
Analysis of Decision Boundaries Generated by Constructive Neural

Network Learning Algorithms

C-H Chen, R. G. Parekh, J. Yang, K. Balakrishnan, & V. Honavar �

Department of Computer Science
226 Atanaso� Hall,

Iowa State University,
Ames, IA 50011. U.S.A.

Abstract

Constructive learning algorithms o�er an approach to incremental construction of near-minimal ar-
ti�cial neural networks for pattern classi�cation. Examples of such algorithms include Tower, Pyramid,
Upstart, and Tiling algorithms which construct multilayer networks of threshold logic units (or, multi-
layer perceptrons). These algorithms di�er in terms of the topology of the networks that they construct
which in turn biases the search for a decision boundary that correctly classi�es the training set. This
paper presents an analysis of such algorithms from a geometrical perspective. This analysis helps in a
better characterization of the search bias employed by the di�erent algorithms in relation to the geometri-
cal distribution of examples in the training set. Simple experiments with non linearly separable training
sets support the results of mathematical analysis of such algorithms. This suggests the possibility of
designing more e�cient constructive algorithms that dynamically choose among di�erent biases to build
near-minimal networks for pattern classi�cation.

1 Introduction

Multi-layer networks of threshold logic units (TLU) or multi-layer perceptrons (MLP) o�er a particularly
attractive framework for the design of pattern classi�cation systems for a number of reasons including:
potential for parallelism and fault tolerance; signi�cant representational and computational e�ciency that
they o�er over disjunctive normal form (DNF) functions and decision trees [Gallant, 1993]; and simpler
digital hardware realizations than their continuous counterparts. An output yjp in response to an input
pattern Xp = [x0p x1p � � � xNp] of a TLU or neuron j with a weight vectorWj = [wj0 wj1 � � � wjN] (where

8p x0p = 1 and wj0 = Tj is the threshold for neuron j) is given by: yjp = 1 if
PN

i=0wjixip > 0 and yjp =
�1 otherwise.

Such a TLU implements a (N � 1)-dimensional hyperplane given byW �X = 0 which partitions the N -
dimensional Euclidian pattern space de�ned by the coordinates x1 � � �xN into two regions (or two classes).
Such a neuron computes the bipolar hardlimiter function f of its net input. That is, if the net input
up =Wj �Xp, f(up) = 1 if up > 0 and f(up) = �1 otherwise. A given set of examples S = S+ [S� where
S+ = f(Xp; djp) j djp = 1g and S

�

= f(Xp; djp) j djp = �1g (where djp is the desired output of the pattern

classi�er for the input pattern Xp), is said to be linearly separable if and only if 9Ŵj such that 8Xp 2 S+,

Ŵj �Xp > 0 and 8Xp 2 S
�

,Ŵj �Xp � 0. A number of iterative algorithms are available for �nding such a

Ŵj (if one exists | i.e., when S is linearly separable) (Nilsson, 1965). Most of them use some variant of the
perceptron weight update rule: Wj Wj + �(djp � yjp)Xp (where � is the learning rate). However when

S is not linearly separable, such algorithms behave poorly (i.e., the classi�cation accuracy on the training
set can uctuate wildly from iteration to iteration). Several extensions to the perceptron weight update rule
e.g., pocket algorithm (Gallant, 93), thermal perceptron (Frean, 1990), loss minimization algorithm (Hrycej,
1992) are designed to �nd a reasonably good weight vector that correctly classi�es a large fraction of the

�This research was partially supported by the National Science Foundation grant IRI-909580 to Vasant Honavar.

training set S when S is not linearly separable and converge to zero classi�cation error when S is linearly
separable.

When S is not linearly separable, a multi-layer network of TLUs is needed to learn a complex decision
boundary that correctly classi�es all the training examples. Constructive learning algorithms (Honavar &
Uhr, 1993) are designed to incrementally construct near-minimal networks of neurons (whose complexity
as measured by the number of nodes, links etc.) is commensurate with the complexity of the classi�cation
problem implicitly speci�ed by the training set. This paper focuses on constructive algorithms that build
multi-layer perceptrons. These include tower, pyramid (Gallant, 93), upstart (Frean, 1990), and tiling
(M�ezard & Nadal, 89) algorithms. The rest of this paper is organized as follows: Section 2 provides an
analysis of di�erent constructive learning algorithms from a geometrical perspective. Section 3 presents
experimental results on a simple 2-dimensional data set that con�rm the results of analysis presented in
section 2. Section 4 concludes with a summary and discussion of some future research directions.

2 Geometrical Analysis of Decision Boundaries

This section describes several algorithms for the construction of multi-layer networks of threshold neurons
for pattern classi�cation. They are all based on the idea of decomposition of the hard task of determining the
necessary network topology and weights to two subtasks | addition of threshold neurons (one or a few at
a time) alternating with an iterative modi�cation of the weight vector for each added neuron (while keeping
the rest of the network unchanged). This permits the use of simpler (and generally faster) algorithms for
training individual threshold neurons. This paper focuses on the geometrical analysis of the working of tower,
pyramid and upstart algorithms which incrementally build networks with topologies shown in Figure 1.

3

2

5

4

1

32

54

(a) Tower

T

T3

5

T4

w

w

w
w

w

51

41

31

42

52

w

w

43

w

3

2

5

4

1

5

T

(b) Pyramid

T

T

4

3w

w

w

w

w

w

w

w31 32

41

51

53

54

43

w

52

42

21

3

3.X 3.Y

T

3.Y

(c) Upstart

3

T3.X

w

w w

w

3.X,1

3.X,2

w

3,3.X 3,3.Y

T
31 32w

w3.Y,1

w3.Y,2

Figure 1: Topologies Generated by Tower, Pyramid and Upstart Algorithms

In the analysis that follows, we use the following notation: Let wji be the weight between neurons j and

i, and Tj be the threshold for neuron j. Let Hj be the hyperplane given byWj �X =
PN

1
wjixi + Tj = 0.

When the neuron j receives input from neurons other than the input neurons, its decision boundary gets
modi�ed. We denote this composite decision boundary by Bj = 0. We say that a particular pattern X̂

lies on the positive side of the hyperplane Hj ifWj � X̂ > 0, or in shorthand (in the interest of minimizing
notational clutter albeit at the cost of slight abuse of notation), we write Hj > 0 for all such patterns. We
will use analogous notation when we talk about more complex decision hypersurfaces Bj .

2.1 The Tower Algorithm

The tower algorithm constructs a tower of TLUs. The bottom-most neuron in the tower receives n inputs,
one for each component of the pattern vector. The kth neuron in the tower receives as inputs, each of the
n components of the pattern as well as the output from the (k � 1)th neuron immediately below it (see
Figure 1(a)). The tower is built by training one neuron at a time until the desired classi�cation accuracy is
attained on the training set or addition of a neuron ceases to reduce the classi�cation error.

The �rst unit trained is unit 3. The hyperplane it implements and the corresponding output are (see
Figure 2(a)): w31x1 + w32x2 + T3 = 0 and y3 = f(w31x1 + w32x2 + T3) respectively. Suppose a new

unit, 4, is added to the network and trained using the pocket (with ratchet) version of the perceptron
algorithm. The composite decision boundary B4 and the output are: w41x1 + w42x2 + T4 + w43y3 = 0 and
y4 = f(w41x1 + w42x2 + T4 + w43y3) respectively. Without the inuence of unit 3, the hyperplane H4 for
unit 4 is w41x1 + w42x2 + T4 = 0. Assuming w43 > 0, there are 4 cases to consider:

1. H4 > 0 and y3 = 1: Since w41x1 + w42x2 + T4 > 0 and w43y3 > 0 for all patterns on positive side of
H4 and H3, B4 > 0. That is, all the patterns that fall on the positive side of both H4 and H3 fall on
the positive side of the hypersurface B4 = 0.

2. H4 < 0 and y3 = �1: Clearly, since w41x1 + w42x2 + T4 < 0 and w43y3 < 0, B4 < 0. That is, all
patterns that fall on the negative side of both H4 and H3, fall on the negative side of the hypersurface
B4 = 0.

3. H4 > 0 and y3 = �1: In this case, w41x1 + w42x2 + T4 + w43y3 can be positive or negative based on
the values of w41x1 + w42x2 + T4 and w43y3. The composite boundary B4 is obtained by shifting H4

by the amount of w43y3.

4. H4 < 0 and y3 = 1: This case is exactly the same as case 3 but the sign of w41x1 + w42x2 + T4 and
w43y3 are the reversed.

Thus, the resulting decision boundary B4 = 0 is shown in Figure 2(b). (For w43 < 0, the result will be a
mirror image about H4.)

H

2
x

x1

B= 33

+

-

-

-
-

-
-

+
+

+
+

+

+
H

H

3

B

4

4

+
+

+
+

- -

-
-

+
+

++
-

-

-
-

+
+

+
+ +

+
+

+
+

+
+

-

-

-
- -

-
-

-
-

-
-

+

(a)
(b)

H5

B4

+ +

+
+

--

+
+

++

--

-
-

- -

5B

+ +

+
+

+-
-

+ +
+

+
+

++

- - -
-

-

(c)

+
+

+

-

- - -

- ---
-

-

+++
+

+- - -

+

++

Figure 2: Decision Boundaries for the Tower Network

Now, suppose another unit, neuron 5, is added. The corresponding composite decision boundary B5 is
given by w51x1 + w52x2 + T5 + w54y4 = 0. Disregarding the inuence of unit 4, the hyperplane H5 for unit
5 is w51x1 + w52x2 + T5 = 0. Assuming w53 > 0, we need to consider 4 cases:

1. H5 > 0 and y4 = 1: Clearly, B5 > 0 since w51x1+w52x2+T5 > 0 and w54y4 > 0. So, all patterns that
lie on positive side of both H5 and B4 fall on the positive side of B5.

2. H5 < 0 and y4 = �1: Clearly, B5 < 0 since w51x1 + w52x2 + T5 < 0 and w54y4 < 0. So, all patterns
that lie on the negative side of both H5 and B4 fall on the negative side of B5.

3. H5 > 0 and y4 = �1: In this case, w51x1 + w52x2 + T5 + w54y4 can be positive or negative based on
the values of w51x1 + w52x2 + T5 and w54y4. The composite boundary B5 is essentially H5 shifted by
the amount corresponding to w54y4.

4. H5 < 0 and y4 = 1: This case is exactly the same as case 3 but the signs of w51x1 + w52x2 + T5 and
w54y4 are reversed.

Thus, the �nal decision boundary will be B5 in Figure 2(c). (For w54 < 0, the result will be just a mirror
image about H5). The same procedure for analysis of decision boundaries can be applied to understand the
consequences of successive addition of neurons.

2.2 The Pyramid Algorithm

The pyramid algorithm constructs a network of TLUs, much like the tower algorithm, training one neuron
at a time, except that the kth neuron in the pyramid receives as input, each of the n components of the
pattern vector, as well as the outputs from each of the (k � 1) neurons below it (See Figure 1(b)).

First we note that for the �rst neuron added (neuron 4), the decision boundary is same as in the case of
the tower algorithm. Now, suppose the algorithm adds neuron 5. To analyze the resulting decision boundary
B5 = 0, unlike in the case of the tower algorithm, we now need to consider the hyperplanes B3 = H3 = 0 as
well as B4 = 0 andH5 = 0. The composite decision boundary B5 = 0 is w51x1+w52x2+T5+w54y4+w53y3 =
0. Disregarding the inuence of neurons 4 and 3, the hyperplane H5 for neuron 5 is w51x1+w52x2+T5 = 0.
Assuming w54 > 0 and w54 > w53, there are 6 cases:

1. H5 > 0, y4 = 1 and y3 = �1: Clearly, B5 > 0 since w51x1 +w52x2 + T5 > 0 and jw54y4j > jw53y3j.

2. H5 < 0, y4 = �1 and y3 = �1: Clearly, B5 < 0 since w51x1 + w52x2 + T5 < 0 and jw54y4j > jw53y3j.

3. H5 > 0, y4 = �1 and y3 = 1: The composite boundary B5 is obtained by shifting H5 by the amount
of w54y4 + w53y3.

4. H5 < 0, y4 = 1 and y3 = �1: Same as 3 with the sign of the shift reversed.

5. H5 > 0, y4 = �1 and y3 = �1: The composite boundary B5 is obtained by shifting H5 by the amount
of w54y4 + w53y3.

6. H5 < 0, y4 = 1 and y3 = 1: Same as 5 with the sign of the shift reversed.

B4

+

+

-

-

-
+

H5-
+

B5

+
+ + + +

+
+

+ + +
+

+
+ + +

-

+

-

-
+ + + +

-

-
- - -

-
-

- - -
-

-
-- - -

-
+

+
B3

Figure 3: Decision Boundaries for the Pyramid Network

For all the other cases (corresponding to di�erent signs of w54 and w53), the analysis is quite similar.
It is straightforward mathematically to carry out similar calculations for more complex decision boundaries
that result from the addition of more neurons.

2.3 The Upstart Algorithm

The upstart algorithm starts by training a single TLU Z. If the training set S is linearly separable, Z
correctly classi�es every example in S = S+

S
S
�

. Otherwise, the set of samples misclassi�ed by Z can be
grouped into two sets: the set M+ of positive examples wrongly classi�ed by Z as negative; and the set M

�

of negative examples wrongly classi�ed by Z as positive. Now two daughters X and Y are trained so as to
correct the errors committed by Z. This is accomplished by training X on the training set M

�

S
S+; and Y

on M+

S
S
�

. The outputs of X and Y are then weighted by su�ciently large negative and positive weights
respectively and fed as additional inputs to Z (see Figure 1(c)). 1

In this case, we have H3 = B3 = w31x1 + w32x2 + T3 = 0. Next, we add either an X daughter or a
Y daughter of Z (or both) to the network. Suppose we add X daughter, and then Y daughter. Note that
in this case, each neuron that is added changes the decision boundary corresponding to B3. Suppose the
X daughter and Y daughter of 3 are 3:X and 3:Y respectively. Let the weights between node 3 and its X
and Y daughters be w3;3:X and w3;3:Y respectively, and the weights from input neuron i to 3:X and 3:Y be
respectively w3:X;i and w3:Y;i.

The composite decision boundary B3 after generating X daughter is given by B3(new) = w31x1+w32x2+
T3 + w3;3:Xy3:X = 0. The algorithm requires w3;3:X < 0. There are 4 cases to consider:

1. B3 > 0, y3:X = �1: Clearly w31x1 +w32x2 + T3 + w3;3:Xy3:X > 0, and hence B3(new) > 0.

2. B3 < 0, y3:X = 1: Clearly w31x1 + w32x2 + T3 + w3;3:Xy3:X < 0, and hence B3(new) < 0.

3. B3 < 0, y3:X = �1: Here the boundary gets shifted in a manner analogous to that explained in the
previous sections.

4. B3 > 0, y3:X = 1: Same as 3.

H

+
+

++
-

-

-
-

3.X

-
-

+
+-

-

+
+

(a)

+

+
+

+
+

+
+

+

-

+
+

+
-

-
-

-
-

-

-
-

-
-

B3
(new)

B3
(old)

3

-

B
(old)

H3.Y
+

+

+

-

-

+-

-

B3

(b)
(new)

+ + +

+++
+

-
- -
-

-
- -

-

- -
-

+++

+
+

+

+

+
+ +

+

-
--

Figure 4: Decision Boundaries for the Upstart Network

The new decision boundary is shown in Figure 4(a). Now, suppose we add Y daughter thereby changing
the decision boundary further. The resulting decision surface is given by: B3(new) = w31x1 +w32x2+ T3 +
w3;3:Xy3:X +w3;3:Y y3:Y = 0. As per the algorithm, w3;3:Y > 0. Then possible cases are:

1. B3 > 0, y3:Y = 1: Clearly w31x1+w32x2 + T3 +w3;3:Xy3:X +w3;3:Y y3:Y > 0, and hence B3(new) > 0.

2. B3 < 0, y3:Y = �1: Clearly w31x1+w32x2+T3+w3;3:Xy3:X+w3;3:Y y3:Y < 0, and hence B3(new) < 0.

3. B3 < 0, y3:Y = 1 or B3 > 0, y3:Y = �1: The boundary gets shifted for reasons similar to those encoun-
tered before (See Figure 4(b)).

As new daughter neurons get added, similar analysis can be used to determine the resulting decision
boundaries mathematically.

3 Experiments

In this section we present experimental results verifying the analysis of decision boundaries presented in
Section 2. Since our primary concern in this paper is with understanding the detailed working of the various
algorithms that were considered, the experiments were limited to the exclusive OR (XOR) problem (a non

1The upstart algorithm (Frean, 1990) works with binary (as opposed to bipolar input and output values). To facilitate direct
comparison, we assume that the weights and thresholds are transformed so as to implement an equivalent bipolar mapping
(Gallant, 93) after training the network with binary inputs and outputs.

linearly separable data set with 4 data points) so that the resulting decision boundaries could be easily
represented visually. Each TLU was trained using the �xed correction perceptron algorithm with ratchet

modi�cation (Gallant, 93). Fig. 5 shows the evolution of the decision boundaries for a tower network when
each new TLU was trained for 100 samples randomly chosen (with replacement) from the data set. The
training was successful after addition of 2 TLUs resulting in a network that is similar to the network shown
in Fig. 1 but with just 4 units. The tower network needed 4 units to correctly classify all patterns. The
�rst graph in Fig. 5 depicts the hyperplane H3 corresponding to unit 3 of Fig. 1. For the run shown, the
corresponding weights are w31 = 0:8193, w32 = 1:4898, and T3 = 1:3054. The second graph shows the
hyperplane H3, the hyperplane H4 (due to unit 4 disregarding the inuence of the output from unit 3) and
the composite decision boundary corresponding to B4 = 0. The weights for unit 4 are w41 = �1:2882,
w42 = �0:8713, w43 = 3:7282, and T4 = �2:37531.

0 +6-6

-6

0

+6

H3

2

+
+

+

+
+

+

-
-

-

-
-

-

X1

X

0 +6-6

-6

0

+6

H3

+
+

+

+
+

+

-

4

-

-

-
-

-

X1

X2

+

+

-

-

-
-+

H4

-
-

-
-

+

+

+

+

+

B

Figure 5: Decision Boundaries for the Tower Network

The decision boundaries can be understood in terms of the analysis presented in the previous section.

1. H4 > 0 and y3 = 1 : B4 becomes �1:2882x1 � 0:8713x2 � 2:3753 + 3:72815(1) = 0. For all points
(x1; x2) where H4 > 0, clearly B4 > 0 and all points in this region are positive.

2. H4 < 0 and y3 = �1 : B4 becomes �1:2882x1� 0:8713x2� 2:3753 + 3:72815(�1) = 0. For all points
(x1; x2) where H4 < 0, clearly B4 < 0 and all points in this region are negative.

3. H4 > 0 and y3 = �1: B4 becomes �1:2882x1 � 0:8713x2 � 2:3753 + 3:72815(�1) = 0. Some of the
points that were declared as positive by H4 are now classi�ed as negative by B4. This is represented
by an upward shift of the decision boundary so that B4 is parallel to H4 in this region.

4. H4 < 0 and y3 = 1: B4 becomes �1:2882x1� 0:8713x2� 2:3753 + 3:72815(1) = 0. Some of the points
that were declared as negative by H4 are now classi�ed as positive by B4. This is represented by a
downward shift of the decision boundary so that B4 is parallel to H4 in this region.

Thus the experiments con�rm the Z-shaped decision boundary for a tower network with 4 units. Results of
similar experiments with pyramid and upstart algorithms also agree with the theoretical conclusions drawn
in the previous section.

Next we analyzed the decision boundaries generated by the tower, pyramid, and upstart algorithms using
the XOR data set but this time allowing each new TLU just 30 epochs to train. Limiting the time allowed
for the units to train simulates (albeit crudely) the performance of the algorithm on a data set that requires
a more complex decision boundary. The evolution of the composite decision boundary after the addition of
a new TLU for the tower, pyramid, and upstart algorithms is depicted in Figs. 6, 7, and 8 respectively. A
case-by-case analysis (as described in Section 2) can be conducted in each case to explain the generation of
the decision boundary. Owing to space constraints, we omit the details.

The tower network needed 4 units besides the input units to correctly classify all patterns. In the tower
algorithm each unit receives information only from the input units and the output of the most recently
trained unit. Dearth of information (as compared to the pyramid and upstart algorithms) coupled with

insu�cient training time for each unit is a possible explanation for the inability of the tower network to �nd
the desired decision boundary quickly.

-2 0 +2

-2

-

0

+2

X1

X2

B
1

+
+

+
+

-
-

-

-2 0 +2

-2

-

0

+2

X1

X2

B 2
+

+

+
+

-

-

-

-2 0 +2

-2
+

0

+2

X1

X2

B 3
+

+

-
-

+

-

-

-2 0 +2

-2

0

+2

X1

-

X2

B 4

+
+

+

+ +

+

+

+
+

+
-

-

-
-

-

-
-

Figure 6: Decision Boundaries for the Tower Network

In the pyramid algorithm, each new unit has access to the outputs from the previous units along with the
information from the inputs. This is possibly an advantage over the tower network and because it enables
the pyramid network to generate more complex decision boundaries using a fewer number of units. This
might explain the fact that the pyramid network generated in this experiment contains just 3 units besides
the input units.

-2 0 +2

-2

-

0

+2

X1

X2

B 1 + + + +

- - -

-2 0 +2

-2 -

0

+2

X1

X2

B 2
+

+

+

+

+

-

-

-

-2 0 +2

-2

0

+2

X1

X2 -

B 3
+

++

+

+

+ +

+
+-

-

-

-

-

- -

-

-

-

--

Figure 7: Decision Boundaries for the Pyramid Network

In the upstart algorithm, each unit is trained with just the information from the input patterns. However,
the construction of daughter units is designed speci�cally to correct certain types of errors made by the
mother unit. The training set for the daughter units is explicitly constructed to ensure that after being
trained each daughter would serve to reduce the the number of mis-classi�cations made by the mother.
Since the upstart algorithm focuses its search e�ort at each step on correcting speci�c types of errors, it
can potentially converge using a lesser number of units than the tower and pyramid algorithms. In the
experiment with the XOR data set the upstart algorithm converged with just 2 units (an output unit and
a Y-daughter) besides the input units. The advantage of the upstart algorithm in terms of the nature of
decision boundaries constructed is not obvious from toy data sets such as the XOR. However, it seems that
like the pyramid algorithm the upstart algorithm is capable of generating more complex decision boundaries
using a fewer number of units.

4 Summary and Conclusions

In this paper we have presented an approach for the analysis of decision boundaries generated by several
constructive neural network learning algorithms. All such algorithms attempt to construct increasingly com-
plex decision surfaces by composing two or more simpler surfaces and (at least in the case of the algorithms
examined in this paper) in theory are capable of constructing a network of threshold neurons that correctly
classi�es a given training set. However, their performance in practice is likely to be tied closely to the
particular design choices that they embody (such as where to add a new neuron, how to connect it with the
existing neurons, etc.). As shown by our analysis of tower, pyramid and upstart algorithms, these decisions

-2 0 +2

-

-2

0

+2

X1

X2

B1

+

+

+

+

-
-

-

-2 0 +2

-2

0

+2

X1

X2

B 1
-

(with a Y daughter)

+ + +

+

+
+

+ +

+

+

+

+

-
-

-

-

-

-

-

-

-

-

--

-

Figure 8: Decision Boundaries for the Upstart Network

determine how each algorithm partitions into regions so as to separate the positive samples from negative
samples. In the case of these algorithms, since each neuron is trained independently (i.e., one at a time),
the composite decision boundary that results from the addition of a neuron is made of segments of the
decision boundary realized by the network prior to the addition of the new unit and segments parallel to
the hyperplane that corresponds to the newly added neuron (disregarding the inuence of any unit in the
network other than the input neurons). Although our experiments were restricted to 2-dimensional toy data
sets such as the XOR (to facilitate visualization and easy veri�cation of the analysis), the mathematical
framework and the results of the analysis carry over to more complex problems. A goal of this research
is a precise characterization of the inductive and representational biases that are implicitly employed by a
range of closely related constructive neural network learning algorithms. This would identify properties of
algorithms that would help them perform well on data sets that share certain properties (in terms of the
distribution of patterns in the pattern space) and to design more powerful algorithms of this class that can
dynamically choose among di�erent network construction strategies. Related work in progress is aimed at
empirical comparison of performance of various network algorithms (along with di�erent weight modi�cation
procedures) on a number of arti�cial as well as real-world data sets.

References

Frean, M. (1990). Small nets and short paths: Optimizing neural computation. Ph.D. Thesis. Center for
Cognitive Science. University of Edinburgh, UK.

Gallant, S. I. (1993). Neural Network Learning and Expert Systems. Cambridge, MA: MIT Press.

Honavar, V. (1990). Generative Learning Structures and Processes for Generalized Connectionist Networks.
Ph.D. Thesis. University of Wisconsin, Madison, U.S.A.

Honavar, V., and Uhr, L. (1993). Generative Learning Structures and Processes for Connectionist Networks.
Information Sciences 70, 75-108.

Hrycej, T. (1992). Modular Neural Networks. New York: Wiley.

M�ezard, M., and Nadal, J. (1989). Learning in feed-forward networks: The tiling algorithm. J. Phys. A:
Math. and Gen. 22. 2191-2203.

Nilsson, N. (1965). Learning Machines. New York: McGraw-Hill.

