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I. INTRODUCTION 

It is natural that an investigator conducting an experi­

ment should wish to follow the results closely, as they become 

available, in order that decisions may be made as early as 

possible. The experiment may then be terminated with an 

economy of experimental material. Reductions in sample size 

to decision may be important for ethical and/or economic 

reasons in a wide variety of practical situations. 

Armitage (3), Hajnal (26), and many other authors have 

pointed out that medical trials are often characterized by 

ethical difficulties. An early termination of a medical trial 

and the immediate application of a superior treatment to all 

persons with a particular affliction is clearly highly 

desirable. 

In addition to such ethical considerations, it may be 

that the experimental units are very expensive or that the 

testing is so extensive and repetitive that a slight saving 

of observations per sample may develop into considerable long-

term economic savings. These considerations, in conjunction 

with military programs which test to destruction, provided the 

impetus for Wald's development of the Sequential Probability 

Ratio Test. 

Another motivation for sequential experimentation is that 

the experimental units may occur rarely. For example, a 

clinician may have the problem of deciding between two 
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treatments for a rare disease. Patients with this disease may 

be admitted at intervals of fairly long duration. Alterna­

tively, the preparation of an experimental unit may be time 

consuming. For these and other similar reasons the experi­

menter might not at any one time have at his disposal a group 

of experimental units permitting the establishment of a fixed 

sample size experiment. These types of situations dictate 

sequential experimentation and, correspondingly, where appro­

priate, some form of statistical sequential analysis of data. 

In applications of fixed sample size theory the use of 

concomitant information (for example, in the analysis of 

covariance) has frequently resulted in an increase in the 

precision of the experiment. Intuitively, the use of relevant 

concomitant information would seem to increase the amount of 

information extracted from an experimental unit and result in 

either a reduction of the number of experimental units needed 

for given information or more information for a fixed number 

of experimental units. Correspondingly, in the context of a 

sequential experiment, it may be expected that the appropriate 

utilization of concomitant information should also result in 

a decision with fewer observations for given Type I and Type 

II errors. 

In this thesis we are interested in developing sequential 

tests for the comparison of two treatments utilizing concomi­

tant information. Me consider some generalizations of Wald's 



3 

Sequential Probability Ratio Test (SPRT) in order to develop 

these tests. In Chapter II we present a definition of Wald's 

SPRT and describe some of its elegant properties. Chapter III 

contains the statement of the basic problem of the thesis, a 

discussion of weight-functions and prior distributions, and 

the development of sequential multiple covariance tests. Next, 

in Chapter IV, fixed sample size sufficiency is used to obtain 

sequential multiple covariance analyses for a reformulation of 

the probability model of the basic problem discussed in 

Chapter III. Chapter V contains a discussion of two-sample 

analyses and a derivation of Hajnal's two-sample t-test via 

weight-functions. The derivation is then extended to include 

a number, p say, of covariates. Finally, Chapter VI contains 

a discussion of some of the theoretical problems incurred in 

testing composite hypotheses in sequential analysis and an 

empirical sampling approach to the solution of these theoreti­

cal problems. 
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II. THE SEQUENTIAL PROBABILITY RATIO TEST 

A. Introduction 

Johnson and Leone (40) present a broad definition of a 

sequential procedure as follows 

"A sequential procedure is any procedure in 
which the final pattern of the data depends in some 
way on decisions which are based on the data them­
selves as they become available." 

Cornfield (1?) defines a sequential trial as 

"...any form of data coir Ion ,;.n which the 
decision to continue or disco' tiio-ie further collec­
tion depends in some sense or information 
previously obtained." 

Wald (69) writes 

"Sequential analysis is a method of statistical 
inference whose characteristic feature is that the 
number of observations required by the procedure is 
not determined in advance of the experiment." 

The addition of sequential methods as defined above con­

siderably broadens the range of experimental plans which one 

can use in designing an investigation. It has been shown, in 

some situations (for example, Wald (69, p. 57))j that by 

intelligent use of appropriate sequential methods, the cost in 

money and time of Investigations can often, on the average, be 

reduced by introducing rules for deciding when we have enough 

evidence to reach a useful decision and thereby avoid the 

collection of superfluous data. 

The definitions presented above are in order of decreas­

ing generality. As one might expect, Wald's definition of 
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sequential analysis is the most amenable to theoretical 

development. In fact, modern techniques of sequential analysis 

are largely inspired by the work of Wald although the first 

idea of sequential procedure dates back to the late 1920*8 

when H. F. Dodge and H. G. Romig constructed a double sampling 

procedure. Motivated by the need to reduce the amount of 

effort necessary in the acceptance sampling of military sup­

plies, Wald discovered the Sequential Probability Ratio Test 

(SPRT) in 1943. 

In the remainder of this chapter we shall describe' the 

SPET and catalogue some of the SPRT's elegant properties which 

we find relevant to the present study. For further details 

the reader is referred to Wald (69), and pertinent literature 

as found in, for example, the bibliographies by Johnson (37) 

and Wetherill (74). 

B. Description of the SPRT 

Let , Xgs ..., be a random sample of size n from a 

distribution which has the probability density function 

(p.d.f.) f(x; 9) where 9e[0; 0=0^, 0^] and 0^ and 0^ are two 

known points contained in a space 0 of points [0]. Let the 

joint p.d.f. of X^, Xp, ..., X^ be denoted by 

L(8,n) = f(Xi,8) ffXgiG) ... f(X%^8). 

Let us now suppose that n is not fixed in advance and instead 

assume that n is a realization of a random variable N with 

sample space [n; n = l,. 2, 3» ...]. Let A and B be two 
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constants such that 0<B<1<A. Let us observe, in sequence, 

realizations, x^, ..., of mutually 

stochastically independent random variables, X^, Xg, X^, 

..., and compute the sequence 

L(8 ; 1) L(8 ; 2) L(8 ; 3) 

L(9^; Ij' L(0^; 2)' L(0^; 3) 

The ¥ald SPRT procedure is then defined by the following 

rules. 

i) The hypothesis 0 = 0^ is rejected and the 

hypothesis 0 = 0^ is accepted if and only if there exists 

a positive integer n so that the vector of realizations 

(x^, Xg, x^) is contained in where 

L(8 ; j) 
= [ ( x^, X2 > « ; " B < I jy j — Ij •••» n - 1 

L(0.; n) 

L(9^; n) i • 

,ii) We shall accept the hypothesis 0=0^ and reject 

H^: 0 = 0^ if and only if there exists a positive integer n 

so that (x^, Xg, x^) is contained in where 

L(0., j) 
= [ ( x^ » ^2 ' • • • J ^20^ ) • B < ^ j j j~l»2j ,,.,n—1 

L(8 ; n) 

L(0^; n) -

iii) We continue to observe sample items as long as 

(x^, Xg) x^) is contained in the complement of D^C^. 
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C. Some Properties of the SPRT 

To facilitate discussion of sequential procedures it will 

be convenient to adapt in part the notation used in Johnson 

and Leone (40). Accordingly, we denote by S(H^,H^;P(I),P(II)) 

any sequential test of versus with P(I) = P[H^[H^] and 

P(II) = P[H^| H^] where P[H^l.Hj] is the probability of 

accepting if is true. 

Property 2.1 (Wald, 69): The SPET as defined in Section 

B of this chapter terminates with probability one. 

Property 2.2 (Wald, 69): The following inequalities 

hold. 

A < 1 - P(II) 
tttt 

> P(II) 
1 - P ( I ) '  

Property 2.3 (Wald, 69): If the probabilities of error 

P(I) and P(II) are small, and if A and B are chosen such that 

® " /-"(I) 

then the actual error probabilities achieved by the SPBT are 

approximately equal to P(I) and P(II). In fact, if we denote 

the actual values of P[H^JH^] and P[H^1 H^] by P'(I) and P'(II) 

respectively then 

P'(I) + P'(II) < P(I) + P(II). 
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A fact which may be important for some extensions of the 

SPRT may here be noted. This is that the Properties 2.2 and 

2.3 hold even if one removes the requirements of independence 

of observations stated in the definition of the SPRT in Section 

B of this chapter. This can be verified by examining the 

proofs of these properties set out in Wald (69). 

It is frequently suggested (for example, Cox (20) and 

David and Kruskal (22)) that in order to use Wald's boundaries 

(Property 2.2) for the SPRT one must prove termination with 

certainty. Hall, Wijsman, and Ghosh (28), however, point out 

that the requirements on the error probabilities as approxi­

mate upper bounds, rather than approximate equalities, are 

fulfilled regardless of the certainty of termination. 

Property 2.4 (Wald, 69): For a SPRT, say S(H^, P(I), 

P(II)), the operating characteristic curve is approximately 

P[e: S(H^, P(I). P(II))] = Ih^e) 
A — JJ 

where P[0: S(H^, P(I), P(II)] is the probability of 

deciding that the value of the parameter is 8^ when it is, in 

fact, 6eQ and h(0) is the solution of 

/ 
f(x; 0^) h(8) 

f(x; 0)dx = 1. 

Property 2.5 (Wald, 69): An approximation to the average 

sample number for any parameter point 0efi, given a S(H^, 

P(I), P(II)) for 0 = 0^, 0 = 8 , is 



L(e, ; n) 
where P[0] and 1 - P[9] are the probabilities that In —f~H7 

takes the values InB and InA, respectively. P[8], for a 

particular S(H^, ; P(I), P(II)), is computed via Property 

2.4. 

In other words, Property 2.5 in conjunction with Property 

2.4 gives an approximate method by which the average sample 

n u m b e r  o f  a n y  S ( H ^ ,  P ( I ) ,  P ( I I ) )  w i t h  9 = 0 ^ ,  

0 = 0 ^  c a n  b e  c o m p u t e d  r e g a r d l e s s  o f  t h e  a c t u a l  V a l u e  o f  

0, GeO. 

Property 2.6 (Wald and Wolfowitz, 70): For all sequen­

tial tests of Eg: 0=0^ versus 0=0^ having probabilities 

of error P(I) and P(II), the SPRT has the least possible 

values of E[N 1 0^] and E[N[9^]. 

The SPRT does not necessarily have least possible values 

of E[MI0] for every 0eQ, 06(0^, 0^) and, in fact, E[N|0] is 

not necessarily less than the sample size required in fixed 

sample size plans with the same probabilities of error when 

0e(0o' S]_)* 

This last possibility may be illustrated by an example 

from Wetherill (74). Suppose we wish to perform a binomial 

SPET for p = .25 versus p = .75 with probabilities of 

error P(I) = P(II) = 0.001. Using Property 2.5 and Property 

2.4 we can construct Table 1. — 
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Table 1. ASN for binomial S(H , K; P(I), P(II)) with 
p = .25 versus p = .75 and P(I) = 

P(II) = 0.001 

8 .25 .37 .43 .50 .57 .63 .75 

A8N 12.6 22.0 32.2 39.5 32.2 22.0 12.6 

Now if we design a fixed sample size experiment with 33 

observations, we find by consulting tables of the cumulative 

probability distribution such as (29) that a rejection region 

of 17 or more positive responses specifies a fixed sample 

size test with probabilities of error P(l) = P(II) = O.OOO95 

= 0.001. Thus for a range of values of p near. 0.5 the ASN 

of the SPRT is greater than the sample size of a fixed sample 

size test with the same probabilities of errors. 

D. Discussion 

Many testing problems encountered in real life investi­

gations will not involve simple null versus simple alternative 

hypothesis formulations. Thus, if the parameter of interest 

is the only parameter in the model, hypothesis formulations 

of the form 

H^; 8 < 8g versus 8 > 

where 8 and 0^ are preassigned scalars and 8^ < 0^, or 

H : 0 = 0 versus H. : 0 9^ 01 
0 , 0  1  - L  

or |0| < ÔQ versus |0| > 6^, 



11 

where 5^ and ô-j^ are predetermined scalars, seem to be more 

relevant to real life situations than 

H : 9 = 9 versus : 0 = 0,. 
o o 11 

The usual procedure in such cases is to apply the SPRT to a 

least favorable hypothesis formulation. For example, for the 

specification 

H : 0 < 9 versus H, : 9 > 0^ 
o — o • 1 1 

the "least favorable" specification 

H : 9 = 0 versus H-, : 0 = 9-, 
o o 11 

may be adopted. In some instances, this can be intuitively 

appealing, for one might expect that a test of 

H : 9 = 0 versus H-, : 0 = 0-, , 0 <0-, 
o o 1 1' o 1 

would be even more efficient in terms of sample size require­

ments when it is actually true that 0 < 9^ or 0 > 0^. However, 

this advantage for 0 < 0^ or 0 > 0^ may be vitiated by a loss 

of efficiency if 0^ < 0 < 0^. As exemplified earlier, E[Nf9] 

may be larger than the corresponding sample size needed for 

the fixed size sample test when 

9  + 0 - 0 + 0 ,  
ee[ ° 3 ^ -6, ° 3 ^ +6] 

where 6 is some number greater than zero. 

The testing problems become even more complicated when 

nuisance parameters are present in the probability model and 

the "least favorable" approach has to be supplemented by other 

techniques in order to construct a test. 
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Some developments, which might be termed extensions or 

generalizations of the SPRT, have drawn heavily upon fixed 

sample size reduction principles such as sufficiency and 

invariance. If we have a hypothesis-testing problem in which 

there are unknown nuisance parameters, then we should try to 

construct a test statistic having a distribution not dependent 

on these nuisance parameters. Properties of sufficiency and 

invariance have been found useful in such situations. 

In hypothesis testing situations that are composite be­

cause they involve ranges of the parameter(s) of interest 

(for example, p < .3 versus p > .5 in the binomial 

context), sufficiency and invariance principles do not seem to 

be applicable. This is so because we should not think a test 

statistic desirable if it did not depend upon specifications 

of the parameter of interest. Wald (69) introduced weight 

functions for the development of the sequential t-test, and 

weight function methods seem well suited for composite 

hypotheses concerning ranges of parameters. 

In the following chapters we will discuss sufficiency, 

invariance, and weight functions more thoroughly using them to 

develop sequential tests for certain problems. 
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III. SEQUENTIAL MULTIPLE COVARIANCE ANALYSIS 
USING WEIGHT FUNCTIONS AND PRIOR DISTRIBUTIONS 

A. Weight Functions and Prior Distributions 

Given that it is possible to observe random variables 

2 from a normal distribution with mean |a and variance a we 

consider the application of sequential tests to hypotheses 

about the location parameter [i regardless of the value of the 

unknown variance a . For this problem Wald (69) suggested 

that the following procedure may have merit. For all (i such 

that [(|a-|a^)/a] < k^, where is small, it is preferred to 

accept the hypothesis [i ~ l-^o* all p, such that 

j(|a-|a^)/a| > k^ > k^ it is preferred to accept the hypothesis 

}i ^ HQ. Wald called the region in which k^ < 1 )/al <k^ 

an indifference region. With this procedure, however, the 

SPRT theory outlined in Chapter II does not immediately lead 

to a practical test. For example, suppose we are interested 

in a one-sided test about the location parameter (a of a normal 

population with unknown variance. The regions of preference 

noted above depend on the quantity —-— and, using SPRT theory 

on the "least favorable" case (H^: [i = versus + ycr 

where y is a specified constant), it can be shown that we 
2 

subsequently arrive at the log-likelihood ratio n(x -

with which to carry out the test. This log-likelihood ratio, 

2 however, still depends upon a , the unknown parameter. Wald 

(69) introduced the theory of weight functions as one procedure 
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to overcome this difficulty. In what follows we outline the 

application of Wald's weight function techniques to sequential 

testing and describe some examples of sequential weight func­

tion tests. 

1. Weight functions 

Let us assume that it is possible to observe a sequence 

of mutually independent random variables X^, X^j X^, ... each , 

of which has the same unknown probability density function 

f(x; 0) and where, in general, the random variable X and the 

parameter 0 may both be vectors. Let us suppose that Q, the 

parameter space of 0, can be divided into three mutually 

exclusive regions so that 0 = Wg where; w^ is the 

region in which the null hypothesis is preferred, is the 

region in which the alternative hypothesis is preferred, and 

Wg is the region in which neither or is preferred. 

When statistical tests of composite hypotheses are con­

structed, the probabilities P(I) and P(II) of Type I and Type 

II errors respectively are, in general, functions of one or 

more of the parameters of the parameter vector 0 = (0^, 0^, 0^, 

..., 0^). Keeping this in mind, suppose we have two weight 

functions for 0, V (8) and V^(0), defined so that: 

V^(0) is non-zero only for 0 e w^, V^(0) = 0 for 0 s w^ 

and 0 e Wg, and 

/ V (0) d0 = 1 (3.1a) 
WQ O 

and 
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V^(0) is non-zero only for 0 e w^, V^(0) = 0 for 0 e 

and 0 e Wg, and 

^o 

/ V](8) d8 = 1. (3.1b) 
Wi 

We also note that the Integrals given by 3.1 may be multiple 

integrals. 

Wald (69) then defined modified probability density 

functions which are constructed as follows: 
n 

&on(%l' %2' =/ n f(x^; 0) V^(0) d0 
w 1 

. (3.2) 
n 

%n^^l' ̂ 2' • • • '  ^n^ ^  f  ^ f(Zi' 8) V^(0) d0. 
w^l 

It is now possible to define a Wald SPET for the hypothesis 

specification: 

2̂ = Son(%l' =̂ 2 n̂' 

(3.3) 
H^: g(x^, Xg, x^) = Xg, ...» x^) 

because and are both simple hypotheses. It should here 

be noted that x^, ..., x ), i = 0, 1, will in general 

not be factorizable as 
n 

2̂' (3-4) 

As pointed out in the discussion following Property 2.3, 

however, independence of the random variables is not a 

necessary condition for the construction of boundaries for the 

SPET or for the application of Properties 2.2 and 2.3. 



16 

It is now convenient to denote the SPRT for the specifi­

cation in 3-3 as S(H^, H^; P(I)', P(II)*) where P(I)* and 

P(II)' are the probabilities of Type I and Type II errors, 

respectively. Then, at the n stage of sampling, 

S(H^, ; P(I)', P(II)') induces a partitioning of the sample 

n-space as in 3-5. 

Con = [(x^' ̂ 2' •••' %n): ̂ o accepted] 

== [(%2' ̂ 2' ^n^* ^1 accepted] (3.5) 

C^n = [(%2' ̂ 2' ^n^' ̂ ake another observation] 

Also, since 8(H^, P(I)', P(II)') is an SPRT, we know from 

Property 2.3 that 

CO 
P(I)' = s / g (x,, X ) dx (3.6) 

n=l 

and 
CO 

P(II)' = E / g (z , ..., % ) d% (3.7) 
n=l C ^ 

on 

where dx = dx^dx^ ... dx^. Using definitions 3.2 we can now 

write 
03 n 

P(l)' =  T .  f  I f  n f(x, ; 0) v^(9) d0] dx. (3.8) 

If we assume that the integration and summation signs are 

commutative, 3.8 can be rewritten 

<» n 
P(I)' =  f  S r n f(x,; 0) dx V^(0) d0 

"o 1 

= / Pg(I) Vg(B) d0 (3.9a) 

^o 
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where 
œ n 

Pnfl) = E / n f(%,; 8) ax (3.9b) 
n=l 

denotes the Type I error at any point 0 e w^. Similarly we 

write 

P(II)' =/ Pg(II) V^(0) d0 (3.10a) 
Wi 

where 
<» n 

Po(II) = 2 r n f(x.; 0) dx (3.10b) 

Con 1 

denotes the Type II error at any point 0 e w^. 

The end result is then that we have a procedure for 

sequentially testing versus where the approximate error 

rates are the weighted quantities P(l)' and P(II)'. 

2. Optimal weight functions 

In the absence of a priori bases for selecting weight 

functions, the choice could be made to satisfy some sort of 

"optimality" criterion involving a restriction to sequential 

tests which have certain "best" properties. We would then 

search the class of sequential tests 8(E^, P(I)', P(II)')> 

where and are given as in 3«3» for those tests (if they 

exist) which have these properties. If we restrict ourselves 

to a class of tests which have desirable properties, however, 

there usually is no method of choosing weight functions which 

generate the appropriate sequential tests. 
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Some cases have been reported for which specialized 

methods of choosing weight functions to derive "optimal" 

sequential tests do exist. For example Wald (69) considered 

the class of all sequential tests 8(H^, P(I)', P(II)') 

derived via weight functions and'sought to choose weight 

functions which induce sequential tests that satisfy the 

following "optimum" restrictions: 

Pg(I) < P(I) for 0 e w^ 

Pg(II) > P(II) for 8 G w. 

(3.11) 

where there exists at least one 0 e w , say 0 , such that o "  o  

Pg (I) = P(I) and similarly there exists at least one 0 e w^, 
0  

say 0^, such that Pg (II) = P(II). The PQ(I) and Pg(II) of 

3.11 are defined in 3.9b and 3.10b respectively. 

It is evident from 

i) the relations given in 3.9 and 3.10 

ii) the fact that the regions and are in 

effect defined by 

I-PHI" Vi(8) 

PFTTI ' I-P(II)' 
iii) the fact that knowledge of j) * —p^y,' 

Implies knowledge of P(I)' and P(II)' 

that the following relations hold 

max Pg(I) = h^(P(I)', P(II)', V^(0), V^(0)) 

® G (3.12) 
max Pp(II) = h.(P(I)', P(II)', V^(0), V, (0)) 

8 G 
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where h^ and hg are functions of arguments as indicated in 

3.12. For given weight functions it follows that P(I)' and 

P(II)' can, in principle, be chosen so that max PQ(I) and 
8 c Wo 

max PQ(II) take on their desired values. 
0 . 8 

Wald showed that if he considered the subclass of weight 

functions which serve to simultaneously minimize the two 

maximums given in 3.12 for fixed P(I)' and P(II)' he would 

then have weight functions which generate sequential tests 

for which the Type I and Type II errors satisfy 3.11. The 

following theorem due to Wald sets out sufficient conditions 

which sequential weight functions tests must satisfy in order 

for 3.11 to hold. 

Theorem 3 » 1 Let us suppose that the parameter space n 

can be written as 0 = w U w, where w.A w. = 0, i, j = 0, 
O J_ ^ X J 

1, 2, i ^ j. As before, w^ is the region of the parameter 

space where is preferred, w^ is the region where is 

preferred and w^ is the region where neither or is 

preferred. Further, let us assume that the boundary of w^ is 

a surface, say S^. We suppose then that it is possible to 

find two weight functions V^(0) and V^(0) such that 

, r 7^(8) d8 = 1 

"o (3.13) 

f V^(9) d9 = 1, 

^1 

and such that the SPRT based on the ratio 
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n 
/ 7^(8) n 8) dS^ 

8] 1 
1 (3.14) n 

/ 7^(8) n f(%^; 8) d8 
Wq 1 

satisfies the following conditions for any values of the 

upper and lower boundaries of the test procedure: 

i) Pg(I) is constant in w^ 

ii) Pg( II) is constant over 

ill) for any point 0 in the interior of w^, the value 

of Pg(II) does not exceed the constant value of 

Pg(II) on S^. 

Pflll 
Also if the lower boundary is taken to be ^ p(i")' ̂ .nd if the 

upper boundary is taken as then we have that 

max PQ(I) = P(I) 
8 ^ . 

and 

max Pn(II) = P(II). 
8 G " 

Proof: The proof may be found in ¥ald (69). 

3. Application of weight functions 

As an application of Theorem 3*1 Wald derived a type of 

sequential t-test for sequentially testing hypotheses about 

2 the mean ̂  of a normal population with unknown variance a 

and, in particular, for testing that 
[i-^o 

is small relative 
a 

to some value The parameter space Q = [([a,a): 

0<a<<=°] is partitioned as n = w^U w^V w^ where 
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W Q  =  [ :  

= [(M,a): 

Œ 

li-u. 

CT 

= 0, 0 < a< °°] 

> > 0, 0 < cr < so] 

(3.15) 

and 

= Q - w - w, . 
2 o 1 

The boundary of is given by 

= [(n,ci); = k^G, k^>0, 0<CT <<»] . 

Wald shows that the weight functions which satisfy the 

conditions of Theorem 3.1 are 

V (u,a) = l/c; 0 < a < c, M = 

= 0 otherwise 

V^(^,cr) = 0 < a < c, ̂  + k^c 

= 0 otherwise. 

That is, Wald shows that the likelihood ratio 

n 

Lim 
c-$> ™ 

f V (|a,o-) n f(x. ;M-,a) da d^i 
Si 1 

n 
/ v^(l^>cr) n f(x^;ia,a) da d^i 
w. 1 

(3.17) 

can be computed as an SPET with Type I and Type II probabil­

ities of error, P(I) and P(II), so that we may expect the 

actual hypothesis specification 

[i = la^ versus |(|a-ia^)/a| = k^a 

to be tested with approximately these probabilities of error. 
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The following additional applications of weight function 

techniques may "be noted. For the situation where X^, X^, 

X are independent normally distributed random variables with 

2 mean and variance a unknown, Wetherill (7^) presents a weight 

function approach to the problem of testing : a = versus 

Hi; a = Qi > Qo* Hoel (30) has obtained a sequential test for 

the canonical form of the general linear hypothesis using 

weight functions. Eoseberry (58) derived some weight function 

test procedures for the comparison of two treatments using one 

covariate based on a bivariate normal model. 

No results similar to those of Properties 2.4, 2.5» and 

2.6 are available for any of the above examples of weight 

functions in sequential testing. In addition. Hall, Wijsman, 

and Ghosh (28) mention that they do not consider Wald's proof 

of the inequalities on the two error probabilities for Wald's 

sequential t-test to be adequate (see Property 2.3) and 

further suggest that the type of arguments necessary for 

demonstration of these inequalities are those given by 

Barnard (5). 

In many practical situations the weight function approach 

may attract criticism from experimenters because of its 

arbitrariness and the possible difficulty in interpreting the 

functional relationships exhibited in 3.9 and 3.10 and from 

theoreticians because it is usually Intractable to handle the 

properties of the tests analytically. It is hoped that the 
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topic to be developed in the next section may alleviate the 

intensity of the first criticism, while on the second point 

the properties of weight function tests can be investigated by 

Monte Carlo techniques pending the development of appropriate 

analytic techniques. 

4. Prior distributions 

We feel that the initial work of Wald with weight functions 

and the subsequent application of weight functions for the 

construction of sequential tests by various authors has a 

close association with the growing body of statistical litera­

ture concerning Bayesian statistics. In this thesis, the term 

Bayesian refers to any use of prior densities on a parameter 

space with the associated application of Bayes' theorem in the 

analysis of a statistical problem. 

In order to discuss weight functions in the context of 

prior distributions we shall adopt some definitions given by 

Raiffa and Schlaifer (53) • They use the word likelihood to 

denote the value l(zj9) taken on by the mass or density 

function for a given outcome z and a given parameter 0. The 

marginal likelihood of the experimental outcome z given a 

particular prior density g(9), defined on a parameter space 

n, is defined as 

l(zjg) = / l(zfe)g(0)d0. (3.18) 
Q 

Comparison of formula 3'18 with 3.1 - 3.3 shows that 

procedures based on weight functions can be considered as the 
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application of prior distributions to sequential testing by 

the formulation of the ratio of marginal likelihoods of an 

experimental outcome given particular prior distributions. 

These prior distributions are the 7^(8) and V^(6), defined 

over the restricted regions and , respectively, of the 

parameter space Q, the regions being selected according to the 

hypotheses to be tested (see for example, the discussion of 

Wald's sequential t-test in the previous subsection). 

In some practical applications there will exist a sub­

stantial amount of empirical evidence on which to base the 

prior distribution of the parameters. For example, it is 

possible that a production process which produces normally 

distributed random observations may generate a different 

2 variance a each day it is run. That is, on the first day we 

2 have ..NI(M,a^) and on the second day we 

2 have Xpn, Xg?' •**' . .^(iJjag) etc. It might then be 

2 possible to describe the distribution of values of a by a 

fairly common probability density function which could then be 

utilized in making inferences about the mean [i of the process. 

With reference to possible questions concerning the 

fitting of prior distributions to past data, Eaiffa and 

Schlaifer (53) report, in rather strong terms, that their 

experiences with real life examples show that in a great many 

applications the method of fitting will have no great effect 

on the final outcome of the results of the decision problem 
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under consideration. In other words, the experimenter and 

statistician need not be very preoccupied with different 

methods of fitting the prior distribution to the relevant data. 

This is not to say that prior distributions should not be used 

but instead implies that the statistical analysis is usually 

insensitive to various recommended techniques of distribution 

estimation. 

The problem of assessing a prior distribution is more 

challenging in those situations where no empirical frequency 

basis for assessment exists. Thus the prior information may 

not be straightforwardly quantifiable and in these cases may 

simply represent the betting odds with which the responsible 

person wishes his final decision to be consistent. The 

psychological difficulty with the assignment of such odds 

usually results in the "true" prior distribution being de­

scribed in terms of a few summary measures such as the mean, 

the mean deviation, or a few fractiles. It is important, 

therefore, that the family F of prior distributions under con­

sideration be such that there will be a member of F capable of 

expressing such fractional types of prior information. 

The above difficulty increases further when, in effect, 

there is no prior information whatsoever and objective prior 

densities on the parameter space are desired. If the experi­

menter does not have any prior knowledge about the parameter, 

he cannot proceed to make any prior guess about the parameter 
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values lying over a finite set of an infinite parameter space 

nor can he proceed to choose a suitable prior from some 

family of densities. 

For such circumstances what are known as prior quasi-

densities have been advocated. Wallace (71) and Stone (68) 

define a prior quasi-density as any non-negative function g(6) 

defined on a parameter space n. As an example of a prior 

quasi-density consider the normal distribution with mean |a and 

standard deviation a. One quasi-density for a is g(a) = 1, 

0 < a < °°. A prior quasi-density is called admissible with 

respect to a density f(xj0), x e X, if 

h(x) = f f(x|0) g(0) d0 < °°. (3.19) 
n 

We then have 

g»(e|x) = 

well-defined and we call g*(8|x) a weak posterior density. 

Wallace (71) shows that, given a prior quasi-density, there 

exists a sequence of proper prior densities whose corresponding 

proper posterior densities tend to a weak posterior density 

for each fixed set of data. Similarly, given two prior quasi-

densities, g^(0) and ggfG), and their corresponding admissible 

marginal likelihoods, and say, it is possible to have a 

sequence of marginal likelihoods, say and Induced by 

proper prior distributions so that • 
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To illustrate, consider f(xf0) where 9 = (ia,a), -"< [i < «>, 

and 0 < a < ™ and let 

= 1  0 < a <  =  

= 0 otherwise, 

and 

=1 0<cr<«', (i=[i2 

= 0 otherwise. 

Then we have 
00 

= f f(xlii^jcr) da 

Lg = / f(xliagja) da. 
o 

Let us define proper priors as 

glc(M-,a) = -i, 0 < a < c, ti = 

= 0 otherwise 

0 < a < c, 

= 0 otherwise. 

Then 
c , c 

T f - f(x[M.,a) da f f(%|u,a)da 
lim = 11m o ̂ ^ ^ litn o 

0—^00 C-^°° 0 ̂  C-» CO c 
f - ffzlMg'a) da f f (xfiJ-^.a) da 

h ° 

5. Final remarks 

In the preceding sections we have attempted to assimilate 

the weight function techniques as introduced by Wald into the 

context of Bayesian statistical procedures. It is our opinion 



28 

that the use of prior distributions can serve as a valuable 

tool in the construction of sequential tests for composite 

hypotheses. It is recognized that there are difficult mathe­

matical problems associated with these approaches, but they 

do reduce the difficult problem of sequentially testing 

composite hypotheses to the more tractable case of sequentially 

testing simple hypotheses. 

In support of this approach it may be noted that Barnard 

(5) and Bartholomew (7) suggested that Bayesian statistics and 

classical statistics may be in agreement in the context of 

sequential experimentation. Portions of this chapter may add 

credence to this conjecture. 

B. Statement of the Problem 

1. Motivation 

Statistical analyses for the comparison of two treatments 

are extensively documented for fixed sample size experiments. 

Statistical techniques for the comparison of two treatments by 

sequential experimentation are, however, not so well developed 

and, further, most of the available sequential techniques 

relate to somewhat unrealistic hypothesis formulations. 

Armitage (4) discussed the design and the sequential 

analysis of medical trials with emphasis on the comparison of 

two treatments. Roseberry (58) and Cox and Roseberry (18) 

developed and Investigated empirically some sequential tests 
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which utilize one covariate. In these references, the experi­

mental units were paired and the two treatments then were 

assigned at random to the subjects within pairs. In (58) 

and (18) observations were assumed to be bivariate normally 

distributed with one variate as the response of interest and 

the other variate representing the concomitant information. 

Maurice (4?, 48), Johnson and Maurice (4l), and Colton 

(l6) approached the problem of sequentially comparing two 

treatments from a decision theory standpoint using loss, 

functions and prior distributions. As in (4), (18), and (58) 

these authors used a design where the observations were paired 

and again it was assumed that the observations were normally 

distributed with known variance. 

Hajnal (26) derived an unpaired sequential t-test for 

unpaired observations and this technique will be discussed 

more fully in Chapter V. 

The situation we shall generally envisage in this thesis 

is that in which observations on the response and concomitant 

variates are sequentially obtained. For example, a clinician 

may have primary interest in the effectiveness of a drug for a 

head cold or for the relief of arthritic pain. The response 

of interest may then be supplemented by such concomitant 

information as the patient's age and blood pressure. 
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In this chapter we will require that the observations be 

made in pairs—one for each of the two treatments being 

compared. As in Cox and Boseberry (18) pairs are comprised of 

groups of two successive units, the allocation of experimental 

units to the two treatments being random within each pair. We 

shall form the signed differences within pairs of the observa­

tions and proceed to make inferences from these differences. 

It should be noted here that, in general, each observation 

will be multivariate so that the differences we refer to will 

be differences of vectors. 

Suppose that a vector of random variables (W, Z')j where 

W is the scalar variate of interest and Z' = (Z^, Z^, Z^) 

are the concomitant variates, is a random vector from a 

population having the probability density function 

g(w, z; a, Î, k^, 1) = 

1 

g,(z; exp [. (3.21) 
2nk / 

2 ~ ^ where a and k are scalars and (a, p and 6 are vectors of 

~ 2 parameters. Let us also assume that p and k are not function­

ally related to '9 and that the unconditional expectation, 

E[Z] = la. It is easily shown that the conditional distribution 
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of W given Z = z is normal with mean a + (z-ia)'P and variance 

2 k and, in addition, that the unconditional expectation of 

¥, E[W], is a. 

If we assume that the concomitant information, represent­

ed by Z' = (ZL, Z ), is obtained before the application of X p 

the treatment, then model 3.21, with an arbitrary marginal 

p.d.f. for Z*, appears to be a reasonable representation of a 

possible real life situation in which concomitant information 

is used. However, for the design we are considering, attention 

will be mainly concentrated on cases for which g^(z; n, 0) can 

be assumed multivariate normally distributed. For if (W^, Z^) 

and (Wg, Zg) are random variables having p.d.f.'s 

g(w^, z^; a^, (a, p, 9, k ) and g(w^, z^; a^, n, p, 0, k ) 

respectively then it is highly desirable that the distribution 

of Z^-Zg) should also have the form 3.21. This 

property holds for the density in 3.21 if 

= Y exp[- I^ZELI- (z-u)] (3.22) 

((2n)Pi#| 

where # is the variance-covariance matrix of the random 

variable Z. Some further details on this point are noted in 

Section A of the Appendix. 
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The final form of the model to be used will now be 

developed. If we let X be the p x 1 vector of differenced 

covariates Z^-Zg, and Y be the paired difference of the 

responses of interest, then we shall assume that we are 

sampling from the population described by the probability 

density function 

g(y, x;a,p,E,a^) = ^j exp["^ 

(2n)2|z| 2 

ezp[_ . (3.23) 

In 3«23 tildes have been used to indicate that x and p are 

vectors while S is a matrix. It will be convenient in what 

follows to drop the tilde notation unless the matrix and 

vector quantities are not sufficiently defined by the context 

in which they are found. 

The probability density function given in 3*21 is a 

multivariate nonnormal density with the conditional p.d.f. 

of W given Z = z being univariate normal. The p.d.f. of 3.23 

is a special case of the p.d.f. given in 3.21 and is a 

reparameterized form of the usual multivariate normal density 

as given, for example, in Anderson (1). As is shown in Section 

A of the Appendix, (Y,X')' has a multivariate normal 
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distribution (jyfVN) with mean (a, 0 ) '  and variance-covariance 

For example, if we assume one covariate, i.e. p=l, we have 

(Y,X^)' distributed as MN with mean (a, O)' and variance-

covariance matrix 

It is shown in Section A of the Appendix that the uncon­

ditional expectation of Y is a, i.e. 

where a reflects the population difference between the two 

treatments under investigation. The problem which we shall 

consider in this chapter is that of testing hypothesis 

formulations about a using appropriate sequential procedures. 

2. Sequential test with known nuisance parameters 

2 If we assume that the nuisance parameters g-, a , and E 

are known, we are essentially working with the normal variate 

y-x'3 which has mean a. Thus if we formulate a hypothesis 

specification as 

matrix 

E[I] = a (3.24) 

H ; a = a 
o 

a = a 

o (3.23) 
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then we can apply, without difficulty, the standard SPRT theory 

as summarized below. 

It is here noted that in the remainder of the thesis, 

unless the situation dictates, we do not distinguish between 

a random variable and its realization. 

a. Sequential procedure Let us denote the SPRT of the 

specification 3-25 by S(H^, P(I), P(II)) where P(I) and 

P(II) are the Type I and Type II errors respectively. Let 

denote the likelihood ratio at stage n, 

n 
n f (y^ , X. ; a^, p, Z, cr ) 

( 3 . 2 6 )  

n f(y^, a^, p, E, a ) 

Then from 3.23 

n 2 
n f (y. , X. ; a, p, S, a ) = 
1 ^ 

n 
\ 2 

(2n)9|z| 
exp 

n 
r Z x! E X. 
i=l ^ ^ 

1 

2nc 

n 
2 .  

exp 
n (y -a-x'p) 

- E —— 

2 l  

2cr 
(3.27) 

n n n 
and E (y ,-a-z'p)^ = E (y ,-z;;)^ _ 2aE(y,-x^g) + na^ 

i^l 1 ^11 1 ^ ^ 

= (y-X'P)' (y-X'P) - 2ae'(y-X'p) + 

WllBITB •••? ^ ̂ "fcliat X ( X^ ) X^ J > 

x^) = (x^.) is a p X n matrix of covariate observations. 

t h. th. 
Each x^ j refers to the j observed value of the i covariate. 

We also are denoting (y^, y,, y^) by y' and (1,1, ..., 1) n 
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by e'. Therefore the likelihood ratio in 3.26 becomes 

2(a^-a ) e' (y-X'p) - n(a-, - a ) 
= exp [ ^ 2 -] (3.28) 

* 2a 

The test procedure S(H^, P(I), P(II)) then specifies 

that : 

(a) if ^ p(ij^r e j e c t e d  a n d  i s  

accepted (3-29) 

(b) if < ]_ accepted and is 

(c) if • " V < R < , we sample the 

rejected (3.30) 

< H < ^ -,P(: 
1 - P(I) n < P(I) 

(n+1)^^ pair. (3.31) 

b. Average sample number Property 2.5 can be used to 

give an approximation for the average sample number given that 

a = cc^ is true. For from 3.23 

E[ln L[H^: a=a^] = -^ E[ (a^-a^) (y-x''p ) + l'(aQ-a^) (a^+a^)] 
CT 

1 (a.-a^jZ (3.32) 
2,2 -1 

f(y, x; a., p, a^, E) 2 
where L = 2 and f(y, x; a, g, a , S) is 

f (y, x;,a^, p, a , ) 

the p.d.f. given in 3.23. 

Similarly P 
(a-,-a ) 

E[ln L(H. ; a = a-i ] = —— (3.33) 
^ 2a 

Then, Property 2.5 gives the following approximate formulae 
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E[Nla^] = 
P(I) In + (1-?(I)) In 

1 

2a 
(a^-ag) 

(3.34) 

(l-P(II)) In + P(II) in T^ffl 
E[N|a,] = Iznll 

2a 

1 - \2 
2 (Oi-Go) 

where E[N|a] is the expected sample size of the sequential . 

procedure S(H^, P(I), P(II)) when a is the actual value 

of the parameter of interest. 

c. Operating characteristic curve In order to. compute 

the operating characteristic curve by means of Property 2.4 

it is necessary to find h(a) such that 

h(a) 

/ ... / — CO .00 

(y-a .  
expL 9 ] 

2a 

(y-a -z'p) 
exp[ 5 ] 

2a' 

f(y, x; a, g, Z, a ) 

dydx^ ... dXp = 1 

where f(y, x; a, g, E, a^) is as given in 3.23. 

writing h(a) = h, we must find h such that 

o h 

•] 

(3.35) 

That is, 

f  • • • /  
ezp[-

(y--a^-xp') 
ezp[-

2a 2 

exp[-
(y--a -x'p) 

1 exp[-
2a^ 

( •  
1 

1 • 
2 

(2n |Z|  a^  ̂  

exp[ _ aya%T ... a%p = 1 (3.36a) 
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Rewriting we have 

CO CO 
exp [—^ (a - a_)h] f > •-f ^ %— exp [Q(y,x)] 

2a -<=° 
(2n) 2 [2| 2 p 

dydx^ ... dx = 1 (3.36b) 

«here Q(y,x) = - ^ .  ( y - a - z ' p ) \  
2a ^ 2a 

Expanding Q(y,x) in (y-x'(3) and completing the square we have 

Q(y,x) = ^ [(y-x'p-a+a h-a_h)^ - (a-(a -a.)h)^ + a^] 
2a ° ^ 

x'E"^x 
2 

Integrating 3-36b we have 

exp [ ^ (a^-(a-(a^-a^)h)^ - (o^-a^ïh)] = 1 (3.37) 

Solving 3'37 for h we finally have 

a-, +cl-2(x 
h = (3.38) 

Let P[alS(H^, P(I), P(II)] be the probability of deciding 

for a = a when any point as(-*,») holds as fact. Then 

by Property 2.4 we have 

(l-P(II))h _ 

P[a|S(H , K; P(I), P(II))] = —5. (3-39) 
° 1 fl.P(II)\^ / P(II)v" 

^ P(I) ' • ll-P(I)J 
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In passing it is interesting to note that formulae 3-38 

and 3.34 are unchanged even if the p.d.f. given in 3.23 is 

relaxed to the more general p.d.f. 

1 
2 2 

f(y,x;a,3,0) = gn(x;8) (—^) exp[- P) ] 
^ 2na 

where g^(x;0) is the marginal distribution of x indexed by the 

vector parameter 0. It is noted here that for the case of 

fixed x's the preceding derivations also hold. 

As we have seen, the sequential testing theory for our 

model 3.23 follows directly, with a little algebra, from Wald's 

(69) SPRT procedures if the nuisance parameters are assumed 

known and the hypotheses are of the simple versus simple type. 

If, however, we cannot, with subjective or frequentist 

2 probability of one, assume known values for |3, a , and E, then 

we are in a composite hypothesis testing situation for which 

Wald's elegant theory does not apply. 

In what follows we accordingly consider the construction 

of sequential tests of composite hypotheses using prior dis­

tributions. Our primary interest is again the problem of 

making inferences about the a parameter in the model 3.23. 

C. A Test for a = Versus H^: a = 

with Nuisance Parameters Unknown 

Let us suppose we are sequentially sampling random 

variables (Y^, X^), 1 = 1, 2, ..., n, ... from a distribution 
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which has the probability density function 3•23. We wish to 

construct sequential tests for the hypothesis formulation 

" "T (2,40) 
%: G = 

2 where and are specified scalars and 3, a , E are 

unknown. 

The region of preference for acceptance of is 

= [(ajO'}P2_'p2'''''^p'^ll'**' )^2p ' *^22 ' ' ' * ' "^pp ̂ 

a = and the parameters a; ,i=l,...,p; 

o'n i >i < 3=^5 • • • ' P unspecified]. J 
The region of preference for acceptance of is 

= [(cCjCr}P-j_»32'' '''^p'^^ll'* ** )^2p'^22'"'' ' ̂ 2p ' ' * * ' "^pp ̂ ' 

a = a. and the parameters CT; ,i=l,...,p; 

o\i,i<j=l,..', pare unspecified]. 1 J 
The region where neither or is preferred is the comple­

ment of the region w^uw^. 

Let us suppose that there exists no prior information 

2 about the nuisance parameters |3, a , and E. As previously 

discussed in Section A, Chapter III, we will assume that this 

situation can be represented•in terms of prior quasi-densities 

over the parameter spaces as follows. 
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Let 

(ccjPJCT >S) 
P(P+1) (p+1)(p+2) 

1 ' 0<Cii<c;-c<P^<o,i=l,2 

2 
2 2 c 

0<CT<c;-c<a^^<c,i<j=l,. .. ,p; a = 

= 0, otherwise (3.4la) 

and let 

V^(a,p,a,S) 1 , 0<CT^^<c,-c<p^<c,i=l,2 J • • • > P j 
P(P+1) (p+1)(p+2) 

2 ^ 2  ^  

0<a<c;-c<a^j<c,i<j=l,...,p; a = 

= 0, otherwise. 

V (a,P,a,Z) and V^(a,p,cr,S) are uniform proper prior distri­

butions set out for the express purpose of generating the 

admissible prior quasi-densities, W_(a,P,c,Z) and ¥^(a,p,a,E), 

and their corresponding marginal likelihoods where 

WQ(a,p,a,S) =1, 0<a^^<»s-"<P^<",i=l,2,...,p; 

W^(a,p,a,S) =1, 0<cr^^<<»,-~<p^<",i=l,2,.. . ,p; 

0<a<=;-=<a^j<=,i<j=l,...,p; a =. 

= 0, otherwise 

It may be noted that the c's given in 3.4la need not be the 

same but no loss of generality occurs, for the ensuing limiting 

process results in the same prior quasi-densities whether or 

not different c's are used. The prior quasi-densities given 

0<a<œ;-œ<c^j<œ,i<j=i,...,p; a = 

0, otherwise (3.4lb) 
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In 3.4lb represent an equal weighting of all points in the 

parameter spaces w^ and which may be regarded as an ex­

pression of our ignorance about the nuisance parameters. 

We now construct modified p.d.f.'s as in 3.2 and form the 

ratio 

R(l; p; n; c) = 
f  S  • • • /  f  • • •  /  V ^ ( a ,  P , a , Z )  
g -c -c 0 ^c 

/  /  • • • /  /  J  V g f a ,  p , a , Z )  
CC "0 — 0 0 —c 

n 
n f (y. , X. ; a, P, CT , S) dadpdSda 
1 ^ 
n 
N f(y., X. ; a, p, CT , Z) dadpdEda 
1 ^ ^ 

(3.43) 

where dp = dj3,dp, ... dB and dZ = R da.i^. 
1 6 P jd:k J* 

After substituting from 3.4la and 3.23 and simplifying, 

3.43 can be written as 

5(1; p; n; c) = 

V V ^ 1 

I s f ~n 
-c -c o a 

exp 

n 
Z(yi-aA-x/p)^'' 

2cr^ 
dp dp 

c 

-c / ••• / / --c o a 

Z(y< -am-2C,'p) 

dadp 

(3.44) 

Following Wald (69), Hoel (30) and Wallace (71) we now take 

the limit as c becomes infinite and our test statistic 3.44 

becomes 
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R(l; p; n) 

n 

I f  • • • !  O -°O _<» 0 

1 
-n exp 

2i 

2a 
2 

dp da 

n 

S I  • • • /  
O -n exp a  

2(yi-a^-x^p)' 

2a 
dpda 

(3.45) 

If we let u. = y.-a then 
1 •' 1 

n P n P 
S(y.-a-x;p)^ = Z(u -x;e)^ 
1 ^ ^ 1 • ^ ^ 

= (u-X'p)'(u-X'p) 

where u' = (u^, u^, u^) is a 1 x n vector and where 

X = (x^, Zp, ..., X ) is a p X n matrix of covariates. We 

then have 

/  /  • • •  f  - tz  exp 
O 

n 
E(y -a-x'p) 
1 ^ ^ 

2(7̂  

2i 

dp da (3.46) 

CO CO 
=  /  /  .. .  /  1 r 

O _00 ( J  -n exp 
_ (u-X'3)'(u-X'g) 

20^ 
dp da 

=  f  f  .../ exp (p'XX'p-2u'X+u'u)] dpda. 
- 2a 

(3.4?) 
0 -00 a 

Using the theorem proved in Section B of the Appendix, 3.4? 

becomes 
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f  exp [- ̂ ]a"^(2n |a^(XX* )~^ ^ exp [+ ̂ 'X'(XX') ̂ Xu^ 
o 2a 2c^ 

= (2n)^ Ixx'l 2j^-(n-p) exp [- ̂ '(1-%'(%%')" ̂ )"]-da (3.48) 
o 2c^ 

It is important that XX' be nonsingular for the integra­

tion in 3.4? to be performed. This is evident because the 

covariates are sampled from a continuous distribution and the 

probability is one that X = (x^, x^, ..., x^) is of rank p if 

p < n. Since rank X = rank XX* we have XX' as a p x p matrix 

of rank p so that its inverse exists. The integral as given 

in 3.48 does not have finite value unless 

n-p > 1 and u'(I-X'(XX')~^X)u > 0. (3.49) 

The requirement n-p > 1 implies that the computation of the 

test statistic given in 3-45 cannot begin until p+2 observa­

tions are taken. It is noted that this constraint is con­

sistent with the number of nuisance parameters remaining in 

3.45, that is, a and , i = 1, p. Also, letting 

A = I - X'(XX')"^X we can easily verify that 

A' = A and AA = A 

so that 

u'Au = u'A'Au = (Au)'Au. (3.50a) 

Therefore it is always true that 

u'Au > 0. (3.50b) 

Now, if a random variable z is sampled from a continuous multi­

variate distribution and is not identically equal to zero, then 
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P[z = a] = 0 

where a is any constant. Au is a function of the random 

variables 

and 

Ui = y^-a, i = 1, 2, .n 

X = (Xi, Xg, ..., x^) 

so that we can think of Au as a random variable sampled from a 

continuous multivariate distribution. From 3.50a we see that 

P[u'Au = 0] = P[Au =0]. 

Therefore P[u'Au = 0] = 0 and we conclude that 

u'(I-X'(XX') ̂ X)u > 0 with probability one. 

Prom Lemma 1 of Section C of the Appendix the result of 

the integration in 3.48 is 

2 1 n-p-1 

(2n)^ |xx'| ^ (|)[u'd-x'(XX')"^x)u] ^ (3.51) 

so that finally 

(y-a^e) ' (i_M) (y-a^e) 
E(l, p, n) = 

n-p-1 
2 

(y-o^e) • (i-M) (y-a^ ©) 
(3.52) 

where M = X'(XX')~^X, e' = (1, 1, ..., 1), andy' = (y^, y^). 

The behavior of the ratio R(l, p, n) given by 3-52 as the 

sample size becomes large will now be examined. In particular 

it may be asked if the test statistic E(l, p, n) must always 

lead to a decision in favor of H or in favor of H-, or if o 1 

there is a possibility that it will remain in the interval 
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(B,A), where 0 < B < 1 < A, for all n. It will be demonstrated 

that the probability is zero that R(l, p, n) remains in the 

interval (B,A) Indefinitely unless a = —^—• 

The following three definitions are required. 

Definition 3.1: A sequence of random variables is 

said to converge in probability to a constant d if for any 

£ > 0 we have 

lim P[ X -d< e] = 1. 
n-$.oo 

P 
We denote this type of convergence by X —> d. 

Definition 3.2: A sequence of random variables is 

said to converge in probability to a random variable X if 

(X^-X) converges in probability to zero. 

Definition 3  > 3  ' •  A sequence of random variables X^ is 

said to become arbitrarily large with probability one if for 

any real number d > 0, then 

lim P[X > d] = 1. 
n-i>00 

We recall that R(l, p, n) was derived on the assumption 

that the data were being generated by the p.d.f. given in 

3.23 so that the vector y' = (y^, ..., y^) has expectation 

(X « "^CCm 
a(l, ..., 1). We now show that if a< —^— then 

P CC M '̂Ct A 
R(l, p, n) > 0 and if a > —g— then R(l, p, n) becomes 

arbitrarily large with probability one. 

For this we require the following useful theorem due to 

E. Slutsky and given in Cramer (21, p. 255). 
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Theorem 3.2: If Y^^(l =1, ..., r) are random variables 

converging in probability to the constants a^(i = l, r) 

respectively, then any rational function T(, ..., Y^) 

converges in probability to the constant T(a^, ag, a^) 

provided the latter is finite. 

Let us consider now 8(1, p, n), where 

(y-ttme)'(I-M)(y-a„e) 
S(l, p, n) = i ^ (3.53) 

(y-a^e)'(I-M)(y-a^e) 

and M, e', and y are as defined in 3-52. If E[y] = ae then it 

follows from Theorem 3.2 and from the fact that maximum likeli­

hood estimators are consistent, with certain mild assumptions 

(see Fisz, 34),that 

p + (a-arn)^ 
8(1, P, n) (3.54) 

a + (a-a^) 

To verify 3.54 we write the numerator of 3*53 as 

(y-ae)'(I-M)(y-ae) + 2(a-a^)e'(I-M)(y-ae) + (a-a^)^e'(I-M)e 

(3.55) 

and examine the asymptotic properties of each term when that 

term is divided by n. 

Prom Section A of the Appendix we see that if E[y] = ae 

1 2 then —(y-ae)'(I-M)(y-ae) is a consistent estimator of a , 

that is, 

^(y-ae)'(I-M) (y-ae) -^a^. 

Also, since E[X] = 0 and we can write 
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^ e'(I-M)e = 1 + (x^, Xp)(^) (x^, ..., x^) 

then 

1 e'(I-M)e-^ 1 + (0, 0)(E)"^(0, ..., 0) = 1. 

Finally, we can write 

—i 
i e'(I-M)(y-ae) = y -a+ (x^, x^, %p) (^) • 

Nowy-^a, ̂  ̂  Z, ̂^i-2zÇLËl cov(x,y) and 

(x^, Xg, ..., z J > O'e so that 

i e' (I-M)(y-ae) 0. 

Thus the numerator of 3.53s when divided by n, converges in 

2 2 probability to a + (a-a^) . Similarly, we can show that the 

denominator of 3-53, when divided by n, converges in 

2 2 probability to cr + (a-a^) . Therefore use of Theorem 3.2 

establishes the result given in 3.54-. 

Writing 

+ (a-a„)^ 
-Ô p = C ( a ), 
a + (a-a^) 

for which we have established that 

8(1, p, n) C(a), 

it is then easy to verify that 

CCM CC , 
G(a) <1 if a < —— 

dm + a. 
>1 if a > (3.56) 
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We now show that 

[8(1, p, (3.57) 
% 

where f(n) is an increasing unbounded function of n, does not 

remain in the interval (B,A), 0 < B < 1 < A, indefinitely when, 

a ^ —2—• This fact follows immediately from the following 

theorems which are proved in Section D of the Appendix. 

Theorem 3.3: If C, 0 < C < 1, and if f (n) is an 

f f n ) P 
increasing unbounded function of n, then [X^^ ^ ' $> 0. 

Theorem 3.4: If X —^ C, C > 1, and if f(n) is an 

increasing unbounded function of n, then [X^]^becomes 

arbitrarily large with probability one. 

It has been shown that 8(1, p, n) -^C(a). Hence, if 

arp+a. , 
a < —p— so that C(a) < 1, then taking f(n) = in 

^ P aT+Ga 
Theorem 3-3 shows H(l, p, n) >0. Again if a > —=—, then 

C(a) > 1 and Theorem 3.4 implies that E(l, p, n) becomes 
CCrp'^CLn 

arbitrarily large with probability one. If a = —^— so that 

C(a) = 1, the behavior of R(l, p, n) is still an open question. 

In summary, the SPHT with R(l, p, n) as the test statistic 

decisions with probability one if a ̂  ^—• 

In conclusion, the test derived in this section should 

be considered as a "least favorable" approach to the hypothesis 

formulation 

: a < ttm versus H, : a > a. 
o — T 1 — A 
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with nuisance parameters unknown. Because of the manner in 

which this test is derived one would expect its performance 

in practical situations to be dependent on the investigator's 

choice of and a^. In particular, poor specifications of 

a. and/or might result in excessively large average sample 

numbers. These topics will therefore be considered further in 

Chapter VI. 

D. A Test for a=ay Versus a=a^+Ya 

with Y and Specified, and Nuisance Parameters Unknown 

A number of developments in the sequential testing of 

hypotheses have been based on analogies with fixed sample size 

methodology. For example, it is well known that Neyman-Pearson 

testing theory, when applied to the least favorable hypothesis 

formulation 
^-,u_ 
^ =0 ae(0,co) 

—— = 5 , Ô > 0, ae (0,<=°) 

provides a uniformly most powerful unbiased test and also a 

uniformly most powerful invariant test for the hypothesis 

formulation 

—p— <0 oe(0, = ) 

<3.59) 

:  — —  > 0  C T e  ( 0  , " )  

and also for the ultimate formulation 
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: fi < ae ( 0 ,co) 

( 3 . 6 0 )  
la > ac (0,co) 

The test alluded to above is the well known Student's t-test. 

Wald (69)) Eushton (59j 60), Cox (20) and Hajnal (26) 

2 developed what are termed sequential t-tests and t -tests for 

hypotheses of the type given in 3-58. Hoel (30), Johnson (39), 

and Ray (55) developed and discussed sequential F-tests based 

on hypothesis formulations similar to those of 3•58. In 

sequential analysis, however, we must specify the alternative 

and consequently we have difficulty in developing tests for 

hypothesis formulations of the type given in 3.6O from those 

given in 3-58. For, in 3-58, we are confronted with the 

alternative M-I-IQ = ôa, where although 6 is known, CT and 

therefore ÔCT are unknown. Thus the magnitude of the differ­

ence which can be detected with a given power is unknown. 

However, if we have a prior estimate of a or if we are only 

interested in the detection of a difference scaled in 

standard deviation units we may nevertheless develop a sequen­

tial test for the hypothesis formulation as given in 3.58. 

As an application to the problem as stated in Section B 

of this chapter, it will be shown that the weight.function 

approach provides a test statistic which would be intuitively 

expected as a generalization of the results of Wald (69) and 

Eushton (59, 60). 



51 

Let us suppose we are sequentially sampling random 

variables (Y^, ), i=l, 2, n, ... from a distribution 

which has the probability density function 3.23. Let us con­

cern ourselves with constructing a sequential test for the 

least favorable hypothesis formulation 

Eg: a = 

(3.61) 
a = + YCT 

where and y are specified numbers and a, P, E are assumed 

unknown. 

The region of preference for acceptance of is 

w^ = [ (a, a, '"'Pp' ̂11' • • • » °lp' ̂22' ' ^2p' * ' ' *^pp^' 

a = and the parameters a; , i = 1, ..., p; 

i < j=l, p are unspecified]. 

The region of preference for acceptance of is 

w^~ [(ccjCjjP^jPgj "'«) ̂ p*^ll' •••' ' *^22' '**' ̂2p''"'* ̂ pp)' 

a = ttip + Ycr and the parameters a ; , i = 1, ..., p; 

i < j =1, ..., p are unspecified]. 

The region where neither or is preferred is the comple­

ment of the region U w^. 

The prior quasi-densities we shall adopt are 

W^(a, p,a,E) = 1, 0 < < », -=o<p^<~, 1 = 1, ..., p; 

0 < a < = ; -"<a^^<o°,i<.j=l, ...,p; a = 

= 0 otherwise (3.62) 
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W^(a, g , a, Z)=l,0<a^^<=; -co<p^<co, 1 = 1, ..., p; 

0 < a < °= ; -«>< j < », 1 < j = 1, ..., p; a = a^ + yt^ 

= 0 otherwise. 

Using these admissible prior quasi-densities (see 3.19) to 

form the ratio of their corresponding marginal likelihoods we 

subsequently arrive at the ratio 

E(2, p, n) = 

// ezp 
O -C 

n 
2(yi-a^-Ycr-x^3 ) 

2i 

2(7 
dp da 

V"/ sxp 
«.CO —00 

S(y,-a^-x;p) 

(3.63) 

dp do 

where dp = dp^dp^ ... dp 

If we let e' = (1, 1), X = (x^, x^) = y^ - a^, 

and z' = (z^, z^, z^) we can rewrite 3.63 as 

j'/ exp 

R(2,p,n) = 
o —00 «.00 

(z-Yge-X'P ) ' (z-Ycre-X'p ) 

2o^ 
dp da 

// c"* exp 
O —00 —CO 

(z-X'p)'(z-X'P) 

2?^ 
dp da 

-n // .../ c - exp 
o —co —Co 

P*XX'p-2(z-Yae)'X'g+(z-Yae)'(z-Yae) 

2a2 

(3.64) 

dp da 

-n 
// .../ a - exp 
0 —CO —CO 

P'XX'P-2Z'X'P+Z'Z 
2^2 

dp da 

(3.65) 

It is shown in Section B of the Appendix that if A is a real 

p X p matrix of rank p, p is a p x 1 vector of real valued 
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variables and u* is a 1 x p vector of arbitrary real numbers 

then 

CO CO 
J ...J exp [- +u'p] dp^dpg ... dp 
— CO —CD 

1 

= (2n)2|A| 2 exp 

and hence with A = and u = X have 
a a 

( 3 .66 )  

£ 1 

/ (2n)^ |a^(XX')~^P exp 

H(2,p,n) =— — 

(z-Yae) * (I-M) (z-Yae)' 

2^2 
da 

£ 
/ (zn)"^ cr'^CXX' ) exp z' (I-M)z' da 

/ c-(K-P) exp z'(I-Mlz-2Yge'(I-M)z+Y^a^e'(I-M)e' 

2o^ ; 
da 

J' a exp 
o 

z' (I-M)z' 
2 _ 

(3.6?) 

( 3 . 6 8 )  

2a 
da 

where, as before, M = X'(XX')~^X. 

Further simplifications ensue by application of the 

following theorem which is proved in Section C of the Appendix, 

Theorem 3.5: If s > 1, ô > 0, and F(p; q; x) = 
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/a"® exp[- I cj-2 - I cf-^] da 
_0 

f a~^ exp[- ̂  a"^] da 
o 

h së' —S: .Li, h &)- '3.69) 
•p i 

(28) ^ 

Applying this theorem to the ratio in 3.68 we have 

H(2, p, n) 

f '3.70) 
9" ! n-p-1 \ 

[2z'(I-M)z]'^ "I 2 J 

Again It Is noted that the statistic R(2, p, n) cannot be 

computed unless n > p + 1. It may also be noted from the con­

ditions required for Theorem 3.5 that the reduction from 3*68 

to 3.69 requires that z'(I-M)z > 0. By an argument similar to 

that given in Section C of this chapter we can say, however, 

that P[z'(I-M)z > 0] = 1. 

To see that the result given in 3.70 is what might be 

anticipated we examine the model 

y = ae + X'p + e (3.71) 

where e' = (1, ..., 1), X = (x^,...,x^) is a fixed pxn matrix of 

known constants, a is an unknown scalar, andpis an unknown pxl 
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2 vector. In addition we assume e ~ N(o,a I) so that 

E[y] = ea + X'p. 

We will derive the t-statistic associated with a fixed 

sample size test of the hypothesis 

H : a < 0 . 
° " (3.72) 

a > 0 

and show that if the X used in 3.70 is assumed to be a matrix 

of known constants then R(2, p, n) as given in 3-70 may be 

regarded as a generalization to the covariate case of the 

sequential t-test as set out by Wald (69), Rushton (59»' 60) 

and Cox (20). 

By standard methods it is easily shown from the normal 

equations for the model 3.71 that 

$ = (XX')-l(y-ea) 

^2 = y'(I-M)y-&e'(I_M)y 
n-p-1 u.o; 

so that the t-test statistic for a is 

t = ^ = e'(I-M)y (3.74) 

An examination of the sequential t-test as given by Rushton 

(59) shows us that the third argument in the confluent hyper-

geometric function F(_; _) as given in 3.70 should be 



56 

in order for 3.70 to be consistent with what is expected as 

a generalization of Wald's t-test (59)-

If we substitute the t as given in 3.?^ into 3*75 we have 

Y^e'(I-M)e t^ 

^ n-p-1 + t^ 

^ re ' ( I -M)y]^  
2 (n-p-l)a^ e'(I-M)e + [e'(I-M)y]^ 

^ Y^e' (I-]y[)e [e' (I-M)yl^ 

^ [y'(I-M)y - ae'(I-M)y]e'(I-M)e + [e'(I-M)y]^ 

= (3.76, 

If in 3.71 we set = 0 so that z = y - a^e = y we see that 

3.76 becomes 

which is the last argument of the confluent hypergeometric 

functions found in 3•70. 

In this last part we have therefore shown that R(2, p, n), 

with controlled x's, may be intuitively expected as a 

generalization to the covariate case of the results of Wald 

(69) and Rushton (59, 60). 

E. A Test for ja-a^j = Y^a Versus ja-a^{ = Y^c 

with YQ and Y^ Specified and Nuisance Parameters Unknown 

As in Sections C and D of this chapter, we suppose that 

we are sequentially sampling random variables (Y^, ), 

1 =1, 2, n, ... from a distribution which has the 
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probability density function as given in 3•23. For a general­

ization of the hypothesis formulation given in 3«61 we now 

consider the construction of a sequential test for 

Ho-

|a-a^j = 
(3.78) 

where a^, Y^» and Y^ are known real numbers, YQ < Y^, and 

where the nuisance parameters are unknown. We shall apply 

essentially the same techniques used in Section D of this 

chapter and also show that the results obtained are those to 

2 be intuitively expected as a generalization of the t -tests of 

Wald (69) and Rushton (59, 60). 

We consider the prior quasi-densities which are as 

follows : 

V^(a,p,a,S) = l,0<a^^<'»,-«'<P^ < i=l, ...,p, 

i < j = 1, P 

a =a^ + YQCT, a = - YQCT 

= 0 otherwise (3.79) 

V^(a,p,a,E) = l,0<a^^<», -<»<3^<°»,i = 1, p; 

0 < J < =; -<= < j < », i < j = 1, p 

a.=a^+YiCr, a = - Y^^c 

= 0 otherwise 

Using these admissible prior quasi-densities (see 3.19) to 

form the ratio of their corresponding marginal likelihoods we 

subsequently have the quantity 
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00 CO CO 
f f ...f [Q(P,o-,am+Y,a) + Q( |3 ,o-,arp-Y-, cr ) ] d|3da 

E(3, P,n) = ° 

0 —CX> —CO 

where 

Q(p , CT, + aa) 

f f ...f [Q(p,CT,a^+YQa) + Q(P,a) dpda 
(3.80) 

-n a exp 

n 
E(y^-a^-aa-x^P) 2-, 

2?' 
(3.81) 

and a = Y^, Y^^-

Using matrix notation we can write 

Q(P> o, + aa) 

-n = a exp [_ g'XX'g - 2(z-age)'X'B + (z-age)'(z-age)^ q2) 

20% 

where X = (x^, x^ x^) 

z' = (z^, Zg, ..., z^) 

2i = Yi - a^, i = 1, 2, ..., n 

e — ( 1 ) Xj # # # ; IL) * 

By the result derived in Section B of the Appendix we have 

00 CO 
f . "f Q(p, CT, + aa) dp 
_C0 —00 

= h(X, p) exp ( z-aae ) * (I-M) (z-aae )" 

2cr 
(3.83) 

where 

h(X, p) = 1/20)9 XX 

1 
"2 

M = X'(XX')"^X. 
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Expanding the quadratic form given In 3•83 we write 

CO 00 
J . . .J Q(p, CT, ttm + aa) dp 
-.00 —00 

= h(X, p) exp [- —^(a^a^e'(I-M)e - 2acre'(I-M)z 
2a 

+ z'(I-M)z)] (3.84) 

By Lemma 2 of Section C of the Appendix we can write 

œ CO CO 

Q(P, a, + aa) dpda 
0 —CO —oo 

2 n—p—1 n—p—4 
= h(X, p) exp [- ̂  e'^I-M)e] (2»(i_m)Z) ^ 2 ^ 

_/N-P-L\R^F%-P-L 1. AF (e'(I-M)Z)^N , 2ae'(I-M)z 
^ ^ 2 2 ' 2' 2 z' (I-M)z ' 2z' (I-M)z 

^ (3.85) 
P^n-p-lj 2 ' 2' 2 z' (I-M)z 

From 3'85 we can write 

CO CO CO 
/ / [Q(P, a, a„ + ac) + Q(p, a, - aa)] dpda 
O —CO —00 

= h,(X, z, n, p) exp [_ f 

(3 .86)  

n-v-lj n-p-1 

h^(X, z, n, p) = h(X, p) 2 ^ (z'(I-M)z) ^ . 
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Therefore using the result given in 3.86 we have finally 

(Y? - Y!pe'(I-M)e 
R(3, P, n) = exp [ 2 ] 

2 
rf"-P-l. 1. Il (e'(I-M>z)^, 

(3,87) 

PfU-p-l 1. (e'(I-M)z)^, 
^ 2 ' 2' 2 z'(I-M)2 ^ 

To see that the result given in 3.8? is as expected we 

examine the model 3.71 and exhibit the well-known fixed sample 

2 
size test statistic, t . 

/^\2 
(3.88) 

Var (a) 

for testing the two-sided hypothesis formulation 

H : a = 0 
o 

: a ̂  0 
(3.89) 

under the assumption of normality of e. The estimates a, $ 

and are given by 3-73 so that 3.88 becomes 

^2 , (3.90) 
CT e'(I-M)e 

2 An examination of the sequential t -test as given by Eushton 

(60) will show that the third argument of the confluent 

hypergeometric function F(_; _) given in 3.87 should be 

^ ^ ^ 1 -, (3.91) 
2 Var (a) n-p-1 + t 
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As in Section D of this chapter we find that 3-91 can be 

written as 

if (e'(I-M)z)^ 
2 z'(I-M)z 

so that we have our expected correspondence. 

F. Tests for H : a < Versus 
o — T 

^A. 
1. Derivation of tests 

In Sections C and D we sequentially sampled random 

variables (Y^, X^), i = 1, 2, n, ... from a distribution 

with probability density function 

g(y, x; a, p, S, a ) = 

1 -'--1 
„ I exp [- [- ] (3.92) 

(2n) |z| (2n) c 

2 where x and |3 are p x 1 vectors; a, y and a are scalars; and 

S is a positive definite p x p matrix. In those sections we 

considered two hypothesis formulations which can be viewed as 

"least favorable" approaches to the more general hypothesis 

formulation 

HQ! a<a^ 

a>aA 
(3.93) 

where a,p and are specified known numbers, aij, < a^; and • 

where |3, a, and E are assumed unknown. We considered regions 

of the parameter space which are degenerate with respect to 
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the parameter of interest. For example, in Section C the 

preference regions for and are planes in 

^P(p+3) + 2) space perpendicular to the a-axis at a = and 

a = a. respectively. 

In this section we consider alternative prior quasi-

densities for the regions, and w^, of preference for and 

respectively where 

^o ^1' ^p' ̂ 11' ̂ 12' •••' *lp' *2p' Cpp): 

a < a,p and the parameters ; i = 1, ..., p; 

i < j = 1, ..., p are unspecified] (3.9^) 

^1 ^1' •••' ^p' ̂ 11' ^12' '""'^Ip* ^22' "'"'^pp)' 

a > and the parameters a; , i = 1, ..., p; 

i < j = 1, p are unspecified]. 

The region where neither or is preferred is the com­

plement of the region w^ and w^. 

The first set of prior quasi-densities is used to give 

uniform weight to each point in and w^. We begin by con­

structing proper prior densities (i.e. which assign measures 

that are finite and equal to one) which are as follows. Let 

c > max ( |a^| , [a^j, ) and 

V^(a, p, a, S) = p(p+i) (p+l)(p+2)" ' 

2 ^ 0 ^  ( a ^  +  o )  
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where —C"^ 1 — Ij 2) « « ) P5 

0<CT<c; -c<a^j<c, i<j=l, .,. , p: -c <a< 

= 0, otherwise (3 •95) 

V^(a, {3, or, E) = 1 
p(p+i) (p+1)(p+gy 
,2 . 2 (0 - a^) 

where 0 <  < C , - C < ^<c,i=l,...,p; 

0<CT<c; -c<a..<c,i<j=l, ...,p;a.<a<c 
1J ii 

= 0, otherwise. 

We now construct the modified p.d.f.'s as in 3*2 and form 

their ratio to obtain B(4, p, n, c), where 

B(4, p, n, c) = 
+ c 

c - a A 

c o o  c  

o "-c "^-c 

f —n . . .J a exp 

n 
r 2(y.-a-x.'p)^-] 
1 ^ ^ 

2(7̂  
dpdada 

aip c c c 

— C O — 0 •" c 

n 
E(y. -a-x'|3 )' 
1 1 1 

2a 
dpdada 

(3.96) 

Now, as previously in Section C we allow c to become infinite 

and 3'96 becomes 

E(4, p, n) = 

CO CO CO 

/ //•••/ o -°= 
-n o exp 

n 
r i:(y.-a-x'|3 )"-] 

1 ^ ^ 

2a 
dpdada 

n 
a "P CO CO 

O -C 
/ / / ' Gzp 

r S(y.-a-x'p)' 
1 1 1 

2(y 

(3.97) 

dpdcrda 
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In 3-97» E(4, p, n) is the ratio of marginal likelihoods, the 

marginal likelihoods being of the experimental outcome given 

the admissible prior quasi-densities 

W (a, p, a, Z) = 1, for each point in 

= 0, otherwise 

¥^(a, p, a, S) = 1, for each point in (3.98) 

= 0, otherwise. 

Letting u^ = - a, u' = (u^, u^, u^), X = (x^, x^) 

we have 

E(4, p, n) = 

œ CO CO CO 
/ //.../ a-" exp[-
a. o -=» 2a 

/ ../ exp[- (u-%'e)'(u-X'P)] apdada 
-co o -co —CO 2CT 

(3.99) 

Using the same integration techniques as in Section C of this 

chapter we can write 3*99 as 

.EzEzl 
f [(y-ae)'(I-M)(y-ae)] ^ da 

R(4, p, n) = n-p-1 (3.100a) 

/ [(y-ae)'(I-M)(y-ae)] ^ da 
— 00 

where e' = (1, 1) and M = X'(XX')"^X. It is noted that 

the step from 3.99 to 3.100a requires that (y-ae)'(I-M)(y-ae)>0.. 

By an argument similar to that given in Section C of this 

chapter we can say, however, that 

P[(y-ae)'(I-M)(y-ae) > 0] = 1. (3.100b) 
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It is also noted that E(4, p, n) cannot be computed unless 

n > p + 1. 

For convenience we now write 

(y-ae)'(I-M)(y-ae) = aa^ + ba + c (3.101) 

where 

a = e'(I-M)e 

b = -2e'(I-M)y (3.102) 

c = y'(I-M)y. 

Beyer (11) gives the following results. 

Case If n-p is odd, then n-p-1 is even and is 

an integer so that 

n—"p—3 

dx .(n-p-3)Î / a ^ ^ 

f - 2 

(ax^+bx+c) ^ ^ 

2ax+b g 2-- / , _ .2 
, J S(r) + / —^ (3.103) 

a(ax +bx+c)/ ax +bx+c 4ac-b^ r=l 

where 

H(r) = , r = 1, 2, ..., (3.104) 

and 

/ —^ Y tan"^ Zax+h— (3.105) 
ax +bx+c „ ^ 

(4ao-tr)^ (4ao-b^)^ 

It is noted here that 3.100b and 3.101 imply that 

P[4ac-b2> 0] = 1. 
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Case II ; If n-p is even then n-p-2 and are 

integers and we have 

/ 
dx 
n-p-2 + 1 

(ax +"bx+c) 

n—p—2 

2 ^ 4ao-t/ 

(4ac-b^)[(n-p-2)!](ax^+bx+c) 

D(z) (3.106) 

where 

n-p-4 
2 

D(z) = Z G(r) 
r=o 

and 

^ 4ac-b^ 

^4a(ax +bx+c) / 
(3.107: 

G(r) = 
(r!)2 

(3.108) 

Therefore 

I. If n-p is odd 3.100a becomes 

E(4, p, n) = 

%-P-3 
2aa. + b 2 

n r z 
4ao - b'^ 

(4ao-b^ 

1 2 - r=l \a(aa^ + ba^ + c) 
H(r) - 2 tan' "1 

2aa. + b 

(4ac-b ) 

1 
2 

n-p-3 
2aa^ + b 2 / 

1 r=l 

4ac - b'^ 

(4ac-b ) 

a(aaj + ba^ + c) 

-] 2aarp + b 
H(r) +2 tan"^ i—T + n 

(4ac-b ) 

1 
2 

(3.109) 
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where H(r) is as given in 3.10^. 

In the equation 

tan"^ K = L 

L has the form 

0 + 2 s n  ( s = 0 ,  1 ,  2 ,  . . . , )  

where 0 is called the principal value and is defined to be 

such that 

- | < 9 < | .  

Representing the principal values of 

' 2aa . + b 
tan" r by 0 

(4ac-b ) 

1 
2 

A 

and of 

2aam + b 
tan" T by 0^ 

(4ao-b ) 

1 
2 

we now rewrite 3.109 as 

R(4, p, n) = 

n-p-3 
2aa. + b 2 1 

n —- s 

(4ac-b ) 
I 

4ac - b' 

\a(aa^ + ba^ + c) 
H(r) - 20 

2aa^ + b 2 I 

(4ac-b ) 
I 

4a c - b 2 \ 

a(aa^ + ba^ + c) 
H(r) + 20^ + n 

(3.110) 
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II. If n-p is even 3.100a becomes 

E(4, p, n) = 

2 \/§r -
2aa. + b 

2 2 ( aa^ + ba^ + c ) 

n-p-4 
• 2 I 
Z G(r) 4ac - b'^ 

V l6a(aa^ + ba^ + c) 

2 vS + 
2aam + b' 

1 

n—p—4 
2 I 
Z G(r) 

(3.111) 

? ? ' 
(aa^ + ba^ + c) 

4a c - b' 

\ 
l6a(aam + ba^ + c), 

As an alternative to the preceding, let us develop a class 

of procedures using prior quasi-densities which are quasi-

densities and uniform for the unknown nuisance parameters 

j3, a, S and are proper half-normal densities for a. By proper 

we mean to say the densities integrate to one. Rather than 

constructing the ratio of marginal likelihoods and taking the 

limit as performed earlier in the section we immediately 

proceed to present the desired prior quasi-densities as 

follows. Let 

Vg(a, g, a, S) 

1 

2k ^ =  ( — e x p  
ncT 

k(a-a^) 

2a^ 

2i 

, 0 < <»,-«>< < «"j i = 1, p; 

0 < a < -°° < j < (», 

1 < j = 1, ...,p,-<=°<a<a 
T 

= 0, otherwise (3.112) 
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p, a, Z) 

1 

= (-%) exp 
na 

k(a-a.) 21 

2a 
, 0<a^j_<",-«><|3^< ",i = l, ..., p; 

0<CT<°=, -°° < a j ™, 

i<j=l, ...,P,a^<a< 

= 0, otherwise, 

In 3.112, k is a constant which is introduced to give and 

defined in 3.112 more generality. 

The ratio of the marginal likelihoods based on these 

admissible prior quasi-densities will be written as 

R(5, p, n) = flfy-

The numerator of the ratio given in 3-113 is 

(3.113) 

CO œ no 
^(2) = / / / ezp 

CL . O -°3 

k(a-a^) 

2(7̂  

2i 

exp 

2. n 
Z(y,-a-zfp)^ 
1 ^ ^ 

20^ 
dp da da (3.114a) 

where 

-(n-p+1) 1 off (k(a-a^)^ + u'(I-M)u) ] dada 
<1^0 2a 

2 _i 
0 = (2n) Ixx'l 2 

(3.Il4b) 

and is a constant term with respect to the integration, and 

u' and M are defined as in 3*99 and 3.100a. Since 
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u'(I-M)u = a^e'Cl-M)e - 2ae*(I-M)y + y*(I-M)y and, by Lemma 

10.2 of Section C of the Appendix, 

f exp[-(^)z"^] dx = ^ , for 0 > 0, s > 1, - 2  

s-1 
2 _,8-l 

we may write 

n-p 
2 , ./ ; , 2 T(2) = C J [da + g(a^)a + f(a^)] 

a, 
da 

where 

'A 

1 2 
= (2n)^|xx'| ^ (|) 

n-p-2 

^ r(^) 

(3.115) 

(3.116) 

and 

d = k + e'(I-M)e 

g(a„) = -2ka. - 2e'(I-M)y 

f(a^) = kag + y'(I-M)y. 
^A 

The denominator of the ratio given by 3.113 is 

a 'J CO CO 00 
exp 

— CO O —GO w_CO 

n 

k(a-a^) 2-

2(7' 

exp 

E(y.-a-x'g) 
1 1 1 

2-

2cy 
dgd&da 

(3.117) 

(3.118a) 

and by reductions similar to those used for T(2) we obtain 

a, 

T(l) = c y [da + g(a^)a + f(a^)] da (3.118b) 

where d, g(a^), f(a^J, and c' are defined in 3.116 and 3.11?. 
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Noting that T(2) and T(l) have the common factor c', 

we find that p. n) reduces to 

R(5, p, n) = 

r dz + g(a.)z + 6(a.) 
a. 

dz 

A 
a 
T r  

(3.119) 

dz f [dz + g(a^)z + ô(a^) 

If n-p is odd we can use the integral given in 3.106 to 

write 

B(5, P, n) 

A(n, p) 

n-p-3 
2 

Z/d - I(a.) Z G(r) 
r=o 

4df(a^^ - g (o^) 

l6d(da^ + 

n-p-3 
2 

2v3 + I(am) Z G(r) 
r=o 

4df(a^) - g (ttrp) T' 

_l6d(da^ + g(arp)arp + •rp/ 

(3.120) 

where n-p-1 

A(n, p) — 
4df(a^) - g (a^) T' 

Wf (a^) • - g (a^)j 

and 

Kd*) = 2d + K(a*) 
1' 

(da*2 + g(a*)a* + fXa*))^ 

^T' A" 

n-p-2 
If n-p is even —g— + 1 is an integer and, from 3.103, 

we have 
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R(5, P, n) = 

n-p-2 
2 

A(n, p) 

n - 28,-J(a.) Z H(r) 
^ ^ r=l 

4df(a^) - g (a^) 

_d(da^ + gCaJa^ + f(aj) A'^A "A' '-J 
n—p—2 
2 

n + 20„ + J(arn) Z H(r) 
^ r=l 

4df(a^) - g (a^) 

_d(da^ + g(a^)a^ + f(a^))_ 

, (3.121) 

where, A(n, p) is as defined in 3-120, 

J(a) = 2da + K(a) 

(4df(a) - g^(a) 

-1 ^^A S(a_^) 
0. =• principal value of tan ^ 
^ - g2(a,))l/2 

, and 

0^ = principal value of tan 

A' ^ '"A/ 
_2_ 2dQ,Q-I g(o!.|ji) 

(4df(a^) - g^(a^) 

2. Location and scale invariance characteristics 

By inspecting R(4, p, n) and R(5» P» we see that both 

are functions of the same quantities, aip, a., y, X, n, p. , 

Accordingly, for the present discussion, let us represent any 

such test statistic by L(a^, a., y, X, n,- p). Recalling that 

we are testing the hypotheses 

: a < 

a > a., 
(3.122) 
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where < a. and the nuisance parameters are unknown. It 

intuitively seems important that the testing procedure should 

not be affected by an arbitrary location change in our 

reference scale. That is, it is desirable that 

L(a^ + 6, 0.^+6, y + ôe, X, n, p) = L(a^, a^, y, X, n, p) 

(3.123) 

where ô is any real number. Since the elements of the X matrix 

of covariates are differences as described in Section B of 

this chapter, this matrix is unaffected by location changes. 

In addition to location invariance, scale invariance is 

desirable, that is, we should have 

L(6a^, ôa^, ôy, TX, n, p) = L(a^, a^, y, X, n, p) (3-124) 

where ô is any real number not equal to zero and where T is 

any nonsingular p x p matrix. Relations 3.123 and 3.124 may 

be summarized by the consolidated functional relationship 

L(ea^ + ô, 0a^+Ô, 0y + ôe, TX, n, p)=L(a^, a^, y, X, n, p) 

(3.125) 

where 0 and ô are any real numbers, 0 not equal to zero. 

We now establish that the functional relationship given 

in 3.125 holds for B(4, p, n) and E(5J PJ N). E(4, p, n) is 

given in closed form in 3.110 and 3*111 but we find it more 

convenient to consider the form presented in 3.97. Let us 

write 3.97 as 
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$(a., y, X) 

P. ") = ^(aj, y, X) (3.126) 

where y, X) and #(a^i, y, X) are the numerator and 'T 

denominator respectively of the ratio given in 3-97-

We also denote (y^, y^, y^) by y' and (x^, ... x ) by X. 

We now compute 

§(9a^ + Ô, 0y + 6e, TX) = 

/ //•••/ 
0a^+ô 0 -® 

-n exp 

n 
Z(8y, + 6 -a - x'T'p)' 
1 ^^ 

2a^ 
dpdada. 

(3.127) 

Using the transformation 

p  >  0 ( T '  

a > 0a + Ô 

(J > 0a 

(3.128) 

straightforward reduction shows that 1.127 becomes 

§(8a^ + Ô, 8y + 68, TX) = y, X). (3.12?) 

By similar techniques we can show 

A' 

S(8a2 + 5, 8y + 58, TX) 

so that 

- g-(n-p-2) irni -1 |T|"^$(am, y, X) (3.130) 

#(8a^ + 6, 8y + 68, TX) $(a^y y, X) 

§(0a^ + Ô, 0y + 60, TX) = $(a^, y, X) 

so that E(4, p, n) does satisfy the functional relationship 

given in 3 -125• 
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We now establish that the relation 3.125 holds for the 

test statistic R(5j PJ and again it is more convenient to 

deal with E(5, p, n) as presented in 3-113 rather than with 

its closed form. Let us write R(5j p, n) as given in 3-113 as 

V(a., y, X) 

P- = •(aj, y, X) 

where ^(a., y, X) is T(2) as defined by 3.1l4a and where 

y, X) is T(l) as defined by 3.1l8a. We again denote 

(y^, ...J y^) by y' and (x^, ..., x^) by X. Then 

V(8a^ + Ô, 6y + 6 6, TX) = 

,21  

/ ,.// •••/ 9a^+ô o 
a 

— 00 

-(n+1) 
exp 

lc(a-0a^-6 )' 

2a 

exp 

n 
E(0y. + Ô -a - x.'T'p) 
1 1 1 

2n 

2ct 
dpdcda. (3.132) 

The identical transformation used in 3.128, namely, 

p > 0(T' 

a 

a 
0a + ô (3.133) 

0CT 

then leads to 

t(8aA + 6, 8y + 68, TX) = *(0^^ y, X). (3.134) 

Similarly 

V(8aT + 6, 8y + 68, TX) = 8-(%-P-3)|T|-l y, X) 
'T 

so that 
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*(8a^ + ô, 8y + 68, TX) *(0^^ y, X) 

t(0a^ + Ô, 0y + 69, TX) ~ ^(a^,, y, X) 

and E(5, p, n) satisfies the equation given in 3•125. 

In conclusion it is of interest to relate the procedures 

which have been developed here with the earlier work in the 

field by Roseberry (58). For testing the hypothesis as given 

in 3.93 Roseberry suggested an approach based on uniform 

weighting of the parameter points in w^ and which may be 

implemented as follows. If, in fact < 0 < and if the 

following prior densities are constructed 

U^(a, p, a, S) = p(p+i) ^+i)(p+2) 

2 2 o 2 (c -1)%? 

when 0 < <c,-c<p^<c,i=l, p; 

0 < a<'c; -c < cr. . < c, i < j = 1, ..., p; X J 
cam < a < Cim 

= 0, otherwise 

U^(a, 3, <7, E) = p(p+i) (p+l)(p+2) 

2 2 o 2 (c-l)a^ 

when .0 < < c, -c < |3^ < c, i = 1, .... p; 

0<CT<c,-c<a^^<c, i < j = 1, ..., p; 

= 0, otherwise 

then computations similar to those used earlier in this 

section in our derivation of R(4, p, n) will yield a test 

statistic T(4, p, n) related to R(4, p, n) by the equation 
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T(4, p, n) = - ̂  R(4, n, p) U A A 
(3.135) 

where E(4, p, n) is given by 3.110 and 3.111. 

Although Olin (49) has demonstrated empirically that 

T(4, 0, n) and T(4, 1, n) may have some desirable local 

properties it is easily seen that T(4, p, n) does not satisfy 

3.125. For we have demonstrated that E(4, p, n) satisfies 

3.125 so that T(4, p, n) can satisfy 3.125 if and only if 

which is true if and only if 6 = 0 or = a.. It may accord­

ingly be concluded that the procedures based on T(4, p, n) 

_will be of restricted rather than general application. 

Thus far, in'this chapter, we have developed sequential 

test procedures utilizing concomitant information via weight 

functions and prior distributions. These procedures, however, 

are not readily amenable to theoretical study of their 

properties. In particular there are at present no analytic 

expressions for the average sample number or operating 

characteristic curve as in the simple versus simple hypothesis 

testing problem discussed in Chapter II. Some empirical 

sampling results on these characteristics have, however, been 

obtained. These results will be discussed in Chapter VI. 

a 

a 

A 

T 
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IV. DERIVATION OF SEQUENTIAL t- AND P-TESTS, 

UTILIZING CONCOMITANT INFORMATION, 

VIA FIXED-SAMPLE SIZE SUFFICIENCY 

A. Introduction 

In Chapter III, we investigated the weight function and 

prior distribution approach for the derivation of sequential 

tests for composite hypotheses. Another approach will now be 

examined in this chapter which is to some extent notationally 

independent of the other chapters. 

Suppose we have a sequence of observations z^, z^, ..., 

z^ which are realizations of random variables sampled sequen­

tially from a population having a distribution function 

indexed by 9 = (6^, 0^, ..., 8 ), p < n. We can sometimes 

make inferences about one of the parameters, 0^ say, in the 

presence of unknown nuisance parameters 0 , 0_, ..., 9 by 
^ J P 

transforming z^, z^, to a new sequence u^, u^, u^ 

m < n of which the distribution is indexed by some function 

of 9, say Y(0). Then, under certain conditions, it may happen 

that one of the terms of the sequence u^, u^, say u^, 

contains all of the relevant information (in some sense) about 

Y(9) that is contained in the sequence u^, u^, ..., u^ so that 

the joint p.d.f. f(u^, ..., U |̂Y(9)) can be written as 

f.l(ujY(0) )f2(\. Ug, ..., u^_^, u^) where 

fgfu^, Ug, ..., u^_^, u^) does not depend upon Y(0). Thus, 
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if and are null and alternative hypothesis statements 

in reference to Y(0) then the likelihood ratio 

f ̂ U-, , Up , « « « , u I Y ( 0 ) , 

f(u,, Ug nj.le), H^) 

reduces to 

f(u |Y(0), H.) 

f(ujy(9). H„)- (^-2) 

Hall, Wijsman, and Ghosh (28), (sometimes hereafter abbre­

viated HWG) and Cox (20) discuss the conditions under which 

the factorization of f(u^, u^, u^|Y(0)) obtains and also 

discuss some applications to sequential methodology. In what 

follows we shall outline the pertinent theory and use this 

theory to derive sequential tests utilizing concomitant 

information. 

B. Definitions and Theory 

We consider the probability model Xg = (%,(%, Pg ) where 

2 is a sample space of points, (X is a given a-field of subsets 
of%, and Pg is a probability measure on (Z and we denote the 

class of probability models indexed by 0 e Q as X^. 

To understand the ensuing discussion the following 

definitions are required. 

Definition 4.1: A set G of elements is called a group if 

(i) there is defined an operation, say group multi­

plication, which, with any two elements 

g^, gg e G, associates an element g^ of G. 
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Denote by = g-. 

(il) SifggSj) = (Sig2)&3 for g^, g^, g^ e G. 

(ill) there exists an element g^ e G, called the 

identity such that gg = g g = g, and 

(iv) to each element g e G, there exists an element 

g"^ e G such that gg"^ = g"^g = g^. 

Definition 4.2:  A  c l a s s  o f  m o d e l s  i s  I n v a r i a n t  u n d e r  

a group G of one-to-one transformations from % onto Itself if 

e a c h  g  G  G  i n d u c e s  a  t r a n s f o r m a t i o n  g  e  G  s u c h  t h a t  g 0  =  9 ' e Q  

and Pnfgx e A) = P_ (x e A), A e(X » 0 e Q. We denote this 
gG 

property by gX^ = (28, p. 578). 

Definition 4.]: A function t on % is Invariant under a 

group G if and only if t(gx) = t(x) for all x e % and g s G 

( 4 5 ,  p .  2 1 5 ) .  

Definition 4.4;  A n  o r b i t  g e n e r a t e d  b y  a  p o i n t  x  e  

c o n s i s t s  o f  t h e  t o t a l i t y  o f  p o i n t s  g x  w i t h  g  e  G  ( 4 5 ,  p .  2 1 5 ) .  

Definition 4.5 :  I f  a n  i n v a r i a n t  f u n c t i o n  t  o n  ̂  a s s u m e s  

a different value on each orbit then t is called a maximal 

I n v a r i a n t  ( 2 8 ,  p .  5 7 9 ) .  

Definition 4 . 6 ;  Let the probability model corresponding 

to any statistic t, which is invariant according to either 

Definition 4.3 or Definition 4.5, be denoted by 

T = (L, P^) where L = [t(x); x s J], 

(J^ = [A^; t"^A^ 6(2], and P^ is such that 

Py[ t ( x )  G  A ^ ]  =  Pg[ x  e  t " ^ A ^ ] .  
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Here Y : 8 —» Y ( 9 ) • 

As an illustrative example consider a random sample, 

x^, Xg, x^, from Pg, which here is taken as the probability 

measure associated with N(|a, a^). We know t(x-, , x ) = x 
2 J- P 

is distributed as N((a, so that P^Lx e (-3» 3)] = 

Pg[(x^, x^) e t"^(-2, 3)] where t~^(-3, 3) is a subset 

of Euclidean n-space. 

Definition 4.?: A statistic s on is said to be suffi­

cient for if for every A e (Z. and s^ e S = s(#) there is a 

version of the conditional probability Pg[Als^] = 

Pg[x A)s(x) = s^] which does not depend on 0 (28, p. 579)' 

Let us consider a family of distributions indexed by 0 

and, also, a group G of transformations on the sample space. 

Decision procedures then will not be affected by transforma­

tions of G if 

1) these same transformations leave the family of 

distributions unchanged and if 

2) the decision procedures are based on invariant 

functions of the sample space. 

On this point Lehman (4^, p. 216, 220) shows that all invariant 

functions are functions of the maximal invariant and, in 

addition, if a statistic t is invariant under G then its 

distribution depends only on a maximal invariant function, say 

Y, on n under G. 
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Subject to certain conditions, to be stated later, HWG 

show that 

1) if a statistic s contains all the relevant information 

about 0 and 

2) if Y(0) is the function of 0 induced by the maximal 

invariant function (or equivalently any invariant 

function)• under G of s 

then a maximal invariant function of s contains all the rele­

vant information about Y(0) that is available in any invariant 

function (see Definition 4 . ? ) .  

Although the preceding discussion is appropriate for 

fixed sample size experimentation we now discuss the concepts 

of sufficiency and invariance in relation to the sequential 

experiment. In sequential experimentation, the experiment may 

be terminated at any stage, but the performance at a stage n 

implies some previous performance at stages 1, 2, 3J •••> 

n - 1. Following HWG it is here useful to distinguish three 

types of probability models:. 

(i) the component or marginal models X^g = P -^q) 

for stage n and data x (n =1, 2, ...), 

(11) the .joint (n-fold) models = ^^(n)'^'(n)' ̂(n)0^ 

for the accumulated data = (x^, ..., x^) through stage 

n, and 

(iii) the sequential model Xg = iXtCLy Pg) for the whole 

sequence of data x = (x^, x^, ..., x^, ...). We make the 

following definitions; 
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Definition 4.8: For each n, if a function, s^, of the 

first n observations, is sufficient for the class of 

joint models (9 e n), then s = (s^, s^, .., s^) is called a 

sufficient sequence for (28, p. 583). 

Definition 4.9: For each n, suppose t^ is a function of 

= (x^, Xg, x^, ..., x^). If, for all 0 and each n, the 

conditional distribution of t^^^ given x^^^ is identical with 

the conditional distribution of t^^^ given t^, then t = (t^, 

tg, ..., ) is said to be a transitive sequence for X^ (28, 

p. 383). 

With the sequential model we need consider the whole 

sequence of data which, of course, is not available to the 

decision maker. Accordingly, it seems reasonable to concern 

ourselves primarily with the joint n-fold model for accumu­

lated data X/^\ = (x^, ..., x^) and its relationship to the 

sequential model. With this end in mind HWG defined a suffi­

cient sequence for X/^^ (see Definition 4.8) and introduced 

a desirable property for a sequence called transitivity 

(Definition 4.9). The basic idea of transitivity is that all 

information about a statistic t ,. contained in X/ \ = n+1 (n) 

(x , ..., X ) is carried by t (x/ \). We now assume that a 
_L 1% 1% \ / 

group G of transformations g on the sample space %, for the 

sequential probability model (iii) above, has the property 

that each g induces a transformation g^^^ on the n-fold sample 

spaceDenoting the induced group of transformations by 

G^^j and the maximal Invariant on ̂  under 
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G(n) by u^, HWG judge that the sequence u = (u^, u^, ...) is 

the relevant invariant sequence to be used to aid in con­

structing a sequence of test statistics containing all the 

available information concerning a particular parameter of 

interest. 

To supplement the above discussion and aid in interpreta­

tion of the forthcoming discussion we give the following 

definitions. 

Definition 4.10: Any set A e(X is an invariant set if 

X e A implies gx 0 A for every g e G (28, p. 579). 

Definition 4.11; A function v on ̂  is invariantly suffi­

cient for under G if 

(i) V is invariant under G 

(ii) the conditional probability of any invariant set A 

given V is parameter free for 8 e 0 (28, p. 579> 

5 8 0 ) .  

Since invariant functions are functions of the maximal 

invariant we may write v = v^(u) where u is a maximal invari­

ant, U is the sample space of the probability model of the 

maximal invariant, and v^ is a function on U. HWG state that 

any invariant set is of the form [x: u(x) e A^] where u is a 

maximal invariant. We show this by the following arguments. 

If A is an invariant set then by definition we have that 

X G A => g(x) G A for all g e G. Thus u(x) e A^ and 

u(g(x)) e A^ implying that A has the form [x: u(x) s A^]. 
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Conversely if A' = [x: u(x) e A^] then x e A' => u(x) e A^ 

but u(x) = u(g(x)) so that g(x) e A'. Therefore gA' = A'. 

Thus since P^,„V[ueA^|v =v ] =  P Q [ U ( X ) e A^| v(x) = v ] we Y  1 0  ;  U O  U  O  

have that condition (ii) of Definition 4.11 is equivalent to 

saying v^ is sufficient for U^; Y(0) = F. For these reasons 

we now interpret condition (ii) of Definition 4.11 as stating 

that V is sufficient for the distributions of (v, t) where t 

is any invariant function. 

We shall also require the following theorem, due to 

C. Stein, and given, for example, in H¥G. 

Theorem 4.1: Under certain assumptions (to be considered 

subsequently), if s is a sufficient statistic for and u^ is 

a maximal invariant function of s(^) = S under G (the induced 

group of transformations on S), then v = u^fs) is invariantly 

sufficient for under G. 

We consider the following definition. 

Definition 4.12: v-rules are defined to be sequential 

decision procedures that depend on an invariantly sufficient 

and transitive sequence v = (v^, v^, ...). (28, p. 584) 

If we replace the original sequence of joint probability 

models with the sequence of probability models of the 

maximal invariant, [u j, then the sufficiency condensation of 

each of the components u^ of the sequence u = (u^, u^, ...) 

leads to a sequence v = (v^, v^, ...) which may be called an 

invariantly sufficient sequence for the sequential model 
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under G. As an example, consider X/^\ = (x^, x^), where 

x^ ~ NI(ia, 1), and let G be the group of translations 

g(X(n)) =(x^+c, Xg+c, Xg+c, x^+c), - = < c < =. The sets 

1% = (%!-%%, •••. %%.!-%%) or are 

examples of maximal invariants. A sufficiency condensation 

of either (^u^, ̂ u^, ...) or (gU^, ̂ u.^, ...) is 

V = (v^, V , ...) = (x^, Xg, ...) where x^ is the mean of the 

components of x^^. If v is transitive then Theorem 4.1 

provides justification for using v-rules in sequential testing. 

HWG give some methods for verifying the transitivity of a 

sufficient sequence and prove that the sequence v = (v^, v^, 

...) is transitive if the pertinent sequence of sufficient 

statistics is transitive. 

Restricting our attention to v-rules we have v^ as suffi­

cient for the distributions of any invariant function of which 

v^ is a function. Thus v^ is sufficient for the distributions 

of v^^j = (v^, Vg, ..., v^) and the joint density of v^^j 

factors according to the Pisher-Neyman factorization theorem 

for sufficient statistics (28, p. 585). 

H¥G prove that Theorem 4.1 holds under the following 

conditions which we label as Assumption 4.1. 

Assumption 4.1 ; We are dealing with a multivariate 

(nonsingular) distribution for which the region of positive 

density does not vary with 0 and for which we can factor the 

joint density of x as fg(s(x))h(x) so that the transformations 
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g G G, the sufficient statistic s(x), and the factor h(x) 

satisfy the following conditions for all x-values except those 

lying in an invariant set A having probability zero: 

(i) each g is continuously differentiable and both the 

Jacobian. and depend only on s(x) and 

(il) s is continuously differentiable with a matrix of 

partial derivatives of maximal rank. 

HWG point out that most normal theory examples satisfy these 

conditions and that Theorem 4.1 under Assumption 4.1 is a 

rigorous version of D. R. Cox's (20) fixed sample size theorem 

published in 1952. This theorem of Cox has been used to 

develop the sequential t-test of Wald (60), the sequential 

? ? 
P-tests (39» 55) J sequential multivariate)^ and T tests for 

hypotheses about multivariate means (34), and simultaneous 

sequential methods in hierarchical classifications (25). For 

completeness we now state a rigorous version of Cox's 1952 

theorem. 

Theorem 4.2; 

(i) Let (y^, y^, y^) = y be random variables whose 

p.d.f. depends upon unknown parameters 0^, 8^, ..., 0^, p < n. 

The y^ themselves may be vectors. 

(il) Let z^, Zg, ..., Zp be a jointly sufficient and 

functionally independent set of estimators for 0^, Gg, 0^. 

(ill) Let the distribution of z^ involve 0^ say, but not 
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(iv) Let u^, Ug, u^, m < n be functions of y, 

functionally independent of each other, and of z^, z 

(v) If there exists a set H of transformations of 

7 = (y^.' ^2' •••' ̂ n^ into y' = (y{, •••J y^) such that 

a) z^, u^, Ug, ..., u^ are all unchanged by the 

transformations in H, 

b) the transformation of z., z into 
^ P 

z^, z^, z^ defined by each transformation 

in H is one-to-one, 

'c) we can write hY^ = for all h e H (see Defini­

tion 4.2) and 

d) If Zg, , ..., Zp and Z^, Z^, Z^ are two 

sets of values of Zg, z^, ..., z each having 

non-zero probability density under at least one 

of the distributions of y, 0 e Q, then there 

exists a transformation in H such that if 

Zg = Zg, zy = Z^, Zp = Zp then 

2̂ " ̂2' ̂ 3 " ̂3 " ̂P' 

Then the joint probability function of z^, u^, u^ 

factorizes into 

f(z^f9^)h(u^, Ug, ..., u^, z^) 

where f(z^[0^) is the p.d.f. of z^ and h(u^, Up, u^, z^) 

does not Involve 0^. 
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C. Reformulation of the Basic Problem 

For the probability model 3«23 under consideration thus 

far, the methods presented in Section B of this chapter for 

demonstrating the factorization 

f(u^, Ug, u^|Y(0)) = Y ( 0 ) 2 ' •••> 

( 4 . 3 )  

result in a p.d.f. f^(u^lY(6)) for which we have been unable 

to obtain an analytical representation. Thus the expression 

4.2 is mathematically intractable in this case. 

We shall accordingly reformulate the basic problem as set 

forth in Section B of Chapter III. The basic design is as 

before but we shall assume the traditional analysis of co-

variance for two treatments: 

n . + e^. 1=1,2 

j = 1 ,  2 ,  • • • )  2 n ,  . . .  

which, in terms of within-pair differences, gives 

y  =  a  +  p x .  +  e .  ( 4 . 5 )  
J  J O  

where y. = z^^ - a = - a^, - w^j, 

e. = e, . - e„. and E(e.) = 0. We assume here that the 
J -L J ^3 3 

covariates (w, .) and (x.) are controlled, the random variables 
1J J 

being (z .), (y. ), (e. .), and (e ) with the e ~ NI(0, cr^). J -  J  J  J  J  J  
More generally, we may assume a model with p covariates 

y. = a + + 92%12 + ••• + VlP 
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where i = 1, 2, ... and the •••» (x^p) are 

covariates and assumed controlled. 

The interest lies in developing sequential tests which 

are pertinent to various hypothesis formulations about a. In 

the model given in 4.6 a represents the differences between 

the two treatments when the x's are all zero; that is, when 

the concomitant information on the two subjects is identical. 

D. Sequential Covariance Analysis for 

One-Sided Hypotheses 

For simplicity the following discussion will be limited 

to the one covariate model 4.5. It is shown later that little 

modification is required for application to the case of p 

covariates. 

Based on the model 

y^ = a + px^ + E^, i = 1, 2, ... (4.?) 

where a and p are unknown parameters, x^, i = 1, 2, ..., are 

2 2 fixed known constants, and ~ NI(0, a ) with a unknown, we 

consider the sequential testing of the hypothesis formulation 

a-a_ 
^0= = ^0 

where a , Y qJ  are completely specified and where a is not 

specified. In most practical cases a will be taken as zero 

and since generality is not lost by a location translation on 
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the y-axis, we will, for convenience, consider 

H. : a 
CT 

a 

= y, 

(4.9) 

as the hypothesis of Interest. 

From 4.7 we see that the joint distribution of the 

sequence of independent random variables y^, y^, y^ from 

a distribution N(a + px^, a ) is completely specified by the 

2 2 parameters a, p, and a and, since p and a are assumed 

unknown, we are in a composite hypothesis testing situation. 

The application of the methods discussed in Section B will now 

be demonstrated. 

We transform the observations 

1 
\=l/ \=2/ 

/V 
1 

W l  

,(4.10) 

to 

^3' S' ^n' (4.11) 

where 

a 
^i = 

(Var (a)) 

i — 3 J 4, 5 » • • (4.12) 

and 
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a 

/\ 
p 

y - p X 

^xx 

/\2 
(7 

1-2 

2-, 

77 

S^y = Z(x-x)(y-y) 

8̂  = Z(z-z) 

Syy = 2(Z-y) 

Var(a) = a^q? 

(4.13) 

X X  

where S denotes summation from 1 to i. 

Each t^ as defined in 4.12 and 4.13 has a noncentral 

Student t-distribution with noncentrality parameter 

a 

(Var(a)) 

g 
(4.14) 

Thus at stage i the distribution of t^ does not involve the 

nuisance parameters p and a except the latter in the ratio p. 

We now establish via Theorem 4.2 that the joint p.d.f. of 

t«, t^, t^ factorizes into 

^l^^nJaq. ̂^2(^3' ^4' '"' ̂n-1' (4.15a) 

where f_(t_, t, , ..., t , , t ) does not involve a To this 
2 ̂^3' 4' n-1' n- - c 

end, let us examine in turn the conditions of Theorem 4.2. 
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Condition i: 
lJ- , \  lJz\  

1 
X̂ / 

/y„\ 
1 are realizations of 

n 

random variables whose probability distribution depends upon 

the unknown parameters (a, |3, a). For our problem we trans­

form the parameter space to the one of interest, 

(p, P, c) = (0]_) 02' 

/s o •p 
Condition ii: (z^, Zg, z^) = (t^, p, (a ) ) is the 

functionally independent jointly sufficient set of estimators 

for (^, p, a). The functional independence may be verified 

by considering t^ = t(y^, y^, x^, x^), 

P  =  ̂ ( y ^ ,  . x ^ ) ,  an d  a  =  a ( y ^ ,  . x ^ )  an d  b y  s h o w i n g  t h a t  

the Jacobian 

)(t_, P, S) 

31U " u,. u,) ̂  0 

for the 2n^3 Possible combinations of distinct variables 

(u^, Ug, u^), where u^, u^, u^ can assume any of the 2n 

variables y^, y^, y , x , ..., x . Because of the 

stochastic nature ofthe Jacobian 4.1^b we should say 

3(t-, P, j) 

^(u^, Ug, u ) 7^ 0 

with probability one. With regard to joint sufficiency we 

know that (a, g, a^) where a, '3, are defined by 4.13 

is a vector of jointly sufficient statistics for (a, p, a ). 

Now if T is sufficient for 0 then any one-to-one function of 
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T, say §(T), is sufficient for any one-to-one function of 0, 

say ^(8). Since cr > 0 it follows that 

A 

a 

(&2)2 

, B, (0^)2) 

is sufficient for 

.ons 

(^, cr). 

Condition iii: That the distribution of t involves n 

(a/a) and not p or a has been previously noted. 

Condition iv; The t^, t^, t^, ..., t^ ̂  are functic 

of the (y^, 1, )', i = 1, 2, ..., n-1 and are functionally 

independent of each other and of t^, p, This can be 

demonstrated by the same technique as indicated in Condition 

ii. 

Condition v: Let 

H 

Then 

/fil 

\ \ i  

/k^ 0 0 \ /yA 

0 10 II 
\ 0  0  k j  \ x j  

>  0 ,  kp ^  0  and 

i — Ij 2) •••) n 

S. k. 
P' 

= %'y' = 1 2 = _1 

^x'x' kg ^xx ^2 

(o^) 2\, _ _1 _ ẑ'y' 
%-2 y'y' s.,,.f, - = 

"a' y« - p'x' = k^(y-px) = k^a 
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'in' ' = n + 
^2 1 

n " S X'X' - 'XX 

We now examine the four subconditions of condition v. 

(a) We have 

= a f 

(Var(a)') 

1 

1 (k^ V^r^&))2 

-

where (z^, u^, u^, u«, ..., %) = ^3; ' ̂n-1)' 

1 

(b) (#', ((e2)')2) = 9, ki(S2)2) 

This is clearly one-to-one as required. 

(c) The probability model remains unchanged for every 

h G H. We show this by comparing 

P0[h(y)e (c^, Og)] and Pgg[y e (c^, c^)] 

where 
k. 

h0 = (k^a, , k^o-^). 

Since h(y) = k^y we have that 

k —2 
Po[h{y)e (c, , C )] = f ^(2na^) ̂  exp[- l^LzEzâSi—] dy, 

0^ 2a 

k-, 

By definition we have 

c _1 
P^gEy G (c^, Cg)] =/ ̂(2nk^a^) ̂  exp 

(y-k^a-k,px) 2n 

2a 
dy 
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and writing y = k^z, it follows that 

k. 1 
2\"2 Pre[ye(Gi, Cg)] =/ (2na ) exp 

(z-a-k^px)' 

2a ̂ 
dz 

k. 

= PgChCy) e (c^, Og)]. 

(d) Let and be two sets of 

values of (g, a). Condition v.d essentially re­

quires that we notice that real numbers k^ and kg 

exist such that = k^a^^^ and kgP^^^ = k^ ̂̂ \ 

For then if (p, a) = we have 

(p ' , ct' ) = , k^a) 

To have' k^ and kg well defined we must have and ^0 

which, as pointed out before, happens with probability one. 

It is now possible to write 

f(t^, ..., t^) - •••' (4.16) 

where f^ftg, ..., t^) does not involve (^). 

The likelihood ratio 4.1 for this application can then 

be written as 
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R (4.17) 

where v and v-i are defined as in 4.9. ' o ' 1 

We shall now give an alternative demonstration of the 

factorization shown in 4.l6 by showing that t^ is a maximal 

invariant of the sufficient statistics under a certain group 

of linear transformations implying that it is sufficient for 

any invariant statistics, the distributions of these invariant 

statistics being indexed by some parameter 0. In particular, 

we wish to show that t is sufficient for the distributions of 

the scale invariant statistics (ty, t^, t^).. 

For the model under consideration, 4 . 7 ,  the sufficient 

statistics a, 'p, and are defined In 4.13. We define 

a group of transformations 

G = 
l^i \  

f 
/Vi\ 

1 
= 

1 m O
 

8 m o
 

8 ( 4 . 1 8 )  

Î  —  I 5  2 j  • • • )  Î 1  

from the sample space onto itself. The class of induced 

transformations on the space of the probability model induced 

by the sufficient statistic (see Definitions 4.6 and 4.7) is 

1 1 
= (&', g'. = (k^â, ki(&2)2): 

( k ^ ,  k g )  G  ( 0 ,  < » )  X  ( 0 ,  < » )  ( 4 . 1 9 )  
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and the class of induced transformations on the parameter 

space, 

n = [(a, p, a); (a, P, a) s (-=, ") x (-«>, °°) x (0, »)] (4.20) 

is 
k. 

G = [(a', p',a') = (k^a, —p , k^a) ; (k^, k^) e (0, =) % (0, *)]. 

(4.21) 

A maximal invariant function of the probability space of 

the sufficient statistics under 4.18 and based on all the data 

through stage n is 

= Ï (4.22) 

where 

(Var(a))2 

a = y - p X 

/X 8 2 _2 
Var(&) = (8 -

X X  X X  

To show this we need to demonstrate that t is constant on an • n 

orbit (Definitions 4.3 and 4.4) and assumes different values 

on distinct orbits (Definition 4.5). An orbit under the group 

G given in 4.18 on the space of sufficient statistics S is 

0 = [ (k^a, (—)p, k^a); for a particular (a, g, 9) eS and 

all (k^, kg) e (0, =) x (0, =)] 

where for convenience we are denoting (a^)^'^^ by a. It follows 

that t is constant on an orbit since 
n 
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a' ka a 

" % T " Î " Î " ̂n* 

(Var(&)')2 (k^ Var(a))2 (Varfa))^ 

If 0^ and Og are disjoint orbits, i.e. = 0, then since 

we know that t^ is constant on an orbit we must show that 

t(l) ̂  t(2) ̂ here t^^^ and t^^^ denote respectively the n n n n r j 

constant values that t^ takes on 0^ and 0^. Assuming that 

^(1) = ^(2) then 
n n 

^2 
51%; " 52%̂  

for all (a^, a^) e 0^ and all (a^, , a^) e 0^. That is, 

"2 = Gl%nG2 

where is some real number. Now 

(a^, a^) = cr^) 

and there exists a (k^, k^) e (0, °°) x (0, =») such that 

'"Â- ̂ 2'  kl*;) = (\W2' @1' Va' 

= Pl. %) 

= (a^, C]_) 

which contradicts 0^/10g = 0. This completes the demonstration 

that t^ is a maximal invariant. 

We next require the following definitions. 
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Definition 4.13: A function f is said to be equivalent 

to an invariant function if there exists an invariant function 

h such that f(x) = h(x) for all x except possibly on a P-null 

set N (43, p. 22j). 

Definition 4.l4: A function f is said to be almost 

invariant with respect to a group G of transformations if 

f(gx) = f(x) for all xe5f-Ng, geG and is the exceptional 

null set permitted to depend on g (45, p. 225). 

HWG prove that Theorem 4.1 holds under the following 

assumption. 

Assumption 4.2: Every almost Invariant function on the 

sample space of the sufficient statistic S is equivalent to 

an Invariant function. 

Since we are assuming that the underlying distribution as 

normal, every almost invariant function of (a-, "p, a) is known 

to be equivalent to an invariant function (28, pp. 581, 6o4; 

45, p. 225). Thus Theorem 4.1 leads to the conclusion that 

(ty, t^, ...) is an invarlantly sufficient sequence and that 

t^ is sufficient for the distributions of any invariant func­

tion of which it is a function and, in particular, therefore, 

for the distributions of (ty, ..., t^). 

By the same arguments as those used to show that t^ is a 

maximal invariant under G^ (see 4.19) in the sample space of 

the sufficient statistic (a, p, 8) it can be shown that ̂  is 

the maximal invariant of the parameter space under G, the group 
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of transformations on Q induced by G onX • Invariance, orbits, 

and maximal invariants on the parameter space Q are defined as 

in Definitions 4.3, 4.4 and 4.5 where 36 is replaced by Q and 

the X G % is replaced by 0 e Q. 

Theorem 4.3;  I f  O f ,  A ,  P g )  i s  t h e  p r o b a b i l i t y  m o d e l  a n d  

if the statistic T(x) is invariant under a group of trans­

formations G and if ^(8) is a maximal invariant under the 

induced group G then the distribution of T(x) depends only 

o n  i l i ( 0 )  ( L e h m a n  ( 4 5 ,  p .  2 2 0 ) ) .  

We have demonstrated that (t^, t^, ..., t^) is an invari-

antly sufficient sequence and that t^ is sufficient for the 

distributions of any invariant function of which it is a 

function. In particular, t^ is sufficient for the invariant 

s t a t i s t i c s  ( t ^ ,  . . . ,  t ^ _ ^ ) .  I n  a d d i t i o n ,  b y  T h e o r e m  4 . 3  w e  

see that the distributions of (ty,, t^, ..., t^) are indexed 

by ^ and thus the factorization given in 4.l6 obtains. 

E. Practical Implementation 

The likelihood ratio given in 4.17 is a ratio of non-

central Student t-distributions. Existing tables of the 

noncentral Student t-distributions are not well suited for cal­

culating the ratio 4.1? (see Resnikoff and Lieberman (56a)). 

However, 4.17 can be written in terms of certain confluent 

hypergeometric functions for which there are fairly extensive 

t a b l e s  ( 6 3 ,  6 7 ) .  
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Let ¥ denote a random variable which is normally dis­

tributed with mean Y and variance 1. Let V denote a random 

variable that is distributed as chi-square with r degrees of 

freedom. If W and V are stochastically independent, the new 

random variable 

T = ^ (4.23) 

,2 (V/r)' 

is called the noncentral t-distribution with noncentrality 

parameter Y and degrees of freedom r. 

2 

f(tiY) = 

Y 
1 r(r+1) 1 

? ̂ +1 

CO 

s 
i=0 T(^). 

\l2 tY' 

r+t' 

i: 

(4.24) 

= f(t|Y = 0) e E 
i=0 

/2 tYl 1 

r+t' 

1: r(̂ ) 

when t e (-°°, <=°). , 

We now express the summation given in 4.24 in terms of 

certain confluent hypergeometric functions. 

i=o  ̂ r(̂ ) 

s 
1=0 

X  
2j r(Z±l + j) . ̂ 

WTT p(r+l) (2j+i): 

2j+i r(^ + ̂ ^) 

r(Ẑ ) 
(4.25) 
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- r(^+j) » ^2j , r(^+j)r(^) 

-diiT —WiTT-̂  ̂

(4.26) 

= x2J r( i )  + j) 
= s 
j=o •^' 2^"^r(j-4) r(^) 

2' 2 

" (x2)j r(2) r(2±2 + j) r(2^2) 

jSo"22jr(| + 3) r(^) 

since 

,1! .1: 
TljIT ~ 2j(2j - l)(2j - 2)...(2j - 2j + 1) 

r(|) 

2̂ {̂j - ̂ r)(j - .. .̂ .•̂ .̂ r(̂ ) 

r(|) 

2^3 r(j + h 

and 

•11 .1 ! 
(2j + 1)! - (2j + l)(2j:) 

r(|) 

2̂ r̂( j +• h (2j + 1) 

r(l) 

22jr(j + 

(4.28) 

(4.29) 

From the definition of the confluent hypergeometric func­

tion P(p;q.;u) as given in Section C of the Appendix we write 



104 

1=0 i: r(^) 

= P(̂ ; I; + 
r(̂ ) 

r(̂ ) 
P(̂ ; i; (4.30) 

SO that 

g(tjY) = g(tlY = 0) exp (-

O 

P(£±l. 1. x! _tL) + r(—) (2+2. X 
2 • 2' 2 r+t2 

> O J 

Thus to test the hypothesis 

So= 5=^0 

% :  a = Y  

we use the likelihood, ratio 

E'^NLR' 
L(l) = — " 

1 

s(t n 
Y, 

TfY^) 

2(rtt^)L 

(4.31) 

(4.32) 

where 



105 

T(Y) = exp 

- -

F( n-1 1 
2 • 2' 2q̂ (.-2+t2) 

VS yt n r(|) 
P(?; i; 

r(S2l) 2' 2' 2q̂ n̂_2+t2) 
(4.33) 

with Y = Y Q, Y ^. 

F. Discussion 

Although the arguments considered in this chapter have 

been developed in the one covariate case, the extension, to p 

covariates is easily accomplished. The appropriate statistic 

with respect to hypothesis 4.9 is 

t -

P  ̂  _  
y - S g.x 

i=l ^ J 

(Var(y - E p.x.)) 
1  J  J  

(4.34) 

n 

1 where y = 
n ' J 

n 

x.y, 

• ' "ITT' ® " CY"' 

n 

-0 

n _ 2 
and S = S (x. . - X.) . 

ZjZj 1 ij J 

If we let 

Var(y- E P.x ) 
„2 .1=1 J J 

then we write the likelihood ratio 



106 

where 

T (Y) = exp 
2. 

1 
>
 I 

2ln 

1. V O 5 OS 

(4.35) 

+ ^ tY 

q^(n-p-l+t ) 

? ' 2 ' n-p-l+t^ 

/n-p-lv 
 ̂LLi—i f(SZ2±1. 1. 

2 i ^ 2q^^n-p-l+t2)J 

with Y = Y-, , Y 

(4.36) 

1' ̂ 0* 

Similar arguments obtain in deriving a sequential test 

for the two-sided hypothesis formulation 

H 

H, 
1" 

= Y. 

(4.37) 
= Y 

1* 

The appropriate test statistic is t where t is given by 4.34. 

The likelihood ratio reduces by sufficiency arguments to the 

ratio of noncentral F-distributions with noncentrality 

2 2 2 2 2 parameters Yn/o^ and Y where is as defined previously. 

When expressed in terms of confluent hypergeometric functions 

the ratio becomes 

exp p(Bz£. 1. ^ \  p } o  > 2  ,  ?, 
2q;̂ n-p-l+t̂ ) 

• )  

(4.38) 

exp 
L 2q 

F( 
Y V 
o 

n 

1. 
2 ' 2' 2(n-p-l+t2)q2 

) 

The test statistics given by 4.33, 4.36, and 4.38 can be 

used with the operating procedure given in Section B of 
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Chapter II. However, only Properties 2.1, 2.2, and 2.3 of 

Section C, Chapter II are known to hold. Since the test 

statistics given by 4-33) 4.36, and 4.38 are sequential t- or 

2 t -statistic type of procedures, David and Kruskal's (22) 

result proves termination with probability one. The remark 

following Properties 2.2 and 2.3 in Section C of Chapter II 

allows us to use Wald's boundaries with the procedures achiev­

ing approximately the specified Type I and Type II probabil­

ities of error. No results similar to Properties 2.4, 2.5, 

or 2.6 have been proved for any kind of sequential t-test 

however. 

This completes our consideration of one-sample sequential 

t-tests utilizing concomitant information. In the next 

chapter we consider the possibilities of a two-sample analysis. 
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V. THE SEQUENTIAL TWO-SAMPLE t-TEST UTILIZING 

CONCOMITANT INFORMATION 

A. Derivation of Hajnal's Two-Sample Sequential 

2 
t - Test via Prior Distributions 

In Chapters III and IV we were concerned with developing 

sequential tests of hypotheses for a model based on within-

pair differences of observations. Thus, although we essen­

tially began with a two-sample situation, we considered paired 

observations and constructed what are, in effect, one-sample 

sequential tests. In this chapter we investigate the possi­

bilities of a two-sample analysis which does not require the 

pairing restriction. 

Such a procedure has, in fact, been developed by Hajnal 

(26) and is termed the two-sample sequential t -test. For 

this procedure observations are taken from two normal popu­

lations with unknown means, and , and common unknown 

2 variance a . Based on these assumptions Hajnal presented a 

procedure for sequentially testing 

where Y is specified but CT is assumed unknown. He used Cox's 

Theorem (20) in showing that the usual fixed-sample two-sample 

%o: "l = ̂ 2 
(5.1) 

2 Student t -statistic, say 

t 
2 (Ji -

(5.2) 
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- 1-1 where is the sample mean of observations taken 

^ 11 on treatment i and i=l, 2, u = — + —, and 

E - 7^)^ + E {yjj -
S = , is sufficient for the 

- 2 

parameter of interest, 

r  (CCq^CC- iJ p 
s = Y • (5-3) 

a 
Thus we may factor the joint densities of the sequence of 

2 2 2 2 
t -statistics t^, t^, +n -2 each of the 

hypotheses and as 

sftn: 1 = 1, 2 (5.4) 

2 where does not involve Y and where n = n^ + n^ - 2. 

Consequently, the appropriate likelihood ratio may be written 

as P 

: V 
which is recognized as the ratio of the p.d.f. of a noncentral 

P-distribution to a p.d.f. of a central F-distribution. 

We shall now show an alternative derivation of this ratio 

using the methods presented in Chapter III. This result it­

self is of some theoretical interest in relating the two 

approaches. Further, however, we proceed to introduce 
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concomitant information and develop sequential tests appro­

priate to this more general situation. 

Suppose that, at each stage of sampling, we do not re­

strict ourselves to only one observation from each normal 

population. For example, at each stage we may sample one 

observation from the first population and three from the 

"fch. second population so that at the n stage we have accumulated 

n and 3n observations from the first and second populations 

respectively. The effect of such grouping is discussed in 

Wald (69). Wald's general conclusions are that; 1) the 

realized values of the Type I and Type II errors cannot exceed 

the intended values except by a small amount (which, he states, 

may be ignored for all practical puposes), 2) the number of 

observations required to decision will be increased from that 

of sampling single observations at each stage, and 3) that the 

realized values of the Type I and Type II errors may be sub­

stantially smaller than intended; this may be regarded as com­

pensation for the increase in the number of observations. 

Let us assume then that at the n stage of sampling we 

have accumulated n^ observations from a population distributed 

2 as N(a^, CT ) and n^ observations from another population 

2 distributed as Nfap, cr ). 

Our region of preference for acceptance of is 

Wg = ^2' ' -'=°<a^<", i = 1, 2; 0 < a < °°, 

and = ttg] 
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and our region of preference for acceptance of is 

= [(o^, ttg, a): -* < < *, 1 = 1, 2; 0 < CT < «>, 

= Ya and Y specified]. 

The boundary of w^, denoted by S^, is 

Si = [(a^, a^j a): < a, < i = 1, 2; 0 < a < », 

ja^ - agi = Ycr and Y specified]. 

The likelihood of all the observations taken through the 

"bh. n stage from both populations is 

k 
2 1 

72' ̂ 1' °'2' ^ (2ncj) exp[- —g QCa^, ag)] (5.6) 

Where y- = (y^^, .... 

k = n_ + n , and 

*1 

which later, it will be convenient to write as 

Qo(&2' 0,2̂  === î̂ l %2̂ 2 " ̂ "'iVl " ̂ 2̂̂ 2°"2  ̂ (5.7) 

^1 

-2 _ S'il 
Where E = + >^2^2' ^ 

>^2 

^ ̂2i ^1 ^2 

^2 n^ ' ~ 1 ^^2^2 ~ 1 ̂ ^21*^2) ' 
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We consider the following prior quasi-densities, 

ttgj a) = 1, 0 < CT < », -" < < «>, i = 1, 2; 

ja^-agl = Ycr, Y = 0, 

= 0, otherwise (5.8) 

V^(a^, a^j cr) = 1, 0 < a < 0°, -" < < ~, i = 1, 2 

[a^-agl = Ya, Y 7^ 0 and specified, 

= 0, otherwise 

on the region w^ of preference for acceptance of and on the 

boundary of w^ where w^ is the region of preference for 

acceptance of As in Chapter III we calculate the ratio of 

marginal likelihoods given and respectively. We denote 

this ratio by E(0) where 

f  V^(a^, a^; a) L(y^, y ; a^, cr) da^dagdo 

E(o) = (5.9) 

/ ttg, cr) L(y^, y^; a^,- ttg, a) da^dttgda 

The numerator of 5*9 ca^. be written as 

"  - k  •  1  

°1 / / [Gzp[- —2 Qo(&2 °'2^^ 
o -°o 2a 

+ exp[ — - Ya, ttg)]] da^da (5.10) 
2a 

where 

Q.^{a.^+yG, ttg) = kttg -

+n^Y^a^ - 2n^y^Ya + R 
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ag) = kttg - ZagCniyi+mgyg+HiYc) 

c^ = (2n) 

k = n^+n^ 

k 
'2 

+ + 2n^y^Ya + R 

(5.11) 

and 

Now 

R is as previously defined following 5*7' 

f  f  CT"^ exp[ ^ Q^fag + Ya, a ^ ) ' ]  dagdo 
o 2a 

1 

=  f  exp[- (n,Y^a-^ - 2n_y.Ya + R)] • T(a)da (5.12) 
o 2c-0 

where 

T(a) = f  a"^ exp ^2^k^a^-2a^(n^y^+n2y2-n^Ya)) da^ 
-00 2a 

1 

= exp 
Xn^y^+n^yg-n^Ya)' 

(5.13) 

and 

We write 5.12 as 

" -(k-1) 

1 

Og = (2TT)^. 

-i 9 9 ""^1 — 
. , w exp - (Y a^(-^^) - 2n y Ya + R 
2^0 20^ 
On / a 

(n^yi+ngyg)^ Zn^Yafn^yi+ngyg) 

k k 
da. (5.1^) 
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Letting u = —and expanding and gathering terms, ̂ .l4 then 
"12 

becomes 

Op / expL- —^ (Y^a^ - 2Ya(y.-yp) + (y.-yo)^ 
o 2a u ^ 

+ dC. (5.15) 

By a result given in Section C of the Appendix we complete the 

integration in 5*15 so that 5.15 becomes 

2 ' 2' Z ) 

k-l\ I Yr(sc6) 

r(%=2) 

zCyi-yj)' 

1 
\2 

P(^; fi z^)] 

where 

(yi-5'2'^ 

— — \ 2 

"'Vi ̂ ̂ ^2' " 

(5.16) 

and 

= [u(S + S )]" 

k-2 M — ^ ^ r 

' — uL.u . u 2 ^ r(~~) 3 L 2 

and where, as before, F(P^; P^; z) is the confluent hyper-

geometric function. Similarly 

/ / ezp 
o 

_1 

L 2 G 
2 «o''^2 - Yc, Kg) dagda 
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= OgOj exp[- i; 

Yr(^) 

\u(8 

2(71-72)2 

1 
\2 

P(^; |; z^) 

(5.17) 

where c^ following 5.13 and c^ and Z take the same values as 

in 5.16. Adding 5.l6 and 5.17 and multiplying the result by 

we obtain the following as a closed form expression for 

5.10, 

°i°2°3 G%p[- h h 
(yi-yg)' 

• ) .  

(5.18) 

The denominator of the ratio 5.9 may be obtained from 5.18 

by simply setting y = 0. The ratio 5.9 then becomes 

E(0) =exp[_^]P(^; 1; 
(Yi-yg) 

• ) .  

(5.19) 

Finally, if we let 

where 

t = Yl - Yg 

cr u 

S „ + S 
.2 _ Vl y2^2 (J — 

k - 2 

(5 .20 )  

5.19 can be written 

E(0) = exp[- |!] (5.21) 
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If the prior quasi-densities 

ttg, cr) = ̂ , 0 < a < "; < =, i = 1, 2; 

ja^ - Cgl = Ya, Y = 0 

= 0, otherwise (5.22) 

V^(a^, dg, a) = ^, 0 < CT < "; -œ < < «>, i = 1, 2; 

I - U g I  =  Y C ;  Y  ̂  0  a n d  s p e c i f i e d  

= 0, otherwise 

were used rather than those given by 5.8, the first argument 

of the confluent hypergeometric function given in 5.21 would 

be rather than The k-2 of the last argument would, 

however, remain unchanged. The likelihood ratio would then 

agree exactly with Hajnal's result (26, p. 66). We chose the 

prior quasi-densities given by 5.8 because they uniformly 

weight each point (a^, ccg, cr) of w^ and whereas the prior 

quasi-densities given by 5.22 weigh each point inversely pro­

portional to a. 

We know of no detailed theoretical or empirical studies 

of the properties of either Hajnal's result or have any been 

obtained for that given in 5.21. We note, however, that since 

the confluent hypergeometric function is monotone increasing 

in the first argument (Slater, 6?), 5.21 is slightly more con­

servative than the ratio derived by Hajnal. That is, Hajnal's 

test procedure will reject H^ more frequently than the test 

procedure with 5.21 as its likelihood ratio test statistic. 
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B. The Sequential Two-Sample t^-Test 

with One Covariate 

In this section we now apply the prior distribution tech­

nique to the analysis of a model which is basically the same 

as in Section A except that now one covariate is introduced. 

At a particular stage of sampling we accordingly assume the 

following model: 

j ~^i^ ^ij' ^ •**' 
(5.23) 

''2J ^2 ̂  ̂ '^2j"^2' ^Zy J ~ 2. •••! «2 

2 
where e^^~-NI(0, a ), i = 1, 2; j =1, n^, and where 

X. . is the covariate measurement on the i^^' treatment 
-I- J 

"i 

_ ? and X. = , i = 1, 2. The covariates are assumed to be 
i 

controlled. 

If we picture the model 5-23 in Euclidean two-space we 

see that the difference in treatments is the distance between 

the two regression lines measured along any line drawn 

parallel to the y-axis. Since the two lines are assumed to 

be parallel this distance is constant for all x and is equal 

to the following function of the parameters and x's: 

Accordingly, one hypothesis formulation that we may test is a 

generalization of 5*1» 
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|a^ - Œg - P (x^-Xg)] = Y^ct 

^ u (5.24) 
H-| : |a^ - ttg - 3 (X^-Xg)] = YgC, 

where Y^ and Yg are specified and Y^ ^ Yg and where a., a^, a, 

and p are unspecified. If we let Y^ = 0 then our null hypothe­

sis is that there is no treatment difference and the alterna­

tive hypothesis is that the treatment difference is Yg stan­

dard deviations. 

The prior quasi-densities we consider are 

^o^^l' ̂ 2' = 1, 0 < 0 < », -"<a^ < i =1, 2; 

_» < p < Œ, |cc^ _ ocg - Pfx^-xg)! =Y^a 

= 0, otherwise (5-25) 

V^(a^, ttgj |3j 0-) =1, 0 < a < », -= < < =, i = 1, 2; 

_œ < p. < =, [a^ - ag - P (X^-Xg)] = Y2 cr 

= 0,.otherwise. 

where in general Y^^ < Yg. 

The likelihood of the n^+ng observations is 

n^+ng 

1 L(a^, ag, P, cr) = (2na^) ^ exp - Q^(a^, a^, p)J (5.26) 

where 

^1 _ 2 
^i^^i' ̂ 2' p) = % (yij"^i"p(^ij"^i)) 

"2 _ ? 
2 (ygj-ag-PCXgj-Xg)) . (5.27) 
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As in Section A o f  this chapter we proceed to calculate the 

ratio of the marginal likelihoods of L(a^, , p, a) using 

the prior quasi-densities in 5-23, as 

a (Y?) 
(5.28)  

where 

RI(Y) =// / L(a^, - P (x^-xg) + Ycr, g, a) da^dpda 
O —CO —CO 

+  f  f  f  L(a^, - pfx^-xg)- Ya, p, a )  da^dpda (5-29) 
O —CO —00 

for Y = Y^, Yg. 

The first term on the right hand side of the equality sign 

in 5.29 is 

OD CO CO 
ni+ng 

I f f  ) exp 
o —00 —CO 

1 

2a 
Q(a^, - B^x^-Xg) + Ya, g) da^dpda. 

(5.30) 

Now Q^(a^, - pfx^-xg) + Ya, P) 

^1 2 ^2 _ _ 2 'I +Ï (ygj-a^^+elx^-Xg)-Ya-e(x2j-X2)) 

= (a^, p) /n^+ng n2(=2-=l) ^1^ 

P / 

- 2(zy-n2C' 8%^y^+822y2+%2(=2-=l)(y2-Y*) 

+ Zy2 - 2YaZy2 + (5.31) 
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where, in addition to the notation given in 5.23, we define 

2 _ 2 _ 
zy = z E y,4, Ey = z z yf. 

i—1 j—1 

n^ 

ij 1=1 j=l 

n^ 

zy^ = z Fij' sy? = ^ y?,, yi = 

ij 

Z?! _ Zy, 

2J' '1 n. 7: rir 
n_ 

^1^1 1 
= z SzgXg' defloea 

in a similar manner. 

Integration of 5 - 3 0  over and p then gives 

1 
«> n +n_-2 

a exp 
2a 

(a+b) da (5.32) 

where 

a = Zy2 _ Yc2y + n Y^a^ 

"b = - h"^(e, f) A(®) 

•2 A = (o+n^ix^-x^y 

Vn^CXg-Xi) nj_+n2 (5.33) 

0 = 8 + S 
^1^1 %2^2 

h = determinant of A = |A| = (n^+ng)c+n^n^(Xg-X^) 

e = Zy^+ngfyg-Yc) 

g = S, 
=1?! 

+ S 
X 232 

f = g+n^lxg-x^) (yg-Ycr ) 

%l+%2-2 

= (2n) |A| . 
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Expanding and gathering terms in Ycr we write 

a+b = uY^cr^ - 2vYa + w 

where 

? 2n,(x -X _ 
u = ng - —(0+n2(x2-Xj_) ) + g -

2  f —  —  \  2  
-n c-n-np(x_-x ) 

= "2 ̂  h 

1 ^ i . (Ï2-i,)2 

"l ^"2 + ^%2%2 

V = n,y„ -
ngfniyi+ngygjfo+ngfxg-xi)) 

(5.35) 

2 2 0 + 

nhx -x ) 
+ z—— (s+(x -X )(n y +n y )) 
o+n^ngfxg-x^) 

n (n +n )(x.-x,) _ _ 

- ' ' tz (g+n (Xj-X )y ) 
c + n^n^Cxg-x^) 

= _ 2 
n_n (x.-zJ) 

+ "2 + % 

= -[fg - 3^1 (g/o)(x2-3^)]u, (5.36) 

and 
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2 ^ ̂  _ _ 
w = zy G (hiyi+ngyg) 

+ 2 (g + n2(22_%i)yi) 

(n,+n^) 

n i s  +  • (5.37) 

?or convenience we simplify ̂  rather than w. 

S = - v: - vi - + ètw - Z/ + + £] 

= i[2y2 - n,y2 . 

2 
+ (n^y^+n2y2+^)ïi3_ïi2^^2"^l^ ~ ° (^3_y]_+^2^2 ̂ 

+ 2n^ ( Xg -x^ ) ( y 1+1^2^2 ̂ ® 

+ 2ng(Xg-^i)^V2^^2 " 

- 2n2Cn^+n2)y2(x2-x^)g - ()n^y^^] 

= ̂ [Zy^ - n^y^ - n2?2 + ̂ ] + [y;L-y2+# (^2-^1)]- (5-38) 

For the model 5.21 it is easily shown that y^, y^, and ̂  

are estimates of a^, a, and |3 respectively, and an estimate 

of (j^ is 

,2 ̂  zy^ - - Ps 

"1 + "2 - 3 
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where g, c, Sy are defined in 5-33. 

We now rewrite 5.3^ and 5-38 so that 

V = -[pg - 7i + P(x2-x^)]u 
and 

w = (n-3)cr^ + u[y^ - Yg + 

(5.40a) 

(5.40b) 

Therefore, by Lemma 10.3 of Section C of the Appendix, 

f exp[- —^(uY^a^-2vYCT + w)] da 
2a 

= kz -p[-

2Yv 

n +n_-2 

... ' 2 ' i,(vv2.1. ïM)-
1 n,+n,-3 ^ 2 ' 2' 2M 

(2W)2 

(5.41) 

where F(p^; Pg; z) is the confluent hypergeometric function and 

^2 = 
n.+n,-3 

r ( 1 ,2 )_ 

It is noted here that kg does not depend on Y, 

In the same manner, for the second term of the right hand 

side of the equality sign in 5.29 we have 

"l+%2 

I f f  (2™^) ^ ®=^P 
0 —00 —CO 

1 

2a 
Q^(a^, a^-3 (X^-X2)-Ya,p )] da^dpdcr 

= k, exp[_i^j rp(5::^. 1. iM) 

2YV 

(2w}' 

r( 

r( 

2 
%ï+%2 -2 

2 
-3 

2w 

) 2. Y^v^ jj F(- » 9 ' 2w (5.42) 
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where kg is exactly as given in 5«41. From 5.29 we see that 

R^(Y) is the sum of the expressions given in 5.^1 and 5-^2, 

that is, 

R^(Y) = kg exp[- P( 2 ; I' (5.43) 

Therefore 

B(l) = 1 2 
RJTY^ 

may be obtained from 5.43 as 

(Y -Y )u F(——— 
R(l) = expf- -^4^1 ^ - g", • (5.W) 

2 2 
, 1. YgV 

' 2' 2w 
_2 2 

1 Y^v 

' 2' 2w 

(5.t5) 

P [ = = . — . —.= ) 
^ ̂ 2 ' 2' 2w / 

Recalling the definitions of u, v, and w given in 5.35, 

5.40a and 5.40b respectively, we can write 

^ xfa. 
" (n,.n,-3) + 

where 

•vv^ • . 

and where cr^ is as given by 5.39* 

2 It may now be noticed that t , ^ is the Student's 
^12"^ 

2 t -test statistic appropriate in a fixed size sample sense for 

testing 



125 

|a^ - ttg + = 0 

Eg: |a^ - ag + |3 (Xg-îï^)) ^ 0. 

Since 

(5.47) 

«2 
u = 

Var(a^-a^-p(Z^-Zg)) 

1 

1 + i_ + 

and 

"l "2 '' ̂ %2%2 

Y^u 

then if we let Y^ = 0 we have 5-46 as a natural extension (to 

the case where concomitant information is used) of Hajnal's 

(26) result. 

C. The Sequential Two-Sample t^-Test 

with p Covariates 

1. The model and hypothesis formulation 

In this section we extend the results of Section B to the 

"fcll. case of p covariates. At the n stage of sampling we assume 

that we have n^ observations from population 1 and n^ observa­

tions from population 2 and that the following model obtains; 
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* 9p(%lpj-3%p) + 

Jjj = °-2 •*• "*" ^2'^22j"^22' ̂  (S.'iS) 

+ ̂ '^2pj-^2p> + =1J 

2 
where e^j~NI(0, cr ), 1 = 1, 2; j =1, ..., n^, and 

"fcl̂  "fcil is the j observation of the k covariate for treatment i. 

The expression for differences in treatments based on 

model 5.^8 is an extension to p covarlates of the expression 

given for one covariate in Section B of this Chapter and is 

equal to the following function of the parameters and x's: 

tti - + Pi(^2l"^ll^ ^2^^22"^12^ + ... + 3p(^2p"^lp^ 

= ai - + z'P (5.49) 

where 

Z  '  =  (  ;  Z g  ;  . . .  J  )  f  =  ^ 2  j _  ~  ^ 1 1  '  

P' - ^2' •••» Pp)' 

The hypothesis we shall test is a generalization of $.2^ 

and is as follows: 

ja^ - ag + z'pj = Y^a 

(5.50) 
H^: |a^ - + z'pj = Y^a 

where and Y^ are specified and a^, , and (p^, p^) 

are unspecified. The prior quasi-densities to be considered 

are 
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V^(a^, Œg, |3, cr) = 1, 0 < a < », -<» < < <=, i = 1, 2; 

-« < < *, 1 = 1, ..., p; 

a-, - ttp + z'p] = Y. 
"1 

= 0, otherwise 
(5.51) 

V^(a^, ttgj 13, cr) =1, 0 < a < », 1 = 1, 2; 

< =, 1 = 1, 2 

l°^l " Gg + z'p| = YgG 

= 0, otherwise. 

The likelihood of all the observations accumulated 

"bll. the n stage is 

( )  

L(a^, ag, P» cr^) = (2na^) ^ exp[ ^ Qp(a^, ttg, P ) ] 

(5.52) 

where 

Qp(a^, ccg, P) = (y^ - a^e^-xp ) ' (y^-a^e-Xj_p) 

+ (y2-G2e2-%2P)'(y2-G2G-%2P) 
and 

y{ = (y^i, y^z' 

^2 (^21' ̂ 22' • • • ' ̂Sn^^ 

®i " •••' l^lxn^' ®2 " •••' l^lzng (5-5^} 

and is the n^ X p matrix 
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= 

^121"^12 

^122"^12 

^12n^"^12 • 

^Ipl'^lp 

%lp2"*lp 

^lpn^"^n^p 

amd Xg is a rig X p matrix similarly defined. 

2. Derivation of the test statistic 

We now evaluate the ratio, R(p), of the marginal likeli-

2 hood of L(a^, , |3, a ) given V^(a^, a^, 3, a) to the 

2 marginal likelihood of L(a^ , a,, p, a ) given V^(a^, ttg» 3, cr) 

where 

and 

(5.55) 

R (Y) =// ••• / L(a^, a^+z'p-Ya, p, a) da^dpda 
0 -c 

+ y y ••• / L(a^, a^+z*p+Ycr, |3, a) da^dpda (5.56) 
o 

and Y = Ygj Y^. 

Before completing the integration as indicated in 5.56 we 

work out some algebraic details regarding Cg, P). We 

rewrite 5-53 as 

Gg' 9) = C'CX^XÎ + %2%2)9 * yî^l + ̂ 2^2 

- 2(Xiyi + * GÎeiSi 

- Za^e^f^ + &2^2^2' (5.57) 
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Also, letting + z'p -Ya in 0 (a^, ag, p) we have 

Q + z'3 - Ya, p) 

= P'(X^X| + XgXpp - ^i^l ^2^2 

- 2a^e^y^ + a^e|e^ - 2e^y^{a^+z^^-ya) 
+ egGgfa^+z'P-Ya)^ 

= . ^/a 
- Zfu^+UgYc) + f 

P / 

where A is the (p+1) x (p+1) matrix of rank p+1 

A = 
/n^+ng ngz' \ 

\ 
zrir %lXl+X2%2+%2::', 

and and are (p+1) x 1 vectors defined by 

u, = lei y^+e' , u_ = /n_ \ 
•2 

noZ rz"/ 

,2 2 

(5.58) 

(5.59) 

( 5 . 6 0 )  

(5.61) 

( 5 . 6 2 )  

H ̂1+^2 y2+''2y2^ 

and f is a scalar defined by 

f = y{ yi + y^ + ZYae^yg + n^Y-o". 

By Theorem 10.2 of Section B of the Appendix we may com­

plete the integration on and p in the first term of the 

right hand side of 5.56 to obtain 

CO CO CO 
f  f  ••• / L(a. a.+z'|3-Ya, P, a) da.d^da 
o 

=  (2n  )  

%l+%2-9-l 
» -(n.+np-p-l) n 

f  a exp[- —g^a^+ag)] da (5.63) 
2a' 
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where 

a 2 2 
1 = yi yi + 72 + ZVoe' ' 

ag = - (U^+U^YJ)' A"^ (u^+UgYa) 

2 We write a^+ag as a quadratic expression in a , 

a^+ag = Y^ua^ + 2Yva + w 

(5.64) 

(5.65) 

( 5 . 6 6 )  

where 

u = n^ - u^ A'^Ug 

V = e^ y-g - u; A"^u, (5.6?) 

w ,-l 
RI YI + Y^YG - "Î A %! 

By Lemma 10.3 of Section C of the Appendix we may now write 

5.63 as 

exp[-
r;/"i+%2-p-2 1 

o  > 0 5  2w ' P( 

n +np-p-l 

/2Yv 2 ) 3 YVr 
^ _p_2^ 2 ! 2' 2w ' 

( 5 . 6 8 )  

where 
n^+n^-p-l n^+n2-p-2 n^+n^-p-^ 

= n w 2 

By replacing Y by -Y in the derivation of relations 5.63-

5.68, the second term of the right hand side, of the equality 

sign in 5.56, 

f  f  ••• / L(a., a^+z'p+Yo", p, a) da^dpda, 
O —CO —00 

can be shown to be equal to 

(5.69) 
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expL- F( 
ïil+n^-p-a 2 y2^2 

2w ) -

n.+n,-p-l 
2YV R( I ) 

W ^(V^2"P"^) 

F( 
n^+ng-p-l ^ y2^2 -, 

2 ' 2' 2w 

Adding ju68 and 5.70 we then have 

YY) = k,.^[.A] 1,6 

(5.70) 

(5.71) 

where k« Is as defined In 5.68 so that, from 5.55» we finally. 

write 

E(p) = exp[-

P P n+n -p-2 . 

: &: -IT' -u] 
n^+n -p-2 . Y?v^ 

pf_i é i. ) 
^ ̂ 2 '2' ZVJ ' 

where u, v, and w are given by 5.^7. 

(5.72) 

3. B(p) as a generalization of previous results 

a. Least squares estimates We now demonstrate that 

5.72 is the generalization of Hajnal's t -test which would be 

expected if p covarlates were used. We begin by deriving 

2 least squares estimates of a. , , p, and cr , assuming the 

model 5.48. For this derivation we write the model 5.^8 in 

vector form consistent with the notation of 5-53 and 5.5^. 

Thus 

yi = a^ej_ + xp + 

^2 = "2^2 + ̂ 2^ + ^2 
(5.73) 
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where we assume X. and are controlled, e-, = (e 11' ̂ 12' 

Gln^) - (Sgi, Ggg, 

we then have 

•2n, 
). Combining both equations 

'1 
Xj_\ /^l^ 

a, 

2̂/ i P / 

+ e (5.74) 

where y^, y^, e^, e^, X^, and Xg are given by 5.54 and 

e = (gi, Cg). We shall denote a 1 x m vector of zeros by 'O', 

the size of m being determined by the context in which 0 is 

found. 

The least squares estimates required are easily shown to 

be 

'4 

°'2 
= 0 

/ 0 

pi 
= 

^2 

0 

0 

0 '  

0 '  

Vl+̂ 2% 

-1 
/ ?! 

^2 72 

\xiyi+x2y2/ 

. (5.75) 

(Xl%l+%2%2)"^(Xiyi+%2y2) 

(5.76) 

and 

/\2 
cr n̂ +n2-p-2̂ yl̂ l'̂ 2̂̂ 2'̂ l®l̂ l~°'2®2̂ 2"̂  ' ̂ l̂̂ l''"̂ 2̂ 2̂  ̂ (5.77) 

where by definition we have ej^^ = n^, e^Bg = n^, 

e^y^ = n^y^, and e^yg = n^yg* The variance-covariance matrix 

of (a^Y Sg, 9')' 18 
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• l _  0 

1_ 
Ho 

0 

0' 0 

\o (5 {x^x^+x^x^)~"/ 

I f  we denote the difference between treatments, 

tti - ag + z ' |3, by A we then have 

(5.78) 

A = a. - a. + z'p 

and 

Var(2) = + z'(XiXi + 

(5.79) 

( 5 . 8 0 )  

b. U) 1) a.nd w functions of the least squares 

estimates In order to establish E(p), as given by 5.72, 

2 as a generalization of Hajnal's t -test when p covariates are 

used we require a well known matrix result. This result is 

used extensively in the remainder of the chapter and a proof 

may be found in, for example, Anderson (1, p. 344). 

Theorem 5.1: If the positive definite matrix M is 

partitioned as 

'M, 
11 "12̂  

Mr '21 22/ 

so that is square and is nonsingular, then the determi­

nant of M, [m1 , can be written 

(Ml = |Mii-M^2«22«2iI l«22l ' 

Recalling the definitions of u, v, and w, given by 5.6?, we 

must show that 
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u = a 

and 

VarCS) 

'n^+ng-p-Z 

2 w 

where 

ni+n^-p-Z + 

(Yl-yg+z'P)'u 

(5.81) 

(5 .82)  

e2 n^+ng-p-Z 

is the fixed-Sample size Student t^-test statistic for testing 

the hypothesis formulation 

|A| = 0 

|A| ^ 0 
(5.83) 

1) u To establish 5.8l we take advantage of the 

fact that u = n^ - u^A~^ Ug is .a scalar, where u^ is defined 

by 5.61, so that 

n^ - u^ A"^ Ug = jn^ - u^ A~^ u^ | • 

By Theorem 5.1 we have 

n^ - u^ A Ug 
[ A] 1 ng - Ug A Ug I 

|A1 

u; 

2 ^2 
|A| • 

By definition (5.60) the determinant of A, A , is 

IAI = 

(5.85) 

n^+ng ngZ' 

zrir XlXi+XgX'+ngZz' 
(5 .86 )  
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so that if, in turn, the first row of |A| is multiplied by the 

first component, z^, of z' = (z^, z^) and the result 

subtracted from the second row of |A| , the first row of |A| is 

multiplied by z^ and the result subtracted from the third row 

of |A| , and so on until the first row of |A| is multiplied by 

z and the result subtracted from the p+1 row of |A| , we may 

write 

|A| = 
ni+n^ 

-n^z 

n^z' 

%lXi+X2%2 
(5.87) 

For convenience we might have described the above row opera­

tions on )A| by saying that we premultiplied the first row of 

|A| by z and subtracted the resultant matrix (array) from the 

matrix (array) formed by the last p rows of |A| . In the 

future, where possible, we shall abridge the description of 

any set of row and/or column operations in just this manner. 

Using Theorem 5.1 again, 5.8? becomes 

|A| = lx^xj_ + XgX^I [n^+n^+n^n^z'(X^Xj_+ X2Xp"^zl . (5.88) 

To simplify tlje numerator of 5.85, we have by definition 

A. 

uJ 

u. 

n. 
zn^ 

V' n^ 

n^z 

%2 %2= *2 

(5.89) 

so that, subtracting the last row from the first and subtract­

ing the matrix formed by premultiplying the last row by the 
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vector z from the matrix defined by the 2^^ through the (p+1) 

rows of 5 •89» we may write 

0' 0 
A u. 

u' n. 

n^ 

0 XiXi+XgX^ 0 

U r  

= n-, 

"2 = ' 

Vi+XgX^ 0 

n^ 

%2=' 

^1^2 ^2^2' (5.90) 

Thus, finally, the ratio of quantities given in 5«90 and 

5.88 yields 

(5.91) °2 - >^2 = X—T 
^ + z'{XiX' + X^Xp-h 

which is a as in 5.80. 
Var(&) 

2) V We now establish that v, defined in ̂ .67, 

IS 

V = (y^ - y^ + P'z) u 

Since v is a scalar, 

-1 i -1 V = e^ y^ - u^ A u^ = | e^ y^ - u^ A u, 
1 I"2 "^2 "2 

(5.92) 

(j.93) 

so that Theorem 5^1 allows us to write 

A 

Un 
V = 

^2 

^2 ̂ 2 

|A| 
(5.94) 

By definition, 
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A u^ 

^2 "2 ̂2 

n^+ng 

*2= 

V' n. 

X^X'+XgX'+ngZz' n^z (5-95) 

Vl'-Vz yiX'+y'X'+ngygZ' 

SO that if we, in sequence, 

i) subtract the last column from the first column, 

ii) postmultiply the last column by the vector z and 

• subtract the resultant matrix of elements from the 

matrix formed by column 2 through column p+1, 

iii) multiply the first row of the resultant determinant 

by y and subtract it from the last row, 

then 3'95 can be written as 

n^ 

0 

0 '  n. 

X1XÎ+X2X2 *2= 

^iCyi-yg) +^9^ 11 '2 2 0 

(3.96) 

W e  expand 5 - 9 ^  by cofactors and have 

n. - - - - - ^1(^1-^2^ 1 

and by Theorem 5*1 

0 

n. 

= IX^X^+XgX^I [O+ngfy^Xi+y^X^ifX^Xi+XgX^j-lz] 

+ n^n^ly^-Yg) +X2X^ 

^^2 1^1^1 "^^2^2! 

Since we have already shown (see 5.88) 

^1^2 l^l^i ^2^2! I ^l''"^2'^^n^2^ ' (^1^1 ^2^2 ̂ 

(5.97) 

(5.98) 

(5.99) 
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then V as given in 5.9^ becomes 

V = (y^ - Yg ^ 2'3)u (5.100) 

as was to be demonstrated. 

3) w Finally it is necessary to evaluate w, 

where 

w = ŷ ŷ  + ŷ Yg " (5.ioi) 

Recalling the definitions of A and u^ given by $.60 and 5«61 

respectively and using Theorem 5.1 we may write 

"2=' Vl+Vz 

iigZ + tigzz' tx^yg+n2F2Z 

Vl+' %+ y 2^2 
w -

|A1 
(5.102) 

The numerator of 5*102 can be written as 

-V X^X'+XgX', 

-n2(y^-y2) 

niCyi-yg) yi^i + y^x' - "2^2 

(5.103) 

by performing the following operations; 

i) Multiply row 1 by y^ and subtract the result from the 

last row and 

ii) premultiply row 1 by z and subtract the resulting 

array from the matrix of elements defined by row 2 

through row p+1. 

In addition, if we premultiply the matrix of elements defined 

by row 2 through row p+1 of the determinant in 5.103 by 
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^^1^1 is , and subtract the 

resulting row vector from the last row, then 5.103 becomes 

%l+%2 

n^z 

^2^ 

%1%1+%2X2 

- ngCyi-yg) 

^1(71-72)+niP'z 0' 

- (71-72+^'z) (5.105) 

^1^1 "*"^2^2 

y^yi+y^yg-SiZyi-SgZyg-W (X]_yi+%) 

(5.104) 

If we expand 5.104 by cofactors we have 

[y{yQ^+y2y2""i^''i'"2^''2"^' 1^1 

V -"2(^1-^2^ 
x^x'+xgx' x^y^+x^jg 

which, by application of Theorem 5.1, 

= (n^+n2-p-2)e2|A| + ningfyi-y^+G'zi^lXiXi+XgX^ 

p 
where a is defined by 5.77. Thus |w] , as defined by 5.102, 

equals 

(n^+ng-P-zycZ + (yi-yg+ê'zi^u. (5.10?) 

(5.106) 

c. Evaluation of Y^v^/2w From 5.82, 5.91, and 5.107 

we may now write 

/— — /\ \ 2 2 
(71-72+3 z) u 

^ ^ ^ (n^+n2-p-2)a^ + (7i-72+P'z)^u 

(yi-72+P'2)^u 

(5:108) 

ni+n2-p-2 + 
(7I-72+P'2)^u 
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= 4^ (5.109) 
n^+n^-P-a + tn^+n^.p.2 

and thus conclude that ^.82 holds. 

2 2 If, for convenience, we write t = t . « 
1 2~^~ 

then E(p) may be written as 

i,(VV£f. 1. ± , 
(Y2 Y?) 2 ' 2' 2 + .2+^2) 

E(p) = exp[ ^ u] 2 — 

P f £ . —. _i_ Z ) 
\ 2 ' 2' 2 , r^^2' 

1. ti 

n^ +n2-p-2+t' 

(5.110) 
2 Since the tests in this chapter are sequential t -tests 

we may conclude that they terminate with probability one (see 

David and Kruskal, 22). However, no average sample number or 

operating characteristic formulae are available, and because 

of the complexity of the mathematics involved, it appears at 

present unlikely that theoretical analysis will be successful 

on these points. We note, however, that the pros and cons of 

paired versus independent samples in fixed sample size experi­

mentation also pertain when the context is sequential experi­

mentation. In particular, the gain in degrees of freedom for 

estimating the standard error of the difference of two means 

using two independent samples is oftentimes offset by the 

advantages of pairing when there is a high positive,correlation 

between observations within pairs. 
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VI. NUMERICAL INVESTIGATIONS 

This chapter contains the results of a sampling experi­

ment on three of the test statistics proposed in Chapter III. 

Before detailing the implementation of these test statistics 

and discussing the experimental results we shall outline the 

Monte Carlo procedure. 

A. Monte Carlo Procedure 

The Monte Carlo procedure associated with many empirical 

sequential trials is as follows. At each stage an observation 

is generated in a random manner from a specified distribution. 

We have a test statistic which is a function of all observa­

tions accumulated at any stage. This statistic is compared 

with the decision boundaries specified by the procedure. If 

the decision Is to stop sampling and accept either or 

the stage number is recorded and the reason for curtailment is 

noted. If, on the other hand, the decision is to continue 

sampling, another observation is independently generated and 

we again compute the test statistic and compare it with the 

decision boundaries. We shall call the sequence of observa­

tions leading to a decision a trial. 

In sequential analysis, even though a sequential procedure 

may decision with probability one, it is not a rare occurrence 

that a particular trial does not decision until a large number 

of observations have been taken. Accordingly, in order to 
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utilize the available computer funds to best advantage in our 

empirical investigation, it was considered desirable to set 

an upper limit on the number of observations per trial. 

As a time-saving device, we found it useful to compute 

simultaneously at each stage some or all of the test statistics 

under consideration, realizing then that for each trial the 

stage numbers for decision corresponding to each statistic 

would not be independent. Also, the computer program was 

written so that all of the statistics would be simultaneously 

computed until each had decisioned on any or all of three dis­

tinct boundary pairs, the boundary pairs specified before each 

set of trials was performed. In these cases, then, a trial 

consists of the sequential generation of observations resulting 

in one to six test statistics (three test statistics with and 

without covariance) decisioning on one to three boundary pairs 

or reaching the upper limit on total observations per trial 

as discussed earlier. 

We shall call a set of trials a run. On each run we 

recorded the number of decisions, the number of correct 

decisions, the observed average sample number to decision, and 

the observed standard deviation of the sample number to 

decision for each statistic on each boundary pair. 

We limited ourselves to an evaluation of the relative 

merits of using one covariate in 'addition to the variate of 

interest in the analysis. In accordance with the basic 
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assumptions of Chapter III we generated bivariate normal data 

with prespecified means, variances, and correlation coeffi­

cient. This was accomplished by having the IBM 36O/65 

computer generate two independent uniformly distributed vari­

âtes, say u^, and u^, over the interval (0, 1) and then using 

the following transformations, given by Box and Muller (13b), 

to obtain two independent univariate normal variates, and 

Zg) each having mean zero and variance one; 

1 
2 Z^ = (-2 log u^) cos ( 2 TT Ug ) 

1 
2 

Zp = (-2 log u^) sin (2 TT Ug ). 

Specifying a, |3, , a, and a we then formed the variates, 
1 

e = 

^1 " ̂x^^2 

y^ = a + + e, 

so that (x^, y^) is bivariately normally distributed with 

=0, = a, Var(x^) = o^. , Var(y^) = and 

cov(x^, y^) = 

To summarize, after specifying a parameter configuration 

and a hypothesis formulation, we generated pairs (x, y) of 

observations and calculated test statistics for use in a 

sequential procedure. From repeated independent trials, we 
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recorded estimates of Type I or Type II error, of expected 

sample numbers, and of sample number variances. 

B. Implementation of Selected Test Statistics 

These sampling experiments were primarily designed to 

investigate the advantages of utilizing concomitant informa­

tion in sequential test procedures. Monte Carlo results were 

obtained for each of the test statistics R(l, p, n), R(2, p, n) 

and R(5J p, n) given, respectively, by 3.^2, 3.7O, and 3.120-

3.121. In particular, we compared the sampling results when 

one covarlate is used in the analysis with those obtained 

when the covarlate was Ignored. We now present the form of 

each statistic under consideration as it was coded for computer 

execution, and we shall point out several timesaving devices 

and approximations that were found useful. 

R(l, p, n), in general form, is given by 3*52 and is 

presented here for zero covarlates as 

_ n n-1 

R(l) 0, n) — 

ï(y-aj,)' 

n ] 
Zi j . -aJ '  
l i a  

(6.3) 

and for one covarlate as, 

R(l, 1, n) = 

n p n p 

i l l  I T  

pn 
S 
Ll 
z (yj^'~cc^)xi 

n 2 % 
Z zf Z (y,-aA) -
1 ^ 1  ^  ̂  

2* 
(6.4) 
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We next present R(5> p, n) in general form for the cases 

when n-p is odd and when n-p is even. If n-p is odd then 

R(5, P, n) 

= A(n, p) 

n-p-3 
2 

2;â-I(a.) Z G'(r) 
^ r=0 

I 2 \ 
4df(a.)-g (a.) 

\ dlTHp 

n-p-3 
2 

2Va + I(a^) E G'(r) 
^ r=0 

4df(a^)-g (ttnn) T' 
d.K(am) 

(6.5) 

and if n-p is even then 

5(5, P, n) 

= A(n, p) 

n-p-2 
2 /4df(a,)-g^(a.) 

n-2e^-J(a^) H(r)[ dK[âp 

%-P-2 % 
2 /4df(am)-g (am) 

Tr + 20^ + J(a^) H(r)(^ dK[â^ : 

( 6 . 6 )  

where in "both cases 

A(n, p) = 
4df(a^)-g (a^p) T' 

4df(a^)-g (a*) A'J 

n-p-1 
2 

Ka) = 2â + K(a) 

(da + g(a)a + f(a)) 

) CC OC|j|j cĉ  

J(a) = Zdialai —, a = am, a, 
'T' A 

(4df (a.)-g^(a) 

d = k + e* (I-m)e, k any prespecified function of n 

g(a) =.-2ka - 2e'(I-M)y, a = a^, a^ 
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f(a) = ka^ + y'(I-M)y, a = a^, (6.7) 

2 K(a) = da + g(a)a + f(a), a = am, a A 

G'(r) = (2r); 

-1 2da.+g(a.) 
8. = principal value of tan 

0^ = principal value of tan"^ 

(a^)-g^(a^) 

2(iaiji"t"g (a^i) 

J 4df (arp)-g^(arp) 
When zero covariates are used, i.e. when p = 0, then d, g(a) 

and f(a) are given by 

d = k + n 

n 
g(a) = -2ka - 2 E y. (6.8) 

1 ^ 

? ^2 
f(a) = ka + Z yf 

1 ^ 

and when one covariate is used, p = 1, then 

n p 
(Zz^) 

d = k + n -

1 

n gn n n 
Zx^Zy^ -Sx^Ex^y^ 

g(a) = -2ka - 2 -—^—-— (6.9) 

1 ̂  
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n „n p n p 
zzfzy, -(zx.y, 

f(a) = k/ + 1 1 1 • 

Lf 
1 ̂  

Bather than computing the quantities G'(r) and H(r) each time 

they were required, two arrays, 

G'(0), G'(l), G'(40) 

H(l), H(40), 

were constructed and stored in the computer prior to each run 

by using the following recursive formulae; 

G'(r) = G'(r-l) 

(6.10) 

= 2(2r-l) 

The appropriate elements from each array were then called when 

required. 

The statistic 

E(2, p, n) 

+ I: :# (6.11) 

(2z'(I-M)z)^ 2 

where, if p = 0 and z' = (y^-a^, yg-a^, ...» y^-a^)' 

'i"^T' 

n 
e*(I-M)z = Z(y.-a^) 

1 

^  , 2  z'(I-M)z = S(y.-arn) (6.12) 
1 1 i 
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e'(I-M)e = n 

and, if p = 1, 

e'(I-M)z = 

n pn n n 
Ex^Z(y^-aj) - Ex^Ex^(y^-a^) 

1 

z'(I-M)z = 

e'(I-M)e 

n _n 2 r% 
Sx^S(y^-a^) -[^Sx^(y^-a^) 

1 ̂  

n p n p 
nEx. - (Ex ) 
1 ̂  1 

(6.13) 

n p 
Zx^ 
1 1 

presented some computing difficulties because of the confluent 

hypergeometric P(r; s; x). Since F(r; s; x) is an infinite 

series, certain approximations were necessary for computer 

implementation. We followed Olin's (49) recommendations on 

this point. Kummer's identity, 

F(r; s; x) = exp(-x) F(s-r; s; -x) 

allows P(r; s ; x) to be written as the product of a more 

rapidly converging series exp(-x) and the possibly finite 

series F(s-r; s ; -x). The series F(s-r; s; -x) is finite 

provided s-r is an integer such that s < r. In the computer 

subroutine for approximating P(r; s; x) the series was 

truncated either 
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1) naturally when s-r(s < r) was an integer, or 

2) artificially when the value in the last term in the 

series was less than 5 x lO"^. 

Olin (49) reported that the above procedure would result in 

approximations of F(r; s; x) accurate to six decimal places. 

Also, R(2, p, n), as given by 6.10, involves two confluent 

hypergeometric functions with the third argument in common. 

However, by the use of the identity, 

sF(r; s; x) = sP(r-l; s; x) + xF(r; s+1; x), 

given in Section C of the Appendix, we may rewrite 6.11-so 

that it is a function of three confluent hypergeometric 

functions, all having the last two arguments in common. That 

is, R(2, p, n) may be written as 

H(2, p, n) 

= exp Y^e'(I-M)e 
: 2 

p/n-p-1. 1. yf e'(I-M)z\ 
^ ̂ 2 ' 2' 2 z'(I-M)z^ 

,n-£-2. 1. f (e'(I-M)z)^: 
( 2 ' 2' 2 z'(I-M)zI 

C .  Empirical Results 

We begin by giving some results that will provide guidance 

for what we might anticipate as the expected sample number 

saving when concomitant information is utilized. In Section B 

of Chapter III we present average sample number formulae. 
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3.3^J for a Waldian SPRT when the underlying distribution has 

the p.d.f. 3*23 and when and are both simple hypothesis 

specifications (that is, when all the nuisance parameters are 

assumed known and the parameter of interest is assumed to be 

one of only two values). The expected sample numbers under 

and ECNIa^] and E[Nfa^] are seen to depend on the parameter 

the distance and the specified Type I and Type II 

error rates, P(I) and P(II). If the concomitant information 

is ignored, then by Corollary 10.3 of Section A we see that 

2 the operative conditional variance of y given x, a , becomes 

2 
effectively the unconditional variance a + P'EP. Thus the 

ratio of E[N|a^]^, the expected sample number-with one covari-

ate, to ECNjagl^Q, the expected sample number without 

covariance, is 
a 2 

(6.15) 

It can easily be shown that the ratio given by 6.15 is equal 

2 to 1-p where p is the correlation coefficient of y and x^. 

A corresponding theoretical result for the composite hypothesis• 

situation with nuisance parameters unknown has not, however, 

been obtained. It can be seen from Tables 2, 4, 5, 6, and 7 

that the ratio of the observed average sample number with 

covariance to the observed average sample number without co-

2 variance is always larger than 1-p . These results are in line 

with the previous evaluative experiments of Roseberry (58) and 

Olin (49). That is, use of one covariate in the analysis 
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2 resulted in less than a p x 1,00^ economy in observations. 

For example, in Table 5 we have that l-p'" = O.36 and the 

ratios given there range from 0A3 to 0.56. In Table 4 three 

columns of ratios are given that are associated, from left to 

right respectively, with the values 0.53, O.3O, and O.I9 of 

2 1-p . We see that none of these values have been realized in 

the empirical results. However, we did have a substantial 

economy of observations when p > 0.6. This can be seen by 

again examining the ratio column given in Tables 4, 5s and 7. 
p 

To summarize, although we did not achieve the p x 100^' 

economy that would be expected in the SPBT of the uncomplicated 

simple versus simple hypothesis formulation, we did have sig­

nificant economy in the number of observations by the test 

statistics that utilize concomitant information. 

In the development of R(5, P> n) in Section F of Chapter 

III we weighted a nonuniformly and the nuisance parameters 

uniformly over the parameter spaces under consideration. We 

allowed and V^, given by 3.112, a certain versatility or 

richness with the introduction of k which is referred to as a 

constant in the sense that it does not depend on the data but 

may be some function of n. By k, we can control the dispersion 

of the halfnormal weighting of a. We investigated the per­

formance of R(5> P) n), p = 0, 1, for different k. Some 

results of this investigation are included in Table 2. Error 

rates most closely resembling those specified for this 
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Table 2. Performance of E(5, P> n) for different values of 
k, and parameter specifications: = 0.0, 

= 1.0, = 3.0, = 9.0, p = .6, 

P(i)& = P(ii) = .05 ^ 

Observed Observed Observed Observed Number^ 
p k a.s.n. s.d.s.n. Ratio P(I) P(II) of Trials 

p
 II 0
 

0
 

0 n 19.63 l4.66 
.80 

0.080 150 

1 n 15.65 9.57 
.80 

0.067  150 
0 

1 VE 
19.90 

16.93 

18.35 

13.39 
.85 

0.152 

0.120 
(D +3 

100 

100. 

0 

1 

20 

20 

23.30 

16.50 

20.26  

13.17 
.71 

0.160 

0.060  

•H 
ÎH 
ft 
0 
M 

0
 

0
 

.0 10 19.28 14.49 
.83 

0.080 
ft 
ft 
d 
•p 

50 

1 10 16 .00  10.46 
.83 

0.080 

ft 
ft 
d 
•p 50 

0 3 22.48 19.94 
.65 

a = 1.0 

0.140 
0 
S 50 

1 3 14.70 10.68  
.65 

a = 1.0 

0.180 50 

0 

1 

n 

n 

18.38  

15.39 

12.94  

9.29 
.84 

0) 

0.060 

0.020 

200 

200 

0 VE 16 .70  11 .49  
.93 

+3 0.040 100 

1 15.58 11.71 
.93 •H 

ft 
0.020 100 

0 20 19.08  13.14 
.78 

0 0.020 50 

1 20 14.84 6.50 
.78 ft 

ft 
di 

0.020 50 

0 10 22.16  17.77 
.75 

0.040 50 

1 10 16.68 11.65 
.75 0 

0.020 50 

0 3 22.06  16 .98  
.68  

0.080 50 

1 3 14.96 8.30  
.68  

0.160 50 

&The specified Type I and Type'II errors. 

^Each entry in this column is the ratio of the observed 
a.,s.n. for the test utilizing one covariate to the observed 
a.s.n. for the same test without covariance. 

^Duplication of certain runs by mistake resulted in a 
larger number of trials for some tests than others. 



Table 3- Performance of tests when a - and a - become large, parameter 

specifications: = 3.0, - 9.0, = O.7698, p = .8, = 0.0, 

= 1.0, k = n, = .3464, = .5774, P(I)* = P(II) = .03, 50 trials 

, Observed Number^ 
Test a.s.n. s.d.s.n. Ratio P(ll) of Decisions 

a = 1.5 

R(l, 0, n) 34.96 14.90 .48 0.00 48 

R(l, 1, n) 16.48 4.67 
.48 

0.00 50 

E(2, 0, n) 33.12 11.84 
.48 

0.00 49 (M 

1, n) 16.06 4.36 
.48 

0.00 50 

R(5, 0, n)^ 25.12 16.52 
.49 

a = 11.0 

0.00 50 

R(5, 1, n)^ 12.28 3.79 
.49 

a = 11.0 

0.00 50 

R(i, 0, n) 40.84 1.66 
.98 

0.00 50 
R(l, 1, n) 40.18 0.87 

.98 
0.00 50 

R(2, 

E(2, 

0, 

1, 

n) 

n) 

12.90 

9.32 

0.30 

0.55 
.72 

0.00 

0.00 

50 
50 

^Thi specified Type I and Type II errors. 

R(i, 
^The ratio of the obs 
0, n), i = 1, 2; 5« 
r>. 

erved a.s •n. for R(i, 1, n) to the observed a.s.n. 

^The trials that did not decision before n = 120 were disregarded. 

'^E(5j PJ n) was not allowed to decision before n = 9» 



Table 3. (Continued) 

^ Observed Number^ 
Test a.s.n. s.d.s.n. Ratio P(II) of Decisions 

o
 

1—1 H
 

II d
 

E(5, 

R(5, 

0, 

1, n)^ 

9.00 

9.00 

0.00 

0.00 
1.00 

a = -1000.0 

.0.00 

' 0.00 

Observed 
P(I) 

o
 
o
 

R(I, 0, n) No decisi ons 

R(l, 1, n) No decisions 

E(2, 0, n) 10,00 0.0 
1.0 

0.00 50 

E(2, 1, n) 8.18 0.482 
1.0 

0.00 50 

R(5, 

R(5, 

0, 

1, 

n)^ 

n)^ 

9.00 

9.02 

0.0 

0.l4l 
0.818 

0.00 

0.00 

50 

50 



Table 4.  Observed a. 

= 9 . 0 ,  
^1  

s.n. for increasing 
P(I)B = P(II) = .05, 

p when = 
k = n 

0
 

0
 

p
 II =  1 . 0 ,  =  1 .5 ,  

Correlation Coefficient p 

Test 

P  =  0 . 0  .  
Observed 
a.s.n. 

P = .6871 
Observed 
a.s.n. 

Eatio^ 
p =  .8385  
Observed 
a.s.n. 

Batio^ 
P =  .90  
Observed 
a.s.n. 

Batio^ 

R(L, 

R(l, H
 

O
 

n) 43.10  

n) 28.61  
. 66 

17.76  
.41  

13 .65  
.32  

E(2, 

R(2, 

O
 

H
 

n) 45.30  

n) 29.85 
. 66 

18.83  
.42  

13 .48  
.30  

R(5, 

A(5, 

0,  

1, 

n) 26.54  

n) 19.47  
.73  

14.88 
.56  

12.19 
.  46  

^P(I) = Type I error and P(II) = Type II error. 

^Based on 235 trials. 

^Based on 250 trials. 

"^The ratio of the observed a. s.n. of the covariance test statistic to the 
observed a.s.n. of the non-covariance test statistic. 

•®Based on 1000 trials. 



Table 5« Observed a.s.n., s.d.s.n. and Type I and Type II error rates for the 
2 2 parameter specifications: a = = 0.0, = 1.0, a =1.50, =9-0, 

= 0.5445, p - 0.8, Yq = .490, = .8165, P(I)®- = P(I1) = .03^ 

250 trials, k = n 

Observed Observed v. Observed Observed Number^ 
Test a.s.n. s.d.s.n. Ratio P(I) P(II) of Decisions 

a -- 0.0 

R(l, 0, n) 31.45 18.23  .50 
0.020 

0 -p 249 

R(l, 1, n) 15.74 7.73 
.50 

0.012 •rH 

ft 
0 
h 

250 

B(2, 0, n) 29.05 17.59 .44 0.012 

•rH 

ft 
0 
h 

248 

5(2, 1, n) 12.89 6.87  0.016 ft 
& 
-p 

250 

B(5, 0, n) 22.12  16 .27  .56 0.032 

ft 
& 
-p 250 

5(5, 1, n) 12.30 6.06 
a = 

0.020 

1.0 ^ 
ê 250 

B(l, 0, n) 35.80 20.26  
.43 

-p 
0.004 249 

R(l, 1, n) 15.41 7.88  
.43 •H 

A 0.016 250 
R(3, 0, n) 35.91 19.61  

.45 
0 

A ft aS 

0.020 248 

R(3, 1, n) 16.01 7.31 
.45 

0 

A ft aS 0.016  250 

5(5, 0, n) 23.57 16.87 
.58 -P 0.048 250 

R(5, 1, n) 13 .67  6.76 
.58 

S 0.012 250 

^The specified Type I and Type II errors. 

^The ratio of the observed a.s.n. for R(i, 1, n) to the observed a.s.n. for 
R(i, 0, n) , i = Is, 2, 5. 

^The trials that did not decision before n = 120 were disregarded. 
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Table 6. Observed a.s.n., s.d.s.n., and Type I error rates 
for the parameter specifications: a = = 0.0, 

= 1.0, = 1.50, = 9.0, = .3062, p = 0.6, 

Yq =  .6532 ,  =  . 8163 ,=  P(II )  =  .05 ,  

250 trials, k = n 

Observed Observed "W Observed Number 
Test a.s.n. s.d.s.n. Ratio P(I) of Decisions 

R(l, 0, n) 17.19 9.20 0.060  250 
. 82  

R(l, 1, n) , 14.01 7.22 0.028  250 

R(2, 0, n) 14.40 7.44 0.076 250 
.91 

R(2, 1, n) 13.04 5.72 0.032 250 

R(5, 0, n) 15.05 9.07 0.044 250 
. 82  

R(5, 1, n) 12.36 6.82 0.024 250 

^The specified Type I and Type II error rates. 

^The ratio of the observed a.s. for R(i, 1, n) to the 
observed a..s.n. for R(i, 0, n), i = 1, 2, 5. 
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Table ?. Observed a.s.n., s.d.s.n., and Type I 
error rates for the parameter specifications: 

= 0, a = = 1.0, = 1.50, = 9.0, 

= .8428, p = 0.9, Yq = .3560, .8I63, 

P(I)^ = P(II) = .05, k = n 

Observed Observed Observed Number° 
Test a.s.n. s.d.s.n. Ratio" P(II) of trials 

E(l, 0, n) 43.10 23.86  .063  222 

13.60 
.32 

R(l, 1, n) 13.60 5.75 

0
 

0
 235 

a(2, 0, n) 45.30 23.35 .049 224 

14.09 
.31 

.026 R(2, 1, n) 14.09 6 .87  .026 235 

5(5, 1, n) 26.54 21.75 .126 230 
.47 

.026 E(5, 1, n) 12.39 6.25  .026 235 

^The specified Type I and Type II error rates. 

^Each entry in this column is the ratio of the observed 
a.s.n. for the test utilizing one covariate to the observed 
a.s.n. for the same test without covariance. 

°The total possible number of trials is 235. If the test 
statistic did not decision before n = 120, the trial was 
disregarded. 
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particular configuration were achieved, when k = n. However, 

any conclusions regarding these tables must be qualified in the 

sense that only a relatively few trials were run and the pre­

sentation of the approximate 95% confidence interval (.04, 

.06) for error rates specified as P(I) = P(II) = .05 would 

require I9OO trials. It was discovered that R(5, p, n) has 

the tendency to decision at the wrong boundary more often than 

expected when n-p is small. Several preliminary runs sug­

gested that, in order to achieve the specified error rates, 

R(5> P) n.) should not be allowed to decision until 7 to 9 

observations were taken. Although this censoring scheme was 

successful in most cases we have no theoretical substantiation 

for it. A censor number of seven was effective for small 

sample numbers (9-15); not allowing R(5> P> n) to decision 

until stage 9 gave good results for larger sample numbers 

(20-35); see, for example, Tables 5 and 6. However, if either 
r~2 2 2 a oT Ja + was too large relative to , error 

rates much higher than expected were observed (see Table 7)« 

A detailed examination of the output from which Table 7 was 

constructed revealed that of twenty-nine incorrect decisions, 

twelve occurred at stage 9 and three occurred at stage 10. 

Thus if we had not allowed E(5, P, n) to decision until stage 

11 we probably would have observed an error rate of about O.O6. 

It may be noted from Tables 3» 5, 6, and 7 that 

E(5, P, n) almost always has an observed average sample number 
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less than those of either R(l, p, n) or R(2, p, n). The dif­

ference is not pronounced, however, unless the sample numbers 

are large in general! An unqualified endorsement of B(5, p, n) 

should not be made, however, until the possibility of real 

discrepencies from the specified error rates is resolved. 

When p = 0, H(2, p, n) reduces to the sequential t-test 

as put forward by Wald (69), and differs slightly from that 

introduced by Rushton (59)' Cornfield (1?) criticized the 

sequential t-test because in certain obvious situations the 

procedure required a surprisingly large number of observations 

before decisioning. With this criticism in mind we obtained 

the results given in Table 3 by generating observations from 

distributions with means a = 1.5» 11.0, and -1000.0 and tested 

the hypothesis a = 0.0 versus a = 1.0 with the param­

eter configuration as shown in the table heading. Summarizing 

the results of these fifty trials, we found 

1) that R(l, p, n) did not decision at all when 

a = -1.000.0, 

2) that R(2, p, n) delayed decisioning when a  = -1000.0, 

3) that R(5> P, n) decisioned almost every time at the 

stage it was censored, 

4) that the ratio of observed average sample number 

(a.s.n.) with covariance to observed a.s.n. without covariance 

approached 1.00 as a increased for all tests except R(2, p,n), 

and 
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5) that none of the tests made incorrect decisions. 

We now discuss each of these points in turn. 

An unusual feature of the study revealed that B(l, p, n) 

did not decision once in fifty trials when a = -1000.0. This, 

however, is less surprising if we consider some of the results 

of Chapter III, specifically that given by 3>5^ from which we 

see a tendency for 8(1, p, n) to approach 

+ (a -
-ô p (6.l6) 
a + (a - a^) 

2 I as n becomes large. Now if a is small relative to ja - a^] 

and I a - and both |a - tti^j and |a - a^| are large, then 

the ratio given by 6.l6 is close to one. For the parameter 

configuration shown in Table 3 we can show that the ratio 

given in 6.l6 is equal to 0.998003 so that 

n-p-1 

8(1, P, n) = [8(1, p, n)] ^ (6.1?) 

converges slowly towards zero and the sample size required for 

R(l, p, n) < 0.0309 may be great. Actually, it may be neces­

sary to sample until n > 313+P for a decision since 

[.998]^^^.= .0309. 

We now demonstrate the tendency for R(2, p, n) to delay 

decisioning when the true mean a is a great distance from 

either of the hypothesized values and a^. Let us assume 

that we have 15 observations having values dispersed about 
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1 0 10 with a population variance of 7^.14. If we test 

a = 0.0 versus a = Ya = 1.0 using R(2, p, n) when 

p = 0, we have, using tables by Rushton and Lang (63), 

B(2, 0, 15) 

= e-'l[P(f; .1) + 2 .1 P(6.5; D] 

= ( .9048)  [2 .983  +  2( .3 l6) (3 .8985) (1 .504) ]  

= 6.05 J 

which is less than the Waldian upper boundary 19.O when 

P(I) = P(II) = .05. Part of the motivation for the test pro­

cedure using R(5j Pj n) was to overcome this "delayed 

decisioning" property of R(2, p, n). The results of Table 3 

indicate that we were successful in this respect, for 

R(5J PJ n) decisioned at 9.0 (its censor number) almost every 

time. 

As a increases we note that the entries in the ratio 

column also increase and we conjecture that, except for 

R(2, p, n), they will approach 1. The "delayed decisioning" 

characteristic mentioned above will probably inhibit R(2, p, n) 

from attaining this limit. 

Finally, even though R(l, p, n) and R(2, p, n) have the 

tendency to delay decisioning we suspect that few errors would 

occur when a = 1.5 and a = 11.0, and no errors would result 
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when a = -1000.0 if the trials were allowed to run without 

forced termination. Prom Table 3 we may infer that P(II) and 

P(I) are monotone decreasing functions of a if the nuisance 

parameters are fixed. 
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VII. SUMMARY AND TOPICS FOR FURTHER RESEARCH 

A. Summary 

In this thesis sequential procedures are developed for 

discrimination between two treatments when concomitant infor­

mation is utilized. Wald's Sequential Probability Ratio Test 

is known to be optimal in certain senses when both the null 

and alternative hypotheses are simple. In most hypothesis 

testing situations, however, such hypothesis formulations are 

unrealistic because of unspecified nuisance parameters and the 

possibility that the region of interest for the parameter 

under investigation contains more than two points. Weight 

functions, originally put forward in Wald (69), have been 

applied to obtain appropriate test statistics for testing in 

the more realistic cases of composite hypotheses. In this con­

text also the relationship between the weight function approach 

and one based on a Bayesian prior distribution framework is 

discussed. 

In Chapter III we considered the design where the subjects 

were paired and received one of two treatments at random. In 

the general case each observation was taken to be a p + 1 

vector consisting of the variate of interest plus p covariates 

and these were assumed to be multivariate normally distributed. 

In this case the useful property that the form"of distribution 

is preserved under the differencing process which is essen­

tially required obtains. The relation of the "basic" 
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correlation between the differenced variates and the advan­

tageous correlations due, for example, to the pairing proper­

ties are discussed in Cox and Eoseberry (18). Then using the 

weight function approach, we put forward several hypothesis 

formulations and derived sequential tests for each. We pointed 

out location and scale invariance characteristics of these 

tests and we also presented some termination proofs. 

The existence of the sequential t-test introduced by Wald 

(69) and further developed and examined by Eushton (59) and 

Barnard (5) motivated the development of the sequential t- and 

2 t -tests, utilizing concomitant Information, as presented in 

Chapter IV. The technique of construction utilizes the concept 

of fixed sample size sufficiency and invariance to obtain a 

factorization of an otherwise formidable likelihood expression. 

To Implement this approach, the problem considered in Chapter 

III was reformulated and we assumed the covariates were con­

trolled as distinct from the previous assumption of a multi­

variate normal distribution. A test was then derived for 

testing a = versus a = + ctY, when and Y 

were specified while the nuisance parameters were unspecified. 

Tests for two-sided formulations were also obtained. Next 

the restriction requiring pairing of the subjects was removed 

and, again employing the methods of weight functions and prior 

distributions, we constructed a sequential two-sample t-test 

utilizing concomitant information. We demonstrated that the 
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above mentioned test is, in fact, a type of sequential t-test 

as put forward by Hajnal (26). 

Results of a Monte Carlo study are presented for the • 

following three test procedures proposed in Chapter III. 

1) R(l, p, n), given by 3-52, is proposed as a test of 

a < versus a > a^, < a^. R(l, p, n) was 

derived for the "least favorable" case, a = versus 

a = a^, with uniform weighting of the nuisance parameters. 

2) R(5> p, n), given by 3.120 - 3.121, is also proposed 

for testing a < versus a > a^, < a.. 

Nonuniform weights were placed on a and uniform weights were 

placed on the nuisance parameters in the derivation of this 

test statistic. 

3) R(2, p, n), given by 3.70, is proposed as a test of 

a = ttip versus a = + Yc where and Y are 

specified. Uniform weighting of the nuisance parameters was 

used in this case. 

We investigated these procedures with special emphasis on 

a) the economies in sample size when concomitant infor­

mation is utilized, 

b) their realized error rates, and 

c) their performance under certain extreme operating 

conditions in order to detect any unfavorable properties. In 

all cases the results indicated that a substantial saving in 

sample number was achieved when covariance was used, if the 
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correlation coefficient exceeded 0.6. There were slight 

savings when p was close to 0.6 and results from a run when 

p = .5 indicated that there was very little advantage in 

including the covariate in the analysis. 

Comparison of the average sample numbers achieved by the 

different tests showed that test R(5J P, n) consistently had 

smaller observed average sample number than either E(l, p, n) 

or R(2, p, n). This difference increased as the sample 

numbers increased. 

Overall, R(l, p, n) had error rates less than those 

specified, whereas R(5j P, n) had error rates varying from 

slightly less to slightly more than the specified error rates. 

R(2, p, n) consistently produced observed error rates less 

than those specified. 

To examine performances under extreme conditions, the 

hypothesis a = 0.0 versus a = 1.0 was tested using 

all three test procedures with observations having large means 

relative to and and small standard deviations. It was 

found that each test decisioned correctly provided it had 

decisioned, but that 

i) R(l, p, n) did not decision at all if |a - a^| and 

|a - a^l were both very large with respect to the standard 

error, 

ii) R(5j p, n) decisioned almost every time at the cen­

soring level specified for each run and 
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ill) R(2, p, n) had certain minimum stage numbers at 

which it would decision when |a - a^| was very large with 

respect to the standard error and these minimum stage numbers 

increased as ja - a^| was increased. 

In all, although financial considerations limited the 

extent of the Monte Carlo investigations, the results indicated 

that the test statistics derived do permit advantages of 

practical importance to be obtained by the use of concomitant 

information in sequential trials. 

B. Some Topics for Further Research 

In this section we note some topics on which further 

research seems desirable. The difficult problems of finding 

distributions of sample numbers and operating characteristic 

functions for composite hypotheses are as yet unsolved. Bhate 

(12) has put forward a general,conjecture which has been demon­

strated empirically by some authors to give a good approxima­

tion to the expected sample number in some cases. In this 

regard, see Bay (55)» Hajnal (26), and Jackson and Bradley 

(35). However, the burden, as of now, lies with the computer 

to provide guidance along these lines. 

Another area of some concern is the prospect that in a 

particular case the sample number may become unusually large. 

To protect against such behavior, Armitage (3), and Schneiderman 

and Armitage (65, 66) have presented some exact and conjectured 

approximate restrictive (closed) procedures for a particular 
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application. It would be interesting to see how these authors' 

ideas would work in conjunction with the procedures presented 

in this thesis. Again the investigation would undoubtedly 

have to be empirical because of theoretical difficulties. 

Another topic that merits study is the possibility of 

extension of the results of this thesis to discrimination be­

tween more than two treatments. Wetherill (74) reports some 

results for selection of the largest (or smallest) of several 

means, but again the problem of nuisance parameters in addi­

tion to the mathematical intractability associated with in­

tuitively pleasing designs might force the investigator to seek 

the aid of a computer. 

The relationship of Bayesian and frequentist concepts 

within the framework of sequential analysis is a broad topic 

meriting further consideration. Bartholomew (7) has presented 

some ideas along these lines and Welch and Peers (74) have 

some mathematical formulae that one might find useful in 

relation to this topic. 

It is conjectured that a derivation of a two-sample pro­

cedure for testing hypothesis formulations similar to those 

given in Section P of Chapter III might be useful. Also 

bearing on Chapter III, the concept of adjusting weight func­

tions as the data becomes available, a type of empirical Bayes 

approach, seems worthy of consideration. Clutton-Brock (15) 

and Bobbins (56b, 57) are preliminary references for an 
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investigation concerning these "empirical" prior distributions. 

The criteria of test construction set out in Section A of 

Chapter III might also be improved upon by considering weighted 

ratios of weighted likelihoods rather than ratios of weighted 

likelihoods. 

In Section A of Chapter V we showed how the weight func­

tion approach could be used to derive Hajnal's two-sample 

2 t -test. The analogous derivation of Jackson and Bradley's 

2 2 
multivariate X - and T - tests via the weight functions and 

prior distribution approach would be of some supplementary 

theoretical interest. 
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X. APPENDIX 

A. Distribution Results and 

Maximum Likelihood Estimators 

Let us consider the probability density function 

g(z; a, ki, p, S, a ) 

_1 

= ( (2n)P*l |Z| ) ̂  exp (x-u)s"^(x-u) 
2 

exp (y-a-(x-u)'3 

(10.1) 
where z' = (y, x')» x' = (x^, x^), y is a scalar, 

u' = (u^, Ug, Up), 3' = (3^, ..., 3^), and S is a 

positive definite matrix. 

Theorem 10.1: The characteristic function C(t) corre­

sponding to the p.d.f. given in 10.1 is 

C(t) = E[exp(it'z)] 

exp (10.2) 

where t' = (t^, ..., t^^^) is any real vector and i = 

Proof ; 

E[e"'̂ ] 

00 CO 
=  f  . .  . f  exp(it*z)g(z* ; a, la, 3, E, a ) dz' 

— CO —CO 

00 CO 
2 - 1 - 4  

=  f  . .  . f  exp(it; \x)(2na ) |z| exp 
— CO —CO . \ P / 

P -i 
f  (2na ) exp(it^y) exp 

(x-u)'S"^(x-u) 

_ (y-a-(z-M)'B)^l 

20̂  
dy dx (10.3) 
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where = (t^» Completing the integration with 

respect to y we can write 10.3 as 

00 CO -f -I f  . . . J  exp(itj V x) (2n) Is] exp 
— CO .00 

(x-)a)s"^(x-u) 

1 9 
exp i(a+(x-M)'p)t^) —^ CT dx 

ty CO 00 
= exp(iat^ —) exp(-i(i'pt^) J' .. .f 

mmCO mmCO 

_£ _1 
exp + t^p)'x](2n) 2[2| 2 exp[- (x-u) dx 

(10.4) 

and completing the integration on x by the same technique as 

shoTcn in Section B of this Appendix we have 

T 2 = exp(iat^ - — (J ) exp 
L (p)^ 2 

= exp Ktl- tjp)) 
fcc\ 1 

/t. \ + p'Zp EP 

\ (p)| ' \ 
3'S 

/tiY 

\(pjj 

Corollary 10.1: C(0) = 1 

Corollary 10.2: The marginal distribution of the vector 

X has p.d.f. 

-i 1 
IT-I, 

1 1 
"2 1^1 "2 f^(x; Z) = (2n) |sj ^ exp 

Proof; 

Letting t^ = 0, we have 

(x-u)'s" (x-u)" 
2 

C(0, tg, ..., tp+i) - expfitJpjM - I tgp) ̂ ^(p)] 
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Thus the marginal p.d.f. of % is multivariate normal with mean 

la and variance-covariance matrix S. 

Corollary 10.3: The marginal distribution of y is normal 

2 with mean a and variance a + P'Eg. 

Proof : 

Letting t^^^ = 0 we have 

C(t^, 0, 0, 0) = exp 
t^(a^ + p'Sp)' 

it_a -
1" 2 

Thus the marginal p.d.f. of y is univariate normal with mean 

2 a and variance a +0'Ep. 

Corollary 10.4: The conditional distribution of y given 

the vector x is univariate normal with mean a + (x-ia)'p and 

2 variance a . 

Proof : 

This result follows from the relationship 

'(y = 4^. 

from 10.1 and from Corollary 10.2. 

Corollary 10.5: Let be a random variable, having p.d.f. 

2 g(z^; a^, i-x, p, Z, a ) and let be a random variable having 

2 
p.d.f. gfZg: ccg, la, 3, Z, a ). If z^ and Zg are stochastically 

independent then z^ -z^ is a random variable having p.d.f. 

1 - Zg; tti -
2 

g(Zn - Zni a. - a^, 0, p, 2E, 2a ). 
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Proof : 

E fexp(it ' (z^-zg) )] = E |exp(lt'z^)] E[exp(-lt'z^^ 

exp 

exp 

it 

it 

a 
^t'At exp -it ' 

a 
- ^t ' At 

a^-ag 
|t'(2A)t 

where 

A = 
la^ + p'Zp E3^ 

2/ 

We now obtain the maximum likelihood estimators for the 

parameters p, E, and a of the p.d.f. 

f(y, z; a, P, z, = ((2n)P+l o^fzl ) 2 exp 

I v-n.-x- M 
exp (y-a-x'3 )' 

2â  

when a is assumed known. The log-likelihood of this sample 

may be expressed as 
n 

In L(a, p, S, a^) = In n f(y., x ; a, p, S, a^) 
1 

= fQ_(s) + ^ ' o) 

where 

n X?E"^X. nplnZn 
f]/:) = - E  ̂o r- ' 

i=l 
+ ̂  in V-l| 

fp(a, 3, a) = - nlncr - E — ^ ln2n. 
i=l 2o 

Let us utilize the fact that if g(x, y) = g^(x) + g^iy) then 

the (Xg, y^) which maximizes g(x, y) is also such that x^ 

maximizes g.(x) and y maximizes g^(y). If we assume that a 
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is known then we may differentiate fgCa, p, a) in the usual 

2 manner to obtain maximum likelihood estimates for p and a , 

which are as follows; 

p = (XX')"^X(y-ae) 

= (y-ae)'(I-M)(y-ae) (10.6) 

where X' = (x^, Xg, x^), e' =• (1, .. ., 1), y' = (y.^, ... , y^), 

M = X'(XX')~^X, and I is.the identity matrix. For the maximum 

of f^(S) we utilize the following result (1, p. 46; 72, p. 

303-304). 

Lemma 10.1; If C and B are given positive definite p x p 

matrices then the function 

f(C) = In C - trace CB"^ " (10.7) 

takes its maximum if and only if C = B. 

Proof ; 

Since f(B) = ln|B) - trace I = ln|B| - p (10.8) 

we need to show that 

InlBl - p-ln |C| - trace CB"^ > 0 (10.9) 

and that equality holds if and only if C = B. If , Xg, ..., 

X. are the characteristic roots of CB~^ then trace 

-1 P 
CB = E and 

1 ^ 
CB"̂  

P 
= n and 10.7 may be rewritten as 

P P P 
Z A.. — p - In Rx = E ( X. — 1— -InA.. )^0. (10.10) 
1 11 

Now A. - 1 - InA. = 0 when \ = 1 and \ - 1 - InA. > 0 if A. > 0. 

Thus 10.9 holds and we have 10.7 attaining its maximum when 

C = B. 
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We rewrite f^(Z) so that 

• I r,—! 
f^(S) = - trace + § ln|E~^ 

By Lemma 10.1 

so that 

Î-1 = (̂ ) 

g ^xx-

» -1 

(10.11) 

n 

If a is assumed unknown than by arguments similar to those 

used above we have the maximum likelihood estimates as follows; 

p = (xx')-lx(y-ea) 

a = [e'(I-M)e]"^e'(I-M)y (10.12) 

^ y'y - ge'y - g'Xy 
n 

In either case, a known and a unknown, the estimates are 

consistent. That is, p p, cr^ and a —^ a where 

X n C denotes convergence in probability. 

B. Evaluation of a Multiple Definite Integral 

Theorem 10.2: Let X' be a real n x p matrix of rank p. 

Let 3' be a vector (p^, •••> P^) of real valued variables 

and let u* be a vector (u^, Ug, ..., u^) of arbitrary real 

numbers. Then 

1«. f ...J exp - gf'XXp + u'p dp^dpg-.-dp 
«CO —00 J 

2 f 1  " 2  = (2n)^ XX' exp u' (XX' )"^u1 (10.13) 
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Proof : 

Since XX' is a real symmetric p x p matrix of rank p 

there exists an orthogonal p x p matrix C such that C'C = I 

and C'XX'C = D where D = (d^j) is such that 

1 = J 

=0 i ^ j. 

Now XX' is a positive definite matrix implying that d^ > 0, 

i = 1, .p. Since C is orthogonal, then |C'C| = [l] =[C' 

and thus [C| =1. We now make a transformation from 

Pg, Pp to ...J Yp by writing g = CY. The 

absolute value of the Jacobian of this transformation is 

||C|| = l+l] = 1. Thus we have 

expT- I p'XX'p + u'pl dp, ...dp 
— CO —CO ^ J P 

= / .../ 8XP 
— 00 —00 

|Y'DY + U'CY dp^ ...dppi (10.14) 

Letting t' = u'C = (t^, t^, ..., t^) we rewrite 10.l4 as 

2 

/ .../ exp 
— CO —GO 

- 1 P YI P 
dY^^ . ..aYp 

= / .../ exp 
— CO —CO 

" 1 ? (^2 

- 2^ 3: , dYi ...dY 

p 
= n 
1 
/ exp 1 

^i 
dY^ exp 

LI 
(10.15) 
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Recognizing the definite integral of 10.15 as the normal 

probability integral we write 10.15 as 

P 
n 
1 ^ 

1 

(2nd_) exp 

2 p è 
= (2n) (n d.) exp 

1 ^ 

n P 2" 
2 % Alti (10.16) 

1 
= (2n)^jD| 2 exp 

1 •t' 2' 

J ̂ 1 
(10.17) 

Finally, since t' = u'C, (CD"^C')"^ = C'"^DC"^ = XX', and 

-1 _ fir, ,1 Ivvtl I nil -1 _ Iv-vil "1 D -1 = C'XX'C = C'XX'C |c'l IXX'I |cj XX 

10.17 becomes 

2 _1 
(2n)2|xx'i 2 exp 

u'(XX')u 
2 . 

(10.18) 

C. The Confluent Hypergeometric Function 

and Pertinent Formulae 

The Pochhammer-Barnes confluent hypergeometric function 

is 'the infinite series 

F(a; b; x) = Z 
(a). 

1 . X 

i=0 (^^i 
(10.19) 

where 

(a)^ = a(a+l)(a+2)...(a+i-1) 

(b)^ = b(b+l)(b+2)...(b+i-l) 

and 

b i  [0, -1, -2, -3» •••] 
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The series is convergent for all finite x, real or complex. 

Setting w = F(a; b; x), it can be shown that w satisfies the 

differential equation 

' Usually we find that 10.19 is written in the form 

fr (10-2 

where r(c) is the gamma function. In this form it is 

particularly important to recall that b cannot equal 0 or a 

negative integer. 

A useful relation called Summer's identity is important 

in hand or computer calculations and is as follows; 

Kummer's identity allows F(a; b; x) to be written as the 

product of a more rapidly convergent series and a finite 

series F(b-a; b; -x) provided b-a is an integer such that 

b < a. In applications considered in this thesis, b < a will 

always hold and a-b will equal an integer approximately half 

of the time. 

The following three relations are quite helpful in hand 

and computer calculations when evaluating the confluent 

hypergeometric function. 

+ (b-x);^ - aw = 0. (10.20) 

F(a; b; x) = e~^F(b-a; b; -x). (AO.22) 
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(a-b+l)P(a;b;x) = aF(a-rl;b;x) - (b-1 )F(a;b-l;x) 

b(a+x)F(a;b;x) = abF(a+l;b;x) - (a-b)xF(a;b+l;x) (10,23) 

bP(a;b;x) = bF(a-l;b;x) + xF(a;b+l;x). 

For further details see Bateman (9, 10), Lebedev (44), 

Rushton (62), and Slater (67). 

We now present two Lemmas and a Theorem which aid in .the 

expression of weight function tests in terms of confluent 

hypergeometric functions. 

Lemma 10.2: If a > 0 and s > 1 then 

/ ̂ 
o 

-s 
exp - K' 

s-1 

(10.24) 

Proof : 1 
2 

Let" X = then x = {—) and 0 < y < ». The absolute 

value of the Jacobian of this transformation is 

J = = f(f) 
. 2 *  

Therefore 

-S r_ âc-2 — a  
J X exp 
o 2 

s-1 

dx 

1,2,2 r 
= ?(-) / y exp[-y] dy 

S —1 
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Lemma 10.3: If a > 0 and s > 0 then 

A — 8 
,y z ezp 

- K' - K'' dx 

.±:1 fzd 
a 2 8 2 r(2zl) 

(2a) 
#r(^) 

(10.25) 

Proof ; 

Let 

$(a;b;s) = f x"® exp 
- K' -1--^' dx. 

If we expand exp[- ^x"^] in a power series then 

CO (̂ )' 
-8 _ ^2^ -1 $(a;b;s) = f x"^ x"^ exp[- |x"2] dx. 

1 = 0 

By Lemma 10.2 

1 (#) 
s+i-1 

{(ajbis) = S (-1)^ I {§) r(2±l=l) 
1=0 

8 — 1 2i 21 
• 2 

4(#) ' 

- (|) 
2i+l 21+1 

- ,L TtTFITT '!> r(̂ ) 
s+2i 

i=o 
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= #) 

8-1 
2 (f) 
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From Lemmas 10.2 and 10.3 we have the following theorem. 

Theorem 10.3: If a > 0 and s > 0 then 

f x"® exp[- - ̂ x~^]dx 
o 

f x"® expE- ^%"^]dx 

„,s-l 1 b^ 

(2a) 

r(f) 

i r(^) 
(10.28) 

D. Some Theorems on Convergence in Probability 

(W, P(¥), la) is defined to be a measure-space if ¥ is a 

space of points, p(¥) is a a-algebra of all measurable subsets 



190 

of W, and i-i is a completely additive measure defined on |3(¥). 

(W, p(W), la) is called a probability space and la a probability 

measure if W represents all possible outcomes and if |a(W) = 1. 

Let X(w) be a ^-measurable function from W = w to R^, the 

extended real line. X(w) is called a random variable. We 

symbolically represent this mapping by 

(¥, p(W), ̂ ) >(B^, P). (10.29) 

If B is any Borel set in p(R^) then we define the probability 

that X(w)eB, say P X(w)e:^ , by 

P[X(w)eB] = ̂ [w: weX"^(B)]. (10.30) 

A sequence of random variables X^(w), n = 1, =, ... is 

said to converge in probability to a random variable X(w) if, 

for a given e > 0, 

lim P[ X^-X < e] = lim |a[w: X (w)-X(w) <e] = 1. (10.31) 
n n—> n- n 

An equivalent definition of convergence in probability which 

will be used in this Appendix is: X converges in probability 

to X if for a given e > 0, 6 > 0 there exists an N such that 

n > N implies 

ia[w; jX^(w)-X(w)j > e]<6. 

Let us denote convergence in probability by 

P - lim X = X' or X^-^ X. (10.32) 

We now state and prove two theorems. 

Theorem 10.4: If X^ ̂  > c and 0 < c < 1, and if f(n) is 
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an increasing unbounded function of n then 

Proof ; 

We need to show that for any e > 0, 6 > 0, there exists 

an N such that if n > N then 

Ô > t i [w: > e] .  

We first consider the case where e < 1 - c. Since ^ 

e + c < 1 we know there exists an such that c + e < (G)̂  ̂

for n > Ng. Let us choose some e*< e. For e*, 6 > 0 we know 

there exists so that n > implies 

à > |a[w: |X(w)-c] > e*]. 
Now G* > |x(w)-cj > |x(w)-c| so that 

[w: |x^(w)-c| < G'*'] [w: |x (̂w)| < g*+c] 

and 

[w: |x^(w)-c] > G*] [w: ]X^(w)] > g*+c]. 

Therefore 

nLw: |x^(w)-c] > £*] iJ.[w: |x (̂w')| > s* + c]. 

1 1 

When n > Ng we know that e + c <  ( G ) ^^ ; thus e* + c < (G 

and we may write 

1 

M.[w; |x (̂w)| > G* + c] > ia[w; |x (̂w)| > ĝ ]̂ . 

If we choose N = max (N^, ) then it follows that for any 

G < 1-c, Ô > 0, and n > N 
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6 > M [w: |x^(w)-c| > > kl [w: |X^(w)| > e* + c] 

la [w: |x^(w)| > fi Lw: |[X^(w)> e]. 

For Gp > 1-c we have so that 

H [w: [X^(w)]^^^^ > e^] > U [w: [X^(w)]^^^^ > Sg]. 

Thus for any 0 > 0, 5 > 0 there exists, an N such that if 

n > N we have 

6 > M [w: [X^(w)]^^"-^ > e]. 

A sequence of random variables X is said to become large 

with probability one if for any real number d > 1 we have 

11m P[X > d] = 1. 
p 

Theorem 10.5: If X > c and c > 0, and if f(n) is an 

f (n) becomes 

n 

increasing unbounded function of n, then [X^] 

arbitrarily large with probability one. 

Proof: 

Since X^—> c we know that for any e > 0, 

lim P[ |x -cl < e] = 1. Now I n I n—5> CO 

P[ |x -̂c| < e] = PCc-e < X̂ < c + e] 

< P[c - e <X̂ ] = PL(c 

Let d be any number greater than one. If c - G> 1 then either 

c - e > d or there exists an N such that n > N implies 

(c-e)^(^) > d. This follows from the assumption that f(n) 

is an increasing function unbounded function of n. Now 
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P[(c-e)^^^^ < < P[d < for all n > N. 

Thus 

lim P [X -c < c] < lim P[d < = 1. 
n—> CO n—> <= 


