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I. INTRODUCTION

It is natural that an investigator conducting an experi-
ment should wish to follow the results closely, as they become‘
available, in order that decisions may be made as early as
possible. The experiment may then be terminated with an |
economy of experimental material. Reductions in sample size
to decision may be important for ethical and/or economic
reasons in a wide variety of practical situations.

Armitage (3), Hajnal (26), and many other authors have
pointed out that medical trials are often oharacterizéd'by
ethical difficulties. An early termination of a medical trial
and thé immediate application of a superior treatment to all
persons with g particular affliction is clearly highly
desirable.

In addition to such ethical considerations, 1t may bé
that the experimeﬁtal units are very expensive or that the
testing 1s so extensive and repetitive fhat a slight saving
of observations pér sample may develop into considerable'long-
term economic savings. These oonsiderations, in conjunction
with military programs which test to destruction, provided the
impetus for Wald's develbpment of the Sequential Probability
Ratio Test.

Another wmotivation for sequential experimentation is that
the experimental units may occur rarely. For example, a

clinician may have the problem of deciding between two



treatments for a rare disease. Patients with this disease may
be admitted at intervals of fairly long duration. Alterna-
tively, the preparation of an experimental unit may be time
consuming. For these and other similar reasons the experi-
menter might not at any one time have at his disposal a group
of experimental units permitting the establishment of a fixed
sample size experiment. These types of situations dictate
sequential experimentatlon and, correspondingly, where appro-
priate, some form of statistical sequential analysis of data.

In applications of fixed samﬁle size theory the use of
concomitant information (for example, in the analysis of
covariance) has frequently resulted in an increase in the
precision of the experiment. Intuitively, the use of relevant
concomitant information would seem to increase the amount of
information extracted from an experimental unit and result in
either a reduction of the number of experimental units needed
for given information or more information for a fixed number
of experimental units. Correspondingly, in the context of a
sequential experiment, it may be expected that the appropriate
utilization of concomitant information should also result in
a decislon with fewer observations for giVen Type I and Type
II errors. |

In this thesis we are interested in developing sequential
tests for the comparison of two treatments utilizing concomi-

tant information. We consider some generalizations of Wald's



Sequential Probability Ratio Test (SPRT) in order to develop
these tests. In Chapter II we present a definition of Wald's
SPRT and describe some of its elegant properties. Chapter III
contains the statement of the basic problem of the thesis, a
discussion of welght-functions and prior distributions, and
the development of sequential multiple covariance tests. Next,
in Chapter IV, fixed sample size sufficiency is used to obtain
sequential multiple covariance analyses for a reformulation of
the probability model of the basic problem discussed in
Chapter III. Chapter V contains a discussion of two-sample
analyses and a derivation of Hajnal's two-sample t-test via
welght-functions. The derivation is then extended to include
a number, p say, of covariates. Finally, Chapter VI contalins
a discussion of some cof the theoretiqal problems incurred in
testing composite hypotheses in sequential analysis and an
emplrical sampling approach to the solution of these theoreti-

cal problems.



II. THE SEQUENTIAL PROBABILITY RATIO TEST

A. Introduction
Johnson and Leone (40) present a broad definition of a
sequential procedure as follows

"A sequential procedure is any procedure in
which the final pattern of the data depends in some
way on declsions which are based on the data them-
selves as they become available."

Cornfield (17) defines a sequential trial as

"...any form of data col’z2tion .n which the
decision to continue or disco tinue further collec-
tion depends in some sense or *h¢ information
previously obtained."

Wald (69) writes
"Sequential analysis i1s a method of statistical
inference whose characteristic feature is that the
number of observations required by the procedure 1is

not determined in advance of the experiment."

The addition of sequential methods as defined above con-
siderably broadens the range of experimental plans which one
can use in designing an investigation. It has been shown, in
some situations (for example, Wald (69, p. 57)), that by
intelligent use of appropriate sequential methods, the cost in
~money and time of investigations can often, on the average, be
reduced by introducing rules for deciding when we have enough
evidence to reach a useful decision and thereby avoid the
collection of superfluous data.

The definitions presented above are in order of decreas-

ing generality. As one might expect, Wald's definition of
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sequential analysis 1s the most amenabie to theoretical
development. In fact, modern techniques of sequential analysis
are largely inspired by the work of Wald although the first
idea of sequential procedure dates back to the late 1920's
when H. F. Dodge and H. G. Romig constructed a double sampling
procedure. Motivated by the need to reduce the amount of
effort necessary in the acceptance sampling of military sup-
plies, Wald discovered the Sequential Probability Ratio Test
(SPRT) in 1943.

In the remainder of this chapter we shall describe the
SPRT and catalogue some of the SPRT's elegant properties which
we find relevant to the present study. For further details
the reader is referred to Wald (69), and pertinent literature
as found in, for example, the bibliographies by Johnson (37)

and Wetherill (74).

B. Description of the SPRT

Let Xj, X ooy Xn be a random sample of size n from a

2?
distribution which has the probability density function
(p.d.f.) £(x; 8) where 6c[6; 6 = 0_, 6,1 and 8_ and 8, are two
known points contained in a space Q of points [8]. Let the
joint p.d.f. of Xl’ XZ’ ooy Xn be denoted by

L(8,n) = f(Xl,G) f(Xz;e) oo f(Xn;e).

Let us now suppose that n is not fixed in advance and instead
assume that n is a realization of a random variable N with

sample space [n; n =1, 2, 3, «..]. Let A and B be two



constants such that 0<B<l<A. Let us observe, in sequence,

realizations, X1s Xo x3, ceey Xy eeey of mutually

stochastically independent random vaiigbles, Xl, X2’ coey Xn’
.., and compute the sequence

L(8,; 1), L0 ; 2), L(8,5 3)
L{8 5 1) L(8,; 2) L(6_5 3)

The Wald SPRT procedure is then defined by the following
rules.

i) The hypothesis Hy: 8 = 6 1is rejected and the
hypothesis Hl: 6 = el is accepted 1if and only if there exists
a positive integer n so that the vector of realizations
(xl, Xpy eens xn) is contained in C where

L(65 J) _
Cn= [(Xl, XZ, esey Xn): B<m<A, J=1ly eeey n =1

L(Sl; n)

and > A].
Lieo n)
,11) We shall accept the hypothesis Hy: 6 = 6, and reject

1° -1
so that (xl, Xps -ves xn) is contained in D, where

Ho: 6 = 06, if and only if there exists a positive integer n

L(el’ 3) _
D, = [(xl, Xpy vees xn): B<ry eo, z < Ay, J =1y 2y eeuyn-=1

L(8y; n)
and m < B]
iii) We continue to observe sample iteuws as long as

(Xl, XZ, ceny xn) is contained in the complement of DﬁJCn.



C. Some Properties of the SPRT
To facilitate discussion of sequential procedures it will
be convenient to adapt in part the notation used in Johnson
and Leone (40). Accordingly, we denote by S(HO,Hl;P(I),P(II))
any sequential test of H  versus H1 with P(I) = P[HlfHO] and
P(II) = P[H_|H ] where P[HiLHj] is the probability of
accepting H.l if Hj is true.

Property 2.1 (Wald, 69): The SPRT as defined in Section

B of this chapter terminates with probability one.

Property 2.2 (Wald, 69): The following inequalities

hold.

1 - P(II)
A2 5

> _P(IT)

5= 1 - P(I)°

Property 2.3 (Wald, 69): If the probébilities of error

P(I) and P(II) are small, and if A and B are chosen such that

1 - P(II
A= TprT
5 - B(II)

R T

then the actual error probabllities achieved by the SPRT are
approximately equal to P(I) and P(II). In fact, if we denote
the actual values of P[HlJHO] and P[HO]Hlj by P'(I) and P'(II)
respectively then

P'(I) + P'(II) < P(I) + P(II).



A fact which may be important for some extensions of the
SPRT wmay here be noted. This is that the Properties 2.2 and
2.3 hold even 1f one removes the requirements of independence
of observations stated in the definition of the SPRT in Section
B of this chapter. This can be verified by examining the
proofs of these properties set out in Wald (69).

t is frequently suggested (for example, Cox (20) and

David and Kruskal (22)) that in order to use Wald's boundaries
(Property 2.2) for the SPRT one must prove termination with
certainty. Hall, Wijsman, and Ghosh (28), however, point out
that the requirements on the error probabilities as approxi-
mate upper bounds, rather than approximate equalities, are
fulfilled regardless of the certainty of termination.

Property 2.4 (Wald, 69): For a SPRT, say S(HO, Hy; P(I),

P(II)), the operating characteristic curve is approximately

PL6: S(H,, Hy; P(I), P(II))] = €

where P[6: S(HO, Hl; P(I), P(II)] is the probability of

deciding that the value of the parameter is eovwhen it is, in

fact, 0eQ and h(8) is the solution of

f (x; el)h(e)
[ ACTHC f(x; 08)dx = 1.
!

Property 2.5 (Wald, 69): An approximation to the average

sample number for any parameter point 6eQ, given a S(HO, Hl;

P(I), P(II)) for HO: 6 =6, Hy: 8 =.91, is



_ Ple)imB + (1 - P[6})1nA
EINIS] = g1 5.) - In 6T 57709

. L(6,; n)
where P[8] and 1 -~ P[6] are the probabilities that 1n ilﬁi?"ﬁi
takes the values 1nB and 1nA, respectively. P[6], for a
particular S(HO, Hl; P(I), P(II)), is computed via Property
2.4,

In other words, Property 2.5 in conjunction with Property

2.4 gives an approximate method by which the average sample

nunber of any S(HO, Hl; P(I), P(II)) with Ho: 8 = eo,

Hl: 6 = 91 can be computed regardless of the actual value of
B, BeQ.

Property 2.6 (Wald and Wolfowitz, 70): For all sequen-

tial tests of HO: B = 80 versus Hl: 0 = 91 having probabilities
of error P(I) and P(II), the SPRT has the least possible
values of E(NI6_] and E[N [6,].

The SPRT does not ﬁecessarily have least possible values
of E[N[8] for every 0eQ, ee(eo, 81) and, in fact, E[N|0] is
not necessarily less than the sample size required in fixed
sample size plans with the same probabilities of error when
8e(8,, 8,).

This last possibility may be illustrated by an example
from Wetherill (74). Suppose we wish to perform a binomial
SPRT for Ho: P = .25 versus Hl: P = .75 with probabilities of
error P(I) = P(II) = 0.001. Using Property 2.5 and Property

2.4 we can construct Table 1. —
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Table 1. ASN for binomial S(H _, Hl; P(I), P(II)) with
H:p= .25 versus Hi: p= .75 and P(I) =
P(II) = 0.001
6 .25 .37 43 .50 .57 .63 .75

ASN 12,6 22.0 32.2 39.5 32.2 22.0 12.6

Now 1f we design a fixed sample size experiment with 33
observations, we find by consulting tables of the cumulative
probability distribution such as (29)'that a rejection region
of 17 or more positive responses specifies a fixed sampie
size test with probabilities of errof P(I) = P(II) = 0.00095
= 0.001. Thus for a range of values of p near 0.5 the ASN
of the SPRT is greater than the sample size of a fixed sample

size test with the same probabilities of errors.

D. Discussion
Many testing problems encountered in real life investi-
gations will not involve simple null versus simple alternative
hypothesis formulations. Thus, if the parameter of interest
is the only parameter in the model, hypothesis formulations

" of the form

. < . >
HO. g = 60 versus Hl' 6 = el

where eo and el are preassigned scalars and eo < 81, or
HO:.G = GO versus Hl: 6 # 6
or Hy: 18] < 8, versus H,: [el > 895
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where 60 and 61 are predetermined scalars, seem to be more

relevant to real life situations than

HO: B = 60 versus Hl: g = el.

The usual procedure in such cases is to apply the SPRT to a

least favorable hypothesls formulation. For example, for the

specification

v
@

H: 6 <086 versus H.: 6
o] o - 1

the "least favorable" specification

HO: 0 = eo versus le 0 = 91

may be adopted. In some instances, this can be intuitively
appealing, for one might expect that a test of

Ho: B = eo versus Hl: g8 = el, 90 < el

would be even more efficient in terms of sample size require-
ments when it is actually true that 6 < eo or 6 > el. However,
this advantage for 6 < 60 or 6 > 61 may be vitiated by a loss
of efficiency if eo < 8 < el. As exemplified earlier, E[NI6]

may be larger than the corresponding sample size needed for

the fixed size sample test when

where 6 1s some number greater than zero.

The testing problems become even more complicated when
nuisance parameters are present in the probability model and
the “1ea$t favorable" approach has to be supplemented by other

techniques in order to construct a test.
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Some developuents, which might be termed extensions or
generalizations of the SPRT, have drawn heavily upon fixed
sample size reduction principles such as sufficiency and
invariance. If we have a hypothesis-testing problem in which
there are unknown nulsance parameters, then we snould try to
construct a test statistic having a distribution not dependent
on these nulsance parameters. Properties of sufficiency and
invariance have been found useful in such situations.

In hypothesis testing situations that are composite be-
cause they involve ranges of the parameter(s) of interest
(for example, HO: p < .3 versus le p 2 .5 in the binomial
context), sufficiency and invariance principles do not seem to
be applicable. This is so because we should not think a test
statistic desirable if 1t did not depend upon specifications
of the parameter of interest. Wald (69) introduced weight
functions for the development of the sequential t-test, and
weight function methods seem well suited for composite
hypotheses concerning ranges of parameters.

In the following chapters we will discuss sufficiency,
invariance, and weight functions more thoroughly using them to

develop sequential tests for certain problems.
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ITI. SEQUENTIAL MULTIPLE COVARIANCE ANALYSIS

USING WEIGHT FUNCTIONS AND PRIOR DISTRIBUTIONS

A. Weight Functions and Prior Distributions

Given that it 1s possible to observe random variables

Xi from a normal distribution with mean u and variance 02 we
consider the application of sequential tests to hypotheses
about the location parameter u regardless of the value of the
unknown variance o2. For this problem Wald (69) suggested
that the following procedure may have merit. For all u such
that [(u-uo)/o]< k » where k_ is small, it is preferred to
accept the hypothesis HO: M= Hg . For all u such that
](u—uo)/al > kl > ko it is preferred to accept the hypothesis
Hyj: u # H . Wald called the region in which k < I(u-uo)/o] <k
an indifference region. With this proéedure, however, the
SPRT theory outlined in Chapter II does not immediately lead
to a practical test. For example, suppose we are interested
in a one-sided test about the location parameter u of a normal

population with unknown variance. The regions of preference

noted above depend on the quantity 2 and, using SPRT theory

on the "least favorable" case (HO: W = W, versus le b=u, TYo
where Y is a specified constant), it can be shown that we
subsequently arrive at the log-likelihood ratio n(§-uo)§-2%3
with which to carry out the test. This log-likelihood ratio,

however, still depends upon 02, the unknown parameter. Wald

(69) introduced the theory of weight functions as one procedure



14

to overcome this difficulty. In what follows we outline the
application of Wald's weight function techniques to sequential
testing and describe some examples of sequential weight func-~

tion tests.

1. Weight functions

Let us assume that it is possible to observe a sequence
of mutually independent random variables Xl’ Xz, X3, s €ach .
of which has the same unknown probabllity density function
f(x; 6) and where, in general, the random variable X and the
parameter 6 may both be vectors. Let us suppose that Q; the
parameter space of B8, can be divided into three mutually
exclusive regions so that (O = woU WU, where: W is the
region in which the null hypothesis Ho is preferred, Wy is the
region in which the alternative hypothesis Hl is preferred, and
L is the region in which neither Ho or H1 is preferred.

When statisticél tests of composite hypotheses are con-
structéd, the probabilities P(I) and P(II) of Type I and Type
II errors respectively are, in general, functions of one or
more of the parameters of the parameter vector 9==(61, 62,93;
k). Keeping this in mind, suppose we have two weight
functions for 8, VO(G) and. vl(e), defined so that:

VO(B) is non-zero only for 8 ¢ w_, V_(8) =0 for 6 ¢ Wy

0]

and 0 ¢ Wy and

fwovo(e) s =1 | (3.1a)

and



15

vl(e) is non-zero only for 8 ¢ W vl(e) = 0 for 6 ¢ W,
and 6 ¢ Wo s and
J o vi(e) a8 = 1. (3.1b)
W
1
We also note that the integrals given by 3.1 wmay be multiple
integrals.
Wald (69) then defined modified probability density
functions which are constructed as follows:
n
Bon (X1 Xpy veey X ) = 4; g £(x;5 0) V_(8) a8
- (3.2)
n
gln(xl, Xps oo xn) =/ 1 £(xy3 6) vl(e) de.
w, 1 :
1
It is now possible to define a Wald SPRT for the hypothesis
specification:

H.: g(xl, Xps eees Xn) = gon(xl, Xpy weey xn)
(3.3)
Hy: g(xl, Xps eees xn) = gln(xl’ Xps aees xn)

because HO and Hl are both simple hypotheses. It should here

), 1 =0, 1, will in general

be noted that g.
i n

n(xl, XZ, o0 0y X
" not be factorizable as

n
gin(xl, XZ’ LA ] Xl'l) = kzl gik(xk)' (3'4)

As pointed out in the discussion following Property 2.3,
however, independence of the random variables is not a
necessary condition for the construction of boundaries for the

SPRT or for the application of Properties 2.2 and 2.3.
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It 1s now convenlient to denote the SPRT for the specifi-
cation in 3.3 as S(H!, H{; P(I)', P(II)') where P(I)' and
P(II)' are the probabilities of Type I and Type II errors,
respectively. Then, at the nth stage of sampling,

S(H', H; P(I)', P(II)') induces a partitioning of the sample

n-space as in 3.5.

Con = [(Xl, Xps eees xn): HO is accepted]

C1n = [(xl, Xp5 eves xn): H1 is accepted] (3.5)

‘C2n = [(xl, Xps vons Xn): take another observation]
Also, since S(Hé Hi; P(I)', P(II)') is an SPRT, we know from

Property 2.3 that

P(I)' = ¢ g (X1, eeey %) dx (3.6)
n=l‘/é‘ln°n L n
and
P(II)' = T g (X4 eeey X ) 4x (3.7)
n=1 J;on. 1n*"1 ol

where dx = dxldxz e dxn. Using definitions 3.2 we can now

write

o]

n
P(I)'=z [ [f ©§f(xg 0) 7V (8) de] ax. (3.8)
n=1 C w_ 1l
0
If we assume that the integration and summation signs are

commutative, 3.8 can be rewritten

o

n
L)'=/ = [ g £(xy3 8) dx V_(8) d8

w, n=l"C) +
=f Pe(I) vo(e) ae ‘ (3.9a)
w
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where

@ n
Po(I) = = S E f(x,; 6) dx (3.9b)

denotes the Type I error at any point 8 ¢ wo.' Similarly we

write
P(II)' =‘[ Py (II) v, (8) a6 (3.10a)
w
1
where
P, (II) = % I f(x.; 6) dx (3.10b
g n=1 Jéon 1 +

denotes the Type II error at any point 6 ¢ Wy .
The end result 1s then that we have a procedure for
sequentially testing Ho versus Hl where the approximate error

rates are the weighted quantities P(I)' and P(II)'.

2. Optimal weight functions

In the absence of a priori bases for selecting weight
functions, the choice could be made to satisfy some sort of
"optimality" criterion involving a restriction to sequential
tests which have certain "best" properties. We would then
search the class of sequential tests S(Hé, H'; P(I)', P(II)'),
where H! and Hi are given as in 3.3, for those tests (if they
exist) which have these properties. If we restrict ourselves
to a class of tests which have desirable properties, however,

there usually is no method of choosing weight functions which

generate the appropriate sequential tests.
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Some cases have been reported for which specialized
methods of choosing welght functions to derive "optimal"
sequential tests do exist. For example Wald (69) considered
the class of all sequential tests S(Hé Hi; P(I)', P(II)")
derived via weight functions and sought to choose weight
functions which induce sequential tests that satisfy the
following "optimum" restrictions:

P,(I) < P(I) for 6 ew

0 o

(3.11)

P.(II) > P(II) for 0 ¢ Wy

5!
where there exists at least one 8 ¢ W Say eo, such that

Py (I) = P(I) and similarly there exists at least one 6 ¢ Wy 5

o)

say 61, such that Pe (IT) = P(II). The Pe(I) and Pe(II) of
1 |

3.11 are defined in 3.9b and 3.10b respectively.

It is evident from
i) the relations given in 3.9 and 3.10

are in

y and CZn

ii) the fact that the regions Con® Cin

effect defined by
(

L, R v (6), and V) (9)

e P(II)
iii) the fact that knowledge of iiﬁTTTT and —————7——
implies knowledge of P(I)' and P(II)'
that the following relations hold

emixw PG(I) = hl(P(I)'s P(II)" v (9), Vl(e))

o (3.12)
max Pe(II) = hz(P(I)', P(II)', V (9), Vl(e)) ’
0 ¢ Wy '
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where hl and h2 are functions of arguments as indicated in
3.12. For given weight functions it follows that P(I)' and

P(II)' can, in principle, be chosen so that max P,(I) and
e w o
0

max P,(II) take on their desired values.
Gewl

Wald showed that if he éonsidered the subclass of weight
functions which serve to simultaneously minimize the two
maximums given in 3.12 for fixed P(I)' and P(II)' he would
then have welght functions which generate sequential tests
for which the Type I and Type II errors satisfy 3.11. The
following theorem due to Wald sets out sufficient conditions
which sequential weight functions tests must satisfy in order

for 3.11 to hold.
Theorem 3.1 Let us suppose that the parameter space Q

can be written as Q = W U w; Uw, where w,N Wy o= ¢, i, j =0,
1, 2, i # j. As before, w_ 1s the region of the parameter
space where HO is preferred, wy 1s the region where Hl is
preferred and W, is the region where neither Ho or Hl is
preferred. Further, let us assume that the boundary of Wy is
a surface, say Sl‘ We suppose then that it is possible to
find twp weight functions vo(e) and vl(e) such that

[ v (e)as =1
"o (3.13)

S vl(e) as = 1,
51

It

and such that the SPRT based on the ratio
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n
/g Vl(e) g f(xl, 6) ds1
1
(3.14)
n
V (8) I f(x.; 6) 48 ,
fWo O 1 X1

satisfies the following conditions for any values of the
upper and lower boundaries of the test procedure:
i) Pe(I) is constant in w
ii) Pe(II) is constant over 8
iii) for any point 6 in the interior of Wy the value
of Pe(II) does not exceed the constant value of
PS(II) on 8. _ |
Also if the lower boundary is taken to be lfP%%) and if the

upper boundary is taken as l:%%%%l then we have that

max PG(I) = P(I)
8
e W
(O
and
max Pe(II) = P(II).
0 e Wl

Proof: The proof may be found in Wald (69).

3. Application of weight functions

As an application of Theorem 3.1 Wald derived a type of

sequential t-test for sequentially testing hypotheses about

the wmean y of a normal population with unknown variance 02

M=d

and, in particular, for testing that

is small relative

to some value S The parameter space Q [(us0):

~o<py<®, 0<g<®o] is partitioned as Q = wou wy\J W, where
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= 0, 0<0<x

w = [(K,0):
(3.15)

>0, 0<0< =]

- . 0
W, = [(u,0): - >»k1, kl

and

w2 = (Q - Wo - Wl.

The boundary Sl of wy is given by

81 = [(1,0): IH-HO] = k0, k; >0, 0<o<=].

Wald shows that the welght functions which satisfy the
conditions of Theorem 3.1 are

V (4,0) =1/c; 0<o <o, H = u

o(
0 otherwise

—]-—.
2¢c?
0

I

]

Vl(u,o) 0<o< c,Uu=4u_+ klc

otherwise. -

That is, Wald shows that the likelihood ratio

fS vl<u’o-)
1
Lim
c> -
SV (u,0)
W’o :

f(xi;u,c) do du
(3.17)

n
II
1
0
I f(xi;u,o) do du

can be computed as an SPRT with Type I and Type II probabil-
ities of error, P(I) and P(II), so that we may expect the
actual hypothesis specification |

H: 4 =4, versus Hy: ku-uo)/cj = k0

to be tested with approximately these probabilities of error.
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The following additional applications of weight function
techniques may be noted. Fo? the situatlion where Xl’ XZ’ ooy
Xn are independent normally distributed ?andom variables with
mean and variance 02 unknown, Wetherill (74) presents a weight
function approach to the problem of testing Ho: o = 0, versus
Hl: o =0y
the canonical form of the general linear hypothesis using

> o,. Hoel (30) has obtained a sequential test for

weight functions. Roseberry (58) derived some weight function
test procedures for the comparison of two treatments using one
covariate based on a bivariate normal model.

No results similar to those of Properties 2.4, 2.5, and
2.6 are available for any of the above examples of weight
functions in sequential testing. In addition, Hall, Wijsman,
and Ghosh (28) mention that they do not consider Wald's proof
of the inequalities on the two error probabilities for Wald's
sequential t-test to be adequate (see Property 2.3) and
further suggest that the type of arguments necessary for
demonstration of these lnequalities are those given by
Barnard (5).

In many practical situations the weight function approach
may attract criticism from experimenters because of its
arbitrariness and the possible difficulty in interpreting the
functional relationships exhibited in 3.9 and 3.10 and from
theoreticlans because it is usually intractable tolhandle the

properties of the tests analytically. It is hoped that the



topic to be developed in the next section may alleviate the
intensity of the first criticism, while on the second point
the properties of welght function tests can be investigated by
Monte Carlo techniques pending the development of appropriate

analytic techniques.

4. Prior distributions

We feel that the initial work of Wald with weight functions
and the subsequent application of weight functions for the
construction of sequential tests by various authors has a
close association with the growing body of statistical litera-
ture concerning Bayesian statistics. In this thesis, the term
Bayesian refers to any use of prior densities on a parameter
space with the assoclated application of Bayes' theorem in the
analysis of a statistical problem.

In order to discuss weight functions in the context of
prior distributions we shall adopt some definitions given.by
Raiffa and Schlaifer (53). They use the word likelihood to
denote the value 1(z|6) taken on by the mass or density
function for a given outcome z and a given parameter 6. The

marginal likelihood of the experimental outcome z given a

particular prior density g(6), defined on a parameter space
Q, is defined as

Lzlg) = [ 1(z[0)g(8)ae. | (3.18)

Comparison of formula 3.18 with 3.1 - 3.3 shows that

procedures based on weight functions can be considered as the
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application of prior distributions to sequential testing by
the formulation of the ratio of marginal likelihoods of an
experimental outcome given particular prior distributions.
These prior distributions are the Vo(e) and Vl(e), defined
over the restricted regions W, and W respectively, of the
parameter space Q, the regions being selected according to the
hypotheses to be tested (see for example, the discussion of
Wald's sequeﬁtial t-test in the previous subsection).

In some practical applications there will exist a sub-
stantial amount of empirical evidence on which to base the
prior distribution of the parameters. For example, it is
possible that a production process which produces normally
distributed random observations may generate a different

variance 02 each day 1t i1s run. That is, on the first day we

2

have Xll’ X12’ cees Xln...NI(u,ol) and on the second day we
2 .

have X21, X22, ceey XZn...NI(u,Gz) etec. It might then be

possible to describe the distribution of values of 02 by a
fairly common probability density function which could then be
utilized in making inferences about the mean 4 of the prooéss.
With reference to possible questions concerning the
fitting of prior distributions to past data, Ralffa and
Schlaifer (53) report, in rather strong terms, that their
experiences with real life examples show that in a great many
applications the method of fitting will have no great effect

on the final outcome of the results of the decision problem
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under consideration. In other words, the experimenter and
statistician need not be very preoccupied with different
methods of fitting the prior distribution to the relevant data.
This is not to say that prior distributions should not be used
but instead implies that the statistical analysis is usually
insensitive to various recommended techniques of distribution
estimation.

The problem of assessing a prior distribution is more
challenging in those situations where no empirical frequency
basis for assessment exists. Thus the prior information may
not be straightforwardly quantifiable and in these cases may
simply represent the betting odds with which the responsible
person wishes his final decision to be consistent. The
psychological difficulty with the assignment of such odds
usually results in the "true" prior distribution being de-
scribed in terms of a few summary measures such as the umean,
the mean deviation, or a few fractiles. It 1s important,
therefore, that the family F of prior distributions under con-
sideration be such that there will be a member of F capable of
expressing such fractional types of prior information.

The above difficulty increases further when, in effect,
there is no prior information whatsoever and objective prior
densities on the parameter space are desired. If the experi-
menter does not have any prior knowledge about the parameter,

he cannot proceed to make any prior guess about the parameter
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values lying over a finlte set of an infinite parameter space
nor can he proceed to choose a sultable prior from some
family of densities.

For such circumstances what are known as prior quasi-
densities have been advocated. Wallace (71) and Stone (68)

define a prior guasi-density as any non-negative function g(9)

defined on a parameter space Q. As an example of a prior
quasi~density consider the normal distribution with mean u and
standard deviation o. One quasi—denéity for o is g(o) = 1,

0 <o < =», A prior quasi-density is called admissible with

respect to a density f(x]J8), x ¢ X, if

h(x) =fQ £(x[0) g(8) 46 < . (3.19)
We then have
g*(0fx) = 1212 (0)

well-defined and we call g*(elx) a weak posterior density.

Wallace (71) shows that, given a prior quasi-density, there
exists a sequence of proper prior densities whose corresponding
proper posterior densities tend to a weak posterior density

for each fixed set of data. Similarly, given two prior quasi-
densities, gl(e) and gz(e), and their corresponding admissible
marginal likelihoods, Ll and L2 say, 1t 1s possible to have a
sequence of marginal likelihoods, say Llo and L20’ induced by

proper prior distributions so that -

3 L L
gim, Ao _ 1

Cc
Loo Lo
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It

To illustrate, consider f(x[6) where 6 (Mhy0)y =< U < @,

and 0 < 0 < © gnd let

gl(u,c) =1 0<o0< =, =y
=0 otherwise
and
gz(p,c) =1 0 <o <@ U=,
=0 otherwise.

Then we have

@

L, ‘fo f(Xlul,U) da

I

L, ='/O f(x[uz,o) dg.

Let us define proper priors as

g, (Hs0) = %, 0<o<c,u=p
=0 otherwise
gzc(H:G) = %, 0<o< Cy, M = HZ
=0 otherwise.
Then
c 4 c
= f(x|uy, ,0) do (x| o) do
lim Llc _ lim o c L _ 1im'j; £
C—> L20 c=>®  C T > ¢
J > f(x[uz,c) do j f(x[uz,c) do
L o o
= 1
L,

5. Final remarks

In the'preceding sections we have attempted to assimilate
the weight function techniques as introduced by Wald into the

context of Bayesian statiétical procedures. It 1s our opinion
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that the use of prior distributions can serve as a valuable
tool in the construction of sequential tests for composite
hypotheses. It is recognized that there are difficult mathe-
matical problems assoclated with these approaches, but they
do reduce the difficult problem of sequentially testing
composite hypotheses to the more tractable case of sequentially
testing simple hypotheses.

In support of this approach it may be noted that Barnard
(5) and Bartholomew (7) suggested that Bayesian statistics and
classical statistics may be in agreement in the context of
sequential éxperimentation. Portions of this chapter may add

credence to this conjecture.

B. Statement of the Problenm

1. Motivation

Statistical analyses for the comparison of two treatments
afe extensively documented for fixed sample size experiments.
Statistical techniques for the couparison of two treatments by
sequential experimentation are, however, not so well developed
and, further, most of the avallable sequenﬁial techniques
relate to somewhat unrealistic hypothesis formulations.

Armitage (4) disouséed the design and the éequential
analysis of medical trials with emphasis on the comparison of
two treatments. Roseberry (58) and Cox and Roseberry (18)

developed and investigated empirically some sequential tests
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which utilize one covariate. In these references, the experi-
mental units were palred and the two treatments then were
assigned at random to the subjects within pairs. In (58)
and (18) observations were assumed to be bivariate normally
distributed with one variate as the response of interest and
the other variate representing the concomitant information.
Maurice (47, 48), Johnson and Maurice (41), and Colton
(16) approached the problem of sequentially comparing two
treatments from a decision theory standpoint using loss

functions and prior distributions. As in (4), (18), and (58)

these authors used a design where the observations were paired
and again it was assumed that the observations were normally
distributed with known variance.

Hajnal (26) derived an unpaired sequential t-test for
unpaired observations and this fechnique will be discussed
more fully in Chapter V.

The situation we shall generally envisage in this thesis
is that in which observations on the response and concomitant
variates are sequentially obtained. For example, a cliniclan
may have primary interest in the effectiveness of a drug for a
head cold or for the relief of arthritic paln. The response
of interest may then be supplemented by such concoultant

information as the patient's age and blood pressure.
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In this chapter we will require that the observations be
made in pairs--one for each of the two treatments being
compared. As in Cox and Roseberry (18) pairs are comprised of
groups of two successive units, the allocatlion of experimental
units to the two treatments being random within each pair. We
shall form the signed differences within palrs of the observa-
tions and proceed to make inferences from these differences.
It should be noted here that, in general, each observation
will be multivariate so that the differences we refer to will
be differences of vectors.

Suppose that a vector of random variables (W, E'), where
W is the scalar variate of interest and Z' = (25 Z,, ens Zp)

are the concomitant variates, 1s a random vector from a

population having the probability density function

~ ~ ~ 2 ~/
g(w, z; a, 4, B, k7, 8) =
i
-~ z ~ 2
g, (23 0, 8)| =15 exp [~ {ma=(Zo)IBly (3,01
211k 2k

where o and k2 are scalars and ﬂ, E and S are vectors of
parameters. Let us also assume that E and k2 are not function-
ally related to % and that the unconditional expectation,

E[Z] = u. It is easily shown that the conditional distribution
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~ ~ ~

of Wgiven Z = z is normal with mean o + (z-u)'B and variance

kz and, in addition, that the unconditional expectation of

W, E[W], is a.
If we assume that the concomitant information, represent-

ed by Z' = (Zl’ e Zp), is obtained before the application of

the treatment, then model 3.21, with an arbitrary marginal
p.d.f. for E', appears to be a reasonable representation of a
possible real life situation in which concomltant information

is used. However, for the design we are considering, attention

will be malinly concentrated on cases for Whichgh(z; L, 8) can

be assumed multivariate normally distributed. For if (wl, Zl)

~

Z,) are random variables haﬁing p.d.f.'s

and (Wz, 2)

~ o~

~~ ~ ~ 2 ~
) and glw,, 2535 ass My B, 0, K

2
g(wy, zy5 ags 1y, By 8, Kk )

respectively then 1t is highly desirable that the distribution

~

of (Wy=l,, El-z ) should also have the form 3.21. This

property holds for the density in 3.21 if

~ A~ 1 ~ o~
—

g, (250,8) = ——F—— exp(- {Zl18 " (2oudy (5.29)

-

((2m)P[g] )
where 3 is the variance-covariance matrix of the random
varisble Z. Some further details on this point are noted in

Section A of the Appendix.



32

The final form of the model to be used will now be
developed. If we let X be the p x 1 vector of differenced

covariates 2142 , and Y be the pailred difference of the

responses of interest, wl-wz, then we shall assume that we are
sanpling from the population described by the probability

density function

g(Y’ ;;G.,B,Z,O'Z)

V[“} exp[ - LX:Q:%AEQE].
21 © 20

(3.23)

In 3.23 tildes have been used to indicate that x and B are
vectors while ¥ is a matrix. It will be convenient in what
follows to drop the tilde notation unless the matrix and
vector quantities are not sufficiently defined by the context
in which they are found.

The probability density function given in 3.21 1is a -
multivariate nonnormal density with the conditional p.d.f.
of W given Z = z being univariate normal. The p.d.f. of 3.23
is a special case of the p.d.f. given in 3.21 and is a
reparameterizéd form of the usual multivariate normal density
as given, for example, in Anderson (1). ‘As is shown in Section

A of the Appendix, (Y,X')' has a multivariate normal
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distribution (MVN) with mean (o,0)' and variance-covariance

natrix
02+B'Z SR'T
»B DX

For example, if we assume one covariate, 1.e. P=l, we have

(Y,Xl)' distributed as MVN with mean (a, 0)' and variance-
covariance matrix
02+B§o§ ‘Boi
5 1 2l .
} -Blcxl QXl

It is shown in Section A of the Appendix that the uncon-
ditional expectation of ¥ is a, 1.e.

E[Y] = « (3.24)
where o reflects the population difference between the two
treatments under investigation. The problem which we éhall
consider in this chapter is that of testing hypothesis

formulations about a using appropriate sequential procedures.

2. Sequential test with known nulsance parameters

If we assume that the nulsance parameters g, 02, and T
are known, we are essentially working with the normal variate
y-x'8 which has mean a. Thus if we formulate a hypothesis

specification as

o’ o | ‘ (3.25)

s
9]

]|
Q
J
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then we can apply, without difficulty, the standard SPRT theory

as summarized below.

It is here noted that in the remainder of the thesis,
unless the situation dictates, we do not distinguish between
a random variable and its realization.

a. Sequential procedure Let us denote the SPRT of the

specification 3.25 by S(HO, Hl; P(I), P(II)) where P(I) and
P(II) are the Type I and Type II errors respectively. Let R,

denote the likelihood ratio at stage n,

a 2
il f(Yis Xj_; a‘j_’ Bs Z, O )
_ 1 6)
Bn == 5 (3.2
H f(y19 Xl; G‘Os B’ Z) g )
1
Then from 3.23 n
2 5 x'nTox
n 2 1 2 [yt .
i f(yi’ Xi;(I.,B,Z,O' )= ——5—" €Xp >
1 (21)P]z] |
2 2
112 n (yi-a-XiB)
( 2) exp |- = 5 (3.27)
2llo 1 20
ot 2 n > n 2
and T (yi-a-x’s) =5 (yi-xiﬁ) - 2a§(yi—x{5) + no
i= 1

= (y-X'8)' (y-X'B) - 2ae'(y-X'g) + ne?

where x! = (Xil’ Xip0 Kygr ovey Xip) so that X==(xl,x2,x3,

) is a p ¥ n matrix of covariate observations.
th

. Xn) = (Xij

Bach ¥, , refers to the 5% observed value of the i
We also are denoting (yl, Yos +ees yn) by y' and (1,1, .

covarliate.

eey 1)
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by e'. Therefore the likelihood ratio in 3.26 beconmes

R =-exp [

n

2(a,-a_) e' (y-X'8) - n(a® - %)
CI.l G'O e G.l (lo ] (3.28)

202

The test procedure S(HO, Hl; P(I), P(II)) then specifies

that:
. 1 - P(II . . .
(a) 1if R, > =573 , H is regegted and H; is
accepted (3.29)
(b) if B < —2I) 5 is sccepted and H. is
: n~-1 - P(I)’ "o 1
rejected (3.30)
. P(II) 1 - P(IT) :
(e) 1if T (17 < Rn < 5y we samp;e the
(n+l)th pair. ‘ ‘ (3.31)
b. Average sample number Property 2.5 can be used to

give an approximation for the average sample number given that

0

Elln L(H :
o

where L =

the p.d.f.

Similarly

H : =
a a,

is true. For from 3.23

_ - v L
a=a ] = 2 E[(al—ao)(y-x B)‘*g(ao-@l)(ao+al)]
1 2
= - —2—? ((},O-C(.l) (3'32)

f(y’:X;Qla By 02, )

and £(y, X; o, B, cz, z) is
f(y, X;.aoa By 0 )
given in 3.23.
0y~ )
E[1n L[Hl: a =oq] = ——5;5—-— ' (3.33)

Then, Property 2.5 gives the following approximate foruulae



E[N|a ] p(1) 10 35758 + (1-p(1)) 1n 200
(04 =
(e}
(3.34)
Gl = -
202 (al—ao)

where E[N|a] is the expected sample size of the sequential
procedure S(HO, Hy; P(I), P(II)) when o is the actual value

of the parameter of interest.

c. Operating characteristic curve In order to. compute

the operating characteristic curve by means of Property 2.4

1t is necessary to find h(a) such that

o, bla)
B (y-0,-x'8)
[se] © exp[- 2 :]
/f *e /‘ = 2 f(y, X3 as By I, 02)
—-C0 -C0 (y_ao_XvB)
exp[— 2
- , 20‘ -
dydx; ... dx =1 | (3.35)

where f(y, x; a, 8, Z, 02) is as given in 3.23. That is,

writing h(a) = h, we must find h such that

5 h

(y—al—XB') 1

© [ eXp[- 2 ] . §
f f (y—ig—x'ﬁ) ( p-]i:l 2)
- -® exp[_ _____o.__._] (ZH) IZ! o
202
[ x'sx (Y‘“'X'B)Zj dydx ax, =1 (3.36a)
exp - 2 - 2 y 4 l o0 Xp .— .

20
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Rewriting we have

exp [Q(y,%)]

exp [—;5 (ai - ai)h]‘f..:[ Pii

o[-

20
(211) # [z]% o
dydx; ... dxp =1 (3.36b) -
: 2(o_=-a-)(y-x"'8)h 15—l 192
where Q(y,x) = = — o 1 .S 22 X _ (Y-G—g B) .

252 20

Expanding Q(y,x) in (y-x'B) and completing the square we have

Qy,x) = - ;§§ [(y-x'B—a+aoh-alh)2 - (a-(ao-al)h)2 + az]
%12 "y
-
Integrating 3.36b we have
exp [- 5 (a®-(a-(o -0 )0)% = (aZ-aZ)n)] = 1 (3.37)

20
Solving 3.37 for h we finally have

_ al+ao—2a

h = (3.38)

aq =0,
Let P[a[S(HO, Hl; P(I), P(II)] be the probability of deciding
for HO: o = o, when any point ae(-»,») holds as fact. Then

by Property 2.4 we have

A=yt
PlalS(H,, Hy; P(I), P(II))] = L160) me  (3.39)
(2=2(I1)) (<2(IL1))
P(I) T M1-P(I
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In passing it is interesting to note that formulae 3.38
and 3.34 are unchanged even if the p.d.f. given in 3.23 is

relaxed to the more general p.d.f.

-

1
f(y,X;a,B,B) = g (x;0) ( )
1 2H02

exp[ - LK:Q:%LQLEJ

20
where gl(x;e) is the marginal distribution of x indexed by the
vector parameter 6. It is noted here that for the case of
fixed x's the preceding derivations also hold.

As we have seen, the sequential testing theory for our
model 3.23 follows directly, with a little algebra, from Wald's
(69) SPRT procedures if the nuisance parameters are assumed
known and the hypotheses are of the simple versus simple type.
If, however, we cannot, with subjective or frequentist
probability of one, assume known values for B, oz,land £, then
we are in a composite hypothesis testing situation for which
Wald's elegant theory does not apply.

In what follows we accordingly consider the construction
of sequential tests of composite hypotheses using prior dis-
tributions. Our primary interest is again the problem of

making inferences about the a parameter in the wmodel 3.23.

C. A Test for Ho: o = Qn Versus Hl: o = Gps
with Nuisance Parameters Unknown

Let us suppose we are sequentially sampling random

variables (Yi, Xi)’ i =21,2, ooy , ... from a distribution
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which has the probability density function 3.23. We wish to

construct sequential tests for the hypothesis formulation

HO: @ = onp (3.40)
Hl: @ = a,
where G ana a, are specified scalars and B, 02, L are
unknown.
The region of preference for acceptance of Ho is
W, o= [(a,c,Bl,Bz,...,Bp,oll,...,olp,czz,...,cpp):
o = Onp and the parameters o; Bi,i=1,...,p;
oij,i;gjzl,..., p are unspecified].
The region of preference for acceptance of Hl is
N

Wl = [(asO'sB:L’st- '.’Bp’oll" --:Glp30229-'- so'zp,-
o = 0y and the parameters o; Bi,i=l,...,p;

cij,ijgj=l,..., p are unspecified].
The region where neilther Ho or Hl is preferred is the comple-
ment of the region WU .

Let us suppose that there exists no prior information
about the nulsance parameters 8, 02, and Y. As previously
discussed in Section A, Chapter III, we will assume that this

situation can be represented in terms of prior quasi-densities

over the parameter spaces as follows.
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Let
1
V (ayB,0,%) = y 0<0::<C;=C<B.<C,1i=1,2,...,D;
° p(pt+l) (p+l) (p+2) o *
2

2 2 c

O<o<c;—c<oij<0,i<j=l,--.,p; G = Gp

= 0, otherwise (3.41a)
and let
Vl(a’B’O’Z) = 1 ’ O<cii<03'0<5i<csi=1’2,---9p;
p(p+l) (p+l)(p+2)
2 2 2 2

O<o<c;—c<oij<c,i<j=l,...,p; o = ap,
= 0, otherwise.

V (a,B8,0,%) and Vl(a,B,o,Z) are uniform proper prior distri-

ol
butions set out for the express purpose of generating the
admissible prior quasi-densities, Wo(a,B,@,Z) and Wl(a,B,o,Z),
and their corresponding marginal likelihoods where

Wo(asBsG,Z) =1, O<Gii<“,—m<ﬁi<w,i=l,2,---,p;

0<g<w;-=<o; y<=,1<j=l,...,P; & = Op

i

0, otherwise (3.41Dp)
Wl(OL,B,O',Z) = 1, O<qii<_m’_w<Bi<w’i=l’2"‘"p;

o<c<m;-m<cij<m,i<j=1,...,p; o = ap

0, otherwise

It way be noted that the c¢'s given in 3.41la need not be the
same but no loss of generality occurs, for the ensuing limiting
process results in the same prior quasi-densities whether>or

not different c¢'s are used. The prior quasi—dénsities given
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in 3.41b represent an equal weighting of all points in the
parameter spaces W and Wy wnich may be regarded as an ex-
pression of our ignorance about the nuisance parameters.

We now construct modified p.d.f.'s as in 3.2 and form the

ratio
c c ¢ c
S S J o J Vi(a,8,0,1)
R(1; psn; ¢) = 2 —— — - - -
ff -l [ o) V(a,B50,%)
a =C -C 0 -c |
a 2
1 f(yi, X:3 05 By 07, v ) dodBdxda
- ' (3.43)
it f(y.l, X5 Q, 6,02, ¥ ) dodpdrda
1
%
where dg = dsldsz oo dBp and 4 = jgk dek'

After substituting from 3.4l1a and 3.23 and simplifying,
3.43 can be written as

R(1l; ps n; ¢) =

S oS f %% exp |- 2 dgds
~C -C 0 O L 20 J . (3.404)

[ [ f ~— exp |- 5 dedp

Following Wald (69), Hoel (30) and Wallace (71) we now take
the limit as ¢ becomes infinite and our test statistic 3.44

becomes
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(3.45)

[ . _%H exp |- 5

0 == -® g L. 20

If we let e then

n
— - !

1r'§(:>r-1—oc—xi6)2 )2
= (u-X'B)'(u-X'Bf

where u' = (ul, Uss +oey un) is a 1 x n vector and where

X = (Xl, Xps eees xn) is a p X n matrix of covariates. We

then have

n

@ o © Z(yi-&-xiﬁ) ) .
1 1

=L [ . f —:_lejl- exp {_ <u‘X'z:§u—X'B)jJ dgdo

=[ [ .. [ X exp[- -5 ('XX'8-2u'X+u'u)] dBdo.
o - A .
(3.47)
Using the theorem proved in Section B of the Appendix, 3;47

becomes
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1

¥ ! B > 1y ] —l
J exp [- E—%]c‘n(zn)zloz(xx')‘l 2 exp [+ X <XX2) X3y 4o
° 20 20
E —l . 1] [] ] "'l
= (2m)® fx| 2o (PP) eyp [ BLIKIEKY) Xuyogg (3.48)

o ‘ 20
It 1s important that XX' be nonsingular for the integra-
tion in 3.47 to be performed. This is evident because the
covariates are sampled from a continuous distribution and the
probability is one that X = (xl, Xps ey Xn) is of rank p if
p < n. Since rank X = rank XX' we have XX' as a p x p matrix
of rank p so that 1ts inverse exists. The integral as giVen
in 3.48 does not have finite value unless

Iou s o0, (3.49)

n-p > 1 and u'{I-X"(XX')
The requirement n-p > 1 implies that the cqmputation of the
test statistic given in 3.45 cannot begin until p+2 observa-
tions are taken. It 1s noted that this constraint is con-
sistent with the number of nulsance parawmeters remaining in
3.45, that is, ¢ and Bi, i=1, ..., p. Also, letting

A=1T-x(xx)""

X we can easily verify that
A' = A and AA = A
so that
u'Au = u'A'Au = (Au)'Au. (3.50a)
Therefore it 1is always true that
u'du > 0. (3.50b)

Now, if a random variable z 1s sampled from a continuous multi-

variate distribution and is not identically equal to zero, then
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Plz =a] =0
where a 1s any constant. Au 1s a function of the random
variables
ui‘—‘yi—a, izl, 2, ...,Tl

and

X = (xl, Xps wees Xn)

so that we can think of Auvas a random variable sampled from a

continuous multivariate distribution. From 3.50a we see that
Plu'Au = 0] = P[Au = 0].

Therefore P{u'Au = 0] = 0 and we conclude that

)—l

u' (I-X'(XX')™"X)u > 0 with probability one.

From Lemma 1 of Section C of the Appendix the result of
 the integration in 3.48 is

P 1 N-p-l

(2n)2]xxﬂ 2 (%)[u'(z-x'(xx')'
so that finally
(y-agpe) ' (I-M) (y-anpe)

R(ls D, n) = ; (3-52)
(y-0,e) ' (I-M)(y-a,e)

where M = X'(XX')_lX, e' =(1,1, ..., 1), andy’ =(yl, ...,yn).

The behavior of the ratio R(1l, p, n) given by 3.52 as the
sample size becomes large will now be examined. In particular
it may be asked if the test statistic R(1, p, n) must always
lead to a decision in favor of Ho or in favor of Hl or if

there is a possibility that it will remain in the interval
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(B,A), where 0 < B< 1l < A, for all n. It will be demonstrated

that the probability is zero that R(1l, p, n) remains in the
Qo

interval (B,A) indefinitely unless o = ——=

The following three definitions are required.

Definition 3.1: A sequence of random variables Xn is

said to converge in probability to a constant 4 if for any

¢ > 0 we have

lim P[ X -d<e] = 1.

N

We denote this type of convergence by Xn—£e>d.

Definition 3.2: A sequence of random variables Xn.is

said to converge in probability to a random variable X if
(Xn-X) converges in probability to zero.

Definition 3.3: A sequence of random variables Xn is

said to become arbltrarily large with probablility one if for

any real number d > 0, then

lim P[Xn > d] = 1.

n>o
We recall that R(1, p, n) was derived on the assumption
that the data were being generated by the p.d.f. given in

3.23 so that the vector y' = (yl, cees yn) has expectation

Uyt
o(l, «o., 1). We now show that if a< 5 then

p Oy
R(1, p, n)—> 0 and if a > s then R(1, p, n) becomes

arbitrarily large with probability one.

For this we require the following useful theorem due to

E. Slutsky and given in Cramer (21, p. 255).
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Theorem 3.2: If Yni(i =1, ..., T) are random variables
converging in probability to the constants ai(i:=l; ceey T)
respectively, then any rational function T(Ynl, P an)
converges in probability to the constant T(al,'az, ey ar)
provided the latter 1s finite.

Let us consider now S(1, p, n), where

(y-age) ' (I-1) (y-are)

S(1, p, n) = (3.53)
(y-a,e) ' (I-M)(y-a,e)

and M, e', and y are as defined in 3.52. If E[y] = ae then it
follows from Theorem 3.2 and from the fact that maximum.likeli-

hood estimators are consistent, with certain mild assumptions

(see Fisz, 34),that

2 2
o” + (a=-aq,)
S(1, p, n) <> — . (3.54)
o + (a-aA)
To verify 3.54 we write the numerator of 3.53 as
(y=ae)'(I-M)(y-ae) + Z(Q-QT)e'(I-M)(y-ae) + (a-aT)Ze'(I-M)e
(3.55)

and examine the asymptotlic properties of each term when that
term is divided by n.

From Section A of the Appendix we see that if E[y] = ae
then %(y-ae)'(I-M)(y—ae) is a consistent estimator of 02,

that is,
P 2

(y-ce)' (I-M) (y-ae) >0

Also, since E[X] = 0 and we can write
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R N AR -
%l' 8'(I—M)e = l + (Xl, XZ’ ® e 0y Xp)(T) (Xl’ o e oy Xp>
then |
% e'(I-M)e—Be) 1+ (0, «uuy O)(Z)-l(O, ., 0) =1

FPinally, we can write

-1
1 . _ - = - | XX X(y-ae)
= e (I-M)(y=-ae) =y =a+ (Xl, Xy wees Xp)( 0 o .
— 4 - -
Now J—=a, Xﬁ Esr, X(yn“e) 2. cov(x,y) and
(El, §2, ceey X)) L. 0-¢ so that

b

L et (1-M)(y-ae) == 0.

Thus the numerator of 3.53, when divided by n, converges in
probability to 02 + (a-aT)z. Similarly, we can show that the

denominator of 3.53, when divided by n, converges in

probability to 02 + (a—aA)z. Therefore use of Theorem 3.2

establishes the result given in 3.54.

Writing

02 + (a-aT

2
o + (a—aA)

)2
ELC(Q),

2

for which we have established that

8(19 Py n) £e>C(a),
it 1s then easy to verify that

Clag) <1 if o <

> 1 if g > A (3.56)
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We now show that

f

[s(1, p, 0¥ (B, (3.57)
%

where f(n) is an increasing unbounded function of n, does not

remain in the interval (B,A), 0 < B< 1 < A, indefinitely when
amTo
a2 TZ A.

This fact follows immediately from the following

theorems which are proved in Section D of the Appendix.

Theorem 3.3: If X_ L., 0<C<1, and if f(n) is an

f(n)

increasing unbounded function of n, then [Xn] -E;>O.

Theorem 3.4: If Xn ege»c, C>1, and if f(n) is an

increasing unbounded function of n, then [Xn]f(n) becomes

arbitrarily large with probability one.

It has been shown that S(1, p, n) —Be>C(a). Hence, if
e ‘
o < TZ A 5o that Cla) < 1, then taking f(n) = 2151; in
- Toamta
Theorem 3.3 shows R(1, p, n) —Es,o. Again if a > —Eg—é, then

C(a) > 1 and Theorem 3.4 implies that R(l, p, n) becomes

aT+aA
arbitrarily large with probability one. If a = 5 so that

C(a) = 1, the behavior of R(1l, p, n) is still an open question.
In summary, the SPRT with R(1l, p, n) as the test statistic

(o ot
decisions with probability one if o 2 —2,

In conclusion, the test derived in this section should
be considered as a "least favorable" approach to the hypothesis

formulation

Hy: ax Qqp Versus Hyt aza,
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with nuisance parameters unknown. Because of the manner in
which this test is derived one would expect its performance
in practical situatious to be dependent on the investigator's
cholice of QG and Qpe In particular, poor specifications of
Qy and/or G might result in excessively large average sample
nunbers. These toplcs will therefore be considered further in

Chapter VI.

D. A Test for HO: a=0n Versus Hl: a=aT+Yc

with v and o, Specified, and Nuisance Parameters Unknown

T
A number of developments in the sequential testing of
hypotheses have been based on analogies with fixed sample size
methodology. For example, it is well known that Neyman-Pearson

testing theory, when applied to the least favorable hypothesis

formulation
Ll-.uo
HO: 5 =0 O'E:(O,W)
‘ (3.58)
- H—@o B
1t - =8, 6>0, O‘E:(O,m)

provides a uniformly most powerful unblased test and also a

uniformly most powerful invariant test for the hypothesis

formulation
H : - < 0 ce(0,%)
o" o - ’ N
T (3.59)
le — > 0 ae(O,w)

and also for the ultimate formulation
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H:u<u oe(0,m)
(3.60)
Hy: uo> g oe(0,=)

The test alluded to above is the well known Student's t-test.

Wald (69), Rushton (59, 60), Cox (20) and Hajnal (26)
developed what are ftermed sequential t-tests and tz—tests for
hypotheses of the type given in 3.58. Hoel (30), Johnson (39),
and Ray (55) developed and discussed sequential F-tests based
on hypothesis formulations similar to those of 3.58. In |
sequential analysis, however, we must specify the alternative
and consequently we have difficulty in developing tests for
hypothesis formulations of the type given in 3.60 from those
\given in 3.58. For, in 3.58, we are confrbnted with the
alternative le M=i = 8o, where although 6 is known, ¢ and
therefore &0 are unknown. Thus the magnitude of the differ-
ence which can be detected with a given power is unknown.
However, i1f we have a prior estimate of o or if we are only
interested in the detection of a difference M=k scaled in
standard deviation units we may nevertheless develop a sequen-
tial test for the hypothesis formulation as given in 3.58.

As an application to the problem as stated in Section B
of this chapter, it will be shown that the weight function
approach provides a test statistic which would be intuitively

expected as a generalization of the results of Wald (69) and

Rushton (59, 60).
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Let us suppose we are sequentlially sampling random
variables (Yi, Xi)’ i=1,2, «v., Ny, ... from a distribution
which has the probability density function 3.23. Let us con-
cern ourselves with constructing a sequential test for the

least favorable hypothesis formulation

H:a=aq

o T
(3.61)
Hl' @ = Qnp + Yo
where G and Y are specified numbers and o, B, £ are assumed
unknown.

The region of preference for acceptance of HO is

w = [(a, 0, BI,BZ,..., Bp’cll’ tee3 0753 Tons ...,czp,...,cppk
o = Op and the parameters o; Bi’ i=1, ..., D3 Gij’

i< j=1, ..., p are unspecified].

is

The region of preference'for acceptance of Hl

Wl_ [(G«a 03815 523 ey Bpa 0'11: ""Olp’ 0'22’ ce ey GZp"“’ Gpp):

o = Op + Yo and the parameters a;Bi,j.=]4 esey D3 Gij’
i<j=1, ..., p are unspecified].
The region where neither HO or Hl is preferred is the coumple-

ment of the region Wy U Wy

The prior quasi-densities we shall adopt are-

WO(CH Byo,L)=1, O<C7j_i<°°s ‘°°<Bi<°°s i=;-5'-'-’ Ps

O<c<m;-w<%J<m,i<j=l,.“,p;a=c%

= 0 otherwise (3.62)
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as By 0, L)=1,0<0,; <®j-2<B, <w=,i=1,...,p;

Wl< 1i

0fg<wj;-o< g, .<w,i<j=1l, ...,DP; a =CLT+Y0'

1]
= 0 otherwise,

Using these admissible prior quasi-densities (see 3.19) to

form the ratio of their corresponding marginal likelihoods we

subsequently arrive at the ratio

R(Z’ b, 1’1) =
- n >

N Z(y.—aA-Yc-X!B)
ff .f 'exp - ) dBdo
S R (3.63)

o i Z(y.—aT—X!B)z

n ! i

j’j’ o] o exp|- 5 dgdo
0 = -co L 20 ‘

where dg = dBldBZ e dBp

If we lete' = (1, ..., 1), X = (xl, ceey xn) Zg =¥; - G
and z' = (Zl’ Zos vees zn) we can rewrite 3.63vas
S f o] o™ expl- esYoesKBl ' (z=YoeX'B)] ggaq
R(Zspsn) = Ooo -;:o _O:o 20 .
[ [ o 8 exp[; (2-X'8) éZ_X'B)J dgdo
O =@ - 20 .
(3.64)
/,/, j’ exp[; BvXng_z(z—Yce)vag+(z_yge)v(z-Yce)JdBdo
_ o == —® 20
[ [ oof o T oy [ BKB=2 X 812 ] g,
O == - 20
(3.65)

It is shown in Section B of the Appendix that 1f A is a real

p X p matrix of rank p, B is a p x 1 vector of real valued



variables and u' is a 1 x p vector of arbitrary real numbers

then
J:;..j:mexp [ - %B'AB-%u'ﬁ] dBldBZ . dBp
_1 -1
= (2m)?|al ? exp (2A Yy (3.66)
and hence with A = K%% and u = iZ:lQ%ll&l we have
o o
o D iy
j‘o'n(ZH)Zch(XX')_HZ eXp[_(z—\(oe)'(I-M)(z—Yoe)dO
R(2 ) o) 202
’p’ © E l_-
/‘c"n(ZH)zkz(XX')'llz exp[—ZLi;%Mlg]dc
0 20
(3.67)
‘/wd-(n-P) exp[w Z'(I—M)z—ZYce’(IEM)z+Y2028'(I-M)e do
0] 20 (3.68)

=4;7(_ m@[ IM ]d

where, as before, M = X'(XX')_:L

X.
Further simplifications ensue by application of the
following theorem which 1s proved in Section C of the Appendix.

Theorem 3.5: If s> 1, 6 > 0, and F(p; q; x) =

T(p+1i) (g) x*
F(p) T(q+1) 17 them

Il 4 8

i=o0



2 T(3) 2
s=1. 1.8 6 2 s, 3. &
PSS 55 &) - =27 —=— PS5 55 &) (3.69)
2 1557
(28)
Applying this theorem to the ratio in 3.68 we have
R(2, p, n)
2 2 2
_ vy e (I-M)e n-p-1, 1, (e'(I-M)z)
= eXp [" 2 ] [F( 2 3 29 XZ—' Z'(I—M)Z ) +
N
2ve' (I-M)z r(_ﬁﬁ) n-p. 3. 13 (e'(I—M)z)2 :
1 F( >3 E’ 2 Z'(I—M)Z )] (3'70)
n—Q—'l) .

Rz (1-M)z)% T3

Again it is noted that the statistic R(2, p, n) cannot be
computed unless n > p+1. It may also be noted from the con-
ditions required for Theorem 3.5 that the reduction from 3.68
to 3.69 requires that z'(I-M)z > 0. By an argument similar to
that given in Section C of this chapter we can say, however,
that Plz'(I-M)z > 0] = 1. |

To see that the result given in 3.70 is what might be
anticipated we examine the wmodel

y =ae +X'8 + ¢ | | (3.71)

where e' = (1, «.., l)"X:=(X1""’xn) is a fixed pxn matrix of

known constants, o 1s an unknown scalar, and B8 is an unknown pxl
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vector. In addition we assume e ~ N(O,GZI) so that
E[y]l = ea + X'B.
We will derive the t-statistic associated with a fixed
sample size test of the hypothesis
HO: a <0

(3.72)
H:a>0

1

and show that 1f the X used in 3.70 is assumed to be a matrix
of known constants then R(2, p, n) as given in 3.70 may be
regarded as a generalization to the covariate case of the
sequential t-test as set out by Wald (69), Rushton (59, 60)
and Cox (20).

By standard methods it is easily shown from the normali
equations for the model 3.71 that

¢ = St

8 = (xx') "t (y-ed)

A2 _ y'(I-M)y-Ge'(I-M)y
o = n-p-1 (3-73)

so that the t-test statistic for q is

§ o=l = = (I-M)y (3.74)
AN A N '
Var (a) \/oze'(I—M)e
An examination of the sequential t-test as given by Rushton

(59) shows us that the third argument in the confluent hyper-

geometric function F(_; _; _) as given in 3.70 should be
2 2 2
Yo t
2 Var (@) 2 (5.75)

n-p-1 + t
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in oxrder for 3.70 to be consistent with what is expected as

a generalization of Wald's t-test (59).

If we substitute the t as given in 3.74 into 3.75 we have

v2er (1-M)e 2
2 n-p-1 + t2
_ yZer(1-m)e (e (1-M)y]%
2 (n-p-1)6% e'(I-M)e + [e'(I-M)y]°
- Yze'(I-M)e [e'(I-MLy]2
2 [y (I-M)y - Ge'(I-M)yle'(I-M)e + [e'(I—M)y]2
2 [er(rmy]® | (3.76)

2 vy (I-M)y

If in 3.71 we set O = 0 so that z =y - ape = y we see that

3.76 becomes

2

I-M)z]
T (3.77)

2[9,
22"

y

——~

which is the last argument of the confiuent hypergeometric
functions found in 3.70.

In this last part we have therefore shown that R(2, p, n),
with controlled x's, may be intultively expected as a
generalization to the covariate case of the results of Wald

(69) and Rushton (59, 60).

E. A Test for H_: la-a o] = Yo Versus H; i Ja-a ] =Yq0
with Yo and Yl Specified and Nuisance Parameters Unknown
As in Sections C and D of this chapter, we suppose that
we are sequentially sampling random variables (Yi’ Xi)’

i =1, 2, veey By ... from a distribution which has the
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probability density function as given in 3.23. For a general-
ization of the hypothesis formulation given in 3.61 we now
consider the construction of a sequential test for

H : [a—a I =Y o
° ! (3.78)

]

H ia—aT]
where s YO, and Y1 are known real numbers, Yo < Yl’ and
where the nulsance parameters are unknown. We shall apply
essentially the same techniques used in Section D~of this
chapter and also show that the results obtalned are those to
be intuitively expected as a generalization of the tz;tests of
Wald (69) and Rushton (59, 60). |

We consider the prior quasli-densitlies which are as

follows:

\ asBsdsZ) 130<0'j_j_<°°s"'°°<8i<°°si=l’---,p;

o

O<c<w;-°°<cij<°°,i<j=l, vessy P

a==aT-+YOc, o = Gmp = Yoc

0 otherwise (3.79)

Vl(a, Bacaz>=130<cii<w5 "°°<Bi<°°ai =1, «ovy Ps
O<O'<m;—c°<cij<m,i<j=1’ coo’p
a.=aT-+Ylo, a = QT - Ylo

= 0 otherwise
Using these admissible prior quasi-densities (see 3.19) to

form the ratio of their corresponding marginal likellhoods we

subsequently have the quantity
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j‘j‘.../:gQMB,o,aT+Ylo) + Q(B,0,a5-Y{0)] dpdo

R(3, D, l’l) = Om p
/‘o -;--/LOEQ(B’O:G-T'*'YOU) + Q(B’O‘,O«T"YOO) dpdo
(3.80)
where
Q(B, 0, CLT + ao)
n 2
Z(yi-aT-ac-x{B)
-Nn 1
=g exp |- 5 (3.81)

20
and a = Yo’ Yl’
Using matrix notation we can write

Q(Bs 0, ap ¥ ao)

— f ] - - 1 i 4 — f -
s exp [- BTXX'S 2(z-ace)'X g + (z-ace)'(z aae)] (3.82)
20
where X = (xl, Xy . xn)
z! = (Zl’ Bos +ees Zn)
z.1 = yi aT, 1 =1, 2, «eey n
e' = (l, 1, LU Y l)n

By the result derived in Section B of the Appendix we have

lf "ﬂf Q(B, o, ag ac) dp

- OO -

= h(X, p) G—(n-p) exp [} (z-ace)'(IgM)(z-aer (3.83)
20
where 1
h(X, p) = (/20)" }XX1 2
M o= X' (xx') 7K.
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Expanding the quadratic form given in 3.83 we write

f"'zf B, o, g * ac) dp

= h(X, p) G—(n-p) exp [~ —lg(czaze'(I-M)e - 2acge'(I-N)z

20
+ z'(I-M)z)] : (3.84)

By Lemma 2 of Section C of the Appendix we can write

\/;L/_‘-w---/;mQ(B, o, Qp T ac) dpde

= n(x, p) exp [- &2 (IMey (pi(rmz) 2 2
2 2 |
n-p-Ly o/ n-p=1. 1. (e (I-M)z) 2ae' (I-M)
PESIFESS 5 S o ) T e
r(&%2) 2 2
2 .3, 85 (e'(I-M)z) -
—Ep F52 53 & o)1 (3.85)
2 .

From 3.85 we can write

fof_w.-.f_m[Q(B, o, ap t ac) + Q(B, o, ap - ac)] dfdo

2 ., 2 ' 2
= 1, (X, 2,1, p) exp [~ 22 =Mey piop=l, 1 8 ‘EHZ%? )
(3.86)
where n-p-4 ' | _n-p-1
n 2 rEpdya-me) f

l(X’ zZ,n, p)= h(X, p) 2
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Therefore using the result given in 3.86 we have finally
(Yi - Yi)e'(I—M)e
R(3, p, n) = exp [- 5 ]

(e'(I-M)z)z)

z' (I-M)z

. (3.87)

(e (1-1)2)
2V (I-M)z

Y[R PN
< <
Nlo N ‘\’Ir—- N

To see that the result given in 3.87 is as expected we

examine the wmodel 3.71 and exhibit the well-known fixed sample

size test statistic, tz,

2. &) (3.88)

for testing the two-sided hypothesis formulation

Ho: a =20
(3.89)
Hl' a # 0
under the assumption of normality of e¢. The estimates &, ﬁ

and 32 are given by 3.73 so that 3.88 becoumes
o 2
2 _ (e (I-M)y)~

t = 5 (3'90)
c”e'(I-M)e

An examination of the sequentlal tz—test as glven by Rushton
(60) will show that the third argument of the confluent
hypergeometric function F(_; 3 _) given in 3.87 should be
2 2 L2
t .
o 5. (3.91)
2 Var (o) n-p-1 + %
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As in Section D of this chapter we find that 3.91 can be

written as

so that we have our expected correspondence.

F. Tests for H : agan Versus

Hit azay, Gp <0,

1. Derivation 2£ tests

In Sections C and D we sequentially sampled random
variables (Yi, Xi)’ i=1,2y vov, Ny «.. from a distribution

with probabllity density function

g(y’ X; 0y By Z, 0'2) =
1=l 1all
Lo o exp - 22 E) L exp (- LBl (3.02)
5 2 3 20
(2m)“ |z (21)%q

where x and B are p x 1 Vecths; a, y and 02 are scalars; and
% 1s a positive definite p X p matrix. In Those sections we
considered two hypothesis formulations which can be viewed as
"least faVOrabie" approaches to the more general hypothesis
formulation

Ho:agaT

(3.93)

Hl:

>
a>0,
where G and G, are specified known numbers, G < Gps and -
where 8, ¢, and T are assumed unknown. We considered regions

of the parameter space which are degenerate with respect to
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the parameter of interest. For example, in Section C the

preference regions for HO and Hl are planes in

(Eigiil + 2) space perpendicular to the a-axis at g = G and

a =a, respectively.
In this section we consider alternative prior quasi-
densities for the regiouns, W and K of preference for HO and

Hl respectively where

W, o= [((a, O, Bys «nes Bp’ 0191 Opps =oes Typs Opps e Opp)
a £ an and the parameters ; Bi’ i=1, .y D3
o5 53 i<j=1, ..., p are unspecified] (3.94)

=
i

1 [(a,y o, Bl, cens Bp’ G115 O7p> “++3 0755 Tpos ...,cpp):
o > 0y and the parameters o; Bi’ i=1, «v.y P3 |
330 i<j=1, ..., p are unspecified].
The reglon where neither Ho or Hl is preferred is the com-
plement of the region W and W, .
The first set of prior quasi—densities is used to give
uniform weight to each point in W and Wy - We begin by con-
structing proper prior densities (i.e. which assign measures

that are finite and equal to one) which are as follows. Let
c > max <[aTl’laAf) and

_ . 1
Volas By 05 I) = o T (oL (552) ,

2 2
2 c (aT-Fc)
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where O<o.l.l<c,—c< Bi<c,i=1,2,...,p;

O<c<0;—0<0ij<0,i<j=1, ses3 P3 - <0< G

= 0, otherwise (3.95)
V. (a, 8, 0, L) = s
1 me p(p+tl) (p+l)(p+2) ’
2 2 C 2 (C - G'A)
where O<o.1.l<c,—c< .l<c,i=l,...,p;

O<c<c;—c<cij<c,i<j=l, ...,p;ocAgocgc
= 0, otherwlse.
We now construct the modified p.d.f.'s as in 3.2 and form

their ratio to obtain R(4, p, n, c), where

. ocT-i-o
R(Lp: Ps 1, C) = O—CLA
n
cceo c B ;L_(y.l—on-xiﬁ)
v[xff f o exp|- 5 dgdoda
A0 =0 -G L 20 '
_ (3.96)
vo )2
apec ¢ c B ]Z_(y.l-on-x.lB)
S L[ o™ exp |- > dpdoda
-C 0 ~C -C L. 20

Now, as previously in Section C we allow ¢ to become infinite

and 3.96 becomes

R(4, p, n) =
n
© ™ @ © Z(yl"'a'x'ﬁ)z
S LS exp[— 5 } apdoda
Gy O =@ == 20
(3.97)
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In 3.97, R(4, p, n) is the ratio of marginal likelihoods, the
marginal likelihoods being of the experimental outcome given
the admissible prior quasi-densities

W (ay, By 0, L) = 1, for each point in W

o
= 0, otherwise

Wl(a, 8B, g, £) = 1, for each point in Wy (3.98)
= 0, otherwise.

Letting u, =y, - a, u' = (ul, Uss oo un), X = (xl, cees xn)
we have
R(“" b, n) =

Jq'f'f...j°c—n exp[-_(u—X'B)é(u'X'B)] dpdoda

Gy 0 == =-= 20

G . (3.99)

© © _ e . e
[ [ [ o™ expl- (u-x B; éu X'8)7 4gdsda

Using the same integration techniques as in Section C of this

chapter we can write 3.99 as
o _n-p-1
[ [(y-ae)'(I-M)(y-ae)] % da
a
B(Y, p, n) = —= (3.100a)

_n-p-1
2

s
S [(y-ae)'(I-M)(y-ae)] do.

where e' = (1, ..., 1) and M = X'(XX')-lX. It is noted that

the step from 3.99 to 3.100a requires that (y-ae)'(I-M)(y-ae)>0..
By an argumentAsimilar to that given in Section C of this

chapter we can say, however, that

P[(y-ae)'(I-M)(y-ae) > 0] = 1. (3.100D)
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It is also noted that R(4, p, n) cannot be computed unless

n>p+ 1.
For convenience we now write
(y-ae) ' (I-M)(y-ae) = aaz + ba + ¢ (3.101)
where
a = e'(I-Me
b = -2e'(I-M)y (3.102)
c = y'(I-M)y.

Beyer (11) gives the following results.
Case I: If n-p is odd, then n;p-l is even and 23832 is

an integer so that

n-p-3
s dx (n-p-3)! a 2
n-p-1 . 4 (n-p-j,)z 4ac-b2
(ax2+bx+o) 2 2
=5 2 T
_‘2_8&'&2_ 5 L"ag"b H(zr) + _?QX__ (3.103)
Lac-b® r=1 \|a(ax®+bx+c) ax”+bx+c
where
r-1)! r! NP~ '
H(I‘) = L—TZLI_‘_:?T’ r = l; 2, ] !'1—:29'—3' . (3-104)
and
- + '
zdx _ 2 - tan 1 _Z2axtb - (3.105)
ax +bx+c 2.5 5.5
(bac-b°) (Lbac-b*)

It is noted here that 3.100b and 3.101 imply that

2

Pl4ac-p">0] = 1.
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Case II: If n-p is even then n-p-2 and E:E:Z are

integers and we have

dx _
‘f n-p-2 + 1~
(ax“+bx+c) 2 2
n-p-2 n-p-4
(2ax+D) (B=D=2y) (Bepttyy 4 2 (fay 2
- %i"b D(x) (3.106)
2 . 2 2
(bac=b™)[ (n-p-2)!](ax"+bx+c)
where
n-p-4
z bac-b> : \
D(x) = £ G(r) > (3.107)
r=0 Ga (ax“+bx+c)
and
¥
() = LZ_%. (3.108)
(r!)
Therefore
I. If n-p is odd 3.100a becomes
R(L’W b, n) =
n-p=~3 T
ZaocA-i-b 2 Lo b2 _ 2aaA+b
1 - T 0z e H(r) -2 tan =
= r=1 \a(aa, +ba, tc) =
5 2 A A o 2
(bac-b™) (Lhac - b™)
N-p=3 7
220, +Db 2 2 2aqg, + D
———-T————l- T gao‘b H(r) +2 tan ™+ T T+ 1
5 r=1 a(aaT-FbaT-+c) 5
(4ao-b2 ) ' (4ac—b2 )
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where H(r) is as given in 3.104.

In the equation

L has the form
8 + 2sl (s =0, 1, 2, vvuy )

where 0 1s called the principal value and 1s defined to be

such that .

oh

<0<

NI

Representing the principal values of

2a0., +Db
-1 A
tan T by 8,
5
(Qac—bz)
and of
2a0, 1D
-1 T
tan il by ST
2
(Ll—ao-bz)
we now rewrite 3.109 as
R(L"s P, n) =
n-p-3 -
2a0, +Db 2
n- £ 3 e - b H(r) - 26
) 5 r=1 a(aocA + baA + ¢)
(bge = b7)
b gl 2 r
280 + 2
L— 3 24ac-b H(r) + 20 + I
5 r=1 a(aaA + baA + ¢)

(Lac - b2)

(3.110)



68

1. 1If h—p is even 3.100a becomes
R(4¥, p, n) =
n-p- -
2ac., T D 2 2
2/5 - A T 5 G‘(I‘) 420 - b
5 5 r=o0 16a(aaA-+baA-+c)
(aaA-+baA-+c)
n_;_}‘;‘ T . (3.111)
2a0., + b 2 2
25 + L - T G(r) 420 =D
5 - r=0 16a(aaT-FbaT-Fo)

2
(aaT-quT4-c)

As an alternative to
of procedures using prior

densities and uniform for

B, 0, £ and are proper half-normal densities for a.

we mean to say the densities integrate to one.

constructing the ratio of

i

the preceding, let us develop a class
quasi-densities which are quasi-

the unknown nuisance paranme ters

By proper
Rather than

marginal likelihoods and taking the

limit as performed earlier in the section we lmmediately

proceed to present the desired prior quasi-densities as

follows. ILet

vo(as By O, %)
1

oy 2 k(a-aT)
=(=%) exp\- ———
o 20
= (O, otherwise

i<j=1’ . 00

y 0<0,., <o, "°°<Bj_<°°s'i=ls ceey D3

11

0<g<®, ~o<g, <,

LJ

y D -®< G'EG'T

(3.112)
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Vl(oc, B, o, =)
1

ok 2 k(a—aA)2 .
(__'_') eXp— S Y O<G--<c°, _O:)<B_<m’ i=l’ e vy p;
Hoz 202 ii 1

O<g<°°, —°°<o'ij<oo,
i<j=1,...,p,ocAf_on<oo
= 0, otherwise.

In 3.112, k¥ is a constant which 1s introduced to give VO and
Vl defined in 3.112 more generallty.
The ratio of the marginal likelihoods based on these

admnissible prior quasi—dehsities will be written as

- RIS, b, ) = et (3.113)
The numerator of the ratio given in 3.113 1is |
: 2
® ¢ ‘60 > k(CX.—G. )
T(2) = j"f_f “2/ o= (n+l) exp |- ————Eé;—}
a, o == - 20
n
Z(yi-(}.—Xj’_B)z
exp |- 1 = dBdoda (3.114a)
20°
=c j‘a—(n_p+1)exp[- —lg (k(a-aA)2-+u'(I-M)u)] doda
aA_O 20
' (3.114b)
where
L
2

o = (2n)?[xx!|

and 1s a constant term with respect to the integration, and

u' and M are defined as in 3.99 and 3.100a. Since
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w' (I-M)u = ae' (I-M)e - 2ae'(I-M)y + y'(I-M)y and, by Lemma
10.2 of Section C of the Appendix,
g-1

‘f xS exp[—(%)x_zj dx = %(%) .2 T(Egl); for 6>0, s>1,
o

we may write

@ , _n-b
22) = o' [ [d® + glaya + £(a,)] © da © (3.115)
“a
where
2 L n-p-2
ot = 2mfxe] f iz f %R (3.116)
and
d =%+ e'"(I-Me .
g(aA) = —2kocA - 2e'(I-M)y o (3.117)
f(aA) = kai + 3y (I-M)y.

The denominator of the ratio given by 3.113 is

a 2
T o o © _ k(a_a )
™) =) [[ . .[] ¢ (n+1) exp{} ————igl—} |

e R - 20
. .
Z(yi—a—XiB)

exp| - > dgdodo - (3.118a)

20 '

and by reductions similar to those used for T(2) we obtain

a _B=p

T2 Z
T(1) =c' [ [da” + glagle + £lagp)] da (3.118b)

where 4, g(aT), f(aT), and ¢' are defined in 3.116 and 3.117.
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Noting that T(2) and T(l) have the coumon factor c',

we find that R(5, p, n) reduces %o

. _n-p
{ [dzz +gla,)z + a(qAﬂ 2 4z
A
R(5, p, n) = —; o (3.119)

T
{m [dzz + g(aT)z + é(onT)J 2 4z

If n-p is odd we can use the integral given in 3.106 to

write
R(5: P, Yl) =
n-p-3 I
2 baf(a,) - g°(a,)
2/d - I{a,) T  G(r) >
=0 16d(da), + g(aA)aA + flay,))
A(n, p) ; - ' 7
2 4df(aT) - gz(aT)
2vd + I(aT) X G(r) 5
r=0 léd(daT + glaplag + f(ap))
(3.120)
where n-p-1 |
4df(aT) - gz(aT) 2
A(n’ p) = >
4df(aA)'— g (aA)
and
I(é) = 2d + gla”) T o* = Oy OGpe
(dqeeZ + g(a*)a* + f(on*))z

If n-p is even 2:%:2 + 1 is an integer and, from 3.103,

we have
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R(5’ P, l’l) -
N-p=2 .
= barle,) - ley) |
I - ZeAf-J(aA) z H(x) 5
| r=1 d(day + gloyla, + £la,))]
A<n’ p) Nn-p-—-2 _r
= bar(ay) - &% (ag)
I+ 2eT-+J(aT) ¥ H(r)
r=1 d(donT + g(aT)aT + f(aT))
, (3.121)

where, A(n, p) is as defined in 3.120,

Ja) = 2d0 + g(a)

l!
(4af(a) - g%(a))?

1 2daA + g(aA)

6. = principal value of tan , and
& (af(a,) - &°(a, )2
S o1 2dag * glag)
GT = principal value of tan 5 775
(Mdf(aT) - g (aT))

2. Location and scale invariance characteristics

By inspecting R(4, p, n) and R(5, P, 1) we see that both
are functions of the same quantities, Qps Gps T X, n, p.
Accordingly, for the present discussion, let us represent any
such test statistic by L(aT, ays ¥y X, ny p). Recalling that

we are testing the hypotheses

s
1S
In

Ao
(3.122)

a8
9]
v

C(.A,
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where G < G, and the nuisance parameters are unknown. It
intuitively seeuws important that the testing procedure should
not be affected by an arblitrary location change in our

reference scale. That 1s, 1t 1s desirable that

+ 68, y + 6e, X, n, p) = L<@Ts G'A’ Vs X, p)
(3.123)

L(ocT + 8, a,

where § is any real number, Since the elements of the X matrix
of covariates are differences as described in Section B of
this chapter, this matrix is unaffected by location changes.

In addition to location invariance, scale'inVarianbe is

desirable, that is, we should have
L(éaT, da,, 8y, TX, n, p) = L(aT, ays ¥ Xy m, D) (3.124)

where § is any real number not equal to zero and where T 1is
any nonsingular p X p matrix. Relations 3.123 and 3.124 may

be summarized by the consolidated functlonal relationship

+8, eaAﬁfé, oy + 60, TX, n, p)==L(aT, Cps Vs X, n, p)
(3.125)

L(eaT
where 0 and 6 are any real numbers, 6 not equal to zero.

We now establish that the functional relationship given
in 3.125 holds for R(4, p, n) and R(5, Ps n). R(4, p, n) is
given in closed form in 3.110 and 3.111 but we find it more

convenient to consider the form presented in 3.97. Let us

write 3.97 as
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®(GA’ y3 X)

@(U«Ts N X) (3..126)

R(4, p, n) =

where @(QA, ¥, X) and @(aT, v, X) are the numerator and
denominator respectively of the ratio given in 3.97.

. ]
We also denote (yl, Tps eees yn) by y' and (xl, ce xn) by X.

We now compute

@(GaA + 6, 8y + de, ™) =
n 2
© @ © w Z(GY + 6 —G,—X.'T'B)
- 1 i i
S L[ . o expl- 5 dpdoda.
GaA+6 0 = — 20 ‘
- (3.127)

Using the transformation

g —= 0(T") "1

o« —=> 0o + & - (3.128)

o ——=> Og

straightforward reduction shows that 1.127 becomes

2(8a, + 6, 0y + 68, TX) = o~ P PR 7 Tg(q , 7, X). (3.129)

A

By similar techniques we can show

$(Bag + 6, By + 68, TX) = 9—(n_p_2)[T]—1@(aT, ¥, X)  (3.130)
so that

@(eaA + 6, 8y + 66, TX) @(aA, 7, X)

¥(Bay T 6, Oy + 66, IX) = é(aT, v, X)

so that R(4, p, n) does satisfy the functional relationship

given in 3.125.
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We now establish that the relation 3.125 holds for the
test statistic R(5, p, n) and again it is more convenient to
deal with R(5, p, n) as presented in 3.113 rather than with

its closed form. Let us write R(5, p, n) as given in 3.113 as

ﬂ’(G’A’ I X)

R(5, p, n) = \U(QT’ 7, X) (3.131)

where w(qA, ¥, X) is T(2) as defined by 3.1ll4a and where
W(aT, ¥, X) is T(1l) as defined by 3.118a. We again denote

(yl, cees yn) by y' and (xl, e xn) by X. Then

x,l;(GOLA + 68, By + 66, TX) =

2
w © _ k(a~06a,-6)
LI -fcx(“’exp{— = }
SGA"'éo—m -® 20
n o
Z(eyi-+6 -q - X{T'B)
exp |- L 5 dBdoda. (3.132)
20

The identical transformation used in 3.128, naumely,

8 — 6(T") "8

o ——>fa + 8 | (3.133)
o —> B0

then leads to

§(ba, + 8, 6y + 66, TX) = 9'(n'p"3)[T]_l ¢(&A; ¥, X)o (3.134)

Similarly
g~ (1=p=3) [q -1 tlags ¥5 X)

{(Bag + 6, By + 88, TX)

so that
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w(@aA + 6, 0y + 660, TX) w(aA, ¥, X)

w(eaT + 8, Oy + 80, TX) ~ w(aT, ¥y, X)
and R(5, p, n) satisfies the equation given in 3.125.

 In conclusion it is of interest to relate the procedures

which have been developed here with the earlier work in the
field by Roseberry (58). For testing the hypothesis as given
in 3.93 Réseberry suggested an approach based on uniform
weighting of the parameter points in W, and wy which may be
implemented as follows. If, in fact ap < 0 < a, and if the
following prior densities are constructed
1

ﬁ(p+l) (p+1) (p+2)

2 % c 2 (c-Llag

UO(Qs By 0, Z) =.

when O<c.l.l<o, -c<Bi<o,i=l, eeey D3

O<d<bp¢<cn<c,i<j=L cesy D3
wT<a<aT
= 0, otherwise

1

plp+l) (ptl)(p+t2)

2 2 c 2 (e -1)a

Ul(a«s By, z)=

A

when -.O"<oi.l<o, —C< By <Cy1=1, ... D5

O<O’<O,—C<O’ij<0, i<j=l’ LRI ] p;

aA<a<wA
= 0, otherwise

then computations similar to those used earlier in this

section in our derivation of R(4, p, n) will yield a test

statistic T(4, p, n) related to R(4, p, n) by the equation
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(4, p, n) = - Z—z R(4, n, p) (3.135)
where R(4, p, n) is given by 3.110 and 3.111.
Although Olin (49) has demonstrated empirioally that
T(4, 0, n) and T(4, 1, n) may have some desirable local
properties it is easily seen that T(4, p, n) does not satisfy
3.125. For we have demonstrated that R(4, p, n) satisfies

3.125 so that T(4, p, n) can satisfy 3.125 if and only if

o, T 6

Sop TS _ %o
BaA + & QA

which is true if and only if & = 0 or Qp = Gy e It may accord-
ingly be concluded that the procedures based on T(4, p, n)
will be of restricted rather than general application.

Thus far, in this chapter, we have developed sequential
test procedures utilizing concomitant information via weight
functions and prior distributions. These procedures, however,
are not readily amenable to theoretical study of their
properties. In particular there are at present no analytic
expressions for the average sample number or operating
characteristic curve as in the simple versus simple hypothesis
testing problem discussed in Chapter II. Some empirical
sampling results on these characteristics have, however, been

obtained. These results will be discussed in Chapter VI.
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IV. DERIVATION OF SEQUENTIAL t- AND F-TESTS,
UTILIZING CONCOMITANT INFORMATION,
VIA FIXED-SAMPLE SIZE SUFFICIENCY

A, Introduction

In Chapter III, we investigated the weight function and
prior distribution approach for the derivation of sequential
tests for composite hypotheses. Another approach will now be
examined in this chapter which is to some extent notationally
independent of the other chapters.

Suppose we have a sequence of observations Zl’ 22’ ce ey
z, which are realizations of random variables sampled sequen-
tially from a population having a distribution function

C] eeey 9_)y P < n. We can sometimes

13 2’ p
make inferences about one of the parameters, 61 say, in the

indexed by 6 = (86

presence of unknown nulsance parameters 82, 93, aess ep by
transforming Zys Zpy evey 2y to a new sequence ul, Uns ooy Uy
m < n of which the distribution is indexed by some function
of 8, say Y(8). Then, under certain conditions, it way happen
that one of the terms of the sequence Ups =ees Ups SEY U,
contains all of the relevant information (in some sense) about
v(8) that is contained in the sequence Ups Ups eees Uy SO that
the joint p.d.f. f(ul, coes um{Y(G)) can be written as
fl(umjy(e))fz(ul, Ups wens Uy qo um) where

f vy U m) does not depend upon Y(8). Thus,

z(ul’ uz’
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if Ho and Hl are null and alternative hypothesis statements
in reference to Y(9) then the likelihood ratio
f(ul, uz’ ¢ e 0y um{‘Y(e), HO)

reduces to

(4.2)

£(u [v(8), H)

flu [y(8), H))
Hall, Wijsman, and Ghosh (28), (sometimes hereafter abbre-
viated HWG) and Cox (20) discuss the conditions under which
the factorization of f(ul, Ussy ooey umIY(e)) obtains and also
discuss some applications to sequential methodology. In what
follows we shall outline the pertinent theory and use this |

theory to derive sequential tests utilizing concomitant

information.

B. Definitions and Theory

We consider the probability model X, = *,QA, Py) where

¥ is a sample space of points,‘Clis a given g-field of subsets

of X, and P, is a probability measure on (1 and we denote the

8
class of probability models indexed by 6 ¢ Q as Xq

To understand the ensuing discussion the following
definitions are required.

Definition 4.1: A set G of elements is called a group if

(i) there is defined an operation, say group multi-
plication, which, with any two elements

gl, g2 e G, assoclates an element g3 of G.
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Denote by g8, = g3.
(11) g1 (gy85) = (g 8,)85 for any g, g3, 85 ¢ G.
(1ii) there exists an element g, ¢ G, called the
identity such that g8, = 8,8 = 8 and
(iv) to each element g ¢ G, there exists an eleument
g_l ¢ G such that gg_l =g g = g,
Definition 4.2: A class of models XQ is invariant under
a group G of one-to-one transformations fromjf'onto itself if

each g ¢ G induces a transformation g ¢ G such that g6 = 6'eQ

and Py(gx ¢ A) = P_ (x ¢ &), A e, 8 ¢ Q. We denote this
g8
property by gXQ = XQ (28, p. 578).

Definition 4.3: A function t on ¥ is invariant under a

group G if and only if t(gx) = t(x) for all x ¢ Y and g ¢ G

(45, p. 215).
Definition 4.4: An orbit generated by a point X ¢ X

consists of the totality of points gx with g ¢ G (45, p. 215).

Definition 4.5: If an invariant function t on ¥ assumes

a different value on each orbit then t is called a maximal

invariant (28, p. 579).

Definition 4.6: Let the probability model corresponding

to any statistic t, which 1s invariant according to either

Definition 4.3 or Definition 4.5, be denoted by

T = (L,Cl?, P$) where L = [t(x); x e X1,

CZt = [At; 571pt €], and P, is such that

.’
Y
Pg[t(x) ¢ AY] = Pylx ¢ £~1a%q,
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Here Y: 8 —> v (9).
As an illustrative example consider a random sample,

X Xos .y Xn’ from Pe, which here is taken as the probability

measure associated with N(u, 02). We know t(xl, cees Xp) =X
2 _
is distributed as N(u, %;) so that P$[X e (=3, 3)] =

Pe[(xl, cees xn) € t“l(—j, 3)] where t"l(-B, 3) is a subset

of Euclidean n-space.

Definition 4.7: A statistic s on (J is said to be suffi-

cient for X, if for every A ¢ (. and s, ¢ 5= s() there is a
version of the conditional probability Pe[ASSO] =
Pe[x e. Als(x) = so] which does not depend on 8 (28, p. 579).
Let us comsider a family of distributions indexed by 6
and, also, a group G of transformations on th; Sample space.
Decision proceduresthen will not be affected by transforma-
tions of G if
1) these same transformations leave the family of
distributions unchanged and if
2) the decision procedures are based on invariant
functions of the sample space.
On this point Lehman (45; p. 216, 220) shows that all invariant
functions are functions of the maximal invariant and, in
addition, if a statistic t is invariant under G then its

distribution depends only on a maximal invariant function, say

Y, on Q under G.
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Subject to certain conditions, to be stated later, HWG
show that
1) if a statistic s contains all‘the relevant information
about 8 and
2) if v(6) is the function of 6 induced by thevmaximal
invariant function (or equivalently any invariant
function) under G of s
then a maximél invariant function of s contains all the rele-
vant information about Y(8) that is available in any invariant
function (see Definition 4.7).
Although the preceding discussion 1s appropriate for
fixed sample size experimentation we now aiscuss the concepts
of sufficlency and invariance in felation to the sequential
experiment. Iﬁ sequential experimentation, the experiment maj— o
be terminated at any stage; but the performance at a stage n
implies some previous performance at stages 1,'2, 3,‘;..,
n - 1. Following HWG it 1s here useful to distinguish three
types of probability models:.
(i) the component or marginal models xne==(}n,CQn,Pne)

for stage n and data Xn(n =1, 2, vee),

(11) the joimt (n-fold) models Xiyg = Xyl nys Pry)e
for the accumulated data X(py = (xl, cees xn) through stage

n, and

(iii) the sequential model Xe = (%}[1, Pe) for the whole

sequence of data x = (xl, Xps eees Xy «ve.). We make the

following definitions:
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Definition 4.8: For each n, if a function, s, of the

first n observations, is suffilcient for the class X(n)Q of
joint models (0 ¢ Q), then s = (Sl’ Sps sees sn) is called a
sufficient sequence for XQ (28, p. 583).

Definition 4.9: For each n, suppose tn is a function of

X = (xl, Xys Xgy eees xn). If, for all 8 and each n, the

n)
conditional distribution of tn+1 given x(n) is identical with
the conditional distribution of tn+1 given tn, then t = (tl,

t .5 ) is said to be a transitive sequence for XQ (28,

2’
p. 583).

With the sequential model we need consider the whole
sequence of data which, of course, is not available to the
decision maker. Accordingly, it seems reasonable to concern
ourselves primarily with the Jjoint n-fold model for accumu-
lated data X(g) = (xl, ceey Xn> and its relationship to the
sequential model. With this end in mind HWG defined a suffi-
cient sequence for X(n) (see Definition 4.8) and introduced
a desirable property for a sequence called transitivity
(Definition 4.9). The basic idea of transitivity is that all
information about a statistic tn+l contained in X(n) =

(Xl, cees xn) is carried by tn(x( ). We now assume that a

n)
group G of transformations g on the sample spaoe){, for the
sequential probability model (iii) above, has the property
that each g induces a transformation g(n) on the n-fold sample

space}((n). Denoting the induced group of transformations by

and the maximal invariant on ;E(n) under

G(n)
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G( ) by u , HWG judge that the sequence u = (ul, Uy ves) is

n
the relevant invariant sequence to be used to ald in con-
structing a sequence of test statistics containing all the
available information concerning a particular parameter of
interest.

To supplement the above discussion and aid in interpreta-
tion of the forthcoming discussion we give the following
definitions.

Definition 4.10: Any set A e(] is an invariant set if

X ¢ A implies gx ¢ A for every g ¢ G (28, p. 579).

Definition 4.11: A function'v on %:is invariantly suffi-

cient for XQ under G 1f
(1) v is invariant under G
(i1) the conditional probability of any invariant set A
given v is parameter free for 6 ¢ Q (28, p. 579,
580). |
Since invariant functions are functions of the waximal
invariant we may write v = vu(u) where u 1s a maximal invari-
ant, U is the sample space of the probability model of the
maximal invariant, and Va is a function on U. HWG state that
any invariant set is of the form [x: u(x) ¢ A% where u is =a
maximal invariant. We show this by the following arguments.
If A is an invariant set then by definition we have that
X ¢ A= g(x) ¢ A for all g ¢ G. Thus u(x) ¢ A% and

u(g(x)) e AY implying that A has the form [x: u(x) e A%,
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Conversely if A' = [x: u(x) ¢ A%] then x ¢ A' = u(x) ¢ AY

but u(x) = u(g(x)) so that g(x) ¢ A'. Therefore gA' = A'.
Thus since Pﬁ(e)[ue.Aulvu = VO] = Pe[u(x)e:Aulv(x) = vo] we
have that condition (ii) of Definition 4.11 is equivalent to
saying v, is sufficient for qr; Y(Q) = I". For these reasons
we now interpret condition (ii) of Definition 4.11 as stating
that v is sufficient for the distributions of (v, t) where t
is any invariant function.

We shall also require the following theorem, due to
C. Stein, and given, for example, in HWG.

Theorem 4.1: Under certain assumptions (to be considered

subsequently), if s is a sufficient statistic for XQ and Ug is
a waximal invariant function of s(¥) = S under GS (the induced
group of transformations on S), then v = us(s) is invariantly

sufficient for XQ under G.

We consider the following definition.

Definition 4.12: v-rules are defined to be sequential

decision procedures that depend on an invariantly sufficient
and transitive sequence v = (Vl’ Vs eee). (28, p. 584)

If we replace the original sequence of joinﬁ probability
models Ex(n)eg with the sequence of probabllity models of the
maximal 1lnvariant, EUan, then the sufficiency cohdensation of
each of the components u, of the sequence u = (ul, Uy ceo)

leads to a sequence v = (vl, Vs ...) which may be called an

invariantly sufficient sequence for the sequential model XQ
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under G. As an example, consider X(n) = (xl,‘..., xn), where

Xi ~ NI(u, 1), and let G be the group of translations

g(X(n)) =(Xl—m’ X2+C’ X2+°’ veey Xn+0), - < ¢ < o, The sets

1Yy, = (X=X eeey xn_l-xn) or ,u = (xl—in, ceey X -§£) are

exanples of waximal invariants. A sufficiency condensation

n

of either (1u1, 1% «e.) OT (Zul’ LY eeos) is

v = (vl, Vs ee.) = (El, §2, ...) Where Ei is the mean of the
components of X(3) If v is transitive then Theorem L.l
provides Jjustification for using v-rules in sequential testing.
HWG give some methods for verifying the transitivity of a
sufficient sequence and proVe that the sequence v = (vi, V2’
.+.) is transitive if the pertinent sequence of sufficient
statistics is transitive.

Restricting our attention to v-rules we have v, as suffi-
cient for the distributions of any invariant function of which
v, is a function. Thus Vi is sufficient for the distributions
of Vig) = (Vl’ Vos eees vn) and the joint density of Vi)
factors according to the Fisher-Neyman factorization theorem
for sufficient statistics (28, p. 585).

HWG prove that Theorem 4.1 holds under the following

conditions which we label as Assumption 4.1.

Assumption 4.1: We are dealing with a multivariate

(nonsingular) distribution for which the region of positive
density does not vary with 0 and for which we can factor the

joint density of x as fe(s(x))h(x) so that the transformations
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g ¢ G, the sufficient statistic s(x), and the factor h(x)
satisfy the following conditions for all x-values except those
lying in an invariant set AO having probabllity zero:
(i) each g is continuously differentiable and both the
Jacobian. and %ﬁ%ﬁ% depend only on s(x) and
(i1) s is continuously differentiable with a matrix of
partial derivatives of maximal rank.
HWG point out that most normal theory exaumples satisfy these
conditions and that Theorem 4.1 under Assumption 4.1 is a
rigorous version of D. R. Cox's (20) fixed sample size theorem
published in 1952. This theorem of Cox has been used to
develop the sequential t-test of Wald (60), the sequential
P-tests (39, 55), sequential multivariate Y and T° tests for
hypotheses about multivariate means (34), and simultaneous
sequential methods in hierarchical classifications (25). For
completeness we now state.a rigorous version of Cox's 1952
theoren. o

Theorem 4.2:

(i) Let (yl, Tps oees yn) = y be random variables whose
p.d.f. depends upon unknown parameters el, 92, ey Gp, p<n.
The Ty themselves may be vectors.

z .y Z_ be a jointly sufficient and

1’ 2! p
functionally independent set of estimators for 91, 92, ...,_ep.

(i1) Let =z

(1i1ii) Let the distribution of 23 involve 91 say, but not
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(iv) Let Upsy Ugs =eey Uy <M be functions of y,

functionally independent of each other, and of Z9s Zoy eees zp.
(v) If there exists a set H of transformations of
y = (yl, Tps +oes yn) into y' = (yi, cees yﬁ) such that
a) Zys Ups Usy «..y U are all unchanged by the
transformations in H, |
b) the transformation of oy eney Z into

P

zé, zé, ooy zé defined by each transformation
in H is one-to-one,

‘c) we can write hYQ = YQ for all h ¢ H (see Defini-
tion 4.2) and

da) if Zss ZB’ ceey Zp and Zé, Zé, «ooy Zé are two
sets of values of Zgs 23, ceny zp each having
non-zero probabllity density under at least one
of the distributions of y, 6 ¢ Q, then there
exists a transformation in H such that if
z, = ZZ’ 23 = 23, coe zp = Zp then
Zé Zé, zé = Zé, ooy zé = Zé.

Then the joint probability function of Zys Ugs eeey Uy

factorizes into
f(zl[el)h(ul, Usy wees Uy Zl)

where f(zliel) is the p.d.f. of z; and h(ul, Ups eees Ups zl)

does not involve 61.
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C. BReformulation of the Basic Problem
For the probability model 3.23 under consideration thus
far, the methods presented in Section B of this chapter for

demonstrating the factorization
f(ul, Upsy wees umjy(e)) = fl(ule(B))fZ(ul, cees U s um)

(4.3)
result in a p.d.f. fl(um[Y(e)) for which we have been unable
to obtain an analytical representation. Thus the expression
4,2 is mathematically intractable in this case.

We shall accordingly reformulate the basio problem'as set
forth in Section B of Chapter III. The basic design 1s as
before but we shall assume the traditional analysis of co-
variance for two treatments:

Zgg ey PRy ey 121,02 (4.4)

J=1ly 2y eeey 20y 0

which, in terms of within-palr differences, gives

.= o + Bx, t+ e, 4,
Yy = ot Bxy toe, (4.5)
where yj = zlj - ZZj’ @ = 0q = On Xj = le - sz,

ej =€)y - €5 and E(ej) = 0. We assume here that the

covariates (w, .) and <Xj) are controlled, the random variables

1J
More generally, we may assume a model with p covariates

being (z ), and (ej) with the ey ~ NI(O, 02).

¥y = o FByXy, tBpXi, Toee. T Bpxip + ey (4.6)
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where 1 =1, 2, ... and the (xil), (Xiz)’ cees (xip) are
covariates and assumed controlled.

The interest lies in developing sequential tests which
are pertinent to various hypothésis forﬁulations about a. In
the model given in 4.6 o represents the differences between
the two treatments when the x's are all zero; that is, when

the concomitant information on the two subjects 1s ldentical.

D. Sequential Covariance Analysis for
One-Sided Hypotheses
For simplicity the following discussion will be limited
to the one covariate model 4.5. It is shown later that little
modification is required for application to the case of p
covariates.
Based on the model

y; = +Bx +e i=1,2, ... (4.7)

i
where o and B are unknown parameters, X s i=1, 2, ..., are

i’

fixed known constants, and ¢, ~ NI(O, o%) with 0% unknown, we

conslder the sequential testing of the hypothesis formulation

a-a
O-—
I_IO' o Yo
Q-0 (4.8)
Hl: s Yl

where Gys Yoo Yq BT€ completely specified and where ¢ is not
specified. In most practical cases‘aO will be taken as zero

and since generallty is not lost by a location translation on
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the y-axis, we will, for convenience, consider

(4.9)

QIR gl

Yy

as the hypothesis of interest.

From 4.7 we see that the joint distribution of the
sequence of independent random variables yl, Tos eees Ty from
a distribution N(a-*Bxi, 02) is completely specified by the
parameters a, B, and 02 and, since B and 02 are assumed
unknown, we are in a composite hypothesis testing situation.
The application of the methods discussed in Section B will now
be demonstrated. -

We transform the observations

yl y2 yn
1/, {11y ooy |1 L (4.10)
Xl XZ Xn
to
t3, t4, ooy tn’ (4.11)
where
N
(04
ti = _'—-——-'__l" j. = 3, Ll", 5, e e } (4.12)
% 2

and
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Il

<
1

w>»
i
N
4

S, = o(x-%)(y-¥) (4.13)

= $(x-y)?

PO
Var(d) = 62q§
-2
X

SXX

-+

el

where ¥ denotes summation from 1 to 1.
Each t, as defined in 4,12 and 4.13 has a noncentral

Student t-distribution with noncentrallity parameter

————9———1 = E%;' (4.14)
(Var(a))? |1

Thus at stage 1 the distribution of ti does not involve the

nuisance parameters B and ¢ except the latter in the ratio %.

We now establish via Theorem 4.2 that the joint p.d.f. of

t3, tq, cesy tn factorizes into

£ (5 [55)2, (65s byn wnes By gy ) (4.15a)

1 njcqi n

. Q .
where fz(tB’ t4’ ceey tn-l’ tn) does not involve o To this

end, let us examine in turn the conditions of Theorem 4.2.
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Iy [Tz In
Condition i: L/, {1 ], eeey |1 are realizations of
Xy, X X,/

random variables whose probability distribution depends upon
the unknown parameters (o, B, ¢). For our problem we trans-

form the parameter space to the one of interest,

(

alR

y By G) = (el’ 623 83)- 7
”n /\2§

Condition ii: (zl, Zos 23) = (tn, B, (6°)%) is the

functionally independent jointly sufficient set of estimators
for (%, 8, o). The functional independence may be verified
by considering t = t(yl, cees Ty Fps eees xn),
@ = B(yl, cees xn), and 6 = c(yl, ceny xn) and by showing that
the Jacoblan
Aty By 8)
a(ul’ U'Z’ U—B)

#0 (4.15D)

for the C, possible combinations of distinct variables
2n 3 ,
(ul, uz, u3), where ul, uz, u3 can assume any of the 2n
variables Tis Too eves Tpo Xqs eees X Because of the
stochastic nature ofthe Jacobian 4.15b we should say
ot 8, 0)
b(ul’ uz’ u-3>

with probability one. With regard to joint sufficiency we

know that (4, ﬁ, 32) where &, B, 82 are defined by 4.13
is a vector of jointly sufficient statistics for (a, B, 02)

Now if T is sufficient for 6 then any one-to-one function of
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T, say ¢(T), is sufficient for any one-to-one function of 6;

say y(6). Since o > 0 it follows that

N iy
n A2, 2
( & 1 B, (0 ) )
A2\ 2
(%)%
is sufficient for
(%9 By U)-

Condition iii: That the distribution of tn involves

(a/0) and not B or ¢ has been previously noted.

Condition iv: The t3, t@’ t5, crey tn-l are functions
of the (y;, 1, Xi)', i=1,2, ..., n-1 and are functionally
independent of each other and of t , 8, (82)1/2. This can be

demonstrated by the same technique as indicated in Condition

ii.
Condition v: Let
Iy K 00N [y
H=|{1] =10 10 l,kl>0,k2740and.
X, 0 O kz X3 o
) 1‘—1’2’ ..-,n
Then
%, x'y? 1k2 Sxy - El @
x'x! kg Sxx kz
Svon”
(%) = L. 5 e S AN ZY
-2 “y'y' T8, 1
X'x
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2 1. % 1 %2
(q )" = n "3 =nt85 "%
x'x! XX

We now examine the four subconditions of condition v.

(a) We have

Pad

ti - of T - 1 T - ti’
(er(@))2 (62 var(a))?ly
where (Zl’,ul’ Us s Ugs «ees um)==(tn} t3,..., t
& Kk L
(0) (Br, ((6°)N%) = (F 8, 1P

2
This 1s clearly one-to-one as required.

(c) The probability model Y, remains unchanged for every

h ¢ H. We show this by comparing

Polh(yle (cys ©5)] and Pgply e (oq, c5)]

where
k

=n 1 2
ho = (kla, sz, klc ).
Since h(y) = k,y we have that

2 1

k - 2

Pe[h(Y)e(Ol,cz)] =/ Lizng?) 2 expl - iX:Q%EEl_] dy.
A ° . 20
ky

By definition we have

1 2
c _— (y-k, 0=k, Bx)
2 2 2) 2 exp[; 1 2 } dy

Prgly e (g, 02)] ==j; (2mkjo .2
1
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and writing y = klz, it follows that

C

_2 1 2
kl 5. "% (z-a-klﬁx)
P—.[ye(c,y, c )] = (2m6”) exp |~ iz
ho 1 2 2
. c 20
_L
=l

= Pglh(y) e (cq, c5)].
(d) Let (@(O), 6(0)) and (ﬁ(z), 6(2)) be two sets of
values of (B, 6). Condition v.d essentially re-

quires that we notice that real numbers kl and'k2
exist such that 3(2) = klg(o) and k2§(2) = kiﬁ(o).

(A(O) A(O))

5] y O we have

For then if (B, &) =

~ ~ k]_/\ A
(B', o') = (EEBs klc)

_5(2) 52y

_ : . . ~(0) ~(2)
Tc have ky and k, well defined we must have & and B #0

which, as pointed out before, happens with probability one.

It is now possible to write

— &
£(Eg wees Ty) = fl(tnlcqi)fz(tB, ooy B) (4.16)
where f2(t2, cees tn) does not involve.(%).

The likelihood ratio 4.1 for this application can then

be written as



R = ———= (4.17)
YO
£ (80

where y, and y, are defined as in L.9.

We shall now give an alternative demonstration of the
factorization shown in 4.16 by showing that t, is a maximal
invariant of the sufficient statistics under a certain group
of linear transformations implying that it 1s sufficient for
any invariant sfatistics, the distributions of these invariant
statistics being indexed by some parameter 6. In partiéular,

we wish to show that tn is sufficient for the distributions of

the scale invariant statistics (t3, s eees tn).

For the model under consideration, 4.7, the sufficient

A2)l/2

statistics &, B, and (3 are defined in 4.13. We define

a group of transformations

i\ K75
G = L 1 = 1 : kl e (0, =), k2 e (0, =) (4,18)
Xy KyXy i=1,2, ..., n

from the sample space onto itself. The class of induced
transformations on the space of the probability model induced

by the sufficient statistic (see Definitions 4.6 and 4.7) is

1 1
= k. . .5
6y = [@, B, B995) = 08, 6, 9697
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and the class of induced transformations on the parameter

space,

Q= [(o, B, o) (s B, 0)e (-», @) x (=, ©) x (0, w)] (4.20)

is

- kl

G=[(a'yB'y0') = (klc(«s "E;B; kl )s (kl’ kg)?(oa‘”)-x(os“’)]-

(4.21)

A maximal inVariént function of the probability space of

the sufficient statistics under 4.18 and based on all the data

through stage n is

_ a :
£, = - (4,22)
SANy 2
(Var(a))
where
%=y -8%X
2
A~ S -2
A 1 X
Var(d) = (5. - =) (= + 2—)
yy SXX n SXX

To show thls we need to demonstrate that tn is constant on an-
orbit (Definitions 4.3 and 4.4) and assumes different values
on distinct orbits (Definition 4.5). An orbit under the group

G given in 4.18 on the space of sufficient statistics S is
~ kl/‘ A ~ ~
0 = [(qu’.(ig)ﬁ’ klo): for a particular (a, B, 0) ¢S and

all (%, k) e(0, =) x (0, =)]

1’ :
A2)l/2

where for convenience we are denoting (o by 6. It follows

that tn is constant on an orbit since
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at k. Q a
Tt = = 1 = =t
n 1 1 1 n’
/\/\ .2- 2 A § ) A .2-
(Var(8)') (kl Var(a)) (Var(a))
If 0, and 0, are disjoint orbits, i.e. Ofﬂoz = @, then since
we know that tn is constant on an orbit we must show that

2) denote respectively the

(1) (2) (1) (
t, # t,”’ where t =7 and t
constant values that t, takes on 0, and 0,. Assuming that

g(1) = téz).then

n
A A
9 %
6-9._ 6,4
1°n 2°n

A N A ~ A 2~ s

for all (al, Bys cl) € O1 and all (az, Bso 02) ¢ 0,. That is,
@ = Olqnol
Gy = 01992

where cl is some real number. Now

(al’ /él’ 61) = (Clqn%l’ %1’ 81)

and there exists a (kl’ kz) e (0, @) x (0, =) such.that

~ 1a A~ _ A N A
(kpa,, ﬁgﬁz’ k05) = (k090,055 Bys K 0,)

A
(Clqngl’ Bl’ 81)
A o o
- (Q'l’ Bl’ 01)
which contradicts 010, = g. This completes the demonstration

1
that tn is a maximal invariant.

We next require the following definitions.
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Definition 4.13: A function f is said to be equivalent

to an invariant function if there exists an invariant function
h such that £(x) = h(x) for all x except possibly on a P-null

set N (45, »p. 225).

Definition 4.14: A function f is said to be almost

invariant with respect to a group G of transformations if
f(gx) = f(x) for all Xe')f-Ng, ge¢G and Ng is the exceptional
null set permitted to depend on g (45, p. 225).

HWG prove that Theorem 4.1 holds under the following

assumnption.

Assumption 4.2: Every almost invariant function on the

sample space of the sufficient statistic S is equivalent to
an invariant function.

Since we are assuming that the underlying distribution as
normal, every almost invariant function of (a, B, 0) is known
to be equivalent to an invariant function (28, pp. 581, 604;
45, p. 225). Thus Theorem 4.1 leads to the conclusion that
(t3, t#’ .) is an invariantly sufficient sequence and that
t._ 1s sufficient for the distributions of any invariant func-

n
tion of which it 1s a function and, in particular, therefore,

for the distributions of (t3, cees tn).
By the same arguments as those used to show that tn is a

maximal invariant under GS (see 4.19) in the sample space'of

the sufficient statistic (&, B, 6) it can be‘shgwn.that % is

the maximal invariant of the parameter space under G, the group
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of transformations on 2 induced by G on}f. Invariance, orbits,
and maximal invariants on the parameter space Q are defined as
in Definitions 4.3, 4.4 and 4.5 where X is replaced by Q and
the x ¢ ¥ 1s replaced by 6 ¢ Q.

Theorem 4.3: If (¥, A, Pe) is the probability model and

if the statistic T(x) is invariant under a group of trans-
formations G and if ¥(0) is a maximal invariant under the
induced group G then the distribution of T(x) depends only

on y(0) (Lehman (45, p. 220)).

We have demonstrated that (t37 th’ PR tn) is an invari-
antly sufficient sequence and that tn is sufficient for the
distributions of any ilnvariant function of which it is a
function. In particular, tn is sufficlent for the invariant
statistics (t3, ceo tn_l). In addition, by Theorem 4.3 we

see that the distributions of (t3, UERERY tn) are indexed

by % and thus the factorization given in 4.16 obtains.

E. Practical Implementation
The likelihood ratio given in 4.17 is a ratio of non-
central Student t-distributions. Existing tables of the
noncentral Student t-distributions are not well suilted for cal-
culating the ratio 4.17 (see Resnikoff and Lieberman (56a)).
However, 4.17 can be written in terms of certain confluent
hypergeometric functions for which there are fairly extensive

tables (63, 67).
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Let W denote a random variable which is normally dis-
tributed with mean Y and variance 1. Let V denote a random
variable that is distributed as chi-square with r degrees of

freedom. If W and V are stochastically independent, the new

random varlable
o= | (4.23)

L
(V/r)?
is called the noncentral t-distribution with noncentrality

parameter Y and degrees of freedoum r.

_ | Ly
_.Y_z_ : ) r(&) (/E t;)
oy .72 1 T(r+l) 1 2 T+t
£lely) =e I T il
5 1“(5) £2 == [1=0 -r(—é—). il
m)“r (1+T)
(L4.24)
; 1
Y‘2 l2 t‘{) r+1 1
-7 \pd T +3)
= f(t]Y = 0) e % al
i=0 il F(—é—-)

when t ¢ (-», «).
We now express the summation given in 4.24 in terms of

certain confluent hypergeometric functious.

. r+1 1
- ﬁ INC —2-)
i=0 * r(%i)

2 T(E2 +3) = 23 r(%i+§3§ﬂ)_

5y Y + Z 0 '
o (230t ozl 35=0 (2j+1)! r(%—l)

(4.25)




_ oo g N Do, 5 g TR
3=0 b)) I«(E'*Z'_l_) 3=0 it (23+1)! (%ﬁ)
(4.26)
; 23 T(%) T(E%—*'J)
;=0 3t 28hr(pd) T (ER
: 3 r+2 r+2 .
NS I A IE o
=0 9P 2firdeg) r(EE) rEd
since
i i!
(2500 7 23(25 = 1)(2) = 2)...(2] = 2] +1)
1
] r(z)
2235 - 503 - 3).e3.350(3)
| (4.28)
r(z)
28+ 5
and
i - bR
(Z7 + L)F - (23 + 1)(231)
r(%)
C28r(y ¥ ) (25 + 1)
(4.29)

From the definition of the confluent hypergeometric func-

tion F(p;q;u) as given in Section C of the Appendix we write
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° 1 r+1+i

- x- I( 5 )

i=0 1! r(%—l—)

+
2 D(E=E) 2
oo+l 1,0 X 2 r+2, 3, X
= F( 2 3 2 ) + I‘(r+l) F( ) ’ 'é'; T) (4‘-30)
== ,
so that
2

ale ale

L(1)

= 1 . | (5.32)

where



2 Y=t

T(Y) = eXp| - YZ E(nél: %—': > = 2
2q 2q° (n=2+t2)

n 2,2
V2 =2 P(§> n. 3 Yty

* > To-I, T332 zy) (4.33)
qv/n-2+t> T(=5=) 2q (n-2+t")
with ¥ = YO, Yl'

F. Discussion
Although the arguments considered in this chapter have
been developed in the one covariate case, the extension,to'p
covariates 1is easily accomplished. The appropriate statistic

with respect to hypothesis 4.9 is

— PaA -
y -  B.X,
i=1 J Y
-~ P A =
(Var(y - = BjXJ))
1
n n
Ly X S
= _ 1t - 1 Yo Yy - iy
Where y = Sms Xy = T BT g 8y oy = I0Eymxs (40,
j X.X. J 1
J J
and S =3 (x.. -x.)".
xjxj ] ij J
If we let
- P A
Var(y- = ~B.x.)
2 3=1 J J
qn = o
o

then we write the likelihood ratio



L(p) = g2rd (1.35)
p'Yo ‘
where
2 2,2

- 1 Yot
T (V) = exp[— s E?(“——P; 55 )

n-p-1

o2 Y (25 p(Rmptl, 3. Y242 ﬂ
5 TR ¢ 7 2 292 (n-p-1+t7)
qy (n-p-1+%%)
(4.36)

with ¥ = Yl, Yo'
Similar arguments obtain in deriving a sequential test
for the two-sided hypothesis formulation

HO: i%l =Y

B:o | =

The appropriate test statistic is £2 where t is given by 4.34.

(4.37)

|
<

The likelihood ratio reduces by sufficlency arguments to the
ratio of noncentral F-distributions with noncentrality

parameters Yi/qi and Yi/qi where qi is as defined previously.
When expressed in terms of confluent hypergeometric functions

the ratio becones
2 2.2

Y17 o n-p. 1 Yt
°xp |- 3| F(555 35 T 2
an an(n—p—l t7) . (4,38)
5 53
o n-p. 1, Yot
exp |- — | F(5555 %3 5—7)
2q,- 2(n-p-1+t )qn

The test statistics given by 4.33, 4.36, and 4.38 can be

used with the operating procedure given in Section B of
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Chapter II. However, only Properties 2.1, 2.2, and 2.3 of
Section C, Chapter II are known to hold., Since the test
statistics given by 4.33, 4.36, and 4.38 are sequential t- or
tz-statistic type of procedures, David and Kruskal's (22)
result proves termination with probability one. The remark
following Properties 2.2 and 2.3 in Section C of Chapter II
allows us to use Wald's boundaries with the procedures achiev-
ing approximately the specified Type I and Type II probabil-
ities of error. No results siwmilar to Properties 2.4, 2.5,
or 2.6 have been proved for any kind of sequential t-test
however.

This completes our consideration of one-sample sequential
t-tests utilizing concomitant information. In the next

chapter we consider the possibilities of a two-sample analysis.
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V. THE SEQUENTIAL TWO-SANMPLE t-TEST UTILIZING
CONCOMITANT INFORMATION

A, Derivation of Hajnal's Two-Sample Sequential
£~ Test via Prior Distributions

In Chapters III and IV we were concerned with developing
sequential tests of hypotheses for a model based on within-
palr differences of observations. Thus, although we essen-
tially began with a two-sample situation, we considered paired
observations and constructed what are, in effect, one-sample
sequential tests. In this chapter we investigate the pbssi-
bilities of a two-sample analysis which does not require the
" pairing restriction.

Such a procedure has, in fact, beeﬁ developed by Hajnal
(26) and is termed the two-sample sequential t%-test, For
this procedure observations are taken frou two normal popu-
lations with unknown means, Gy and oy and common unknown
variance 02. Based on these assumptions Hajnal presented a
procedure for sequentially testing

o (5.1)
ol
Hl: (aé - al)z 2 2 :

where Y 1s specified but o is assumed unknown. He used Cox's

Theorem (20) in showing that the usual fixed-sample two-sample

Student t%-statistic, say |
- -2
2 _ (yl - y2) u

£t° =
. g2

(5.2)
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n.
1

il 4

J4 3
- : J
where y. = A= is the sample mean of n., observations taken

on treatment i1 and i=1, 2, u = %f + %—, and
7, n, i .2
R AN LI S C I SO L
> 1 1] 1 7 2] 2 ,
g = , 18 sufficient for the
nl + n2 - 2 '
parameter of interest,
2
(Q'Q) 2
22 L =Y . (5.3)
o

Thus we may factor the Jolnt densities of the sequence of

2 . s 2 2 2
t -statistics tl’ t2, ooy tn 0 -2 under each of the

172
hypotheses Ho and H1 as

where 81 does not involve Y2 and where n = 0y + n, - 2.

Consequently, the appropriate likelihood ratio may be written
as
2
g(t, : H,)
——t (5.5)
which is recognized as the ratio of the p.d.f. of a noncentral
F-distribution to a p.d.f. of a central F-distribution.
We shall now show an alternative derivation of this ratio
using the methods presented in Chapter III. This result it-
self 1s of some theoretical interest in relating the two

approaches. Further, however, we proceed to introduce
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concomlitant information and develop sequential tests appro-
priate to this more general situation.

Suppose that, at each stage of sampling, we do not re-
strict ourselves to only one observation from each normal
population. For example, at each stage we may sample one
observation from the first population and three from the
second population so that at the nth stage we have accumulated
n and 3n observations from the first and second populations
respectively. The effect of such grouping is discussed in
Wald (69). Wald's general conclusions are that: 1) the
realized values of the Type I and Type II errors cannot exceed
the intended values except by a small amount (which, he states,
may be ignored for all practical puposes), 2) the number of
observations required to decision will be increased from that
of sampling single observations at each stage, and 3) that the
realized values of the Type I and Type II errors may be sub-
stantially smaller than intended; this may be regarded as com-
pensation for the increase in the number of observations.

Let us assume then that at the nth stage of sampling we
have accumulated ny observations from a population distributed

2) and n, observations from another population
2).

as N(al, o)
distributed as N(az, o

Our region of preference for acceptance of H) is

W, = [(al, Y o): =@ < a; <® 1=1,2; 0<0 <

and aq = az]
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and our reglion of preference for acceptance of H1 is

8

wy = Loy, 0y, 0): =@ <0y < @, 1=1,2;0<0<o,
lal-a2|= Yo and Y specified].

The boundary of REE denoted by Sl’ is

8

8y = [lags 0y o) =@ <@, <=®, 1 =1, 2; 0< 0 <,

la, = a2] = Yo and Y specified].

-_—

The likelihood of all the observations taken through the

nth stage from both populations is
k
2
L{yys ¥o3 aqs G5y o) = (2m0) 7 expl- —1-5 Qlags ay)] (5.6)

20

WheI'e yl = (yll, ylZ’ LU ] yll’ll)’ yé = (y21’ o0y yan),

k=n +n., and

1 2 n n
1 ) 2 >

which later, 1t willl be convenlent to write as

2 2 - - -
Q (e, ay) = mal +tn,05 - 2n,¥0q = 20,750, TR (5.7)
oy
where R = 8 + n 52 + 3 + n 52 v = §?yli
- , =
yi¥y  TITL 0 Yoy, 22’ L ng
n, |
_ LYo ol )
yz = ]-n sy S ¥ = 2 (}’11-57.1)2, and S ¥ = (yzl'yz)z.
2 T 1 V292 1
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We consider the following prior quasi-densities,
Vo(al, Gos g) =1, 0 <g < ® ~o< a; <, 1 =1, 2;
Ial—azl = Yo, Y = 0,

0, otherwise (5.8)

i

V]_(G']_’a‘g’o):l!O<G<°°s"°°<0«i<°°,i=l,2
]al—a2] = Yo, Y # 0 and specified,

= 0, otherwise
on the region W of preference for acceptance of HO and on the

boundary Sl of wy where Wy is the region of preference for

acceptance of H As 1n Chapter IIT we calculate the ratio of

1
marginal likelihoods given V1 and VO respectively. We denote
this ratio by R(0) where |
j; Vi(al, 0y o) L(yl, Vo3 Gy G o) da, da,do
R(0) = —& (5.9)
/‘ Vo(al, Gy o) L(yl, Vo3 Gps Gps a) da, daydo

w
o

The numerator of 5.9 can be written as.

cq j;j:wc' [expl- ;%E Qo(a2 + Yo, a,)]

# oxpl =5 Qy(ay - Y9, 6y)]) doydo (5.10)
9

where
— 12 = = _
Q, (o, TYo, ay) = kay = 20, (0¥, 0,7, nlYo)

2 2 -
+nlY g7 = 2nllec + R
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I = =
Q (az-Yc, az) = kay - 2qz(nlyl+n2y2+nch)

2 2 -

. + nlY o7 + 2nlleo + R
c, = (2m) 2 (5.11)
k= n1-+n2
and
R is as previously defined following 5.7.
Now
@ _k 1
j'/’ o~ expl- =5 Qo(cc2 + Yo, az)] da,do
Q = 20
. 1 2 2 - |
=([ expl- =5 (nlY o” - 2n,y,Yo + R)] - T(o)do (5.12)
o] 20 )
where

o]

(o) = [ o7 exp - =5(kjaf - 201 (07 0,7 ,-n Y0)) do,

- 20
~(%-1) (n1§1+n2§2’n1Y°)2
= ¢,0 exp (5.13)
k
and 1
c, = (2ﬂ)2.
We write 5.12 as 5
® n. -n
-(k=-1 1 2 2,71 71 -
Cz.f o ( ) exp - == (Y4o“( = ) - 20,y Y0 + R
o] 20
— —_ 2 - -
(n.y,+0,5,) 2n. Yo (n,y,+n,y,)
17170 E T T Y o (5.1k)

- k X
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Letting u = nI; and expanding and gathering terms, 5.14 then
172
becomes
" -(k-1) 1,22 — - = =2
c. o expl - (Y56% - 2Yo(y,-y,) *+ (¥y,-¥,)
2 J; 202u 172 172
+ u(8 ))] do. (5.15)

+ 8
N1 V2Y2
By a result given in Section C of the Appendix we complete the

integration in 5.15 so that 5.15 becomes

2

y k-2 1, .2
C203 expl - z‘a][F('—_s 53 z")
L
_ 2
TS 2(y,-¥,) C k13 2
"TED \ws, v, vyaf 22t
2\ Ty, T T2
where
— -2
2 (y1=¥,) |
s + + (7. -
u( ylyl yzyz yl y2)
and

u(s + S
3 [ ( ylyl Io¥o ):]
and where, as before, F(Pl; PZ; z) is the confluent hyper-

geometric function. Similarly

o exp[} —= Q (o, = Yo, a ﬂ da.do
J; C» 202 072 * T2 2
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2 1

= o0q expl- 531 [F(552)5 45 2°)

ae] [

Yo (£55) )2
r(£2) \u(s

2(y,-y B}
.l i § 2]

AV]

+ 5. )+ (T,-7.)?
ylyl Y2y2 172 (5.17)

where 5 following 5.13 and 03 and 22 take the same values as

in 5.16. Adding 5.16 and 5.17 and multiplying the result by

c, we obtain the following as a closed form expression for

5.10,
v2 g2 1 Y@ (-371‘5’-2)'2
°1¢p03 expl- ZIF(5555 55 o3

).

= = 2
S +8 + (¥, -

U( ylyl yzyz) (yl yz)

(5.18)
The denominator of the ratio 5.9 may be obtained from 5.18

by simply setting y = 0. The ratio 5.9 then becomes

- =2
2 2 (y,-¥,)
B(0) = expl- s=-1F (5525 15 L L2 — ).
2u 2 2 2U u(s +8 )+(y -y )2
ViV, ¥V 1772
(5.19)
Finally, 1f we let
v, -7 |
£ =Lt 2 (5.20)
ou :
where
S
2 I191 ¥
- k-2 ’
5.19 can be written
2 2 2
Y k-2 1 ¥ t
R(0) = exp[- =] F(==; =; = ). (5.21)
2u 12720y pyg?
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If the prior quasi-densities

Vo(
jal-az = Yo, Y =0

0, otherwise ‘ (5.22)

Vl(al, Uos o) = %, 0 0 < @ == < a; < oy i1 =1, 2;

Ay =G| = Yo, ¥ # 0 and specified

= 0, otherwise
were used rather than those given by 5.8, the first argument
of the confluent hypergeometric function given in 5.21 ﬁould
be E%l rather than K%é. The k-2 of the last argument would,
however, remain unchanged. The 1ike1ihood ratio would then
agree exactly with Hajnal's result (26, p. 66). We chose the
prior quasi-densities given by 5.8 because they uniformly
welght each point (al, 0o s o) of W, and Sl whereas the prior
quasi-densities given by 5.22 weigh each point inversely pro-
portional to o.

We know of no detalled theoretical or empirical studies
of the properties of either Hajnal's result or have any been
obtained for that given in 5.21. We note, however, that since
the confluent hypergeometric function 1s monotone lincreasing
in the first argument (Slater, 67), 5.21 is slightly more con-
servative than the ratlio derived by Hajnal. That is, Hajnal's

test procedure will reject HO more frequently than the test

procedure with 5.21 as its likelihood ratio test statistic.
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B. The Sequential Two-Sample t2-Test
with One Covariate
In this section we now apply the prior distribution tech-
nique to the analysis of a model which is basically the same
as in Section A except that now one covariate is introduced.
At a particular stage of sampling we accordingly assume the
following model: |

y1j=al+B(Xij-Xl)+€lj, .J -1, 2’ o0y nl

— _ (5.23)
whee ¢, , ~ NI(O, 6®)y 1 =1, 2; J=1, ..., n,, and where
. .th . ' . th
-Xij is the j covariate measurement on the 17 treatment
n,
i
Y X. .
- 1 1d
and X, =5 sy 1 =1, 2. The covariates are assumed to be
N .
controiled.

If we picture the model 5.23 in Euclidean two-space we
see that the difference in treatments is the distance bétween
the two regression lines measured along any line drawn
parallel to the y-axis. Since the two lines are assumed to
be parallel this distance is constant for all x and is equal

to the following function of the parameters and x's:
Gy = Gy = B(xl—xz).
Accordingly, one hypothesis formulation that we may test is a

generalization of 5.1,
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H: |al-a2-8(§1—§2)]‘= Y 0

(5.24)

H. : ]al-az-ﬁ(il-xz)]‘= Y 0,
where Y, and Y, are specified and Y4 # Y, and where Ups Gps O

and 8 are unspecified. If we let Yl = 0 then our null hypothe-
sis is that there 1s no treatment difference and the alterna-
tive hypothesis is that the treatment difference is Y2 staﬁ-

dard deviations.

The prior quasi-densities we consider are
Vo(al:.azy B, o) = 1, 0< ¢ < ®y, == < Gi < ®, 1 =1, 2.
~» < B <@, oy - a, - B(X-X,)| =vq0
= 0, otherwise (5.25)
Vl(al, ays B o) =1, 0< 0 <@ =0 a; <@, 1 =1, 23
-® < B < m’A[al - az = B(El"-}zz)l =Y20
= 0, .otherwise.
where in general Yl < YZ'

The likelihood of the nl+n2 observations is

nl+n2 .
Lic,, ays B, 0) = (2m0%) exp[- =5 Q; (aps ay, B)] (5.26)
1% =2 72 202 1M1 220 '
where
n

1 . 2
Ql(al’ az’ B) =):|:_ (yl al—B(le Xl))

n

2 — 2
z (yzj'az’a(xzj‘xz)) . (5-27)

1
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As in Section A of thilis chapter we proceed to calculate the
ratio of the marginal likelihoods of L(al, Gss B o) using

the prior quasi-densities in 5.23, as

R(1) = EIFKIT (5.28)

where

©

Bl(Y)==j;j“ J Llaysaq -B(x;-X,) + Yo, B, o) da;dgdo

-C0 e

<«

+-J;j° j' L(al, a - B(El-iz)- Yo, B, O) daidsdo (5.29)

for ¥ = Y., Yoo

The first term on the right hand side of the equality sign

in 5.29 is
® o @ ® - nl+n2 .
2 2 1 - = :
j;j:mj:m(ch ) x| Qa5 aq = B(X;-X,) +¥a, Bﬂ do d8do

(5.30)
n n, ,
=5 (¥q =0, =B(x; =X 1) + % (Vo s=0a+B (X, =X,) =yg = B(X,.=X ))2
R S 1571 7 23T 17%2 2i %2
= (Ql Y B ) Tll+l’l2 1’12 (XZ—X]_ ) A G'l
n2(§2-§l) S S, o +n2(§25§1) \B

- 2(gy-n,0, S +8 +n, (X,~%, ) (¥,-Yo)
2 xlyl x2y2 2'72 71 2

+ Zy2 - 2Y02y2 + n2Y202 | ' ' (5.31)
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where, in addition to the notation given in 5.23, we define

2 4 5 2 By .
2y= 3 Iy, %W = 3% I oy,
i=1 j=1 Y i=1 j=1
! T2 _ 3y o_ %y,
Yy = Z Yq:9 ZY5 = L Voss ¥q = ===y ¥, = —
1 1 1J 2 1 2] 1 0y 2 n,
. ( X, )
S = Z X, :=X- )Y, .9 and S y S y S are defined
Xy, 7 TR AL XX EREyT TEa¥,

in a similar manner.
Integration of 5.30 over aq and B then gives

® n_ +n.-2

2 1
ka o 1 exp E -—E-(a+bﬂ do (5.32)
o) 20
Where -
a = Zy2 - YcZy2 + n2Y202
b =-hte, f) a(2)
_ 2 = =
A = c+n2(x2—xl) 'n2<X2_X1)
-1y (%=X, ) T, (5.33)
c =35 + Sx -
1% 2%2

h = determinant of A = [A] = (nl+n2)c+nln2(x2—xl)
e = Ty +n,(¥,-Yo)

= + 5
& Slel Xo¥2
f = g+n2(x2-xl)(y2-Yo)
n +tn.-2
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Expanding and gathering terms in Yo we write

a+b = uYzcz - 2vY¥o + w

where
ng — 2 2“3(3‘-2';1)2 2 = = 2
u=mn, - TT(°+n2(X2-x1) ) + P - (nl+n2)n2(x2-x1)
-ngc—nln2(§2-§l 2
=0y * h
1 ,
= - — 2 ’ (5.35)
(x,-x. )
S S 2 1
n n S + S
1 2 Xle X2X2
= gy oy ) (et (3p-x0 )
Vo=, - z
c + nlnz(xz-xl)
n§(§2~§i) _ - —_
c-+nln2(x2—xl) _
n,(n,+n,) (X,-%- ) o
S22 BN (g (7,57,
¢+ myn, (X% )
| mnpy, - nynpyy - myn, (x,-x, ) (g/c)
- - =2
, n.n.(x,-x.)°
1722 71
n1 * n2 * c .
= [y, - ¥; + (&/¢)(X,-%; ) 1u,. | (5.36)

and
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c + n,(X,-%, )
2 272 7L - -
W=y - n (hlyl+n2y2)

n,(x,-%, ) (0,7, +0,7,)
272 71 11 "2Y2 _ = =
+ 2 = (g + nz(xz-xl)yl)

(n,+n,) — =
- __l-Hg— (g + nzyz(xz—xl))z. (5.37)

. . . W \
for convenlence we simplify I rather than w.

2 : 2
¥ lo2 =2 =2 gt 1 2 0 TR an T2 4 B
u[Zy 1qul —n2y2 c 1+ u[W -y +nlyl +n2y2 + c ]

2
T
= GLZy" - ¥y - nyyg -

2
1 =2, =2, g
0o Loy, ) (n)y 0,5, +55)
+ (0. 73+ —2+§E)n 1 (%,-%,)% - o(n,3.+n.7,)>
1V B T I M\ Xp=Xy ) - 191772

- = \2, 2=2 - = 2=2
= 0y (xymx) ) (nyyTHen 0y, v, tnoys)
+ 21’12 (Xz"xl ) (nlyl+n2y2 ) g

2,= = \2 = et o 2
t 2ng (x,-%1 )" (nyy 0,750y, - (n1+n2)g

. - = - Ly 2=2,= = 2
- 2n2(nl+n2)y2(x2-xl)g - ()40, )05y 5 (x,-%7)7]

cliny? o n TP - n R+ A 4 [T, -7, 4B (55015 (5.38)
u 191 272 c 1 2 ¢ 271
For the model 5.21 it is easily shown that ¥, 7,, and &
are estimates of al, Co and B respectively, and an estimate |
of 02 is
22 zy° - Yy = “255 - Be

=. nl N n2 i 3 ’ (5-39)




123

where g, C, Zyz are defined in 5.33.
We now rewrite 5.36 and 5.38 so that
v =-[y, - 7t B(XymT)lu (5.408)
and
w= (n-3)0% + ulf) - T, + B(X,-F)1% (5.40D)

Therefore, by Lemma 10.3 of Section C of the Appendix,

(o]

‘f klo'(nl+n2'2) expl - —lg(uYzoz-ZVYo + w)] do
e} 20
2 N +n.-2 2 2
_ Yu 12 L Y
= k, exp|[- zJ'[F( z 2 2 )
: w
n, +n.-2
171,
Loy T F(n1+“2'3, 3. szz)] | (5.41)
1 nl+n2-3 2 > 2 2w ‘
(2w)? (%)

where F(pl; Do z) is the confluent hypergeometric function and

nl+n2-3 nl+n2—5 .
S e M
k2 = k:LW 2 T (-—2—-— .

It is noted here that kz does not depend on Y,
In the same manner, for the second term of the right hand

side of the equality sign in 5.29 we have

w o © _..Y.l_l.:ri.z_
[ f (2ﬂ02) 2 exp[} ;l§'Ql(a1’ al-B(§l—§2)-Yo,B)]daldﬁdc
O =® =® o] R ' :
2 n,+tn.-3 2.2
_ Youn 1 2 - 1 Y
=k, exp[- 5, [F( 55 55 o)
nl+n2—2
T ) n.dn,-2 2.2
2YVv 2 1 2~ 3. Yv
- 75 ~nmo3 T 5 ) - (5.h2)
(2w) ( 172 )
2
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where k, is exactly as given in 5.41. From 5.29 we see that

Rl(Y) is the sum of the expressions given in 5.41 and 5.42,
that is,
2 n +n.-3 2.2
_ Y u R R '
Rl(Y) - k2 GXP[- 2 ] F( 2 1 29 zwz) (5-43)
Therefore
R(1) = ;;%;2;
1''1
may be obtained from 5.43 as
2.2
2 .2 nyt,-3 g Y
(Yo-vJu Fl=—5—y 75 )
R(1) = exp[— 5 ] . 55 (5.44)
' .. Hha-3 T YV
F(_l__ﬁ__. L, 1L )
2 Y2 2w

Recalling the definitions of u, v, and w given in 5.35,

5.40a and 5.40b respectively, we can write

tZ
YZVZ ) qu nl+n2-3 (5.45)
R (npen,-3) vt L g
1 72
where
2 _ (yl—y2+B(X2-xl))
t = — ———— (5.46)
n,tn. =3 2
172 (%, -%x,)
1 1 1 72 r2
(— + = + G
nl 1 Sx X * Sx X
171 w22
and where 5% is as given by 5.39.

2

s ]
n1+n -3 is the Student's

It may now be noticed that t

tz-test staﬁistio‘appropriate in a fixed size sample sense for

testing



- - (5.47)
Hy: [aq - o, + B(X,-%)| # 0.
Since L2
u =
Var (G, -6,-8(x ~%,))
_ 1
= - =7
1.1, (x)-x,)
n n S + S
1 -2 Xlxl X X,
and
qu - ' Y2 y ; y y
2 T 32 1’ 2
1 1 1 '
2(=— + — + )
ol 1y Sx X Sx X
172 272
then if we let Y. = 0 we have 5.46 as a natural extension (to

1
the case where concomitant information is used) of Hajnal's

(26) result.

C. The Sequential Two-Sample tz—Test

with p Covariates

1. The model and hypothesis formulation

In this section we eitend the results of Section B to the
case of p covariates. At the nth stage of sampling we assume
that we have 0y observations from population 1 and nz observa-

tlions from population 2 and that the following model obtalns:
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= _— "'_ ;*'ono
Ypy = 0 F By (xyq X)) F By (g pmXy )

+ =X + e, .
Bp(Fypy®1p) ey

;= a, + SJ(XZIj—XZI) + Bz(xzzj—xzz) + v (5.48)

<
[AS)
!

+ Bp(xzpj—Ezp) ey
where €54 ™ NI(O, 02), 1 =1, 2; J=1y vuuy n,, and X3
is the j°P observation of the kP covariate for treatment i.
The expression for differences in treatments based on
model 5.48 is an extension to p covariates of the expression
given for one covariate in Section B of this Chapter and is

equal to the following function of the parameters and x's:

oy = Gp By (X ) F By (XppmX ) el ¥ B (R, Xy )
+z'B ’ (5.49)

Z' = (le ZZ, n'-o, Zp),Zi = Xzi hand Xli, and

g = (Bl’ st ceey Bp)'
The hypothesis we shall test is a generalizabtion of 5.24

and is as follows:

|
~

H: 1&1 - a, * z'g| = 10

(5.50)

H + z'8] =Y

i [oq -9y
where Yl and Y, are specified and Gys Oy and (Bl, Bos e Bp)
are unspecified. Tne prior quasi-densities to be considered

are
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O(al’ 0o By o) =1, 0< 0 < ® -=< oy < ®,1=1, 2;

-® < Bi <o, 1 =1, ...y D3

lag - a, * z'g| = Y,0

0, otherwise
Vl(al, %ys B, o) =1, 0 0 < ®, =@ <a; <@, i=1, 2;
-2 < Bi <®y, 1 =1, 2, +evs P;
- ' pe=
o = op * 28] = vy0
= 0, otherwise.

The likelihood of all the nl+n2 observations accumulated

the n°P stage 1s
Loy oy 8y o) = (2o®) 2 ewpl- 5 q ey 0y, 80
(5.52)
where
Qlags aps B) = (yg - ajeq-X{B) ' (y -a e-X{B)
+ (yy-0,8,-X58) ' (y,-a,e-X1B) (5.53)
and ’
1= yps Ty woes T )
T2 = 1» Yppr +vs Vo )
e = (1, ..., l)lxnlf ey = (1, ..., l)lxnz (5.54)

and Xi is the nq X p matrix
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X1117%11 ¥12017%12 ¢+ X*1p17¥1p
*1127%11 1207%12 0 Xip2~Xip
X = L ] ' [
1
X -‘}_{ X . ——}E e e 0 X . -'}_C'_
11n1 11 12n1 12 1pn1 n,p

amd X2 is a n, X p matrix similarly defined.

2. Derivation of the test statistic

We now evaluate the ratio, R(p), of the marginal likeli-
2 .
hood of L(al, Gos By O ) given Vl(al, Gy B g) to the |
marginal likelihood of L(al, Gss Bs 02) given Vo(alf Gys By g)

wnere

R(p) —%——;B aFL (5.55)
p) = ' :
Rp Yl
and ‘
Rp(Y) ==j;j:w... j:mldal, o, tz'8-Yo, B, o) daldBdc
+ [ oo [ Llag, ajtz'BHYo, é, o) ddldﬁdc (5.56)
O - OO - OO

and Y = Y2, Yl.

Before completing the integration as indicated in 5.56 we
work out some algebraic details regarding Qp(al, Gpy B). e
rewrite 5.53 as
Qulags aps B) = B'(XX] + X X508 + iy + V57,

- 2(Ky7) * X,7,)'8 - 2ape]yy *+ afele

2
- 20,ely, + azele,. (5.57)
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. _ . .
Also, letting Ay = Gy + z'B ~-Yo in Qp(ql, Qys B) we have

Q (0«1’ 0«1 + z'8 - Yo, B)

p
— ' - ' '
= B XXy + X X3)B - 2(X ¥y tKyy,) '8t y{yy t VY,
2
' ' - ' 12
- 2alely1 + a eie; 2e2y2(al+z B-Yo)
2
' to_
+ ezez(a1+z B-Ya) | _ (5.58)
RS (o)
- + ' + T .
5 A(B 2(u, u,Yo) 5 (5.59)
where A is the (p+l) x (ptl) matrix of rank p+l
n,+n n,z'
A=t " 2 ' (5.60)
) 1]
zn, X1X1-+X2X2-+nzzz
and u, and u, are (p+l) x 1 vectors defined by
Up = (e Vytey ¥ » Uy = (1 (5.61)
X) Ty Yotnpyp? nyZ
and f 1s a scalar defined by
- ' 2 2
f=y] ¥y + 75T, t 2Yoe,y, + n,Y70", (5.62)

By Theorem 10.2 of Section B of the Appendix we may com-
plete the integration on aq and B in the first term of the

right hand side of 5.56 to obtailn

'/’cl)‘/,_oo... ”/:mL(al G1+Z'B-YO, B, G) d&ldBdO'

- ® -(n,+n,-p-1) , |
= (2m) 2 j;0' 1w expl - Eig(al+a2)] do  (5.63)
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&) = VL Tyt YT, + 2Voey y, + nyv5e” B

a, = = (ul+u2Ys)' At (ul+u2Yo) (5.65)

. . . . 2
We write al+a2 as a quadratic expression in o,

a,ta, = qucz + 2Yvo + w (5.66)
where |
u=mn, - u A—lu2
v=e)y, - ul A'lul (5.67)
e A, e ATy

By Lemma 10.3 of Section C of the Appendix we may now write

5.63 as
2 n.+n.-p-2 2.2
Yoy 1 72 Ll ¥y
iy expl~ L[ B 55 L)
nl+n2—p—l
. [2yv F(————g————) F(nl+1r12-p--1. 3. szzi} (5.68)
n,+n,-p-2 2 * 2 2w ’
L YO g
where )
_nl+n2—p-1 _nl+n2-p—2 _n1+n2—p-4
k, =1 2 W 2 2 2

3
By replacing ¥ by -Y in the derivation of relations 5.63-

5.68, the second term of the right hand side of the equality

sign in 5.56,

[ee]

S o L(al, a tz'B+Yo, B, o) da, dpdo, ' (5.69)
O_m [o0]

can be shown to be equal to



n1+n2-p-l
2] —_T) O IOUEN.... S U—
N Y“u][%(nl+n2 p-2 4 szz)__ oyy L{=———%—)
3 * 2 2 > 2 2w - n1+n2—p-2 *
ol
n,+n,-p-1 2.2
12 Y
F(2—2——; 2; L. (5.70)
Adding 5.68 and 5.70 we then have
2 n.+n,~p-2 2
_ _ XY u 1 2 LYy
Rp(Y) = ky exp[- “5=] F( 5 355 o) (5.71)

where k3 is as defined in 5.68 so that, from 5.55, we finally

wrilte
2.2
(YZ—YZ) F(Elifg:g:i' L. YZV ) '
R( _ 2 17 2 Y 2 2w
p) = expl~- 5——ul 55 (5.72)
F(nl+nz-p-2. 1 Y|V )
2 Y 2 2w

where u, v, and w are given by 5.67.

3. BR(p) as a geheralization of previous results

a. Least squares estimates We now demonstrate that

‘5.72 is the generalization of Hajnal's tz-test whicn would be
expected if p covariates were used. We begin by deriving
least squares estimates of Gqys Goo B, and 02, assuming the
model 5.48. For this derivation we write the model 5.48 in
vector form consistent with the notation of 5.53 and 5.54.

Thus

TR AT (5.73)

Q.e

y2 5 +Xéﬁ+e

2 2
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where we assume X, and X, are controlled, e, = (ell, €11 «oes

€1n ) and ey = (e21, Cops wey €5 ). Combining both equations

1 2
we then have

~ ' a.
T O P B e
V2 0 ez %3] \p

where yys Yps €15 €55 X, and X, are given by 5.54 and

€ = (el, 62). We shall denote a 1 x m vector of zeros by 5',

the size of m being determined by the context in which 0 is

found.

The least squares estimates required are easily shown to

be
A ] = -1
a,) ei e 0 0 ei ¥y
6, = 0 e} e, o' e} ¥, |- (5.75)
2 = > '
B 0 0 XlXi+X2X2 lel+X2y2
71
= |7, (5.76)
[} ' -1
(X K +XX5) T (Xy 71 +K585)
and
A2 _ 1 ' A ' -t ' _AI
0" = EI?E;:i:g[Yiyl+y2y2 6,81y, =0,e57,=B" (X 7 *Xyy,)]1  (5.77)

e ' _ ' -
where by definition we have eje, = N5 €58, Ny

' = k™ v = - . - s .
ely1 nlyl, and ezy2 nzyz. The variance covar;ance matrix

A A .
of (al, 32, BY)' is
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1
R0 o
~ 2
I 0! o“ . (5.78)
2 .
: ' -
0 T (XX} +X,X3)

If we denote the difference between treatments,

Gy = ay + z'8, by A we then have
/\_/\ -'/\ '/\ ’
A = G'l az + ZB (5-79)
and
AY) = _].'_ i. ' 1yl 2
Var(h) = [nl + a + z'(Xlxl + XZXZ) z] o~. ' (5.80)
b. u, v, and w as functions of the least squares
estimates In order to establish R(p), as given by 5.72,

as a generalization of Hajnal's t2-test when p covariates are
used we require a well known matrix result. This result is
used extensively in the remainder of the chapter and a proof
may be found in, for example, Anderson (1, p. 344). |

Theorem 5.1: If the positive definite matrix M is

partitioned as

M M

11 12
Y
so that Mll is square and M22 is nonsingular, then the determi-
nant of M, [M , can be written
_ -1
M = Mg =My MM | My -

Recalling the definitions of u, v, and w, given by 5.67, we

must show that
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2 .
= -9
5T Var(R) (5-61)
and t2
Y2 2 yEy 1y np-p-2 g
2w n.+n 1;>2+t2 (5.82)
1l 72 nl+n2-p—2
where o .
2 (7, -v,*2'8)'u
nl+n2—p-2 ’62

is the fixed-sample size Student tz-test statistic for testing

the hypothesis formulation

H': |5 =0 |
] (5.83)
ol A0
1) u To establish 5.81 we take advantage of the
fact that u = n, -u,éA"l u, 1s a scalar, where u

2 is defined
by 5.61, so that

-1
-ul = - '
n, -~ub A u, = [, - ul AT U,
By Theorem 5.1 we have
-1
- 1
. -u'A'luI [A] |n, - ul A uz]
[ 2 2]
!
A u2
u n
2 2 .
= ' 08
i (5.85)
By definition (5.60) the determinant of A, A , is
n.+n n,z'
aj = | 122 | (5.86)
zn2 : X1X1+X X! +n.zz

272 2



135

so that if, in turn, the first row of |[A] 1s multiplied by the
first component, Zq of z' = (Zl’ ceey zp) and the result
subtracted from the second row of [4] , the first row of |A] is
multiplied by Z, and the result subtracted from the third row
of |A]l, and so on until the first row of |A] is multiplied by
z_ and the result subtracted from the pt+l row of |4, we may
write

P - (5.87)

-1, Z XlXi-+X2Xé

For convenlience we mignt have described the above row o?era-
tions on |A| by saying that we premultiplied the first row of
|A|] by z and subtracted the resultant watrix (array) from the
matrix (array) formed by the last p rows of [A]. In the
future, where possible, we shall abridge the description of
any set of row and/or column operations in just this manner.

Using Theorem 5.1 again, 5.87 becoumes

)Lz (5.88)

Z

Al = Mf%-+x§%1mfmfmszwx§g+xg%

To simplify the numerator of 5.85, we have by definition

1
A u n, ¥, 0,2 ay
2 2 - [} t !
" 0 = zn2 X1X1-+X2X2-+nzzz nzz
2 2 n2 n2Z ' n2
(5.89)

so that, subtracting the last row from the first and subtract-

ing the matrix formed by premultiplying the last row by the
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vector z from the matrix defined by the 2nd through the (p+l)

rows of 5.89, we may write

~

. n 0! 0
A u2 Nl -
— 1 L]
' =10 X1X1+X2X2 0
u2 n2
]
N, nzz n2
'+ ' 0
. Xlxl X2X2 0
1 '
N,Z n2
= n, X X' + X. X! (5.90)

Tl e 242 |

Thus, finally, the ratio of quantities given in 5.90 and

5.88 yields

-1 1
n, - uldA Tu, = (5.91)
n * n i Z'<X1Xi + X2X2)
S | .
2 .
which is ——— as in 5.80.
Var(})
2) v We now establish that v, defined in 5.67,
is
= (v v ' .
v = (yy yz'*BIZ) u (5.92)

Since v is a scalar,

= -1 -1 = | ! -1

VEely,-uyh ul—]eéyz ug AT uy (5.93)

so that Theorem 5.1 allows us to write

t

A ug

u ey
vl A 22 o (5.94)

|Al

By definition,
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'
1’11+1’12 1’12 z . 1’12 |

'I 1
N,z X1X1+X2Xé+n2zz N,z (5.95)

= ' 1yt ' jomy
T AT, TiX{HTAXLLTEt 0Ly,

so that if we, in sequence,
1) subtract the last column from the first column,
1i) postmultiply the last column by the vector z and
" subtract the resultant matrix of elements from the
matrix formed by column 2 through column p+l,
iii) multiply the first row of the resultant determinant
by 52 and subtract it from the last row,
then 5.95 can be written as
n 0 n

1 2

~

1 1]
0 Xle-PXZXZ nz

0 (y1-¥,) 7% +y,%5 O

zZ| . , (5.96)

We expand 5.96 by cofactors and have

~

X XY + X, X! N,z _ 0! n
ny ? % ? ? 2 - nq (y1-75) ' ' 2 (5.97)
y1X1-+y2X2 0 X1X1+X2X2 n,z ,
and by Theorem 5.1 ,
l
= nljxlx'-+x Xé] [0+n (yix'-+y'x')(xlxi-+x x')
ny 1, (3, - yz)[x X T &5 | (5.98)
= nlnz[XlXi-+X2Xé| yl-§2-+é'z). (5.99)
Since we have already shown (see 5.88)
-1
|A] = n n2|X X} +X Xz]]n n,+n n,z" (X1X1-+X2Xé) z|
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then v as given in 5.94 becomes

v={(y -7, *z'Bu (5.100)
as was to be demonstrated.
3) w Finally it is necessary to evaluate w,
where
W= ylyy t Yy, - wAT M. (5.101)

Recalling the definitions of A and u; given Dby 5.60 and 5.61

respectively and using Theorem 5.1 we wmay write

n +n, n,z' . n1§1-+n2§2
n,2 XlXi-+X2Xé-+nzzz' le1-+X2y2-+n2yzz
w = By ¥ *,Y, TiE] T yiK) +npyoe URARLP .
| | A]
(5.102)
Tne numerator of 5.102 can be written as |
nl+n2 nzz' "n2(§l-§2) _
-1z X, X! + K,XL X ¥, *+ X7, (5.103)

— - — =2
nq (y1-y,) ¥iX] +y3X]  y{yy tUEV, -0y -0y,

by performing the folloWing‘operations:
1) Multiply row 1 by 7, and subtract the result from the
last row and |
ii) premultiply row 1 by z and suﬁtract the resulting
array from the matrix of elements defined by row 2
through row p+l.
In addition, if we premultiply‘the matrix of elements defined

by row 2 through row p+l of the determinant in 5.103 by
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(X 3, +X,7,) " (XX +X,X8) 7, waich is 87, and subtract the

resulting row vector from the last row, then 5.103 becomes

‘ —— —
nl+n2 n,2z - nz(yl—yz)
-nlz X1Xi-+X2Xé lel-%Xzyz
— - ~ ' _A _A _/\
0y (yy-¥,) 0,82 0 Y1V V5T p=8 T =0, Ty =B (X yy +X7,)
(5.104)
I we expand 5.104 by cofactors we have
[yiy1+yéy2'&lzyl_&22y2'§'(X1y1+X2y2)] [A]
o n,z - 0, (y--v,) .
- ay (T8 | 2 ETLE (5.105)
,X1X1+X2X2 lel+X2y2
which, by application of Theorem 5.1,
— AZ ; — N 2 .
= (nl+n2—p—2)o Al + nlnz(yl—y2+s'z) lX1Xi+X2Xé| (5.106)

where &% is defined by 5.77. Thus |w|, as defined by 5.102,

equals
A2 - = A 2
(nl+n2-P-2)O' A+ (yl-yZ+B'Z) u. (5-107)
¢. Evaluation of Y2v</2w From 5.82, 5.91, and 5.107

we may now write '

— = A, 2.2
2 .2 2 (y,-y,T8'2)"u ,
S -% - (5.108)

—T) - ]
(n)+n,-p-2)5" + (y,-y,%8'2)"u

(yl—§2+ﬁ'z)2u
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t2
2 n,+tn,-p-2
= ru L 22 = (5.109)
n,+n,-p-~2 +
172 nl+n2-p-2
and thus conclude that 5.82 holds.
. . 2 _ .2 .
If, for convenlence, we write t~ = tnl*n2~p-2
then R(p) may be written as
n. +tn,-p-2 qu 2
p(_l 2 o1, f2 t )
H H
(YZ-YZ) 2 2t 2 nl+n2—p-2+t2
R(p) = exp[- 5 ul 5— .
0y M,-p-2 ) Ypu £
P23 35 3 z)
n1v+n2'p“2+t
(5.110)

Since the tests in this chapter are sequential tz-tests
we may conclude that they terminate with probabilify one (see
David and Kruskal, 22). However, no average sample number or
operating characteristic formulae are avallable, and because
of the complexity of the mathematics involved, it appears at
present unlikely that theoretical analysis will be successful
- on these points. We note, however, that the pros and cons of
paired versus independent samples in fixed sample size experi-
mentation also pertain when the context is sequential experi-
mentation. In particular, the gain in degrees of freedoun for
estimating the standard error of the difference of two means
using two independent samples is oftentimes offset by the
advantages of palring when there is a high positive correlation

between observations within pairs.
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VI. NUMERICAL INVESTIGATIONS

This chapter contains the results of a sampling experi-
ment on three of the test statistics proposed in Chapter III.
Before detailling the implementation of these test statistics
and discussing the experimental results we shall outline the

Monte Carlo procedure.

A, Monte Carlo Procedure

The Monte Carlo procedure associated with many empirical
sequential trials 1s as follows. At each stage an observation
is generated in a random manner from a specified distribution.
We'have a test statistic which is a function of all observa-
tions accumulated at any stage. This statistic is compared
with the decision boundaries specified by the procedure., If
the decision is to stop sampling and accept either HO or Hl’
the stage number is recorded and the reason for curtailment is
noted. If, on the other hand, the decision is to continue
sanpling, another observation is independently generated and
we again compute the test statistic and compare it with the
decision boundaries. We shall call the sequence of observa-
tions leading to a decision a trial.

In sequential analysis, even though a sequential procedure
may decision with probability one, it is not a rare occurrence
that a particular trial does not decision until a large number

of observations have been taken. Accordingly, in‘order to
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utilize the available computer funds to best advantage in our
empirical investigation, it was considered desirable to set
an upper limit on the number of observations per trial.

As a time-saving device, we found it usefﬁl to compute
simultaneously at each stage some or all of the test statistics
under consideration, realizing then that for each trial the
stage numbers for decision corresponding to each statistic
would not be independent. Also, the computer program was
written so that all of the statistics would be simultaneously
computed until each had decisioned on any or all of three dis-
tinct boundary palrs, the boundary pairs specified before each
set of trials was performed. In these cases, then, a trial
consists of the sequential generation of observations resulting
in one to six test étatistics (three test statistics‘withband
without covariance) decisioning on one to three boundary pairs.
or reaching the upper 1limit on total observations per trial
as discussed earlier.

We shall call a set of trials a run. On each run we
recorded the number of decisions, the number of correct
decisions, the observed average sample number to decision, and
the observed standard deviation of the sample number to
decision for each statistic on each boundary pair.

We limited ourselves to an evaluation of the relative
merits of using one covariate in ‘addition to the variate of

interest in the analysis. In accordance with the basic
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assumptions of Chapter III we generated blvariate normal data
with prespecified means, variances, and correlation coeffi-
cient. This was accoumplished by having the IBM 360/65
computer generate two independent uniformly distributed vari-
ates, say Uq s and Uys Over the interVal (0O, 1) and then using
the following transformations, given by Box and Muller (13b),
to obtain two independent univariate normal variates, 24 and

Z,, €ach having mean zero and variance one;

2
L
_ 2
Zy = (-2 log ul) cos (2Tru2)
L
_ 7 .
z, = (-2 log ul) sin (2rru2).

Specifying a, Bl, g, and o, we then formed the variates,

e =

|
Q
N

yl = q + lel + e,

so that (xl, yl) is bivariately normally distributed with

2

2 2 2
Mo =0, U = a, Var(xl) =G, s Var(yl) = Bpjo . + ¢, and

] T1 1 1
_ 2
cov(xl, yl) = Bo_ -
1
To summarize, after specifying a parameter configuration
and a hypothesis formulation, we generated pairs (x, y) of

observations and calculated test statistics for use in a

sequential procedure. Frem repeated independent trials, we
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recorded estimates of Type I or Type II error, of expected

sample numbers, and of sample number variances.

B. Implementation of Selected Test Statistics

These sanmpling experiments were primarily designed to
investigate the advantages of utilizing concomitant informa-
tion in sequential test procedures. Monte Carlo results were
obtained for each of the test statisties R(1, p, n), R(2, p, n)
and R(5, p, n) given, respectively, by 3.52, 3.70, and 3.120-
3.121. In particular, we compared the sampling results when
one covariate 1s used in the analysis with those obtalned
when the covariate was ignored. We now present the form of
each statistic under consideration as it was coded for computer
execution, and we shall point out several timesaving devices
and approximations that were found useful.

R(1, p, n), in general form, is given by 3.52 and is

presented here for zero covarlates as

n LBk
i(yl-G«T)
R(1, 0, n) = | - , - (6.3)
1
and for one covariate as,
n 2 n 5 n 2
% % 2 (yl—aT) {Z (yl-aT)XJ
R(1, 1, n) = =—= - L . (6.4)
2
2 x, % (y.-a,) —[Z (7.=a )xj
7 17 A 1 ; AT
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We next present R(5, p, n) in general form for the cases

when n-p is odd and when n-p is even. If n-p is odd then

R(5, p, n)
N-p-
2 bar(a,)-g* (o, ) |F
2Jd-I(a,) = G%r( dﬁa) A)
= A(n, p) nfzg : (6.5)
2 ' (Udf(aT)-gz(aT) o
24&-+I(aT) TEO G (r)‘ T (ag) |
and if n-p is even then
R(5, p, n)
n-p-2
2 (Mdf(aA)—gz(aA)>r
ﬂ'-ZGAf-J(aA) rzl H(r) dK(GA)
= A(n, p) T (6.6)
2 Mdf(aT)—gz(aT)>r
w28 tIlap) T x(2)| 3K (o)

where in both cases

n-p-1
4ar (q )—gz(a )| @
Aln, p) = L 5 L

haf (o, )-g"(ay)

I(a) = 2d + g(a) —T» O = Gmy Gy
(da2-+g(a)a-+f(a))2

J(a) = 24 + g(a) T & = apy 0y
(har(o)-g2(a))?

d =X%+e' (I-m)e, k any prespecified function of n
gla) =

~2ko - 2e'(;—M)y, O = Qqpy Oy



= kol + vy (I-M)y, a = s Op (6.7)

(r-1)! r!
2r)!

1 2daA+g(aA)

principal value of tan”

Jhar(e,)-g2(a,)

-1 2daT+g(aT)
principal value of tan .

0 Jear(ag)-gtlag)

When zero covariates are used, i.e. when p = 0, then d, gla)

and f(a) are

and when one

given by

= k+n
n .

-2ko = 2 Z ¥, ' (6.8)
1

n
kaz + ¥ y?
771

]

covariate 1s used, p = 1, then

n
(zx,)°
1
:k-i-n-
‘ n,
in
1
n ,n n n
TX LY., = LX.XX. Y
ig91 s R
- 2ky -2 AL 171 (6.9)




Rather than computing the quantities G'(r) and H(r) each time
they were required, two arrays,
G'(0), G' (L), «uuy G'(40)
H(1), ..., H(40),
were congtructed and stored in the computer prior to each run
by using the following recursive formulae:}

¢t (r) = &=L ar(r-1)
(6.10)

H(r) = éjggggfy H(r).

The appropriate elements from each array were then called when

required.

The statlistic

R(2, p, n)
yze'(I—M)e n-p-1_ 1 li e'(I-M)z
= eXp[" > ][F< > H 'é'; 2 Z'(I-M Z)
n-p 2 2
2ve' (1-M)z Lz n-p. 3. Y° (e'(I-M)z)“
+ == 1 (@=p-L, PR 55 5 ;?(I-M)zz )1 (6.11)

(22 (I-M)z)?

n
e'(I-M)z = Z(y;=arp)
1

2! (I-M)z )2 | (6.12)

i
M
e
E_lc
I
Q
=
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n .n n n
Lxlz(yi-aT) %Xiixi(yi aT)
e'(I-M)z =
02
in
1
n ,n n
2 2 2
ini(yi Cp) "[ixi(yi'%ﬂ :
z'(I-M)z = — (6.13)
fo
1
n n
nrxs - (Zx.)2
1t 1t
e'(I-M)e = n ]
o2
in
1

presented some computing difficulties because of the confluent
hypergeometric F(r; s; x). Since F(r; s; x) is an infinite
series, certaln approximations were necessary for computer
implementation. We followed Olin's (49) recommendations on
this point. Kummer's identity,

F(r; s; x) = exp(-x) F(s~r; s; =-x)
allows F(r; s; x) to be written as the product of a more
rapidly converging series exp(-x) and fhe possibly finite
. series F(s-r; s; =x). The series F(s-r; s; -x) 1s finite
provided s-r is an integer such that s < r. In the computer
subroutine for approximating F(r; s; x) the series was

truncated either
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1) naturally when s-r(s < r) was an integer, or
2) artificially when the value in the last term in the
series was less than 5 x 1077,
0lin (49) reported that the above procedure would result in
approximations of F(r; s; x) accurate to six decimal places.
Also, R(2, p, n), as given by 6.10, involves two confluent
hypergeometric functions with the third argument in common.
However, by the use of the identity, |
sF(r; s; x) = sF(r-1; s; x) + xF(r; s+l; x),
given in Section C of the Appendix, we may rewrite 6.11 so
that 1t is a function of three confluént hypergeometric
functions, all having the last two arguments in common. That
is, R(2, p, n) may be written as

R(2, p, n)

- exp[_ x_e_z_I;@_ﬂ

C. Empirical Besults
We begin by giving some results that will provide guldance
for what we ﬁight anticipate as the expected sample number
saving when concomitant information is utilized. ' In Section B

of Chapter III we present average sample number formulae,
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3.34, for a Waldian SPRT when the underlying distribution has
the p.d.f. 3.23 and when Ho and Hl are both simple hypothesis
specifications (that is, when all the nulsance parameters are
assumed known and the parameter of interest is assumed to be
one of only two values). The expected sample numbers under Ho
and Hl’ E[NIaO] and E[N[al] are seen to depend on the parameter
02, the distance [al-ao] and the specified Type I and Type II
error rates, P(I) and P(II). If the concomitant information
is ignored, then by Corollary 10.3 of Section A we see that
the operative conditional variance of y given X, cz, becomes
effectively the unconditional variance 02 + B'EB. Thus the
ratio of E[N[aojc, the expected sample number with one covari-

ate, to E[N]aojwo, the expected sample number without

covariance, 1is >

gg—c—f—ﬁ-?i. (6.15)
1
It can easily be shown that the ratio given by 6.15 is equal
to 1—p2 where p 1s the correlation coefficlent of y and Xq .
A corresponding theoretical result for the composite hypothesis-
situation with nuisance parameters unknown has not, however;
been obtained. It can be seen from Tables 2, 4, 5, 6, and 7
that the ratio of the observed average sample number with
covariance to the observed average sample number without co=-
variance 1s always larger than 1-92. These results are in line
with the previous evaluative experiments of Roseberry (58) and

Olin (49). That is, use of one covariate in the analysis
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resulted in less than a p2 x 100% economy in observations.
For example, in Table 5 we have that 1-p> = 0.36 and the
ratios given there range from 0.43 to 0.56. In Table 4 three
columns of ratios are given that are associated, from left to
right respectively, with the values 0.53, 0.30, and 0.19 of
1-p2. We'see‘that none of these4Va1ues have been realized in
the empirical results. However, we did have a substantial
economy of observatibns when p > 0.6. This can be seen by
again examining the ratio column given in Tables Ly, 5, and 7.
To summarize, although we did not achieve the p2 x 1007
economy that would be expected in the SPRT of the uncomplicated
simple versus simple hypothesis formulation, we did have sig-
nificant economy in the number of observations by the test |
statistics that utilize concomitant information.

In the development of R(5, p, n) in Section F of Chapter
III we weighted a nonuniformly and the nuisance parameters
uniformly over the parameter spaces under consideration. We
allowed VO and Vl’ given by 3.112, a certain versatility or
richness with the introduction of k Which.is referred to aé a
constant in the sense that it does not depend on the data but
may be some function of n. By k, we can control the dispersion
of the halfnormal weighting of a. We investigated the per-
formance of R(5, p, n), p =0, 1, for different k. Some
results of this investigation are included in.Table 2. Error

rates most closely resembling those specified for this
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Performance of R(5, p, n) for different values of

k, and parameter spec%fioations: Qp = 0.0,

a, = 1.0, g2 = 3.0, 0o =9.0, p = .6,

P(1)® = P(II) = .05 *

Observed Observed Observed Observed Number®
P k a.s.n. s.d.s.n. Ratio P(I) P(II) of Trials
o = 0.0
0 n 19.63 14,66 80 0.080 150
1 n 15.65 9.57 0.067 150
0 Jn 19.90 18.35 © 0.152 100
.85 [
1 Vvu  16.93 13.39 . 0.120 - 100.
0 20 23.30 20.26 0.160 gi .50
1 20 16.50 13.17 e 0.060 9 50
0 10 19.28 14,49 0.080 % 50
1 10 16.00 10.46 83 0.080 o 50
0 3 22.48 19.94 65 0.140 = 50
1 3 14.70 10.68 ) 0.180 50
o = 1.0

0 n 18.38 12.94 8L 0.060 200
1 n  15.39 9.29 ° 0.020 200
0 Jn 16.70 11.49 s 0.040 100
1 Jn  15.58 11.71 +93 & 0.020 100
0 20 19.08 13.14 8 % 6.020 50
1 20 14.84 6.50 ) & 0.020 50
0 10 22.16 17.77 75 E 0.040 50
1 10 16.68 11.65 = 0.020 50
0 3 22.06 16.98 68 0.080 50
1 3  14.96 8.30 0.160 50

S.5.0.

larger number of trials for some tests than others.

aThe speoified Type I and Type II errors.

bEach entry in this column 1s the ratio of the observed
a.s.n. for the test utilizing one covariate to the observed

for the same test without covariance.

CDuplication of certain runs by mistake resulted in a



Table 3. Performance of tests when o -a

and O =y, become large, parameter
0% = 3.0, 6© = 9.0, B, = 0.7698, p = .8, ap = 0.0,
a, = 1.0, k =mn, Y_ = .3464, Ty, = .5774, P(I)® = P(II) = .03, 50 trials

]

specifications:

i

€GT

b Observed Number®
Test a.s.n s.d.s.n. Ratio P(II) of Decisions
a = 1.5
R(1, 0, n) 34.96 14.90 48 0.00 48
R(1, 1, n) 16.48 L, 67 0.00 50
R(2, 0, n) 33.12 11.84 18 0.00 49
R(2, 1, n) 16.06 4.36 ) 0.00 50
R(5, 0, n)d  25.12 16.52 5 0.00 50
R(5, 1, n)&  12.28 3.79 -9 0.00 50
) a = 11.0
R(1, O, n) 40.84 1.66 | o8 0.00 50
BR(1, 1, n) 40,18 0.87 ’ 0.00 50
R(2, 0, n) 12.90 0.30 72 0.00 50
R(2, 1, n) 9.32 0.55 0.00 _ 50

aThg specified Type I and Type I1 errors.

- "The ratio of the observed a.s.n. for BR(i, 1, n) to the observed a.s.n. for
R(i, 0, n), i =1, 2, 5.

®The trials that did not decision before n = 120 were disregarded.

dR(5, ps; n) was not allowed to decision before n = 9.



Table 3. (Continued)
QObserved Numbe:r‘c
Test a.s.n s.d.s.n. Ratio P(II) of Decisions
= 11.0
B(5, 0, n)¢ 9.00 0.00 1 00 .0.00 50
R(5, 1, n)¢ 9.00 0.00 o 1 0.00 50
= ~1000.0 Observed
P(I)
B(1, 0, n) No decisions
B(1, 1, n) No decisions
B(2, 0, n) 10,00 0.0 0.00 50
l.O
R(2, 1, n) 8.18 0.482 0.00 50
R(5, 0, n)% 9.00 0.0 o 818 0.00 50
R(5, 1, n)d 9.02 0.141 ’ 0.00 50

4T



Table 4., Observed a.s.n. for increasing p when Up = 0.0, a A 1.0, o = 1.5,
62 = 9.0, P(I1)® = P(II) = .05, k = n
X3
Correlation Coefficient p
p=20.0, p = . 687 a p = .838 da p = .90 _ a
Observed Observed Ratio Observed Ratio Observed Batio
Test a.8.n. a.s.n., a.s.n. a.s.n.
R(1, 0, n) 43.10
.66 A1 .32
R(1, 1, n) 28.61 17.76 13.65
BR(2, 0, n) 45,30
, .66 A2 .30
R(2, 1, n) 29.85 18.83 13.48
R(5, 0, n) 26,54
. .73 .56 L6
R(5, 1, n) 19.47 14.88 12.19

8p(I) = Type I error and P(II) = Type II error.
bBased on 235 trials.

®Based on 250 trials.
da

The ratioc of the observed a.s.n. of the covariance test statistic to the

observed a.s.n. of the non-covariance test statistic.

-eBased on 1000 trials.

GGt



Table 5. Observed a.s.n., s.d.s.n. and Type I and Type II error rates for the

parameter specifications: a = O = 0.0, oy = 1.0, 02 = 1,50, oil = 9.0,

By = 0.5445, p = 0.8, v = .490, Y, = .8165, P(1)® = P(II) = .03,

250 trials, k = n

Observed Observed Observed Observed Number®
Test a.s.n. s.d.s.n. Ratio P(I) P(II) of Decisions
a = 0.0
R(1, O, n) 31.45 18.23 50 0.020 % 2149
R(1, 1, n) 15.74 7.73 0.012 'y 250
" R(2, 0, n) 29.05 17.59 " 0.012 §‘ 248
B(2, 1, n) 12.89 6.87 0.016 2 250
R(5, 0, n) 22,12 16.27 56 0.032 . 250
R(5, 1, n) 12.30 6.06 - 0.020 2 250
- ‘ a = 1.0 °

R(1, 0, n) 35.80 20.26 13 ,E 0.004 249
R(1, 1, n) 15.41 7.88 B 0.016 250
R(3, 0, n) 35.91 | 19.61 s g* 0.020 248
R(3, 1, n) 16.01 7.31 _ o 0.016 250
_3(5, 0, n) 23.57 16.87 .58 5. 0.048 250
R(5, 1, n) 13.67 6.76 = 0.012 250

&The specified Type I and Type II errors.

bThe ratio of the observed a.s.n. for R(i, 1, n) to the observed a.s.n. for
0, n), i=1, 2, 5.

®The trials that did not decision before n = 120 were disregarded.

94T
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Observed a.s.n., s.d.s.n., and Type I error rates

Table 6.
for the parameter specifications: o = Qp = 0.0,
a, = 1.0, 0¢® = 1.50, o2 = 9.0, B, = .3062, p = 0.6,
Yo = .6532, Y, = .8163,7P(I)® = B(II) = .05,
250 trials, k= n
Observed Observed b Observed Number
Test a.s.n. s.d.s.n. BRatio P(I) of Decisions
R(1, 0, n) 17.19 9.20 _ 0.060 . 250
. .82
R(1, 1, n) 14,01 7.22 0.028 250
R(2, 0, n) 14,40 7 A4 0.076 250
.91
R(2, 1, n) 13.04 5.72 0.032 250
R(5, 0, n) 15.05 9.07 g 0.044 250
L] 2
R(5, 1, n) 12.36 6.82 0.024 250
% The specified Type I and Type II error rates.
bThe ratio of the observed a.s. for R(i, 1, n) to the

observed a.s.n. for R(i, 0, n), i

1, 2, 5.
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Table 7. Observed a.s.n., s.d.s.n., and Type I

error rates for the parameter specifications:
op =0, @ =a, =1.0, 0° = 1.50, o> = 9.0,

3, = .8428, p = 0.9, Y_ = .3560, Y11= .8163,

P(I)® = P(II) = .05, k = n
Obsexrved Observed b Observed Numberc

Test a.s.1. s.d.s.n. Ratio P(II) of trials

R(1, 0, n) 43,10 23.86 .063 222
.32 -

R(1, 1, n) 13.60 5.75 .030 235

R(2, 0, n) L5,30 23.35 \ L0k9 224
.31

R(2, 1, n) 14,09 6.87 | ' .026 235

R(5, 1, n) 26,54 21.75 L .126 230
A7

R(5, 1, n) 12.39 6.25 .026 235

8Dhe specified Type I and Type II error rates.

bEach entry in this column is the ratio of the observed
a.s.n. for the test utilizing one covariate to the observed
a.s.n. for the same test without covariance.

°The total possible number of trials is 235. If the test
statistic did not decision before n = 120, the trial was
disregarded.
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particular configuration were achieved when k = n. However,
any conclusions regarding these tables must be qualified in.the
sense that only a relatively few trials were run and the pre=-
sentation of the approximate 95% confidence interval (.04,
.06) for error rates specified as P(I) = P(II) = .05 would
require 1900 trials. It was discovered that R(5, p, n) has
the tendency to decision at the wrong boundary more often than
expected when n-p is small. Several preliminary runs sug-
gested that, in order to achleve the specified error rates,
R(5, p, n) should not be allowed to decision until 7 to 9
observations were taken. Although this censoring scheme was
" successful in most cases we have no theoretical substantiation
for it. A censor number of seven was effective for small
sample numbers (9-15); not allowing R(5, p, n) to decision
until stage 9 gave good results for larger sample numbers
(20-35); see, for example, Tables 5 and 6. However, if either
o or Jof + Bioz was too large relative to [aT-aA‘, error
rates much higher than expected were observed (see Table 7).
A detailed examination of the output from which Table 7 was
constructed revealed that of twenty-nine incorrect decisions,
twelve occurred at stage 9 and three occurred at stage 10.
Thus if we had not allowed R(5, p, n) to decision until stage
11 we probably would have observed an error rate of about 0.06.
It way be noted from Tables 3, 4, 5, 6, and 7 that |

R(5, p, n) almost always has an observed average sample number
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less than those of either R(1, p, n) or R(2, p, n). The dif-~
ference 1s not pronounced, however, unless the sample numberé
are large in general. An unqualified endorsement of R(5, p,n)
should not be made, however, until the possibility of real
discrepencies from the specified error rates is resolved.

When p = 0, R(2, p, n) reduces to the sequential t-test
as put forward by Wald (69), and differs slightly from that
introduced by Rushton (59). Cornfield (17) criticized the
sequential t-test because in certain obvious situations the
procedure required a surprisingly large number of observations
before decisioning. With this criticism in mind we obtained
the results given in Table 3 by generating observations from
distributions with means o = 1.5, 11.0, and -1000.0 and tested
the hypothesis Ho: a = 0.0 versus Hl: a = 1.0 with the param-
eter configuration as shown in the table heading. Summarizing
the results of these fifty trials, we found

1) that R(1, p, n) did not decision at all when
a = ~-1.000.0,

2) that R(2, p, n) delayed decisioning when a = -1000.0,

3) that R(5, p, n) decisioned almost every time at the
stage it was oensored;

4) that the ratio of observed average sample number
(a.s.n.) With covariance to observed a.s.n. without covariance -

approached 1.00 as o increased for all tests except R(2, p, n),

and
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5) that none of the tests made incorrect decisions.
We now discuss each of these points 1in turn.

An unusual feature of the study revealed that R(1, p, n)
did not decision once in fifty trials when a = -1000.0. This,
however, is less surprising if we consider_some of the results
of Chapter III, specifically that given by 3.54 from which we
see a tendency for S(1, p, n) to approach ‘ | |

2

o + (a - aT)Z

2 2
o + (a - aA)

(6.16)

as n becomes large. Now if 0% is small relative to )a - aT] |

and |o - a,| and both o aT] and [a - aA] are large, then
the ratio given by 6.16 is close to one. For the parameter
configuration shown ih Table 3 we can show that the ratio
given in 6.16 is equal to 0.998003 so that
n-p-1

B(1, p, n) = [S(1, p, n)] (6.17)
convergés slowly towards zero and the sample size required for
R(l, p, n) < 0.0309 may be great. Actually, it may be neces-

sary to sample until n > 313+p for a decision since
[.9981712 = L0309.

We now demonstrate the tendency for R(2, p, n) to delay
decisioning when the true mean o 1s a great distance from
either of the hypothesized values Qo and Uy e Let us assume

that we have 15 observations having values dispersed about
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10lo with a population variance of 75.14. If we test

H: o= 0.0 versus Hy: a = Yo = 1.0 using R(2, p, n) when

p = 0, we have, using tables by Rushton and Lang (63),

R(2, 0, 15)

= e-'l[F(f; %; A) +2 .1 FT7% F(6.5; %; 1)]

(.9048) [2.983 + 2(.316)(3.8985)(1.504)]

It

6.05,

which is less than the Waldian upper boundary 19.0 when
P(I) = P(II) = .05. Part of the motivation for the test pro-
cedure using R(5, p, n) was to overcome this "delayed
decisioning" property of R(2, p, n). The results of Table 3
indicate that we were successful in this respect, for
R(5, p, n) decisioned at 9.0 (its censor number) almost every
time.

As o increases we note that the entries in the ratio
column also increase and we conjecture that, except for
R(2, p, n), they will approach 1. The "delayed decisioning"
characteristic mentioned above will probably inhibit R(2, p, n)
from attaining this limift. ‘

Finally, even though R(1, p, n) and R(2, p, n) have the
tendency to delay decisioning we suspect that few errors would

occur when a = 1.5 and o = 11.0, and no errors would result
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when o = =1000.0 if the trials were allowed to run without
forced termination. From Table 3 we may infer that P(II) and
P(I) are monotone decreasing functions of a if the nuisance

parameters are fixed.
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VII. SUMMARY AND TOPICS FOR FURTHER RESEARCH

A. Summary

In this thesis sequential procedures are developed for
discrimination between two treatments when concomitant infor-
mation is utilized. Wald's Sequential Probability Ratio Test
is known to be optimal in certain senses when both the null
and alternative hypotheses are simple. In most hypothesis
testing situations, however, such hypothesis formulations are
unrealistic because of unspecified nuisance parameters and the
possibllity that the region of intereét for the parameter
under investigation contains wore than two points. Weight
functions, originally put forward in Waid (69), have been
applied to obtain appropriate test statistics for testing in
the more realistic cases of composite hypotheses. In this con-
text also the relationship between the weight function approach
and one based on a Bayeslan prior distribution framework is
discussed.

In Chapter III we considered the design where the subjects
were paired and received one of two treatmeﬁts at random. In
the general case each observation was taken to be a p + 1
vector consisting of the variate of interest plus p covariates
and these were assumed to be multivariate normally distributed.
In this case the useful property that the form of distribution
is preserved under the differencing process which is essen-

tially required obtains. The relation of the "basic"



165

correlation between the differenced variates and the advan-
tageous correlations due, for example, to the palring proper-
ties are discussed in Cox and Roseberry (18). Then using the
weight function approach, we put forward several hypothesis
formulations and derived sequential tests for each. We pointed
out location and scale invariance characteristics of these
tests and we also presented some termination proofs.

The existence of the sequential t-test introduced by Wald
(69) and further developed and examined by Rushton (59) and
Barnard (5) motivated the development of the sequential t- and
tz—tests, utilizing concomitant information, as presented in
Chapter IV. The technique of constructlon utilizes the concept
of fixed sample size sufficiency and invariance to obtain a
factorization of an otherwise formidable likelihood expression.
To implement this approach, the problem considered in Chapter
IIT was reformulated and we assumed the 06Variates were coﬁ-
trolled as distincet from the previous assumption of a multi-
varlate normal distribution. A test was then derived for
testing HO: 4 = O Versus le a'= QG + oY, when o and- Y
were specified while the nuisance parameters were unspecified.
Tests for two-sided formulations were also obtained. Next
the restriction requiring palringof the subjects was removed
and, again employing the methods of weight functions and prior
distributioné, we constructed a sequential two-éample t-test

utilizing concomitant information. We demonstrated that the
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above mentioned test is, in fact, a type of sequential t-test
as put forward by Hajnal (26).

Results of a Monte Carlo study are presented for the
following three test prooedures proposed in Chapter III.

1) R(l, p, n), given by 3.52, is proposed as a test of
Hyt o S apversus Hi: a2 ay, ap < a,. R(1, p, n) was

derived for the "least favorable" case, HO: @ = g Versus

Hl:

o = 0y with uniform weighting of the nulsance parameters.
2) R(5, py, n), given by 3.120 - 3.121, is also proposed
for testing H : a < Gp Versus Hi: a2 ay, G < Oy e
Nonuniform weights were placed on o and uniform weights were
placed on the nuisance barameters in the derivation of this
test statistic.

3) R(2, p, n), given by 3.70, is proposed as a test of
HO: a = ap Versus Hl: G = Oq + Yo where O and Y are
specified. Uniform weighting of the nulsance parameters was
used in this case.

We investigated these procedures with special emphasis on

a) the economies in sample size when concomitant infor-
mation is utilized, |

b) their realized error rates, and

¢) their performance under certain extreme operating
conditions in order to detect any unfavorable properties. 1In

all cases the results indicated that a substantial saving in

sample number was achieved when covariance was used, if the



167

correlation coefficient exceeded 0.6. There were slight
savings when p was close to 0.6 and results from a run when
o = .5 indicated that there was very little advantage in
including the covariate in the analysis.

Comparison of the average sample numbers achieved by the
different tests showed that test R(5, p, n) consistently had
smaller observed average sample number than either R(l, p, n)
or R(2, p, n). This difference increased as the sample
numbers increased.

Overall, R(1, p, n) had error rates 1eés than those
specified, whereas R(5, p, n) had error rates varying from
slightly less to slightly more than the specified error rates.
R(2, p, n) consistently produced observed error rates less
than those specifiled.

To examine performances under extreme conditions, the
hypothesis HO: a = 0.0 versus le a = 1.0 was tested using
all three test procedures with observations having large means
relative to 04 and aq and small standard deviations. It was
found that each test declisioned correctly provided itvhad
decisioned, but that

1) R(1, p, n) did not decision at all if |a - g and
]a - QA| were both very large with respect'to the standard
error,

ii) R(5, p, n)bdecisioned almost every time at the cen-

soring level specifiled for each run and
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1ii) R(2, p, n) had certain minimum stage numbers at
which 1t would decision when |a - aT| was very large with
respect to the standard error and these minimum stage numbers
increased as |a - aT| was increased.

In all, although financial considerations limited the
extent of the Monte Carlo investigations, the results indicated
that the test statistics derived do permit advantages of
practical importance to be obtained by the use of concomitant

information in sequential trials.

B. Some Topics for Further Research

In this section we note some topics on which further
research seems desirable. The difficult problems of finding
distributions of sample numbers and operating characteristic
functions for composite hypotheses are as yet umsolved. Bhate
(12) has put forward a general conjecture which has been demon-
strated empirically by some authors to give a good approxima-
tion to the expected sample number in some cases. In this
regard, see Ray (55), Hajnal (26), and Jackson and Bradley
(35). However, the burden, as of now, lies with the oomputerv
to provide guldance along these lines.

Another area of some concern 1s the prospect that in a
particular case the sample number may become unusually large.
To protect against such behavior, Armitage (3), and Schneidermsn
and Armitage (65, 66) have presented some exact and conjectured

approximate restrictive (closed) procedures for a particular
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application. It would be interesting to see how these authors'
ideas would work in conjunction with the procedures presented
in this thesis. Again the investigation would undoubtedly
have to be empirical because of theoretical difficulties{

Another topic that merits study i1s the possibility of
extension of the results of this thesis to discrimination be-
tween more than two treatments. Wetherill (74) reports some
results for selection of the largest (or smallest) of several
means, but agaln the problem of nulsance parameters in addi-
tion to the mathematical intractability associated with in-
tultively pleasing designs might force the investigator to seek
the aid of a computer. |

The relationship of Bayesian and frequentist concepts
within the framework of sequential analysis is a broad topic
meriting further consideration. Bartholomew (7) has presented
some ideas along these lines and Welch and Peers (74) have
some mathematical formulae that one might find useful in
relation to this topic.

It is conjectured that a derivation of a two-sample pro-
cedure for testing hypothesis formulations similar to those
given in Sectlon F of Chapter III might be useful. Also
bearing on Chapter III, the concept of adjusting weight func-
tions as the data becomes availlable, a type of empirical Bayes
approach, seems worthy of comsideration. Clutton-Brock (15)

and Robbins (56b, 57) are preliminary references for an
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investigation concerning these "empirical" prior distributions.
The criterlia of test construction set out in Section A of
Chapter III might also be improved upon by considering weighted
ratios of weighted likelihoods rather than ratios of weighted
likelihoods.

In Section A of Chapter V we showed how the weight func-
tion approach could be used to derive Hajnal's two-sample
tz-test. The analogous derivation of Jackson aﬁd Bradley's
multivariate X?- and Tz- tests via the weight functions and
prior distribution approach wduld be of some supplementary

theoretical interest.
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X. APPENDIX

A. Distribution Results and
Maximum Likelihood Estimators
Let us consider the probability density function
&(z; ay Wy By T, 0°)

= (2P oGP g ) 2 exp[— (eop)w (- “Jexp{ o (o) ! s)zJ
(10.1)

where z' = (y, x'), x' = (xl, vens xp), y 1s a scalar,

u' = (U, Ups e, up), B! = (Bl, cees Bp), and ¥ is a

positive definite matrix.

Theorem 10.1: The characteristic function C(t) corre-

sponding to the p.d.f. given in 10.1 is

C(t) = E[exp(it'z)]

2
exp [it' @ - % T (G + g gB éﬁ) } (10.2)

where t' = (%t is any real vector and i = J-1.

l, e 9 tp+l)

Proof:

E[eit'Z]

(o]

=‘[ "2/ exp(it'z)g(z'; a, 4, B, T, cz)dz'

2 1

[o=) © ' l
= [ ol eeasg o) Pls) 2 exp |- Xl

x-ut)]

l .
o L o2
[f (2H02) 2 exp(itly) exp[} (y-a—(g—u) B) J dﬁ dx (10.3)

- - 20
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1 - . .
where t(p) (tz, ceas tp+l)' Coupleting the integration with
respect to y we can write 10.3 as -

o o L L
f_mf_m exp(itzp) x)(21) 2[2] exp |- 5

' :
exp i(a+(x-u)'B)tl) - = c:] ax

2 2
tlo d o
= exp(iat; - = ) exp(-iu'Btl) J ool
2 1 |
exp E(tzp) + tlB)'xJ(ZH) 2[2] 2 exp |- %(x—u)'z_l(x—uﬂ dx
' (10.4)

and coupleting the integration on x by the same technique as

shown in Section B of this Appendix we have

2
v (t +t.8)'Z(t +t.B)
_ . 12 . (p) 1 (p) 1
= exp(latl - 50 ) exp{}tzp)u - 5
t N B'SB B t
P (p) (p)
Corollary 10.1l: C(0) =1
Corollary 10.2: The marginal distribution of the vector
X has p.d.f.
P -1
-— ' - \
fl(x; HY’Z) = (ZH) 2[2' 2 exp[—_ (X U) 2 (X H)]
Proof:
Letting t, = 0, we have

1

C(0y Bps vens by = exp[}tzp)u - : t05) ZEep)] -
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Thus the marginal p.d.f. of x is multivariate normal with mean

U and varlance-~covariance matrix Z.

Corollary 10.3: The marginal distribution of y is normal

with mean o and variance 02 + B'ZB.
Proof: '

Letting t(p) = 0 we have

ti(oz + B'ZB)
C(tl, 0, 0, «o.y, 0) = exp itja - 5 .

Thus the marginal p.d.f. of y is univariate normal with mean

o and varilance 02 + B'ZB.

Corollary 10.4: The conditional distribution of y given

the vector x is univariate normal with mean o + (x-u)'B and

. 2
variance o .
Proof:

This result follows from the relationship

(y x) ='%s

from 10.1 and from Corollary 10.2.
Corollary 10.5: Let z4 be a random variable having p.d.f.

g(zl; Gys My By Z, 02) and let Zgy be a fandom variable having
p.d.f. g(zz; Gy My By I, 02). Ir zq and z, are stochastically

independent then 21 = Z, is a random variable having p.d.f.
2
)

g(z1 = 255 G = Gy 0, B, 2%, 20
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Proof:

E [exp(it'zl)J E[:exp(-it'zzil

: |(a3> Loy s l(a%' 1.,
exp|it u) - §t At] exp|-it u - Et At

E[éxp(it'(zl—zz)ﬂ

A =
= exp :w( 1 2)' - 56" (24)1]
where
o® + p'sp zB
A = .
By 3

We now obtain the maximum likelihood estimators for the

parameters B, ¥, and 02 of the p.d.f.
1

- yom1
f(y’ X; 0y By I, 0'2) = ((zn)p+l 02[21) 2 exp(—' -X—_H

exp |:— {y-o-x'8) "Z;';‘,f' )2]

when o 1s assumed known. The log-likelihood of this sample

may be expressed as ,

2 n | 2

) =1In I £(y;s %55 ay B, T, 07)
1

£1(5) + £,(a, 8, o)

1}

In Lo, By =, ©

where
-1

n x!z "X, nplnzil -1,
f.(z) = - 3y = L. +31n[zl|

1 .2 2 2 2

i=1
. ® (yi—a—X{B)z n
i=1 20

Let us ubtilize the fact that if g(x, y) = gl(x) + gz(y) then
the (XO, yo) which maximizes g(x, y) is also such that X,

maximizes gl(x) and y_ wmaximizes gz(y). If we assume that a
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is known then we may differentiate fz(a, B, ¢) in the usual
manner to obtain maximum likelihood estimates for B and 02,

which are as follows:

= (XX') " X (y-ae)
(y-ae) ' (I-M)(y-ae) (10.6)

N w2

A
ag

vmmeX'=(ﬁ)xT ”.,%ﬁ,e'=ﬂq.“,1hy'=wi“.uyﬁ,

M= X'(XX')_lx, and I.is_the identity matrix. For the maximum
of fl(Z) we utilizge the following result (1, p. 46; 72, p.
303-304). '

Lemma 10.1: If C and B are given positive definite p x p

matrices then the function

£(C) = 1a C - trace CB™% * (10.7)
takes its maximum if and only if C = B.
Proof :
Since £(B) = 1n|B| - trace I = 1n|B] - p (10.8)
we need to show that
1n|B - p-ln|C| - trace et >0 (10.9)
and that equality holds if and only if C = B. Ifkjg xz,...,

1

A_ are the characteristic roots of CB — then trace

p
'—l D -1 P .
CB = ki and [CB ] =1 xi, and 10.7 may be rewritten as
1 1

P P P
S A, =p~-1nh,=5 (A, =1 =1nr.) = 0. (10.10)
i i i i
1 1 1
Now A -1-1nx = O when A = 1 and A = 1 - 1nx > 0 if x > O,
Thus 10.9 holds and we have 10.7 attaining its maximum when

C = B.
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We rewrite fl(Z) so that
1

_ X'~ npln2l _ n -1
fl(Z) = ~ trace > - > + 3 lniz .
By Lemma 10.1 ,
e U
T Y'n
so that | | - (10.11)
s _ XX!
=

If o is assumed unknown than by arguments similar to those
used above we have the maximum likelihood estimates as follows:

,)_1

B = (XX') "X(y-ea)
& = [e'(I-M)e] Yo' (I-M)y ‘ (10.12)
£2 _y'y - Ge'y - B'Xy

n

In either case, a known and o unknown, the estimates are

consistent. That is, 8 —E;>B, 62—2e>02 and G L. & where

Xn—2e>C denotes convergence in probability.

B. Evaluation of a Multiple Definite Integral

Theorem 10.2: Let X' be a real n x p matrix of rank p.

Let B' be a vector (Bl, Bz, ...; Bp) of real valued variables

and let u' be a vector (ul; Uss eees up) of arbitrary real

numbers. Then

JC ..ﬂﬁﬁyexp E %B'XXB + u'@ ap,dB,. .8
Pl
= (em)? [xx7] 2 exp[u (xg ) ﬂ. - (10.13)
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Proof:
Since XX' is a real symmetric p x p matrix of rank p
there exists an orthogonal p x p matrix C such that C'C = I

and C'XX'C = D where D = <dij) is such that

1]
= 0 i# 3.

" Now XX' is a positive definite matrix implying that di > 0,

1.
d, . = T =13
1

i=1, ..., p. Since C is orthogonal, then [C'C| = [I] =][c1|c]
and thus [C]2 = 1. We now make a transformation from

Bys Bps wees By O Yps wee, Y, Dy writing g = CY. The

absolute value of the Jacobian of this transformation is

HCH'= liq = 1. Thus we have

‘/;m...j:.mexp[- %— 8'XX'8 + u'B] aBy +.edB

= [ o[ exp[~ 3V'DY + u'cy] 4By ...ds . (10.14)

-0

Letting t' = u'C = (tl, ths ey tp) we rewrite 10.14 as

2
Ly d
-d_‘T. ?_ t.'YiJ le LRI Y

!
Mg

fof ol

1 }le ...de

[/ﬁ eXp[; % (Yi'géiti)%} in exp[% ditfi], (10.15)

1l
=]
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Recognizing the definite integral of 10.15 as the normal

probability integral we write 10.15 as

o L
2 1
2 BZHdi) exp[§ diti]
D 1
22 7 1P .2
= 021 ay) ==k : v (10.16)
% "2 1P 2
= (21)“ D] exp[§ § ditiJ. (10.17)
Pinally, since t' = u'C, (cD"+¢*')™t = ¢r~Ipe™t = xx', and
P = Jerre] = Jerxwg 7h = el ] g h = [axd R
10.17 becomes
| p 1
' . .
(2m)? kx| 2 exp|E-UEEIU] (10.18)

C. The Confluent Hypergeometric Function
and Pertinent Formulae
The Pochhammer-Barnes confluent hypergeometric function

is ‘the infinite series

Fla; b; x) = T (a); | X (10.19)
C j=o Py I |
where
(a):.L = a(atl)(a+2)...(a+i=1)
(b).l = b(b+1l)(b+2)...(b+i-1)
and

b ¢ [Os "l’ "2: "3’ "-:]
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The series is convergent for all finite x, real or complex,

Setting w = F(a; b; x), it can be shown that w satisfies the

differential equation

» |
Xdﬁ;'+ (b-x)%g - aw = O. (10.20)
dx

" Usually we find that 10.19 1s written in the form

F(a; b; x) = ¢ X (10.21)

where T"(¢c) i1s the gamma function. In this form it is
particularly important to recall that b cannot equal 0 or a
negative integer. |

A useful relation called Kummer's identity 1s important

in hand or computer calculations and is as follows:

F(a; b; x) = e *F(b-a; b; ~-x). (10.22)
Kummer's identity allows F(a; b; x) to be written as the
product of a more rapidly convergent series and a finite
series F(b-a; b; -x) provided b-a is an integer such that
b<a. In applications considered in this thesis, b<a will"
always hold and a~b will equal an integer approximately half

of the time.

The following three relations are quite helpful in hand
and coumputer calculations when evaluating the confluent

hypergeometric function.
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(a=b+1l)F(a;b;x) = aF(a+l;bs;x) - (b-1)F(ajb-1;%)
b(at+x)F(a;b;x) = abF(atl;bs;x) - (a=b)xF(a;b+l;x) (10.23)
bF(a;b;x) = bF(a-1;b;x) + xF(a;b+l;x).
For further details see Bateman (9, 10), Lebedev (44),
Rushton (62), and Slater (67).
We now present two Lemmas and a Theorem which aid in the
expression of welght function tests in terms of confluent
hypergeometric functions. |

Lemma 10.2: If a > 0 and s > 1 then

[o°] _&.]—' :
J xS e[ & ax - 1) 2 r(Sh. (10.2%)
o
Proof: _ 1
2
- 2 —_ _@'_ —_ .._a.'_. E e ]
vLet x° = 25 then x = (Zy) and 0 < ¥y < @, The absolute
value of the Jacoblan of thils transformation is
L
o - 8 -
‘ Y L'\ s 2°
y
Therefore
=] - -2
X exp |- =X dx
[ el 577
g=-1
12 2 2
= g(g) j; ¥ expl-y] dy
s-1
"2
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Lemma, 10.3: If a > 0 and s > 0 then

o]

S x5 exp[— ay=2 _ Ex_l] dx
o

2 2
s-1 s-3 ;S
S-L s 2 - T{=)
= 2 2 s-1 s=1.1.b7y _ _D 2 8.2
(Za)z 2
Proof:
Let
A -s 5_=-2 b.-1
¢ (aj3b;s) —j;x exp[—- 3% 7 - X ] dx.

If we expand expl- gx'l] in a power series then

byt
? s 2 (5) -1 8. =2 .
¢(asbss) = [ x L =57 % expl- 5x 7] dx.
o) i=o '
By Lemma 10.2
b i S+i-1l
o e 1 (30 1 4 2 s+i-1
$(azbys) = T (-1) 3 (5) T ( 5 )
i=o *
_s-1 b2l _21
_le © 5 2 gy ©opEid
=2z 2o Tenr 2 2
- 2141 2141
- (2) 2
5 -2 (&) r(£X2L)
T Lo e T 2 2



8-l (bz)i
2 o) —
= L& 2a’ ! s-1 . .
=22 ot )
1
b (52) i1
) L ifo T EnT L ). (10.26)
(22)%
. r(3) Y r) ..
Since o= an L - . 10.2 coomes
2 521 1“(‘1+%) (2i+1)7 521 r(1 +_g_
sl
2 2
¢(a5pss) = 5(5) [“E‘E‘l)ﬂ‘s‘%l;%,%)
b r(ﬁ)F(EZ}f_)_' , (10.27)
B I°'\2/7'\22%8a .27
2 J
(22)

From Lemmas 10.2 and 10.3 we have the following theorem.

Theorem 10,3: If a > 0 and s > 0 then

@

S x5 exp[-‘%x-z - %x'l]dx
O =
- a -2
J ¥ expl- 5x “lax
o
2 r(2) 2
s=11 02 _ b 2)_ o530
F(Tazyg_a' = T I‘(S-l) F(2’2’8§)’ (10.28)
2 2 :
(2a)

D. Some Theorems on Convergence in Probability

(W, B(W), ) is defined to be a measure-space if W is a

space of points, B(W) is a o-algebra of all megéurable subsets
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of Wy, and 4 is a completely-additivelmeasure defined on B(W).
(W, B(W), 1) is called a probability space and W a probability
measure 1f W represents all possible outcomes and if u(W) =
Let X(w) be a u-measurable function from W = w to Rys the

extended real line. X(w) is called a random variable. We

symbolically represent this mapping by

(W, B(W), u —Xﬂ——s’(ﬁl,s P).  (10.29)

If B is any Borel set in B( l) then we define the probability
that X(w)eB, say P[X(w)eB], by

PIX(w)eB] = ulw: we X 1(B)]. (10.30)
A sequence of random variables Xn(w), n=1, =, +e. i8
said to converge in probability to a random variable X(w) if,
for a given ¢ > 0,

lim P[ X -X < ¢] = 1lim ul[w: [xn(w)-x(w)} <] = 1. (10.31)
n—> n—> ©

An equivalent definition of convergence in probability which
will be used in this Appendix is: Xh converges‘in probability
to X if for a givemn ¢ > 0, 6 > O theré exists an N such that
n > N implies

ulws [X (w)-X(w)| 2 el <s.

B¢

Let us denote convergence in probability by

P-linX =X or X-—>X (10.32)

We now state and prove two theorems.

Theorem 10.4: If Xn—ze’c and 0 < ¢ < 1, and if f(n) is
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an increasing unbounded function of n then

[Xn]f(n)—jia>0,

Proof:
We need to show that for any ¢ > 0, 6 > 0, there exists
an N such that if n > N then

)1 ()

§ > ulws [Xn(w > ¢].

We firét consider the case where ¢ < 1 - ¢. Since 1
¢ + ¢ < 1 we know there exists an N2 such that ¢ + ¢ < (e)fznj
for n > N,. Let us choose some ¢¥< ¢. TFor e¥, 6§ > 0 we know

there exists N, so that n > N, implies

& > ulw: ]X(w)-c] > g¥*].

Now e* > [X(W)-c] > [X(w)-o] so that

[ws IXn(w)—c} < e¢¥*] [w: an(w)‘ geﬁ*+c]

2
and we may write

and
[w: [Xn(w)-c] > e¥®]  [w: ]Xn(wﬂ ;-e*+c].
Therefore
ulw: IXH(W)-G] > e¥]  ulw: IXn(wﬂ > g% + ¢].
| 1 1
When n > N, we know that ¢ + ¢ < (e)finj; thus e*-+c<<(e)f:n: ’

. 1
ulwe X (w)] > e* + ] > ulw: ]Xn(WX SPCL]

If we choose N = max (Nl’ Nz) then it follows that for any

e <l-c, § >0, and n > N
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8 > 1 [w: [X (w)-c| > e¥] > u [w: |X (W) > e¥ + e

n

1
u lwe Ix (w)] > SR T 7 [LXn(W)]f(nn > el

n

For €y > 1l-c we have €y > el so that

o [W:[[Xn(w)]f(n)]> 61] > K Lw: l[Xn(w)]f(n)) > 62].,

Thus for any ¢ > 0, & > 0 there exists an N such that if

n - N we have

5 > u [w: [[Xn(W)]f(n)| > e].

A sequence of random variables Xn is said to become large
with probabllity one if for any real number 4 > 1 we have
lim P[Xn > d] =,1'

Theorem 10.5: If Xn—]‘;c and ¢ > 0, and if f(n) is an

(n)

" increasing unbounded function of n, then [Xn]f becomes

carbitrarily large with probability one.
Proof:

Since Xﬁ—ga’c we know that for any ¢ > 0,
lim P[|X _-c| <el= 1. Now
e
P[[X,-¢| < ] = Ple-e<X <c+el

< Plc -€<<Xn] = P[(c -e)f(n) < Xi(n)].

Let d be any number greater than one. If ¢ - ¢> 1 then either

¢ -¢>d or there exists an N such that n > N implies

)f(n)

(¢ -¢ > d. This follows froum the assumption that f(n)

is an increasing function unbounded function of n. Now
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y£ln) xfl(n)] < pla < xf(n)

Pl (c~¢ 0

] for all n > N.

Thus ‘ '
. . f(n)
lin P [Xn-o <c] < lim P[d < X

] =1,
n—=> o n—> ® n



