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ABSTRACT 

 

 This thesis summarizes our efforts to study the structure and properties of materials 

computationally. The adaptive genetic algorithm (AGA) developed by us to predict 

crystal/surface/interface structures is presented. Applications of AGA to a variety of systems, 

such as non-rare earth magnetic materials, ultra-hard transition metal borides and SrTiO3 

grain boundaries, are discussed. We demonstrated by AGA the capability of solving crystal 

structures with more than 100 atoms per unit cell and rapidly accessing the structures and 

phase stabilities of different compositions in multicomponent systems. We also introduced a 

motif-network scheme to study the complex crystal structures in silicate cathodes. In 

addition, we explored different computational methods for atomistic simulations of materials 

behavior, such as Monte Carlo modeling of the alnico magnets. 
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CHAPTER 1. INTRODUCTION  

 

It is a fascinating idea to achieve materials discovery and design in computer.  

The history of technology, similar in many ways to other sides of the history of humanity, 

is often defined by the material of choice of a given era. The invention of new materials and 

tools, from the usage of stone, bronze and iron in prehistoric technologies, to semiconductors, 

nanomaterials and biomaterials in modern world, has been continuously re-shaping the world 

and greatly improving our lives.  

It is worth noting that the time period for the invention and application of a new material 

becomes shorter and shorter thanks to the accumulation of knowledge and understanding of 

nature. However, rapid increase of the energy consumption due to booming population and rising 

standards of living, as well as growing concerns about global warming and air quality start to 

accelerate the global search for alternative energy sources and more efficient utilization of 

energy. Thus, the pressure on the development of new materials is becoming formidable. 

At present, most useful materials are still discovered by trial and error, guided by the 

researchers’ knowledge, experience, and educated guesses [NSF overview]. Such an old-

fashioned way is bound by high costs and time-consuming procedures of synthesis, whereas 

computational materials discovery and design point out an alternative yet compatible way to 

confront the emergent energy issues. 

Central to the materials design approach is the logical structure connecting the four 

principle elements [Olson, 1997]: processing, structure, properties and performance, as 

illustrated in Fig. 1.1. These elements are strongly related and changes in one are inseparably 

linked to changes in the others. With the development of modern computers and advanced 
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algorithms over the last several decades, modeling and simulation have been playing more and 

more significant roles in all aspects.  

 

Figure 1.1 The materials paradigm represented in the form of a tetrahedron. 

 The basis of above materials paradigm involves studying the structure of materials, and 

relating them to their properties. With the knowledge of this structure-property correlation, the 

performance of materials in a certain application can then be studied. Therefore, in order to 

achieve discovery and design of new materials in computer, we must have the capability of 

accurately predicting the structure of materials and calculating their properties.  

We first note that there have been considerable efforts devoted and remarkable 

accomplishment achieved on the subject of computational materials discovery and design [Sato 

and Katayamo-Yoshida, 2002; Hafner et al., 2006; Woodley and Catlow, 2008; Meng and 

Dompablo, 2009; Norskov et al., 2009; Curtarolo et al., 2013]. This thesis summarizes our 

efforts to develop advanced geometry optimization algorithms and apply them to solve emergent 

problems. It is organized as following: First, some background is provided in the rest of Chapter 

1. Chapter 2 introduces the adaptive genetic algorithm developed by us [Wu et al., 2014] to 

predict atomic structures. Chapter 3 focuses on the applications of our method to the study of 
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non-rare earth magnets, including the CoxZr polymorphs [Zhao et al., 2014a] and boron-doped 

CoxZr alloys [Zhao et al., 2015a]. Meanwhile, the lattice Monte Carlo simulation of the alnico 

magnet [Nguyen et al., 2015] is also discussed in Chapter 3. In Chapter 4, predictions of new 

stable Re-B phases for ultra-hard materials are presented in the form of the published paper 

[Zhao et al., 2014c]. In Chapter 5, extension of the adaptive genetic algorithm to predict 

interface structure is discussed [Zhao et al., 2014b]. Chapter 6 introduces a motif-network 

scheme for fast explorations of the family of A2MSiO4 silicates with A = Li, Na; M = Mn, Fe, 

Co as cathode materials in Li/Na-ion batteries [Zhao et al., 2015b]. Finally in Chapter 7, I briefly 

discuss the ongoing work on Gutzwiller density functional theory for studying strongly 

correlated electron systems and conclude the thesis. 

1.1 Structure of materials 

Structure of materials ranges from the atomic scale all the way to the macro scale. People 

have found that different scales of materials structure lead to very interesting and unique 

properties. For instance, nanomaterials, with a size of usually 1-100 nm, have been one of most 

intense subjects of research due to the fascinating properties that they exhibit. Here in this thesis, 

the atomic structure, with a length scale of angstroms, will be the subject of discussion. Many of 

the electrical, magnetic and chemical properties of materials arise from their atomic structures. 

Based on the ordering of atomic structure, materials can generally be divided into two 

classes: crystalline and non-crystalline, as illustrated in Fig. 1.2. In crystalline solid, atoms are 

arranged in a highly ordered microscopic structure, while non-crystalline sold, or amorphous 

solid, lacks the long-range order characteristic of a crystal. Although people have been able to 

detect and track the existence of short-range and medium-range orders in amorphous solids 
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[Sheng et al., 2006], it makes no sense to assign a specific atomic structure to any of them. 

Therefore, the discussion will be focused on the structure of crystals. 

 

Figure 1.2 Crystalline (a) vs. non-crystalline (b) solids. The red box in (a) represents 

the unit cell of the structure. 

A crystal structure is a unique arrangement of atoms, ions or molecules in a crystalline 

solid. Crystals possess long-range order, i.e. the arrangement of the atoms at one point in a 

crystal is identical to that in any other remote part. The subject of crystallography, especially 

with the modern development on symmetry and mathematical description, has become a 

standard topic in solid state physics textbooks, where systematic introduction to the structure of 

crystals can be found [Ashcroft and Mermin, 1976; Kittel, 2005; Tilley, 2006]. Here, only the 

following most relevant concepts are explained. 

Symmetry: describes the periodic repetition of structural features. There are two general 

types of symmetry, translational symmetry and point symmetry. Translational symmetry 

describes the periodic repetition of a motif across a length or through an area or volume. Point 

symmetry describes the periodic repetition of a motif around a point, including reflection, 

rotation, inversion and rotoinversion. 
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Lattice: is an array of points repeating periodically throughout space. It is directly related 

to the idea of translational symmetry. 

Unit Cell: is the smallest unit which can be repeated in order to construct the lattice, as 

illustrated by the red box in Fig. 1.2(a). 

Bravais lattices: are the fourteen different lattice structures that are possible in three-

dimensional space, named after the French crystallographer Auguste Bravais. 

Crystal systems: The point symmetry operations may be combined in different ways. 

There are 32 possible unique combinations, corresponding to 32 crystal classes (or point 

groups). Each crystal class is grouped as one of the six different crystal systems according to 

which characteristic symmetry operation it possesses. There systems include: Triclinic, 

Monoclinic, Orthorhombic, Tetragonal, Hexagonal and Cubic. The hexagonal crystal system is 

further broken down into hexagonal and rhombohedral divisions. 

Space group: In addition to the operations of the point group, the space group of the 

crystal structure contains translational symmetry operations, including pure translations, screw 

axes and glide planes. There are total 230 distinct space groups. 

Above concepts are to describe ideal crystals. All real crystalline solids have finite size 

and often feature defects and impurities. The resulted surfaces and interfaces in some cases 

induce new properties in the materials, which will be discussed in greater detail in Chapter 5. 

Defects also critically determine many of the electrical and mechanical properties of real 

materials, but will not be the main topic in this thesis. 

In experiments, the study of the crystal structures used to rely for a long time on optical 

techniques, especially optical microscopy, which cannot provide the absolute arrangement of the 

atoms in a crystal. This limitation was overcome by the development of X-ray diffraction in 
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1910s [Ewald, 1962]. Nowadays, the determination of the crystal structures mainly bases on 

analysis of the diffraction patterns of a sample targeted by a beam of some type, such as X-ray, 

neutrons or electrons, corresponding to techniques as X-ray diffraction, neutron diffraction and 

electron diffraction.  

1.2 Crystal structure predictions 

Crystal structure prediction starting from the chemical composition alone has been one of 

the long standing challenges in theoretical solid state physics, chemistry and materials science 

[Maddox, 1988; Woodley, 2008]. The major determinants of the structure of a material are its 

constituent chemical elements and the way in which it has been processed into its final form, 

governed by the laws of quantum mechanics, thermodynamics and kinetics. Under equilibrium, 

the lower energy state is usually favored by nature, which makes the task of crystal structure 

prediction a search for minimum energy arrangement of atoms in the material. Therefore, two 

necessary pieces of solving the puzzle are an accurate method to calculate the energy and an 

efficient minimization algorithm. 

In the viewpoint of quantum mechanics, energy of a structure, as well as its electronic 

structure, is obtained by solving the Schrodinger equation. However, the Schrodinger equation 

for the complex many-atom, many-electron system is not analytically solvable. A breakthrough 

that makes computational materials discovery and design possible was realized in 1964 when 

Walter Kohn and co-workers developed the density functional theory (DFT) [Hohenberg and 

Kohn, 1964; Kohn and Sham, 1965]. DFT, along with various well-developed empirical 

potential models, have provided us the first piece to solve the puzzle, i.e. tools to calculate 

energies.  
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In the past two decades, several computational algorithms have been applied to predict 

crystal structures, such as simulated annealing [Kirkpatrick et al., 1983; Doll et al., 2007], 

genetic algorithm (GA) [Deaven and Ho, 1995; Harris et al., 1998; Woodley et al., 1999; 

Oganov and Glass, 2008; Wu et al., 2014], topological modelling method [Freidrichs et al., 

1999; Treacy et al., 2004; Deem and Newsam, 1989], minima hopping [Goedecker, 2004], 

particle swarm optimization [Wang et al., 2010], and ab initio random structure search [Pickard 

and Needs, 2011]. Each method has been successfully used to solve crystal structures and predict 

the formation of possible new compounds. In the following (1.2.4), genetic algorithm will be 

briefly introduced as an example of those structure prediction methods/tools, as it is also the base 

of our method discussed in Chapter 2. 

1.2.1 Energy of a structure 

 In a broad sense, the energy of a structure refers to the Gibbs free energy G: 

 𝐺 = 𝐸 + 𝑃𝑉 − 𝑇𝑆 (1.1) 

where E is the internal energy, P is pressure, V is volume, T is temperature and S is entropy. The 

calculation of the internal energy is discussed in the following two sections. Among all three 

terms, the calculation of PV is rather straight forward, while the calculation of TS by first 

principles has been a long standing issue and remains controversial [van de Walle and Ceder, 

2002b; Prodan, 2010]. In this thesis, temperature effect was not considered unless noted 

otherwise. 

1.2.2 Density functional theory 

In a solid state system, a stationary electronic state of an N-electron system is described 

by wavefunction 𝛹 satisfying the many-electron time-independent Schrodinger equation: 
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 �̂�𝛹 = 𝐸𝛹 (1.2) 

 

�̂� = �̂� + �̂� + �̂� = ∑ (−
ℏ2

2𝑚𝑖
∇𝑖

2)

𝑁

𝑖

+ ∑ 𝑉(𝒓𝒊)

𝑁

𝑖

+ ∑ 𝑈(𝒓𝒊, 𝒓𝒋)

𝑁

𝑖<𝑗

 (1.3) 

where 

 𝑉(𝒓𝒊) = ∑ (−
𝑒2

4𝜋𝜖0

𝑍𝑙

|𝒓𝒊 − 𝑹𝒍|
 )

𝑙

 and 𝑈(𝑟𝑖, 𝑟𝑗) =
𝑒2

4𝜋𝜖0

1

|𝒓𝒊 − 𝒓𝒋|
               

Born-Oppenheimer approximation has been adopted to separate the degrees of freedom of fast 

electrons from slow ions. The first term �̂� describes the kinetic energy of electrons. The second 

term �̂� describes electron-ion Coulomb attraction where 𝑹𝒍 represents the position of nuclei and 

𝒓𝒊 represents the position of electrons. The third term �̂� describes electron-electron Coulomb 

repulsion. 

As mentioned above, this many-body Schrodinger equation is not analytically solvable. 

There are many sophisticated methods to numerically solve it based on the expansion of the 

wavefunction in Slater determinants, e.g. Hartree-Fock method and post-Hartree-Fock methods. 

However, the huge computational effort makes it impossible to apply them to complex systems. 

DFT, on the other hand, provides a way to map the many-body problem onto a single-body 

problem. With this theory, the properties of a many-electron system are determined by using 

functionals, i.e. function of another function, which in this case is the electron density.  

DFT is made possible by the existence of Hohenberg-Kohn (H-K) theorems [Hohenberg 

and Kohn, 1964], which state that: 

1. The ground state density uniquely determines the potential and thus all properties of 

the system, including many-body wavefunction.  
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2. There exists an energy functional E[n], and the correct ground state electron density 

minimizes it. The minimal value of E[n] is then the ground state energy. 

The proof of the H-K theorems is rather simple and can be found in many related 

materials [Hohenberg and Kohn, 1964; Martin, 2004]. The H-F theorems lay the groundwork for 

reducing the many-body problem of N electrons with 3N spatial coordinates to 3. In 1965, one 

year after the publish of H-K theorems, Kohn and Sham made another major step forward 

towards quantitative modeling of electronic structure, by introducing the Kohn-Sham equation 

(Eq. 1.4). The Kohn-Sham equation describes a fictitious system of non-interacting electrons that 

generate the same density as any given system of interacting electrons. As the electrons in the 

Kohn-Sham system are non-interacting, the Kohn-Sham wavefunction is a single Slater 

determinant constructed from a set of orbitals that are the lowest energy solutions to the Kohn-

Sham equation. 

 (−
ℏ2

2𝑚
∇2 + 𝑣𝑒𝑓𝑓(𝒓)) 𝜙𝑖(𝒓) = 휀𝑖𝜙𝑖(𝒓) (1.4) 

where the local effective external potential acting on the system is 

𝑣𝑒𝑓𝑓(𝒓) = 𝑣𝑒𝑥𝑡(𝒓) + 𝑒2 ∫
𝑛(𝒓′)

|𝒓 − 𝒓′|
𝑑𝒓′ +

𝛿𝐸𝑥𝑐[𝑛]

𝛿𝑛(𝒓)
, and 𝑛(𝑟) = ∑|𝜙𝑖(𝒓)|2 

𝑖

 

The Kohn-Sham equation can be solved self-consistently and the results are expected to 

be exact providing the exact functional form of the exchange-correlation term: 𝐸𝑥𝑐[𝑛]. 

Unfortunately, this term is not known exactly. Remarkably, it is possible to make simple 

approximations and produce extremely good results. Great effort has been made to developing 

different levels of approximations, such as local density approximation (LDA), generalized 
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gradient approximation (GGA), Meta-GGA, Hybrid functional, etc., which nowadays are 

referred to as the “Jacob’s ladder of DFT” [Hafner, 2006]. 

DFT is now among the most popular methods available in condensed matter physics and 

has been successfully applied to many solid state systems in the last several decades [Perdew et 

al., 1996; Chelikowsky and Louie, 1996; Kresse et al., 1996, 1999]. It can accurately describe 

the ground state properties in many solid systems, such as their lattice parameters and formation 

energies, thus offering us a powerful tool to carry out the energy evaluations. 

It is worth mentioning that there are still difficulties in using DFT to properly describe 

and explain some issues, such as intermolecular interactions, charge transfer excitations, and 

miscalculation of the band gap in semiconductors. In particular, the predictive capability of DFT 

becomes limited while dealing with systems with strong electron correlation effects, which will 

be further discussed in Chapter 7. 

1.2.3 Empirical potentials 

While DFT calculations usually offer accurate description of the total energies (at T = 0 

K), its computational cost imposes the bottleneck to the structure prediction of complex materials 

with unit cells containing ~10
2
 atoms for two reasons. First, the energy evaluation for the larger 

system simply cost more time. Second, the configuration space increases exponentially with the 

number of atoms in the unit cell, thus many more structures are to be sampled for larger systems. 

Empirical potentials, on the other hand, provide an alternative way to perform fast energy 

evaluations for very large systems. 

Empirical potentials, or classical potentials, approximate the energy by summing over all 

interactions between atoms, such as chemical bonds, van der Waals and electrostatic interactions. 

They contain free parameters like equilibrium bond length, angle, or atomic charges, which can 
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be obtained by fitting against experimental physical properties or detailed first principles 

electronic calculations. 

Various empirical potentials can be considered as either pair potentials or many-body 

potentials. For pair potentials, the total potential energy is calculated from the sum of energy 

contributions between pairs of atoms, while many-body potentials include the effects of three or 

more particles interacting with each other. To give one example of the pair potential, Eq. 1.5 

describes the Lennard-Jones potential used for calculating van der Waals forces [Lennard-Jones, 

1924]. 

 𝑈(𝑟) = 4𝜖 [(
𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

] (1.5) 

As for the many-body potentials, embedded atom model (EAM) [Daw and Baskes, 1984] 

is a typical example and widely used for metallic systems. In the studies presented in the later 

chapters of this thesis, EAM potentials were also selected as our auxiliary potentials. Under the 

EAM formalism, the potential energy of an atom is given by: 

 𝐸𝑖 = 𝐹𝛼 (∑ 𝜌𝛽(𝑟𝑖𝑗)

𝑖≠𝑗

) +
1

2
∑ 𝜙𝛼𝛽(𝑟𝑖𝑗)

𝑖≠𝑗

 (1.6) 

where 𝑟𝑖𝑗 is the distance between atom i and j; 𝜙𝛼𝛽 is a pairwise potential function; 𝜌𝛽 is the 

contribution to the electron charge density from atom j of type β at the location of atom i; F is an 

embedding function that represents the energy required to place atom i of type α into the electron 

cloud. 

Because of the enormous gaining in speed, people have devoted substantial effort to 

develop and fit empirical potentials, especially for the purpose of molecular dynamics 

simulations. Nonetheless, reliable empirical potentials are not always available for many systems 
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due to the simplicity of the potential model and the transferability of the empirical potentials is 

also constantly questioned. 

1.2.4 Genetic algorithm 

Genetic algorithm (GA), belonging to the larger class of evolutionary algorithms (EA), 

generates solutions to optimization problems using techniques inspired by natural evolution, such 

as inheritance, mutation, selection, and crossover. It was first introduced to optimize atomic 

structures by Deaven and Ho, where the fullerene cluster structures up to C60 were efficiently 

found starting from random atomic coordinates [Deaven and Ho, 1995]. 

Genetic algorithm has many variations, for example in how the crossover and mutation 

routines are actually defined. With years of development, GA has been applied to various 

problems, such as clusters [Ho et al., 1998], bulk crystals [Oganov et al., 2009], interfaces and 

grain boundaries [Zhang et al., 2009; Chua et al., 2010; Zhao et al., 2014b], etc. Here some of 

the most relevant concepts are explained. Further information and reading can refer to Ref. [Ji et 

al., 2010; Oganov, 2011]. 

Population: a group of candidate solutions to an optimization problem which is evolved 

toward better solutions. Analog to organism in the natural selection, the population here consists 

of candidate configurations or structures. The initial population is usually randomly generated. It 

may also be seeded in areas where optimal solutions are likely to be found, e.g. initializing the 

structures with certain space group or fixed unit cell when possessing such input from 

experimental measurements. 

Selection: Parent structures are selected from the population through a fitness-based 

process to generate offspring. Usually, structures with lower energy (better fitness score) have 

larger probability to be selected. 
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Crossover: genetic operator which is used to generate offspring structures. One of the 

most popular choices nowadays for crossover operation is still based on real-space atom 

coordinates as introduced in the Ref. [Deaven and Ho, 1995].  

Mutation: genetic operator which is used to preserve and introduce diversity to the 

population. Classic example is single point mutation, e.g. switch two arbitrary atoms. 
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CHAPTER 2. ADAPTIVE GENETIC ALGORITHM FOR GEOMETRY 

OPTIMIZATION 

 

2.1 Overview 

As discussed in Chapter 1, crystal structure prediction is one of the key components in 

the discovery and design of new materials and has been one of the long-standing challenges in 

physical sciences. The adaptive genetic algorithm (AGA) was introduced to combine the speed 

of structure exploration by classical potentials with the accuracy of density functional theory 

calculations in an adaptive and iterative way. 

In this scheme, auxiliary classical potentials are used to explore the structures. Parameters 

of the auxiliary potentials are adaptively adjusted to reproduce first-principles results during the 

course of the GA search, which at the same time assists the system in hopping from one basin to 

another in the energy landscape, leading to efficient sampling of the configuration space. While 

retaining the accuracy of DFT, AGA is much faster than full DFT GA and offers a useful tool to 

study the structures of complex materials containing large number of atoms. 

2.2 Methods 

The flowchart of the AGA scheme is illustrated in Fig. 2.1 [Wu et al., 2014; Zhao et al., 

2014b]. The traditional GA loop, i.e., left-hand side of the flowchart, is embedded in an adaptive 

loop. Inheritance, mutation, selection, and crossover operations are implemented as usual to 

produce new structures, except that the optimization of the offspring structures in the GA loop is 

performed using auxiliary classical potentials. Parameters of the classical potentials are adjusted 

to reproduce DFT results in the adaptive loop. Newly obtained classical potentials are then 
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passed to next iteration of the AGA search. When the preset maximum number of iterations imax 

is reached, all the structures calculated by DFT from every iteration are collected and ranked 

according to their energies. Finally, a set of low-energy structures selected from the DFT pool 

are fully relaxed by DFT calculations to locate the ground-state structures. 

 

Figure 2.1 Flowchart of the adaptive genetic algorithm. An adaptive loop (with i as the 

iteration counter) is added to the regular GA-loop (with j as the generation 

counter).  

In the traditional GA, the most time-consuming step is the local optimization of the 

offspring structures by DFT calculations. In the AGA scheme, DFT calculations are only 

performed on a small set of candidate structures (16 ≤ Ns ≤ 32) to gain information of their 

energies, forces, and stresses, which are later used to update the parameters of the auxiliary 

classical potentials. For such DFT calculations in the adaptive loop, in principle, both the local 
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optimization and the static calculations can be adopted. Based on the test of different cases, we 

found that the use of the static DFT calculations is good enough to get accurate results out of 

AGA searches. 

The numbers of total population, Np, and the number of the offspring structures to be 

updated, No, depend on the complexity of the system being investigated. For a typical binary 

system with around 30 atoms, we usually take 96 ≤ Np ≤ 192, and in every generation update one 

quarter of the total population, i.e., 24 ≤ N0 ≤ 48. The total number of structures optimized in 

each GA loop varies between ~10,000 and ~20,000. The use of classical auxiliary potentials for 

such a number of structure relaxations reduces the computational load by approximately five 

orders of magnitude. It usually takes 30-50 iterations to obtain the final structures and the net 

computational time of the entire AGA search can be reduced by more than three orders of 

magnitude.  

In the current version of our AGA package, interfaces with first-principles DFT 

calculations using either VASP [Kresse and Furthmuller, 1996] or Quantum-ESPRESSO 

[Giannozzi et al., 2009] have been implemented in a fully parallel manner. LAMMPS is used for 

classical potential calculations [Plimpton, 1995]. Potential fitting is carried out by force-

matching method with stochastic simulated annealing algorithm as implemented in the potfit 

code [Brommer and Gahler, 2006, 2007].  

2.3 Example and discussions 

Structure search of TiO2 by AGA is discussed as an example. The search used 4 formula 

units, i.e. 12 atoms in the unit cell. A Lennard-Jones-type EAM potential similar to that proposed 

by Srinivasan and Baskes [Srinivasan and Baskes, 2004] was used as our auxiliary potential:  
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 𝐸𝑡𝑜𝑡𝑎𝑙 =
1

2
∑ 𝜙𝑖𝑗

𝑁

𝑖,𝑗(𝑖≠𝑗)

(𝑟𝑖𝑗) + ∑ 𝐹𝑖(𝑛𝑖)

𝑖

 (2.1) 

where 𝑟𝑖𝑗 is the distance between atoms i and j and, 

 𝜙(𝑟𝑖𝑗) = 4𝜖 [(
𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

] (2.2) 

 𝐹(𝑛𝑖) = 𝛼[ln 𝑛𝑖 − 1] (2.3) 

 𝑛𝑖 = ∑ 𝜌𝑗(𝑟𝑖𝑗)

𝑗≠𝑖

 (2.4) 

 𝜌(𝑟𝑖𝑗) = 𝛼 exp[−𝛽(𝑟𝑖𝑗 − 𝑟0)] (2.5) 

Parameters of the EAM potential for pure Ti components were from the literature [Zhou et al., 

2004]. For oxygen, exponential decaying function (Eq. 2.5) was used as the density function and 

the form proposed in Ref. [Banerjea and Smith, 1998] (Eq. 2.3) was used as the embedding 

function. In addition, Lennard-Jones function (Eq. 2.2) was used to describe the Ti-O and O-O 

interaction. First-principles calculations were performed using the projector augmented wave 

(PAW) method [Blochl, 1994; Kresse and Joubert, 1999] within DFT as implemented in VASP 

code [Kresse and Furthmuller, 1996]. The exchange and correlation energy is treated within the 

spin-polarized generalized gradient approximation (GGA) and parameterized by Perdew-Burke-

Ernzerhof formula (PBE) [Perdew et al., 1996]. Wave functions are expanded in plane waves up 

to a kinetic energy cut-off of 500 eV. Brillouin-zone integration was performed using the 

Monkhorst-Pack sampling scheme [Monkhorst and Pack, 1976] over k-point mesh resolution of 

2π×0.022 Å
-1

. 

The energetic evolution versus the number of the adaptive iterations in the AGA search is 

plotted in Fig. 2.2. We can see that the two low-energy structures of TiO2, i.e. the rutile structure 
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and the anatase structure [Cromer and Herrington, 1955] (both with 6 atoms per primitive cell), 

can be found within 20 AGA iterations. The theoretical structural parameters of the rutile and 

anatase TiO2 together with the experimental values are listed in Table 2.1. 

 

Figure 2.2 Structural and energetic evolution of TiO2 vs. iteration number in an AGA 

search. Each point on this plot represents the DFT energy of a selected 

structure which was used for potential fitting.  

 

 

Table 2.1 Structure parameters of the Rutile and Anatase TiO2 structures from 

experiment and theoretical calculations. 

TiO2 Theoretical calculation 
Experiment [Cromer and 

Herrington, 1955] 

Space group 
Rutile 

P42/mnm 

(a, c) (Å) (4.6501, 2.9697) (4.5929, 2.9591) 

Ti 2a (0.0000, 0.0000, 0.0000) (0.0000, 0.0000, 0.0000) 

O 4f (0.3049, 0.3049, 0.0000) (0.3056, 0.3056, 0.0000) 

  

Space group 
Anatase 

I41/amd 

(a, c) (Å) (3.8074, 9.7050) (3.7850, 9.5140) 

Ti 4a (0.0000, 0.0000, 0.0000) (0.0000, 0.0000, 0.0000) 

O 8e (0.0000, 0.0000, 0.2067) (0.0000, 0.0000, 0.2064) 

 

Anatase

Rutile
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We note that the commonly adopted approach of combining classical potentials with DFT 

calculations for structure optimization involves the use of a single set of classical potentials to 

screen all candidate structures followed by a refinement using DFT calculations. This requires 

accurate and transferable classical potentials capable of capturing the very-lowest (or few low) 

energy structures in a complex energy landscape. In contrast, from the energies of the final 

structures in each iteration as plotted in Fig. 2.2, we can see that AGA uses different adjusted 

potentials to sample structures located in different basins of the energy landscape. Each auxiliary 

classical potential may not just sample the structures in a particular basin, it can sample the 

structures in a subset of the basins in the energy landscape and some may overlap with those 

from other potentials. In another word, AGA is not designed to fit transferable potentials for 

general atomistic simulations. It is actually very difficult or even impossible to fit a classical 

potential to accurately describe a system under different bonding environments, especially for 

systems with multiple components. However, it is possible to adjust our auxiliary potentials to 

describe structures located within different subset of basins in the energy landscape with DFT 

accuracy. Adapted auxiliary potentials, which are adjusted throughout the AGA iterations, help 

the system hop between basins and ensure efficient and accurate sampling. Take the search for 

the crystal structure of TiO2 with EAM potentials as example, we do not expect EAM potentials 

can describe the energies of various TiO2 polymorphs very well, yet the two most stable 

structures of TiO2 can be located successfully. 

With above said, there is one drawback about the AGA as an optimization algorithm. 

From the flowchart, it can been seen that the adaptive loop is controlled and terminated by a 

preset number, i.e. there is no clear way to automatically end the AGA search. The reason is that 

while the fitting process allows the auxiliary potential to jump between different subset of basins 
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in the energy landscape, it usually cannot be guaranteed that the newly fitted potential leads to 

better results compared with the previous iteration. Nonetheless, with properly selected potential 

forms, the AGA searches are controllable in an empirical way. Based on our experiences, when 

the EAM form is used as the auxiliary potential in alloy systems, the potential fitting behaves 

very well.  

We have successfully applied the AGA method to a variety of systems, for example, we 

resolved the crystal structures of CaO2 [Zhao et al., 2013] and “Co11Zr2” intermetallic 

polymorphs [Zhao et al., 2014a] which remained mysterious for over 30 years, and proposed 

crystal structures for the cuprous chalcogenides (Cu2Te and Cu2Se) as thin film solar cell 

materials [Nguyen et al., 2013]. We also predicted the existence of new stable phases in Re-B 

system for ultra-hard materials [Zhao et al., 2014c] and several new low-energy and novel Si 

allotropes [Nguyen et al., 2014], etc. In the following three chapters, some of those works will be 

discussed. 
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CHAPTER 3. NON-RARE EARTH MAGNETS 

 

Permanent magnets are one of the earliest functional materials and essential components 

in modern technologies. They are used in many electric and electronic devices from computers, 

motors and generators, medical equipment and so on. It has also been proved that traction motors 

in electrical vehicles and wind turbine generators using permanent magnets are more energy 

efficient compared with other options [Poudyal and Liu, 2013].  

Among all types of permanent magnets, the rare earth (RE) magnets, particularly 

neodymium magnets and samarium-cobalt magnets have been the strongest since their discovery 

in the 1960s and ’80s. They produce very strong magnetic field and tend to resist 

demagnetization extremely well. Since their prices became competitive in the 1990s, RE 

magnets have been replacing alnico and ferrite magnets in many applications requiring powerful 

magnets. However, towards the 21
st
 century, seeking more efficient energy use to control global 

emission of greenhouse gases has caused an escalation of demand for electric cars and wind-

powered electric generators. This increased demand was accompanied by great pressures with 

regard to RE production and supply, and consequently dramatic increase of price. 

One way to solve the issue is to find replacement to the RE magnets. However, the 

advantages of permanent magnet-based machines disappear if lower-energy-product magnets, 

such as current non-RE permanent magnets, are used [McCallum et al., 2014]. Therefore, there 

has been a strong need to design new powerful magnetic materials or improve the existing non-

RE permanent magnets to meet the demanding performance criteria. In this chapter, some of our 

work on understanding and further improving the structural and magnetic properties of several 

promising non-RE systems are discussed. 
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3.1 Unraveling the structural mystery of “Zr2Co11” polymorphs
1
 

3.1.1 Introduction 

In recent years, increasing demand for permanent-magnet materials coupled with limited 

RE mineral resources and limited RE supplies have spurred the need to discover viable 

replacement compounds for the rare earth based magnets [Critical Materials Strategy, 2011; 

Kramer et al., 2012]. In particular, much attention has been focused on Zr2Co11 and related 

phases prepared in various ways [Demczyk and Cheng, 1991; Gabay et al., 2001; Ivanova et al., 

2007, 2009; Zhang et al., 2013; Balasubramanian et al., 2013]. Studies have shown that some of 

the metastable phases close to the Zr2Co11 intermetallic compound, resulting from the rapid 

quenching, exhibit strong magnetocrystalline anisotropy with a Curie temperature around 500 ºC 

[Demczyk and Cheng, 1991; Gabay et al., 2001]. However, the crystal structures of these phases 

remained unsolved. Multiple phases and small grain sizes in experimental samples make it 

difficult to determine the atomic decoration of the crystal structures of this compound using 

standard X-ray techniques. Even the exact compositions, the shape and size of the unit cells of 

the observed phases are under debate. The uncertainty in the crystal structures greatly hinders 

further development and optimization of the material for practical applications. 

3.1.2 Results and discussions 

In order to resolve the atomic structures of the Zr2Co11 polymorphs, we performed a 

systematic crystal structure search for the ZrCo5+x compounds with x = 0.0, 0.1, 0.2, 0.25, and 

0.5 using AGA [Wu et al., 2014]. The global structure optimizations were performed without 

any assumptions on the Bravais lattice type, atom basis or unit cell dimensions. For this system, 

                                                 
1
 This part is a modified version of the published article: Zhao, X., Nguyen, M. C., Zhang, W. Y., Wang, C. Z., 

Kramer, M. J., Sellmyer, D. J., Ke, L. Q., Antropov, A. P. and Ho, K. M. “Exploring the structural complexity of 

intermetallic compounds by an adaptive genetic algorithm”, Phys. Rev. Lett. 112, 045502 (2014). 
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the auxiliary classical potentials in the form of EAM [Daw and Baskes, 1984] were adopted. The 

potential parameters for Zr-Zr and Co-Co interactions, the embedded energy functions and 

density functions were taken from the literature [Zhou et al., 2004], while the Zr-Co interaction 

was modeled by a Morse function with 3 adjustable parameters (Eq. 3.1).  

 𝜙(𝑟𝑖𝑗) = 𝐷[𝑒−2𝛼(𝑟𝑖𝑗−𝑟0) − 2𝑒−𝛼(𝑟𝑖𝑗−𝑟0)] (3.1) 

The potential parameters were adjusted adaptively by fitting to the DFT energies, forces, and 

stresses of selected structures according to AGA procedure. The fitting was performed by the 

force-matching method with stochastic simulated annealing algorithm implemented in the potfit 

code [Brommer and Gahler, 2006, 2007]. The ab initio calculations were performed using spin-

polarized density functional theory within generalized-gradient approximation (GGA) with 

projector-augmented wave (PAW) method [Blochl, 1994; Kresse and Joubert, 1999] by VASP 

code [Kresse and Furthmuller, 1996]. The GGA exchange correlation functional parameterized 

by Perdew, Burke and Ernzerhof (PBE) was used [Perdew et al., 1996]. The kinetic energy 

cutoff was 350 eV and the Monkhorst-Pack’s scheme [Monkhorst and Pack, 1976] was used for 

Brillouin zone sampling with a dense k-point grid of 2π  0.025 Å
-1

. 

From the AGA searches, we found many crystal structures with closely competitive 

energies. The lowest-energy structures at different compositions are plotted in Fig. 3.1. Among 

the different compositions studied by AGA, the ZrCo5.25 structure (formula Zr4Co21; primitive 

cell is monoclinic containing 50 atoms) is found to be closest to the tie-lines defining the Co + 

Zr6Co23 equilibrium. This structure can be considered as a derivative of the SmCo5 structure. As 

shown in Fig. 3.1, the Zr-Co layer in ZrCo5.25 (layer # 2) is similar to the Sm-Co layer in SmCo5 

except that the Zr atoms are slightly out of the plane. There are two types of pure Co planes in 
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the ZrCo5.25 structure: one (layer #1) is the same as the pure Co layer in SmCo5, while the other 

(layer #3) is a rippled hexagonal layer. The rippling periodicity is about 17Å, which explains the 

nature of the modulation along [010] direction observed in experiments [Ivanova and 

Shchegoleva, 2009]. Various low-energy structures of ZrCo5.1, ZrCo5.2, ZrCo5.25, and ZrCo5.5 

obtained from our GA search represent different lateral shifts between neighboring blocks of the 

basic 3-layer motif, caused by the strain in the densely packed Co layer (layer #3), which has 

different densities and different strains depending on the Co concentration of the compound.  

  

Figure 3.1 Lowest energy structures of ZrCo5+x from AGA searches. The black boxes 

indicate the unit cell for each structure. The largest unit cell used in our GA 

search contains 117 atoms at the composition of ZrCo5.5. The red boxes 

indicate the common structure motif in the obtained structures. The brown 

box in the ZrCo5.25 structure shows the supercell of the monoclinic structure 

corresponding to the experimentally observed “orthorhombic” structure with 

150 atoms per unit cell. Top views of different layers in the common 

structure motif, labeled as #1, #2 and #3 respectively are plotted on the 

right. 

Several years ago, Ivanova et al. [Ivanova et al., 2007, 2009] were able to carry out an X-

ray diffraction (XRD) analysis using a large grain from one of their samples and identified the 
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compound’s crystal structure as rhombohedral with arhomb = 4.76 Å and crhomb = 24.2 Å (in the 

hexagonal setting). A decrease in temperature induces a transformation into an orthorhombic 

structure with aorth = 4.71 Å, borth = 16.7 Å, and corth = 24.2 Å. Evidence for a hexagonal, high-

temperature phase with ahex = arhomb and chex = 2crhomb/3 was also observed from their TEM 

analysis. Some of these phases were confirmed by the recent work of Zhang et al. [Zhang et al., 

2013]. However, these experiments were not able to determine the atom positions in the 

proposed crystal structures. 

 

Figure 3.2 (a) Atomic structure with monoclinic symmetry.  (b) Atomic structure with 

orthorhombic symmetry. (c) Comparison of the simulated XRD spectra 

from the predicted orthorhombic and monoclinic structure models (red and 

purple) with experiments (black and green, 10 m/s indicates the wheel 

speed). The blue line shows the XRD spectrum from fcc-Co structure. Cu 

Kα line and a broadening factor 𝐵(2𝜃) = 3.1 × 10−3 𝑐𝑜𝑠𝜃⁄  were used in 

the simulation [Langford and Wilson, 1978]. 
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We note that the lowest-energy ZrCo5.25 structure from our prediction is consistent with 

the low-temperature orthorhombic phase reported by Ivanova et al. and Zhang et al. Two of its 

three lattice parameters (a = 4.68 Å, b = 16.34 Å) match well with the experimental values. The 

third lattice parameter along the c axis is 8.10 Å in our structure, which is about 1/3 of that in the 

experiment (24.2 Å). The Bravais lattice type of our structure is monoclinic rather than 

orthorhombic. However, if we allow this monoclinic structure to repeat three times along the c-

axis to define a new unit cell, we can obtain a structure [Fig. 3.2(a)] with an almost orthorhombic 

cell containing 150 atoms with a = 4.68 Å, b = 16.54 Å, c = 24.08 Å, β = γ = 90° and α = 90.09°, 

after refinement using first-principles calculations. Another structure shown in Fig. 3.2(b) with 

orthorhombic symmetry and about 1 meV/atom higher in energy can also be constructed from 

the new 150-atom ZrCo5.25 model by shifting part of it along b axis.  More details about how the 

150-atom structures are constructed can refer to the Supplemental Material of Ref. [Zhao et al., 

2014a]. The simulated XRD patterns from these two structures are nearly identical and would be 

difficult to distinguish in experiments. The simulated XRD spectra of our ZrCo5.25 models agree 

well with the experimental data as can be seen from Fig. 3.2(c). In the experiments, ingots of 

ZrCo5+x were arc melted from high-purity elements in an argon atmosphere. The ribbons were 

made by ejecting molten alloys in a quartz tube onto the surface of a copper wheel rotating with 

different speeds. The ribbons are about 2 mm wide and 50 μm thick. The phase components were 

examined by Rigaku D/Max-B X-ray diffraction. Note that some peaks observed in the 

experimental data can be attributed to the presence of fcc Co phase. Energy-dispersive X-ray 

spectroscopy analysis shows that Co/Zr ratio in the orthorhombic phase is very close to 5.25, 

agreeing well with our theoretical prediction.  
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Figure 3.3 (a) Atomic structure proposed for the rhombohedral phase. (b) Comparison 

of simulated XRD spectrum from the rhombohedral structure model (red) 

with experiments (black and blue, wheel speeds are given). Cu Kα line and a 

broadening factor 𝐵(2𝜃) = 3.1 × 10−3 𝑐𝑜𝑠𝜃⁄  were used in the simulation 

[Langford and Wilson, 1978]. (c, d) Experimental and simulated [Li, 2012] 

selected-area electron diffraction (SAED) patterns along [010] direction. (e) 

HREM image taken along the [010] zone axis. The red arrow indicates the 

repeat distance along the c-axis. Inset within the red box is the simulated 

HREM image and the structure model (green for Zr and blue for Co) is laid 

on top. 

 

In our search, when the Co concentration is reduced, the distorted hexagonal plane of 

pure Co (layer #3, Fig. 3.1) relaxes towards an ideal hexagonal arrangement. Therefore, by 

reducing the Co concentration in the distorted hexagonal plane of the ZrCo5.25 structure, the 
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atomic structures for the rhombohedral and hexagonal phases at the composition of ZrCo5 can be 

obtained. The structures for the rhombohedral phase with 36 atom/cell and for the hexagonal 

phase with 24 atom/cell are shown in Fig. 3.3(a) and the inset of Fig. 3.4(b), respectively. The 

rhombohedral structure has space group R32 with lattice parameters a = 4.69 Å and c = 24.02 Å, 

which match well with experimental data [Ivanova et al., 2007; Zhang et al., 2013]. The 

hexagonal structure with space group P-62c, a = 4.69 Å, and c = 16.01 Å is also in good 

agreement with the reported hexagonal phase [Ivanova et al., 2007]. Simulated XRD pattern of 

the rhombohedral structure from our prediction is presented in Fig. 3.3(b) in comparison with 

experimental measurement. While the main features from our predicted structures agree with the 

experimental data, the resolution of experimental spectra is too poor (due to overlapping 

reflections from multiple low symmetry phases and broadened peaks due to nanoscale grains) to 

make further comparison. On the other hand, the structure of the rhombohedral phase can also be 

revealed by selected-area electron diffraction (SAED) pattern and high-resolution electron 

microscopy (HREM) image.  Figure 3.3(c) shows the experimental SAED pattern in [010] zone 

axis. The diffraction spots with higher intensities are in agreement with those in the simulated 

SAED pattern [Fig. 3.3(d)], which are labeled, e.g. (0 0 12) and (3 0 0). Figure 3.3(e) shows the 

HREM image taken along the [010] zone axis. The repeat distance along the c-axis in the HREM 

image is about 2.42 nm, very close to the lattice vector along the c-axis in our theoretical model. 

Typical features of the image can be viewed as the stacking layers along the c axis, which is 

consistent with the inserted structural projection and simulated image based on the rhombohedral 

structure from our theoretical prediction. 

In order to gain more insight into the stability of the Zr2Co11 phases, the formation 

energies of various low-energy structures relative to the line connecting the energies of hcp Co 
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and ZrCo2 as a function of Zr composition is investigated and plotted in Fig. 3.4(a). In the 

composition range shown in Fig. 3.4(a), Zr6Co23 is a stable structure, consistent with the well-

known phase diagram [Zhu, 2006]. The formation energies of the structures from our AGA 

search are close to, but a little above the tie-lines, indicating these are metastable structures. 

However, it is interesting to note a deep local energy minimum around ZrCo5.25. Since the energy 

of the orthorhombic structure (which has the composition of ZrCo5.25) from our prediction is well 

located inside this valley, it is expected that this structure can be captured under rapid quenching 

conditions which prevent phase segregation in the system.  

Both the rhombohedral and hexagonal structures have the composition of ZrCo5 but their 

energies are about 20 meV/atom higher than that of the Ni5Zr-type structure. In order to compare 

the stability of the rhombohedral and hexagonal structures with respect to that of the Ni5Zr-type 

structure at high temperatures, we calculated the free energies of the three phases by including 

the entropy contribution from lattice vibrations. The phonon calculations were done via the first-

principles supercell approach within harmonic approximation using the VASP and phonopy 

codes [Togo et al., 2008]. The results are shown in Fig. 3.4(b). We can see that although the 

Ni5Zr-type structure is energetically favorable at low temperature, the rhombohedral and 

hexagonal structures have lower free energies above ~1200 K. Therefore, these two phases are 

favored at high temperature.  
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Figure 3.4 (a) Convex hull of the formation energies in Zr-Co system with Zr atomic 

percent < 34%. The formation energy is defined relative to the hcp Co and 

ZrCo2: 𝐸𝐹(ZrmCon) = [𝐸(ZrmCon) − 𝑥𝐸(Co) − 𝑦𝐸(ZrCo2)]/(𝑚 + 𝑛), 

where 𝑥 = 𝑛 − 2𝑚,  𝑦 = 𝑚. (b) Free energy of three ZrCo5 structures: the 

rhombohedral, hexagonal model and Ni5Zr-type structure. The atomic 

structure of the hexagonal phase is shown as the inset of (b). 

 

In experiments, the orthorhombic Zr2Co11 exists not only in the low-cooling rate samples 

but also in the high-cooling rate samples, indicating the orthorhombic Zr2Co11 is energetically 

favorable, consistent with our theoretical prediction. However, higher cooling rate is required to 
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form the rhombohedral Zr2Co11, which is a high-temperature-stable phase according to our free 

energy calculation [Fig. 3.4(b)]. 

Table 3.1 Calculated magnetic properties of different structure models. M (μB/atom): 

average magnetic moment over all atoms; K (MJ/m
3
): magnetic anisotropy 

energy; Tc (K): Curie temperature. For M and K, both LDA and GGA (in the 

brackets) results are given. The easy magnetization axes of the 

rhombohedral and hexagonal structures are uniaxial and along c-axis of the 

plotted structures. The ZrCo5.25 structure does not have uniaxial anisotropy, 

and the easiest axis is along c-axis shown in Fig. 3.2. 

Structure M  K Tc 

ZrCo5.25
*
 1.05 [1.07] 0.64 [0.54] 950 

ZrCo5 (Ni5Zr type) 1.09 [1.12] ~ 0 1063 

Rhombohedral (R32) 0.92 [1.01] 1.04 [1.42]  709 

Hexagonal (P-62c) 0.94 [1.01] 1.32 [1.33] 688 

*
The calculation on ZrCo5.25 is done on the lowest energy structure with unit 

cell containing 50 atoms 

 

We also performed first-principles calculations to study the magnetic properties of the 

structures discussed above, and results are listed in Table 3.1. Details of the methods used to 

calculate anisotropy and Curie temperature are described in Ref. [Ke et al., 2013]. The 

magnetization in these structures (0.9 to 1.1 μB/atom) is much smaller than that of elemental hcp-

Co (1.6 μB/atom), in agreement with experimental results. The large reduction of magnetization 

(relative to hcp-Co) can be attributed to two effects. First, Zr atoms in our structures have 

magnetic moments of −0.5 to −0.3 μB/atom, and are antiferromagnetically coupled with the 

surrounding Co atoms; second, Zr atoms also strongly suppress the magnetism of their nearest 

neighbor Co atoms, which is a consequence of the itinerant nature of Zr d-electrons. Like other 

transition metals at the end of the 3d row (Fe, Ni), elemental Co has unpaired electrons 

occupying the highest antibonding orbitals, which are the most localized. This is why metals at 
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the end of the 3d row are ferromagnets. On the other hand, Zr atom is at the beginning of the 4d 

row and has very extended wavefunctions, which overlap with the aforementioned localized 

orbitals of Co atoms in Zr-Co system and lead to the suppression of magnetism among Co atoms 

and the suppression of ferromagnetism overall. Correspondingly we also observe a large 

reduction of the Curie temperature relative to elemental Co. However, the Curie temperatures of 

Zr-Co compounds considered in this paper still remain high enough for practical use, such as in 

electric motors. 

Magnetic anisotropy studies revealed a different picture for different structures. The 

results show that the cubic Ni5Zr-type structure has a very small magnetic anisotropy, as 

expected. The largest anisotropy energy was found in the rhombohedral and hexagonal structures 

(~ 1.3 MJ/m
3
). This number is nearly twice larger than the anisotropy of hcp Co. Analysis of the 

partial contributions to the magnetic anisotropy shows that the improvement in the uniaxial 

anisotropy is related to the increased anisotropy of the orbital magnetic moment of Co atoms 

with the largest orbital moment corresponding to the easy-axis direction.  Thus the observed high 

coercivity in Zr-Co alloys can be attributed to intrinsic magnetic effects: significant decrease of 

magnetization and a large increase of magnetic anisotropy.  Our results are consistent with the 

experimental measurements and indicate that the high temperature rhombohedral/hexagonal 

phases correspond to the hard magnetic phase in Zr2Co11 compounds.  

3.1.3 Conclusions 

In summary, we showed that the adaptive genetic algorithm method gives a convincing 

solution of the long-standing structural mystery in the Zr2Co11 polymorphs which allows us to 

elucidate the physical origin of high coercivity observed in this system and provides useful 

insight guiding further development of these materials for use as high performance permanent 
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magnets without rare earth elements. Resolving complicated atomistic structures with up to 150 

atoms per cell by a first-principle computational approach in such a complex multiple-phase 

system demonstrated a new capability to aid the efficient materials discovery through the use of 

state-of-the-art supercomputers. 

3.2 Structures and magnetic properties of Co-Zr-B magnets
2
 

3.2.1 Introduction 

As promising candidates for rare earth-free permanent magnets, CoxZr alloys with x near 

5 and related compounds, such as Co-Zr-B, Co-Zr-M-B (M = C, Si, Mo, etc.), have attracted 

considerable attentions. Great effort has been devoted to the improvement of their hard magnetic 

properties. The reported highest coercivity was 9.7 kOe, found in annealed Co74Zr16Mo4Si3B3 

ribbons [Zhang et al., 2014] and the optimal magnetic properties were obtained in Co80Zr18B2 

with intrinsic coercivity Hc = 4.1 kOe and energy product (BH)max = 5.1 MGOe [Chen et al., 

2005]. More recently, cluster beam deposition has been used to make Co-Zr/Hf samples and 

energy products of 16-20 MGOe were reported [Balasubramanian et al., 2013, 2014]. The Co-

Zr/Hf magnet alloys typically contain multiple phases and identifying the phase responsible for 

the magnetic hardness has been one of the research focuses. Several studies [Stroink et al., 1990; 

Saito, 2003a; Zhang et al., 2010] assumed that the hard magnetic phase in the Co-Zr system is 

the metastable Co5Zr phase with the structure of Ni5Zr. However, Ni5Zr structure is cubic and 

thus unlikely to provide strong magnetocrystalline anisotropy energies, which was confirmed by 

first-principles calculations [Zhao et al., 2014a]. Co3ZrB2 has also been proposed to be a 

                                                 
2
 This part is a modified version of the submitted article: Zhao, X. Ke, L. Q., Nguyen, M. C., Wang, C. Z., and Ho, 

K. M. “Structures and magnetic properties of Co-Zr-B magnets studied by first-principles calculations”, 

arXiv:1504:05829. 
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candidate for the hard magnetic phase [Schobel and Stadelmaier, 1969], which remains to be 

validated.  

Determining the hard magnetic phase in the above-mentioned alloys has been a long-

standing issue due to the ambiguity of their crystal structures. Recently, progress has been made 

in solving the crystal structures of the complex CoxZr alloys as discussed in the first part of this 

chapter. Using AGA, we studied the crystal structures of the rhombohedral, hexagonal, and 

orthorhombic polymorphs close to the Co11Zr2 intermetallic compound [Zhao et al., 2014a]. The 

common building block in the structures of these polymorphs was identified as a derivative from 

the SmCo5 structure. Decrease of the temperature induces a phase transition from high symmetry 

rhombohedral/hexagonal phase to low symmetry orthorhombic/monoclinic phase, along with a 

slight increase of the Co concentration. The experimental data from the X-ray diffraction (XRD) 

and transmission electron microscopy were well explained by the crystal structures obtained 

from AGA searches. Through first-principles magnetic properties calculations, the hard magnetic 

phase in the CoxZr alloys was identified to be the high temperature rhombohedral/hexagonal 

phase.  

In this part, we extended the investigation to the effect of boron doping on the structures 

and magnetic properties of the CoxZr alloys. Structure searches by AGA allowed us to access the 

preferred positions of boron atoms, thus energetics and magnetic properties of different Co-Zr-B 

compositions can be studied by first-principles calculations. 

3.2.2 Computational details 

Crystal structures of Co-Zr-B were investigated by AGA. The structure searches were 

performed without any assumption on the Bravais lattice type, atom basis or unit cell 

dimensions. The size of the unit cell studied in this work was up to 100 atoms. In the AGA 
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search for this system, EAM potential [Daw and Baskees, 1984] was used as the auxiliary 

classical potential. The parameters for Co-Co and Zr-Zr interactions were from the literature 

[Zhou et al., 2004]. B-B interaction and the crossing-pair interactions (i.e. B-Co, B-Zr, and Co-

Zr) were modeled by Morse function (Eq. 3.1), with 3 adjustable parameters each (D, α, r0). For 

Co and Zr atoms, parameters of the density function and embedding function were taken from 

Ref. [Zhou et al., 2004] as well, and for B atom, exponential decaying function was used as the 

density function (Eq. 2.5, with 2 adjustable parameters: α, β) and the form proposed by Benerjea 

and Smith [Banerjea and Smith, 1998] was used as the embedding function (Eq. 3.2, with 2 

adjustable parameters: 𝐹0, 𝛾).  

 𝐹(𝑛) = 𝐹0[1 − 𝛾 ln 𝑛]𝑛𝛾 (3.2) 

The total energy of the system then has the form of Eq. 2.1. 

The potential parameters were adjusted adaptively by fitting to the DFT energies, forces, 

and stresses of selected structures according to the AGA scheme. The fitting was performed by 

the force-matching method with stochastic simulated annealing algorithm implemented in the 

potfit code [Brommer and Gahler, 2006, 2007]. First-principles calculations were performed 

using the projector augmented wave (PAW) method [Blochl, 1994; Kresse and Joubert, 1999] 

within density functional theory (DFT) as implemented in VASP code [Kresse and Furthmuller, 

1996]. The exchange and correlation energy is treated within the spin-polarized generalized 

gradient approximation (GGA) and parameterized by Perdew-Burke-Ernzerhof formula (PBE) 

[Perdew et al., 1996]. Wave functions are expanded in plane waves up to a kinetic energy cut-off 

of 350 eV. Brillouin-zone integration was performed using the Monkhorst-Pack sampling 

scheme [Monkhorst and Pack, 1976] over k-point mesh resolution of 2π×0.033 Å
-1

. The 

formation energy 𝐸𝐹 of the alloy is calculated as: 
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 𝐸𝐹 = [𝐸(ComZrnBp) − 𝑚 ∙ 𝐸(Co) − 𝑛 ∙ 𝐸(Zr) − 𝑝 ∙ 𝐸(B)]/(𝑚 + 𝑛 + 𝑝) (3.3) 

Where 𝐸(ComZrnBp) is the total energy of the ComZrnBp alloy; E(Co), E(Zr) and E(B) are the 

energy per atom of Co, Zr and B in the reference structures, which are hcp Co, hcp Zr, and α-

boron respectively. 

Intrinsic magnetic properties of the Co-Zr-B structures, such as magnetic moment and 

magnetocrystalline anisotropy energy (MAE) were calculated using VASP code. The spin-orbit 

coupling (SOC) is included using the second-variation procedure [Koelling and Harmon, 1977]. 

We also calculated the MAE of the rhombohedral Co5Zr structure by carrying out all-electron 

calculations using the full-potential (FP) LMTO method to check VASP calculation results. In 

addition, by evaluating the SOC matrix elements, the anisotropy of orbital moment and MAE 

was resolved into sites, spins and orbital pairs [Antropov et al., 2014] to identify their 

contribution to the magnetic properties. Curie temperature (Tc) is checked for selected structures 

using mean-field approximation and more details can be found in Ref. [Ke et al., 2013]. 

3.2.3 Results and discussions 

 To validate the selection of the auxiliary classical potential, we first performed crystal 

structure search for the Co3ZrB2 phase, whose crystal structure was well-characterized. The 

ground state structure of Co3ZrB2 was successfully found in the AGA search with above setup 

[Wu et al., 2014]. Further calculations on its magnetic properties by DFT showed this phase is 

non-magnetic with zero magnetic moments. Therefore, this structure cannot be responsible for 

the hard magnetic properties observed in the Co-Zr-B system.  

In order to obtain practically useful magnets, we then performed extensive AGA searches 

for Co-Zr-B with Co:Zr ratio around 5 and boron composition less than 6 at %. The contour map 

of their formation energies is plotted in Fig. 3.5 where the compositions searched in current work 
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are represented by squares. It can be seen that near the Co5Zr composition (Co, at % ~ 83.3%) 

there is a local minimum in the energy landscape, which explains the CoxZr (x ~ 5) phases 

obtained in experiments. For certain compositions at the high energy areas, such as Co84Zr15B, 

and Co46Zr8B2, it is unlikely to synthesize such compounds experimentally. Among the 

compositions considered in Fig. 3.5, the lowest formation energy is found around Co40Zr9B and 

Co40Zr8B2, which are consistent with experimental results since most of samples produced by 

experiments were around these compositions [Ishikawa and Ohmori, 1990; Chen et al., 2005; 

Chang et al., 2013]. In the following, structures and magnetic properties of the Co-Zr-B alloys 

will be discussed respectively. 

 

Figure 3.5 Contour map of the formation energies in the Co-Zr-B system. Only partial 

composition range is considered and the squares represent the compositions 

searched by AGA in the present work.  
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3.2.3.1 Structures 

Several low-energy boron-doped CoxZr structures obtained from our AGA searches are 

plotted in Fig. 3.6(a-d). Co and Zr atoms form the same building block as discovered in CoxZr 

(Fig. 3.1), while boron atoms can either substitute Co atoms [e.g. Fig. 3.6(a)] or occupy 

interstitial positions [e.g. Fig. 3.6(c)] in company with local distortions. In the Co40Zr8B2 

structure plotted in Fig. 3.6(b), boron atoms can be considered as interstitial atoms in the Co5Zr 

structure of high temperature phase, or as substitutional atoms in the Co5.25Zr structure of low 

temperature phase, because the main difference between the Co5Zr and Co5.25Zr structures comes 

from the different packing density of one of the two pure Co layers. In our previous study, we 

also showed the layer-stacking feature in CoxZr polymorphs is frequently interrupted to adjust 

the strain due to the rippled hexagonal Co layer. Figure 3.6(d) shows a similar structure with 

boron atoms located at the interruption site.  

To give a better picture of the local environments of boron atoms, Fig. 3.6(e) listed 

several typical boron-centered clusters found in the Co-Zr-B structures. In general, the nearest 

neighbor distances for the B-Co and B-Zr pairs are about 2.1 Å and 2.6 Å, respectively. The 

coordination number of the boron atoms is 7 or 8, and the neighboring atoms are found to be Co 

or Zr atoms in most cases. The effect of different boron positions on the magnetic properties will 

be discussed later. 
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Figure 3.6 Examples of the low-energy structures obtained from the AGA searches 

with compositions of (a) Co40Zr8B; (b) Co40Zr8B2; (c) Co42Zr8B2; (d) 

Co40Zr8B. Unit cell of each structure is indicated by black lines. (e) Typical 

boron-centered clusters extracted from the Co-Zr-B crystal structures. The 

label under each cluster represents the neighboring atoms of boron. 

 

The structure and glass formability in the Co-Zr-B alloy system have been studied 

experimentally [Saito, 2003b; Yuan et al., 2008; Saito and Itakura, 2013]. In the XRD analysis 

[Saito, 2003b], the intensity of the crystalline peaks becomes weaker and broader as the boron 

content increases, indicating the reduction of the crystalline size in the samples. Amorphous and 

partially crystalline alloys have also been observed in this system [Ghemawat et al., 1989; Yuan 

et al., 2008]. From the AGA search, we found that all the low-energy structures of Co-Zr-B have 

low symmetries (triclinic system) due to the distortions induced by the doping of boron atoms. 

Moreover, many different structures were found to have closely competitive energies (within a 
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few meV per atom), similar to the CoxZr binary system. Therefore, in the composition range 

plotted in Fig. 3.5, growing single crystals of Co-Zr-B alloy is difficult and the sample is 

expected to have small grains and defects.   

3.2.3.2 Magnetic properties 

A. High temperature Co5Zr phase revisited 

In our previous study [Zhao et al., 2014a], the high-temperature rhombohedral phase was 

assigned to be responsible for the magnetic hardness in the CoxZr alloys. The full potential 

calculation (GGA) showed it has a magnetic moment of around 1.0 μB/atom and MAE of 1.4 

MJ/m
3
. The rhombohedral structure, plotted in Fig. 3.7(a), has a space group R32 (#155) and 4 

inequivalent Co sites as indicated by different colors in Fig. 3.7. Views along c axis of the 

different layers are plotted in Fig. 3.7(b). Among the four inequivalent Co sites, two of them 

(Co1, Co3) have nine-fold multiplicity and the other two (Co2, Co4) have six-fold multiplicity. 

To examine the contribution of different sites to the magnetic properties of the 

rhombohedral phase, Fig. 3.8 shows the variations of orbital magnetic moments and relativistic 

energy as functions of the spin rotation. Rhombohedral Co5Zr has uniaxial anisotropy. By 

evaluating the SOC matrix element, we found the Co3 site has in-plane magnetic easy axes while 

all other Co sites, especially Co4, support the uniaxial anisotropy. As shown in Fig. 3.8, the 

correlation between orbital moment and magnetic anisotropy is obvious. Co1, Co2 and Co4 sites 

have larger orbital magnetic moments along the z axis while Co3 has larger orbital magnetic 

moments when spin is along in-plane directions. The MAE calculated in LDA is smaller than the 

one calculated using PBE functional. By evaluating the SOC matrix elements, we found that this 

difference mostly comes from the Co1 site, whose contribution to MAE nearly disappears in 

LDA. The MAE contributions from all other sites barely depend on the exchange-correlation 
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functionals used in our calculations. Above analysis indicates if the Co3 site can be modified, 

such as substituting Co3 by other elements, the MAE of the system could be improved. 

 

Figure 3.7 (a) Crystal structures of the rhombohedral Co5Zr with different Co sites 

presented by different colors. The lattice parameters of the structure are a = 

4.66 Å and c = 24.0 Å. It has one Zr site: 6c (0.0000, 0.0000, 0.4314) and 

four Co sites: Co1 9d (0.3300, 0.0000, 0.0000), Co2 6c (0.0000, 0.0000, 

0.0795), Co3 9e (0.4946, 0.0000, 0.5000), and Co4 6c (0.0000, 0.0000, 

0.2549). (b) Views of layer I, II and III along c axis. In the plot of layer III, 

all possible interstitial positions are grouped into 3 inequivalent sites based 

on symmetry. Unit cells of the crystal structures are indicated by the black 

boxes. 
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Figure 3.8 Variations of the orbital moment (a) and relativistic energy (b) as a function 

of spin quantization direction. Orbital moment and relativistic energy values 

are averaged over all atoms which belong to the corresponding inequivalent 

sites. 
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B. Boron doping on magnetic moments 

 

Figure 3.9 (a) Contour map of the total magnetic moment per atom in the composition 

range studied for Co-Zr-B; (b, c, d) contour plots of the partial contributions 

from Co, Zr and B atoms to the magnetic moment respectively. 

 

To map out the magnetic moments of the Co-Zr-B alloys, results from VASP calculations 

were collected for all the compositions presented in Fig. 3.5. The results of total moments in the 

system are plotted in Fig. 3.9(a), and the partial contributions from Co, Zr, and B atoms are 

plotted in Fig. 3.9(b), (c), and (d) respectively. The total magnetic moment per atom is calculated 

as the moment of the whole system divided by the total number of atoms, while the moment 

contribution from atom type M (M = Co, Zr, or B) is calculated as the moment from all the M 
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atoms divided by the number of atom M. Results plotted in Fig. 3.9 for each composition are 

averaged over ten lowest-energy structures from the AGA searches. 

It can be seen that the magnetization in the Co-Zr-B system mainly comes from the Co 

atoms. Both the Zr and B atoms are antiferromagnetically coupled to the Co atoms. As shown in 

Fig. 3.9(a), the magnetic moment of the system becomes smaller with the decrease of Co atomic 

composition, which can be explained by two reasons. First, Zr and B atoms give negative 

contribution to the total moment of the system. More Zr and B atoms will lower the moment of 

the system. Second, the Zr and B atoms suppress the moment of Co, which can be seen from Fig. 

3.9(b). The average moment of the Co atoms is decreased with the increase of the Zr, B 

compositions. In contrast to the Co moment, the variation of the moment in Zr and B atoms as 

the function of composition is more complicated and there is no clear trend of how the magnetic 

moments of Zr and B change with composition. However, due to the small atomic percentages of 

the Zr and B atoms and their small moments, total magnetic moment of the system is dominated 

by Co atoms and varies in the same manner as that of Co. 

C. Boron doping on MAE 

The computational cost of calculating magnetocrystalline anisotropy energy can be 

enormous, which makes it infeasible to scan all the low-energy structures from AGA searches, 

especially when the unit cells contain as many as 100 atoms. In the following, the effect of boron 

doping on MAE was investigated based on the rhombohedral Co5Zr structure and the knowledge 

of the preferred sites by boron atoms from above analysis. All calculations were performed using 

VASP. To compare, the MAE of the rhombohedral structure calculated from VASP is about 1.6 

MJ/m
3
, which is very close to the result from FP calculations (1.4 MJ/m

3
). 
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Figure 3.10 (a) Effect of boron doping on MAE. The calculations were based on the 

rhombohedral Co5Zr structure. In the case of substitution, results of both the 

relaxed (solid triangles) and unrelaxed structures (empty triangles) are 

plotted, while for interstitial positions, only results of the relaxed structures 

(solid squares) are plotted. The positions of doped boron atoms are 

discussed in the main text. (b) Volume comparison between the original 

Co5Zr structure (dash line) and boron doped structures after DFT 

relaxations. The layer III with interstitial boron atom after relaxation is 

plotted as the inset. 
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We have showed that the same structure motif found in Co5Zr polymorphs also exists in 

the boron-doped CoxZr alloys, which explains the origin of the high coercivity observed in Co-

Zr-B alloys. Referring to the rhombohedral Co5Zr structure plotted in Fig. 3.7, the boron atoms 

appear to prefer substituting Co atoms in layer I or entering layer III as interstitial atoms. 

Therefore, we scanned all the possibilities of adding up to 3 boron atoms into the conventional 

unit cell of the rhombohedral Co5Zr structure [Fig. 3.7(a), 36 atoms] and selected the one with 

lowest energy for each scenario to calculate MAE. All structures have uniaxial anisotropy unless 

noted otherwise. 

In the substitutional case, all the Co atoms in layer I belong to the same Wyckoff 

position, therefore the choices of substituting Co by B are limited. We found while substituting 

more than one Co atoms, lower energies were obtained with one B atom per layer, i.e. two B 

atoms substituting the same layer is not energetically favored for the 11 cell studied in this 

work. This can be explained by the fact that the size of the boron atom is much smaller than that 

of Co atom. Large distortions would be introduced if the boron density in one layer is too big. 

The calculated MAE results are plotted in Fig. 3.10(a) for both the relaxed and unrelaxed 

structures. It can be seen that the MAE increases significantly with the number of boron atoms 

for the unrelaxed structures, which confirms our speculation that replacing Co atoms at the Co3 

site with other elements without modifying the structure can improve the MAE. However, after 

structure relaxations, MAE values of the boron substituted structures become slightly smaller 

than the original Co5Zr structure. From volume comparisons plotted in Fig. 3.10(b), we can see 

the relaxation changes the structure noticeably. The changes in the environments of Co atoms 

cause the change of their electronic configuration and contributions to the MAE. 
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In the interstitial case, there are three inequivalent positions in each Co1 layer where 

boron atoms can occupy, as indicated in Fig. 3.7(b). We scanned all the possibilities of adding up 

to 3 boron atoms and plotted the MAE results in Fig. 3.10(a). Considering that interstitial defects 

usually introduce much larger distortions to the neighboring atoms, we only calculated the MAE 

of the relaxed structures. We note again that adding one boron atom into each layer III gives 

more competitive energy and the relaxed structure of the B-Co mixed layer is plotted as the inset 

of Fig. 3.10(b). The MAE data shows the interstitial boron atoms do not change the MAE too 

much compared with the Co5Zr structure. 

Although above calculations were performed on models that were created based on the 

rhombohedral Co5Zr structure, the results are representative due to the consideration of the 

preferable positions of boron. In our previous study, we showed in the low temperature Co5.25Zr 

phase where extra Co atoms packed in layer III to form the orthorhombic phase, the MAE is 

much lower than the high temperature Co5Zr rhombohedral phase. However, if the extra atoms 

are boron atoms instead, such as Fig. 3.6(b), the MAE is expected to be close to the 

rhombohedral Co5Zr from above analysis. Meanwhile, when the density of boron substitution to 

the Co3 site is much smaller, such as Fig. 3.6(a), the distortion introduced to the neighboring 

atoms will be smaller, thus there exists a great chance to increase the anisotropy. Finally, we 

calculated the Curie temperatures for the model structures discussed above and it shows that the 

change in Curie temperature due to boron addition is not significant. The calculated Curie 

temperature is around 700 K which is high enough for practical use. 

3.2.4 Conclusions 

In summary, we studied the Co-Zr-B system using AGA method and first-principles 

calculations. We noted that the Co3ZrB2 phase is paramagnetic and cannot be responsible for 
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magnetic hardness. Near the Co5Zr composition, the Co and Zr atoms in the structures of Co-Zr-

B share the same structural motif as discovered in the CoxZr polymorphs, while boron atoms can 

appear both as substitutions for Co atoms or in the interstitial positions. Based on the AGA 

results, we constructed the formation energy and magnetic moment contour maps for partial 

composition range of the Co-Zr-B system, which can be used as guidance to adjust the 

experimental processing to further optimize the magnetic properties.  

We believe the high coercivity observed in the ternary alloy system origins from the Co-

Zr layer packing feature, as in the high temperature Co5Zr rhombohedral phase. Through the 

MAE calculations on Co-Zr-B model structures, we found both substitutional and interstitial 

boron atoms give similar magnetic anisotropy energies as the original rhombohedral Co5Zr 

structure. Our calculations provide insight into the significant improvement of the MAE in Co-Zr 

system through chemical doping. 

3.3 Lattice Monte Carlo simulations of alnico 5-7
3
 

3.3.1 Introduction 

Alnico is a family of FeCo-based alloys which in addition to Fe and Co are composed 

primarily of Al and Ni, with small amount of Ti, Cu and sometimes Nb [Kramer et al., 2012; 

Xing et al., 2013; McCallum et al., 2014; Zhou et al., 2014]. Alnico alloys were the strongest 

type of magnets before the development of RE magnets and have some of the highest Curie 

temperatures of any magnetic materials (around 800 ˚C), making them useful magnets even 

when heated red-hot. In the 1950s and 1960s, the anisotropic microstructure of alnico was 

achieved by adopting directional solidification processing and applying a magnetic field during 

                                                 
3
 This part is based on the published article: Nguyen, M. C., Zhao, X., Wang, C. Z., Ho, K. M. “Cluster Expansion 

Modeling and Monte Carlo Simulation of Alnico 5-7 Permanent Magnets”, J. Appl. Phys. 117, 093905 (2015). 
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the annealing processes. The magnetic annealing procedure creates superior alnico alloys, 

referred to by their grades, such as alnico 5-7, alnico 8 and alnico 9. They are now widely used in 

industrial and consumer applications where strong permanent magnets are needed, such as 

electric motors, microphones, loudspeakers and cow magnets. 

Alnico magnets derive their magnetic strength due to a spinodal phase decomposition 

from the high-temperature homogeneous composition into a two-phase nanocomposite of 

ferromagnetic FeCo-rich and essentially nonmagnetic NiAl-rich phases [McCallum et al., 2014]. 

More specifically, alnico 5-7 consists of very long FeCo-rich rods with aspect ratio of about 5:1 

separated by NiAl-rich phase in a “brick-and-mortar” pattern in the perpendicular plane cutting 

through the rods. The cross-sections of the FeCo-rich rods are 50 ~ 100 nm. Alnico 8 and alnico 

9 show nanoscale “mosaic” structures with “tiles” of similar sizes, about 35 nm across. The 

aspect ratio of the FeCo-rich rods in alnico 8 varies from 1:1 to 10:1, whereas that of alnico 9 is 

greater than 10:1 [Xing et al., 2013; Zhou et al., 2014]. Previous studies have defined the general 

features of alnico at large scale, but the structure at the atomic scale has not been resolved 

clearly, e.g. whether the FeCo-rich phase is in BCC or B2 order and whether the NiAl-rich phase 

is in BCC, B2 or L21 order. Such ambiguity blocks the understanding of the magnetic properties 

of alnico from atomic view point. In addition, atomic scale picture is also necessary to 

understand the role played by the phase boundary between the FeCo-rich and NiAl-rich phases in 

further enhancing their magnetic strength. 

It is known from experiments that the two phases in alnico alloys have the underlying 

lattice of BCC [Xing et al., 2013; McCallum et al., 2014; Zhou et al., 2014]. With a fixed lattice 

as input, the cluster expansion (CE) method is the most suitable energy model to describe the 

alnico system, especially when the simulation requires thousands of atoms or even more due to 
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the complexity of the alnico alloys. With CE coefficients obtained via fitting to the energies of 

DFT calculations, we performed lattice Monte Carlo (MC) simulations [Metropolis and Ulam, 

1949] to investigate the phase selection, site occupation and phase boundaries in alnico 5-7 at 

atomic scale. 

3.3.2 Computational details 

DFT were used to calculate the energies of the reference structures to fit CE coefficients 

and the fitting was performed by ATAT code [van de Walle et al., 2002a, 2009]. As alnico 5-7 

alloys mainly consist of Al, Ni, Co, and Fe, a set of 600 structures with a 2  2  2 supercell 

composited of above 4 elements was chosen as fitting targets and all structures were relaxed until 

the force acting on each atom is smaller than 0.01 eV/Å and external pressure is smaller than 5 

Kbar (0.5 GPa). The unit cells of all structures were kept cubic during the relaxation to avoid 

structure transformations from BCC to FCC which happens to a small amount of the selected 

structures. The spin-polarized DFT calculations were performed by VASP [Kresse and 

Furthmuller, 1996] with PAW pseudopotential [Blochl, 1994; Kresse and Joubert, 1999] within 

generalized gradient approximation (GGA) [Perdew et al., 1996]. The energy cutoff was 350 eV 

and Monkhost-Pack scheme [Monkhorst and Pack, 1976] was used for Brillouin zone sampling. 

To simulate the alnico magnets in a full manner, huge supercells containing millions of 

atoms are required in the lattice MC simulations as estimated from the length scale of the two 

phases mentioned above. Such MC simulations are not feasible under current model. Here we 

limited our model to describe the atomic structure crossing the boundary of the FeCo-rich and 

NiAl-rich phases. A supercell with the longest side along z direction and moderate widths in x 

and y directions should be able to capture the composition variation across the phase boundary 

between the FeCo-rich and NiAl-rich phases. We used a 6  6  80 supercell of the smallest 
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BCC cell, which is about 1.8 nm  1.8 nm  23 nm in dimension and contains 5760 lattice sites. 

In the lattice MC simulations, Metropolis-Hastings algorithm [Metropolis and Ulam, 1949] is 

used to draw samples from the Boltzmann distribution, thus different temperatures can be 

introduced into the system. 

3.3.3 Results and discussions 

In the fitting of the cluster expansion coefficients, up to the 3
rd

 nearest neighbor pair and 

triplet interactions and the smallest quadruplet interaction are considered. In Fig. 3.11, the 

formation energies of the reference structures calculated by the CE model are compared with the 

DFT calculations. We can see that the CE and DFT energies are very well correlated, in another 

word, the DFT energies of the reference structures were well reproduced by the CE model. The 

cross-validation score [van de Walle et al., 2002a, 2009] in our fitting is ~ 13.8 meV/atom, 

indicating a decent predictive power of the obtained CE coefficients.  

 

Figure 3.11 Correlation between the cluster expansion energies and DFT energies of the 

reference structures that were used in the fitting of alnico 5-7. 
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The composition of the sample used in our simulations was Al0.17Ni0.13Co0.22Fe0.48 based 

on experiment [Xing et al., 2013; Zhou et al., 2014], which corresponds to 979 Al atoms, 749 Ni 

atoms, 1267 Co atoms and 2765 Fe atoms in the simulation. We performed multiple MC 

simulations with different initial configurations at different temperatures ranging from 773 K to 

2173 K. At each temperature, 5000 configurations from every independent MC simulation were 

collected and used for analysis after the corresponding sample reached equilibrium [Nguyen et 

al., 2015]. The composition histograms at different temperatures, which were obtained by 

averaging over all the selected configurations, are plotted in Fig. 3.12. We can see that at the 

high temperature, such as the case of 1873 K plotted in Fig. 3.12(a), each element shows a 

Gaussian like distribution centering at its initial composition, indicating that the sample is 

homogenized at high temperature. While the temperature decreases to 1473 K, the shape of each 

peak except that of Co changes to asymmetric and the appearance of shoulders can be observed. 

After further decreasing the temperature to lower than 1100 K, the composition histograms of all 

elements separate into two distinct peaks, as shown in Fig. 3.12(c) and (d). Therefore, the phase 

decomposition into two different phases has happened in the sample at the temperature of 1073 

K. The positions of the two peaks tell us the compositions of each element in the corresponding 

phases. Through analyses, we found that they are the FeCo-rich and AlNi-rich phases, as 

observed in the experiments. 
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Figure 3.12 Composition histograms of alnico 5-7 from the lattice MC simulations at 

different temperatures. 

 

Figure 3.13 Compositions of the simulated FeCo-rich and NiAl-rich phases in alnico 5-7 

as a function of temperature.  
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The details of the composition evolution in the MC simulations as a function of 

temperature are plotted in Fig. 3.13. The dash lines connecting the data points between 1873 K 

and 1373 K show the system is in transition from a homogenized phase to two separated phases. 

From the trend, we see that as the temperature decreases, the compositions of Fe and Co in the 

FeCo-rich phase, as well as the compositions of Ni and Al in the NiAl-rich phase become higher. 

At the lowest temperature in our simulations, i.e. 773 K, the percentage of Fe in NiAl-rich phase 

and Ni/Al in the FeCo-rich phase is as small as 2%. These results suggest that Fe or Ni/Al could 

be extracted almost completely out of the NiAl-rich or FeCo-rich phases. In contrast, the amount 

of Co left in the NiAl-rich phase is almost 10% at 773 K, indicating that Co cannot be easily 

extracted out of the NiAl-rich phase, which is consistent with the experimental observation [Xing 

et al., 2013; Zhou et al., 2014]. Practically, the high concentration of Co in the NiAl-rich phase 

is not preferred for two reasons. First, Co is relatively more expensive than the other elements 

and the remaining Co atoms in the non-magnetic NiAl-rich phase do not help the magnetic 

properties. Second, the NiAl-rich phase is expected to be non-magnetic, therefore serves as the 

separator for the FeCo-rich phases. The remained Co atoms in the NiAl-rich phase may 

introduce non-zero magnetic moment to it. The information we learnt from the simulations 

suggests that simply changing the annealing temperature and time may not help reduce the Co 

concentration in the NiAl-rich phase significantly. 

By quantitatively comparing the compositions of each element in the two separated 

phases, we found consistent results between the simulation and experiment. For example, at 1273 

K, the composition of the FeCo-rich phase in our simulation is Al7Ni5Co24Fe64, similar to that 

measured from experiment, Al5Ni3Co25Fe67 [Xing et al., 2013; Zhou et al., 2014]. We then 

studied the ordering in the FeCo-rich and NiAl-rich phases based on the samples obtained in the 
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simulations. Experimentally, Fe and Co are almost indistinguishable in X-ray scattering due to 

their similar scattering factors, which makes the determination of the ordering in the FeCo-rich 

phase very difficult. Here we calculated the neighbor correlation matrices to analyze the ordering 

in the NiAl-rich and FeCo-rich phases at different temperatures where the phase decomposition 

has already happened, i.e. from 773 K to 1273 K. 

For the NiAl-rich phase at low temperature, there are almost no Al-Al, Al-Fe and Ni-Co 

nearest neighbors and a small fraction, ~5%, of Ni-Ni nearest neighbors, indicating that the 

NiAl-rich phase is in B2 ordering with Al/Fe on α-site and Ni/Co on β-site. The small fraction of 

Ni-Ni nearest neighbors could be attributed to anti-site defect at finite temperature. In the FeCo-

rich phase, there are no Al-Al nearest neighbors and small amount of Al-Fe, Ni-Ni, Co-Co and 

Ni-Co nearest neighbors, indicating that the FeCo-rich phase also has B2 ordering, but with 

lower degree of order than that of the NiAl-rich phase. At higher temperature, the fractions of 

Al-Al, Al-Fe, Ni-Ni, Co-Co, and Ni-Co neighbors are increasing but still smaller than those 

obtained from a totally random alloy. Therefore, the B2 ordering in both the NiAl-rich and 

FeCo-rich phases is expected in the temperature range considered in our simulations. 

Quantitative analysis of the ordering in those two phases can be found in Ref. [Nguyen et al., 

2015]. 

Finally, we show the composition profile of alnico 5-7 at the temperature of 873 K and 

1073 K along the z direction of the simulation model in Fig. 3.14, from which the boundary 

between the separated phases can be observed. The compositions of each element at a given z-

value were calculated by averaging the local compositions over x and y directions. The phase 

decomposition of alnico 5-7 into the FeCo-rich and NiAl-rich phases can be seen clearly from 

Fig. 3.14. And for a wide range of temperatures from 773 to 1273 K (some are not plotted in Fig. 
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3.14), the boundaries between the FeCo-rich and NiAl-rich phases are quite sharp with a width 

of about 2 nm. This is also consistent with experimental STEM EDS scan results, where sharp 

phase boundaries were observed in alnico 5-7 [Xing et al., 2013]. 

 

Figure 3.14 Composition profiles of the alnico 5-7 samples obtained from the lattice MC 

simulations along the decomposition direction (z) at the temperature of 873 

K (left) and 1073 K (right). 

3.3.4 Conclusions 

In conclusion, we have fitted an accurate energy model for alnico 5-7 alloys containing 

Al, Ni, Co and Fe using the Cluster Expansion method. Lattice MC simulations were performed 

to study the structures of alnico 5-7 at atomic and nano scales as functions of temperatures. The 

results showed that the CE model correctly describes the phase selections in alnico 5-7. Based on 

analyses of the samples obtained from the MC simulations, we found the separation of Co is not 

as complete as the other three elements, i.e. considerable amount of Co atoms exist in both the 

FeCo-rich and NiAl-rich phases. We also studied the ordering in the two separated phases and 
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the grain boundaries between them. For a wide range of temperatures, the B2 ordering was 

observed in both the NiAl-rich phase and the FeCo-rich phase, although the degree of order in 

the FeCo-rich phase is lower than that in the NiAl-rich phase. The phase boundaries between the 

two phases were found to be very sharp and roles played by the sharp grain boundaries in 

improving the magnetic properties are to be investigated.   



58 

 

CHAPTER 4. NEW STABLE RE-B PHASES FOR ULTRA-HARD 

MATERIALS
4
 

 

4.1  Abstract 

As a distinct class of ultra-hard materials, transition metal borides are found to have 

superior mechanical properties that challenge the traditional materials. In this chapter, we 

explored the existence of new stable rhenium borides with different stoichiometries using genetic 

algorithm and first-principles calculations. Based on theoretical calculations, ReB in a P-3m1 

structure is found to be stable against decomposition reactions below 10 GPa and ReB3 in a P-

6m2 structure is stable above 22 GPa. Two new phases of Re2B are predicted to be 

thermodynamically stable at pressures higher than 55 GPa and 80 GPa respectively. We also 

show that a C2/m structure discovered for ReB4 has energy lower than that of the R-3m structure 

reported earlier [Wang et al., 2013]. Elastic and vibrational properties from first-principles 

calculations indicate that the low-energy structures obtained in our search are mechanically and 

dynamically stable and are promising targets as new ultra-hard materials.  

4.2 Introduction 

Transition metal (TM) borides have attracted considerable attentions due to their 

outstanding physical properties, such as superconductivity and extreme incompressibility. 

Among them, rhenium boride is one of the most studied. Re3B, Re7B3 and ReB2 have been 

synthesized experimentally [Telegus, 1969]. In addition to being superconductors [Strukova et 

                                                 
4
 This chapter is a version of the published article: Zhao, X., Nguyen, M. C., Wang, C. Z. and Ho, K. M. “New 

stable Re-B phases for ultra-hard materials”, J. Phys.: Condens. Matter 26, 455401 (2014). 



59 

 

al., 2001; Kawano et al., 2003], these compounds have been intensively investigated for 

potential applications as ultra-hard materials [Chung et al., 2007; Dubrovinskaia et al., 2007; Qin 

et al., 2008; Juarez-Arellanoa et al., 2013]. It was reported by Chung et al. that ReB2 can be 

synthesized under ambient pressure with a hardness of 48 GPa, which makes it one of the hardest 

compounds on earth. However, the validity of these results was questioned [Dubrovinskaia et al., 

2007] and one of the later experiments [Qin et al., 2008] showed that ReB2 has a hardness of 

about 20 GPa and does not belong to the class of ultra-hard materials. Recently [Juarez-

Arellanoa et al., 2013], the hardness of Re7B3 and Re3B has been measured experimentally. 

Re7B3 was found to be extremely incompressible with bulk modulus equal to 435(14) GPa, and 

the bulk modulus of Re3B was also determined to be 320(15) GPa.  

In addition to the three known phases, formation of new phases in Re-B system during 

the reaction of elemental rhenium and boron at high pressure and high temperature conditions 

has also been observed [Juarez-Arellanoa et al., 2013]. At around 15 GPa and 1500K, extra 

reflections appeared in the powder x-ray diffraction pattern (XRD), which cannot be assigned to 

any previously reported Re-B phases, or to any boron phases. Therefore the extra peaks indicate 

the formation of a new phase, referred to as phase A in Ref. [Juarez-Arellanoa et al., 2013]. After 

increasing the temperature to around 4000 K and pressure to around 22 GPa, another set of new 

reflections was observed and has been assigned to a second new phase, named phase B. Unit cell 

parameters and space groups of these two new phases have not been determined. 

On the theoretical side, structures and elastic properties of rhenium borides with different 

boron concentrations have been studied [Gou et al., 2009; Zhao et al., 2010; Zang et al., 2012]. 

Most of the previous theoretical studies are restricted to known prototype crystal structures. In 

order to obtain a more comprehensive understanding of the structures and properties of this 



60 

 

system, global searches for the crystal structures of Re-B system without any a prior assumption 

are necessary. We note that such global structure search has been performed for ReB4 recently 

using a particle swarm optimization algorithm [Wang et al., 2013]. An R-3m structure was found 

to be more stable than the earlier proposed WB4-type structure [Zhao et al., 2010].  

In this chapter, we discuss our global structural searches for the stable phases in the Re-B 

system using GA and first-principles calculations. Four different rhenium borides are explored, 

with stoichiometry of Re2B, ReB, ReB3, and ReB4 respectively. We found that the structures 

obtained from our GA search are energetically more favorable than those reported in the 

literature including the R-3m structure proposed for ReB4 [Wang et al., 2013]. Stability and 

mechanical properties of the predicted structures are investigated.  

4.3 Computational Details 

The genetic algorithm based on real space cut-and-paste operations [Deaven and Ho, 

1995] is used to perform the crystal structure search. The searches were carried out at zero 

pressure, thus energy was used as the selection criteria for optimizing the candidate pool. In the 

beginning of the GA search, initial structures are generated randomly, without any assumption of 

their Bravais lattice type, atom basis or unit cell dimensions. Population size of the structure pool 

was set to be 64. In each generation, one quarter of the total population were updated through 

operations on the selected parent structures, such as crossover and mutation. Then the newly 

generated structures were locally optimized and their energies were evaluated by first-principles 

calculations. The search was done when the lowest-energy structure in the population pool 

remains unchanged in 300 consecutive generations in the present study. Finally, several lowest-

energy structures survived in the pool were fully relaxed to identify the ground-state structure. In 
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the present work, up to 4 formula units were considered in the simulation cells for each 

composition. 

First-principles calculations were carried out using spin-polarized density functional 

theory (DFT) [Kohn and Sham, 1969] within generalized-gradient approximation (GGA) with 

projector-augmented wave (PAW) method [Blochl, 1994; Kresse and Joubert, 1999] by VASP 

code [Kresse and Furthmuller, 1996]. The GGA exchange correlation functional parameterized 

by Perdew, Burke and Ernzerhof (PBE) [Perdew et al., 1996] was used. Kinetic energy cutoff 

was set to be 400 eV. The Monkhorst-Pack’s scheme [Monkhorst and Pack, 1976] was selected 

for Brillouin zone sampling with a k-point grid of 2π  0.033 Å
-1

 during the structure searches. 

In the final structure refinements, a denser grid of 2π  0.02 Å
-1

 was used and the ionic 

relaxations stop when the forces on all of the atoms are smaller than 0.01 eV/Å. 

4.4 Results and Discussions 

4.4.1 Structures 

Lowest-energy structures of Re2B, ReB, ReB3, and ReB4 obtained from the GA searches 

at zero pressure are plotted in Fig. 4.1 and the Wyckoff positions of each structure can be found 

in the figure caption. Lattice information, such as space group, lattice parameters and volume of 

unit cell, are listed in Table 4.1.  
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Figure 4.1 Low-energy structures for (a, b, c) Re2B, (d) ReB, (e) ReB3, (f) ReB4 

obtained from our GA searches. (a) P21/m: Re1 2e(0.2096, 1/4, 0.43425), 

Re2 2e(0.2025, 1/4, -0.0817), and B 2e(0.6099, 1/4, 0.7800); (b) C2/m: Re1 

4i(0.8446, 0, 0.4247), Re2 4i(0.40457, 0, 0.1129), and B 4i(0.8836, 0, 

0.8163); (c) C2/m: Re1 4i(0.0674, 0, 0.7869), Re2 4i(0.3522, 0, 0.6781), and 

B 4i(0.2676, 0, 0.1234); (d) P-3m1: Re 2d(1/3, 2/3, 0.6842) and B 2d(1/3, 

2/3, 0.0596); (e) P-6m2: Re 1d(1/3, 2/3, 1/2), B1 2g(0, 0, 0.8191), and B2 

1c(1/3, 2/3, 0); (f) C2/m: Re 4i(0.2069, 0, 0.2682), B1 4i(-0.0223, 0, 

0.1744), B2 4i(0.4154, 0, 0.6420), B3 4i(0.5722, 0, 0.6639), and B4 

4i(0.1839, 0, 0.8652). 

 

Table 4.1 Lattice information of the crystal structures of Re2B, ReB, ReB3, and ReB4 

obtained in the current study. a, b, c: optimized lattice parameters; V: cell 

volume per formula unit. 

Structure Space group a (Å) b (Å) c (Å) V (Å
3
) 

Re2B_#1 P21/m 4.45 2.93 5.92 36.43 

Re2B_#2 C2/m 9.79 2.85 6.32 35.35 

Re2B_#3 C2/m 11.21 2.89 4.44 35.15 

ReB P-3m1 2.88 2.88 5.93 21.26 

ReB3 P-6m2 2.92 2.92 4.59 34.01 

ReB4 C2/m 11.01 2.92 5.88 41.26 
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Re2B: Three low-energy structures for Re2B, labeled as _#1, _#2, and _#3 based on their 

energy order, are plotted in Fig. 4.1(a), (b), and (c) respectively. They all have monoclinic 

symmetry and all the boron atoms have 7-fold coordination with rhenium atoms. Apart from this, 

every boron atom in Re2B_#2 bonds with another boron atom and every boron atom in Re2B_#3 

bonds with another two boron atoms. All three structures have lower energy than previously 

reported structures [Gou et al., 2009; Zhao et al., 2010].  

ReB: For ReB, a trigonal structure with space group P-3m1 was found to be most stable, 

with much lower energy than the WC-type structure [Gou et al., 2009; Zhao et al., 2010]. As 

plotted in Fig. 4.1(d), the P-3m1 structure of ReB can be viewed as a layered structure with 

stacking of one buckled boron layer followed by two hexagonal Re layers along the c-axis.  

ReB3: For ReB3, while all previous structure models have positive formation enthalpy, 

the lowest-energy structure obtained from our GA search has the formation energy very close to 

the tie-line of α-boron and ReB2. It has a hexagonal structure with space group P-6m2 [Fig. 

4.1(e)]. Boron and rhenium atoms form two types of hexagonal layers (boron layer is buckled, 

while rhenium layer is flat) and alternatively stack in the c direction. The layered feature of the 

ReB3 structure, as well as that of the ReB structure is reminiscent of the crystal structures of 

some well-known superconducting materials, e.g. MgB2 [Nagamatsu et al., 2001], ReB2 

[Strukova et al., 2001], etc.  

ReB4: The lowest-energy structure for ReB4 obtained from our GA search is plotted in 

Fig. 4.1(f). This structure has C2/m symmetry and its energy is about 5 meV per atom lower than 

that of the R-3m structure reported earlier using a particle swarm optimization algorithm [Wang 

et al., 2013]. This structure contains four formula units and each rhenium atom is coordinated by 

nine boron atoms. Different boron sites have different environments: site B1 (-0.0223, 0, 0.1744) 
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bonds with 2 rhenium atoms and 6 boron atoms; site B2 (0.4154, 0, 0.6420) bonds with 3 

rhenium atoms and 4 boron atoms; site B3 (0.5722, 0, 0.6639) bonds with 1 rhenium atom and 7 

boron atoms; site B4 (0.1839, 0, 0.8652) bonds with 3 rhenium atoms and 5 boron atoms. 

4.4.2 Thermodynamic stability 

 

Figure 4.2 Convex hulls of the formation enthalpies in the Re-B system at the pressure 

of (a) 0 GPa, and (b) 100 GPa. The solid line connects the phases observed 

in experiments and the dash line represents the updated convex hull, 

including the results from our GA searches. Enthalpies of the structures 

from both this work and literatures are plotted, indicated by different 

symbols. 

 

In order to access the stability of new structures obtained from our GA search, the convex 

hulls of formation enthalpies at P = 0 GPa and P = 100 GPa are plotted in Fig 4.2(a) and (b) 

respectively. Results of the new structures and those proposed in the literatures are indicated by 

circles and triangles respectively. The formation enthalpy is calculated by ΔH = [H(RemBn) – 

m·H(Re) – n·H(B)]/(m+n), where H, defined as H = E + PV, is the enthalpy of the corresponding 

alloys or elementary phases. For elemental boron, H was calculated based on the structure of α-

boron [Will and Kiefer, 2001]. Once the hull of ground state energies of various structures is 
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constructed, the configurations with energy above the limiting boundary of the convex hull are 

considered to be unstable or metastable.  

From Fig. 4.2(a), we can see that the ReB structure obtained from our GA search is 

below the tie-line of ReB2 and Re3B, indicating that ReB is a thermodynamically stable phase at 

zero pressure and zero temperature based on DFT calculations. For other new structures found 

from our present study, ReB3 and Re2B structures are very close to, but above the corresponding 

tie-lines and ReB4 structure is far above the tie-line. Including the new stable ReB structure from 

our present study, the convex hull at zero pressure is updated as shown by the dashed lines in 

Fig. 4.2(a).  

Since the relative stability of different phases can be altered at high pressures, we further 

studied the enthalpy-pressure relations of the structures obtained from our present study. As the 

pressure increases, the contribution from the PV term plays more important roles to the enthalpy. 

Therefore, the stability of structures with smaller volumes will surpass that of structures with 

larger volumes. Relative formation enthalpies vs. pressure for Re2B, ReB, ReB3, and ReB4 are 

plotted in Fig. 4.3(a), (b), (c), and (d) respectively.  

In Fig. 4.3(a), the relative enthalpies as the function of pressure of the three new Re2B 

structures are compared with each other and with several possible decomposition pathways as 

indicated. From Table 4.1, we note that the volume of the Re2B_#1 structure is the largest among 

the three new Re2B structures, followed by those of Re2B_#2 and Re2B_#3. As a consequence, 

when the pressure is higher than 5 GPa, structure #2 becomes most stable among them and after 

~ 80 GPa, structure #3 becomes most stable. Even considering the possible decompositions, such 

as Re2B → 2Re + B, and Re2B → ReB2 + Re3B, we found that Re2B_#2 is still the most stable 
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structure when the pressure is between 55 and 80 GPa. When the pressure is above 80 GPa the 

Re2B_#3 structures become more stable. 

 

Figure 4.3 Relative enthalpies vs. pressure for (a) Re2B, (b) ReB, (c) ReB3 and (d) 

ReB4. The competing phases with respect to possible initial reactants are 

compared in each figure. 

 

ReB is stable against decomposition at zero pressure as shown in Fig. 4.2(a).  However, 

as pressure exceeds 10 GPa, it becomes unstable towards decomposition into ReB2 + Re3B as 

shown in Fig 4.3(b). At zero pressure, the ReB3 structure from our present search lies above the 

tie line between ReB2 and pure B phases. At around 22 GPa, our ReB3 structure becomes more 

stable than ReB2 + B as one can see from Fig 4.3(c).  
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From DFT calculations, the R-3m structure of ReB4 has a volume of 40.73 Å
3
, smaller 

than that of the C2/m structure. Around 8 GPa, the R-3m structure outperforms the C2/m 

structure. It also wins against the decomposition into ReB2 and B after ~ 88 GPa, consistent with 

previous report [Wang et al., 2013].  However, in the pressure range from zero up to 100 GPa, 

enthalpies of both ReB4 structures are much higher than that of ReB3 + B as shown in Fig. 

4.4(d), therefore, ReB4 will decompose into the pure boron and ReB3 phase.  

From above discussions, we can see that the phase stability in Re-B system changes 

substantially with pressure. Taking the structures found in our search into consideration, a more 

comprehensive convex hull for the Re-B system at P = 100 GPa, with respect to the stable phases 

ReB3, ReB2, Re2B, and Re3B, is constructed in Fig 4.2(b). 

In Fig. 4.4, we plotted the relative stability of the three Re2B structures, ReB2+Re3B and 

Re7B3 at high pressure in more details. From Fig 4.4(a), we can see clearly that the Re2B_#2 and 

Re2B_#3 structures are the most stable structures when the pressure is higher than 55 GPa. In 

Fig. 4.4(b), we plotted the enthalpies of possible decomposition reactions of Re7B3 with respect 

to that of the parent compound. At low pressure, ReB2+Re3B is most table. Above 55 GPa, 

Re2B+Re3B becomes more stable. There is another transition from Re2B_#2+Re3B to 

Re2B_#3+Re3B around 80 GPa which is related to the phase transitions in Re2B as discussed 

above. Since the Re7B3 phase is always above the tie-line of ReB2 and Re3B, and above the tie-

line of Re2B and Re3B, we can tentatively identified the Re2B_#2 and Re2B_#3 structures as the 

candidates for the two new phases, i.e. phase A and B, discovered in recent synthesis 

experiments [Juarez-Arellanoa et al., 2013] under high pressures and high temperatures. The 

transition pressures from our calculation at T = 0 K, 55 GPa and 80 GPa, are higher than the 
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observed experimental pressures. The discrepancy may be expected because temperature effects 

are not included in the theoretical calculations. 

 

Figure 4.4 (a) Relative enthalpies of three Re2B structures and the decomposition 

reaction: Re2B → ReB2 + Re3B. (b) Relative enthalpies of Re7B3 and 

possible decomposition reactions: Re7B3 → ReB2 + Re3B, Re7B3 → Re2B + 

Re3B. Different pressure ranges are highlighted and labeled corresponding 

to different ground states. 
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4.4.3 Elastic properties 

To study the mechanical properties of the newly discovered structures, elastic constants 

were calculated using VASP package [Page and Saxe, 2002; Wu et al., 2005]. The elastic tensor 

is determined by performing six finite distortions of the lattice and deriving the elastic constants 

from the strain-stress relationship [Page and Saxe, 2002]. Bulk modulus B and shear modulus G 

were estimated using the Voigt-Reuss-Hill approximation [Hill, 1952]. Furthermore, the 

Young’s modulus Y and Poisson’s ratio υ were calculated by: Y = (9GB)/(3B+G) and υ = (3B-

2G)/(6B+2G). The results for Re3B, Re7B3, Re2B (#1, #2, #3), ReB, ReB2, ReB3 and ReB4 (C2/m 

structure) are listed in Table 4.2. The calculated elastic constants suggest that all the structures in 

Table 4.2, including the new structures obtained in this work, are mechanically stable, as they 

satisfy the mechansical stability criteria [Wu et al., 2007]. 

 

Table 4.2 Calculated elastic constants (in GPa), bulk modulus B (in GPa), shear 

modulus G (in GPa), B/G raito, Young’s modulus Y (in GPa) and Poisson’s 

ratio υ of various rhenium borides. 

Structure c11 c22 c33 c12 c13 c23 c44 c55 c66 B G B/G Y υ 

Re3B 627 607 567 266 269 294 24 249 233 420 123 3.41 337 0.37 

Re7B3 603  590 268 273  133  169 380 151 2.50 402 0.32 

Re2B_#1 587 562 686 279 270 240 199 219 199 378 188 2.01 483 0.29 

Re2B_#2 627 670 733 257 268 235 265 176 203 393 210 1.87 535 0.27 

Re2B_#3 558 679 621 277 354 214 239 182 254 394 192 2.05 496 0.29 

ReB 618  915 218 171  248  205 360 243 1.48 596 0.22 

ReB2 642  1032 168 131  262  245 347 276 1.26 654 0.19 

ReB3 575  911 140 181  223  220 332 235 1.41 570 0.21 

ReB4
*
 928 597 615 148 95 85 183 180 248 303 234 1.29 558 0.19 

*
 C2/m structure is used for the calculation. 

 



70 

 

The highest bulk modulus is found in the Re3B phase, about 420 GPa, and the highest 

shear modulus is found in the ReB2 phase, about 276 GPa. As indicators for hardness, shear 

modulus is believed to be better than bulk modulus [Pugh, 1954]. Based on shear modulus, ReB2 

is still the hardest among all the compositions considered in Table 4.2. ReB and ReB3 also have 

very high shear modulus, and at the same time have higher bulk modulus than ReB2, which 

makes them potentially ultra-hard materials. Comparing the hardness of Re7B3 and the new Re2B 

phase, we note that structures of Re2B have higher B, G, and Y. Therefore, Re2B is expected to 

be harder than Re7B3. 

Considering the whole composition range, it is easy to notice that the B-rich phases and 

the Re-rich phases have much difference in the mechanical properties. Poisson’s ratio υ of 

rhenium borides with B% ≥ 50% is smaller than those with B% < 50%, as well as the bulk 

modulus. On the other hand, the shear modulus and Young’s modulus of rhenium borides with 

B% ≥ 50% are larger than those with B% < 50%. It is known that B/G ratio is related to 

brittleness (ductility) and the critical value is about 1.75 [Haines et al., 2001]. For rhenium 

borides with boron composition smaller than 50%, the calculated B/G ratios are bigger than 1.75, 

suggesting that they are ductile. Other rhenium borides, i.e. with B% ≥ 50%, have B/G values 

smaller than 1.75, suggesting that they are brittle. The structural change from ductile to brittle is 

due to the fact that higher boron composition induces more covalent bonds. 
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Figure 4.5 Phonon dispersion relations of the structures obtained from our GA search: 

(a) Re2B_#1, (b) Re2B_#2, (c) Re2B_#3, (d) ReB, (e) ReB3 and (f) ReB4. 

 

Phonon dispersion relations were also calculated for the newly found structures to check 

their dynamical stability. The calculation was performed within harmonic approximation using a 

supercell approach and the Phonopy code [Togo et al., 2008]. Supercell with each lattice 

parameter larger than 10 Å was used to do the calculation. Finite atomic displacements are 

created from the unit cell considering crystal symmetry, whose amplitude is 0.01 Å. The results 

of the new structures, plotted in Fig 4.5, showed no imaginary phonon frequency in the whole 

Brillouin zone, indicating that in addition to being mechanically stable, all the presented 

structures are dynamically stable. 

Finally, in Fig. 4.6, we provide simulated XRD spectra for the lowest-energy structures 

of the newly predicted stable phases. The simulation used Cu Kα radiation with λ = 1.5406 Å. 
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Figure 4.6 Simulated X-ray diffraction spectra of the predicted stable phases (ReB3, 

ReB, Re2B_#2 and Re2B_#3) with Cu Kα radiation with λ = 1.5406 Å. 

4.5 Conclusions 

To summarize, we predict that ReB is a stable phase at zero pressure and ReB3 is a stable 

phase above 22 GPa. Re2B goes through two phase transitions with increasing pressure and the 

Re2B_#2 and Re2B_#3 structures found from our search are shown to be stable against 

decompositions. Meanwhile, the R-3m structure reported earlier for ReB4 was found to have 

higher energy than a C2/m structure at zero pressure. Elastic properties calculations indicate that 

B-rich and Re-rich compounds show clear difference in mechanical properties and the newly 

discovered stable phases of ReB and ReB3 are extremely incompressible. Under the guidance of 

the theoretical predictions, new compounds in the Re-B system could be synthesized in 

experiments and the stability of the predicted phases and their mechanical properties presented in 

this work can be verified. 
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CHAPTER 5. INTERFACE STRUCTURE PREDICTION FROM 

FIRST-PRINCIPLES
5
  

 

5.1 Abstract 

Information about the atomic structures at solid-solid interfaces is crucial for 

understanding and predicting the performance of materials. Due to the complexity of the 

interfaces, it is very challenging to resolve their atomic structures using either experimental 

techniques or computer simulations. In this chapter, we present an efficient first-principles 

computational method for interface structure prediction based on the adaptive genetic algorithm. 

This approach significantly reduces the computational cost, while retaining the accuracy of first-

principles prediction. The method is applied to the investigation of both stoichiometric and non-

stoichiometric SrTiO3 Σ3(112)[110] grain boundaries with unit cell containing up to 200 atoms. 

Several novel low-energy structures are discovered, which provide fresh insights into the 

structure and stability of the grain boundaries.  

5.2 Introduction 

Solid-solid interfaces and grain boundaries (GBs) usually exhibit structure 

reconstructions within nanometer scale that are different from their corresponding bulk 

structures. These nanoscale structure reconstructions play a crucial role in determining the 

performance metrics of materials, such as mechanical strength or ductility, electrical transport, 

magnetic properties, etc. [Hilgenkamp and Mannhart, 2002; Robertson, 2006; Dillon et al., 2007; 

                                                 
5
 This chapter is a modified version of the published article: Zhao, X., Shu, Q., Nguyen, M. C., Wang, Y. G., Ji, M., 

Xiang, H. J., Ho, K. M., Gong, X. G. and Wang, C. Z. “Interface structure prediction from first-principles”, J. Phys. 

Chem. C, 118, 9542 (2014). 
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Luth, 2010] The urgent demand for new technologies has put great pressure on the development 

of efficient methods for fast predicting complex GB and interface structures to aid materials 

discovery and design. Although the recent development in experimental techniques such as high 

resolution transmission electron microscopy (HRTEM) has made the atomic-scale investigation 

of GBs and interfaces possible [Zhang et al., 2003], detailed characterization also relies heavily 

on theory and simulation to interpret the data, because point defects and chemistry of the atoms 

are not easy to be identified by HRTEM.  

During the last 10 years, there has been considerable progress in predicting the crystal 

structures using advanced computational algorithms and modern computers as discussed in 

Chapter 1. However, much less work on GB and interface structure prediction has been reported 

[van Alfthan et al., 2006; Peacock et al., 2006; Zhang et al., 2009; Xiang et al., 2009; Chua et 

al., 2010; Feng et al., 2012; Hellberg et al., 2012]. Due to the complexity of the GB and interface 

problem, which requires large number of atoms in the simulation, it is not feasible to perform 

straightforward structure searches using accurate quantum mechanics methods (e.g. first-

principles density functional theory). Most of the interface structure searches so far were carried 

out either using classical interatomic potentials [van Alfthan et al., 2006; Zhang et al., 2009; 

Chua et al., 2010; Feng et al., 2012] or under the assumption of simplified coherent interfaces 

[Peacock et al., 2006; Xiang et al., 2009; Feng et al., 2012; Hellberg et al., 2012]. 

In this chapter, we present a generic and accurate computational approach to study the 

atomic structures of GBs and interfaces based on AGA [Wu et al., 2014], which has been 

described in greater detail in Chapter 2. AGA combines fast structure exploration using auxiliary 

classical potentials with accurate energy evaluation using first-principles calculations in an 

iterative way, so that it can speed up the search process by at least 10
3
 times and at the same time 
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maintains the accuracy of first-principles calculations. The efficiency and accuracy of the AGA 

method makes it possible to tackle the complex problems of GB and interface structure 

predictions within available computing capability.  

We demonstrate the power of AGA by predicting the structures of SrTiO3 Σ3(112)[110] 

symmetrical tilt GB, which has been attracting a lot of attentions recently [Benedek et al., 2008; 

Chua et al., 2010; Dudeck et al., 2010], due to the broad applications of SrTiO3 in many oxide-

based electrical and electronic devices. Benedek et al. predicted two low-energy structures for 

the stoichiometric Σ3(112)[110] GB by first-principles DFT calculations. One is SrTiO-

terminated with mirror symmetry at the interface and no translation between the top and bottom 

bulk parts, while the other is O2-terminated with mirror-glide symmetry. Although the energies 

of these two structures are very similar in DFT calculations, the structure with mirror symmetry 

gives a better agreement with experimental observation by quantitative HRTEM analysis 

[Dudeck et al., 2010]. Non-stoichiometric Σ3(112)[110] GB of SrTiO3 system was investigated 

by Chua et al. using genetic algorithm with empirical interatomic potentials, followed by 

structure refinement using DFT calculations. A structure with 𝛤𝑇𝑖𝑂2
= 𝑁𝑇𝑖𝑂2

− 𝑁𝑆𝑟𝑂 = 2 (refer to 

as Γ2-lit in the rest of this paper) was shown to be slightly more stable than the stoichiometric 

GBs within a very narrow chemical potential range. These previous studies provide the bases for 

benchmarking and evaluating the performance of our AGA approach. We performed structural 

searches for this grain boundary with the number of atoms in the unit cell ranging from 90 to 

200. The AGA searches not only reproduced the low-energy stoichiometric Σ3(112)[110] GB 

structures, but also revealed several new structures for the non-stoichiometric GBs with different 
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excesses and provided a more comprehensive picture about the stability of SrTiO3 Σ3(112)[110] 

grain boundary. 

5.3 Methods 

To search for interface structures, the real space cut-and-paste operation [Deaven and Ho, 

1995] is employed to generate the offspring in AGA. In this approach, the interface is 

represented by a slab, which is divided into four parts as schematically plotted in Fig 5.1. All the 

atoms in fixed-bulk part at the bottom of the slab are not allowed to move. During the local 

optimization step in the GA search, the atoms at the interface region are fully relaxed, while the 

atoms in the rigid-bulk part above the interface can only move as a whole by rigid-body 

translations with respect to the fixed-bulk part. A vector �⃗�  is used to describe the movement of 

the rigid-bulk part relative to the fixed-bulk part during the local optimization. A vacuum region 

(usually larger than 20Å) is added above the slab in the simulation in order to avoid the 

interactions between the top and bottom surfaces of the slab when period boundary conditions 

are applied. During the mating process, a pair of parent structures is selected from the population 

pool and the offspring is generated through the cut-and-paste operation on the interface regions 

(Fig. 5.1). The probability for a structure being selected as a parent depends on the energy order 

of the structure in the pool and follows a Gaussian distribution, which is defined with the lowest-

energy structure as the expectation and one quarter of the pool size as the standard deviation. The 

offspring structures retain their chemical composition the same as the parent structures. The rigid 

translation vector �⃗� between the top and bottom bulk portions from the lower-energy parent is 

passed on to the offspring, i.e. the offspring will inherit �⃗� from the “stronger” parent. 
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Figure 5.1 Schematic representation of the interface model and mating operation in our 

adaptive genetic algorithm. Four parts are included in the model: fixed bulk 

where all atoms are fixed; interface where atom positions are to be 

optimized; rigid bulk which can move as a rigid body relative to the fixed 

bulk during the search; and a vacuum region to avoid interactions between 

the two surfaces of the slab. During the mating process, part of the parent 

structures as indicated by the dashed cuboids will be exchanged to generate 

the offspring structure. 

 

To perform the AGA search for the SrTiO3 GB structures, classical potentials in the 

EAM formalism [Daw and Baskes, 1984] were used. Morse functions (Eq. 5.1) were used to 

describe the pair interactions (Sr-Sr, Sr-Ti, Sr-O, Ti-Ti, Ti-O, and O-O) in the EAM potentials 

with 3 fitting parameters each (D, α, r0). Exponential decaying function (Eq. 5.2) with 2 

adjustable parameters (α, β) was used as the density function for each element, and the form 

proposed by Banerjea and Smith (Eq. 5.3) was used as the embedding function, which also has 2 

adjustable parameters (F0, γ). Total adjustable parameters are 30. 
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 𝜙(𝑟𝑖𝑗) = 𝐷[𝑒−2𝛼(𝑟𝑖𝑗−𝑟0) − 2𝑒−𝛼(𝑟𝑖𝑗−𝑟0)] (5.1) 

 𝜌(𝑟𝑖𝑗) = 𝛼 exp[−𝛽(𝑟𝑖𝑗 − 𝑟0)] (5.2) 

 𝐹(𝑛) = 𝐹0[1 − 𝛾 ln 𝑛]𝑛𝛾 (5.3) 

The total energy of the system then has the following form: 

 𝐸𝑡𝑜𝑡𝑎𝑙 =
1

2
∑ 𝜙𝑖𝑗

𝑁

𝑖,𝑗(𝑖≠𝑗)

(𝑟𝑖𝑗) + ∑ 𝐹𝑖(𝑛𝑖)

𝑖

 (5.4) 

Where 𝑟𝑖𝑗 is the distance between atoms i and j, 𝑛𝑖 = ∑ 𝜌𝑗(𝑟𝑖𝑗)𝑗≠𝑖  is the electron density at the 

site occupied by atom i. 

Our first-principles calculations were carried out within the local density approximation 

(LDA) [Perdew and Zunger, 1981] to DFT as implemented in VASP package [Kresse and 

Furthmuller, 1996]. Plane wave energy cutoff was 520 eV. During the final DFT refinement after 

finishing the AGA search, the slab model is transferred to a supercell model, with two equivalent 

GBs and no vacuum region. All atoms in the supercell model are fully relaxed by DFT. Big 

enough bulk regions are used to separate the two GBs so that there is no interaction between 

them and the interfacial energy from such a calculation is converged. For example, when the 

length of the bulk region separating the two interfaces changes from 12 Å to 24 Å, the change in 

interfacial energy is found to be less than 0.02 J·m
-2

.  

Here, SrTiO3 is treated as a pseudo-binary system of binary oxides SrO and TiO2 with 

chemical potentials 𝜇𝑆𝑟𝑂 and 𝜇𝑇𝑖𝑂2
 respectively. The stoichiometry is described in terms of 

interfacial excesses. In the present work, the excess of component TiO2 with respect to SrO is 

defined as 𝛤𝑇𝑖𝑂2
= 𝑁𝑇𝑖𝑂2

− 𝑁𝑆𝑟𝑂 following Ref. [Chua et al., 2010]. In our calculation, we 
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approximate the Gibbs free energy as the total energy from DFT calculation at 0 K. The 

interfacial excess free energy is defined as: 

 𝜎 =
1

2𝐴𝑠
(𝐺 − 𝑁𝑆𝑟𝑂𝜇𝑆𝑟𝑂 − 𝑁𝑇𝑖𝑂2

𝜇𝑇𝑖𝑂2
) (5.5) 

where G is the energy of the supercell, 𝑁𝑆𝑟𝑂 and 𝑁𝑇𝑖𝑂2
 are the numbers of formula units of SrO 

and TiO2 in the supercell, and 2𝐴𝑆  is the area of the two equivalent interfaces in the supercell. 

The chemical potentials 𝜇𝑆𝑟𝑂 and 𝜇𝑇𝑖𝑂2
 are chosen to lie within certain bounds at standard 

temperatures and pressures: 𝜇𝑆𝑟𝑂 = 𝑔𝑆𝑟𝑂
0 + (1 − 𝜆)Δ𝐺𝑓,𝑆𝑟𝑇𝑖𝑂3

0 , and 𝜇𝑇𝑖𝑂2
= 𝑔𝑇𝑖𝑂2

0 + 𝜆Δ𝐺𝑓,𝑆𝑟𝑇𝑖𝑂3

0 , 

where 0 ≤ 𝜆 ≤ 1 and 𝑔𝑆𝑟𝑂
0 , 𝑔𝑇𝑖𝑂2

0  are the energies per formula unit of the bulk SrO (in rock-salt 

structure) and TiO2 (in rutile structure), respectively. Δ𝐺𝑓,𝑆𝑟𝑇𝑖𝑂3

0  is the formation energy of 

SrTiO3 per formula unit from component binary oxides SrO and TiO2. When λ = 0(1), bulk 

phases of SrTiO3 and TiO2(SrO) coexist.  

Our calculated result for ∆𝐺𝑓,𝑆𝑟𝑇𝑖𝑂3

0 at T = 0 K is listed together with the literature data in 

Table 5.1. VASP calculation gives ∆𝐺𝑓,𝑆𝑟𝑇𝑖𝑂3

0 = −1.398 𝑒𝑉, which is about 0.1 eV higher than 

the value obtained using CASTEP package [Chua et al., 2010]. From the comparison, we can see 

that the energy obtained in the present work from VASP calculation is closer to the experimental 

data, although the results from difference between different experiments are somewhat different. 
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Table 5.1 Comparison of the formation energy of SrTiO3 per formula unit from 

constituent binary oxides SrO and TiO2, i.e. ∆𝐺𝑓,𝑆𝑟𝑇𝑖𝑂3

0 , between theoretical 

calculations and experimental measurements at T = 0 K. 

 In eV/f.u. In kJ/mol 

VASP −1.398 −134.9 [This work] 

CASTEP −1.501 
−144.8 

[Chua et al., 2010] 

Experiment 

- 
−121.9 

[Jacob and Rajitha, 2011] 

- 
−137.7 

[Knacke et al., 1991] 

 

5.4 Results and discussions 

5.4.1 Validation 

Before applying AGA, we first evaluated the performance of the mating operation for 

interface structure prediction shown in Fig. 5.1. Using the classical potentials for SrTiO3 from 

Ref. [Benedek et al., 2008], we searched for several known structures, i.e., bulk SrTiO3, 

stoichiometric Σ3(111)[110] and Σ3(112)[110] GBs, with only chemical composition as input. 

When the orientation of the rigid-bulk part is set to be same as the fixed-bulk part (i.e., without 

tilting), the search successfully recovered the bulk SrTiO3 structure, as expected. For the 

stoichiometric cases, the SrO3-terminated structure with mirror-symmetry was found to be most 

stable for the Σ3(111)[110] GB, and both the SrTiO-terminated structure with mirror-symmetry 

and the O2-terminated structure with mirror-glide symmetry were obtained for the Σ3(112)[110] 

GB, consistent with previous studies. Furthermore, using the same Buckingham potential as in 

Ref. [Chua et al., 2010] and including 6 atoms (2 Ti atoms and 4 O atoms) in the interface 

region, the Γ2-lit structure for the non-stoichiometric 𝛤𝑇𝑖𝑂2
= 2 GB were successfully 

reproduced within 5 generations of our GA search. When the number of atoms in the interface 
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region was increased, several structures with energies much lower than that of the Γ2-lit structure 

were found under the same classical potential. However, these structures are not energetically 

more favorable in DFT calculations. The results suggest that our interface structure search 

scheme is efficient and robust, but the classical potentials from the literature are not accurate and 

transferable to describe various grain boundaries in SrTiO3. 

5.4.2 AGA searches 

 

Figure 5.2 Grain boundary free energies as a function of 𝜇𝑇𝑖𝑂2
 for the Σ3(112)[110] 

system. The dashed lines represent structures reported in the literature [Chua 

et al., 2010] with excess equal to 1 and 2, and the solid lines represent the 

structures obtained from AGA searches with different excesses. σ,  𝜇𝑇𝑖𝑂2
 

and 𝑔𝑇𝑖𝑂2

0  are the interfacial excess free energy, chemical potential of TiO2 

and free energy of bulk TiO2 respectively, as defined in the methods section. 
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The problem discussed above encountered by classical potentials can be overcome by the 

AGA method. To demonstrate this point, we performed structure searches for the Σ3(112)[110] 

GBs with 𝛤𝑇𝑖𝑂2
 between -3 and +3 using AGA. In the stoichiometric case, i.e. 𝛤𝑇𝑖𝑂2

= 0, the 

most stable structure from the AGA search is the O2-terminated mirror-glide symmetric 

structure, which is about 0.02 J·m
-2

 lower than the SrTiO-terminated mirror symmetric structure, 

consistent with the results obtained using classical potential. However, for the non-stoichiometric 

GBs, the AGA searches revealed several new structures that are missed in previous studies. 

These new structures are stable over a wide range of the chemical potentials, as plotted in Fig. 

5.2.  

The lowest-energy structures obtained from AGA search for all the three positive  Γ𝑇𝑖𝑂2
 

(= 1, 2, 3) cases are more stable than the stoichiometric ones when the chemical potential of TiO2 

is taken to be close to the bulk cohesive energy of TiO2 (i.e. λ is close to 0, see the methods 

section). When λ = 0, the interfacial excess free energy σ of the lowest-energy structure for 

 𝛤𝑇𝑖𝑂2
= 1 from AGA search is about 0.12 J·m

-2
 lower than that of the stoichiometric GB and 

about 0.4 J·m
-2

 lower than that of the structure proposed in the literature [Chua et al., 2010]. The 

lowest-energy structure with  Γ𝑇𝑖𝑂2
= 2 from AGA search is about 0.17 J·m

-2
 lower in σ than the 

Γ2-lit structure and 0.13 Jm
-2 

lower than the stoichiometric GB. For 𝛤𝑇𝑖𝑂2
= 3, the lowest-energy 

structure from AGA search is about 0.11 J·m
-2

 lower in σ than the stoichiometric GB. We 

noticed that as the chemical potential of TiO2 is very close to the cohesive energy of bulk TiO2, 

Γ2-lit has slightly higher energy than that of the stoichiometric GB structures, while the 

calculation in Ref. [Chua et al., 2010] showed that Γ2-lit structure is energetically more 

favorable. This small discrepancy could be due to the different setups in the DFT calculations. 
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Because the energy difference from the two DFT calculations is very small, it will not affect the 

conclusion that the new structures found from our AGA search are more stable. 

 

Figure 5.3 New grain boundary structures for positive Γ𝑇𝑖𝑂2
. (a) 𝛤𝑇𝑖𝑂2

= 1 

Σ3(112)[110] grain boundary; (b) 𝛤𝑇𝑖𝑂2
= 2 Σ3(112)[110] grain boundary; 

(c) 𝛤𝑇𝑖𝑂2
= 3 Σ3(112)[110] grain boundary. The black arrows point to the 

Ti atoms with coordination number 5 and the purple vertical lines indicate 

one of the two equivalent grain boundary regions.  

 

The lowest-energy structures for 𝛤𝑇𝑖𝑂2
 = 1, 2, 3 obtained from AGA search are plotted in 

Fig 5.3(a), (b), and (c) respectively. We noticed that those low-energy structures tend to have Ti 

atoms bonded with six or five oxygen atoms in the GB region. This tendency to lower the energy 

is related to bulk SrTiO3 structure, in which each Ti atom is in the center of an octahedron 

formed by oxygen atoms. By comparing our structure for 𝛤𝑇𝑖𝑂2
= 1 [Fig. 5.3(a)] with the one 

proposed in the literature [Chua et al., 2010], we found that both structures have 2 Ti atoms in 

the GB region bonded with 5 oxygen atoms, but the locations of the empty octahedron sites are 

different in the two structures. In the lowest-energy structure for 𝛤𝑇𝑖𝑂2
= 2 [Fig. 5.3(b)], all the 
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Ti atoms in the GB region have 6-fold coordination with oxygen atoms, while in the Γ2-lit 

structure two of Ti atoms have coordination number of 4. As plotted in Fig. 5.3(c), in the lowest-

energy structure for 𝛤𝑇𝑖𝑂2
= 3, all the Ti atoms at the GB bond with 6 oxygen atoms, except one 

having coordination number of 5. 

 

Figure 5.4 New grain boundary structures for negative 𝛤𝑇𝑖𝑂2
. (a) 𝛤𝑇𝑖𝑂2

= −2 

Σ3(112)[110] grain boundary; (b) 𝛤𝑇𝑖𝑂2
= −3 Σ3(112)[110] grain 

boundary. The purple lines indicate one of the two equivalent grain 

boundary regions. Note: both structures plotted here are repeated twice 

along [11-1] direction and the unit cell is shown as the black box. 

 

In Ref. [Chua et al., 2010], for negative Γ𝑇𝑖𝑂2
, their genetic algorithm search was unable 

to locate any stable structures. In our study, stable structures for negative Γ𝑇𝑖𝑂2
 can be found (see 

Fig. 5.2).  For  𝛤𝑇𝑖𝑂2
= −2 and  𝛤𝑇𝑖𝑂2

= −3, the structures obtained from AGA search are more 

stable than the stoichiometric GBs as the chemical potential of SrO is close to the cohesive 

energy of the bulk SrO (i.e. λ close to 1). When λ = 1, the interfacial free energy of the  𝛤𝑇𝑖𝑂2
=
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−2 structure is about 0.58 Jm
-2

 lower than that of the O2-terminated stoichiometric structure. The 

atomic structures of  𝛤𝑇𝑖𝑂2
= −2 and −3 are plotted in Fig 5.4(a) and (b). Combining the results 

with both positive and negative excesses, we can see that the stoichiometric Σ3(112)[110] GB is 

stable only in a small region of the chemical potential.  

5.4.3 Discussions 

We note that the AGA method is greatly superior to the conventional approach using 

classical potentials followed by refinements by first-principles calculations because the 

requirements for the classical potentials in the two approaches are very different. The 

conventional GA scheme requires accurate and transferable classical potentials that can describe 

the complicated global energy landscape of the system, so that the global energy-minimum 

structure can be captured from the GA search as a candidate for further refinement by first-

principles calculations. Due to the simplicity of the interactions assumed by the classical 

potentials, it is usually very difficult and in many cases impossible to fit a classical potential 

which can accurately describe the global energy landscape of systems containing multiple 

chemical elements. In contrast, the classical potential in our AGA scheme is only an auxiliary 

potential to speed up the exploration of the configuration space. Such auxiliary classical 

potentials are updated adaptively under the guidance of first-principles calculations to describe 

the local energy landscape around different basins separately as schematically shown in Fig. 5.5. 

It is much easier to adjust the auxiliary potentials to accurately describe the energy landscape 

around each basin (or a subset of basins) one-by-one. As an example to show the different 

performances of conventional GA and AGA, the relative energies of two GB structures with 

 𝛤𝑇𝑖𝑂2
= 2 obtained from conventional GA and AGA are compared in Table 5.2. Structure A is 

the lowest-energy structure obtained from the AGA search, while structure B is the ground-state 
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structure from the conventional GA search using the Buckingham potential. First-principles DFT 

calculations confirm that structure A has lower energy, same as the AGA result. We note that 

although the Buckingham potential fits well to bulk SrTiO3 properties, it fails to describe the 

lowest-energy structure at the GB. If the structure A is relaxed using the Buckingham potential, 

its energy is much higher than that of the structure B. Therefore, the true ground-state structure, 

i.e. structure A is unlikely to be captured by the conventional GA search. On the other hand, both 

structures with correct energy order can be captured by the AGA search since it can sample 

different local basins in the global energy landscape.  

 

Table 5.2 Comparison of the performance of different potentials. Total energies of two 

structures with  𝛤𝑇𝑖𝑂2
= 2 obtained from AGA search (structure A) and the 

conventional GA search using Buckingham potential (structure B) were 

calculated. They are relaxed by the Buckingham type potential (pot0), one of 

the adapted potentials (potA) and first-principles method (DFT) respectively. 

The calculations are based on supercell model with two equivalent grain 

boundaries (total 132 atoms) and the energy of structure B is set to be 0 as 

reference. 

 𝛤𝑇𝑖𝑂2
= 2 Structure A Structure B 

E(pot0) (eV) +1.74 0 

E(potA) (eV) −0.966 0 

E(DFT) (eV) −0.435 0 
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Figure 5.5 Schematic representation of potential energy surfaces explored in the AGA 

searches. Dashed line indicates the DFT energy landscape and solid lines 

indicate the energy surface of different classical potentials. In the AGA 

process, the classical potential is adaptively adjusted to fit the DFT results, 

so that it can hop between different local minima in the DFT energy surface 

(e.g. #1 and #2). Structure A and B are schematic representations of the 

examples in Table 5.2. Structure A is energetically unfavorable under 

classical Buckingham potential (e.g. #3), therefore is highly possible to be 

missed in the GA searches using this potential. 

  

Figure 5.6 Energetic evolution in the AGA process. Each point on this plot represents 

the DFT energy of a selected structure, whose force and stress information 

was used to fit the classical potential. DFT energy here was calculated based 

on the structures from the GA searches using classical potential without 

further relaxation. In the end of the AGA search, structures in the energy 

window indicated by the shaded area were collected for final DFT relaxation 

optimizations to capture the global energy minimum structure. 



88 

 

Adapted auxiliary potentials throughout the AGA iterations also help the system hop 

from one basin to another and ensure efficient and accurate sampling of the configuration space. 

Figure 5.6 is an example of the energetic evolution versus the number of the adaptive iterations. 

Each point represents the DFT energy of a structure from the converged GA search using the 

classical potentials. We can see that the DFT energies of the obtained structures are relatively 

high in the first iteration and start to drop after the potential is adjusted. During the later search 

process, while the potentials keep being tuned, the corresponding DFT energies are hopping 

around. It should be noted that, since the classical potential can evolve towards a new set of 

parameters which can explore a new basin in the energy landscape, the DFT energy is not 

necessary decreasing with the iteration but rather fluctuating from iteration to iteration. In the 

end of the AGA search, all the structures within certain energy window, as shown in Fig. 5.6, 

will be collected and further optimized by first-principles calculations. In this way, the search 

can avoid being trapped at certain local minimum and locate the global optimum in the DFT 

energy surface. 

Due to the complexity of the GB and interface systems, it is too time-consuming to 

perform GA searches using straightforward first-principles calculation. On the other hand, results 

obtained from classical potential search are not always reliable. In contrast, not only can AGA 

adjust the potentials iteratively to describe the local minima more accurately, it also allows the 

search to visit different basins in the energy surface more efficiently. Therefore, with current 

available computing capability, AGA provides a feasible tool for GB and interface structure 

predictions and optimizations. 
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5.5 Conclusions 

In summary, we developed an efficient and accurate first-principles method for complex 

GB and interface structure prediction. It allows us to predict low-energy structures for systems 

with hundreds of atoms with affordable computing power. We performed AGA searches for the 

SrTiO3 Σ3(112)[110] GBs with  𝛤𝑇𝑖𝑂2
 value ranges from −3 to +3. New lower-energy structures 

are predicted for the non-stoichiometric boundary, which provided a more comprehensive insight 

into the stability of the GB in SrTiO3 over a wide range of chemical potential μ𝑇𝑖𝑂2
. In particular, 

We show that, in contrast to the previous results in the literature, the stoichiometric boundary is 

stable only within a chemical potential range of −0.72 eV < 𝜇𝑇𝑖𝑂2
− 𝑔𝑇𝑖𝑂2

< −0.15 eV. Outside 

this range, non-stoichiometric grain boundary structures are energetically more favorable. The 

capability to efficiently predict atomic structures of GBs and interfaces at the accuracy level of 

DFT paves a way for more accurate description of various properties at the interfaces and helps 

to speed up the pace of design and discovery of novel materials. 

  



90 

 

CHAPTER 6. FAST MOTIF-NETWORK SCHEME FOR EXTENSIVE 

EXPLORATION OF THE CRYSTAL STRUCTURES IN SILICATE 

CATHODES
6
 

 

6.1 Abstract 

In this chapter, a motif-network search scheme is presented to study the crystal structures 

of the dilithium/disodium transition metal orthosilicates A2MSiO4. Using this fast and efficient 

method, the structures of all six combinations with A = Li or Na and M = Mn, Fe or Co were 

extensively explored. In addition to finding all previously reported structures, we discovered 

many other different crystal structures which are highly degenerate in energy. These tetrahedral-

network-based structures can be classified into 1D, 2D and 3D types based on M-Si-O frames. A 

clear trend of the structural preference in different systems was revealed and possible indicators 

that affect the structure stabilities were introduced. For the case of Na systems which have been 

much less investigated in the literature relative to the Li systems, we predicted their ground state 

structures and found evidence for the existence of new structural motifs. 

6.2 Introduction 

Li2MSiO4 (M = Mn, Fe, Co) have been the subject of intensive studies as promising Li 

storage materials because of their high potential capacities, low cost, environmental friendliness 

and excellent safety characteristics. Realizing a two electron exchange per formula in 

orthosilicates leads to higher capacities (e.g. ~ 331 mAh/g for Li2FeSiO4) than the olivine 

                                                 
6
 This chapter is a version of the submitted article: Zhao, X., Wu, S. Q., Lv, X. B., Nguyen, M. C., Wang, C. Z., Lin, 

Z. J., Zhu, Z. Z., and Ho, K. M. “Fast motif-network scheme for extensive exploration of complex crystal structures 

in silicate cathodes”, arXiv: 1504.02070. 
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phosphates where there is only one Li atom per formula unit [Dominko et al., 2006; Kokalj et 

al., 2007]. In the last decade, much effort has been devoted to the study of different Li2MSiO4 

polymorphs. However, it was reported that Li2FeSiO4 exhibits a reversible capacity of only 130 

~ 165 mAh/g [Nytén et al., 2005; Armstrong et al., 2011; Sirisopanaporn et al., 2011] or high 

initial charge capacities (~ 240 mAh/g) with noticeable decay in the following cycles [Lv et al., 

2011; Kojima et al., 2012], while both Li2MnSiO4 [Dominko et al., 2006; Li et al., 2007; 

Muraliganth et al., 2010; Gummow et al., 2012] and Li2CoSiO4 [Lyness et al., 2007] show more 

than one electron exchange in the first charge cycle but suffer from poor rate capability and 

drastic capacity fade. 

In comparison with the Li compounds, much less experimental work was carried out to 

investigate the orthosilicates as Na host matrix. The chemical similarities between Na and Li 

imply that exploration of the sodium equivalent offer more opportunities to advance energy 

storage technology through rechargeable batteries, owing to the even lower cost and ubiquitous 

availability of Na. Recently [Chen et al., 2014], Na2MnSiO4 was synthesized and investigated 

for use as a positive electrode material for Na secondary batteries. A reversible capacity of 125 

mAh/g was found compared with the theoretical capacity of 278 mAh/g based on the two 

electron reaction.  

The discrepancy between measured and calculated capacities has been attributed to the 

instability of the crystal structures upon delithiation/desodiation [Kokalj et al., 2007; Duncan et 

al., 2011; Chen et al., 2014; Lee et al., 2014]. In order to circumvent the capacity fading and 

further improve the electrochemical properties, it is essential to understand their crystal 

structures and explore other possible polymorphs that may be stable in the delithiated/desodiated 

state.  
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Experimental data indicate that the crystal structures of the orthosilicate compounds 

A2MSiO4 (A = Li, Na; M = Mn, Fe, Co) belong to a family of tetrahedral structures that exhibit a 

rich polymorphism [West and Glasser, 1972; Bruce and West, 1980]. Polymorphs of these 

tetrahedral structures were classified into low- and high-temperature forms, which differ in the 

distribution of cations within tetrahedral sites of a hexagonal close-packed (hcp) based 

arrangement of oxygen. Five different structures were observed and studied for Li2FeSiO4 

[Nytén et al., 2005; Armstrong et al., 2011; Sirisopanaporn et al., 2011; Eames et al., 2012; 

Saraciber et al., 2012; Zhang et al., 2012], three as-synthesized (two are orthorhombic, Pmnb 

and Pmn21; one is monoclinic, P21/n) and two cycled phases (Pmn21-cycled and P21/n-cycled). 

Likewise, multiple phases have been reported for Li2MnSiO4 (Pmn21 [Dominko et al., 2006], Pn 

[Duncan et al., 2011], P21/n [Politaev et al., 2007] and Pmnb [Gummow et al., 2012]) and 

Li2CoSiO4 (Pnb21 [Armstrong et al., 2010], Pmn21 [Lyness et al., 2007; Armstrong et al., 2010], 

and P21/n [Armstrong et al., 2010]). The recent work of Na2MnSiO4 [Chen et al., 2014] showed 

that Na2MnSiO4 has a monoclinic structure with space group Pn.  

In the above reported structures of A2MSiO4, all the atoms form tetrahedral units, i.e. 

every atom is in the center of a tetrahedron and has a coordination number of 4. Taking 

advantage of this structural feature, we developed a fast motif-network scheme based on genetic 

algorithm [Deaven and Ho, 1995] to explore the complex crystal structures of these materials. 

6.3 Methods 

Although systematic enumerations of 4-connected crystalline networks have been applied 

to zeolites and other silicates [Deem et al., 1989; Treacy et al., 2004; Foster et al., 2004], 

considering the great effort of selecting energetically preferable structures out of millions of 

possible configurations owing to the lack of decent classical potentials for A2MSiO4, here we 
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took a different route to obtain tetrahedral networks from the low-energy crystal structures of 

silicon. Silicon is well known to have rich phases and forms sp3-hybridized framework 

structures [Nguyen et al., 2014]. We used GA and Tersoff potential [Tersoff, 1998] to search for 

silicon structures that form tetrahedral networks. Once such a silicon structure was located, all 

the sites were re-assigned to A (Li or Na), M (Mn, Fe or Co), Si and O atoms in the ratio of 

2:1:1:4. During the substitution, only structures where every oxygen atom bonds with two A 

atoms, one M atom and one Si atom, as illustrated in Fig. 6.1, were accepted. This is because of 

the observation that structures with uniformly distributed A, M and Si atoms have noticeably 

lower energies. Newly generated structures that had not been visited were collected for further 

refinement by first-principles calculations. In this way, various A2MSiO4 structures were 

obtained. 

 
Figure 6.1 Schematic representation of the structure generations. The A2MSiO4 

structures are generated from tetrahedral networks, where A = Li or Na; M = 

Mn, Fe or Co. For a given tetrahedral network, once one of its sites (e.g. the 

center of the tetrahedron) is assigned to oxygen, its four neighbors are 

randomly assigned to two A atoms, one M atom and one Si atom. Then, 

neighbors of A, M and Si are only assigned to oxygen atoms. In such an 

iterative manner, the occupations of all sites are determined. The oxygen-

centered tetrahedron is shown by red, transparent planes. 
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The first-principles calculations on A2MSiO4 (A = Li, Na; M = Mn, Fe, Co) were carried 

out using the projector augmented wave (PAW) method [Kresse and Joubert, 1999] within 

density functional theory (DFT) as implemented in the Vienna ab initio simulation package 

(VASP) [Kresse and Furthmuller, 1996]. The exchange and correlation energy is treated within 

the spin-polarized generalized gradient approximation (GGA) and parameterized by Perdew-

Burke-Ernzerhof formula (PBE) [Perdew et al., 1996]. Wave functions are expanded in plane 

waves up to a kinetic energy cut-off of 500 eV. Brillouin zone integration was performed using 

the Monkhorst-Pack sampling scheme [Monkhorst and Pack, 1976] over k-point mesh resolution 

of 2π×0.03 Å
-1

. The ionic relaxations stop when the forces on all the atoms are smaller than 0.01 

eV·Å
-1

. 

Since the energy difference between ferromagnetic (FM) and antiferromagnetic (AFM) is 

very small and the resulting lattice parameters are almost the same [Wu et al., 2007; Wu et al., 

2009], all calculations in present work were spin-polarized with FM configuration. The effects 

due to the localization of the d electrons of the transition metal ions in the silicates were taken 

into account with the GGA + U approach of Dudarev et al. [Dudarev et al., 1998]. Within the 

GGA + U approach, the on-site coulomb term U and the exchange term J were grouped together 

into a single effective interaction parameter Ueff = U-J. In our calculations, U-J values were set to 

4 eV for M = Fe, and 5 eV for M = Co, Mn. 

Generation of the tetrahedral networks costs very little time due to the usage of classical 

potentials during the GA searches. In this work, up to 48 atoms in the unit cell were searched for 

Si to find tetrahedral networks, i.e. up to 6 formula units were considered for A2MSiO4. In order 

to obtain as many tetrahedral networks as possible, energies of the silicon structures that satisfy 
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the coordination constraints (every atom in the structure has a coordination number of 4) were 

lowered by a pre-set amount to increase their chance of survival. 

6.4 Results and discussions 

 

Figure 6.2 Energetic results. (a) Relative energies of the structures obtained in this 

work for Li2MnSiO4 (LMS), Li2FeSiO4 (LFS), Li2CoSiO4 (LCS) and 

Na2MnSiO4 (NMS), Na2FeSiO4 (NFS), Na2CoSiO4 (NCS). Triangles 

(green) indicate the layered 2D-frame structures and diamonds (blue) 

indicate 3D-frame structures. Structures that have been reported in the 

literature are shown in red color and also labeled by their space groups. For 

the two LFS Pn phases, the lower-energy one corresponds to the Pmn21-

cycled phase with 2 formula units and the higher-energy one corresponds to 

the P21/n-cycled phase with 4 formula units. (b) Relative energies of the 

most stable 3D-, 2D-, and 1D-frame structures for each system. Energy of 

the ground state structure for each system is set to 0 eV as reference in (a) 

and (b). 
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Results of the A2MSiO4 structures from current study are summarized in Fig. 6.2, where 

the relative energies are plotted by setting the energy of the ground state structure to 0 eV for 

each system. We found that the structures of A2MSiO4 are highly degenerate in energy, in 

agreement with the rich crystal chemistry observed in experiments. Using our method, in 

addition to the structures previously reported in the literature [shown in red color in Fig. 6.2(a)] 

and structures included in the Materials Project database [Jain et al., 2013], many more 

structures with competitive or even lower energies were found. Within the energy window 

plotted in Fig. 6.2(a), less than 10 structures were included in the Materials Project database for 

each Li system and none for the Na systems, while more than 30 structures are shown in Fig. 

6.2(a) for each system. We classified those low-energy structures into different types based on 

the M-Si-O frames [Saracibar et al., 2012; Lee et al., 2014]. 

6.4.1 3D-frame structures 

In the first type (referred to as “3D-frame structure” from now on), M, Si and O atoms 

form a 3D frame (see examples plotted in Fig. 6.3). Difference between structures in Fig. 6.3(a), 

(b) and (c) comes from the different orientations of the tetrahedrons and all three structures 

consist of only 2-hole ring as indicated by the arrow in Fig. 6.3(a). In contrast, structures in Fig. 

6.3(d) and (e) consist of a combination of 1-hole ring and 3-hole ring as indicated in the plot. 

Structure in Fig. 6.3(f) mixes the 2-hole rings and the combination of 1 & 3-hole rings. In these 

structures, M and Si atoms occupy different tetrahedron centers in an oxygen hcp framework, 

affecting the orientation of the tetrahedrons. Following this structural motif, more structures with 

similar features and various mixings can be constructed by increasing the size of the unit cell.  
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Figure 6.3 Examples of the 3D-frame structures. Space group of each structure is (a) 

Pn (# 7), (b) Pna21 (# 33), (c) C2221 (# 20), (d) Pna21 (# 33), (e) P212121 

(#19), (f) Pn (# 7), (g) I-4 (# 82), and (h) Pccn (# 56). Solid arrow in (a) 

indicates the 2-hole ring; dash arrow in (d) indicates the 3-hole ring; dot 

arrow in (d) indicates the 1-hole ring. The black boxes indicate the unit cells 

of each structure. 

 

The structures plotted in Fig. 6.3(g) and (h) look distinct from the others, but the M and 

Si atoms share the same local tetrahedral environment. Although less favored in energy than the 

structures plotted in Fig. 6.3(a-f), the differences are very small. For instance, for Na2FeSiO4, the 

energies of the structures in Fig. 6.3(g) and (h) are about 0.11 and 0.12 eV/f.u. higher 

respectively than the ground state structure. 
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6.4.2 2D-frame structures 

 

Figure 6.4 Examples of the 2D-frame structures. Space group of each structure is (a) 

Pnma (# 62), (b) Pmn21 (# 31), (c) P21/n (# 14), (d) Pmn21 (# 31), (e) P21/m 

(# 11), (f) Pn (# 7). Two mutually perpendicular views are plotted for each 

structure. The black boxes indicate the unit cells of each structure. 

 

The second type (referred to as “2D-frame structure”) is that M, Si and O atoms form 

disconnected layers, as those plotted in Fig. 6.4. Similar to the 3D-frame structures, M and Si 

atoms can occupy different tetrahedron centers and as a result, the orientation of the tetrahedrons 

looks different in different structures. For example, the structures plotted in Fig. 6.4(a), (b) and 

(d) are from various stacking of two different tetrahedron-oriented layers and in each layer, all 
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the tetrahedrons point to the same direction. In comparison, layers in the structures plotted in Fig. 

6.4(c) and (e) mix different-oriented tetrahedrons. It can also be expected that by increasing the 

unit cell size, more ways to stack those layers can be found. Meanwhile, through the exchange of 

the A and M atoms, more layered structures were found as Fig. 6.4(f), which becomes closer to 

the 3D-frame structures. 

6.4.3 Existence of 1D-frame structures?  

 

Figure 6.5 Examples of the 1D-frame structures. The structure plotted in (a) and (b) has 

space group Cmcm (#63) and the structure plotted in (c) and (d) has space 

group Pnma (# 62). In (a) and (c), the M-centered and Si-centered 

tetrahedrons are plotted; in (b) and (d), the A-centered tetrahedrons are 

plotted. Black boxes indicate the unit cells of each structure. 

 

Both the 2D- and 3D-frame structures have been observed in experiments for Li2MSiO4 

and extensively studied in the literature. It is natural to continue the query of the existence of 

“1D-frame structure”, where the M, Si and O atoms form disconnected rods. From our search, 
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such structures were observed as shown in Fig. 6.5. In both structures plotted in Fig. 6.5, the M-

centered and Si-centered tetrahedrons are edge-sharing with each other and extend in one 

direction to form the M-Si-O rod. However, the orientations of the M-Si-O rod are different 

between them, which can be seen by comparing Fig. 6.5(a) and (c). From the view of the Na-

centered tetrahedrons, we see that in the Cmcm structure [Fig. 6.5(b)], A and O atoms also form 

separated rods which align perpendicularly to the M-Si-O rods, while in the Pnma structure [Fig. 

6.5(d)], A and O atoms forms 2D layers. In fact, the Pnma structure plotted in Fig. 6.5(c) and (d) 

can be obtained from the structure plotted in Fig. 6.4(a) by switching all the alkali metal atoms 

with M and Si atoms and arranging M and Si in an orderly manner. 

Under above classification, different symbols are used in Fig. 6.2(a) to represent the types 

of those low-energy structures obtained in this work. It can be seen that within the energy 

window plotted in Fig. 6.2(a), i.e. 0.1 eV/f.u. for Li systems and 0.2 eV/f.u. for Na systems, more 

2D-frame structures are found for the Li systems and more 3D-frame structures are found for the 

Na systems. 1D-frame structures are not showing in Fig. 6.2(a) due to their relatively higher 

energies (0.1~0.2 eV/f.u. for Li-systems and 0.2~0.4 eV/f.u. for Na-systems). In Fig. 6.2(b), we 

plotted the relative energies of the most stable 3D-, 2D-, and 1D-frame structures for each 

system, from which the stabilities of each type can be compared. The preference of different 

structure types for different systems will be discussed next. 

6.4.4 Structure preference and analyses  

In Table 6.1, we listed the lowest-energy structures for each system in three different 

types. We note that 2D-frame structures are the ground state for Li2MnSiO4 and Li2FeSiO4 while 

3D-frame structures are more favored by Li2CoSiO4. For the Na-system, all three favor the 3D-

frame structures. The trend can also be seen clearly from Fig. 6.2(b). This could be related to the 
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atomic size of the cations. By comparing the atomic radius r of A and M atoms [r(Na) > r(Li) > 

r(Mn) > r(Fe) > r(Co)], we see that with r(A)/r(M) getting closer to 1, layered structures are 

more favored. When the atomic size difference between A and M is too big, layered structures 

will introduce large strain, thus becoming less favored. 

On the other hand, it can be seen from Fig. 6.6(a) that when the A-O bond length is 

smaller than the M-O bond length, 2D-frame structures are favored; otherwise, 3D-frame 

structures are favored. Thus the relative bond length between A-O and M-O can serve as a 

clearer indicator. At the same time, we see that Si-O bond length are very close for all six 

systems and the changes in A-O bond lengths among different transition metal systems are also 

small for both Li and Na. In the Na systems, the variance (standard deviation) of the bond length 

from the mean value is significantly larger than the Li system, i.e. larger distortions are found in 

the Na systems due to the larger size of the Na atom. As a result, in comparison with Li2MSiO4, 

the structures of Na2MSiO4 have relatively lower symmetries. 

To compare the 2D- and 3D-frame structures, in Fig. 6.6(b) and (c), we plotted the 

statistical results of the M-O bond lengths and volumes of them. It is found that for all six 

systems, the M-O bond lengths in the 2D-frame structures are larger than those in the 3D-frame 

structures, yet the volumes of the 2D-frame structures are smaller than those of the 3D-frame 

structures. As for the 1D-frame type, from the information listed in Table 6.1, it can be seen that 

the lowest-energy 1D-frame structure for all six systems has space group Cmcm with much 

larger volume than the 2D- and 3D-frame structures. 
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Table 6.1 Lowest-energy structures of A2MSiO4 in three different types obtained in 

current study. r represents the atomic radius; E is the total energy in eV/f.u.; 

V is the volume of the structure in Å
3
/f.u.; a, b, and c are the lattice 

parameters in Å. 

 Li2MnSiO4 Li2FeSiO4 Li2CoSiO4 Na2MnSiO4 Na2FeSiO4 Na2CoSiO4 

r(A)/r(M) 1.04 1.07 1.10 1.18 1.22 1.25 

1D-

frame 

type 

E -54.891 -53.174 -51.070 -52.212 -50.497 -48.398 

Space 

group 

Cmcm 

(#63) 

Cmcm 

(#63) 

Cmcm 

(#63) 

Cmcm 

(#63) 

Cmcm 

(#63) 

Cmcm 

(#63) 

Lattice 

a=7.40, 

b=7.56, 

c=6.42 

a=7.47, 

b=7.49, 

c=6.30 

a=7.54, 

b=7.52, 

c=6.18 

a=8.89, 

b=8.09, 

c=6.39 

a=8.95, 

b=7.96, 

c=6.31 

a=8.96, 

b=7.98, 

c=6.22 

V 89.80 88.12 87.61 114.89 112.38 111.18 

plot Fig. 6.5(a) Fig. 6.5(a) Fig. 6.5(a) Fig. 6.5(a) Fig. 6.5(a) Fig. 6.5(a) 

2D-

frame 

type 

E -55.061 -53.290 -51.296 -52.484 -50.746 -48.754 

Space 

group 
Pmna (#62) Pmna (#62) 

Pmn21 

(#31) 
P-1 (#2) P-1 (#2) P-1 (#2) 

Lattice 

a=10.91, 

b=6.38, 

c=5.10 

a=10.80, 

b=6.33, 

c=5.05 

a=6.20, 

b=5.46, 

c=5.00 

a=5.61, 

b=6.11, 

c=6.27, 

α=77.64˚ 

β=89.96˚ 

γ=89.87˚ 

a=5.73, 

b=6.05, 

c=6.12, 

α=75.43˚ 

β=87.99˚ 

γ=89.17˚ 

a=5.53, 

b=6.01, 

c=6.20, 

α=103.40˚ 

β=90.27˚ 

γ=90.25˚ 

V 88.66 86.33 84.60 105.00 102.76 100.36 
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Figure 6.6 Structure analyses. (a) Average cation-oxygen bond lengths in different 

systems. The average is calculated over 30 lowest-energy structures for each 

system. The red-shaded area represents systems favoring the 2D-frame 

structures and the blue-shaded area represents systems favoring the 3D-

frame structures. (b) Average M-O bond lengths in the 2D-frame and 3D-

frame structures for different systems. (c) Average volumes of the 2D-frame 

and 3D-frame structures for different systems. The average volume 

difference is plotted as the inset. (d) Local environment of the alkali metal 

atoms and the connections between the cation-centered tetrahedrons in all 

the structures plotted in Fig. 6.2(a). Green color indicates structures that 

have edge-sharing tetrahedrons; red color indicates structures with only 

vertex-sharing tetrahedrons. Different symbol types represent different local 

environment of the A (= Li, Na) atoms, i.e. how many oxygen atoms are 

neighbored by the A atoms. Error bars in plots (a), (b) and (c) represent one 

standard deviation of the samples. 
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 In Fig. 6.6(d), we plotted the local environment of the alkali metal atoms and also the 

connections between the cation-centered tetrahedrons for all the structures in Fig. 6.2(a). To 

determine whether an oxygen atom is counted as a nearest neighbor of the cation atom, we first 

sorted all the cation’s neighbors according to distance and allowed 10% of increase in the bond 

length relative to the average of those which have been counted. The results show that for most 

Li2MSiO4 structures, the Li atoms bond with 4 oxygen atoms; while for Na2MSiO4, Na atoms in 

some structures have different coordination numbers. As shown in Fig. 6.6(d), Na atoms can 

have coordination numbers of 3 or 5.  

Among all the low-energy structures, we also find that most of them contain edge-sharing 

tetrahedrons which are shown in the green color in Fig. 6.6(d). Structures with only vertex-

sharing tetrahedrons, as shown in the red color, are more common in the Na systems, but overall, 

there is no clear indication on how the connection of tetrahedrons affects the stability of the 

structures. 

6.4.5 What can be expected for the Na systems?  

Since the Na-intercalation chemistry of the Na-based systems has been considerably less 

explored, there may be opportunity to find novel electrode materials for sodium-ion battery [Kim 

et al., 2012]. Experimental studies on the orthosilicates as Na host matrix have just begun.   
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Figure 6.7 The lowest-energy 2D-frame structure for the Na systems with space group 

P-1 (#2). (a-c), Views of the P-1 structure along different lattice vectors. (d) 

Na-O pyramids extracted from this structure, where every Na atom bonds 

with 5 O atoms. 

 

In this work, we found that Na systems prefer 3D-frame structures and have relatively 

low symmetries. As shown in Table 6.1, the lowest-energy structure for all the Na systems has 

space group Pn and similar lattice parameters. The Pn structure, which is plotted as Fig. 6.3(a), 

has been reported for Na2MnSiO4 experimentally [Chen et al., 2014]. Among the 2D-frame 

structures obtained in current study, the lowest-energy one for all three Na systems has space 

group P-1. This P-1 structure is plotted in detail in Fig. 6.7. Comparing with those plotted in Fig. 

6.4, the lowest-energy 2D-frame structure for Na system is much more distorted under DFT 

relaxation and the coordination number of all Na atoms is 5. In Fig. 6.7(d), the Na-O pyramids 

were plotted. We can see that the center Na atom sits very close to the base plane and four of the 
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five Na neighbors are almost located on the same plane, i.e. such NaO5 pyramid can be 

considered as half of an octahedron. 

The much larger distortions observed in the Na systems indicates that structures with 

brand new motifs and more competitive energies could exist for the Na compounds, which 

cannot be fully covered using the method presented in this work. The search space starting from 

tetrahedral networks has been limited and further studies using more general search schemes 

should be carried out in order to get a more comprehensive picture of the Na2MSiO4 structures. 

6.5 Conclusions 

In conclusion, by taking advantage of known structural features, we developed a fast 

motif-network scheme to study the complex crystal structures of the silicate cathode systems for 

Li-ion/Na-ion batteries. Using the tetrahedral networks generated from silicon, we found that the 

structures of A2MSiO4 for both Li and Na systems are highly degenerate in energy. All the 

structures of Li2FeSiO4, Li2MnSiO4, Li2CoSiO4 and Na2MnSiO4 that have been reported in the 

literature were successfully found in our search. Many structures with comparable or even lower 

energies were revealed, and classified into different types based on the M-Si-O frames.  

Through statistical analysis, we showed that structure preference can be related to the 

relative atomic radius of A and M atoms and the relative bond length of A-O and M-O bonds. 

Based on these factors, the structures of A2MSiO4 systems may be controlled through alloying, 

e.g. doping atoms with different sizes. In addition, existence of brand new motif/structure can be 

expected in such systems, especially for the Na compounds. The scheme proposed here can be 

easily extended to other similar systems and serve as a novel approach for extensive exploration 

of complex crystal structures.  
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CHAPTER 7. ONGOING WORK AND CONCLUSIONS  

 

As discussed in the introduction, building the structure-property correlation is essential to 

materials discovery and design. DFT and post-processing tools based on DFT results have 

achieved great success in comprehensive descriptions of materials, such as the mechanical 

properties [LePage and Saxe, 2001; Černý et al., 2003], magnetic properties [Hobbs et al., 2000], 

spectroscopy and dielectric properties [Hofer et al., 2003; Vanderbilt, 2004; Gajdos et al., 2006], 

electronic transport [Kudrnovský et al., 2000; Stokbro et al., 2003], liquids and glasses [Sheng et 

al., 2006], etc. Nonetheless, DFT is not accurate for all problems, even with the continuous effort 

to construct exchange-correlation functionals. In particular, the predictive capability of DFT with 

LDA/GGA becomes limited or completely fails for systems with significant electronic 

correlation effects, such as materials containing transition metal or rare earth element with f-

electron. 

Several methods have been proposed and intensively studied in the last two decades to go 

beyond LDA/GGA, such as LDA+U [Anisimov et al., 1991] and LDA plus Dynamical Mean 

Field Theory (LDA+DMFT) [Savrasov et al., 2001; Kotliar et al., 2004, 2006]. LDA+U method 

takes into account the onsite Coulomb repulsion in a static mean-field way and works well for 

materials with strong electron correlation. But it fails for materials with intermediate correlation 

effect. LDA+DMFT method, on the other hand, behaves correctly from weakly correlated 

materials to strongly correlated materials, but suffering from the large computational load. 

Recently, a combination of density functional theory and the Gutzwiller approximation (LDA + 

GA) has also been developed to calculate the ground-state properties of correlated systems and 

successful applied in a few cases [Deng et al., 2009; Wang et al., 2010; Lanata et al., 2013]. It 
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should be pointed out that the methods mentioned above all have an adjustable parameter U, 

which is manually added in an ad hoc manner and limits their predictive power. 

Different from those hybrid approaches which require prior determination of the screened 

Coulomb repulsion U, a Gutzwiller density functional theory has been proposed as an ab initio 

approach which directly takes the Coulomb integrals of the local orbitals and incorporates the 

screening process explicitly through a self-consistent solution of the many-electron wave 

function [Ho et al., 2008; Yao et al., 2011]. Later, the correlation matrix renormalization 

approximation (CMR) was introduced to calculate the expectation value of the many-electron 

Hamiltonian with a variational many-electron wave function of the Gutzwiller form with reduced 

computational complexity [Yao et al., 2014]. 

Based on the recent development of the parameter-free theory in our group, I am 

currently working on the Gutzwiller density functional theory for studying the strongly 

correlated electron systems, to be more specific, investigating the effect brought by including the 

many-body screening processes into the self-consistent calculations (see Appendix A for more 

details). 

To conclude, the thesis discussed our work on studying the structures and properties of 

materials to assist experiment accelerating the pace of materials discovery and design. We 

developed a fast and efficient algorithm, i.e. AGA, for predicting crystal structures and also 

extended it to tackle interface/surface problems. Using AGA, we were able to solve the 

complicated atomistic structures of the “Co11Zr2” polymorphs, thus identifying the hard magnetic 

phase in this system to be the high-temperature rhombohedral phase. The advantage of the AGA 

method in speed also allowed us to quickly scan multiple compositions of the ternary Co-Zr-B 

system. With the obtained structure information, we built the contour map of the energetics and 
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magnetic properties in the Co-Zr-B system and found that proper boron-doping could greatly 

improve the magnetic anisotropy of the Co-Zr alloys, pointing out a way to optimize their 

magnetic performance through chemical doping. One example of predicting new 

thermodynamically and dynamically stable compounds was also discussed in this thesis, where 

several stable Re-B structures were predicted and shown to be ultra-hard.  

In the viewpoint of method development, we also studied various computational methods 

for multi-scale simulations of material behavior, e.g. Monte Carlo method as discussed in study 

of alnico magnets. In addition, the motif-network scheme was introduced as a special case of the 

topological modeling methods to investigate the complex structures of silicate cathode materials. 

The results provided us a more comprehensive picture of the crystal structures of A2MSiO4 (A = 

Li, Na; M = Mn, Fe, Co) and offered more polymorphs of them which could be stable during the 

delithiated/desodiated process. 

With the continuous effort of the computational community and more and more powerful 

computing capabilities, we believe computational modeling and simulations will play more and 

more important roles in modern materials discovery and design. 
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APPENDIX A. INCLUDING MANY-BODY SCREENING INTO SELF-

CONSISTENT CALCULATIONS 

 

In the case of γ-phase Ce, the electron Hamiltonian can be written in terms of the local 

natural basis-set orbitals: 

 ℋ = ∑ 𝑡𝑖𝛼𝑗𝛽𝑐𝑖𝛼𝜎
† 𝑐𝑗𝛽𝜎

(𝑖𝛼)≠(𝑗𝛽),𝜎

+ ∑ 휀𝑖𝛼𝑐𝑖𝛼𝜎
† 𝑐𝑗𝛼𝜎

𝑖,𝛼,𝜎

+
1

2
∑ 𝑈𝑖

𝛾𝛾′𝑐𝑖𝛾𝜎
† 𝑐𝑖𝛾𝜎𝑐

𝑖𝛾′𝜎′
† 𝑐𝑖𝛾′𝜎′

𝑖,(𝛾𝜎)≠(𝛾′𝜎)

 

(A.1) 

where α, β, γ run over the local correlated orbitals. 𝑡𝑖𝛼𝑗𝛽 is the electron hopping element between 

orbital α at site i and orbital β at site j. 휀𝑖𝛼 is the orbital level. 𝑐†(𝑐) is the electron creation 

(annihilation) operator. 𝜎 is the spin index. 

We introduce a Gutzwiller operator in the following form [Yao et al., 2011]:  

 �̂� = 𝑒− ∑ 𝑔𝑖ℱ|ℱi⟩⟨ℱi|𝑖ℱ  (A.2) 

where |ℱi⟩ is the Fock state generated by a set of {𝑐𝑖𝛾𝜎
† }: |ℱi⟩ = ∏ (𝑐𝑖𝛾𝜎

† )
𝑛𝑖𝛾𝜎

ℱ

|0⟩𝛾𝜎  with 𝑛𝑖𝛾𝜎
ℱ =

⟨ℱi|𝑛𝑖𝛾𝜎|ℱi⟩ which identifies whether there is an electron with spin σ occupied in orbital γ. By 

using a variational wave function of the Gutzwiller form, 

 
|Ψ𝐺⟩ =

�̂�|Ψ0⟩

√⟨Ψ0|�̂�2|Ψ0⟩

 
(A.3) 

the expectation value of the electron Hamiltonian ℋ for the γ-phase Ce (the site indices are 

dropped since there is only one atom in the primitive unit cell.) can be expressed as [Bunemann 

et al., 1998, 2007; Yao et al., 2011]: 
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 〈ℋ〉𝐺 = ∑ (𝑧𝛼𝜎𝑧𝛽𝜎�̃�𝛼𝛽 + 휀�̃�𝛿𝛼𝛽)〈ℎ𝒌𝛼𝜎
† ℎ𝒌𝛽𝜎〉0

𝛼,𝛽,𝜎

− ∑ 휀�̃�𝑛𝛾𝜎
0

𝛾,𝜎

+ ∑ 𝐸ℱ𝑝ℱ

ℱ

 (A.4) 

with, 

 
𝑧 =

1

√𝑛𝛾𝜎
0 (1 − 𝑛𝛾𝜎

0 )

∑ √𝑝ℱ𝑝ℱ′|⟨ℱ|ℎ𝛾𝜎
† |ℱ′⟩|

2

ℱ,ℱ′

 
(A.5) 

 

𝐸ℱ = ⟨ℱ| ∑ 휀�̃�ℎ𝛾𝜎
† ℎ𝛾𝜎

𝛾𝜎

+
1

2
∑ �̃�𝛾𝛾′ℎ𝛾𝜎

† ℎ𝛾𝜎ℎ
𝛾′𝜎′
† ℎ𝛾′𝜎′

 (𝛾𝜎)≠(𝛾′𝜎)

|ℱ⟩ (A.6) 

Here 𝑝ℱ is the occupation probability of configuration |ℱ⟩, which satisfies the following 

constraints: 

 ∑ 𝑝ℱ

ℱ

= 1 (A.7) 

 ∑ 𝑝ℱ𝑛𝛼𝜎
ℱ

ℱ

= 𝑛𝛼𝜎
0  (A.8) 

Next we take a different notation to express the occupation probability 𝑝ℱ in the matrix form: 

 𝑷 = 𝝋†𝝋 = ∑ 𝑐𝑖
∗𝝋𝑖

𝐵∗𝑐𝑗𝝋𝑗
𝐵

𝑖,𝑗

, 𝑤𝑖𝑡ℎ 𝝋 = ∑ 𝑐𝑖𝝋𝑖
𝐵

𝑖

 (A.9) 

The superscript B denotes the basis matrices, which satisfy  𝑇𝑟[𝝋𝑖
𝐵𝝋𝑗

𝐵] = 𝛿𝑖𝑗. Thereafter, 

degeneracy can be introduced to the system by controlling the number of the basis 𝝋𝑖
𝐵 and the 

computational load can be reduced by decreasing the number of variational parameters {𝑐𝑖}. 

 Under the new notation, the constraints (Eq. A.7 and Eq. A.8) become 

 ∑ 𝑐𝑖
∗𝑐𝑖

𝑖

= 1 (A.10) 
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 ∑ 𝑐𝑖
∗𝑐𝑗𝑇𝛼𝜎

𝑖𝑗

𝑖,𝑗

= 𝑛𝛼𝜎
0  (A.11) 

with 𝑇𝛼𝜎
𝑖𝑗

≡ 𝑇𝑟[𝝋𝑖
𝐵∗𝝋𝑗

𝐵𝒏𝜶𝝈]. Meanwhile, we get 

 
𝑧 =

1

√𝑛𝛾𝜎
0 (1 − 𝑛𝛾𝜎

0 )

∑ 𝑐𝑖
∗𝑐𝑗 ∙ 𝑇ℎ𝛾𝜎

𝑖𝑗

𝑖,𝑗

 
(A.12) 

with 𝑇ℎ𝛾𝜎
𝑖𝑗

≡ 𝑇𝑟[𝝋𝑖
𝐵∗𝒉𝜸𝝈

† 𝝋𝑗
𝐵𝒉𝜸𝝈] and 

 ∑ 𝐸ℱ𝑝ℱ

ℱ

= ∑ 𝑐𝑖
∗𝑐𝑗𝑇𝐸𝑖𝑗

𝑖,𝑗

 (A.13) 

with 𝑇𝐸𝑖𝑗 ≡ 𝑇𝑟[𝑬 ∙ 𝝋𝑖
𝐵∗𝝋𝑗

𝐵]. 

By following the same treatment in LDA + U calculations and choosing the double-counting 

(DC) term to be Eq. A. 14, the total energy per unit cell of the system can be expressed as 𝐸𝑇 =

〈ℋ〉𝐺 − 𝐸𝐷𝐶.  

 
𝐸𝐷𝐶 =

1

2
𝑈𝑓𝑓𝑁𝑓(𝑁𝑓 − 1) + 𝑈𝑓𝑑𝑁𝑓𝑁𝑑 (A.14) 

Minimization of the total energy with respect to the band wave function and the local 

configuration occupation probability under the set of constraints given by Eq. A.10 and A.11 

yields the following equations to be solved self-consistently, 

 ℋ𝑒𝑓𝑓
𝒌𝜎 |𝜓𝑛𝒌𝜎⟩ = 𝜖𝑛𝒌𝜎|𝜓𝑛𝒌𝜎⟩ (A.15) 

 ∑ ℳ𝑖𝑗𝑐𝑗

𝑗

= 𝜇0𝑐𝑖 (A.16) 

where 

 ℋ𝑒𝑓𝑓
𝒌𝜎 = ∑ (𝑧𝛼𝜎𝑧𝛽𝜎�̃�𝛼𝛽

𝒌 + 휀�̃�𝛿𝛼𝛽)ℎ𝒌𝛼𝜎
† ℎ𝒌𝛽𝜎

𝛼,𝛽,𝜎

+ ∑ 𝜂𝛾𝜎ℎ𝒌𝛾𝜎
† ℎ𝒌𝛾𝜎

𝛾,𝜎

 (A.17) 
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 ℳ𝑖𝑗 = ∑
𝑒𝛾𝜎

√𝑛𝛾𝜎
0 (1 − 𝑛𝛾𝜎

0 )

𝑇ℎ𝛾𝜎
𝑖𝑗

𝛾,𝜎

+ 𝑇𝐸𝑖𝑗 − ∑ 𝜇𝛼𝜎𝑇𝛼𝜎
𝑖𝑗

𝛼𝜎

 
(A.18) 

with 

 
𝜂𝛾𝜎 = −휀𝛾 +

𝜕𝑧𝛾𝜎

𝜕𝑛𝛾𝜎
0 𝑒𝛾𝜎 + 𝜇𝛾𝜎

− ([𝑈𝑓𝑓 (𝑁𝑓 −
1

2
) + 𝑈𝑓𝑑𝑁𝑑] 𝐼[𝛾∈{4𝑓}] − 𝑈𝑓𝑑𝑁𝑓𝐼[𝛾∈{5𝑑}]) 

(A.19) 

and   

 𝑒𝛾𝜎 = ∑(𝑧𝛽𝜎�̃�𝛾𝛽
𝒌 〈ℎ𝒌𝛾𝜎

† ℎ𝒌𝛽𝜎〉0 + 𝑐. 𝑐. )

𝒌,𝛽

 (A.20) 

𝜇0 and 𝜇𝛼𝜎 are the Lagrange multipliers associated with the constraints (Eq. A.10 and A.11). 

 Both Eq. A.15 and A.16 can be viewed as eigenvalue problems. The dimension of Eq. 

A.15 is usually rather small in the tight-binding representation, while it can be very large for Eq. 

A.16. Additional complexity for Eq. A.16 is that it has to be solved with the constraints. To more 

efficiently solve Eq. A.16, we convert the eigenvalue problem into a direct minimization 

problem. One can rewrite Eq. A.16 as 

 
∑ ℳ̅𝑖𝑗𝑐𝑗

𝑗

− (𝜇0 + ∑ 𝜇𝛼𝜎𝑇𝛼𝜎
𝑖𝑗

𝛼𝜎

) 𝑐𝑖 = 0 (A.21) 

with 

 ℳ̅𝑖𝑗 = ∑
𝑒𝛾𝜎

√𝑛𝛾𝜎
0 (1 − 𝑛𝛾𝜎

0 )

𝑇ℎ𝛾𝜎
𝑖𝑗

𝛾,𝜎

+ 𝑇𝐸𝑖𝑗 
(A.22) 

The left hand side of Eq. A.21 is actually the force acting on the array {𝑐𝑖}, thus force-based 

minimization scheme, such as steepest-decent approach, can be applied to solve it. 

 We start from some initial {𝑐𝑖
(0)

}, and update the (n+1)
th

 iteration by 
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𝑐𝑖
(𝑛+1)

= 𝑐𝑖
(𝑛)

+ 𝛼 (∑ ℳ̅𝑖𝑗𝑐𝑗
(𝑛)

𝑗

− (𝜇0
(𝑛)

𝑐𝑖
(𝑛)

+ ∑ 𝜇𝛼𝜎
(𝑛)

∑ 𝑇𝛼𝜎
𝑖𝑗

𝑐𝑗
(𝑛)

𝑗

 

𝛼𝜎

)) (A.23) 

where α is a chosen scale factor. We find α = 0.01 is generally well-behaved. {𝜇0
(𝑛)

, 𝜇𝛼𝜎
(𝑛)

} are 

determined by requiring the {𝑐𝑖
(𝑛+1)

} to satisfy the constraints Eq. A.10 and A.11, which are a set 

of linear equations by neglecting the high order terms of α: 

 
𝜇0

(𝑛)
∙ 2𝛼 ∑(𝑐𝑖

(𝑛)
)

2

𝑖

+ 2𝛼 ∑ 𝜇𝛼𝜎
(𝑛)

∑ 𝑐𝑖
(𝑛)

𝑐𝑗
(𝑛)

𝑇𝛼𝜎
𝑖𝑗

𝑖𝑗

 

𝛼𝜎

= ∑ [(𝑐𝑖
(𝑛)

)
2

+ 2𝛼𝑐𝑖
(𝑛)

∑ ℳ̅𝑖𝑗𝑐𝑗
(𝑛)

𝑗

]

𝑖

 − 1 

(A.24) 

 
𝜇0

(𝑛)
∙ 2𝛼 ∑(𝑐𝑖

(𝑛)
)

2

𝑇𝛼𝜎
𝑖𝑖

𝑖

+ 2𝛼 ∑ 𝜇
𝛼′𝜎′
(𝑛)

∑(𝑐𝑖
(𝑛)

)
2

𝑇𝛼′𝜎′
𝑖𝑖 ∙ 𝑇𝛼𝜎

𝑖𝑖

𝑖𝛼′𝜎′

= ∑ [(𝑐𝑖
(𝑛)

)
2

+ 2𝛼𝑐𝑖
(𝑛)

∑ ℳ̅𝑖𝑘𝑐𝑘
(𝑛)

𝑘

] ∙ 𝑇𝛼𝜎
𝑖𝑖

𝑖

− 𝑛𝛼𝜎
0  

(A.25) 
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