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GENERAL INTRODUCTION 

Nuclear power plant (NPP) accidents may originate from relatively mild operational 

transients. When an operational transient does occur, operators must take corrective actions 

promptly in order to restore the abnormal plant state into a normal one or, at least, mitigate 

the abnormal state from developing into more severe plant conditions. Transients may 

develop over a short period and may not grant the operators enough time to perform a 

diagnosis. The potential danger in NPP transient diagnosis is in misdiagnosing a transient 

and therefore performing an inappropriate corrective procedure that can lead to an even 

more dangerous situation. A quick and accurate diagnosis is very important for prompt and 

safe plant controls. A computer-aided diagnostic advisor system that can perform diagnoses 

accurately is in demand for safety enhancement 

Artificial neural networks (ANNs) have been applied to develop the computer-aided 

diagnostic advisor system since they have many useful characteristics. For example, ANNs 

are capable of learning features by examples without explicit representation of the system 

dynamics (Rumelhart, McClelland & the PDP Research Group, 1986; Lippman, 1987; Blum 

& Li, 1991; Hecht-Nielsen, 1990; Kurkova, 1992). ANN learning is also associated with 

generalization. ANN generalization enables them to classify unfamiliar data based on 

knowledge acquired by learning. ANNs also have noise- and fault-tolerance that provides 

robustness. These characteristics have motivated many ANN implementations to NPP 

transient identification (Bartlett & Uhrig, 1992; Ohga & Seki, 1993; Cheon & Chang, 1993; 

Parlos. Muthusami & A.tiya, 1994). 

One drawback of ANN applications to real world problems is, however, that the 

general theories of validation and verification do not yet exist (Bartlett & Kim, 1992; 

Wildberger, 1994). Many ANN implementations have assumed, implicitly or explicitly, that 

the output of an ANN is reliable. Tne assumption may be inappropriate for the output 

obtained from an ANN presented with novel input data not included in the training data. 

Moreover, validation and verification of ANN outputs is crucial when the assured 

performance of the ANN is required for safety (Kim & Bartlett, 1993). For example, the 

accuracy of a diagnosis provided by a NT? fault-diagnostic advisor is essential for safe 
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control and operation. This is because a faulty diagnosis cannot help to assist operators to 

take the corrective or mitigative actions. 

The objective of this study is to develop a validation and verification technique for NPP 

fault-diagnostic systems using ANNs. The validation and verification is realized by 

estimating error bounds on the advisor diagnoses. Therefore, the reliability-assessed 

diagnoses can assist the operators to perform their corrective or mitigative actions. Separate 

sets of data simulated at San Onofre Generating Station (PWR) and Duane Arnold Energy 

Center (BWR), respectively, were used for the development of the fault-diagnostic advisor 

systems using ANNs. The advisor systems were validated by the verification technique 

developed in this study. The error estimation technique developed here can be applied to 

any ANN model regardless of ANN learning paradigm. 

An Explanation of the Dissertation Organization 

The three sections in this dissertation are self-contained papers corresponding to three 

relevant phases of research. The papers are presented here in the chronological order they 

were written. The three papers have been submitted for publication to different technical 

journals. The first paper was accepted for publication in Nuclear Technology. The second 

paper was submitted to Neural Computation, and the third paper to IEEE Transactions on 

Nuclear Science. Keehocn Kirr. is the princiual investigaioi' and nrsi author of THP worV 

presented here, and Dr. Eric B. Bartlett appears as second author in these papers. There are a 

general summary following the last paper and a list of additional references cited in the 
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ABSTRACT 

The objective of this research is to develop a fault-diagnostic advisor for nuclear 

power plant transients that is based on artificial neural networks. This paper describes a 

method that provides an error bound and therefore a figure of merit for the diagnosis 

provided by this advisor. The data used in the development of the advisor contains 10 

simulated anomalies for the San Onofre Nuclear Power Generating Station (SONGS). The 

stacked generalization approach is used with two different partitioning schemes. The results 

of these partitioning schemes are compared. This work shov/s that the advisor is capable of 

recognizing all 10 anomalies while providing estimated error bounds on each of its 

diagnoses. 
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1. INTRODUCTION 

The accidents at Three-Mile Island and Chernobyl have focused the demand for 

nuclear power plant (NPP) safety. This demand has propelled the development and 

implementation of innovative reactor designsQ), better safety systems(2), human factor 

studiesQ), and stricter safety requirements(4). Even with these developments and 

implementations, it is still imprudent to assume that a NPP accident can never occur. 

Accidents may originate from many sources. For example, numerous dangerous accidents 

originate as relatively mild operational transients. When an operational transient does occur, 

a quick and accurate diagnosis is very important to plant safety since relatively simple 

procedures can usually be implemented to correct the situation. The major danger is in 

misdiagnosing a transient and therefore performing an inappropriate corrective procedure 

that can lead to an even more dangerous situation. Transients may, however, develop over a 

short period and may not grant the operators enough time to perform a diagnosis and take 

the appropriate corrective actions to avoid more serious plant conditions. A computer-aided 

diagnostic advisor system that can perform diagnoses quickly is therefore important to 

safety. The operators or shift technical advisors at the plant can use these quick, accurate 

diagnoses to help them with their own analysis of plant conditions. These diagnoses could 

also be used by technical support personnel for diagnostic or strategic purposes after the 

transient is under control, presumably to avoid future occurrences of similar difficulties. 

Conventional computer-aided, fault-diagnostic advisors have used expert systems. 

These advisor systems can provide accurate diagnoses but have some problem areas(5.6). 

2.P sxp£**^ rP2.y CG"^put2.tiG" tir"c 2pci '^scii'*ces to 

progress through the many decision levels required to formulate a diagnosis. These systems 

may also be subject to a combinatorial explosion of such decisions as the complexity of the 

m 1 trM-i ft A ir»r\nt O r-t Kti 

Ki/ r*r>ic<a r»pn r^pnco oYr>£arf c\;ctOTV»c tr\ tKo foT-T-n»tlpto/^ 
c/jr V* A w Ojr O a « O waaw a.v>a*&a w AUbWM ^ V A A M A kxw a AO Caw 

critical decision levels. 

Recent work using artificial neural networks (ANNs) to surmount some of the 

aforementioned shortcomings with expert systems has been published by Bartlett and 
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Uhrig(7.8") as well as Ohka and Seki(9). One shortcoming of ANNs is that there is a general 

lack of theory that allows for provision of estimated errors on ANN solutions for validation 

and verification purDoses(5-7.10.11). Providing a figure of merit for the ANN advisor is 

necessary when addressing its reliability since the advisor may be presented with novel plant 

symptoms. The typical black box nature of .AJSiNs is considerably reduced by assigning a 

figure of merit in the form of an error bound on the ANN solution. The figure of m.erit can 

also broaden the advisor users' insights about relationships between the NTP transient 

dynamics and the ANN advisor's solution. For example, the operators can evaluate an 

enigmatic diagnosis from the ANN advisor if the estimated error is large. Therefore, the 

error bound estimation is very important for real-world implementations. This paper 

describes a method that provides an error bound and therefore a figure of merit for the 

diagnosis provided by an ANN NPP fault-diagnostic advisor. 

The next section of this paper gives background on ANNs. Section III addresses error 

prediction and describes the stacked generalization schemed 2") used in tliis work to provide 

error bounds on the ANN fault-diagnostic advisor. Section IV explains the methods used and 

the data investigated in this paper. Results and conclusions are given in sections V and VI. 
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2. ARTIFICIAL NEURAL NETWORKS 

2.1. ANN Models 

Mathematical m.odels can be developed to characterize many physical systems. These 

models can be very accurate when the underlying laws are known. However, when the laws 

are not well understood or the system is very complex, empirical methods are employed to 

develop approximate mathematical models, which can be very useful if used correctly. 

These empirical models can be developed automatically by using methods called 

generalizersCL2J3) because they infer parent functions from sets of data. Many generalizers 

provide good results if the processes they model are well behaved. For example, statistical 

methods work well for data that is linear and normally distributed. Unfortunately, many 

systems are not so well behaved because of nonlinearities in the system being modeled. 

Nonlinear modeling is an arduous task and is not easily accomplished with standard 

techniques. Recent work has demonstrated that nonlinear modeling can be accomplished by 

ANNs(14-17). The nonlinear modeling abilities of ANNs have served as the motivation for 

their use in this work because the NPP transient diagnostic problem is highly 

nonIinear("7.8.17.18). 

1 A. XT I 1 riki. 

ANNs are computer algorithms that are motivated by biological neural systems. ANNs 

consist of highly interconnectcu processing elemcrits called neurons or nodes thai produce 

output signals based on a weighted sum of the input signals they receiver 19-21). The A.NN 

in Figure 1 has four layers of neurons, referred to as the input layer, the fu:st and second 

hidden layer, and the oiitpuv layer. Inpui s:g;';als cii:: oiigmait: fruin olher ncLiruns or inputs 

while output signals either become the input signals for other neurons or the ANN output. 

During training, an A-NN is presented with k examples in a leaming or training set of known 

input-output patterns, {(x^ y;)l y; = f(x-); i = 1 to k}, each of which consists of m inputs 

and n outputs. When one input pattern Xj is presented to the via the input layer, it is fed 
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Output nodes 

Hidden nodes 

Hidden nodes 

input vector components 

higure 1. A feedforward neural network with four-layer architecture. 
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through the neurons in the hidden and output layers to generate a corresponding output 

pattern y-', which is the ANN estimate of y-. A typical general activation process in a neuron 

is represented in Figure 2. The weighted sum of the neuron's inputs is processed through a 

transfer function to produce an output signal. There are many different types of transfer 

functions (20.21"}. One of the more widely used transfer functions is the sigmoidal acdvaiion 

function used in this paper. The form of the sigmoidal activation function is as follows, 

Opi= l/[ l+exp(-5«m)] (1) 

where Op^ is the output of node i in layer p, and sum is the weighted sum of the outputs of 

the nodes in the previous layer p-1. 

The ANN is trained by repetitious presentation of the training set and adjusting the 

inter-neural connection weights so that the output signal y-' converges to yj. These 

inter-neural weights are represented by the lines connecting the neurons in Figure 1. There 

are many methods for obtaining convergence, but backpropagationC 19-21which is 

relatively simple, straightforward and very useful, is employed widely and will be used in 

this paper. 

A backpropagation ANN that provides a function mapping can be regarded as a 

generalizer if several restrictions are satisFied(12.13.22'). These restrictions are as follows. 

Let L be a learning data set in X space where m is the dimension of the input space 

and n is the dimension of the output space. The first restriction requires that the order of the 

presentation of data be mvariant, i.e., the learning of a generalizer is irrelevant lo a specific 

order of the data presentation. 

The second restriction requires that when a generalizer is asked a question from the 

data set L, the generalizer must reproduce the corresponding output vector from L. This 

restriction is suhiect tn a traininp accnrarv 

The third restriction requires that the domain of a generalizer must be singlevalued. In 

other words, two or more outputs corresponding to a single input vector cannot be allowed. 

For example, let (x-, y^^) and (xj, y^^) be mput-Output pairs in L. When Xj = x^, the third 

restriction reauires that y_ = y„. A J TTt J n 
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0-
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= 1/[1+exp(-SUM)] 

SUM O
 

+
 

C
D

 

• '] P-1 J 
i 

o D-1 i-1 O p-1 j o D-1 i+1 

Figure 2. Forward activation in neuron 0„; in a neural network. 0- is a bias for the 
nAitmn 

pi 
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The fourth restriction refers to the smallest number of input-output patterns in the 

learning set L. In order to map the parent or desired function, a generalizer needs at least k 

training pairs in the learning set, such that k > m where m is equal to the number of input 

variables. This restriction does not provide an approximate size of k for complete 

Sor»oroli"70ti/->r> Kiit lirviJt 
ccti. u. w v.'i xiiiixi.. 

The last restriction refers to the necessary dimensionality of the input vectors in L. A 

generalizer is not defined when the components of all the input vectors in the learning set lie 

on an m-1 or less dimensional hyperplane even if the generalizer has enough training 

patterns. For example, assume that the components of all the input vectors in a learning set 

lie on a hyperplane whose dimension is less than that of the generalizer. Even if the fourth 

restriction is fulfilled (k > m ), the learning set would not provide sufficient information to 

generalize the parent function of a higher dimension. Thus, a generalizer requires the 

components of all the input vectors in a learning set to lie on, at least, the same dimensional 

hyperplane as that of the generalizer. ANNs including backpropagation are generalizers 

when the aforementioned restrictions are satisfied( 13,22"). 
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3. ERROR PREDICTION ON A GENERALIZER 

3.1. Stacked Generalization 

Stacked generalization can be thought of as an extension of cross validationQl). Cross 

validation is one of many methods in nonparametric statistics that have been developed to 

cope with difficulties associated with data that is not normally distributed(23.24"). Statistical 

modeling by nonparametric methods can be much more accurate and appropriate for cases 

that depend upon non-normal, data distributions or unknown distributions, such as our 

fault-diagnostics data(25). Cross validation can address the selection of the best model for a 

given non-normal experimental data set(26'). Thus, cross validation can be used to pick the 

best generalizer among many possible generalizers by developing the generalizer with a 

portion of the available data and testing it on the remainder of the data(12.23.26'). 

Stacked generalization, unlike cross validation, can be used to improve the 

generalization accuracy for one or more generalizers; or when used with a single ANN 

generalizer, it can be used to estimate the error of a generalizer that is presented a novel 

input. Let be an ANN trained on a learning set L. Our goal is to estimate error bounds 

on outputs obtained by for novel inputs. For a chosen partition criterion, the learning set 

L is partitioned into two subsets. An ANN that is called the level 0 generalizer f^^^ and has 

the same architecture of the is trained on one partitioned subset. The performance of 

is measured by testing the generalizer on the remaining partitioned subset Since the 

seconQ SuDset is not uses in training f^^', tne output of will, in general, deviate irom the 

desired outout. This deviation reoresents the error between the untr3,ined input and the & ^ c 

ANN'S output. Another partition is chosen and the process of training and testing is 

repeated. The performance data that includes the untrained input, a vector from the untrained 

input to its nearest pattern in the first subset and the de-viatio"; constitutes a new learning set 

L' called the level 1 learning set. A new ANN called the level 1 generalizer is trained 
/IN 

on the level 1 learning set L'. The level 1 generalizer learns the relationship between 

tns inpiii5 ciiiCi tiic errors of and tiicn Caii cstirnate 2. Ol rncriL in tlic iOrrn oi s.n 
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error bound on outputs of the ANN This stacking procedure is the essence of the 

stacked generalization approach and is illustrated in Figure 3. 

Three different partition criteria for the stacked generalization method are investigated, 

two of which are applied to NPP fault-diagnostics in this work. The stacking procedure is 

accomplished by three different partitioning criteria all of which provide a diagnostic figure 

of merit estimate for the NPP fault-diagnostic advisor developed in this work. They are cross 

validation partition criterion (CVPC), bootstrap partition criterion (BPC), and modified 

bootstrap partition criterion (MBPC). Each of these methods yields slightly different results 

and these differences are the subject of the discussion of this paper. 

As a preliminary to the discussions of these methods, let us define the following 

concepts. Let Q be the universal set of questions (Q ={q,u}) where q is a question of interest 

and u is an unknown solution for the question. This situation is shown in Figure 4. The 

unknown solution u is provided by an ANN generalizer called F^^^. A subset L c Q is 

chosen to be a learning set used to train the generalizer. Let L = {(x-,y;)! i = 1 to k} where y-11 1 
is a known solution corresponding to Xj. The leaming set L consists of k patterns of 

input-output vectors, x- e and y- e R". For the problem of NPP diagnostics, Q 

corresponds to the set of all plant transients and normal conditions. The ANN generalizer 

F^^^ corresponds to an ANN NPP fault-diagnostic advisor. Asking a novel question 

q e Q-L of F^^^ is equivalent to requesting the fault-diagnostic advisor to diagnose a novel 

transient symptom q. A diagnosis u is then obtained from, the advisor F^®\ A. figure of merit 

£ associated with u is then provided by the level 1 ANN such that the resultant output 

from the advisor system is u ± £. 

3.2. Error Prediction with Cross Validation Partition Criterion (CVPC) 

Stacked generalization employs a set of t partitions chosen from the leaming set L. To 

obtain a partition i, where i ranges from one to t, split L into two disjointed sets, L-, and Lj2-

The cross validation partition criterion (CVPC)(I2} is defined such that t is equal to k where 

t is the number of partitions and k is the number of training patterns in L. For each i, Lj2 

consists of a single pair (Xj,y-) in L, and the corresponding L- ^ consists of the remainder of 
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New Trainina Set (level 1^ Provided Error Bound for q 

New input; x & x' Level 1 

outputij g- y j  

trained on L' 
Error =I g - y 

q Novel Question 
Vector from 

to its nearest neighbor pattern in L 

Level 0 ANN 
(x.y) 

.-(x.y) 
trained on 

i -Cv v/1 

] I 

Original Training Set 

Vector from 
X to its nearest neighbor pattern in L-(x,y) 

Figure 3. Illustration of the stacked generalization procedure. The level 0 generalizer is 
used in generating the level 1 learning set L' for a given partition. The level 1 

•* / 4-« 1 »*0 ^ w-i • ««« Oi *- o «- »-« 
X a VI lIlWLlt Hi Uit.^ lUllll oil CLIUi UUUllU lUi CUl 

output obtained by ' for the untrained question q. 
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Q={q,u} 

q= question and u= unknown answer for q 

L = Learning set 

{L-(x,y)} 

Figure 4. Illustration of a set of question and its unknown answer Q and a set of learning 
examples L with a partition given by cross validation partition criterion (CVPC). 
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L, i.e., L-( XJ,y-). Since t is equal to k, then U,-_|L^2 = L, and L^2 Lj2 = 0 foriv^ j. 

The space of the original learning set L, X R", is called the level 0 space. The level 0 

generalizer f^^^ is applied directly to the level 0 learning set L in the level 0 space. In 

Figures 3 and 4, a partition is shown by dividing L into two subsets, L- ^ = L - (x,y) and 

Li2 = (x,y). Note that the subscript i for the input-output pattern is dropped for convenience 

in the figures. Given the partition, the generalizer is trained on the subset L-^. The 

untrained question x in Lj2 is then presented to f^^\ The answe ; j ~iven by f^*^^ for the 

novel question x will be, in general, different from the correct answer (output) y. In addition 

to this information, the vector x' defined as difference vector from x to its nearest neighbor 

in L| J is computed. The nearest neighbor is obtained by using Euclidean distance. Now, 

when the question is x, the correct answer y differs from the answer g provided by f^^^ by 

£ = 1 g - y L The error information e along with x and x' defines the level 1 information space 

for the generalizer This information is used to form a new learning set L' in the level 1 

space. Hence, the new level 1 learning set L' consists of an input (x,x') and an output I g - y I 

for each partition i. These pairs constitute the level 1 learning set L'. A level 1 generalizer 

is then trained on the level 1 learning set L'. 

Next, we ask the ANN generalizer F^^^ trained on the entirety of L a novel question 

q e Q - L. The ANN generalizer provides a solution for the question. The level I 

generalizer trained on the level i learning set L' is fed the question q with the vector q' 

frciTi G to its nCarcst ricighbor in L. TIic Oulpul oi r • lacn piuviucs liic iigure ui mem lor 

the solution obtained from F^^^. The results of this procedure for SONGS data are shown in 

Figures 6, 8 and 10. 

3.3. Error Prediction Bootstrap Partition Criterion (BPC) 

Using CVPC requires that the total number of partitions t is equal to the number of 

training patterns k in a given learning set. The computation time for generating the level I 

learning set increases in proportion to the number of training patterns k since the level 0 

AJNN must be trained and tested k times. When k is large, which is tvoical of real 

aDoiications. the comoutation time as well as human effort can be verv lensthy and 
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impractical. The total number of partitions can be reduced by employing a method we have 

developed. The first method is called bootstrap partition criterion (BPC). 

When applying BPC, a partitioned set Lj2 can be chosen to have multiple elements 

rather than one as in CVPC. When those elements are chosen randomly from the original 

learning set L, we designate it as the bootstrap paration criterion (BPC) method because it is 

similar to the bootstrapping method in nonparametric statisticsC 12.27). In the original 

nonparametric bootstrapping method, the multiple elements are chosen randomly for each 

partition, however, this may allow some particular elements to appear several times. Without 

imposing proper conditions, the total number of partitions might increase due to the repeated 

selection of some patterns. Tne repeated selection results in a situation where the total 

partition number t would not be significantly reduced or the desired results are not attained. 

Tne unnecessary increase in the total partitions is avoided by adapting the constraints of 

Xiangdong's partition set(28). For BPC, we impose his two constraints on the partition sets 

with a modification as follows. First, predetermine a number of Lj2 elements, say s. Choose 

a t  r a n d o m  s  e l e m e n t s  f r o m  L  s u c h  t h a t  L - 2 =  { ( x j , y p ,  ( X 2 , y 2 ) '  — M l  ~  ̂ '  ̂ 2 "  

Second, require u'_|Lj2 = L, and Lj2 Lj2 = 0 fori?!: j. As required by these 

conditions, a pattern in L-2 will appear only once in all of the partitions. When s is chosen 

such that k/s - 10, the total computation time will be reduced to one-tenth of that of CVPC. 

1 A o-o j ix : 
.a^a. « vra. m. & vav/a* vvavca i.v A VXUA OM 1 IbCA 11^11 \^XTXJL>JL 

The BPC scheme can reduce the total number of partitions t, but due to the random 

selection of s elements of L-2, the scheme may provide varying results. In order to improve 

the reliability of the results for i\NN NPP fauit diagnostics, we propose a modified bootstrap 

partition criterion (MBPC) that has the advantages of BPC without the disadvantages of 

random seiecuon of the elements in the partition sets. MBPC is an extension of BPC where 

the L;-7 patterns are chosen systematically to model the specific problem. 

For the case of NPP fault diagnostics, die ANN advisor must recognize a transient 

w^oss v2Tis.b^£S SJTS (iy^ETnics-Ily chsjigin^ sccordin^ to i^lsjit function In addition, the 

advisor needs to distinguish a particular transient from many different transients of interest. 
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Therefore, the learning set may consist of r separate groups pertaining to the r different 

transients. These r groups differ from each other such that the r patterns for L-2 can be 

selected from each transient group at the same time. This selection can minimize the loss of 

information related to the desired error bounds by the random selection of Lj2 in BPC. It 

follows that MBPC requires two more constraints on the learning set not imposed on BPC. 

First, Lj2 must be a set of r single patterns chosen from each transient group. If the number 

of training patterns in a specific transient group is larger than r, an additional constraint is 

imposed as follows. A maximum of two patterns can be selected from the particular group 

whose number of training patterns is larger than r. For example, assume that there are three 

different transients A, B and C, i.e., r = 3, and the transient groups A, B, and C have 2, 3, 

and 5 training patterns, respectively. If a total of 3 partitions (t = 3) are chosen, the second 

constraint is applied to the partitions such that two patterns from C and one pattern from A 

and B are selected for two partitions. For the remaining partition, one pattern is selected 

from A, B and C. In fact, the last partition doesn't contain any pattern from A because A has 

only two patterns. These modifications for NPP fault diagnostics can reduce the difficulties 

of using BPC while maintaining the accuracy of CVPC and speed of BPC. This can be seen 

by the results shown in Figures 6, 8 and 10. 
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4. METHOD OF SOLUTIONS 

An ANN NPP fault-diagnostic advisor is developed to detect and classify various 

operational transients at San Onofre Nuclear Generating Station (SONGS). A figure of merit 
. „rO^, .. _ lor r ̂ ' s Qiagnosis is proviaeo oy a generaiizer, caiiea tne AN IN error preaictor. i.^.e 

data used for training the ANN fault-diagnostic advisor was obtained from SONGS, owned 

by Southern California Edison Co. and San Diego Gas & Electric Com.pany(29). SONGS is 

a pressurized water reactor (PWR) plant that provides 800 MWe. Ten transient scenarios 

listed in Table I are included in the data set for ANN training. The scenarios include 

design-basis accidents and less severe transients. Note that the stuck open pressurizer safety 

valve with high pressure injection inhibited is similar to the condition thai occurred at the 

Three-Mile Island accident in 1979. 

The data sets for the ten transients, each contain 33 plant variables illustrated in Table 

11. These variables are collected at time step intervals of one second for a period of ten 

minutes. Note that this time snap shot, or single time slice, of data does not include temporal 

information. The main advantage of the single time step approach is simplicity of training 

and execution(7). Thus the ANN advisor can diagnose transients at the very instant the 

plant variables are presented because the ANT^J does not need to observe trends or temporal 

variation. In each data set, normal operation conditions are followed by transient conditions. 

that \i7itK thA Avr»Antmn th<» trirs •frrsnn ^C\C7^ » ^ W4.xp MajL VX Ut i,L (Xi 

scenarios start from the full-power, normal operating condition. The ten transient conditions 

plus the normal steady-state operating conditions with a different initial power constitute the 
n(0) u, 

Owv «* XWAI X X pukwiiio X VI X . Ji IIW IIUIIIL/Wl \J1. tliu lil UlL' 

learning set L is only about 2% out of the 6203 patterns of the entire data set Q for the ten 

scenarios. Tliis learning set includes ten initial conditions due to different initial power and 

T^l*v IattoIo o i r% » rt 1/^0! ^ 1 
X W1XX«^4*XXIS^ X V/^ X A X c u V/ct 1.CI L tlO 1 W11C& kW cxui i ticu w X X X L 

the ten transients. The learning set I-r cf 113 input-output patterns is obtained by the 

procedures outlined by Bartlett and Uhrig®. The learning set L is chosen in an iterative 

manner. First one pattern at the beginning and one pattern from the end of the ten simulated 

transients is selected to form the initial learning set. This initial learning set containing 20 
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Table I. List of Ten Accident Scenarios with iransient Onset Time and Desired ANN 

Output Layer Activation. 

No. Scenario 
Transient 

onset time 
(sec.) 

Desired output 
node activation 

12 3 4 

Normal Operation (before transient onset) 0 0 0 0 

1. Turbine Tripmeactor 
Trip 

6 10 0 0 

2. Loss of Main Feedwater 
jy X UllA^d An ^ / 1 /-\ /-\ U 1 u u 

3. Closure of Both Main 
Steam Isolation Valves 7 0 0 10 

4, Trip of All Reactor Coolant 
Pumps 16 0 0 0 1 

5. Trip of A Single Reactor 
Coolant Pump 14 1 1 0  0  

6- T'urbinc 'i'rip From 50% 
Power 50 i 0 I 0 

7. Loss of Coolant Accident 
(LOCA) With Loss of 
Off-Site Power 

7 10 0 1 

8. Main Steam Line Break 6 0  1 1 0  

9. Stuck Open Pressurizer 
wiui ^ 

Injection Inhibited 

1 C A 1 A 1 yj L Kj I 

10. Single Turbine Governor 
Valve Closure 7 0 0 11 
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Table II. Plant Variables Used as Input to the ANN Fault-Diagnostic Adviser F^^\ 

1. Power (flux) 
2. Average Temperature (Deg F) 
3. Hot Leg 1 Temperature (Deg F) 
4. Cold Leg lA Temperature (Deg F) 
5 Cold Leg IB Temperature (Deg F) 
6. Hot Leg 2 Temperature (Deg F) 
7. Cold Leg 2A Temperature (Deg F) 
8. Cold Leg 2B Temperature (Deg F) 
9. Pressurizer Pressure (psia) 

10. Pressurizer Level (%) 
11. Pressurizer Temperature (Deg F) 
12. Steam Generator 88 Narrow Range Level (%) 
13. Steam Generator 88 Water Level (%) 
14. Steam Generator 88 Feed Water Row (gpm) 
15. Steam Generator 88 Feed Water Flow (Lb/sec) 
16. Steam Generator 88 Steam Flow (Lb/sec) 
17. Steam Generator 88 Pressure (psi) 
18. Steam Generator 89 Narrow Range Level (%) 
19. Steam Generator 89 Water Level (%) 
20. Steam Generator 89 Feed Water Flow (gpm) 
21. Steam Generator 89 Feed Water Flow (Lb/sec) 
22. Steam Generator 89 Steam Flow (Lb/sec) 
23. Steam Generator 89 Pressure (psi) 
24. Containment Pressure (psig) 
25. Containment Temperature (Deg F) 
26. ric5.;>uiizci' Relief Sicajn Flow 
27. Pressurizer Relief Liquid Row 
28. wcrc iniet iriow* 
29. Saturation Margin 
30. Surge Line Temperature (Deg F) 
31. Source Range Counts (cps) 
32. Reactor Vessel Head Level 
33. Reactor Vessel Plenum Level 
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input-output patterns is used to train the ANN advisor. The advisor is then recalled on all the 

patterns over the entire time period of the simulation for each of the ten transients. The recall 

patterns producing the worst errors are added to the learning set. The process of training, 

recalling and adding patterns is repeated until most of undesirable, high recall error patterns 

disappear. Note that the patterns within a short period after transient onset are not added. 

This is because the plant variables change suddenly and dynamically for this short period 

such that some patterns are not uniquely defined. 

The ANN advisor for SONGS is established by training on the learning set L. The 

advisor F^^^ uses a backpropa^ation ANN and is trained until a training root mean square 

(RMS) error of 0.01 is obtained. The ANN F^^^ has 33 input nodes each corresponding to 

the 33 plant variables, 22 nodes in the first hidden layer, 10 nodes in the second hidden 

layer, and 4 nodes in the output layer (33-22-10-4). The four output nodes are used to 

distinguish each of the ten transient conditions with a distinct 4-bit binary code as listed in 

Table I. The two-hidden-layer architecture was employed after attempting several different 

architectures. In this investigation, each of the three partitioning approaches outlined in the 

previous section is compared. The first step toward generating a level 1 learning set L' for 

any of the partitioning schemes is to create t partitions of L : 

i) In the CVPC case, the partition is chosen to be t = k = 113. 

For /, where i = 1 to t, L.--, = (x.-.v,-) with the conditions of L L - = 0 for m. n 
£ - £- mz nz ^ 

and U Ll^2 ~ ^ • 

ii) In the BPC case, the total number of partitions, t, is chosen to be 12 with 

s = 10 the predetermined element number. For i, where i = 1 to t, 

L;2 = {(x;,ypl / = 1 to s} is randomly chosen with the conditions of L^2 ̂  ̂ ^2 ~ ^ 

for m n and U}_jLj2 = L. This partition scheme is not simulated in this 

investigation because of the disadvantage of the scheme discussed in the preceding 

section. 
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iii) In the MBPC case, r = 10 groups because L contains 10 distinct transients. 

For partition /, L-2 = {(x/.ypl / = 1 to r} where each pattern is randon:iIy 

chosen from each transient group with the conditions of ^^2 ^n2 = 0 for m n 

and U •_jLj2 " ̂  • I" learning set L for SONGS, four transient groups have 

training patterns larger than r where r is 10. Thus, total number of partitions, t is 

chosen to be 12, and the second constraint allows a maximum of two patterns to be 

selected from each of there ^our groups. 

Another backpropagation ANN having the same architecture of the developed 

advisor F^^\ is used as a level 0 ANN. For each partition, f^^^ is trained on and then 

presented input patterns in L-2 as questions. The error £ of f^^^ for a question is computed by 

subtracting the output trom the desired output, as follows: 

ej = lgj-yjl, j=l,2,3,4. (2) 

where gj is a value of the j-th output node on f^^^ and yj is a j-th component of the desired 

output y corresponding to the question x. The next step is to calculate vector x' from x to its 

nearest neighbor vector The nearest neighbor vector x^^^ from x is chosen in the Lj j 

such that has the smallest Euclidean distance (/2-norra) from x. The vector x' from x to 

iis .neaxesi neighbor x^^^^ is determined by the equation, 

=  + l ) / 2  ( 3 )  

for the i-ih component of the vector since negative values are not appropriate as an input to 

an AJW. Additionally, this transformation formula insures that ail components are within 

the inter\'al [0,1] required by backpropagation ANN. For ail partitions given by one of two 

partition criteria, a total of 113 trios of x, x', and £ are acquired. Therefore, the level 1 

learning set L' consists of these 113 trios. Tnese new input-output patterns in L' are used to 

train a level 1 generalizer in order to provide error bounds on the results of ihe 
(f\\ ^ . 

de^eioocd A-NN f&uU-di^gnostic advisor The ANN pw/ is a 
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backpropagation ANN with a 66-30-20-10-4 architecture. Again, this architecture was 

chosen after several attempts to fmd the optimal architecture. 

The ANN advisor is designed to categorize the untaught input conditions at the 

plant into a normal condition or a specific transient. This classification is the diagnosis of the 

n c(0) frvr an nn Vnnvy" n c O _ T in nlant rjnprptirvnpl within A w V w A. A A A VV 4 4 * A4 ^ V Vi/ 4 ̂  AAA 4 W ^ A C*-A A to ^ A W* towA A A O ** A^AA^AA 

generalized knowledge about the ten transients. The novel input-condition that is fed into 

and the vector from the input condition to its nearest pattern in L are presented as an 

input condition to For those level 1 input conditions, the ANN error predictor will 

predict the error bounds e on the diagnoses of the ANN fault-diagnostic advisor F^^^. 



26 

5. RESULTS OF THE RESEARCH 

Figures 5 through 11 and Table HI show the results of this research. Figures 5, 7, and 9 

display the advisor's true diagnostic RMS error. The true diagnostic error is the actual error 

as compared with the true solution. Tne true solutions, in this case, are obtainable because 

the transients were simulated by the SONGS simulation computer which is assumed to be 

correct. The ANN error predictor provides an estimated error bound associated with the 

advisor's diagnosis as a figure of merit estimate. The estimated error bound is shown in 

Figures 6, 8, and 10 corresponding to each of the odd-numbered figures, respectively. The 

solid line in these figures represents the estimated error bound obtained by using MBPC, the 

dashed line by CVPC. The figures show that the predicted errors by the MBPC method are 

much closer to the true diagnostic errors than those by the CVPC method. Note that MBPC 

reduces considerably the total number of partitions, t = 12, compared with that of CVPC, 

t = 113, for generating L'. Figure 11 shows an example of the classification resulting from 

the combination of the error bounds with the diagnoses of the advisor F^^' for turbine 

trip/reactor trip as seen in Figures 9 and 10. Note that when an error bound falls below 0.1, 

the diagnosis is considered to be acceptable. This error-combined classification at each 

instant of input data presentation can be provided as a final result to the operators or 

technical support staff at SONGS, or indeed this approach can be used at any other NPP or 

r>rr*r*i»cc r*lor»t ic T'oKl^a TXT ciiTv»r>-»oT-i-roc tho foctiitc tWo 

advisor F*-^^ and the error predictor P*-^^ developed by using MBPC. The third column 

snows tne ume wnen tne aavisor F^"^ makes a diagnosis with the true diagnostic RMS error 

1 +^0 T% o* ' i ' ̂  A 1»* w* * *r» «-> <-v 
vv \j.± uu. Lv/1. i.£.u.Aiox\^tiv wiiowb. .L vLi>>piu.jro vii^ viiixC' wiiwti uai wiivji 

predicted by P^^^ falls below 0.1 after transient onset. 

The ANN advisor F^^^ responds very quickly to the onset of the transients. However, 

* f r» r» 1^1 o /-] v I 11 w p ^ ^ >-31« p /-»m • m rw 
OlliV'W L<1W Ail^UC VCLilCLClW^ U.i 11 U.1 i 1 i V CXIICUIO VltCUl^lll^ OUtlll^ tllVx 

• •-O C* a <-* «-\ ^ 1 ^ r> o C ••O 
axvwi tiiv s./avi.'ii auiiviiiiai uuiiUiLJLUii> uiw auVi^ci o oiC 

inconclusive for this period. This transitory period for each transient is shown in the 

odd-numbered figures as weii as in the third column of Table HI. Tne advisor F^^' classifies 

the abnormal conditions with true diagnostic errors below 0.1 within 30 seconds after 



27 

0.6 

0.5 

Closure of 
Both Main Steam Isolation Valves 

Transient Onset at 7 sec. 

0.4 -

0.3 -

.2 0.2 H 

0.1 -

I ime (s) 

Figure 5. True diagnostic error (RMS) of F^"'' diagnosis compared with the true solution in 
the C^c of CiOSUi'C Oi OOui lumn iSOiS-QOn V^VCS. 
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0.5 

0.4 -

Closure of 
Both Main Steam Isolation Valves 

Transient Onset at 7 sec. 

by CVPC 

by MBPC 

0.3 -

02  -

0.1 - \, 

W.A 

51 101 151 201 251^. 3C1 , ,351 401 451 501 551 501 
Time (s) 

gure 6. Estimated error bounds provided by tip error predictor for two different 
partitioning schemes on the advisor diagnosis. Solid line represents the 
estimated error bounds by using modified bootstrap partition criterion (MBPC); 
dashed line by using cross validation partition criterion (CVPC). 
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Trip of A Single Reactor Coolant Pump 

Transient Onset at 14 sec. 

/I 

301 

1 
351 401 451 501 551 601 

Figure 7. True diagnostic error (RMS) of diagnosis compared with the true solution in 
the case of trip of a single reactor cooiant pump. 
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U 
1 51 101 151 201 251 301 351 401 451 501 551 601 

Time (s) 

jrigure 8. estimated error bounds provided by the err9j;j)redictor for two different 
partitioning schemes on the AINN advisor F''-'"'"' diagnosis. Solid line represents the 
estinia^ed error bounds bv usir® modified bootstraD "artitio" criterion 
dashed line by using cross validation partition criterion (CYPC). 

Trip of A single Reactor Coolant Pump 

Transient Onset at 14 sec. 

by CVPC 

by MBPC 
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5 
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Tirr.e (s) 
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/r\\ 

Figure 9. True diagnostic error (RMS) of diagnosis compared with the true solution in 
the c&se of turbine trip/re&ctor 
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0.5 

0.4 -
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0.2 

0.1 

Turbine Trip/Reactor Trip 

Transient Onset at 6 sec. 

J-.: 

by CVPC 

by MBPC 

1 51 101 151 201 251 301 351 401 451 501 551 601 

I  I I I l o  i s ;  

^ 1 \ 

Figure 10. Estimated error bounds provided by the error oredictor for two different 
partitioning schemes on the ANN advisor diagnosis. Solid line represents 
Ihe estimated error bounds by using modified bootstrap pardtion criterion 

(MBPC); dashed line by usmg cross validation partition criterion (CVPC). 
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i 1 Undetermined 

11 
Single Turbine Governor Valve Closure 

1 1 
! 1 
1 ii 

Stuck Open Pressurizer Safety Valve with 
High Pressure Injection Inhibited 

1 1 Main Steam Line Break 

1 
'1 

LOCA with Loss of Off-Site Power 

! 1 

i 1' 
Turbine Trip From 50% Power 

1 i» 
! I, 
i f 

Trip of a Single Reactor Coolant Pump 
i : 
1 ! 1 1 
i i 

Trip of All Reactor Coolant Pumps 

i ; 

1 
Closure of Main Steam Isolation Valve 

\ \ Loss of Main Feedwater Pumps 

I 
Tuibli»4 Tli[j/n6Autul i ilp 

^ Norma! Operation 

51 

i I I i I I I ! ! I 
101 151 201 251 301 351 401 451 501 551 601 

1 ime (s) 

Figure 11. Classification of the advisor diagnosis combined with the predicted error bound 
for the turbine trip/reactor trip. This ciassiacalion will be provided plant 
personnel as a final result of the ANN fault-diagnostic advisor system, as an 
transient proceeds in a NPP. 
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Table III. Summary of the Results of the ANN Adviser and the Error Predictor 

Transient 
Scenario 

Transient 

onset time 

(sec.) 

Time after transient 
onset for the true 
diagnostic error to 
fall below 0.1^ 

(sec.) 

Time after transient 
onset for the error 
bound predicted by 
P^^^ to fall below 
0.1^ 

(sec.) 

1. Turbine Trip/Reactor 
Trip 6 30 32 

2. Loss of Main Feedwater 
Pumps 47 3 36 

0 ui ouui iviajLii 
Steam Isolation Valves 7 28 21 

4. Trip of All Reactor 
Coolant Pumps 16 2 20 

5. Trip of a Single Reactor 
Coolant Pump 14 62 31 

6. Turbine Trip From 
50% Power 50 1 211 

7. Loss of Coolant Accident 
(LOCA) with Loss of 
Off-Site Power 

7 14 4 

8. Main Steam Line Break 6 4 20 

9. Stuck Open Pressurizer 
Safety with nigh Pressure 
Injection Inhibited 

15 1 46 

10. Single Turbine Governor 
Valve Closure 7 16 1 

^ 1 ne value is arbitrarily assigned for an illumination purpose. 
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transient onset, and even immediately in the case of the stuck open pressurizer safety with 

high pressure injection inhibited. One exception is the trip of a single reactor coolant pump 

for which the classification takes about 62 seconds. This transient is characteristically 

similar to the trip of all reactor coolant pumps. It is understandable that the advisor may need 

more time to distinguish betv/een these two transients. Note that the required time for 

diagnosing the trip of all reactor coolant pumps after the onset is only 2 seconds. 

In the even numbered figures, the predicted error bounds indicate the estimated 

uncertainty in the advisor's diagnosis. For example, during the transitory period in 

Figure 10, in this case from 6 seconds through 37 seconds, the predicted errors are so much 

larger than 0.1 that the diagnosis for this period is unreliable. Hence, the classification is 

undetermined for this transitory period as seen in Figure 11. Since the diagnosis is 

undetermined, the plant personnel should not consider the output of the advisor when 

determining plant conditions for mitigation purposes. After the transitory period passes, the 

predicted error bounds are less than 0.1. The diagnosis of the advisor is then reliable and 

Figure 11 shows that the classification is turbine trip/reactor trip. In Table in, the predicted 

error of single turbine governor valve closure is below 0.1 for the entire period. But the true 

diagnostic error is higher than 0.1 for the transitory period of 16 seconds after the onset. This 

inconsistency can be eliminated by adding more data delineating the features of the 

transitory period. This remedy is confirmed by the fact that the training data set L used in 

this research contains no oattems between a period of from 2 to 29 seconds. 

Another fascinating example is the turbine trip from 50% power. In Table in, the error 

bounds on the diagnoses are large for 211 seconds after the onset at 50 seconds, including 

the normal operation period. This indicates that the diagnosis is unreliable for both the 

normal operation and the transient condition periods. In contrast with the predicted error 

bounds, the true diagnostic errors falls below 0.1 in one second after the transient onset. This 

discrepancy looks like an undesirable result of the method used in this research. But, in fact, 

it justifies the method. Notice that all the data for the other transients were collected from 

100% power, except for this particular transient where the data were collected from 50% 
power. Consequently, from the viewpoint of generalization accuracy as measured by stacked 

generalization, the advisor is not able to sufficientiy generalize this specific scenario of the 
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turbine trip from 50% power from others. In other words, the confidence on the diagnoses 

for this transient is very low. The assuredness on the diagnoses of this transient can be 

increased by training the ANN advisor with more transients from this lower reactor power 

level. This additional training will increase the generalization accuracy for this transient as 

well as others at this lower power level. 

As seen in the odd-numbered figures, the true diagnostic RMS error is conventionally 

used as a measure of a recall performance. The recall performance is typically utilized to 

check the generalization accuracy within a single transient. Hence, the generalization 

accuracy of the .ATVIN diagnoses within a single specific transient is obtained by checking the 

recall performance. However, this generalization accuracy within a single transient cannot 

provide the generalization accuracy for the unique transient scenario being compared with 

other transient scenarios. For example, the error prediction result indicates that the transient 

of the turbine trip from 50% power needs additional training data in order to be generalized 

from the other transients. Hence, the generalization accuracy for a transient scenario with 

respect to other transient scenarios can only be obtained by applying the error prediction 

method investigated in this work. Similarly, the error prediction method can be used to 

recognize the same transients that result from different causes as the one on which the 

advisor v/as trained. 
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6. CONCLUSIONS 

The objective of this work is to demonstrate a verification technique that provides a 

figure of merit for the diagnosis of an ANN fault-diagnostic advisor for NPPs. To this end, 

an ANN advisor is successfully developed to detect and classify ten transient scenarios and 

ten normal conditions in a PWR nuclear power plant. The error prediction is accomplished 

by applying the stacked generalization technique to the ANN advisor for providing a figure 

of merit for the advisor. The results demonstrate the feasibility of the error prediction 

method for the validation of NPP status diagnostics. The results of the proposed MBPC 

method show a considerable reduction in computation time and effort without any reduction 

in the accuracy of the predicted error. Additionally, our error prediction approach can tell us 

the generalization accuracy for each individual transient scenario as compared with all the 

other scenarios. The error prediction technique developed in this investigation can also be 

utilized in all ANN applications. 

Fundamentally, the error prediction used in this work uses the nonparametric statistical 

information in a learning set. Accordingly, each example in a learning set is closely related 

to generalization accuracy, i.e., the more appropriate the selection of the examples in the 

training set, the better the generalization. Hence, we suggest that stacked generalization be 

applied as a more suitable method for the selection of examples for the learning set in future 

\i;nrV Tp 3,cid.iticn furtnsr rsflnsmspt ths s—CKsd ^sncr^lizs-tion tschniQus will bs nsscisci 

because the dimension of input vectors is doubled in the level 1 space. Level 1 ANN training 

time therefore increases considerably when the number of plant input variables is large, 

AO XI L A V/O VX W ^ X I./X V/X X XO • VAX X^'X t XX V/X VXtW ^ W X X ^X M kX\^ k XlJ ^ bXt^ 

generalization accuracy of a level 1 generalizer to its training accuracy should be 

investigated. For more advanced NPP fault-diagnosis, we suggest further investigations 

1 r> P* r*/*V t •*1 /̂-V I* y-v <»J •i* •• r* « »/-V /-v Lvy 1 V7t_; VI cu lo v cu. lO K/t. kiit^ 

(.LcuiiV^ta uicuioxv^iiio ouvii uoj iiuiov. uixiwi^iiL owvv^iitiu^ lui a CJLcuiva 

similar transient scenarios. 
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ABSTRACT 

Validation and verification of artificial neural network (ANN) outputs is an important 

issue when the assured performance of an ANN system is required for safety or reliability. 

This paper presents a new error-bound prediction technique called error estimation by series 

association (EESA) that provides error bounds on the outputs obtained from an ANN in 

order to validate the outputs or classifications. The examples investigated in this paper 

include a simple nonlinear mapping and a more complicated, realistic fault diagnosis 

problem. The results demonstrate that EESA. performs error estimation successfully and 

therefore validates the outputs from the ANN models. Moreover, EESA can also be used to 

indicate that the ANN requires training on more data in order to increase generalization. 
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1. INTRODUCTION 

Artificial neural networks (ANNs) have gained acceptance in various disciplines 

because they have many useful characteristics. For example, ANNs are capable of learning 

features by examples without explicit representation of the system dynamics (Rumelhart, 

McClelland & the PDP Research Group, 1986; Lippman, 1987; Blum and Li, 1991; 

Hecht-Nielsen, 1990; Kurkova, 1992). In addition, ANNs are able to generalize, that is, to 

classify unfamiliar data on the basis of knowledge acquired through learning. Another 

important characteristic of AM^s is noise- and fault-tolerance, which provides robustness in 

the ANN response. These characterisdcs have motivated numerous engineering 

implementations of ANNs into system modeling (Lapedes & Farber, 1987; Narendra & 

Parthasarathy, 1990; Zhang, Mesirov & Waltz, 1992; Bartlett. 1992). process control (Bhat 

& McAvoy, 1990; Miller, Sutton & Werbos, 1990), plant monitoring (Uhrig, 1989; 

Upadhyaya & Eryurek, 1992) and fault diagnosis (Venkatasubramanian & Chan, 1989; 

Bartlett & Uhrig, 1992). 

One drawback of applying ANNs to real world problems, however, is that general 

theories of validadon and verificadon do not yet exist (Bartlett & Kim, 1992; Wildberger, 

1994). Many ANN 'Implementations have assumed, implicitly or explicitly, that the output of 

an ANN is reliable. This assumption may be inappropriate for the output obtained from an 

A \T7\I 
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and verification of ANN outputs is crucial when the assured performance of the ANN 

system is required for safety. For example, nuclear power plant (NPP) diagnosis provided by 

a fault"diagnostic system for an abnormal plant condition is essenuax lOr sa^e coutroi and 

operation (Kim & Bartlett, 1993). 

Leonard, Kram.er, and Ungar (1992) have investigated a radial basis function network 

( D T2 <-» *-<-• n ̂  ̂   ̂̂  ^ ^ ^ ^ ^ ^ ^ ~ ] 
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on its output. Kim and Bartlett have addressed validation and verification on the diagnoses 

obtained from a fault-diagnostic advisor using ANNs by providing error bounds on the 

diagnoses (Kim, Aijundi & Bartlett, i992a & i992b; Kim and Bartlett, 1993; Bartlett and 

Kim, 1993). Unlike Leonard, Kramer, and Ungar's method that is limited to RBFNs, Kim 
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and Bartlett's work can be applied to any ANN paradigm. In the work by Kim and Bartlett, 

error-bound estimations employ a stacking procedure that originates from cross validation in 

nonparametric statistics (Stone, 1974, 1977; Geisser, 1975; Li, 1985). Wolpert (1992) 

conceptualized the stacking procedure for improving generalization accuracy in his stacked 

generalization scheme. The stacking procedure provides error information by training a 

number of ANNs on different subsets of the training data and testing them on the remainder 

of the data. The error information generated constitutes a new learning set, which in turn is 

used to train an additional ANN, called the error predictor ANN, that predicts the error 

bounds on the output of the ANTvf system trained on the entirety of the original training data. 

These estimated error bounds are then used to provide reliability information for the 

purposes of validation and verification. 

There are., however, difficulties v>/hen applying Wopert's stacking procedure to actual 

problems. First, the computational complexity of the stacking procedure depends upon the 

number of partitions created. Selecting a proper partition criterion is very important in 

minimizing the computational requirements. Second, the dimension of the input space of the 

ANN error predictor is doubled when compared with that of the ANN system. The reason is 

that the stacking procedure used by Wolpert requires an additional input vector, which is of 

the same dimension as the input space of the ANN system. This doubling of the input 

dimension will cause training times to increase considerably when the number of the input 

variables of a system is (aige (Wlif. 1986; Judu, i990). Tn ihis we nrp^ppr a new 

stacking procedure called error estimation by series association (EESA). EESA reduces the 

dimension of the Lnput space of the A_NN error predictor and therefore the training 

complexity. Tliis I'educlion in Lhe input dimension is accomplished by feeding the output of 

the ANN system through the .A.NN error predictor. This procedu:^ and the selection of ar. 

appropriate partition criterion are addressed in Section 3. Section 4 discusses the results of 

EESA applied bj a. nor.iinciir mapping problem and a nuclear power plant fauit-diagnostic 

problem. Conclusions are given in Section 5. 
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2. ANN MODELING 

ANNs can be regarded as generalizers because they infer parent functions from sets of 

data (Cybcnko, 1989; Wolpen, 1990; Kurkova, 1992). Many other generalizers provide 

good results if the processes they model are well behaved. For example, statistical methods 

work well for data that is linear and normally distributed. Unfortunately, many systems are 

not so well behaved. Modeling of ill-behaved or nonhnear systems is an arduous task and is 

not easily accomplished with standard techniques. However, recent work has demonstrated 

that nonlinear modeling can be accomplished with ANNs (Narendra and Parthasarathy, 

1990; Blum & Li, 1991; Bartlett, 1992 & 1994; Bartlett & Kim, 1993). For example, the 

nonlinear abilities of ANNs offer an approach to solve nuclear power plant (NPP) transient 

diagnostic problems (Uhrig, 1989; Bartlett & Uhrig, 1992). 

As a preliminary to our discussion of EESA, we define the following concepts for a 

diagnostic or classification problem. Let Q be the set of all abnormal and normal conditions 

of a system to be monitored by an ANN; Q = {(q,u) | u = r(q)}, where q is a symptom of 

the system condition and u is the correct classification for the condition. Here F is the 

desired system function to be modeled by an ANN fault-diagnostic advisor called F . Let 

ANN F provide an estimation u of the correct classification u. A symptom q is an input 

vector in where m is the dimension of the input space. An classification u is an output 

vector in R" where n is the dimension of the output space of F. 

The advisor F is trained on a subset of Q; L CQ where L is chosen to be the learning 

ivji. 1. .  j-t — ^ J — X r». j v> uj i:> a ruiu w ii ouiuu-uil uuiicapuiiuuig, LU Oil 

input q-. The learning set L consists of k patterns of input-output vectors, q- ^ and 
J J 

u- G R'^. When presented with a novel symptom q E Q - L, the advisor F provides u for 
J 

vVe assume that L is the only available infonnation for modeling the .ANN F. Our goal 

is to estim.ate error bounds on the classifications, or output, obtained from F in order to 

measure its reliability. To this end, an error bound e associated with u is provided by another 

.AJviN called the error predictor network P trained on a derived learning set L' that is 
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generated by EES A. The resultant output from the fault-diagnostic system, F and P, 

developed by EESA is u ± e for a novel symptom q. Note thaf the error bound e provided 

by EESA is an estimated error rather than a maximum probable error. 



50 

3. ERROR ESTIMATION FOR ANN MODELS 

3.1. The Stacking Procedure 

In order to generate the learning set L', a partition criterion that creates a set of t 

partitions on L is required. For a particular partition i, where i = 1 to t, the learning set L is 

partitioned into two disjointed subsets, L^ and L-2. An ANN, f, that has the same 

architecture as F is trained on the partitioned subset L^. The performance of f is measured 

by testing it on the ren:iainder of L, the subset L;2. From this procedure, we obtain new-

information about the deviation, = 8j" "j' between the actual output gj and desired output 

Uj. Here, g- is the output of f which is trained on L;, only, and u,- is the desired output for 
J J *• •*• J 

the novel inout a- from L-^. The stacking orocedure of Woloert imnoses the requirement that 
-J iz, 

the difference vector qj' from qj € Lj2 to its nearest neighbor in L^ be appended to qj 

making the input dimension m+m. Our new method, however, does not require this large 

increase in the input dimension, as will be discussed later in Section 3.3. The set of 

input-output pairs, {( represents the relation between the untrained input and the 

ANN'S error. The deviations characterize the generalized response of the ANN to the novel 

input. Statistically, the deviations are an unbiased error estimation obtained by 

nonparametric cross validation (Geisser, 1975; Li, 1985; Weiss, 1991). This unbiased error 

0 0 o fv^ t" V% i~\ r> • r« r> 1 ^ ̂  mm ^ J '  '4— ~ ^ ^ 
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training and testing is repeated for each of the t partitions. In Wolpert's stacking procedure, 

the Derformance data £; with Q; and a-' constitute the new learning set L' used to train an 
J -J -J ^ 

A  M  / J « O  

3.2 Selection of Partition Criterion 

Partitions of the learning set can be created by several different criteria. These criteria 

include methods such as the cross validation partition criterion (CVPC) (Wolpert, 1992), the 

bootstrap panition criterion (BPC) (Kim. & Bartlett, 1993) and the modified bootstrap 

partition criterion (MBPC) (Kim & Bartlett, 1993). 
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CVPC requires the total number of partitions t to be equal to the number of training 

pattems k in the learning set. For each partition /, where / = 1 to k, L^2 - (Q/'"/) 

= L - L^2 "^he additional conditions that L^2 f"! ~ ® iorm^n and 

uUl,-2 = L- The computational requirements for generating L' increases with k since 

ANN f must be trained and tested k times. When k is large, which is typical of real world 

applications, the computation time for generating L' can be prohibitive. 

BPC reduces the total number of partitions t by selecting multiple elements, say s 

elements, of L-2 rather than one as in CVPC. The BPC method we designed for the 

reduction in the number of partitions is slightly different from the bootstrap resampling 

methods in nonparametric statistics (Efron, 1982; Sankoff et al., 1987; Welch et al., 1992). 

The nonparametric bootstrap resampling techniques require choosing s elements randomly 

for each partition with replacement. Tne replacement may, however, allow some particular 

elements to appear several times. The repeated selection results in a situation where the total 

partition number t would not be reduced. Therefore, we impose proper conditions for our 

BPC in order to eliminate the undesired increase in t due to the replacement. For each i, 

where / = 1 to t, let 'L-2 = {/ = 1 to s, and s < k} where the pairs (q^,up are randomly 

chosen with the conditions, ® formrt^j and U^|L^-2 = L- Note that 

when s is chosen such that t = k/s = 10, the total computation requirements are reduced by 

one~tenth of that m CVPC. However, due to the random selection of multiole elements of 

Lj2, the BPC method may provide varying results when L contains insufficient training data. 

ii i-» contains Suiiicicnt training Oata, tnis is not 3. proDicni. vvs oXC laCCG "witn tnc Durocn ot 

determining what degree of sufficiency we require for a model. While the estimation of data 

density was performed by Parzen (1962), determining what extent of the sufficiency is 

suitable for a problem a priori has not been yet addressed. 

MBPC is our new extension of BPC. In MBPC the L:-. oattems are chosen 

systematically rather than randomly. In our NPP fault diagnosis example discussed in 

Section 4, we seek to classify operational transients based on known pattems. An 

nnArptmnpl trpnc::ont ic trx p cat np1*t<amc Kv m 
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m-dimensional feature space. A set of pattems pertaining to a particular transient must also 



52 

be distinguished from other sets of patterns pertaining to other transients. The uniqueness of 

these patterns in the feature space form the basis for classifying the transients of interest. 

Therefore, the learning set L consists of r separate groups of patterns, each pertaining to the r 

different transients. The r patterns for L-2 can then be selected from each transient group at 

the same lime. Tnis simultaneous selection across the pattern classes can minimize the loss 

of information as well as the training time related to obtaining the training data for the ANN 

error predictor P. The implementation of MB PC, however, requires two constraints: First, 

Lj2 must be a set of r single patterns chosen from each transient or classification group. In 

other words, for partition i, L-2 = {(q^-,up! / = 1 to r} where each pattern is randomly chosen 

from each classification group with the conditions L^2 ^n2 ~ ^ iox m* n and 

UL,L,7 = L. Second, if the number of training patterns in a specific classification group is 

larger than r, a second constraint is imposed as fcllcvvs. For a partiticn, a maximum of two 

patterns can be selected from the particular group whose number of training patterns is 

larger than r. The imposition of the second constraint may prevent further increases in the 

partition number. Another option is to apply CVPC to the excessive patterns remaining after 

fulfilling the first constraint. This partial CVPC application can eliminate the potential 

disadvantage of selecting two patterns with a trade in the increase of t. 

In this paper, MBPC is applied to the real world problem discussed in Section 4 to 

demonstrate the creation of partitions according to the method outlined above. Moreover, 

our Tvlrtpr" mf=>rhnn nf ATNTC vprifirnTinn CHT! b? 10 2. i^STning SSt Cf any physiCZl 

system that possesses the uniqueness of grouped patterns in the feature space of the system, 

such as, character recognition, on-line inspection of product quality, or other such processes. 

3.3. Error EsuiTiaticn oy ScricS Association 

we nave ceveiopeG a new staci^ng procedure cailed liiiSA in order to resolve the 

problems of the stacking procedure of Wolpert. The first problem comes from the 

requirement that the additional vector qj' be appended to input pattern q- in the learning set 
J J 

L'. Therefore, the dimension of the input space of L' is doubled to m -r m, i.e., 

(q;,q;') E where m is the dimension of the input space L. Tnis expansion of the 
J J 
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input space of L' may cause difficulties in developing P. These difficulties include the 

escalation of the training complexity of P as the number of inputs increase. When m is 

large, which can easily occur in real applications, training P with 2m input nodes can be very 

difficult. For example, in the fault-diagnostic problem discussed in Section 4.2, the 

dimension of the input space of L' would increase from 97 to 97 + 97 = 194 since we have 

m = 97 plant variables in L. 

In addition to doubling the input dimension, another problem comes from adding the 

difference vector to the input space, which is based on the assumption that the error of ANN 

F is strongly related to the difference vector from a given novel input to its nearest neighbor 

in L (Wolpert, 1992). This assumption can be shown to fail under certain conditions. For 

example, let a novel pattern q be very close to a training pattern qj. A nearest neighbor 

computed in L;, for the training pattern q; from L;^ might differ from a nearest neighbor 
J 

computed in L for the novel pattern q. Hence, the difference vector computed in for qj 

can be substantially different from the difference vector for q that is very close to qj. This 

inconsistency may cause P to estimate error bounds inaccurately. These inaccuracies aie 

likely to be larger when multiple elements are chosen for Lj2 as in BPC or MBPC, but they 

can be solved by implementing EESA. 

The EESA scheme is performed by feeding the output from ANN F into .ANN error 

predictor P. This is done in place of adding the difference vectors to the input. Connecting 

the nnfnnt of F to P bv EES— sllows the performances of F to be directly monitored by P. .A. 

diagram of this scheme is shown in Figure 1. 

Errors in the outputs of F are caused not only by how much a given novel input differs 

frnm trgjnmo ip ^ but 2.1sc by ^Gw v/sll P is trained EHSA, Cm.h address thsss issues 

since the novel input and its corresponding output from F are fed into P. The stacking 

procedure without EESA, however, cannot provide such information since an estimated 

prrnr of P not nnnn nntnijt nf p j ^ it Onl*' ths P 

In addition to the aforementioned advantages, EESA reduces the input space din^.ension of P 

to m + n, which is usually much smaller than ra + m since the dimension of outputs, n, is 

usually smaller than the dimension of inputs, m. The reduction in the input dimensionality 

alleviates the training requirements considerably. 
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advisor F trained on L produces the output u. and P trained on L' orovides the 
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The following is the algorithm of EES A: 

1. Create a partition i of the learning set L such that 

L,-2 = {(''/'yp ' 1 ^ ̂  ^ r. =(x/;, ^12^e R"^ and 

~ ^^11' ^12' •••' ^ where r is the number of patterns for L;2 

according to the chosen partition criterion, and = L - L-2. Note that the 

ANN F is trained on the entirety of L. 

2. Train an ANN f having the same architecture of F on L - j .  

3. Compute the deviations where e^2' —' for the 

partition i by testing the ANN f on the input patterns in L.-2- Note that 

£/j = I f(xpy - Yij I where y=l to n. 

4. Compute the output y, for F for the input pattern x^, which is 

c 

5. Save (x^, E j^ni+n ^ j^n^ as new data patterns of the new 

learning set L'. 

6. Repeat steps 2 through 5 for each of the pardtions of L. 

7. Train P on L' = { ((x^, y^), I 1 < v < k} where k is the total number 

of the learning set L. 
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4. IMPLEMENTATIONS AND RESULTS 

4.1 Error Estimation for a Nonlinear Mapping 

As our first example, error estimation was performed with and without EESA on a 

nonlinear mapping of the function y(x) = 0.4 sin(7:x) + 0.5. A total of 15 data points for L, 

shown in Figure 2, were chosen from 201 data patterns generated for this experiment. The 

learning set L was used to train ANN F. Assume that the only data available to us is L and 

the goal IS to estimate error bounds on the ANN s output for novel data points. Note that set 

L does not contain sufficient data for a perfect generalization. We selected these 15 data 

points of L as a learning set for this example because in real world applications it is not 

always possible to assure an abundance of training data. The resulting ANN F is a 

2-hidden-layer network with one input node, 6 hidden nodes in the first hidden layer, 4 

hidden nodes in the second hidden layer, and one output node (1-6-4-1). 

The ANN F trained on L was recalled on the untrained data in order to calculate the 

true errors of the ANN mapping and to be able to compare the true error to our estimated 

errors. In order to compare the performance of EESA to that of the stacking procedure 

without EESA, two single-hidden-layer ANNs, and ?2 (2-5-1), were trained on the new 

training sets ' and Lj that were generated by using EESA and the stacking procedure 

TTTTo A wiuiuui. v i' woo uov^u i*ji uvjtii 

The results for the sine function mapping problem are displayed in Figure 3. The true 

error is the absolute difference between the output of F and y(x). The P. and P2 networks 
-.1 -t 1- * I 1 - -3 : — nru ̂  C^UllldlC tlic CliUl UUUllU^ un UlC uuipui plUUU^^CU uy I" lUl UlC iOU UllUOlliCU UdUl puiliu>. 1 11c 

error bound estimated by EESA is much closer to the true error than that obtained by the 

stacking procedure without EESA. It is also much smoother. The discontinuous jumps on the 
1 r> jt *i_ - _t _i Jtrr ^ r* ciiui uuLiUUS v y  ̂ 2  v y  LIIC iiuiujj!, II; uic uiiiciciiv^C YCL-IUI lui 

the untrained patterns as discussed earlier. High error bounds on the interval [0.35, 0.55] 

show that the output of F on this interval is relatively unreliable and F should be trained on 

data in this range. This illustrates the additional advantage of using EESA, i.e., the adequacy 
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figure 2. A nonlinear mapping problem of the sine function y(x)=0.4sin(7:x)-H).5. The 
learning set L containing a total of 15 data points is chosen from 201 total 
data points. 
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Figure 3. The estimated error bounds obtained from the error predictors for novel data 
points. The ANN error predictor Pi is trained on L, gspisnitsd by irnplemsriting 
EESA, and P- on L2' by the stacking procedure without EESA.. These estimated 

error bounds are compared to the true errors. 
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of the training data can be evaluated, and more data can be added where the estimated errors 

are high. 

4.2 Validation of a NPP Fault-Diagnostic System 

As a second illustration, EESA was applied to an NPP transient diagnostics problem to 

establish the ANN error predictor P and validate the output of the NPP fault-diagnostic 

advisor F. This work is part of an ongoing research project at Iowa State University 

(Bartlett, 1993). Data were obtained from the Duane Arnold Energy Center (DAEC) 

training simulator, owned by Iowa Electric Light and Power Company (Vest et al., 1991). A 

total of 25 distinct transients were simulated for this work. Note that the term transient in 

nuclear engineering means an abnormal operational condition that might develop into a 

potentially dangerous accident if appropriate corrective actions are not taken. Diagnosing the 

causes of a transient is, therefore, very important to the safe control and operation of a NPP. 

Some of the transients were simulated at different severities so that the NPP fault-diagnostic 

advisor F can be trained to classify the transients independent of their severities. Because 

the simulations were performed at various severities, the data include a total of 33 different 

transient scenarios as listed in Table I. For example, the transient ms04a, a main steam line 

rupture outside primary containment, was simulated at three different severities, 100%, 60%, 

and 30%. The severity of this transient specifies the size of the sheared portion of the main 

steam line at the turbine inlet header. 

Each data set contains input patterns with 97 plant variables at intervals of one second 

for a period of three lo ten minutes. The plant variables used as input to the AMNS, as weii 

BS -A.^!Tv outputs, were normslizcd from 0.1 to 0.9. Xhs 2ssoci2.t£d output ussd to 

distinguish each of the 25 transient conditions is a unique 5-bit binary code. This 

normalization allows for quicker training without driving the output nodes into the saturation 

region of thc nodal sigmoid transfer function (Hecht-Nielsen, 1992). The output codes are 

listed in Table I. Note that this time snap shot, or single time slice, of data does not include 

temporal information. The main advantage of the single time step approach is simplicity of 

training and execution regardless of temporal trends of a transient. Advisor F is trained to 

diagnose transients at the very instant a plant operational symptom is presented because the 
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Table I. List of the 25 transients with the scenario codes and designated output codes. 

No 1 Scenario 
Code 

Transient Description Output 
Code 

1 Spurious automatic depressunzation system actuation 0.90.1 0.1 O.J 0.1 

2 culO Reactor water clean-up coolant leakage 0.10.10.10.9 0.1 

3 culOgp5 Reactor water clean-up coolant leakage with failure of 
Group 5 isolation valves 

0.10.10.9 0.9 0.9 

4 fw02a Main condensate pump trip 0.10.9 0.9 0.10.9 

5 fw08-6 Feedback heater tube leak n 1 n 1 n 1 n 1 n Q \J.X. V/.X V/. i. KJ.I.  KJ.P 

6 fw09a Reactor feedwater pump trip 0.9 0.9 0.10.10.1 

7 fwl2c0 Feedwater regulator valve controller stuck closed 0.9 0.1 0.9 0.1 0.1 

s f\v 12c 1 1. WVVt VV V CLi. V ^ CUC'il Kj.y \ j , i  yj. i  \ j .y u. i 

9 fwl7a Main feedwater line break inside primary containment 0.9 0.10.10.10.9 

10 fwl8a Main feedwater line break outside primary containment 0.10.9 0.9 0.10.1 

11 iaOl Complete loss of instrumentation air 0.10.9 0.10.10.9 

12 icl4scra Spurious reactor trip 0.10.10.9 0.9 0.1 

13 mcOla Main circulating water pump trip 0.1 0.1 0.9 O.i 0.9 

14 

I 

mc04a 
mc04a_2 
mc04a 3 

~ 

Main condenser air inleakage 
- 100% severity 
- 60% severity 
- 30% severitv 

0.1 0.1 0.1 0.9 0.9 

1 i 

15 ms02 RCIC line break inside primary containment 0.9 0.9 0.9 0.1 0.1 
1 i  \J 

ms04a 
A _ 

ms04a_3 

rvnmQr-t; .I .ICZJL** J WV/AlkCiU.AilLAS/llk 

- 100% severity: i00% double ended shear 
- 60% severity; 60% double ended shear 
- 30% severity: 30% double ended shear 

1 0 A Q A 0 A ' 
j \j,y vj. i '*J.> yJ.l 

\ 

1 

i 

17 msl4-6 Loss of extraction steam 0.9 0.9 0.10.10.9 
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Table I. (continued) 

No Scenario 
Code 

Transient Description Output Code j 

18 
rdl3 
rdl3_2 

Loss of air pressure to control rod drive (CRD) 
hydraulic control units (HCU) 

- 100 % severity 
- 60 % severity 

0.9 0.1 0.9 0.9 0.1 

19 rpOStcOl Main turbine trip followed by reactor protection system 
circuit failure 

0.9 0.1 0.9 0.10.9 

20 I 1 Main turbine tnp followed by reactor protection system 
circuit failure together with failure of ARI (alternate 
rod insertion) 

A Q A i n i A Q A Q  w.i .  \ j . i  u .>  Kj.y 

21 rr05 Recirculation pump shaft seizure 0.10.9 0.9 0.9 0.1 

22 rrlO Recirculation pump speed feedback signal failure 0.1 0.9 0.10.9 0.9 

23 
rri5a 
rrl5a_3 

Recirculation loop rupture 
- 100% double ended shear (Design basis LOCA) 
- 30% double ended shear 

O.I 0.1 0.9 0.10.1 

24 
rr30 
rr30_2 
rr30_3 

Coolant leakage inside primary containment 
- 100% double ended shear 
- 60% double ended shear 
- 30% double ended shear 

0.1 0.9 0.1 0.1 0.1 

25 rxOl Fuel cladding (30%) failure 0.9 0.9 0.9 0.9 0.1 

j Nuniial G[jciauuii (berure iransicni unt;ci) j G.l G.l 0.1 G.I 0.1 j 



62 

advisor does not need to observe trends or temporal variation. Tne disadvantage of the single 

time step is that F loses the temporal information that may improve the accuracy of 

diagnosis. The data set for each transient is divided into two parts: one for a normal 

operating state, and the other for an abnormal transient state after a transient onset. The 97 

plant variables used in this example are tabulated in Table H. 

The 25 transient conditions plus the normal steady-state operating conditions constitute 

learning set L for advisor F. Learning set L contains 241 input-output patterns obtained by 

the procedures outlined by Bartlett and Uhrig (1992). Learning set L is chosen in an 

iterative manner. Each pattern at the beginning and end of the ten simulated transients is 

selected to form the learning set. This initial learning set containing the 50 input-output 

patterns is used to train the ANN advisor until a predetermined training error is obtained. 

The trained advisor is then recalled on all the patterns over the entire data of the 33 

transients. The patterns producing the worst recall errors are added to the learning set. The 

process of training, recalling and adding patterns is repeated until most of the undesirable, 

high recall errors disappear. However, some patterns showing high recall errors are not 

added in order to observe the response of the error estimation system to the patterns. Note 

that the number of patterns in L is only about 3% out of the 8,782 patterns in the entire data 

set Q for the 25 transients based on the simulated 33 scenarios. Learning set L includes 25 

initial normal conditions to account for the many normal operating modes of the plant. The 

remaining 216 input-output patterns correspond to abnorrnal conditions from ths 33 

scenarios. Advisor F is a backpropagation ANN (97-45-30-10-5) and is trained on L until a 

training root mean square (RIvIS) error of 0.05 is obtained. The particular three-hidden-iayer 

BTchiteciu^es used srnploysd 2.fter 2.t^enfptin^ severs.! different ^chilectures 

In this investigation, MBPC was used to create the partitions of L. Because L contains 

25 distinct transients, there are 25 classification groups, each one pertaining to a specific 

tranQipnt i p r = Mo tranci<=*nt omnn nnnfajnc q nUITlbe^ Cf tr2.in^n2 OS-ttemS ISJfiier r 

where r is 25. Thus, MBPC yields a total of 19 partitions, i.e., t = 19. Note that MBPC has 

significantly reduced the computational requirements as compared to that of CVPC where 

we would obtain t = 241. Kence, the process of training and testing ANN f was repeated 19 

times rather than 241 times. A new learning set L' was generated by employing EESA. An 
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Table II. The 97 plant variables used to trend the 25 transients used in the second example. 
Note that there are 33 scenarios and that the data was collected at intervals of one second for 
three to six minutes. The 97 variables are used as inputs to the ANN advisor F. 

*. T 
i>0. 

Variable 
designa
tion 

Description Fvlin. 
value 

Tvlax. 
value 

Unit 

1 A041 Local power range monitor 16-25 flux level B 0.0 125.0 % power 
2 A091 Source range monitor channel B 0.0 100.0 % 
3 BOOO Average power range monitor A Flux level 0.0 125.0 % power 
4 B012 Reactor total core flow 0.0 60.0 Mlb/hr 
5 B013 Reactor core pressure-differential 0.0 30.0 psid 
6 3014 Control rod drive system flow 0.0 0.025 Mlb/hr 
7 B015 Reactor feedwater loop A flow 0.0 4.0 Mlb/hr 
8 B016 Reactor feedwater loop B flow 0.0 4.0 Mlb/hr 
9 B017 Cleanup system flow 0.0 0.07691 Mlb/hr 

1 r> 
lU o022 Toial sicam flow A A 

L/.V 
O A 
o.u 

n A-iu 
iviiu/ 111 

11 B023 Cleanup system inlet temperature 0.0 755.0 Deg F 
12 B024 Cleanup system outlet temperature 0.0 600.0 DegF 
13 B026 Recirculation loop A1 drive flow 0.0 15.1 Mlb/hr 
14 B028 Recirculation loop B1 drive flow 0.0 15.1 Mlb/hr 
15 B030 Reactor feedwater channel A1 temperature 280.0 430.0 DegF 
16 B032 Reactor feedwater channel BI temperature 280.0 430.0 Deg F 
17 B034 Recirculation loop A1 inlet temperature 260.0 580.0 Deg F 
18 B036 Recirculation loop B1 inlet temperature 260.0 580.0 Deg F 
19 B038 Recirculation A wide range temperature 50.4 789.6 Deg F 
20 B039 Recirculation B wide range temperature 50.4 789.6 Deg F 
21 B061 Reactor coolant total jet pumps 1-8 flow B 0.0 36.7 Mlb/hr 
22 B062 Reactor coolant total jet pumps 9-16 flow A 0.0 36.7 Mlb/hr 

OKjyjD cuuimiL luuu uuuct dtccmi iiuw n. A A 
U.V 

A A 
Z..U 

U ifiu /u. 
IVllL// 111 

24 B064 Reaaor coolant total oudet steam flow B 0.0 2.0 Mlb/hr 
25 B065 Reactor coolant total outlet steam flow C 0.0 2.0 Mlb/hr 
26 B066 Reactor coolant total outlel steam flow D r\ r\ 

\J.\J 
^ A 
.̂\J Mlb/hr 

27 B079 Reactor recirculation pump A motor vibration 0.0 10.0 MILS 
ACt 3080 Reactor recirculaiion pump B motor vibration A A 

u.u 
t A 
lU.U 

•* trr o 
IVIIL-O 

29 B083 Control rod drive cooling-water differential pressure 0.0 500.0 dpsi 
30 B084 Control rod drive cooling-water differendai pressure 0.0 60.0 dpsi 
31 B085 Torus air temperature #1 0.0 500.0 Deg F 
32 B086 Torus air teinperaturc ^2 n f\ 

\J.\J 
T^or. C 

* 

5 GST • fvriic OtT* £1^ A Oa MO W • • ^ O.G 5GG.0 Deg ? 
34 B088 Torus air temperature #4 0.0 500.0 DegF 
35 B089 Dry well temperature aziinuth 0 elevation 750 0.0 COA A Jv/v.v DegF 
36 B090 Drywell temperature azimuth 245 elevation 750 0.0 500.0 DegF 
37 B091 Dryweli temperature azimuth 90 elevation 765 0.0 500.0 DegF 
38 B092 Drywell temperature azimuth 270 elevation 765 0.0 500.0 Deg F 
39 B093 Dryweli temperature azimuth 270 elevation 765 /̂  r\ u.u 500.0 Deg F 
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Table II. (continued) 

40 B094 Drywell temperature azimuth 180 elevation 780 0.0 500.0 Deg F 
41 B095 Drywell temperature azimuth 270 elevation 830 0.0 500.0 Deg F 
42 B096 Drywell temperature center elevation 750 0.0 500.0 Deg F 
43 B098 Torus water temperature 0.0 752.0 Deg F 

B099 Torus water temperature 0.0 752.0 Deg F 
45 B103 Drywell pressure 0.0 100.0 psia 
46 B104 Torus pressure 0.0 100.0 psia 
47 B105 Torus water level -10.0 10.0 inch 
48 B120 Torus radiation monitor A -1.0 100.0 % 
49 B121 Torus radiation monitor B -1.0 100.0 % 
50 B122 Reactor water level 158.0 218.0 inch 
51 xj > Lrt Reactor water level 158.0 inch 
52 B1257 Fuel zone level indication -153.0 218.0 inch 
53 B126 Reactor water level 158.0 458.0 inch 
54 B127 Reactor vessel pressure 0.0 1200.0 psig 
55 B128 Reactor vessel pressure 0.0 1200.0 PSig 

56 Bi29 Reactor vessel pressure 0.0 1500.0 psig 
57 B130 Reactor vessel pressure 0.0 1500.0 psig 
58 B137 Torus water level 1.5 16.0 ft 
59 B138 Torus water level 1.5 16.0 ft 
60 B150 Core spray A flow -1767.8 5000.0 gpm 
61 B15i Core spray B flow -1767.8 5000.0 gpm 
62 B160 Reactor core isolation cooling flow -62.5 500.0 gpm 
63 B161 High-pressure core injection flow -437.5 3500.0 gpm 
64 B162 Residual heat removal A flow -75.0 15000.0 gpm 
65 B163 Residual heat removal B flow -75.0 150.0 gpm 
66 B164 Drywell radiation monitor A -1.0 100.0 % 
67 B165 Drywell radiation monitor B 0.0 100.0 % 
68 B166 Post-treat activity 0.0 100.0 % 
hV K16S Prprr^:»pr prrtvirv n n 1 (¥1 a O-

70 B171 Analyzer A - O2 concentration -1.25 10.0 % 
71 B172 Analyzer A - concentration -1.25 10.0 % 
72 B173 Analyzer B - O2 concentration -1.25 10.0 % 
73 B174 Analyzer B - H2 concentration -1.25 10.0 % 
74 B180 Cleari-up system flow 0.0 200.0 gpm 
75 B196 Reactor water level-fuel zone A -153.0 218.0 inch 
76 B197 Reactor water level-fuel zone B -153.0 218.0 inch 
77 B247 Turbine steam bypass 0.0 500.0 DegF 
78 B248 Turbine steam bypass 0.0 500.0 Deg F 
79 iluvv 4160 V switch gear bus 1A1 A-B 0.0 5.25 KV 
80 F004 Condensate pump A & B discharge pressure 0.0 600.0 psig 
81 F005 Low-pressure condenser circulating 

water inlet temperature A 
0.0 200.0 DegF 

82 FOlO Kigh-pressure condenser circulating 0.0 200.0 Deg F 
water outlet temperature A 
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83 FOll Low-pressure condenser circulating 0.0 10.0 dpsi 
water pressure differential A 

84 F015 Circulating water pump A & B discharge pressure 0.0 100.0 psig 
85 F018 Cooling tower A discharge water temperature r\ u.u DegF 
86 F019 Cooling tower B discharge water temperature 0.0 752.0 DegF 
87 F040 lP-1 A reactor feed pump suction pressure 0.0 600.0 psig 
88 F041 IP-IB reactor feed pump suction pressure 0.0 600.0 psig 
89 F042 lP-1 A reactor feed pump discharge pressure 0.0 2000.0 psig 
90 F043 IP-IB reactor feed pump discharge pressure 0.0 2000.0 psig 
91 F044 Condensate total flow 0.0 8.0 Mlb/hr 
92 FWS Condensate makeup flow 1 n A 

-iU.U 
1 ruy r» Klb/H 

93 F046 Condensate rejection flow 0.0 50.0 Klb/H 
94 F094 Feedwater final pressure 0.0 2000.0 psig 
95 GOOl Generator gross watts 0.0 720.0 MWE 
96 T039 Low-pressure condenser pressure 0.0 30.0 inKg 
97 T040 High-pressure condenser pressure 0.0 30.0 inHg 
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ANN error predictor P was trained on L' by using backpropagation. The ANN error 

predictor P was chosen to have the architecture of 102-30-10-5. The advantages of EESA 

can be appreciated in that the input space dimension of P has increased only by 5 not 97. 

Advisor F provides its diagnosis u for an unknown symptom q E Q - L. Corresponding to 

u, the ANTS^ error predictor P estimates an error bound e on the diagnosis u. The resultant 

output of the fault-diagnostic system is u ± e. Thus, the diagnosis and its error estimation 

allow the control room personnel to validate the advisor's diagnosis by interpreting its upper 

and lower error bound. 

Tne results obtained from the NPP fault-diagnostic system F and P are shown in 

Figures 4 to 6 and Table in. The dot-dashed line in the figures represents the values of an 

output node of the fault-diagnostic advisor F. The solid lines above and below the 

dot-dashed line represent the upper- and the lower-error bound estimated by P. All 

combining five outputs with the error bounds provides reliability information on a diagnosis 

given by F at each instant of transient symptom presentation. Table HI summarizes the 

results of the fault-diagnostic system for all 33 scenarios. The fourth and fifth columns show 

transient onset time and the automatic reactor safety trip time, respectively. The sixth 

column displays the time when the fault-diagnostic system detects an abnormal condition in 

the plant status. The last column shows the time when a diagnosis is validated to be reliable. 

The fault-diagnostic system detects an abnormal status of the plant very promptly after 

the rhp rran^ipnTC oro 2. SilCrt psricd nttCr 

the transient has been detected because the plant input variables vary abruptly and 

dynamically and the relations among the input variables are not uniquely coupled for this 

period. After this inconclusive period passes, the fluctuations in the system outputs 

disappear and are followed by the unassured period during which time the error bounds on 

the diagnoses are large. This unassured period continues momentarily, and then the 

esumated error bounds become small. Hence, atter the unassured period, the diagnoses are 

validated. For example. Figure 4 of the recirculation loop rupture at 100% severity (rrl5a) 

shows the inconclusive period from 6 seconds to 18 seconds for which the outputs are 

indefinite, i.e., the values of fifth node are between 0.3 and 0.7. The inconclusive period is 

followed by the unassured period from 19 seconds 47 seconds for which error bounds are 
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Recirculation Loop A Rupture (rr15a) 

= advisor output 
= error bound 
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Figure 4. Diagnosis with the estimated error bour.ds for the recirculation loop rapture 
(rrlSa) transient. 
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Reactor Feedwater Pump Trip due to Spurious Trip Signal (fw09a) 

;or outpi 
bound 

= advisor output 
= error I 
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due to spurious trip signal (fw09a) transient. 
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Fuel Cladding failure (rxOI) 
= advisor output 
= error 
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figure 6. Diagnosis witii estimated error bounds for the fuei cladding failure 
(rxO^^ 
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Table III. Summary of the results of the fault-diagnostic system, the advisor F and the ANN 
error predictor P. 

No Scenario 
Code 

Transient Description 
Onset 
time 
(sec) 

Safety 
trip 
time 
(sec) 

Time of 
detecting 
abnormal 

plant 
status 

Time of 
providing 
assured 

diagnosis 

1 ad05 Spurious automatic 
depressurization system actuation 

10 13 10 49 

2 culO Reactor water clean-up coolant 
leakage 

5 no trip 24 24 

3 culOgp5 Reactor water clean-up coolant 
leakage with failure of Group 5 
isolation valves 

6 51 7 48 

4 fw02a Main condensate pump trip 6 504 10 28 

5 fw08-6 Feedback heater tube leak 10 33 10 35 

6 fw09a Reactor feedwater pump trip 5 no trip 6 17 

7 fwl2c0 Feedwater regulator valve 
controller stuck closed 

5 16 7 47 

8 fwl2cl Feedwater regulator valve 
controller stuck open 

5 96 17 63 

9 fwl7a Main feedwater line break inside 
primary containment 

10 12 10 82 

1 M'I fw 1 TvTajn feeuwaicr line oieak Ouusicle 
primary containment 

/ 
1 /' 1 O *7 

/ 
O 1 J? 1 1 

I I laVJ I •'^OO * r» c 
±.\JOO XilOkX 

air 

P. 
X V./ 

r - . t r n r \  23 37 

12 icl4scra Spurious reactor trip 5 7 6 64 

13 mcOla Main circulating water pump trip /" o 281 •• ri lU r r / i 

1/1 

! 1 
mc04a_2 
mc04a_3 

Main condenser air inleakage 
_ 1 QQ<^ 

- 60% severity 
- 30% seventy 

in 
10 
1 n lU 

4fi 

i 57 
1 69 

17 
21 
21 

44 
55 
63 

1 
1 

ms02 RCIC line break inside primary 
containment 

5 1 9 
I 

5 34 
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Table III. (continued) 

No Scenario 
Code 

Transient Description 
Onset 
time 
(sec) 

Safety 
trip 
time 
(sec) 

Time of 
detecting 
abnormal 

piant 
status 

Time of 
obtaining 
assured 

• 1 Diagnosis 

16 

ms04a 
nis04a_2 
ms04a_3 

Main steam line rupture outside 
primary containment 

- 100% double ended shear 
- 60% double ended shear 
- 30% double ended shear 

5 
5 
5 

8 
8 
8 

6 
5 
5 

26 
23 
24 

17 msl4-6 Loss of extraction steam to 
feedwater heaters 

10 no trip 20 unassured 

1 O lO 

rdl3 
rdl3_2 

T Ui o-ju Lu wuiiuui luu 
drive hydraulic control units 

- 100 % severity 
- 60 % severity 

10 
10 

12 
14 

12 
14 

33 
89 

19 rp05tc01 Main turbine trip followed by 
reactor protection system circuit 
failure 

6 27 7 57 

20 rpOSacl Main turbine trip followed by 
reactor protection system failure of 
alternative rod insertion 

6 49 8 63 

1 rrDS 1 Kenimiiatinn niimn <;haft seiyiirp. 10 
" 

1 no tnn I - L- 12 
' 

»-> rv zy 1 1 
22 rrlO Recirculation pump speed 

feedback sianal failure 
5 

1 
j no trip 
1 

17 unassured j 

1 

23 
rri5a 
iTl5a_3 

Recirculation loop rupture 
- 100% severity (LOCA) 
- 30% severity 

5 
5 

8 
7 

6 
6 

48 

62 

24 

ITju 
rr3Q 2 
rr30l3 

Coolant leakage inside primary 
contairimcnt 

- Severity 
- 60% severity 
- 30% seventy 

I 
1 
1 

5 j 24 

1 
5 1 65 

i 23 

1 
1 01 
1 

! . 
j 31 
1 I f ,  
1 

65 

25 
t 

rxOl Fuel cladding (30%) failure 10 no trip 
t 

12 
1 

unassured 
! 
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large, i.e., £• > 0.15 for all i, but the diagnosis is correct. After 48 seconds, the 

error-measured outputs indicate that the abnormal condition detected is assured to be the 

indicated transient since the error bound is small. In some cases, for example in Figure 5 of 

the transient fw09a, the outputs are validated immediately after the inconclusive period, 

without passing through the unassured period. 

An additional advantage of EESA can be seen in transients msl4-6, rrlO, and rxOl 

listed in Table EI. For example. Figure 6 shows that the estimated error bounds except for 

the second node are too large to validate the diagnoses for the transient condition period 

after the normal operation period. As discussed in the case of the sine function mapping, the 

high error bounds mean that advisor F was not able to distinguish this particular transient 

from other transients for sure. This explanation is confirmed by the fact that the numbers of 

the training patterns pertaining to the transients msl4-6, rrlO, and rxOl in L are only 4, 3, 

and 3 patterns, respectively. In other words, the advisor was not trained on sufficient data to 

have the necessary confidence in its diagnosis. Note that a typical recall root mean square 

(RMS) error cannot provide this information. 
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5. CONCLUSIONS 

This paper presents <1 .lew error-bound prediction scheme called EESA that provides 

error bounds on the output obtained from an ANN in order to validate the ANN output. The 

experimental results discussed demonstrate that EESA provides useful error estimations that 

can be used to validate the outputs from ANN models. Our BESA scheme can be applied to 

a wide variety of applications. In addition, high error bounds estimated by EESA indicate 

that the ANN system needs more training data. 
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ABSTRACT 

This paper presents a new error estimation scheme called error estimation by series 

association (EESA) for the reliability assessment of nuclear power plant (NPP) 

fault-diagnostics using artificial neural networks (.ANNs). The EESA scheme provides 

estimated errors on the diagnosis obtained from an ANN NPP fault-diagnostic advisor in 

order to help validate its diagnosis. The data used in this work contains 25 simulated 

transients for the Duane Arnold Energy Center nuclear power station ranging from a main 

steam line break to an anticipated transient without scram (ATWS) condition. The results of 

the EESA implementation of the data demonstrate its capability to help validate and verify 

the fault-diagnostic advisor. EESA can also help to reduce the computational difficulties of 

the error estimation procedure. This work has shown that the fault diagnostic advisor 

developed by using ANNs with EESA is effective at providing proper diagnoses with 

predicted errors for all 25 transients analyzed at various severity levels even when the 

transients are degraded by noise. 
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1. INTRODUCTION 

Artificial neural networks (ANNs) are being developed to monitor and control nuclear 

power plant (NPP) systems. ANN applications to NPP systems have been investigated in 

such areas as sensor validation [1], plant component monitoring [2-4], reactor parameter 

prediction [5-7], system control [8], and fault-diagnostics [9-12]. In these applications, 

however, the output of the ANNs used is implicitly assumed to be reliable. This assumption 

may be inappropriate for the output produced by an ANN presented with novel input data. 

Moreover, validation and verification of A.NN outputs is crucial when the appropriate 

performance of the ANN is required for the safe operation of the plant. For example, the 

diagnosis provided by an ANN fault-diagnostic advisor must be assured because a faulty 

diagnosis could mislead plant personnel into taking incorrect or inappropriate corrective 

actions. 

Kim, Aljundi and Bartlett [13,14] and Kim and Bartlett [15] have addressed validation 

and verification of the diagnoses obtained from an ANN NPP fault-diagnostic advisor by 

estimating error bounds on the diagnoses. The error-bound estimation discussed in cur 

earlier papers applied a stacking procedure that originates from cross validation in 

nonparametric statistics [16-19]. Wolpert [20] conceptualized the stacked generalization 

technique in order to improve the accuracy of ANN generalization. Tne stacking procedure 

provides error mfoiiiiutioii bv rcMcatcdiv oji ou unicicni sudsc'ls oi inc 

available training data and then testing it on the remainder of the data. The error information 

obtained by tabulating the responses of the ANN to the novel data constitutes new 

informatiow, arid this nevv information is uscu to train anoiner AINN. ihis AININ, caiied the 

error predictor network, estimates the errors on the .ANN advisor that is trained on Lhs 

entirety of the training data. These estimated errors are then used to provide reliability 

inforrTiu-LiOii clboUi. ihc iauiL~ui5.^!i05'-i'J S 

There are, however, difficulties in the implementation of the stacking procedure to NT? 

fault-diagnostics [21], First, the computational complexity of the stacking procedure 

increases with the number of partitions in the leaming set Minim^Ting the number of 

partitions is therefore an important part of applying the stacking procedure. Kim and 
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Bartlett [15] have developed a modified bootstrap partition criterion (MBPC) and a 

bootstrap partition criterion (BPC) that reduce the computational complexity of the 

procedure by reducing the number of partitions. These criteria have advantages over the 

cross validation partition criterion (CVPC) [20]. Second, the dimension of the input space 

of the ANN error predictor is doubled in comparison to that of the ANN advisor. The reason 

is that the stacking procedure of Wolpert requires an additional input vector, which is of the 

same dimension as the input space of the advisor. The doubling of the input dimension may 

cause considerable training difficulties when the number of the input variables of a system is 

large [22,23]. We have developed a new stacking procedure called error estimation by 

series association (EESA) that reduces the input dimensionality of the ANN error predictor. 

EESA is performed by feeding the output of the ANN advisor into the ANN error predictor. 

In this oaoer. an NPP fault-diasnostic svstem that nrovides error-measured diagnoses for • ^ w ^ & o 

novel symptoms is developed by implementing EESA. Data used for this research were 

collected at Duane Arnold Energy Center (DAEC) training simulator [24]. 

In addition, we investigate the noise tolerance of our ANN advisor and error prediction 

system. Noise or corrupted signals can originate from many sources in an NPP. We show 

that this degraded data can be fed directly into the fault-diagnostic system. The degraded 

inforraation causes the fault-diagnostic system to deviate only slightly from its desired 

behavior. In this paper, various forms of artificially generated noise are used for the 

4~\̂  f r / % 1  
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2. THE NUCLEAR POWER PLANT FAULT-DUGNOSTIC ADVISOR 

Artificial neural networks are computer algorithms that are motivated by biological 

neural systems. ANNs consist of highly interconnected processing elements called neurons 

or nodes that produce output signals on the basis of weighted sums of the input signals they 

receive [25,26]. Figure 1 shows a typical ANN that has three layers of neurons: the input 

layer, the hidden layer, and the output layer. Input signals can originate from other neurons 

or inputs. Output signals either become the input signals for other neurons or the ANN 

output. During trainLng, an AJW is presented with k examples from a leamLig or training set 

called L of known input-output patterns, {(xj, yj) j yj =/(Xj); 1 ^ j ̂  k}. Here/is the 

desired function to be modeled by the ANN. Each of these input-output patterns consists of 

m inouts and n outouts. i.e.- x- G and v. £ Whpn nne innnt S"C^ as -X- is 
1 '  1 ' ' •'1 -  - - - -  — - J ,  ^ J  

presented to the ANN via the input layer, the input pattern is fed through the neurons in the 

hidden and output layers to generate a corresponding output pattern yj', which is the ANN 

estimate of y^. The weighted sum of the neuron's inputs is processed through a transfer 
J 

function to produce an output signal. This general activation process m a neuron is also 

represented in Figure 1. The ANN is trained by repetitious presentation of the training set L 

and adjustment of the intemeural connection weights so that the output signal yj' converges 

to yj [27]. These intemeural weights are represented by the lines connecting the neurons in 

Fi£ur£ i. AithouKM there arc manv rnctuods foi Outaji'iina convergence. backnri)nayaiuin 

[25,27], which is relatively simple, straightforward, and very useful, is employed in this 

paper. 

ANi>s are mathematical generalizers since Ihey infer parent functions from sets of data 

[28-30]. Many other generalizers, such as rr.emor>'-based reasoning schemes [31] and 

regularization theory [32], provide good results if the processes they model are well 

behaved. i-Adny physical systems are noi so well behaved because of their 

inherent nonlinearity. For example, NFP transient diagnosis is not easily accomplished with 

standard analytical methods. Recent work, however, has demonstrated that nonlinear 

modeling can be easily accomplished by ANNs [33-37]. The nonlinear abilities of AJWs 

offer a promising new approach to solving the NPP transient diagnostic problem [9,38,39]. 
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3. ERROR ESTIMATION BY SERIES ASSOCIATION 

FOR NPP FAULT DIAGNOSIS 

3.1. NPP Fault-Diagnostic Model Using ANNs 

As a preliminary to our discussion of EESA, we define the following concepts. Let Q 

be the set of all NPP transients and normal symptoms and conditions to be identified by the 

fault-diagnostic advisor; Q ={q,u}, where q is a symptom of the plant condition and u is the 

correct diagnosis for the condition. An estimate Q of the diagnosis u is provided by the 

advisor using an ANN called F. A symptom q is an input vector in R™ where m is the 

dimension of the input space or the number of monitored plant variables. An estimated 

diagnosis u is an output vector in R'^ where n is the dimension of the output space of the 

advisor. Tne fault-diagnostic advisor F is trained on a subset of Q; L C Q where L is 

chosen to be the learning set for F. Let L = {(xj, yj) 1 1 < j < k} where yj is a known correct 

output corresponding to an input Xj. The learning set L consists of k patterns of input-output 

vectors, Xj e R"^ and yj E R". When presented with a novel transient symptom 

q e Q - L, the advisor F provides a diagnosis u for the symptom. Our goal is to estimate the 

error associated with the novel diagnosis u obtained from F in order to measure its 

reliability. An error bound £ associated with u is provided by another ANN called the error 

OrcuiCiOr nciwork r Iraineo on opnprnTP« rnp npw ip^IMINO cpt T ' fnr T'ne. AFVPRVI 

error predictor P. Designing the system F and P for an NPP diagnostic advisor is discussed 

in Section 4. The resultant output from the fault-diagnostic system is an output u plus or 

minus some predicted error, u ± e, for a novel plant symptom q. 

3.2. Modified Bootstrap Partition Criterion (MBPC) 

Tne generation of the new learning set L' for P involves a stacking procedure that 

requires the learning set L be partitioned according to some partition criterion. For each 

partition i, L is divided into two disjoint subsets L;, and L--^. An ANN, designated as f, that 

has the same architecture as F is trained on the subset L;, and then is tested on the subset 
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L^2- performance of f is measured in teniis of the deviation, e = | g - y |, between the 

actual and desired output where g is the output of f and y is the desired output for the input x 

in Lj2- The performance data set {e} contains new information about the relation between 

the untrained inputs and a generalized response of ANN f to those inputs. Wolpert [20] also 

appends the difference vector x' from x to its nearest neighbor in L-^ to become additional 

input to the ANN error predictor P. For each partition, the performance data {(x,x'), £} 

constitute a new learning set L' that is used to train the ANN error predictor P. Difficulties 

caused by adding the difference vector, x' E R™, are resolved by us by employing EES A 

which adds the output vector u of the advisor F, u = F(x) E. R". The details of the 

discussion are given in Section 3.3. 

Several different partition criteria can be used to generate L; ̂  and Lp. These include 

the cross validation partition criterion (CVPC) [20], the bootstrap partition criterion (BPC) 

[15] and the modified bootstrap partition criterion (MBPC) [15]. In this paper, MBPC is 

applied to the NPP fault diagnostics to demonstrate the advantages of creating the partitions 

over the other criteria. Our MBPC reduces the computational requirements of the original 

stacking procedure without any trade off in the accuracy of the error estimation. For 

example, CVPC requires that the total number of partitions t is equal to the number of 

training patterns k in the learning set L. The computational burden of the process of training 

and testing ANT^ f increases with k since the process must be repeated k times in order to 

dcvcloD the iCarnins set L. . Vy'hcn k is larse. which is lyoical orNFF aooncaiions. I'ne 

computational difficulty therefore increases dramatically. The total number of partitions t 

can be reduced by employing BPC, which reduces the number of partitions by selecting 

multiple elernenis for L-2 ralher than one at a time as in CVPC. However, BPC may provide 

varying results since the multiple elements are randomly chosen. If L contains sufficient 

training data, this is not a problem. However, a sufficient training set may not always be 

available ir- every ciigiiiccnrig <ipplic"dii'or.. 

MBPC is a new extension of BPC where the Lj2 elements are chosen systematically 

rather than randomly. In our fault-diagnostic problem, an operational transient is equivalent 

to a set of patterns represented by m plant variables in an m-dimensional feature space over 

time. This transient can be represented by distinct patterns in the subspace of the transient. 



89 

Moreover, a set of the patterns pertaining to the particular transient is also distinguished 

from other sets pertaining to other transients in each different subspace. The distinctness of 

patterns in each feature subspace forms a basis for classifying transients in the NPP 

diagnosis. Therefore, the learning set L consists of r separate groups pertaining to the r 

different transients. These r groups differ from each other such that the r patterns for Lj2 can 

be selected from each transient group at the same time. This simultaneous selection can 

minimize the loss of information as well as the computational time required to estimate the 

errors. 

MB PC requires two constraints. First, L-2 must be a set of r single patterns chosen from 

each transient group. In other words, for partition /, L^-2 = {(x^, yp | 1 < / < r} where each 

pattern is randomly chosen from each group with the conditions n L^2 ~ 0 

m ̂  n and U Hence, the nunriber of lotal pardtions t can be reduccu lo t ~ k;'r. 

Second, if the number of training patterns in a specific transient group is larger than r, a 

second constraint is imposed as follows. For a partition, a maximum of two patterns can be 

selected from the particular transient group whose number of training patterns is larger than 

r. The imposition of the second constraint may prevent a further increase in the size of the 

partition number. Another option for the second constraint is to apply CVPC to the excess 

patterns remaining after fulfilling the first constraint. This partial CVPC application can 

eliminate a potential disadvantage of the selection of two patterns with a trade in the slight 

incrcasc c^ vi*c iiumuwi wx vwvcn uaiLiuiOnS. xii ums papci, ivior'v^ is uscci lur me 

fault-diagnostic problem to demonstrate its advantages in creating partitions. MBPC can be 

applied to a learning set of any physical system that possesses the distinctness of grouped 

patterns in the feature space of the system. 

3.3. Error Estimation by Series Association (EESA.) 

V/e have developed a new stacking procedure called EESA in order to resoive some of 

the difficulties that occur when employing the original stacking procedure of Wolpert. The 

first difficulty comes fronn. the requirement that the additional input vector x' must be 

appended to the input vector x in order to make L'. In other words, L' requires each input 
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pattern to be comprised of a pair (x, x') where x is an input pattern in the subset Lj2 and x' is 

a difference vector from the input x to its nearest pattern in the subset Lj^. Therefore, the 

dimension of the input space L' is doubled to m + m, thus, (x,x') E where m is the 

dimension of the input space L. This expansion of the input dimension of L' may cause 

difficulties when developing P. These difficulties include the escalation of the training 

requirements for P as the number of inputs increase [22,23]. For example, in the NPP 

fault-diagnostic problem we described herein, the dimension of the input space L' will be 

97 + 97 = 194 since we have m = 97 plant variables in L. When m is large, training P with 

2m input nodes can be very difficult. 

In addition to the doubling of the input dimension, a second problem arises due to the 

questionable appropriateness of adding the difference vector x' to the input of F. The 

usefulness of the difference vector is based on the assumotion that the error in F is stronglv 

related to the difference vector from a given novel input to its nearest neighbor in L [20]. 

This assumption can be easily shown to be baseless as follows. Let a novel pattern q be very 

close to a training pattern x. A nearest neighbor computed in L;, for the training pattern x 

from L-2 might differ from a nearest neighbor computed in L for the novel pattern q. Hence, 

the difference vector computed in L-j for x can be substantially different from the difference 

vector for q despite the fact that it is very close to x. This inconsistency in the difference 

vector measurements may cause P to estimate the error bounds inaccurately. These 

inaccuracies are likely tc be larger v.'her. multiple elements arc chcscn for L;o as in BPC or 

MBPC. These aforementioned difficulties can be solved by implementing EESA as we will 

discuss below. 

Error estimation by series association (EESA) is pcrfonned by feeding the output from 

the advisor F into the ANN error predictor P. This is done in place of using the input 

difference vector. The connection of the output of F to P by EESA allows the performances 

f Th /At•••a/-**-!^ f •v\^ ^ .n,» ^ ^ M  TTQ A 
 ̂ VV/ UV/ ̂  U. Ut J* t LI tl 1 . 1  ̂ 1!1C 5L1 Ui . 

The trje errors in the outputs of F are caused not only by how much a given novel input 

differs from training data in L but also by how well F is trained. The stacking procedure of 

Wolpert cannot provide such information since the estimated error in this case is not 

dependent upon the output of F, i.e., it is only dependent on the input to F. On the other 
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hand, EESA can address these issues since a novel input and its corresponding output from 

F are fed into P. In addition to the aforementioned advantages, EESA reduces the input 

space dimension of P to m + n. This is much smaller than m + m since the number of inputs 

is typically much greater than the number of outputs. The reduction in the input 

dimensionality of P reduces the training requirements considerably. 

The following is the algorithm of EESA: 

1. Create a partition i of the learning set L such that 

L;2 = {(x/,y/)! 1 < / < r, X, =(x,j, x, J E and 

y/=(y/i'y/2'-'W } where r is the number of patterns for Lj2 

according to the chosen partition criterion, and L., - L - L.,. Note that the 

ANN F is trained on the entirety of L. 

2. Train ANN f having the same architecture of F on L^. 

3. Compute the deviations {e^}-, where e^ = (e^^, e^2'—' 2/^)' for the 

partition i by testing ANN f on the input patterns in L-2. Note that 

E/y = I f(x;)y - yij I where j=l to n. 

4. Compute the output for F for the input pattern x^, which is 

= F(xp E R". 

5. Save (x^, up ER"^''""and E r", as new data patterns of the new 

ICiOT-ntnrT 1 

6. Repeat steps 2 through 5 for each of the partitions of L. 

7. Train P on L' = { ((x^, u^), e^) I 1 < v < k} where k is the total number 

of the leaming set L. 
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4. METHOD OF SOLUTIONS 

4.1. Data Description 

In this paper EES A is appiied to an NPP transient diagnostics problem. The data was 

obtained from the Duane Arnold Energy Center (D AEC) training simulator, owned by Iowa 

Electric Light and Power Company [24]. DAEC is a boiling water reactor (BWR) plant that 

provides 540 MWe. The simulated data contains no noise. 

A total of 25 distinct transients were simulated for this work. Some of the transients 

were collected at different severities so that the NPP fault-diagnostic advisor F can be 

designed to diagnose the transients independent of their severities. Because the simulations 

were performed at various severities, the transients collected include a total of 33 different 

scenarios, these scenarios are listed in Table I. The data include, for example, the transient 

"ms04a", main steam line rupture outside primary containment. This transient was simulated 

at three different severities, 100%, 60%, and 30%. The severity of this transient specifies 

the size of the sheared portion of the main steam line at the turbine inlet header. 

Each data pattern used in developing the ANN NPP diagnostic advisor contains an 

input vector of 97 plant variables. These vectors were collected at intervals of one second for 

a period of three to ten minutes. Note that this time snap shot, or single time slice, of data 

does not include temporal infcrmaticn. The n:iain advantage of the single time step approach 

is simplicity of training and execution irrespective of the temporal trends of a transient. The 

advisor F can therefore diagnose transients at the very instant a plant operational symptom, is 

presented to it because F dees not need to observe trends or temporal variaiion. Tne 

disadvantage of the single time step is that F loses temporal ir.formation that may improve 

the diagnose accuracy. This temporal information however was not needed for our work. 

The 97 plant variables used are tabulated in Table IL The data for each lia;:sic;;L is divided 

into two parts; The first part is the normal operating data, followed by the second part for the 

abnormal transient state after the transient onset. 

The 25 transient conditions including the normal steady-state operating conditions and 

their associated outputs constitute the learning set L for advisor F. This learning set L 
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Table I. List of the 25 transients with the scenario codes and designated output codes. 

No Scenario 
Code 

Transient Description Output 
Code 

1 ad05 Spurious automatic depressurization system actuation n  o  n  1  n  1  n  1  n  1  w. X v,;. X v^. 1 w. 1 1 

2 culO Reactor v/ater clean-up coolant leakage 0.10.10.10.9 0.1 

3 cul0gp5 Reactor water clean-up coolant leakage with failure of 
Group 5 isolation valves 

0.1 0.1 0.9 0.9 0.9 

4 fw02a Main condensate pump A trip 0.1 0.9 0.9 0.10.9 

5 fw08-6 Feedback heater tube leak 0  1 0  1 0  1 0  1 0  9 

6 fw09a Reactor feedwater pump trip due to spurious trip signal 0.9 0.9 0.1 0.10.1 

7 fwl2c0 Feedwater regulator valve controller stuck closed 0.9 0.1 0.9 0.10.1 

8 fwl2cl Feedwater regulator valve controller stuck open n  o  n  1  A  1  n  o  n  1  
W. . A KJ. i. V/.-/ \J' A 

9 fwl7a Main feedwater line break inside primary containment 0.9 0.10.10.10.9 

10 fwl8a Main feedwater line break outside primary containment 0.1 0.9 0.9 0.10.1 

11 iaOl Complete loss of instrumentation air from air receiver 0.10.9 0.10.10.9 

12 icl4scra Spurious reactor trip without operator action O.I 0.1 0.9 0.9 0.1 

13 mcOla Main circulating water pump trip 0.10.10.9 0.10.9 

14 
mc04a 
mc04a_2 
mc04a_3 

Main condenser air inleakage 
- 100% severity 
- 60% severity 
- 30% severity 

0.1 0.1 0.1 0.9 0.9 

1  

15 ms02 RCIC iine break inside primary containment 0.9 0.9 0.9 0.1 0.1 

16 
^ Cr\Ar^ iiiSu^a 
r-r-i 
* * i O  

ms04a_3 

Main steam line (MSL) rupture outside primary 
containment 

1 aac7 1 aa/tt j 1-j - ± K j K j  /C ^Cvctit^, L V f u '/o uuuuic ciiucu c)iicar 
- 60% severity: 60% double ended shear 
- 30% severity: 30% double ended shear 

A  Q  A  Q  A  1  A  Q A  1  

17 msl4-6 Loss of extraction steam to feedwater heaters 
i  

n o n o n i n i n o  
N_/. X yj.t. 
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Table L (continued) 

No Scenario 
Code 

Transient Description Output Code 

18 
rdl3 
rdl3_2 

Loss of air pressure lo control rod drive (CRD) 
hydraulic control units (HCU) 

-100 % severity 
- 60 % severity 

r\ c\ r\ r\ r\ \j.y u. 1 \j.y u.y u.i 

19 rpOStcOl Main turbine trip followed by reactor protection system 
circuit failure 

0.9 0.1 0.9 0.1 0.9 

r\ zu rp05actl Main turbine trip followed by reactor protection system 
circuit failure together with failure of ARI (alternate 
rod insertion) 

0.9 0.1 0.1 0.9 0.9 

21 rr05 Recirculation punap shaft seizure 0.1 0.9 0.9 0.9 0.1 

22 rrlO Recirculation pump speed feedback signal failure 
caused by speed circuit control failure 

0.1 0.9 0.1 0.9 0.9 

23 
rrlSa 
rrl5a_3 

Recirculation loop A rupture 
- 100% double ended shear (Design basis LOCA) 
- 30% double ended shear 

0.1 0.1 0.9 0.1 0.1 

24 
1x30 
rr30_2 
rr30_3 

Coolant leakage inside primary containment 
- 100% double ended shear 
- 60% double ended shear 
- 30% double ended shear 

0.1 0.9 0.1 0.1 0.1 

25 ] rxOl Fuel cladding (30%) failure 0.9 0.9 0.9 0.9 0.1 1 
Normal Operation (before transient onset) 1 0.1 0.1 0.1 0.1 0.1 
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Table II. The 97 plant variables used to trend the 25 transients used in the second example. 
Note that there are 33 scenarios and that the data was collected at intervals of one second for 
three to six niinutes. The 97 variables are used as inputs to the ANN advisor F. 

No 
Variable 
I^pcicrno-

don 
ITAJll* 

value 
jVlsx. 
value 

«J1UI 

1 A041 Local power range monitor 16-25 flux level B 0.0 125.0 % power 
2 A091 Source range monitor cliannel B 0.0 100.0 % 
3 BOOO Average power range monitor A Flux level 0.0 125.0 % power 
4 B012 Reactor total core flow 0.0 60.0 Mlb/hr 
5 B013 Reactor core pressure-differential 0.0 30.0 psid 
A 3014 Control rod drive system flow r» r\ KJ.\J 0.025 ivlib/hr 
1 B015 Reactor feedwater loop A flow 0.0 4.0 Mlb/hr 
8 B016 Reactor feedwater loop B flow 0.0 4.0 Mlb/hr 
9 B017 Cleanup system flow 0.0 0.07691 Mlb/hr 
10 B022 Total steam flow 0.0 8.0 Mlb/hr 
11 B023 Cleanup system iniet temperature 0.0 755.0 Deg F 
12 B024 Cleanup system outlet temperature 0.0 600.0 DegF 
13 B026 Recirculation loop A1 drive flow 0.0 15.1 Mlb/hr 
14 B028 Recirculation loop B1 drive flow 0.0 15.1 Mlb/hr 
15 B030 Reactor feedwater channel A1 temperature 280.0 430.0 DegF 
16 B032 Reactor feedwater channel BI temperature 280.0 430.0 Deg F 
17 B034 Recirculation loop A1 inlet temperature 260.0 580.0 Deg F 
18 B036 Recirculation loop B1 inlet temperature 260.0 580.0 Deg F 
19 B038 Recirculation A wide range temperature 50.4 789.6 Deg F 
20 B039 Recirculation B wide range temperature 50.4 789.6 Deg F 
21 B061 Reactor coolant total jet pumps 1-8 flow B 0.0 36.7 Mlb/hr 
22 B062 Reactor coolant total jet pumps 9-16 flow A 0.0 36.7 Mlb/hr 
23 B063 Reactor coolant total outlet steam flow A. 0.0 2.0 Mlb/hr 
24 B064 Reacior cooiant lotai oinier sream flow K n n 2.0 
25 B065 Reactor coolant total outlet steam flow C 0.0 2.0 Mlb/hr 
26 B066 Reactor coolant total outlet steam flow D 0.0 2.0 Mlb/hr 
11 B079 Reactor recirculation pump A motor vibration 0.0 10.0 MILS 
28 B080 Reactor recirculation pump B motor vibration 0.0 10.0 MILS 
29 B083 Control rod drive cooiing-water differential pressure 0.0 500.0 dpsi 
30 B084 Control rod drive cooling-water differential pressure 0.0 60.0 dpsi 
31 B085 Torus air temperature #1 0.0 500.0 Deg F 
32 B086 Torus air temperature #2 0.0 500.0 Deg F 

1 J:? r>u6/ Torus air temperature #3 0.0 500.0 Deg F 
i 34 BOSS i cnis 3-ir temperature tt-T r\ r\ \J.KJ CAA r\ 5uu.u Deg F 
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Table II. (continued) 

No 
Variable 
Designa

tion 
Description Min. 

value 
Max. 
value 

Unit 

35 B089 Drywell temperature azimuth 0 elevation 750 0.0 500.0 Deg F 
36 B090 E>rywell temperature azimuth 245 elevation 750 0.0 500.0 Deg F 
37 B091 Drywell temperature azimuth 90 elevation 765 0.0 500.0 DegF 
38 B092 Drywell temperature azimuth 270 elevation 765 0.0 500.0 DegF 
39 B093 Drywell temperature azimuth 270 elevation 765 0.0 500.0 DegF 
40 B094 Drywell temperature azimuth 180 elevation 780 0.0 500.0 DegF 
41 B095 Drywell temperature azimuth 270 elevation 830 0.0 500.0 Deg F 
42 B096 Drywell temperature center elevation 750 0.0 500.0 DegF 
43 B098 Torus 'water tcnxperature 0.0 752.0 DegF 
44 B099 Torus water temperature 0.0 752.0 Deg F 
45 B103 Drywell pressure 0.0 100.0 psia 
46 B104 Torjs pressure 0.0 100.0 psia 
47 B105 Torus water level -10.0 10.0 inch 
48 B120 Torus radiation monitor A -1.0 100.0 % 
49 B121 Torus radiation monitor B -1.0 100.0 % 
50 B122 Reactor water level 158.0 218.0 inch 
51 B124 Reactor water level 158.0 218.0 inch 
52 B1257 Fuel zone level indication -153.0 218.0 inch 
53 B126 Reactor water level 158.0 458.0 inch 
54 B127 Reactor vessel pressure 0.0 1200.0 Psig 
55 B128 Reactor vessel pressure 0.0 1200.0 psig 
56 B129 Reactor vessel pressure 0.0 1500.0 psig 
57 B130 Reactor vessel pressure 0.0 1500.0 psig 
58 B137 Torus water level 1.5 16.0 ft 
59 B138 Torus water level 1.5 16.0 ft 
60 B150 Core spray A flow 1767.8 5000.0 gpm 

1 D1 B151 Core spray B now •17(^7 « fi;rkArk r* 

62 B160 Reactor core isolation cooling flow -62.5 500.0 gpm 
63 B161 High-pressure core injection flow -437.5 3500.0 gpm 
64 B162 Residual heat removal A flow -75.0 15000.0 gpm 
65 B163 Residual heat removal B flow -75.0 150.0 gpm 
66 Bi6^i Drywell radiation monitor A -1.0 100.0 % 

67 B165 Drywell radiation monitor B 0.0 100.0 % 
68 B166 Post-treat activity 0.0 100.0 % 
69 B168 Pretreat activity 0.0 100.0 % 
nr 
/ V ,  B171 Analyzer A - Oj concentration -1.25 10.0 % 
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Table II. (continued) 

Variable 
No Designa Description Min. Max. Unit 

tion value value 

71 B172 Analyzer A - H2 concentration -1.25 lO.O % 
72 Bi73 Analyzer B - O2 concentration -1.25 10.0 % 
73 B174 Analyzer B - H-7 concentration -1.25 10.0 % 
74 B180 Clean-up system flow 0.0 200.0 gpm 
75 B196 Reactor water level-fuel zone A 153.0 218.0 inch 
76 B197 Reactor water level-fiiel zone B 153.0 218.0 inch 
77 B247 Turbine steam bypass 0.0 500.0 Deg F 
78 B248 Turbine steam bypass 0.0 500.0 Deg F 
79 nVAAJ 4160 V switch gear bus lAl A-B 0.0 5.25 KV 
80 F004 Condensate pump A & B discharge pressure 0.0 600.0 Psig 
81 F005 Low-pressure condenser circulating 0.0 200.0 Deg F 

water inlet temperature A 
82 FOlO High-pressure condenser circulating 0.0 200.0 DegF 

water outlet temperature A 
83 FOll Low-pressure condenser circulating 0.0 10.0 dpsi 

water pressure differential A 
84 FG15 Circulating water pump A & B discharge pressure 0.0 100.0 psig 
85 F018 Cooling tower A discharge water temperature 0.0 752.0 DegF 
86 F019 Cooling tower B discharge water temperature 0.0 752.0 Deg F 
87 F040 lP-1 A reactor feed pump suction pressure 0.0 600.0 psig 
88 F041 IP-IB reactor feed pump suction pressure 0.0 600.0 psig 
89 F042 lP-1 A reactor feed pump discharge pressure 0.0 2000.0 psig 
90 F043 IP-IB reactor feed pump discharge pressure 0.0 2000.0 psig 
91 F044 Condensate total flow 0.0 8.0 Mlb/hr 
92 F045 Condensate makeup flow -10.0 100.0 Klb/H 
93 F046 Condensate rejection flow 0.0 50.0 Klb/H 
04 pi KJJL A r» pSig 
95 GOOl Generator gross watts 0.0 720.0 MWE 
96 T039 Low-pressure condenser pressure 0.0 30.0 inHg 
97 T040 High-pressure condenser pressure 0.0 30.0 inT-Ta — -0 
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contains 241 input-output patterns obtained by the procedures outlined by Bartlett and Uhrig 

[9], Note that the number of the patterns in L is only about 3% out of the 8,782 patterns of 

the entire data set Q for the 25 transients based on the simulated 33 scenarios. The set L 

includes 25 initial conditions to account for the many normal operating modes of the plant. 

The remaining 216 input-output patterns correspond to abnorraai conditions of the 33 

scenarios. The learning set L is chosen in an iterative manner. First one pattern at the 

beginning and one pattern from the end of the ten simulated transients is selected to form the 

initial learning set. This initial learning set containing 50 input-output patterns is used to 

train the ANN advisor. The advisor is then recalled on all the patterns over the entire time 

period of the simulation for each of the 33 transients. The recall patterns producing the worst 

errors are added to the learning set The process of training, recalling and adding patterns is 

repeated until most of undesirable, high recall error patterns disappear. Note that the 

patterns within a short period after transient onset are not added. This is because the plant 

variables change suddenly and dynamically for this short period such that some patterns are 

not uniquely defined. 

4.2. Development of NPP Fault-Diagnostic Advisor F 

The NTP fault-diagnostic advisor F for DAEC is established by training an ANN on the 

learning set L described in the previous section. The advisor F is a backpropagaticn AN^T 

and is trained until a training root mean square (RMS) error of 0.05 is obtained. The ANTM F 

has 97 input nodes each corresponding to the 97 piant variables, 45 nodes in the first hidden 

layer, 30 nodes in the second hidden layer, 10 nodes in the third hidden layer, and 5 nodes in 

the output layer (97-45-30-10-5). The five output nodes are used to distinguish each of the 

25 transient conditions with a disti.nct 5-bit binary code as shown in Table 1. Note that for a 

faster convergence, 0.1 was substituted fcrO, and 0.9 was substituted for 1 in the binar}--

codes. This substitution allov/s for quicker trainLig without driving the output nodes into Lhe 

saturation region of the nodal sigmoid transfer function [27]. The particular 

three-hidden-layer architecture was employed after attempting several different 

architectures. 
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4.3. Development of ANN Error Predictor P 

In this investigation, MBPC was used for creating the partitions of L. Because L 

contains 25 distinct transients, there are 25 classification groups each one pertaining to a 

specific transient, i.e., r = 25. No transient group has the number of training patterns larger 

than r where r is 25. MBPC yields a total of 19 partitions, i.e., t = 19. Note that MBPC has 

significantly reduced the computational requirements when compared to that of CVPC 

where we would obtain t = 241. Another backpropagation ANN f having the came 

architecture (97-45-30-10-5) of the developed advisor F, was used in generating L'. For all 

19 partitions, a total of 241 trios of x, u, and £ are acquired. Hence, L' consists of these 241 

trios. The ANN error predictor P using backpropagation was trained on L' with the 

architecture of 102-30-10-5. This architecture was selected after several attempts to find the 

optimal architecture. The advantages of EESA can be appreciated in that the input space 

dimension of P has increased only by 5 not 97. This increase is considerably less than that 

of the stacking procedure without EESA. 

4.4. Tests of F and P on Noisy Data 

The fault-diagnostic system F and P, trained on computer-generated data with no noise, 

were tested by adding the artificially generated noise to Q and recalling the system on the 

noise-added Q. Gaussian and uniform noise were generated with different random seeds at 

different standard deviations for each distribution, for example, = 1%, 2%, 3%, and A-%. 

Results of this part of our investigation are discussed in Section 5.2. 
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5. RESULTS OF THE RESEARCH 

5.1. Error-Measured Diagnosis 

The results obtained from the NPP fault-diagnostic system by implementing EESA. 

with MBPC are shown in Figures 3 to 6 and Table ni. In the figures, the dot-dashed line 

represents the values of an output node of the advisor F. The solid lines above and below 

the dot-dashed line represent, respectively, the upper- and the lower- error bound esdmated 

by P on each output of F. All the five outputs com.bined with the error bounds provide 

reliability information on a diagnosis given by F at the instant the transient symptom was 

presentation. The error-measured diagnosis is shown in Figures 3 and 6. Table HI 

summarizes the results of F and P for all 33 scenarios. The fourth and fifth columns show 

transient onset time and the automatic reactor safety trip time, respectively. Note that the 

automatic reactor safety trip is based on many more monitored variables and is actuated 

when a certain variable goes out of range. No root cause diagnosis is given. The sixth 

column displays the time when the fault-diagnostic system detects an abnormal status of the 

plant with a deviation, ±0.1, from the normal output values, 0.1 or 0.9. The last column 

shows the time when a diagnosis is validated with > 0.7 for the designated output 0.9 

or u--i-£j < 0.3 for the output 0.1, for all i. 

The ANN fault-diagnostic system detects an abnonnai status cf the plant very pro~iMtlv 

after the onset of the transients so that operator can immediately recognize the deviations 

from a plant normal condition. However, the system's diagnosis is indefinite for a short 

period after the transient detection. This is because the plant input variables fluctuate 

abruptly and dynamically for this inconclusive period. The input patterns during the period 

do not form a basis for classifying transients because of the abrupt variations of the plant 

variables in the feature space, i.e., the Lnput patterns are not ccuplcd to the transient 

characteristics. Hence, L v/as selected to contain none of these data. After the inconclusive 

period passes, the fluctuations in die advisor F's outputs disappear and are followed by the 

unassured period during which time the error bounds on the diagnoses are large. During this 

time the diagnosis maybe correct. But, since the estimated errors are large, the diagnosis is 
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Recirculation Loop A Rupture (rr15a) 
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Figure 3. Diagnosis with the estimated error bounds for the recirculation loop rupture 
'^rrlSs^ trsDSient. 
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Reactor Feedwater Pump Trip due to Spurious Trip Signal (fw09a) 
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Figure 4. Diagnosis with estimated error bounds for the reactor feedwater pump trip 
due to spurious trip signal (iwGSa) transient. 
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Reactor Water Clean-Up Cooiant Leakage (culO) 
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figure 5. Diagnosis with estiumted error bounds for tiie reactor water ciean-up 
cooiant leakage (cuiO) transient. 
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Fuel Cladding failure (rxOI) 
= advisor output 
= error bound 
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Figure 6. Diagnosis with estimated error bounds for the fuel cladding 
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Table III. Summary of the results of the fault-diagnostic system, the advisor F and the ANN 
error predictor P. 

Time of Time of 

No Scenario Transient Description 
Onset 
time 

Safety 
trip 

detecting 
abnormal 

providing 
assured 

Code (sec) time 
(sec) 

plant 
status 

diagnosis 

1 ad05 Spurious automatic 
depressurization system actuation 

10 13 10 49 

2 culO Reactor water clean-up coolant 
leakage 

5 no trip 24 24 

3 Cu 1. i .vCawtuL Vv vxOuai up wuiciiic 

leakage with failure of Group 5 
isolation valves 

A \J 51 7 48 

4 fw02a Main condensate pump A trip 6 504 10 28 

5 fw08-6 Feedback heater tube leak 10 33 10 35 

6 fw09a Reactor feedwater pump trip due 
to spurious trip signal 

5 no trip 6 17 

7 fwl2c0 Feedwater regulator valve 
controller stuck closed 

5 16 7 47 

8 fwl2cl Feedwater regulator valve 
controller stuck open 

5 96 17 63 

9 fwl7a Main feedwater line break inside 
primary containment 

10 12 10 82 

1 n 1 X  v y  X  K J L L  
1 

primary containment 

1 1 ! 
1 C 1 n 

\ ' 
'3 1 

1 - 'A 1 

1 1 iaOl I'^CC 7r*ctT^-»rr^or«to1'<r\*^ 
ll  A 1 ii> Cfl t  i  V<iUlVJl 1 

air from air receiver 

in i \j ( iV tr 23 
1 

37 

12 icl4scra Spurious reactor trip without 
operator action 

5 

1 

7 6 

i 

64 

13 mcOla Main circulating water pump trip 6 281 10 114 

Main condenser air inleakase 1 t 
1 

14 mc04a 1 - 100% severity 1 46 i 17 1 44 
mc04a 2 1 - 60% severity 1 10 i <^-1 

1 ' 1 21 i 
1 

mc04a_3 1 - 30% severity i 10 69 1 21 63 
1 1 c ! w 
1 1 

ms02 
1 

1 

i  l ino '•  
j  uLv^cm. iiioiuw pixiiiaij 

1 r»or»tpinmont 
1 ^ V* 1 vtikLA * W 

1 c 
1 
1 

1 

9 

i 

5 
J 

1 

1 lA 
1 3-. 
1 
i 
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Time of Time of 

No Scenario Transient Description 
Onset 
time 

Safety 
trip 

detecting 
abnormal 

obtaining 
assured 

Code (sec) tiilie 

(sec) 

«%1 *yw%4r 

status 
diagnosis 

16 Main steam line (MSL) rupture 
outside primary containment 

ms04a - 100% double ended shear 5 8 6 26 
ms04a 2 - 60% double ended shear 5 8 5 23 
ms04a_3 - 30% double ended shear 5 8 5 24 

17 msl4-6 Loss of extraction steam to 
feedwater heaters 

10 no trip 20 unassured 

18 Loss of air pressure to control rod 
drive hydraulic control units 

rdl3 - 100 % severity 10 12 12 33 
rdl3_2 - 60 % severity 10 14 14 89 

19 rp05tc01 Main turbine trip followed by 
reactor protection system circuit 
failure 

6 27 7 57 

20 rpOSacl Main turbine trip followed by 
reactor protection system failure of 
alternative rod insertion 

6 49 8 63 

21 
f 

rr05 Recirculation pump shaft seizure 
" 

in 
X no trip 

t 
12 29 1 

22 rriO Recirculation pump speed 
feedback signal failure 

-

:) no trip 17 unassured 

I 

Recirculation loop A rupture 1 
1 — 1 

11 iw'a - i\J\J /O ̂ CVCUL̂  ) 
c 
J 

o 
o 

1 <C 
\J 

A O 
-to 

iTl5a_3 - 30% severity 5 7 6 62 

24 Coolant leakage inside priniary 
containment 

1 

1 

li JU 
1 c\r\frr . 

- iW7C ̂ CYClliy 
r 1 1 A 

i 
1 1 

i 
1 rr30_2 - 60% severity 5 ! 36 25 1 36 
1 
1 

rr30_3 - 30% severity 5 65 2i i 65 

25 rxOl Fuel cladding (30%) failure 10 no trip 12 i unassured 1 



108 

unreliable. This unassured period continues momently, and then the estimated error bounds 

become small and the diagnoses are then validated. For example, Figure 3 of the 

recirculation loop rupture at 100% severity (rrl5a) shows the inconclusive period from 6 

seconds to 18 seconds for which the outputs are indefinite, i.e., the values of fifth node are 

between 0.3 and 0.7. Note that we used 0.3 and 0.7 here as cutoff points and that other cutoff 

points such as 0.25 and 0.75 would yield slightly different results. The inconclusive period 

is followed by the unassured period from 19 seconds 47 seconds for which error bounds are 

large, i.e., £^>0.15. Again, 0.15 is somewhat arbitrary. After 48 seconds, the 

error-measured outputs indicate that the abnormal condition detected is assured to be the 

indicated transient since the error bound is small. In some cases, for example in Figure 4, the 

outputs are validated immediately after the inconclusive period, without passing through the 

uP2-SSurSw ps"C— 

Another interesting example is shown in Figure 5, the reactor water clean-up leakage 

(culO) scenario. The transient onset begins at 5 seconds. The error-measured diagnosis, 

however, indicates that the plant is in normal operational status from 6 seconds to 23 

seconds even after the transient onset. This inconsistency can be explained by inspecting the 

input data for the period. The plant input variables seldom deviate from normal operational 

data except for the condensate rejection flow variable (variable no. 93). Tnis variable 

changes only slightly until 23 seconds. Since the variations of this variable during the period 

^T*E. VERV SMYII. THE DI9(?NOSIS NI<:N»^VS NORMAL ONPRT*NONAI FOR IHP NPRINN ITHE 

transient is detected and classified correctly at 24 seconds. Transients that show similar 

vi <^**0 tn »aYpmnl#a ipOl rrtr'OA^ 9 'Z rr'^H 0 priri 

rr30_5. 

A aU~i. V U.hgC' Ox Oix WCUl 1 Ail tl.  (XllOXS.'lliO ILIO X "TT i  1 X ,  UJ lO L X 

listed in Table m. For example. Figure 6 (rxOl) shows that the estimated error bound for the 

tc T r\r\ t/~v ^ronnoT^a o rT»^/^cc*C o*i-vT% o t—t RSTRAV r»^c» 
llXkAX XO XUX^W bV/ * cxxxctcit^ CllW SJ^XC^^llWOWO XV^l kiiC/ bl CLilOXWllC WltC&XVX\-;il pwiivo UO. UM'X 

normal operation period. Tne high error bounds mean that the advisor was not able to 

distinguish this particular transient from other transients. This explanation is confirmed by 

the fact that the numbers of the training patterns pertaining to the transients msl4-6, rrlO, 

T-v01 yr> T or»o A rxntfor^c o »-*o c r Tr> tKo 
L/WJJ. Ill  Cu-V^ <jnxy 'T ^ UIIU ^ UCittVlitO') IVOpwUVvij. IXl VUlVt ViiC 
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advisor was not trained on sufficient data to have the necessary confidence in its diagnosis. 

The confidence in the transient diagnoses in these cases will be improved by adding more 

patterns delineating the features of the transients. 

5.2. Performance Test With Noise 

The fault-diagnostic system shows two kinds of responses to the added noise. First, Lhe 

performance of the system for some transients is very robust and stable against noisy inputs. 

For example, Figures 7 to 9 of transient ad05 show that Lhe performance is almost not 

affected by noise regardless of noise distributions and standard deviations. Other transients 

showing similar behavior include culOgp, fw02a, fw08-6, fwl2cO, fwl8a, mc04a, mc04a_2, 

mc04a_3, ms02, rdl3, rpOStcOl, rrl5a, and rrl5a_3. Second, there are transients whose 

performance is degraded proportionally to the standard deviation of the added noise. Figure 

10 of rxOl that was tested with Gaussian noise with a standard deviation of 3% of the 

normalized signal displays the substantial degradation of system performance. The 3% 

Gaussian noise to the inputs might be too large to be realistic because of the long tails of the 

Gaussian distribution. Noise sensitivity of the system in these transients can be gready 

reduced by adding noise to L and then training F on the noisy L. 
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Spurious Automatic Depressurization System Actuation 
(ad05) without Noise 
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Spurious Automatic Depressurization System Actuation 
(ad05) with 4% Uniform Noise 
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Figure 8. Diagnosis with estimated error bounds for the spurious automatic system 
actuation (ad05) transient with 4% uniform noise to the input data. 
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Spurious Automatic Depressurizotion System Actuation 
(cdOS) With 3% Guusslun Noise 
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t-igure 9. Diagnosis with estimateci error bounds for the spurious automatic system 
actuation (ad05) transient with Gaussian noise to the input data. 
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Fuel Cladding Failure with 3% Gaussian Noise (rxOI) 
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Figure 10. Diagnosis with estimated error bounds for the fuel cladding failure 
(rxGi) transient witri 3% Gaussian noise to the input data. 
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6. CONCLUSIONS 

The objective of this research is to develop a new error-bound prediction scheme that 

provides error bounds on the output obtained from a NPP fault-diagnostic advisor using an 

ANN in order to validate the advisor outpuL We have developed the EESA scheme that can 

be used to help validate and verify the ANN fault-diagnostic advisor's output. Furthermore, 

EESA can resolve the complexity and difficulty of previous verification procedures. The 

results of the EESA implemientation of the DAEC data demonstrate that EESA can validate 

the advisor's diagnosis with the significant reduction of the computational requirements. 

When noise is added to the fault-diagnostic system, the performance test shows relative 

robustness in the process of transients as well as the expected degradation in the validity of 

the diagnosis as shown by the increased predicted error for those cases effected by noise. In 

general, high error bounds estimated by EESA indicate that an ANN system needs more 

training for a complete generalization. The EESA scheme developed in this study can be 

implemented to any system irrespective of ANN learning paradigms. 
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GENERAL SUMMARY 

In this study, a validation and verification technique suitable for ANNs was developed 

and then applied to the NPP fault-diagnostic advisor systems. First, the advisor developed 

for the 10 transients of the San Onofre Nuclear Generating Station was capable of detecting 

and classifying the transients. The ANN error predictor also provides a figure of merit in the 

forms of error bound for the advisor. This advisor system demonstrate the feasibility of the 

error estimation method based on the concept of stacked generalization. The results of the 

proposed MB PC method shov/ a considerable reduction in computation time without any 

degradation in the accuracy of the predicted error bound. Second, EESA, the new 

error-bound estimation scheme developed in this study, provides error bounds on an ANN's 

output or classification with computation advantages. The experiment results of the sine 

function mapping exhibit that the error bound estimated by EESA is much closer to the true 

error than that by the stacking procedure of Wolpert. It is also much smoother. In addition, 

EESA can resolve the complexity and difficulty of the stacking procedure hindering its 

implementation into complex, realistic problems. The results of the EESA implementation of 

the DAEC data demonstrate its capability to validate and verify the fault-diagnostic advisor 

developed for the 25 transient problem based on 33 simulated scenarios at their different 

severities. Tne performance test by adding noise to the system shows the relative robustness 

of the fault-diagnostic systetn. In general, high error bounds predicted by EESA inuicate that 

the fault-diagnostic advisor needs more training data for a complete generalization. The 

EESA scheme and MBPC can be implemented to any system, irrespective of ANN learning 
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DESCRIPTION OF TRANSIENT SCENARIOS 

A brief description of the several transient scenarios simulated by the Iowa State 
University team at the Duane Arnold Energy Center (DAEC) simulator is given in this 
section. 

MALFUNCTION ADOS 

Spurious automatic depressurization system (ADS) actuation 
A. Logic A 
B. Logic B 
Generic. Logic Failure. 100% power. 

This malfunction will cause the selected ADS channel to actuate spuriously from a 
channel logic failure. The effected valves will not respond to any other actuation signals, 
open or close, auto, or manual. The failed valves will cause the steam flow to increase and 
the reactor pressure will decrease. The reactor vessel water level will decrease, causing 
reactor scram on low level at 170'". The suppression pool parameters will respond to the 
increased temperature, pressure and level will react to the steam regulating valve (SRV) 
discharge. The emergency core cooling system (ECCS) will activate automatically and 
provide the system with cooling as the plant condition degrades. The rate of 
depressurization and level decrease will be consistent with the mass and energy balances on 
the vessel. 

Malfunction removal will restore the effected components to normal. Operator 
action may be required to restore the plant to nonnal. 

r>^^^ i?:i 

ad05.dat: Transient is inadvertent initiation of ADS (AD05A). IC24, 100% 
rv-ktHHTo vj'Wi.W. XAIXO XO X X kllW XXXOi- XXXV. 

MALFUNCTION CUlO 

rvx o*-* r r»/-vr* to « 

Severity: 0 -100% =0-4" diameter pipe (single-ended shear). 
Reactor V/ater Cleanup System (RWCS) expansion joint failure at 100% power. 

This mslfunction will C2.USG 2, Issk tc occur 2.t the clcsnup system inlet sxpsnsion joint. 
The lesi rste 'wiil be detenTiined by the specified seventy. A low-seventy lesjc will cause the 
omrMc^rtt c<a onri Ipolr ^^1x1 Uv/x Lxkux w x4AwxvCOw CuxW *V XXX CiiV xOvKXkXVii U-iiM 
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annunciation at setpoint. As severity increases the leak detection system will be actuated by 
area temp/temp differentials. Prior to isolation, a brief decrease in pressure and flow will 
indicate mass loss on the inlet to the RWCS pumps. The pump discharge pressure will 
decrease proportional to leak severity and the cleanup system return temperature will 
decrease. When the reactor water cleanup system leak detection system activates, motor 
valves (MO-2700, 2701, 2740) will close, and the RWCU pumps will trip. The motor valve 
position indicating lights wiii indicate the valves are closed, and the RWCU pump motor 
breaker will indicate the breaker is open. Tne RWCU leak will cause the system pressure to 
decrease to atmospheric pressure. The system flow will decrease resulting in appropriate 
annunciation. The cleanup holding pumps will start automatically from the system low 
flow. System temperature will slowly decay to ambient, and the heat load on Reactor 
Building Closed Coolant Water (RBCCW) will decrease rapidly. 

Malfunction removal will restore the effected components to normal. Operator 
action may be required to restore the plant to normal. 

Data files; 
culO.dat: Accident is reactor water cleanup line break outside primary containment 

100% break. IC24, 100% power. Middle of Cycle (MOC). Malfunction is 
YPiMCUlO at 100%. Decay heat is normal. No operator action. 

culOgp5.dat: Accident is reactor water cleanup line break outside primary containment 
100% break. IC24, 100% power. Middle of Cycle (MOC). Malfunction 
is YPiMCUlO at 100%. Decay heat is normal. No operator action. 
Automatic group 5 isolation is overridden. Valves M02700, 2701, 2740 
do not close feedwater pumps run out trip on delayed overload. 

MALFUNCTION FW02 

Malfunction is condensate pump trip. 
D=-,rv,,, A 

B) Pump B 
Generic, breaker overcurrent device (50) failure, 100% power. 

This malfunction will cause the selected main condensate pump breaker to trip from a 
faulty overcurrent device (50). The condensate pump breaker wiU indicate open, motor 
current will decrease; and annunciation from the trip will occur. When the condensate pun-ip 
motor breaker trips, the pump will stop, and pump discharge pressure and flow will 
decrease. The corresponding reactor feedwater pump wiii trip and the recirculation system 
will run back low water level of 186" to 45% speed. Condensate header pressure will 
decrease, and flow will increase as the remaining condensate pump capacity is exceeded. If 
both condensate pumps are tripped, the reactor feedwater pumps will trip. The recirculation 
pumps will start to ran back at 186" Reactor Pressure Vessel (RPV) water level to 45% 
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speed. The reactor will scram when level reaches 170". Malfunction removal will restore 
the effected components to normal. Operator action may be required to restore the plant to 
normal. 

fw02a.dat: Accident is trip of condensate pump A. No loss of power. When a 
condensate pump trips, the associated feedwater pump trips automatically. 
Reactor trips on low level. The turbine then trips on reverse power. IC24, 
100% power, Middle of Cycle (MOC). Malfunction is YP:MFW02(A) the 
runback of recirculation pumps delays the reactor scram. 

MALFUNCTION FW08 

Feedwater heater tube leak. 
A) Heater lA C) Heater 2A E) Heater 3A G) Heater 4A 
B) Heater IB D) Heater 2B F) Heater 3B H) Heater 4B 
Generic. Variable 0 - 100% =0-4" diameter (equivalent to rupture of approx. 30 tubes); 
tube failure 100% power. 

This malfunction will cause a tube failure in the selected feedwater heater at a rate 
specified by the severity. As the leak severity increases for the selected feedwater heater, 
water from the condensate system, for heaters #1 - #5, and water from the feedpump 
discharge, for heaters #6 will be induced into the shell side of the heater. The addition of 
mass will cause the mass within the heater to increase and the level control system will 
respond and modulate the drain and dump valves open. The cascading effect of the excess 
m.ass will impact the downline low pressure feedwater heaters and the level control systems. 
A iViaxiuiuui scvciliy ui iiiuliipic leaks in ihe #6 heater could cause insufficient leeawater 
flow to the reactor vessel and result in a reactor scram on low water level. A maximum 
seventy or muitipie icsics in tncrri - RFD ncstcrs couid rcsuil in sl IOW suction pressure trip oi 
the reactor feedpumps. A less severe leak will result in decreased feedwater heating and 
decrease in condenser vacuum. If the heater inleakage exceeds the normal drain and dump 
capacity the level will increase and actuate the high and hi-hi level annunciators. The level 
could backup into the turbine resulting in a turbine trip from high vibration, reactor scram 
and recirculation RPT breakers to open. The hi and hi-hi level alarms are bypassed if 
XJ C 1 w * A M  A  Kjy CXIIVI !.> a lUlL'illV-' LLiU d iCdC'lUl 

Malfunction removal will restore the effected components to normal. Operator 
action may be required to restore the plant to normal. 

Data files: 
fw08-6.dai; 100% seventy corresponding to 30 tubes breaking 
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MALFUNCTION FW09 

Malfunction is reactor feedwater pump trip. 
A) Pump A 
B) Pump B 
Generic. Spurious trip signal, 100% power. 

This malfunction will cause the selected main feedwater pump to trip instantly from a 
spurious trip signal. The pump motor breaker will trip open and annunciation will activate. 
The pump pressure and flow will decrease and the recirculation valve will close, if open. 
The main feedwater pump trip will cause a partial loss of feedwater to the reactor, the level 
will decrease, and speed is runback to 45% at the recirculation pump. Reactor and turbine 
power are reduced accordingly. Tne feedwater control valves wiii modulate and maintain 
reactor water level in the control band at the reduced power level. The plant will stabilize at 
a new lower power. It is possible for low water level scram because of too high a power 
level or load line. 

•\ X^ 1A ...:n «.u^ ^^™ j ^^ - _ .  .  -  ̂  i  r\ ^  
iviaiiuiicuuii iciiiuvai wiiji icdtuic uic aiiccLCu lu iiULiiicu. v/pciaiUL av^uuii 

may be required to restore the plant to normal. 

Data files: 
fw09a.dat: Accident is reactor feedwater pump 'A' trip. IC24, 100% power. 

Middle of Cycle (MOC). 

MALFUNCTION FW12 

?ccdw^t?r rc^uls-tor vslvc controller ^PWR.V^ failure '^s.uto^. 
A)FWRVA° 

B) FWRV B 
C) Master controller 
Generic. Variable 0 - 100% = 0 - 100% of valve position. Auto output signal 
failure. 100% power. 

This malfunction will cause the selected feedwater regulator valve controller output to 
fail to the specified seventy. The output will cause the regulator valve to modulate normally 
to the new position independent of the automatic control input signal. Placing the affected 
coritro^^sr nrocis v*"Il op'^rs^^o** '^onti'c^ VGJ^VS 
position IS decreased, the flow provided will decrease, if the unaffected feedwater regulator 
valve capacity permits, it will open and compensate for the failed valve control. If the failed 
valve closes or closes sufficiently to decrease the total system capacity the reactor water 
ievei will decrease. A reactor scram may result. If the output signal on the effected 
r^AntrAllAr Hr.^ng 6 vslvs 
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An amber alarm light and annunciation will respond. If the regulator valve position is 
increased, the flow provided will increase and the uneffected feedwater regulator valve will 
close to compensate for the failed control valve. The plant will remain stable in this 
condition. As flow is increased for either reactor feedwater pump to a value exceeding the 
design capacity, the motor current developed may exceed the overcurrent radng and the unii 
will trip on overcurrent. The master controller failure will cause the feedwater regulator 
valve controllers in auto to respond in unison, the overall effect will be similar to the above 
failures. Excessive flow will increase reactor water level and decreased flow will lower 
reactor water level. A reactor high water level of 211" will result in a trip of both feedwater 
pumps and the main turbine. 

Malfunction removal will restore the effected components to normal. Operator action 
may be required to restore the plant to normal. 

Data flies: 
Master feedwater controller failure. Fails both feedwater regulator valves. 100% power, 
IC24, middle of cycle. The following two simulations are for the first trend file: 

fwl2c0.dat: Feedwater regulator valves fail fully closed 
fwl2cl.dat: Feedwater regulator valves fail fully opened 

MALFUNCTION FW17 

Malfunction is main feedwater line break inside primary containment. 
A. Feed line A 
B. Feed line B 
Generic. Variable 0-100% =0-16" diameter double-ended shear weld failure on outlet of 
clicck valve, 100% power. 

i nis maiiunction wiu cause tne ssiectcu feeo iine iriSiCie tne primary' containment lo 
shear at the outlet of the check valve to the size specified by severity. This mairuncuon is 
unisolabie from the reactor vessel through the selected feedwater line. At 100% severity, the 
rupture will cause a rapid depressurization of the reactor vessel and feedwater line. The 
reactor water level will initially increase resulting in a high-level trip of the main turbine, 
reactor feed pumps. High Pressure Coolant Injection (HPCI) and Reactor Core Isolation 

T 4. /t j o 
".vUVV-i lllJOVUUIl Vi-f-CLll'J. VVi'i illiliilic 

on the resulting containment pressure of 2 psig and inject into the reactor vessel when 
reactor pressure decreases below the shutoff head of the pu.mps. (inject valves for LPCI and 
CS will not open until reactor pressure decreases below 400 PSIG). Drywell pressure and 
temperature will Licrease rapidly, and at 2 PSI group isolations 2,3,4,8,9 and reactor scram 
Will occur. Suppression pool lempcr2.ture 2.nci level will increase in response to the pjpture 
severity. The reactor water level will decrease rapidly actuating reactor trip, and turbine 
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reactor water low, low-low, low-low-low isolation signals for groups 1,2,3,4,5,7,8, seal 
purge. The core spray, HPCI and LPCI systems will actuate and begin to flood the reactor 
with water. The unisoltated rupture will continue to cause mass loss from the reactor to the 
drywell and suppression pool. HPCI and RCIC will receive initiation signals on lo-Io 
reactor water level. If the reactor pressure is greater than IOC PSIG, these systerns will 
initiate. Depending on which feedwater line is broken, HPCI or RCIC will inject to the 
reactor vessel. ("A" feedwater line break, RCIC injects to vessel, portion of HPCI bay inject 
and rest through break, and the opposite is true of 'B' feedwater line breaks). The reactor 
will cooldown in response to the Emergency Core Cooling System (ECCS),and the event 
will eventually stabilize. Reactor pressure and drywell pressure will equalize on large break 
in very short period of time. 

This malfunction is unrecoverable, and the simulator will have to be reinitialized for 
malfunction removal. 

Data files: 
fwl7a.dat: Accident is main feed water line break. 100% single-ended shear loop A 

IC24, 100% power, MOC. 

MALFUNCTION FW18 

Malfunction is main feedwater line break outside primary containment. W 
A. Feed line A 
B. Feed line B 
Generic. Variable 0-100% = 0-16" diameter double-ended shear weld failure on outlet of 
feed reg. valve 100% power. 

X iiio XX.SCLXXuiiwuLv^it wxxx wauoo Lii\^ xw\^u. xlii^ OulSiuo UlC- uriiiiaay COiiL^iiiiiCriL lO 
shear at the outlet of the feedwater regulator valve to the size specified by severity. At 100% 

reactor pressure. Header flow will increase rapidly to maximum, and the feedwater pumps 
capacity will be exceeded and trip on low suction pressure of 250 PSIG. Initially the 
feedwater regulator valves will modulate open from steam/feedwater mismatch, then open 
when the decreasing reactor water level overrides control. A reactor scram will occur when 
reactor water level decreases from lack of feedwater, the low water level causes High 
Dr^accii'TO ont Tr\iiar»tir\ri or*r? Tcr\lotir\r* 

and begin to flood the reactor with v/ater and eventually recover the level. Group isolations 
will occur at the respective setpoints. The reactor will cool down in response to the 
Emergency Core Coolant System (ECCS), and the event will eventually stabilize. This 
malfunction is unrecoverable, and the simulator will have to be reinitialized for malfunction 
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Data files: 
fwl8a.dat: Accident is main feedwater line break outside primary containment 100\% 

break. 

MALFUNCTION LAOl 

Loss of instrument air 
Variable 0 - 100% = 0 - 200% of capacity (CFM). 100% capacity = 3000 CFM. Air receiver 
leak 100% power. 

This malfunction will cause the instrument air system to leak from the air 
receiver at a rate specified by severity. At severities less than 100% the pressure will 
decrease to the auto start setpoint of the standby compressors which will start 
and recharge the system. At severities greater than 100% the system pressure will 
decrease with all three compressors running, severity will determine the rate of 
decrease. The following automatic functions will occur at setpoint: 

1. 87 PSIG - service air low press ann. 
2. 82 PSIG - CV3032 isolates service air hdr. 
3. 85 PSIG - inst air dryer disch. press low ann. 
4. 80 PSIG - CV3034, CV3035, CV3039 isolate appropriate LA. hdrs 
5. 60 PSIG - breathing air low press ann. 
Each isolated air header pressure will decrease dependent on header air usage 

and individual components will go to the fail position or mode. The plant is expected to trip 
and will stabilize in a post shutdown condition. 

Malfunction removal will restore the effected components to normal. Operator 
action may be required to restore the plant to normal. 

Data files: 
IaOi.Gat; iransieut is compicte ioss Oi LTiStnimeniation air (lAOl). 100% 

severity. IC24, 100% power, MOC. This is for the first trend file. 

MALFUNCTION MCOl 

Malfunction is main circulating water pump trip. 
A. Pump A, LP4A 
B. Pump B, LP4B 
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This malfunction will cause the selected main circulating water-pump motor upper 
bearing to fail, resulting in a motor breaker trip on overcurrent. The circulating water-pump 
upper motor bearing will fail causing the motor speed or current to fluctuate. After 
approximately one minute the motor bearing will seize and cause a very high current to be 
drawn by the motor, and the supply breaker will trip on overcurrent. As the circulating 
water pump discharges pressure, flow will decrease, and the pump discharge valve will 
close. The cooling tower basin level will increase slightly then return to normal as the 
system mass rebalances. With a circulating water pump tripped the circulating water 
temperatures will increase across the condensers. Condenser vacuum will decrease, and 
annunciation and a turbine trip will result, causing a reactor scram and Reactor Pump Trip 
(RPT). The plant protection system will respond appropriately to the turbine trip, and the 
plant will stabilize in a post trip condition with Electro-hydraulic Control (EHC) maintaining 
reactor pressure with the bypass valves. 

Malfunction removal will restore the affected components to normal. Operator action 
may be required to restore the plant to normal. 

Data file: 
mc01a.dat: Accident is main circulation water pump "a" trip. No loss of power 1C24, 

100% power, Middle of Cycle (MOC). Malfunction is YP:MMC01(A). 

MALFUNCTION MC04 

Main condenser air inleakage. 
A) High pressure condenser 
B) Low pressure condenser 
Generic. Variable 0 - 100% = 0 - 1000 SCFM at 29" Kg. Condenser hoot seal failure. iOf/% 
power. 

This malfunction will cause the selected condenser to have air inleakage at a CFM rate 
specified by severity. At low severities the air ejector system will compensate for the air 
inleakage, however as severity is increased the selected condenser will lead a total vacuum 
decrease by both condensers. As the condenser pressure decreases the following functions 
occur; 

1) 5.0" HgAbs - Condenser low vacuum annunciation 
2) 5.0" Hg.A.bs - Turbine lE/lC lov/ vacuum annunciation 

/' ~ 1. uIT/inC uCi.U2.cSS 
4) 19" HgAbs - Group 1 isolation signal 
5) 22" Hg.Abs - Bypass valves are closed 
The off-gas system will be affected by this malfunction. The pressure and flow will 

increase and as severity increases, the loop seals will isolate on high pressure. Tne now will 
alarm, i ne recombmer temperatures will decrease uepending on the maliUitCtiOn. Ongas 
should stabilize after a short period of time. 
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Malfunction removal will restore the effected components to normal. Operator action 
may be required to restore the plant to normal. 

Data files: 
Main condenser air inleakage. IC24, 100% power, middle of cycle. 

mc04a.dat; 100% severity 
mc04a_2 .uati 60% severity 
mc04a_3.dat: 30% severity 

MALFUNCTION MS02 

Steam leak inside the primary containment. 
Variable 0 - 100% = 0-4" diameter single ended shear. Caused by RCIC steam line weld 
tailure at elbow instrument tap (unisolable). 100% power. 

This malfunction will cause a main steam leak at RCIC line elbow instrument tap at a 
rate specified by severity. Very small severities will cause local heating inside the drywell, a 
very slight pressure increase, and an increase in leakage to the drywell floor drain system. 
The main steam flow will increase and Reactor pressure will decrease. The turbine 
Electro-Hydraulic Control (EHC) system will detect the pressure decrease and respond 
to maintain pressure. With the decreased steam flow the feed flow will decrease causing 
the reactor vessel water level to decrease until the level dominates and stabilizes the level. 
The drywell pressure and temp will respond quickly to the leak and the high drywell 
pressure trip at 2 psig. The HPCI, LPCI, CS and DG's will start, group 2, 3,4, 5 isolations 
will activate. If the rx pressure decreases to 850 psig, group 1 isolation will occur and 
isolate the turbine bypass system. The reactor will continue to blow down and the reactor 
pressure and level will decrease consistent with the severity. Reactor pressure and 
temperature will decrease rapidly. The tonas level and temperature will increase in response 
to the rupture. 

Malfunction removal will restore the effected components to normal. Operator action 
may be required to restore the plant to normal. 

Data file; 
ms02_2.dat: RCIC line break inside primary containment. The simulation was a 60% 

single ended shear in a 4" dia pipe. Initial condition is IC24, 100% power, 
A ^ vy / V TWA * 
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MALFUNCTION MS04 

Malfunction is Main Steam Line (MSL) rupture outside primary containment. 
A. Steam line A 
B. Steam line B 
C. Steam line C 
D. Steam line D 
Generic. Variable 0 - 100% = 0 - 20" diameter double-ended shear, piping failure at ms 
common header, 100% power. 

This malfunction will cause the selected main steam line to rupture outside the 
containment at the turbine inlet header at a rate specified by severity. At lower severities, 
the main steam flow will increase, and reactor pressure will decrease. Tne turbine bypass 
and control valves will modulate close, if open, in an attempt to increase steam pressure to 
control the increased demand. The hot well level control system will begin to makeup from 
the condensate storage tank to maintain the hotwell level in the normal control band, 

^ A i o 
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group I isolation is possible on steam line high temp (200 DEO F), and probability increases 
with severity. At 100% severity, the PCIS group I isolation will be initiated on steam line 
low-pressure (850 PSIG in the run mode) with the steam line flow (140%) as a backup. The 
reactor will scram on MSIV closure. Because of the rapid steaming rate, the reactor water 
level will rapidly i.ncrease causing the main turbine and both reactor feed pumps, HPCI and 
RCIC, to trip. As the MSIVs close, steam flow through the break will cease, voids will 
collapse, and reactor water level will stabilize at some new lower level. Emergency Core 
Cooling System (ECCS) will respond to maintain adequate core cooling. The pressure rise 
in the turbine building wiii cause the blowout panels to function, releasing the steam cloud 
to the environment. 

TyTaifnnQtinn n^mnvat \x/iii '"sstcrs tHs S-^fcctsd corrpcnsiits tc ncrmsl Opsr2.tcr 2.ction 
may be required to restore the plant to normal. 

Data file: 
ms04a.dat: Accident is main steam line header double ended shear. 100%. (20" line). 

Outside primary containment. IC24, 100% power, Middle of Cycle 
(MOC). 

>./IALFUNCTIQN MS 14 

Loss of extraction steam to feedwater heater 
A) Heater lA 
B) Heater 2A 
C) 3'^ 
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D) Heater 4A 
E) Heater 5 A 
F) Heater 6A 
G) Heater IB 
K) neater 2B 
I) Heater 3B 
J) Heater 4B 
K) Heater 5B 
L) Heater 6B 
Generic. Extraction line restriction, 100% power. 

This malfunction wiU cause the selected feedwater heater to lose extraction steam. The 
loss of extraction steam will cause the selected heater level to decrease and the associated 
heat gain across the heater will be lost. The resultant decrease in feedwater temperature will 
cause a power increase for the resultant load. The extent of power increase will be based on 
the heater selected, and/or the number of heaters selected. Worst case would produce a 
reactor scram on high flux. Less severe failures will produce possible long term effects for 
fuel failure considerations and administrative requirements. The reduced drain flow to the 
next heater in the drain line will cause its level to decrease and the heater level controller 
will modulate to compensate and maintain the setpoint level. The reduced flow will cause a 
cascading effect for the remaining heaters down line. Once the mass transient is over, the 
drain heaters individual level control system will compensate for the loss of extraction steam 
and stabilize transient condition. 

Malfunction removal will restore the effected components to normal. Operator action 
may be required to restore the plant to normal. 

Data files: 
msl4-6.dat; Loss of feedwater heating to both feedwater heaters 6A & 6B. 

IC24, IGGTO pOwci, nudulc ui uycic. Nu cissuciaLcu scvcriiy. 

MALFUNCTION KDI3 

Loss of air pressure to control rod drive (CRD) hydraulic control units (HCUs). 
Variable 0 - 100% = 0 - 1.5" diameter pipe break. Air header piping failure. 
1 AACt. 

This maifunction will cause the loss of air pressure to the CRD HCU'S at a rate 
consistent with the piping failure specified by severity. Loss of air pressure will cause the 

to r»!r\C£*rl oltmir^ptiriry tKo ciiT>r»lvr tKd 
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exhaust and cooling water headers. The scram discharge volume v/ill be isolated v/hcn CVS 
1867A/B arid 1859A/B fail closed. Manipulation of the rod control system will not be 
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available, however the charging header will remain pressurized. The drive/exhaust valves, 
CV1849,1850 are fail open valves. If they loose air pressure the charging header pressure 
will insert the control rods. 

Malfunction removal will restore the effected components to normal. Operator action 
may be required to restore the plant to normai. 

Data flies: 
rdl3.dat: Transient is loss of air to HCU (RD13). 100% severity. IC24, 100% 

power, MCKZ. This is for the first trend file. 
rdl3_2.dat: Transient is loss of air to HCU (RD13). 60% severity. IC24, 100% 

power, MOC. This is for the first trend file. 

MALFUNCTION RP05 

Malfunction RPS scram circuit failure (ATWS). 
A. Auto-scram failure 
B. Manual-scram failure 
C. ARI failure 
D. RPS fuse removal failure 
E. All individual rod-scram switches fail 
F. Hydraulic lock-scram discharge volume 
Discrete, RPS scram circuit internal short circuit in wiring (A,B,C,D,E) scram discharge 
volume blockage (F), 100% power. 

This malfunction wiU cause the selected RPS scram circuit to fail to cause a reactor 
scram when actuated. (A,B,C,D,E) selection of the hydraulic lock malfunction will reduce 
the scram discharge volume lo simuiaie now blockage. If the auto-scram is seiectea for 
failure, the plant will respond to the effects of the condition that generated the scram signal, 
i ne annunciators anG inGicauons wiii respouu to auto-scrani inputs as ihcy are generated. 
However, the plant will remaLn operating until a protection feature or injection of sodium 
pentaborate causes the plant to shutdown. The reactor has the manual-scram capability 
functional, and the operator can utilize this mode as desired. With an active auto-scram., the 
plant will scram as required by logic whenever the appropriate condition exists. A failure of 
ARI to cause a scram will also cause a failure of the RPT breakers to trip on lo-lo reactor 

1^. ./-.I 1 : AT->T -T-H r-r- , r . wciu^i is^vvi, Ul lllCLiiUcii 'liiuauiui: Ui JLIIC CiiCtJLi 'J1 lllC 
manual-scram feature failures would be the response failure of the function to respond when 
activated manually. RPS fuse removal failure simulates a failure of the PJ'S fuse removal to 
work. Failure of the rod-scram switches sim.ulates a failure of ail 89 scram switches to 
work. The hydraulic lock irialfunction reduces the volume and will allow the rods lo partially 
insert, with each scram signal'reset applied. Insertion of all (6) gerxeric failures will result in 
a "ATWS" condition. 
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Malfunction removal will restore the affected components to normal. Operator action 
may be required to restore the plant to normal. 

Data files: 
rp05tc01.dat: Accident is trip of main turbine together with failure to scram (ATWS). 

No operator action. IC24, 100% power, Middle of Cycle (MOC). 
Malfunction is YPiMTCOI (turbine trip) followed by YP:MRP05(A) 
(failure to automatically scram). Scram will be delayed and slow. Scram 
is from alternate rod insert (ARI). Recirculation pumps also trip on ARJ. 
ARI is triggered at U9" vessel level or 1140 PSIG vessel pressure. 
Recirculation pump trips at turbine control valves fast closure or stop 
valves less than 90% ooen 

rp5actcl.dat: Accident is trip of main turbine together with failure to scram (ATWS), 
and Alternate Rod Insert (ARI). No operator action. IC24, 1(X)% power. 
Middle of Cycle (MOC). Malfunction is YP:MTC01 (turbine trip) 
followed by YP;MRP05(A) (failure to automatically scram) and 

control valves fast closure or stop valves less than 90% open. 

MALFUNCTION RR05 

Recirculation pump shaft seizure 
A) Pump A 
B) Pump B 
Generic. Internal pump failure. 100% power. 

Tnis maitunction wiii cause the selected recirculation pump to seize mechanically and 
cause locked rotor current to develop for the motor. The selected recirculation pump internal 
total failure will be preceded by about 30 seconds of erratic speed, flow, current and 
excessive vibration as the failure develops into a totally seized pump. The recirculation M-G 
supplying power to the failing recirculation pump will have excessive generator current, 
which will result in a motor-generator lockout relay trip. The lockout actuation will trip open 
the generator field breaker, interrupting power generation for the seized recirculation pump 
m.otor. The recirculation pump trip will reduce the loop flov/ to minimum, core total rlow 
iiiid discharge pressure v/ili decrease. Wiih iess core discharge pressure, the unaffected loop 
flow will increase slightly. Because the recirculation system total flow and pressure 
decrease, increased core voiding will reduce core power and cause a rapid increase in reactor 
vessel level. As reactor power decreases, the turbine generator power will decrease, the 
plant will stabilize at reduced power and vessel ievei wiii return to normal. 

Malfunction removal will restore the effected components to normal. Operator action 
may be required to restore the plant to normal. 
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Data files: 
n05.dat: Recirculation pump shaft seizure. IC24, 100% power, middle of 

cycle. 

MALFUNCTION RRIO 

Malfunction recirculation pump speed feedback signal failure. 
A. Pump A 
B. Pump B 
Generic. Variable, 0 - 100% = 0 -100% of feedback signal, speed control circuit failure, 
50% power. 

This maifunction will cause the selected recirculation pump speed-control feedback 
circuit to fail to the specified severity. The pump speed indicator will fail to the specified 
severity. With the tacho-generator signal failing below the speed demand/maxiual pot 
position signal, the recirculation pump actual speed wiU increase, and the scoop tube will 
increase to maximum or auto lock if auto-lock conditions are met. With the tacho-generator 
signal failing above the speed demand/manual pot position signal, the recirculation actual 
speed v.'iii decrease to minimum. Tne resulting effect on the plant will be the increase in 
power for an increased recirculation flow and a decrease in power for a decreased 
recirculation flow. Turbine generator power and control valve positions will respond as 
appropriate. Annunciator response to flow limits and control failures will actuate at setpoint. 
Reactor water level will respond to the opposite of the recirculation speed initially until 
feedflow and steam flow can get matched at the proper water level. 

Malfunction removal will restore the affected components to normal. Operator action 
may be required lu restore ihe piar.i lO normal. 

Data liie; 
rrlO.dat: Accident is recirculadon pump speed feedback signal failure caused by speed 

circuit control failure IC24, 100% power. Middle of Cycle (MOC). 

TV;TAT XT TXT/^nPT/^lk.T 

Malfunction is recirculation loop rupture (Design basis Loss of Coolant .Occident (LOC.A) at 
100%). 
A.. Loop A. 
T-* T _ _ _ TT-L 
D. i^OOp £3 
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Generic, variable, 0 • 100% = C - 22" diameter double-ended shear piping failure at recirc. 
pump suction, 100% power. 

This malfunction will cause the selected recirculation loop, inside the primary' 
containment, to shear at the recirculation pump suction to the size specified by severity. 
At 100\% severity, the rupture will cause the recirculation loop and reactor pressure to 
decrease rapidly. The affected loop recirculation pump will cavitate and flow will be lost. 
Reactor water level will decrease rapidly as the reactor blows down through the rupture into 
the containment. The reactor water level decrease will actuate reactor scram, and reactor 
water level low, low-low, low-low-low isolation signals for groups 1, 2, 3,'4, 5, 7, 8, seal 
purge. The Core Spray (CS), High-Pressure Coolant Injection (HPCI), Low-Pressure 
Coolant Injection (LPCI), DG, and ADS systems will actuate and begin to flood the reactor 
with water. The RR pump discharge valves will close on the non-broken loop on the LPCI 
loop select signal. Reactor feed pumps will trip on overcurrent. At 100% severity, the HPCI 
and RCIC will receive initiation signals. However, the reactor pressure will decrease so fast 
thaf they will trip and isolate on low pressure before they will have any noticeable effect. 
Oryvv'ell pressure and temperature win inCicasc la^iuiy aim atz. foi group isolations 
2,3,4,8,9 will occur. Suppression pool temperature and level will increase in response to the 
rupture severity. The reactor will cooldown in response to the Emergency Core Coolant 
System (ECCS), and the event will eventually stabilize. This malfunction is unrecoverable, 
and the simulator will have to be reinitialized for malfunction removal. 

Data fdes: 
rrl5a_2.dat: Accident is recirculation loop rupture. 60% double-ended shear - loop a 

IC24, 100% power. Middle of Cycle (MOC). 
rrl5a_3.dat: Accident is recirculation loop rupture. 30% double-ended shear - loop a 

IC24, 100% power, Middle of Cycle (MOC). 

MALFUNCTION RR30 

Malfunction is coolant leakage inside primary containment. 
Variable (exponential) 0 - 100% = 0 -J2" diameter pipe (double-ended shear) reactor vessel 
bottom drain weld failure, 100% power. 

i his malfunction will cause reactor ccoiant to leak from the reactor vessel bottom drain 
failed weld at a rate specified by severity. As severity increases the mass loss from the 
reactor will easily be made up for by the hotwell level control system. In fact, at 100% 
severity the effects on reactor ievel/hotwell level will be very small. The most effective 
display of mass loss will be at hot standby. At 1(X)% severity, divwell pressure, temperature, 
and activity will increase. At 2 PSI, proup isolations 2,3,4,5,8 will occur. Suppression pool 
tsnincrstu^s snri th— scrc-iT. 
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will result from the 2 PSIG drywell pressure, and a turbine trip will result from reserve 
power. The shutdown plant will cooldown in response to the Emergency Core Cooling 
(ECC) and will stabilize. The long term effect of the leak will be the transfer of the 
Condensate Storage Tanks (CST) mass to the suppression pool via the leak in the reactor 
vessel. At small severities where the drywell pressure remains below 2 PSIG, the floor drain 
equipment system will see a high leak (in excess of the 5 GPM tech spec, limit). The 
drywell cooler heat load will increase as seen on the cooler temperatures on 1C25. 

Malfunction removal will restore the affected components to normal. Operator action 
may be required to restore the plant to normal. 

Data file: 
rr30.dat: Accident is reactor bottom head drain 100% single-ended shear (2" line). 

IC24,100% power. Middle of Cycle (MOC). 

MALFUNCTION RXOl 

Malfunction is fuel cladding failure. 
Variable, exponential, 0 -100% = 0 - 30% fuel clad damage, fuel cladding degradation, 
100% power. 

This malfunction will cause the fuel cladding to fail to a value specified by severity. As 
the fuel failure increases, the amount of activity in the reactor recirculation and main steam 
system will increase. This activity will propagate throughout the plant and the radiation 
monitoring system will detect, indicate, and alarm as the activity increases. At low 
severities, offgas post-treat radiation monitors will cause offgas to isolate (without a group 
isolation^ reSUitinS in a loss of cnn(1ftn«=;r vaciinm m^in tnrhinp trine ann r<=Qrfnr c/^ram Ac 

the severity increases, the main steam line radiation monitors will cause main steam line 
isolation and reactor scram at setpoint. As the normal power dependent background 
radiation levels decrease, the additional radiation levels will be more evident on area and 
process monitors. At high severities the before mentioned will occur faster with more 
dramatic increases. Various system trips and isolations will occur, protecting the 
environment from excessive discharges. The sequence of the fuel failure indication will be 
as follows: 

Offgas pretreat and post-treat radiation monitors increase 
Sl2.ck 'will stsrt to incrcssc 

Offgas system isolates on post-treat hi-hi radiation level 
iVxcuit ocwoiii lauiauuii luuiiiLUio iCouuiiU. 

a. MSL high radiation alarm 
b. Group I isolation 
c. Reactor scram 
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Drywell monitors increase Torus radiation monitors increase from relief valve 
discharge or HPCI and/or RCIC exhaust. Reactor building area radiation increases from 
Emergency Core Cooling System (ECCS) system operation. (HPCI, RCIC, LPCI, CS). 
NOTE: Malfunction severity will cause some of the above items to be "passed over" or will 
result in a delayed response. 

Data file: 
rxOl.dal: Accident is 30% fuel clad failure. Causes high radiation alarm to go off IC24, 

100% power. Middle of Cycle (MOC). 

IC-24: FULL POWER OPERATIONS (ANSI PARAMETERS) 

A) Moderator temperature = saturated conditions 
B) Reactor pressure = power dependent 
C) Reactor power level = 100% power 
D) Reactivity = critical 
E) Xenon condition = 100% equilibrium 
F) Core life = beginning of life 

This IC is set up to meet the ANSI criteria for 100% power. 
This IC is similar to IC-14, except the core is at middle of life (MOL). 

icl4scra.dat: Accident is spurious scram. No operator action. IC14, 100% power, 
BOC. Malfunction is YP:MRP03. 


