register address for read/write

config for matrix operations

Read port

from register write logic

Register operand

As input to CSA

Fig. 6. A register sub-bank in the ARC unit.

wordline can be designed according to the functional requirements.
A wordline in an LUT is read or written by selecting the wordline
using a decoder logic, similar to the implementation of read and write
accesses in on-chip memories. When the ARC unit acts a register
bank, it can be considered to be consisting of eleven register sub-
banks (corresponding to eleven 3-LUTs), each sub-bank comprising
of eight registers. Though each sub-bank consists of a read and a
write port, the ports can be concatenated to form the required number
of read and write ports for the RF2 bank.

The design of a register sub-bank is shown in Figure 6. The flag
sets the ARC unit into the register file mode or the computing mode.
According to the flag setting, the address and data values appropriate
for the current operation are selected. The access time for a register,
i.e., to read a value from one memory bank, for each of the designs
is shown in Table II. The access time values have been computed
at

� � � ���
technology, using a register file access time model derived

from CACTI [15]. It can be observed that for an implementation with
maximum possible configuration cycle time (for a 3-LUT based design
it is 8 cycles, for a 4-LUT based design it is 16 cycles, for a 5-LUT
based design it is 32 cycles), the register access time is slightly less
than a corresponding design with reduced configuration cycle time.
This is mainly due to the absence of a decoder and multiplexing logic
to select one of the outputs from the segments of an LUT.

III. PERFORMANCE ANALYSIS

We used Simplescalar-3.0 [16] to simulate a dynamically scheduled
wide-issue processor with the simulation parameters summarized in
Table III. The configurations for three different processor organiza-
tions used for the analysis purposes are as shown in Table IV. Config-
uration C1 is a base processor without an ARC unit. Configurations
C2 and C3 are the base processor with an embedded ARC unit. The
performance of the processor with ARC unit acting as RF2 register
bank is analyzed in the configuration C2. Similarly, performance of
the processor with ARC unit acting as a matrix multiplication unit is
analyzed in the configuration C3. For the C1 and C2 configurations,
matrix multiplication operation is performed in a conventional wide-
issue processor with varied register file sizes and register access times
as shown in Table IV. The register access time for C2 configuration
is taken to be one cycle more as compared to the base processor,
due to the larger register file. The pipelining of the register file is
not considered for analysis purposes here, though the multiple-cycled
pipelined register file designs have been proposed in the recent past.

TABLE II
REGISTER ACCESS TIME IN THE ARC UNIT AT

� ���
	��
TECHNOLOGY.

����� � ��� ����� � ������#�
'� �(� ��� �)#$#*
�����,+ � #$-
����� .
/10*2*3 % /10*2*3 4�/10*2*3�(��!5��" �$#
0.4484 0.4975 0.5466%6��!5��" �$#
0.4524 0.5017 0.5510&6��!5��" �$#
0.3628 0.5098 0.55947$8 ��!���" �$#

- 0.3831 0.5756
. � ��!���" �$#

- - 0.4028

TABLE III
PROCESSOR SIMULATION PARAMETERS.9 ����� ���
:� � ;6� "=< �> � #�
 � <?�
@� ��� � � � � � 32KB, 2-way, 1 cycleA �
 � � � � � � 32KB, 4-way, 1 cycle

���B��� � �,C�� � � � �
 ��� bimodal, 2K table size/ ���# / C�� � � � �
�� ��� " �
:� � ��! 7 cycles> � #�
 � <?�
@� ��� ��#)# < �ED < � < ��#���FG� 1280 �)����H #�
 ��� ��D < � < � (0JILK)
#���F��

649�� C � " � � � M�� �
 � 4 and 8N < � �
�� ���O� "�< � �P
'#/ > �
:����� �(��� ��
 � Q��
�� � 4 and 8/ > �
:����� � <?"
�� C " ��� � 2 and 4/ � " �)�
�� � � C?� � �
 ��� ��
 � Q��
�� � 2 and 4/ � " �)�
�� � � C?� � �
E <?"
�� C " ��� � 2 and 40 � < � �����R� � � � � � � 256KB, 4-way, 64B line/ " �
:� � ��! 6 cyclesS��� ��� !/ " �
:� � ��! ��� � #�
 , � ��T�
 70, 2 cycles/*U < #*M�� �
 � 8B

During the computation in the ARC unit, the time to configure the
LUTs for each element of � is taken to be 4 cycles. A slightly higher
speedup in computation can be obtained if a 2 cycle configuration
time is used, while an insignificantly lesser speedup is obtained if
an 8-cycle configuration is used. In C3 configuration, even when the
register file size is same as that of the base processor, the access of
each register involves an additional delay in the multiplexer placed in
the dual bank register file. This multiplexer delay is not seen in the C1
configuration. Hence, in the C3 case the register access time is taken to
be 2 cycles. For a comparative evaluation between the configurations
C2 and C3, where C2 has larger register storage capacity while C3
has higher computing capacity, the multiplication of matrices of size
256x256 is also performed according to the blocking algorithm [17],
[18]. Blocking is used to achieve locality in the on-chip memory
capacity available. To perform matrix multiplication by blocking, we
divided the 256x256 matrix into four 128x128 blocks.

The speedups obtained by computing the matrix multiplication
product in the processor with an ARC unit as compared to a base
processor are shown in Figures 7 and 8. For each matrix size, the
total number of cycles taken to execute the function in the processors
with configurations C2 and C3 is normalized with the total cycles
for execution in the base processor (configuration C1). In the case of
matrix multiplication by blocking, the execution times obtained for
configurations C1, C2 and C3 are normalized with the execution time
obtained with matrix multiplication in a conventional way in processor
configuration C1. As seen in Figure 8, for multiplication of matrices
with smaller sizes, the C2 and C3 configurations perform similarly
and better than the base configuration.

As the matrix size is increased to 128x128, the demand for higher
computing power takes precedence and hence the C3 configuration
performs better. However, as the matrix size is further increased to

TABLE IV
VARIOUS PROCESSOR CONFIGURATIONS SIMULATED. C2 ARCHITECTURE

IS SIMULATED AS DISCUSSED IN SECTION IVV)W�X�Y�Z [L\)WB] �_^$`�a:b)c � \)W Number of registers Computing bandwidth
available available

C1 Base processor 128 registers 8 Integer ALU and
without ARC unit (access time 1 cycle) 4 Integer Multipliers

C2 Base processor with ARC 128+128 registers same as base
unit as RF2 register bank (access time 2 cycles) processor

C3 Base processor with ARC 128 registers ARC unit, 8 Integer ALU, and
unit as computing unit (access time 2 cycles) 4 Integer Multipliers

This article has been accepted for inclusion in a future issue.

Matrix multiplication in 4-wide superscalar processor with ARC unit

0.9

0.95

1

1.05

1.1

1.15

1.2

8x8 16x16 32x32 64x64 128x128 256x256 256x256
blocking

Matrix size

S
p

ee
d

-u
p

C1 C2 C3

Fig. 7. Matrix multiplication in 4-wide processor without and with ARC unit

256x256, the demand for larger register capacity is more than the
demand for higher computing power. Thus, in this case though C3
performs better than C1, processor configuration C2 performs even
better. In the case of multiplication of matrices by blocking, the
configuration C3 performs better than C2 and C2 performs better than
C1. This is due to the fact that, blocking helps in utilizing the register
capacity efficiently, and thus the demand for computing bandwidth is
more than the demand for the register capacity.

Matrix multiplication in 8-wide superscalar processor with ARC unit

0.9

0.95

1

1.05

1.1

1.15

1.2

8x8 16x16 32x32 64x64 128x128 256x256 256x256
blocking

Matrix size

S
p

ee
d

-u
p

C1 C2 C3

Fig. 8. Matrix multiplication in 8-wide processor without and with ARC unit.

From the above results, and especially analyzing the performance of
various configurations of an 8-wide superscalar processor in executing
multiplication of matrices of sizes 128x128, and 256x256 with and
without blocking, it can be concluded that applications depending
on their nature, demand either higher computing capacity or larger
data storage capacity or both. Hence, providing on-chip memory and
computing resources that are fixed in nature is expensive and does not
enable an efficient utilization of on-chip silicon real estate. Instead,
it is more beneficial to design a portion of on-chip resources to be
reconfigurable, so that it can be used either as a memory element or
a computing unit, as the situation demands.

The performance enhancement with execution of MPEG decode,
JPEG compression and decompression applications in both 4-wide
and 8-wide processors is shown in Figure 9. For each application, the
execution time in the processor with the ARC unit is shown relative to
that in the processor without the ARC unit. For each benchmark, the
four columns indicate the total execution time in the base processor,
time spent on core function in the base processor, execution time in the
proposed architecture, and time spent on core function in the proposed
architecture. The applications are run with an image of 574,000 pixels.
The MPEG decode application has DCT as the compute-intensive
function, the JPEG compression has FDCT as the compute-intensive
function, and the JPEG decompression has IDCT as the compute-
intensive function. Each of these functions contain matrix operations
as the core computations that are accelerated using the ARC unit.

IV. CONCLUSIONS

Applications that demand either higher on-chip computing power
or larger on-chip data storage capacity are continuously emerging.
In this paper, we have proposed Adaptive Register file architecture,

Performance for MPEG Decoding and JPEG

0.5

0.6

0.7

0.8

0.9

1

1.1

4-wide processor 8-wide processor 4-wide processor 8-wide processor 4-wide processor 8-wide processor

MPEGdecode JPEG compression JPEG decompression

Total time in base processor
time for core function
Total time in processor w/ ARC
time for core function in proc w/ ARC

Fig. 9. Performance of MPEG decode, JPEG compression and decompression
applications in 4-wide and 8-wide processors with and without ARC unit.

a novel circuit to provide a feasible solution and address the above
problems concurrently. The Adaptive Register file Computing (ARC)
unit provides a higher on-chip computing capacity by executing a
compute-intensive function, and provides larger register file resources
to meet the register storage capacity requirements. Results showed
a considerable performance gain in various multimedia applications,
when processed in a conventional wide-issue processor supplemented
with the ARC unit to accelerate matrix operations.

REFERENCES

[1] R. Genov and G. Cauwenberghs, “Charge-mode parallel architecture for
vector-matrix multiplication”, IEEE Transactions on Circuits and Systems-
II, Volume: 48, Issue: 10, pp. 930-936, October 2001.

[2] H. Shen-Fu and S. Wei-Ren, “Design of low-cost and high-throughput
linear arrays for DFT computations: algorithms, architectures, and imple-
mentations”, IEEE Transactions on Circuits and Systems-II, Volume: 47,
Issue: 11, pp. 1188-1203, November 2000.

[3] W. Kautz, “Cellular Logic-in-Memory Arrays”, IEEE Transactions on
Computers, Volume: C-18, Issue: 8 , pp. 719-727, August 1969.

[4] H. S. Stone, “A Logic-in-Memory Computer”, IEEE Transactions on
Computers, pp. 73-78, January 1970.

[5] A. DeHon, “DPGA-coupled microprocessors: commodity ICs for the early
21st Century”, Proc. IEEE Workshop on FPGAs for Custom Computing
Machines, pp. 31-39, 1994.

[6] Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee, “CHIMAERA: a high-
performance architecture with a tightly-coupled reconfigurable functional
unit”, Proc. 27th International Symposium on Computer Architecture, pp.
225-235, 2000.

[7] R. Razdan and M. D. Smith, “A High-Performance Microarchitecture With
Hardware-Programmable Functional Units”, Proc. 27th Annual Interna-
tional Symposium on Microarchitecture, MICRO-27, pp. 172-180, 1994.

[8] T. J. Callahan, J. R. Hauser, and J. Wawrzynek, “The Garp Architecture
and C Compiler”, IEEE Computer, Volume: 33, Issue: 4, pp. 62-69, April
2000.

[9] R. Sangireddy, H. Kim, and A. K. Somani, “Low-power high-performance
Reconfigurable Computing Cache Architecture”, IEEE Transactions on
Computers, Vol. 53, Issue: 10, pp. 1274-1290, October 2004.

[10] R. Sangireddy, “Register Organization for Enhanced On-chip Paral-
lelism”, Proc. IEEE 15th International Conference on Application-specific
Systems, Architectures and Processors, ASAP2004, pp. 180-190, Septem-
ber 2004.

[11] Keshab K. Parhi, “VLSI Digital Signal Processing Systems Design and
Implementation”, Wiley, 1999.

[12] S. Y. Kung, “VLSI Array Processors”, Prentice Hall, 1988.
[13] Mathew Wojko and Hossam ElGindy, “Self Configuring Binary Mul-

tiplier for LUT addressable FPGAs”, Proc. Australasian conference on
Parallel and Real-Time Systems, 1998.

[14] http://www.synopsys.com/
[15] P. Shivakumar and N. P. Jouppi, “CACTI3.0: An Integrated Cache

Timing, Power, and Area Power Model”, DEC WRL Research 2001/2,
August 2001.

[16] Doug Burger and Todd M. Austin, “The SimpleScalar Tool Set, Version
2.0”, Computer Sciences Department Technical report # 1342, University
of Wisconsin-Madison, June 1997.

[17] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins
University Press, 1989.

[18] Michael E. Wolf and Monica S. Lam, “A data locality optimizing
algorithm”, Proc. ACM Conference on Programming Language Design
and Implementation, Volume 26, Issue 6, pp. 33-44, May 1991.

