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Abstract: 

Additive manufacturing is a complex multi–parameter process. Electron beam additive 

manufacturing of titanium (Ti-6Al-4V), which consists of a multitude of layers of deposited metal, 

exhibits significant variability in many key aspects including composition, microstructure, and 

mechanical properties. When establishing methods to predict material properties of these builds, 

it is necessary to consider both geometry and microstructure. Specifically, the material property of 

interest is the yield stress. The constitutive equation that is used to predict the yield stress of 

specimens subjected to stress relief annealing in the α+β phase field has been developed 

previously. The yield stress equation contains random variables which are modeled with 

appropriate cumulative distribution functions that characterize their statistical observations. 

Subsequently, these distributions functions are incorporated into the physically based model using 
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standard simulation techniques. The main purpose of this integrated modeling and statistical 

analysis is to begin to characterize the yield stress, especially in the extreme lower tail which is 

critical for high reliability estimation and prediction. To manage uncertainty and improve the 

estimation of the yield stress, an established methodology for calibration of the distribution 

function for the yield stress using experimental data is applied. 

 

1. Introduction 

 Research and publications into metal-based Additive Manufacturing (AM) has increased 

significantly over the past 2 decades, increasing from fewer than 40 articles/year in 1999 to 

>23,000 articles/year in 2020. The fundamental research has been expansive – ranging from 

seminal papers focusing on fundamental physics of the AM processes [1-5] to the resulting 

compositions and microstructures [6-11] and properties [12,13] of various AM methods.  Other 

researchers have explored the possibilities of producing compositionally or microstructurally 

graded structures [14-17] for either exploration of composition-microstructure relationships and/or 

alloy development [18] or for potential applications. Still other researchers have explored the 

possibility of in-situ analysis of depositions using either high-energy beamlines [19-24] or 

nondestructive evaluation methods using known modalities [25,26].  However, in the main, there 

are still gaps in the published literature.  These include: (i) techniques to predict the performance 

of AM materials; (ii) robust and well-exercised Integrated Computational Materials Engineering 

(ICME) models to link composition and process information through microstructure/defect 

structures and to properties and performance, including the possibility to predict properties and 

performance in compositionally graded structures; (iii) techniques to measure and quantify the 
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materials state1 [27,28] during deposition and/or at appropriate length scales; and (iv) the 

possibility of tailoring/controlling the materials state during the AM process. This paper seeks to 

directly address the first of these gaps and demonstrate a strategy to build upon models that can 

predict properties given a certain composition/microstructure – and predict the resulting expected 

performance of a given part, as defined by a probability distribution function of properties. This 

paper also seeks to demonstrate the techniques to translate a property-prediction model into a 

validated model to predict the probability and statistics of a given property for a large-area additive 

manufacturing approach that is of interest to the aerospace sector for its ability to produce large 

metallic structures.  

 A variant of directed energy deposition, specifically electron beam additive manufacturing 

(EBAM), was used to produce four relatively large-scale and geometrically identical notional 

parts, designated as NP1, NP2, NP3, and NP4B; see Fig. 1. These parts were sectioned for 

microstructural characterization and tensile testing. Because of the geometry of the deposition 

eight different orientations have been considered from which uniaxial tensile specimens have been 

machined (see Fig. 2). The orientations, shown in Fig. 2, are as follows: 

  x – along the build path of the deposited beads, 

  y – normal to the deposited beads in the same plane as deposition, 

  z – normal to both the deposited beads and the plane containing x and y, 

  xc – in the plane of deposition where deposited beads crisscross, 

  zc – normal to the plane of deposition where deposited beads crisscross, 

                                                           
1 According to the seminal publications on the concept of Materials State by E. Lindgren and J. Aldrin, they define 
Materials State Awareness (MSA) as “Digitally Enabled Reliable Nondestructive Quantitative Materials / Damage 
Characterization Regardless of Scale” 
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  I – normal to the plane of deposition where the specimen contains the interface between 

the plate and the deposit, 

  k – 45° in the y – z plane, and 

  kc – 45° in the y – z plane where deposited beads crisscross. 

 Materials characterization was completed for the specimens obtained from NP1, NP2, and 

NP3. Using those data, a scientifically and empirically based model was developed to characterize 

the yield stress sYS [13]. Building upon this model, the first part of this paper is to statistically 

characterize the cumulative distribution functions (cdfs) for the key material properties used in the 

model. The second step is to incorporate the cdfs for the material properties into a simulation 

algorithm to estimate sYS. Confidence bounds using mean square error (MSE) and mean absolute 

error (MAE) are also estimated for the model. To calibrate the model, the third procedure is to use 

the DARPA Open Manufacturing Approach (a variant of the DARPA Accelerated Insertion of 

Materials (AIM) approach [29]) to calibrate the model using the sYS data from NP1, NP2, and 

NP3. Finally, the calibrated model is used to estimate the behavior of the sYS data from NP4B 

blindly, that is, without any data used from NP4B. This final step serves as validation that the 

methodology is sound and warranted for further applications. 

 

2. Statistical Characterization of Material Properties 

 The subsequent analyses are for the additive manufactured a+β stress relived (AMSR) 

conditions [30]. Based upon previous modeling and experimentation, there are nine key material 

variables that need to be statistically characterized [31-35]. This includes four compositional 

variables (Al, V, O, Fe) and five microstructural variables (volume fraction alpha, volume fraction 

colony, colony scale factor, alpha lath width, and beta rib thickness). These variables are also 
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shown in Table 1. Thus, the compositions of the elements Al, O, Fe, and V are critical to the 

analysis presented here. Importantly, this does not exclude the role of other elements on 

strengthening mechanisms (e.g., N, C, and H) which are known to exhibit a strong influence on 

properties, but for which the physical terms to include in the models are unknown, as are discrete 

measurements in these datasets, although it is known that, on average, their concentration is low. 

Figure 3 shows the data for the composition of Al plotted on normal probability paper. Note that 

if the data are linear, then a normal cdf is a good characterization of that data. The data are for all 

orientations considered. The sample size is 78. As indicated by the linear regression, the normal 

cdf is an excellent representation of these data. This observation is also confirmed using maximum 

likelihood estimation (MLE) and the Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) 

goodness-of-fit tests [36]. The estimated mean µ and standard deviation s are 5.697 and 0.131, 

respectively. Both µ and s can be estimated from the slope and intercept from the linear regression 

through the data. The regression analysis also confirms that the estimated cdfs are acceptable 

because the correlation coefficient is 0.994 which is quite close to unity. These observations are 

qualitatively the same for the concentration of V. Figure 4 is similar to Fig. 3 for the V data. The 

correlation coefficient is 0.959 which is indicates that the estimated cdf is acceptable. Table 1 

contains all the random variables, the cdf used for their characterization, and the appropriate 

parameters. 

 The concentrations for Fe and O are discrete, i.e., there are basically only two values for them, 

which are denoted as the minimum (min) and maximum (max) in Table 1. Consequently, they are 

estimated by the fraction of observations for each value. For example, the concentration of O is 

equal to 0.165 for 60 observations and 0.169 for 22 observations. Thus, the estimated fractions are 
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60/82 and 22/82, respectively. Again, the concentration for Fe behaves similarly. See Table 1 for 

the estimated values. 

 There are five other random variables that need to be characterized. These are the alpha volume 

fraction  the colony volume fraction  the alpha lath width  the beta rib width 

 and colony scale factor  While the first four are widely understood for titanium 

microstructures, the fifth may be less well known. Colony scale factor is a measure of the size of 

a colony, analogous to grain size, but with the term factor used as we do not know a priori the 

shape of the colony (or grain) in three-dimensions, and hence, we cannot calculate a true size using 

any stereological technique. The first four of these can be acceptably characterized by a normal 

cdf. The appropriate cdfs are included in Table 1. The colony scale factor  has a different 

statistical character. Figure 5 shows all the  data from NP1, NP2, and NP3. A three parameter 

Weibull cdf is given below: 

 

 (1) 

 

where r is the shape parameter, b is the scale parameter, and g is the minimum value. This cdf is 

acceptable to represent these data. The KS test indicates that the cdf is acceptable for any 

significance less than 20%. The AD test, however, implies that the cdf is acceptable only for a 

significance of 1%. This is directly attributable to the difference in the lower tail of the data. 

Nevertheless, these cdfs will be used, herein. 

 

3. Yield Stress Model 
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 The random variables above serve as the critical variables in a physically based model 

developed and investigated in [13]. The development of the model was built upon the data obtained 

from NP1, NP2, and NP3. The equation for sYS is as follows: 

 

  (2) 

 

where the first term corresponds to the intrinsic strength, the second is for solid solution 

strengthening, the third is a Hall-Petch strengthening term for a-laths, the fourth is a Hall-Petch 

strengthening term for colonies, the fifth term represents the interfacial strength (which can help 

to account for interfaces which act as barriers for dislocation transmission), and the last term in 

the summation characterizes the active Taylor hardening. The factor outside of the square bracket 

labeled AxisDebit accounts for known effects based upon different uniaxial tensile specimen 

orientations. For further details see [13]. It is nontrivial to determine the functional form of 

Equation (2), as well as to extract the constants, random variables, and develop the equivalent 

functional form that is shown in Equation (3). While the methods for the determination are 

described elsewhere [13, 35], they are presented briefly here.  Initially, an artificial neural network 

containing the relevant input variables and output variable was developed, and interrogated to 

determine the ‘virtual experiments’, in which the influence of a single input variable on an output 

variable is assessed.  Concurrently, a physically-based equation (see Equation (2)) is postulated, 

and an alternative machine learning strategy (here, genetic algorithms) are applied, and the 

optimized equation similarly interrogated with virtual experiments.  When the virtual experiments 
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network are nominally equivalent. In this way, it is possible to learn physics from databases. This 

approach was first applied to wrought structures, and the resulting equation to predict the yield 

strength of Ti-6Al-4V has been found to be quite robust, and largely independent of the process 

by which the material is made.  Equation (2) can be rewritten by substituting the appropriate 

constants, the random variables, and equivalent functional forms as follows: 

 

  (3) 

 

where xC is the composition for element C, a is a correction factor, M is the Taylor factor, G is the 

shear modulus, b is the Burgers vector, and AD is the orientation debit which has the following 

values: 
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zc refer to specimens where crosshatching was conducted between layers, resulting in different 

textures and thermal histories. 

 

4. Simulation of Yield Stress Model 

 Using the model given in equations (3) and (4) and the cdfs for the random variables given in 

Table 1, Monte Carlo simulation was performed to analyze the model for sYS. Figure 6 shows all 

78 of the data for sYS from NP1, NP2, and NP3, and superimposed upon them are colors to indicate 

the specific orientations. The number in parenthesis specifies the sample size for that orientation. 

The model estimate is sYS computed from equations (3) and (4) with the actual data for the 

appropriate material parameters observed for the 78 specimens. Clearly, the model estimate is quite 

good at capturing the central tendency of the sYS data; however, it is not as good in the upper and 

lower tails. This deviation in the tails may be due to the fact that averages in chemical composition 

and microstructure are used from nearby regions, as opposed to precise measurements of the 

material that undergoes yielding – an experimental limitation. The solid line is the simulation for 

the model; however, the value for AD is assumed to be the weighted average of the values in 

equation (4). Thus, AD is 0.05. Again, the simulation is quite good over the central tendency, and 

it is reasonably good in the upper tail. In the lower tail, however, it is not representative of the data. 

The blue lines correspond to confidence bounds using mean square error (MSE) and mean absolute 

error (MAE) analyses. Recall that for the error ei is the difference between the model estimate and 

the data. The MSE is given by 
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and the root mean square error (RMSE) is the square root of the MSE. For unbiased error 

distributions the standard error is equivalent to the RMSE [10]. If the mean of the error distribution 

is nonzero, an adjustment to correct for the bias is warranted [37]. Several authors, e.g., see [38, 

39], suggest that a better measure of the error is the MAE given by 

 

  (6) 

 

Both the RMSE and MAE are considered in the ensuing analyses. The ±2s lines are approximately 

the 95% confidence bounds, where s is the RMSE or the square root of the MAE. The MAE 

bounds on Figure 6 are tighter than the MSE bounds; however, neither adequately captures the 

lower tail of the experimental data. 

 Figure 7 is identical to Figure 6 with the addition of another simulation shown as the gray line 

for the z orientation. All of the cdfs for the random variables were estimated using only the data 

associated with the z orientation, and AD is 0.08 for the z orientation. The cdfs and their parameters 

are given in Table 1. The only cdf that is significantly different is for xFe. There is not that much 

difference between the simulations using all the data and just the z orientation data. In the lower 

tail the difference in the two simulations is about 3 MPa. From a probability of about 0.1 to 0.5 the 

difference is about 5 MPa. The difference continues to grow up to over 20 MPa for probabilities 

greater than 0.99. Again, the simulation for the z orientation data is not that good in the lower tail. 

The confidence bounds are a bit tighter; however, they are still not acceptable for the lower tail 

data. 
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5. Data Fusion with Science Based Modeling 

 The effect of uncertainty is a critical aspect in modeling complex engineered structural 

materials, especially those in additive manufacturing. Uncertainty, which cannot be eliminated 

from manufacturing and modeling, must be adequately managed. Typically, limited data and 

information are available for new materials, designs, and manufacturing processes. A methodology 

is proposed to manage uncertainty. Here, uncertainty is assumed to include contributions from any 

and all sources. The proposed methodology was developed previously [29] and is used herein. The 

model in equations (3) and (4) is calibrated with experimental data. The methodology is based 

upon the premise that two cdfs G(x) and H(x) are of the same type if and only if there are constants 

a > 0 and b such that 

 

  (7) 

 

for all x; see [40]. 

 The choices of a and b in equation (7) for this application are directly related to the 

experimental data for sYS. In fact, the goal is to integrate limited data with a reasonably accurate 

model to manage the associated uncertainties. As the sample size increases, accuracy of statistical 

estimation increases. For the current application, the sample size for sYS is n = 78, as shown on 

Figures 6 and 7, which is sufficiently large that the estimation will be quite good. In [29] it was 

shown that as few as 15 data used for the calibration yields acceptable results. Consequently, it is 

appropriate to use the methodology for the yield stress model. The experimental data for sYS, 

, are used to calibrate the scientifically based model simulations to account for 

uncertainty. For optimal performance the data xj should be from multiple heats and orientations 
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within the heats. This is exactly what is represented from the sYS data from NP1, NP2, and NP3, 

as these parts were built using different lots of material, on two different machines and under 

different process control conditions. The method of calibration is chosen so that the average and 

standard deviation of the calibrated model simulations match those for the sYS data. Let 

 be the model simulations, where Ns is the number of simulations. The linear 

transformation of yj into zj is defined as 

 

, (8) 

 

where  

 

, (9) 

 

where sx and sy are the standard deviations and  and  are the averages, respectively, for 

 and . Thus, the transformed, calibrated simulation is . 

It should be noted that this transformation is consistent with equation (7). Specifically, the 

geometric effect of this transformation is that the model cdf computed using simulations is 

translated and rotated while the probabilities remain the same. Consequently, the method for the 

calibration will be designated as distribution translation and rotation (DTR). 

 Figure 8 shows all the sYS data and the model estimates, as before. The solid line is the DTR 

calibration of the simulation as described above. Notice that the DTR calibration is an excellent 

representation of the sYS data, except for three data. Also, the confidence bounds are very tight. If 
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the confidence bounds had been constructed using ±3s, representing approximately 99% 

confidence, all the sYS data would be with the MSE bounds. Thus, the DTR calibration is an 

excellent representation of the sYS data. The reason for this is that the sYS data is collected from 

three different builds with three different chemistries and different orientations within the builds. 

 

6. DTR Validation 

 The quality of the DTR calibration as shown in Figure 8 can be investigated by comparing it 

to another independent set of sYS data. Such data is available from a fourth build, NP4B. Consider 

Figure 9, where the sYS data from NP4B, with a sample size of 93, are shown. The eight different 

orientations are also highlighted with their corresponding sample sizes. The lower tail is comprised 

of eight sYS data from the z orientation. The most apparent observation is that the DTR calibration 

for the scientifically based model is an excellent representation for the NP4B sYS data. Importantly, 

the DTR calibration is identical to that shown on Figure 8. No alteration has been made to 

accommodate the NP4B sYS data. In this case, the MSE and MAE analyses are graphically 

indistinguishable. The approximate 95% confidence bounds entirely encompass the NP4B sYS 

data. The width of the confidence bounds is approximately 38 MPa which is about 5% of the 

estimated sYS from the DTR calibration. Thus, the DTR calibration is an excellent representation 

for the sYS data of the AMSR process. 

 

7. DTR Calibration Prediction 

 Given that the DTR calibration is an excellent representation for sYS data, as shown in Figure 

9, the DTR calibration can be refined further. Since there are sYS data from four builds, all the 
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available sYS data were used to recalibrate the DTR simulation. In passing, one of the best features 

of the DTR methodology is that it is iterative. As more data are available and as the scientifically 

based model is refined, the calibration can easily be updated. Figure 10 has the DTR prediction 

using the sYS data from all four builds to calibrate it. The prediction is an excellent representation 

of the 171 sYS data. In fact, the KS and AD goodness-of-fit tests indicate that it is acceptable for 

any significance level less than 25%. The MSE confidence bounds are quite tight, as well. In fact, 

the widths of the confidence bounds are 6.54 MPa and 9.81 MPa, respectively, which correspond 

to less than 1.3% of the estimated DTR sYS model. Only two data lie on the lower confidence 

bound. All the other data are well within the bounds. The lowest sYS data with a value of 772.2 

MPa is from a y orientation specimen. The next smallest sYS data from a y orientation specimen 

is 837.7 MPa, which is graphically identical to values from 5 other orientations, all of which are 

covered by the zc orientations circle. The maximum sYS data for a y orientation specimen is 917.0 

MPa. Thus, the smallest sYS data is about 65 MPa smaller than the second smallest. Although this 

sYS data may be correct, it does seem a bit out of the range of the expected sYS values for the y 

orientation. Even so, this value is not that far from the proposed DTR model for the sYS. Thus, the 

overall recommendation is that the DTR estimate in Figure 10 is appropriate for prediction of 

future AMSR sYS data. An additional comment that is appropriate at this time is that the DTR 

model is well-suited for estimation and prediction of the sYS outside the range of the laboratory 

conditions. 

 

8. Conclusions 
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 Strategically merging experimental data with scientifically based probability and statistical 

modeling has been shown to yield excellent results for the estimation of the yield stress of the 

directed energy deposition process used for the additive manufacturing specimens considered in 

this effort. The methodology also considers uncertainty from all sources, including those from 

modeling, experimentation, and the manufacturing process. Three aspects of the approach are 

critical. An accurate scientifically based model is essential because modeling deficiency is a major 

source of uncertainty. Sufficient data for characterization of the model variables are needed. For 

the example in this paper, there are nine random variables for which cdfs are needed. Also, 

experimental data for the yield stress are required for the calibration. The number of yield stress 

data for this effort was sufficiently large, including four different parts using different lots of 

material, different deposition machines, and different process control conditions. Thus, calibration 

of the model and validation of the methodology were achieved. Consequently, the proposed 

methodology has been shown to be extremely effective for modeling yield stress. No doubt, further 

refinements could be made; however, the approach seems to be quite sound. The adoption of the 

procedure is recommended. 
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Table 1. Statistically estimated random variables for materials data from NP1, NP2, and NP3. 
 

random variable cdf parameter parameter parameter 
Al concentration  Normal µ = 5.697 s = 0.131  
V concentration  Normal µ = 4.228 s = 0.241  
Fe concentration  Discrete min = 0.161 max = 0.177 p(Fe) = 0.39 
O concentration  Discrete min = 0.165 max = 0.169 p(O) = 0.73 

alpha volume fraction  Normal µ = 0.901 s = 0.021  
colony volume fraction  Normal µ = 0.178 s = 0.104  

alpha lath width  Normal µ = 1.10 µm s = 0.23 µm  
beta rib width  Normal µ = 0.119 µm s = 0.023 µm  

colony scale factor  Weibull r = 1.48 β = 4.28 µm g = 3.23 µm 
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Figure 1. Electron beam additive manufacturing notional part; top (left) and bottom (right).  
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Figure 2. Schematic of tensile specimens machined from notional part. 
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Figure 3. Al concentration for NP1, NP2, and NP3. 
 

Al concentration
5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1

pr
ob

ab
ilit

y 
(%

)

0.1

1

10

30
50
70

90

99

99.9

TiFab - NP1, NP2, NP3
AM - Stress - Relieved



Accepted: before typesetting 28 P.C. Collins and D.G. Harlow 

 

 

 

  

 
 
Figure 4. V concentration for NP1, NP2, and NP3. 
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Figure 5. Colony scale factor for NP1, NP2, and NP3. 
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Figure 6. Yield stress model and data for NP1, NP2, and NP3. 
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Figure 7. Yield stress model for all data and z orientation data for NP1, NP2, and NP3. 
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Figure 8. DTR calibrated yield stress model for all data for NP1, NP2, and NP3. 
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Figure 9. Validation of DTR calibrated yield stress model with data from NP4B. 
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Figure 10. DTR calibrated yield stress model with data from NP1, NP2, NP3, and NP4B. 
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