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Noise Estimation in Magnitude MR Datasets
Ranjan Maitra and David Faden

Abstract—Estimating the noise parameter in magnitude mag-
netic resonance (MR) images is important in a wide range of
applications. We propose an automatic noise estimation method
that does not rely on a substantial proportion of voxels being
from the background. Specifically, we model the magnitude of the
observed signal as a mixture of Rice distributions with common
noise parameter. The Expectation-Maximization (EM) algorithm
is used to estimate the parameters, including the common noise
parameter. The algorithm needs initializing values for which
we provide some strategies that work well. The number of
components in the mixture model also need to be estimated en
route to noise estimation and we provide a novel approach to
doing so. Our methodology performs very well on a range of
simulation experiments and physical phantom data. Finally, the
methodology is demonstrated on four clinical datasets.

Index Terms—mixture model, Bayes Information Criterion,
Rayleigh distribution, Rice distribution, model-based clustering,
image segmentation, histogram-based estimate

I. INTRODUCTION

Magnetic Resonance (MR) imaging data are very often
magnitudes of noise-contaminated complex-valued realiza-
tions that are typically well-modeled by the complex Gaussian
density [1]. Consequently, the magnitude MR signal at a
foreground voxel is Rice-distributed [2], [3] with density

r(x;µ, σ) =
x

σ2
exp

(
−x

2 + µ2

2σ2

)
I0
(xµ
σ2

)
, x > 0 (1)

where µ is the underlying true magnitude MR signal, σ is the
noise parameter and I0(·) is the modified Bessel function of
the first kind of zeroth order. The true signal µ at a voxel is
determined via the Bloch equation by its underlying physical
characteristics [4]. Actually, the Rice distribution is not limited
to conventional magnitude MR images, but also arises in MR
angiography (MRA) as shown in Andersen and Krisch [5].

As mentioned earlier, the complex data are well-described
by a Gaussian distribution [6]. It is the homogeneous standard
deviation (SD) of these complex Gaussian densities which
translates to the noise parameter σ of the Rice distribution. The
parameter σ quantifies the degradation in the MR signal which
is disturbed by random noise from a variety of sources such
as variation within the magnetic field [7] or random currents
in the system under study, or from within the MRI apparatus
itself [8], [9].
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It is of intrinsic interest to estimate σ in order to judge the
quality of acquired images and the imaging setup [10]. Avail-
ability of good-quality estimates for σ could potentially help
in improving the design of scanners and improve the signal-to-
noise ratio (SNR), allowing for shorter image acquisition times
and higher contrasts and resolutions [11]. The noise parameter
is also important as an input to applications, such as finding
contours of the brain [12], in synthetic MRI [13], and in
image registration [14], segmentation [15] or restoration [16]
algorithms. For more examples, please refer to [17] or [18].

Sijbers et al [18] also provide an useful taxonomy of
techniques for estimating σ: those based on multiple images
and those based on a single image. Estimation in the first
case is addressed in [19], which uses the second moment of
the Rician distribution. Two geometrically registered images
are averaged in k-space. Let <M2

a> be the spatial average
of the corresponding squared magnitude image. Also, let
<M2

s> be the spatial average of one of the squared magnitude
images corresponding to the original k-space images. Then
<M2

s>−<M2
a> provides an unbiased estimator for σ2. This

technique has the advantage of being fully automatic and of
gaining precision by using all the data. It is also insensitive
to structural errors such as image artifacts [20], but it requires
k-space as well as magnitude image data.

At the other end of the spectrum are the single image
techniques, many of which are based upon thresholding a
histogram of the magnitude image data into background vox-
els. Essentially these algorithms try to identify the portion of
the histogram attributable to background. These background
observations can be modeled by a Rayleigh distribution with
noise parameter σ. The higher the magnitude of the under-
lying signal, the more the distribution of the corresponding
data is shifted to the right. Hence, the background data are
concentrated in the leftmost bins of a histogram. An automated
algorithm, provided in [18] selects the number of bins from
the left based on a criterion balancing bias and variance and
then performs maximum likelihood (ML) estimation for σ
assuming the Rayleigh distribution.

The histogram-based algorithm in [18] relies on estimating
σ from the background, using the Rayleigh distributional
assumption of the voxels, and may be inapplicable in images
with little or no background. An alternative, which we propose
in Section II of this paper, is to fit Rician mixtures to the
distribution of observed magnitude at each voxel, and then to
estimate σ using ML estimation. An estimate of the variance
of σ provides us with an indication of the stability of our esti-
mate, which we use to select the number of components. Our
algorithm estimates both σ and signal levels simultaneously
and does not require large areas of background to operate.
Results on a detailed series of experiments on computer-
generated and phantom datasets performed to evaluate our
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algorithm are reported in Section III. We demonstrate applica-
tion of our methodology on four clinical datasets in Section IV.
The paper concludes with some discussion in Section V.

II. THEORY & METHODS

A. Distribution
Let Xi be the observed magnitude data at the ith voxel,

i = 1, 2, . . . , n, where n is the total number of voxels in
the image cube. We postulate that each Xi is independently
distributed according to the mixture distribution

Xi ∼
J∑
j=1

πjr(x;µj , σ) (2)

where πj is the proportion of voxels with underlying signal
µj and common noise parameter σ. We assume that µj > 0
for j = 1, 2, . . . , J − 1, while µJ ≥ 0. In case µJ = 0,
the J th component density is the Rayleigh density given
by r(x; 0, σ) = xσ−2 exp (−x2/σ2). (In a slight abuse of
notation, we will continue, for the sake of convenience, to
refer to (2) as a mixture of Ricians, even though one of the
components may be Rayleigh-distributed). Further, all µjs are
distinct. One physical interpretation of the mixture model (2)
is that there are J (unknown) types of tissue (or material)
underlying the image and that every voxel Xi has probability
πj of belonging to the jth type. However, we specifically note
that our model is far more general with no restriction on the
either the nature or the number of different kinds of tissue or
material types or sub-types (called components) in the image.
We only specify that the observed intensity at a voxel is a
composition of the (unobservable) intensity values of these
underlying components. Our focus in this paper is exclusively
on the estimation of σ given ~X = {X1, X2, . . . , Xn} but
~π = {πj ; j = 1, 2, . . . , J} , ~µ = {µj ; j = 1, 2, . . . , J}s
and the number of components J are unknown nuisance
parameters and may need to be estimated in the process.
We develop two approaches to estimating J in Section II-C,
assuming that it is given in the discussion in the next section.

B. Parameter Estimation Using the EM Algorithm
Let ~θ = {~µ, ~π, σ} be the full set of parameters, assuming

J fixed. Chung and Noble [21] have investigated the fitting
of a two-component mixture of a Rice and uniform distri-
bution via ML in the context of 3D vessel segmentation of
time-of-flight and phase contrast MRA images. Their model
had three parameters estimated via a modified expectation-
maximization (EM) approach. For the general setting (2),
direct parameter estimation can be computationally intractable
even for small J . An elegant solution is provided by the EM
algorithm [22] which augments the observed magnitude data
~X with unobserved labels ~Z = {Zi,j , i = 1, 2, . . . , n; j =
1, 2, . . . , J} that correspond to each of the mixture compo-
nents. Zi,js are indicator variables, with Zi,j = 1 indicating
that the ith observation has true signal µj . Then ~Z and ~X
together form the complete data, with complete log likelihood:

`(~θ; ~X, ~Z) =
n∑
i=1

J∑
j=1

Zi,j [log πj + log r(Xi;µj , σ)] (3)

In the absence of ~Z, we replace the terms involving Zi,j
in (3) by their conditional expectations given ~X at the cur-
rent iterates for the parameter values. This forms the E-Step
of the algorithm. Specifically, letting ~θ(t) be the parameter
estimates at the tth iteration of the EM algorithm, we note
that from (3), it is enough to calculate E~θ(t−1) [~Z| ~X] to
obtain E~θ(t−1) [`(~θ; ~X, ~Z)| ~X]. Also, conditional on ~X , ~Z has a
multinomial distribution with jth cell probability proportional
to
∑n
i=1 πjr(xi;µj , σ). Thus, writing E~θ(t−1) [Zi,j | ~X] as z(t)

i,j

yields in the E-step:

z
(t)
i,j =

∑n
i=1 π

(t−1)
j r(Xi;µ

(t−1)
j , σ(t−1))∑n

i=1

∑J
q=1 π

(t−1)
q r(Xi;µ

(t−1)
q , σ(t−1))

.

Parameter values maximizing this expected log-likelihood
given ~X and current parameter iterates are obtained in the M-
step. Note that the M-step provides analytical expressions for
the updated mixing proportions: π(t)

j = n−1
∑n
i=1 z

(t)
i,j , j =

1, 2, . . . , J . But unlike for Gaussian mixture components [23],
~µ(t)s and σ(t) need to be found by numerical optimization. For
this, we use L-BFGS-B [24], a quasi-Newton method capable
of handling bounds, which in our case is that all parameters
are positive. For this, we need to calculate the gradient vector
with components ∂

∂~θ
`(~θ; ~X, ~Z(t)) given by:

∂`

∂µj
=

n∑
i=1

z
(t)
i,j

−µj
σ2

+
Xi

σ2

I1
(
Xiµj

σ2

)
I0
(
Xiµj

σ2

)
 , j = 1, 2 . . . , J.

∂`

∂πs
=

n∑
i=1

[
−
z
(t)
i,J

πJ
+
z
(t)
i,s

πs

]
, s = 1, 2, . . . , J − 1.

∂`

∂σ
=

n∑
i=1

J∑
j=1

z
(t)
i,j

− 2
σ

+
X2
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j

σ3
− 2Xiµj

σ3

I1
(
Xiµj

σ2

)
I0
(
Xiµj

σ2

)


where I1(t) = d
dt I0(t) is the modified Bessel function at

t of the first kind of first order. I0(·) and I1(·) are both
efficiently obtained via their polynomial approximations (see
Page 378 of [25]). Also, πJ = 1 −

∑J−1
j=1 πj is not a free

parameter given the other πjs and does not appear in the
gradient vector. Further, the general concerns [26] about L-
BFGS-B with regard to accuracy and slow convergence in
ill-conditioned problems did not bear out in our simulation
experiments. Indeed, we noted very substantial improvements
in both speed and accuracy in using this over the method
of [27]. Thus we advocate using L-BFGS-B in our M-step.

In our implementation, we address separately the cases for
when µJ is positive or zero. Implementation for both cases
is similar: when µJ > 0, it is exactly as above, while for
µJ ≡ 0, we have a mixture of (J − 1) Rice and one Rayleigh
distribution, all with common noise parameter σ. Hence, there
are (2J −1) parameters to be estimated: these are the (J −1)
free components in each of ~µ, ~π and σ. Parameter estimation
proceeds similarly as before, with the additional restriction that
µJ ≡ 0. Once the EM-converged estimates are obtained, the
likelihood of (2) is evaluated separately for the cases µJ ≡ 0
and µ̂J > 0: the case with the higher value, along with the
corresponding parameters {σ̂, ~̂µ, ~̂π} , are the parameter MLEs
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for given J . For that J , σ̂, also denoted as σ̂(J), is the MLE
of the noise parameter of the image.

1) Initialization: The EM algorithm, being iterative, re-
quires initialization, which can tremendously impact perfor-
mance. Common initialization methods include randomly cho-
sen starting values or using hierarchical clustering to obtain
J groupings from which initializing parameters are estimated.
However, they can perform poorly in many situations – see
e.g. [28] who suggested using a multi-staged deterministic ini-
tializer that finds a large number of local modes and chooses J
representatives from the most widely-separated ones. Though
this algorithm was seen to be quite competitive for Gaussian
mixtures [28], there was no uniformly clear winner for all
cases. Therefore, we adopt a hybrid approach, adapting [28]
but also using a more expensive hierarchical scheme when
there is evidence of failure to find a true global maximum.

First we describe the adaptation of the initializer in [28]
to (2) for given J and n. We propose the following steps:

1) Our first objective is to find a large number (q, say) of
local modes. To do so, we choose q evenly-spaced quan-
tiles between zero (which corresponds to a representative
of the minimum value) and the maximum. We now find
q local modes of the sample, using a computationally
efficient implementation [29] of the k-means algorithm,
initialized with these quantiles.

2) Our next objective is to obtain a representative from each
of the J most widely-separated of the q modes obtained
from Step 1. To do so, we apply hierarchical clustering
with single linkage to these modes, applying a cut with
J clusters. Each of the q local modes are then classified
into one of J groups according to this cut.

3) Using the classification thus derived, we set µj to
be the mean of the q modes assigned to class j. To
arrive at initial values for the clustering probabilities
πj , we assign each observation Xi to the closest µj
and equate πj to the proportion of observations in the
jth class. Finally, σ is chosen to maximize the likelihood
given these initializing µs and πs. Parameter values thus
obtained are candidate initializers for the EM algorithm.

Comments: A few comments are in order. The first
pertains to the choice of q. Obviously q ≥ J but q << n.
Our experiments did not find a set recipe for choosing q that
worked well in all situations, so we propose running the initial-
izer with several values of q and then selecting the parameters
yielding the highest likelihood from among the resulting can-
didate initializers. In our experiments, we used q from the set
{J+2, 2J+2, 3J+2, 4J+2, J2+2, 2J2+2, 3J2+2, J3+2}.
While the exact choice of this set was heuristic, the rather large
number of candidate qs allows for a greater potential of hitting
many local optima and, potentially therefore, the true maxima
in Step 3. Finally, for the constrained case µJ ≡ 0, we modify
Step 2 to also include zero and the hierarchical clustering is
performed on the q local modes arising from Step 1 and zero.

The J-component Rice mixture has two more free parame-
ters than the (J − 1)-component Rice mixture, so necessarily
has a maximized likelihood value not smaller than the latter.
If our estimates do not satisfy this, we get evidence of poor
initialization for the J-component model. In such a case, we

also try a new set of initial values derived from an expensive
hierarchical partitioning approach. Specifically, we obtain a
partitioning of the dataset using the parameter estimates ~̂θ(J−1)

for the (J − 1)-component model and classifying each Xi to
the class j with largest π̂(J−1)

j r(Xi; µ̂
(J−1)
j , σ̂(J−1)), but also

ensuring that each class is non-empty. This produces intervals
of points for each class. We then consider splitting one of the
intervals with multiple observations into two partitions using
one of the observations as a new end-point of an additional
partition. Thus we get a new partition into J groups. Let µj
and πj , be the mean and proportion of observations in the jth
group respectively, and choose σ to maximize the likelihood
given these new µj’s and πj’s. Thus we get a set of potential
parameter initializers. Repeating the process for each split
gives us several candidate initial values, from which the best
(in terms of highest likelihood) is chosen as the final initializer.

2) Variance of the estimate: A major attraction of
likelihood-based parameter estimation methods is the ability
to obtain variance estimates. For EM-estimated parameters,
Louis [30] provided a convenient approach to calculating the
observed information I ~X . Thus

I ~X =− E~θ

[
∂2

∂~θ∂~θ
T
`(~θ; ~X, ~Z) | ~X

]∣∣∣∣∣
~θ=
~̂
θ

− E~̂
θ

[{
∂

∂~θ
`(~θ; ~X, ~Z)

}{
∂

∂~θ
`(~θ; ~X, ~Z

}T
| ~X

]∣∣∣∣∣
~θ=
~̂
θ

which can be inverted to form the variance-covariance ma-
trix of ~̂θ. The gradient vector ∂

∂~θ
`(~θ; ~X, ~Z) is provided in

Section II-B so we now only provide the components of the
Hessian H = ∂2

∂~θ∂~θ
T `(~θ; ~X, ~Z) needed for obtaining I ~X :

∂2`

∂µ2
j

=
n∑
i=1

−zi,j
{

1
σ2 + X2

i

σ4

[
I1(µjXi/σ

2)2

I0(µjXi/σ2)2 − 1
]

+ Xi

µjσ2
I1(µjXi/σ

2)
I0(µjXi/σ2)

}
∂2`

∂µj∂σ
=

n∑
i=1

2zi,j
{
µj

σ3 + µjX
2
i

σ5

[
I1(µjXi/σ

2)2

I0(µjXi/σ2)2 − 1
]}

∂2`

∂π2
s

=
n∑
i=1

(
− zi,s

π2
s
− zi,J

π2
J

)
∂`

∂πr∂πs
=

n∑
i=1

− zi,J

π2
J

when r 6= s

∂2`

∂σ2
=

n∑
i=1

J∑
j=1

zi,j

{
2
σ2 −

3(X2
i +µ2

j )

σ4

− 4µ2
jX

2
i

σ6

[
I21(µjXi/σ

2)

I20(µjXi/σ2)
− 1
]

+ 2µjXi

σ4
I1(µjXi/σ

2)
I0(µjXi/σ2)

}
where r = 1, . . . J−1. Elements of H not specified above are
equal to zero. Note that these partial derivatives do not present
a substantially additional burden, many of them already having
been calculated in the M-Step of Section II-B.

C. Choosing the number of components

Choosing the number of components in finite mixture
models or clustering is a long-standing issue with numerous
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proposed approaches. We refer to [23], [31] for a detailed
review of many methods and references on this topic. The
most popular approach is, perhaps, the Bayes Information
Criterion (BIC) [32] which essentially finds the optimal num-
ber (Jopt) of groups (from a range J ∈ {1, 2, . . . , Jmax})
minimizing the negative log likelihood of the J-component
model augmented by adding a penalty that is equal to n times
the logarithm of the number of parameters in that model. The
estimate for σ in the Jopt-component mixture model is what
we henceforth refer to as our BIC-estimate of σ.

We also propose an alternative approach based on the
standard error SEσ̂(J) . The basic idea here is that as J
increases, the model is more adequately specified, decreasing
the uncertainty in the parameter estimate. Beyond the true J
however, there is again more uncertainty in σ̂(J) because (at
least some of the) new allocations in the E-step are assigned
in error. Thus, once the model has been adequately specified,
the SEσ̂(J) will again grow for J larger than the true value.
Our suggestion therefore, is to look for the first J after which
SEσ̂(J) rises. We call this the variance approach to estimating
Jopt and the corresponding σ̂(Jopt) as our variability-based
estimate. An advantage of this approach is that it does not
need a pre-specified maximum value for the range of the Js.
Another advantage is that it takes into account the variability
in the parameter estimates in determining Jopt.

D. Sampling from the image cube

The EM algorithm converges slowly (but surely) and may
not be feasible to apply to the entire dataset. Our objective
here is simply to obtain an estimate of σ: thus we propose
taking a random sample of n voxels. However, we do so
by enumerating all the possible m-offset coarse sub-grids of
the image cube and randomly selecting one of these sub-
grids. Formally, define {(ud, ve, wf ) : d = 1, 2, . . . , nu; e =
1, 2, . . . , nv; f = 1, 2, . . . , nw} as the voxel coordinates in
the original grid of nu × nv × nw voxels. Then an m-offset
coarse sub-grid is given by {(uru+am, vrv+bm, urw+cm) : a =
0, 1, . . . , [nu

m ]; b = 0, 1, . . . , [nv

m ]; c = 0, 1, . . . , [nw

m ]}, where
ru, rv, rw are integers in [1,m− 1] and where [ gh ] represents
the largest integer ≤ g

h . We propose choosing ru, rv and rw
independently at random from {1, 2, . . . ,m−1} to draw a sub-
grid, which we use to estimate σ using our algorithm. Note
that we propose selecting a random sub-grid here instead of a
simple random sample of n voxels from the entire image cube
in order to reduce dependencies that are often introduced along
with registration and pre-processing of images.

III. EXPERIMENTS

The performance of our proposed algorithm was evalu-
ated on a number of realistic computer-generated phantom
datasets obtained with known values of σ. We examined
performance of our algorithm in obtaining both the BIC-
estimated and variability-based-estimated σ̂. For each dataset,
we compared performance with the automatic histogram-based
method of [18] using the (default) unit histogram bin width.
We also evaluated performance in estimating σ for a twelve-
channel 2D physical phantom dataset for which we also stored

the complex k-space data. We were thus able to obtain “true”
σs from the background voxels of the complex images – these
values formed the “ground truth” for our experiments.

A. Experiments on Computer-Simulated Phantom Datasets
1) Experimental Setup: For the phantom, we used the

Brainweb interface of [33] with three different proportions of
intensity nonuniformity (INU) values to obtain a noiseless ver-
sion of the ground truth. The INU proportions were set to be at

(a) INU = 0%

(b) INU = 20%

(c) INU = 40%

Fig. 1. Axial, coronal and sagittal views of the the noiseless Brainweb image
with field intensity nonuniformity (INU) proportions of (a) 0% (b) 20% and
(c) 40% used as the true signal in our simulation experiments.

0%, 20% and 40%, corresponding to the presence of no, mod-
est and substantial bias field in the imaging setup. The noise-
less Brainweb image cube was of dimension 181×217×181.
We trimmed this image down to 180×216×180 voxels by
dropping all voxels with the last index in any dimension.
This trimming allowed for uniform sampling over grids with
an offset of m = 12 pixel coordinates between voxels in
each dimension for the BIC- and variability-based estimation
methods. Thus, our sample size was reduced to 4,050 well-
separated voxels for these two methods. Figures 1 shows axial,
coronal and sagittal views of the noiseless Brainweb signal for
the three different INU proportions. For the background vox-
els, we generated independent realizations from the Rayleigh
distribution with noise parameter σ: for all other voxels, we
generated independent realizations from the Rice distribution
with mean given by the true signal at the voxel and the noise
parameter σ. We performed experiments with σ equal to be 5,
10, 30, and 50. These σ-values corresponded to average signal-
to-noise ratios (SNR) of 5.33, 2.66, 0.89 and 0.53, respectively.
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Fig. 2. Relative absolute errors in BIC-, histogram- and variability-based estimated σs for different true values of σ for the Brainweb-simulated data.

TABLE I
SUMMARY OF RELATIVE ABSOLUTE ERRORS OF BIC-, HISTOGRAM- AND VARIABILITY-ESTIMATED σ. FOR EACH TRUE σ, WE REPORT (OVER 50

REPLICATIONS) THE MEAN ABSOLUTE RELATIVE ERROR (Mean), THE MEDIAN ABSOLUTE RELATIVE ERROR (Median) AND THE AVERAGE RANKING (Av.
Rank) OBTAINED BY EACH METHOD IN ESTIMATING σ. ALL SUMMARIES ARE IN THREE SIGNIFICANT DIGITS. THE BEST AND SECOND-BEST ESTIMATES

FOR EACH SETTING ARE HIGHLIGHTED IN BOLD AND ITALICS, RESPECTIVELY.

INU Proportion = 0% INU Proportion = 20% INU Proportion = 40%
True value Method Mean Median Av. Rank Mean Median Av. Rank Mean Median Av. Rank

BIC 0.075 0.066 1.78 0.071 0.065 1.7 0.072 0.072 1.76
σ = 5 histogram 0.199 0.199 2.94 0.204 0.203 3.0 0.220 0.217 3

variability 0.040 0.032 1.28 0.043 0.036 1.3 0.043 0.037 1.24
BIC 0.239 0.184 2.24 0.205 0.177 2.14 0.193 0.178 2.13

σ = 10 histogram 0.218 0.218 2.44 0.221 0.221 2.62 0.231 0.232 2.70
variability 0.133 0.113 1.32 0.096 0.099 1.24 0.080 0.071 1.17

BIC 0.313 0.332 2.16 0.340 0.348 2.41 0.338 0.348 2.38
σ = 30 histogram 0.269 0.269 2.20 0.266 0.266 2.12 0.263 0.263 2.12

variability 0.241 0.110 1.64 0.202 0.102 1.47 0.207 0.104 1.50
BIC 0.318 0.268 2.26 0.316 0.262 2.27 0.316 0.272 2.30

σ = 50 histogram 0.155 0.155 2.24 0.156 0.156 2.32 0.158 0.158 2.26
variability 0.230 0.138 1.50 0.188 0.138 1.41 0.216 0.140 1.44

Thus the noise ranged from the modest to the very substantial.
The dataset obtained from each simulation experiment was
used to obtain BIC-, variability- and histogram-based [18]
estimates of σ. We now report performance evaluations for
each of these experiments. Performance was evaluated in
terms of relative absolute error, i.e. the difference between
the absolute value of the estimated σ̂ and the true value σ.
Formally, this is given by | σ̂ − σ | /σ. For each setting,
we replicated 50 simulated datasets in order to account for
simulation variability in our evaluations.

2) Results: Figure 2 provides a graphical display of the
distribution of the relative absolute errors in estimating σ using
each of the three methods. Descriptive quantitative summaries
for these absolute relative errors vis-a-vis estimation method
and field INU proportions are provided in Table I. We also
ranked each of the estimates provided by the three methods
in terms of their closeness to the true σ. The average rank
for each estimation method over the 50 replications for each
INU setting and true value of σ is also reported in Table I.
From the figures and the table, it appears that the BIC-based
and the variability-based estimation methods both performed

better than the histogram-based method for smaller values of
σ. Indeed, for σ = 5, our variability-based method always
outperformed the histogram-based method. For other values
of σ, performance was also generally better, except in a
few cases. The frequency of these few cases increased with
increasing σ. The BIC-based method also performed better
than the histogram-based method for σ = 5, except in a few
cases when no bias field was present. Performance of the BIC-
based method however decreased markedly with increasing σ:
for σ = 30 and 50, it was at least moderately worse than the
histogram-based estimate. The latter appears positively-biased:
indeed we over-estimated σ for all 600 experiments performed
over the 12 σ-INU combination settings. This positive bias is
not surprising since the estimator is based on first automati-
cally identifying the set of background voxels and then calcu-
lating the estimator from this set assuming that all observations
in it are Rayleigh-distributed. The method in [18] is built on
the observed intensity of the voxel only and does not use
any spatial information: thus any falsely-identified background
voxel would have a positive true signal, biasing upwards σ̂. In
summary however, the overall performance of the variability-
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based estimator was very competitive. Figure 2 also suggests
that there are a few outlying cases where the variability-
based estimation method produced substantially high absolute
relative errors. An inspection of the cases revealed that there
are the cases where σ was grossly under-estimated. Further
analysis revealed that this was a consequence of J being over-
estimated, with corresponding negatively-biased σ̂s. These
experiments suggest a need for better ways of estimating J .
Nevertheless the variability-based estimates of σ performed
admirably, generally outperforming both the BIC- and the
histogram-based methods. We now investigate performance on
a 2D physical phantom.

B. Performance on Physical Phantom Data

1) Experimental Setup: Our next set of evaluations was on

Fig. 3. Magnitude MR images of scanned phantom over 12 channels

a 2D physical phantom scanned in a Siemens 3T Magnetom
Trio Scanner using a 12-channel head array coil. A gradient
echo (GRE) sequence with parameters: echo time (TE) of
10ms, relaxation time (TR) 180ms and flip angle of 7◦ was
used in this study. The field-of-view (FOV) of the scanned
phantom 256mm×256mm and the images were acquired at
a resolution of 1mm×1mm. Figure 3 displays the acquired
magnitude images for the twelve channels. The complex
components of the Fourier-reconstructed k-space data were
also stored and available. Background regions were carefully
drawn by visual inspection on these complex phantom datasets
and σ was estimated for each channel. These twelve σs formed
the “ground truth” for this experiment. Finally, we used an
offset of m = 8 for the BIC- and variability-based estimation
methods, reducing the sample size considered for these two
methods to n = 1, 024 pixels.

2) Results: Figure 4 provides a plot of the noise parameter
estimates obtained using the three methods for each of the
12 channels of the physical phantom data. The BIC- and
variability-based estimates are closer to the “ground truth”
than the histogram-based estimates in all but one case. The
mean and median absolute relative errors, calculated over the
twelve channels were 0.112 and 0.090 for the variability-based
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Fig. 4. Estimates of σ obtained using the BIC-, histogram- and variability-
based methods plotted against the “ground truth”

method, 0.165 and 0.119 for the BIC-based method and 0.406
and 0.480 for the histogram-based method. Thus, the results on
performance of the three methods in on the physical phantom
data are in broad agreement with those in Section III-A. Once
again, the variability-based method mostly outperformed the
histogram-based method. It also moderately outperformed the
BIC-based estimation method.

In this section, we have demonstrated excellent performance
of the suggested estimation methodology on both computer-
generated and physical phantom data. We now apply it to four
3D clinical datasets.

IV. APPLICATION TO CLINICAL DATASETS

A. Description of Datasets

We also report results on applying our noise parameter
estimation methodology to four clinical datasets. The first
three magnitude MR datasets were obtained on a healthy
normal male volunteer using a spin-echo imaging sequence
on a GE 1.5T Signa scanner. Proton-density (ρ)-weighted,
T1-weighted and T2-weighted images were obtained at a
resolution of 1.15mm×1.15mm×7.25mm in a FOV set to
be 294mm×294mm×145mm. Three views of each of these
images are presented in Figure 5. For each of these datasets,
we also stored the complex-valued images. Once again, back-
ground regions were carefully drawn by an expert and the
“ground truth” σ calculated as the SD of the complex-valued
observations at these background voxels. Our fourth clinical
dataset, presented in Figure 6, was on a MR breast scan
on a female with suspected malignant lesion. The dataset
was obtained on the same Siemens 3T scanner as the phan-
tom, and had TE/TR/flip angle settings of 2.54/4.98/12◦.
The FOV was 400mm×400mm×220mm and the image was
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(a) ρ-weighted (b) T1-weighted (c) T2-weighted

Fig. 5. Axial (left), coronal (middle) and sagittal views of the the (a) ρ-, (b) T1- and (c) T2-weighted scans on a normal male volunteer.

Fig. 6. Axial views (from left to right) at the 72nd, 82nd, 92nd and 102nd
slices of the breast image.

acquired at a resolution of 0.8929mm×0.8929mm×1.25mm.
A 187.5mm×117.8mm×220mm was cropped to exclude large
non-breast regions of chest, air and so on, resulting in an
image containing 210×132×176 voxels. Thus, there are few
background voxels for this image, thus the histogram-based
method may not be particularly applicable. We also do not
have access to the complex-valued data at each voxel and thus
there is no gold standard for comparisons in this case.

B. Results

Table II summarizes estimates obtained using the three
methods for estimating σ. For the ρ-weighted MR dataset, it

TABLE II
ESTIMATED σS ON CLINICAL DATASETS OBTAINED USING THE BIC-,
HISTOGRAM- AND VARIABILITY-BASED METHODS OF ESTIMATING σ

ALONG WITH THEIR “GROUND TRUTH” ESTIMATES (WHERE AVAILABLE).

Dataset ground truth BIC histogram variability
ρ-weighted 0.994 1.455 3.263 1.357

T1-weighted 0.833 1.328 1.966 0.899
T2-weighted 0.824 0.828 1.258 0.828

Breast – 8.005 13.366 8.005

appears that all three methods for estimating σ did not perform
particularly well. Our variability-based estimator proved a
little better than the BIC-based estimator, over-estimating
σ by 36.5% as opposed to 46.4% for the BIC-estimator.
Performance of the histogram-based estimator was particu-
larly poor: it over-estimated σ by over 228%. For the T1-
weighted image, the variability-based estimator over-estimated
σ by about 7.9%, while the BIC-based and histogram-based
estimators had errors of over 59.4% and 136%, respectively.
Each of the three estimators had their best performance on
the T2-weighted image, but even here, the histogram-based
estimator over-estimated σ by about 52.7%. Both the BIC-
and variability-based estimators performed very well, reporting
relative errors of under 0.5%. Finally, both the BIC- and
variability-based methods estimated σ to be 8.005 for the
breast image, while the histogram-based method estimated
σ to be 13.366. As mentioned earlier, there is no “ground
truth” estimate available here, but the results of the simulation

and phantom experiments and the smaller proportion of back-
ground voxels in the image provide us with greater assurance
on our the variability- and BIC-based estimates.

In this section, we have demonstrated application of our
σ-estimation methodology to four 3D clinical datasets. Our
estimates were the closest to the “ground truth” values when
the latter was available, thus providing a measure of surety in
the applicability of our methodology to clinical settings.

V. CONCLUSIONS

In this paper, we provide an automated method for esti-
mating the noise parameter in magnitude MR images that
is applicable irrespective of whether there is a substantial
number of background voxels in the image. Specifically, we
model the observed voxel image intensities as a mixture of
an unknown number J of Rician distributions with common
noise parameter σ. For given J , we use EM to estimate all the
parameters in the model given initializing values, strategies to
choosing which are also provided. In addition to using BIC to
estimate J , we also propose a variability-based approach based
on the noise in the estimated σ. Given the EM’s computational
limitations, we propose choosing at random a coarse sub-grid
of the image cube. The EM algorithm is applied to this reduced
set of voxels and thus becomes practical to implement. In
doing so, we also minimize the effect of local dependencies
between observed voxel intensities that may potentially arise in
the image as a result of post-processing and image registration.
Our methodology supplements the automated histogram esti-
mation method of [18] which relies on identifying background
voxels and then using the Rayleigh distribution assumption
on these background voxels in order to estimate σ. We
report performance on experiments on simulated and physical
phantom data, the former in fields with different proportions
of bias. Our suggested methodology generally outperformed
the others in our experiments, providing evidence of its utility
in automatically estimating σ, especially when the presence of
large numbers of background voxels is not assured. We also
successfully demonstrated application of our methodology to
four clinical datasets.

A few points need to be made in this context. First,
we note that our algorithm is very computer-intensive with
calculations for each J taking as much time as the algorithm
in [18]. However, the entire procedure can be parallelized.
Further, while not implemented here, the EM algorithm can
be substantially sped up using acceleration methods as in [30].
While also not pursued in this paper, we note that the estimates
of the signal and associated clustering probabilities provide the
ingredients for a segmentation algorithm. The estimation of J
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which, although a nuisance parameter, plays an important role
in estimating σ. Our experiments indicate that a better choice
of J may further improve estimates of σ. One concern with the
suggested variability-based approach to estimating J is that it
relies entirely on the variability in σ̂. A more comprehensive
approach involving not just σ̂, but also the other parameters (~̂π
and ~̂µ) may possibly help in improving the estimation. Another
issue pertains to smoothing and dependent data. We have tried
to address this concern by sampling from a sub-grid with offset
m (chosen to be 12 in our simulation experiments). It may
be possible to explicitly include the dependence structure in
our estimation. This is especially true in the context of image
segmentation, where the goal is to classify every voxel, unlike
the estimation of one parameter (σ), so that a coarser sub-
grid may not be possible. Thus, while a promising automated
method for noise estimation in magnitude MR images has been
developed, a few issues meriting further attention remain.
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