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The bootstrap is a resampling method for statistical inference. It is commonly used to estimate confidence

intervals, but it can also be used to estimate bias and variance of an estimator or calibrate hypothesis tests.

A short of papers illustrative of the diversity of recent environmentric applications of the bootstrap includes

toxicology [2], fisheries surveys [27], groundwater and air polution modelling [1, 4], chemometrics [35], hydrology

[14], phylogenetics [23], spatial point patterns [33], ecological indices [9], and multivariate summarization [24, 38].

The literature on the bootstrap is extensive. Book length treatments of the concepts, applications, and theory

of the bootstrap range in content from those that emphasize applications [19], to comprehensive treatments

[13, 5, 3], to those that emphasize theory [11, 15, 18, 28]. Major review papers on the bootstrap and its

applications include [12, 8, 37, 7]. Papers describing the bootstrap and demonstrating its use to non statisticians

have been published in many different journals. Extensive bibliographies, listing applications, are included in

[19] and [3].

This article can not duplicate the comprehensive coverage found in these books and papers. Instead, I will

illustrate bootstrap concepts using a simple example, describe different types of bootstraps and some of their

theoretical and practical properties, discuss computation and other details, and indicate extensions that are

especially appropriate for environmentric data. The methods will be illustrated using data on heavy metal

concentrations in ground water [22] and magnesium concentration in blood (see Jackknife Resampling for details

of the second data set).

BOOTSTRAP CONCEPTS

Consider estimating the mean concentration of a heavy metal, e.g. Copper in groundwater from San Joaquin

valley basin soils [22]. As is typical with environmental chemistry data, some of the values are left censored.
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They are reported as ’less than detection limit’, with a specified value for the detection limit. Often, observations

are skewed. Point estimates of the mean, µ, and the standard deviation, σ, can be calculated using a variety

of different methods. It is more difficult to do statistical inference, e.g. calculate a 95% confidence interval for

the mean. The usual confidence interval, based on a Student’s t distribution, is not appropriate because of the

censoring and skewness. Inference based on maximum-likelihood estimators relies on an asymptotic distribution,

which may not be appropriate for small samples. The difficulty is that the sampling distribution of the estimate

is unknown. The bootstrap uses the data and computer power to estimate that unknown sampling distribution.

Given a set of independent and identically distributed observations, Xi, i = 1..n, a parameter that can be

defined as some function, θ = T (x), of the values in the population, and a statistic that is the same function

of the observations, θ̂ = T (X), the bootstrap estimates the sampling distribution, Fθ(x), of that function. The

data are used as an estimate of the unknown cdf, Fx(x), of values in the population. Bootstrap samples are

repeatedly drawn from the estimated population. The function (e.g. the mean) is evaluated for each bootstrap

sample, giving a set of bootstrap values, {θ̂B
i }, i = 1..m. The empirical distribution of those bootstrap values,

F̂b(x), estimates the theoretical sampling distribution, Fθ(x).

The bootstrap distribution, F̂b(x), is used to estimate bias, estimate a standard error, or construct a confidence

interval for the statistic of interest. The bootstrap estimates of bias, Bb, and standard error, sb, are the empirical

estimates calculated from m bootstrap values:

Bb = Σm
i=1(θ̂

B
i − θ̂)/m.

sb =
[
Σm

i=1((θ̂
B
i − θ̂B)2/(m− 1)

](

1/2).

The percentile confidence interval method uses the α/2 and 1-α/2 quantiles of F̂b(x) as a 1-α level confidence

interval for the parameter.

There are 49 observations, including 14 censored values, in the San Joaquin valley Copper data. Because the

data are quite skewed, the mean is estimated using a non-parametric estimator [29]. The estimated mean is 4.33

ppm. A 95% confidence interval for the mean is estimated using 1000 bootstrap samples. Each bootstrap sample

is a simple random sample of 49 values selected with replacement from the original observations. Because

a bootstrap sample is drawn with replacement, some of the original observations are repeated more than once

in the bootstrap sample. Other observations are omitted from an individual bootstrap sample. The statistic is

estimated for each bootstrap sample. Bootstrap confidence intervals can be computed from the set of bootstrap

values in a variety of ways (see A MENAGERIE OF BOOTSTRAP CONFIDENCE INTERVALS below). The

simplest is the percentile bootstrap confidence, where the endpoints of the 95% confidence interval are given by
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the 25’th and 975’th sorted bootstrap values [13, p. 160]. For these data, that interval is (3.05, 5.77).

The percentile bootstrap illustrated here is one of the simplest bootstrap confidence intervals methods, but

it is may not be the best method in all applications. In particular, the percentile interval may not have the

claimed coverage. Confidence interval coverage is the probability that the confidence interval includes the true

parameter, under repeated sampling from the same underlying population. When the coverage is the same as

the stated size of the confidence interval (e.g. coverage = 95% for a 95% confidence interval), the intervals are

accurate. Empirical and theoretical studies of coverage have shown that the percentile interval is accurate in

some situations, but not others [13, 5].

A MENAGERIE OF BOOTSTRAP CONFIDENCE INTERVALS

The percentile bootstrap has been extended in many different ways to increase confidence accuracy. The varieties

of bootstraps differ in

1. how confidence interval endpoints are calculated (e.g. percentile, basic, accelerated, studentized, or BCA

bootstrap),

2. how the population is approximated (non-parametric or parametric bootstrap), and

3. how bootstrap samples are selected (ordinary, balanced, or moving-block bootstrap).

Each of these is discussed in the following sections.

Calculating confidence interval endpoints

The percentile bootstrap endpoints are simple to calculate and can work well, especially if the sampling distri-

bution is symmetrical. The percentile bootstrap confidence intervals may not have the correct coverage when

the sampling distribution is skewed [5]. Other methods adjust the confidence interval endpoints to increase the

accuracy of the coverage (Table 1). One confusing aspect of these methods is that some methods have been

given different names by different authors. A synonymy is given in the documentation to the SAS JACKBOOT

collection of macros [26].

Coverage of the percentile bootstrap can be improved by adjusting the endpoints for bias and non-constant
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variance (the accelerated bootstrap) [5]. Computing the accelerated bootstrap confidence interval requires esti-

mating a bias coefficient, z0, and an acceleration coefficient, a. Both coefficients can be estimated nonparamet-

rically from the data [13, p. 186] or theoretically calculated for a specific distribution [5, p. 205]. Confidence

interval endpoints are obtained by inverting percentiles of the bootstrap distribution. Adjusting for bias and

acceleration shifts the percentiles used to find the confidence interval endpoints. Because endpoints of the

confidence interval are obtained by inverting the bootstrap distribution, both the percentile and accelerated

bootstraps preserve the range of the parameter. For example, if the parameter and statistic are constrained or

constrained to lie between 0 and 1 the endpoints of these confidence intervals will satisfy that constraint.

Insert table 1 near here

The quadratic ABC confidence intervals [6, 7] are an approximation to the accelerated bootstrap that do not

require many bootstrap simulations, which could be helpful when parameter estimation requires considerable

computation. The three required coefficients, a, b, and c (Table 1), are calculated either from the observations or

a model [5, pp. 214-220]. Endpoints of the confidence interval are calculated by a Taylor-series approximation to

Fb(x). Because of the approximation, the endpoints may not statisfy constraints on the parameter space, unlike

the first three methods.

The basic and studentized bootstraps calculate endpoints by inverting hypothesis tests [5]. In both, the upper

quantile of a bootstrap distribution is used to calculate the lower confidence bound and the lower quantile is

used to calculate the upper bound. When the the bootstrap distribution is symmetrical around the estimate

from the original data, i.e. θ̂ − F̂−1
b (1 − α) = F̂−1

b (α) − θ̂, the basic bootstrap produces the same endpoints as

the percentile bootstrap. When the distribution is skewed, the endpoints of the two methods differ. Neither the

basic nor the studentized bootstrap constrains confidence interval endpoints to fall within a bounded parameter

space.

The studentized bootstrap is based on a different bootstrap distribution than the other bootstraps. The

estimate, θ̂i, and its standard error, sθ̂i
, from each bootstrap sample are used to calculate studentized estimates,

ti = (θ̂i − θ̂)/sθ̂i
, where θ̂X is the estimate calculated from the original data set. The 1− α/2 and α/2 quantiles

of this distribution, F̂s(x), are used to calculate the confidence interval. The endpoints of the studentized

bootstrap confidence interval have a natural interpretation. They are like the ‘usual’ confidence intervals based

on a Student’s t-statistic, except that the data is used to estimate a more appropriate distribution for the ‘t’

statistic. The studentized bootstrap distribution requires a standard error for each bootstrap sample. The

jackknife or a second, nested bootstrap can be used if the standard error can not be estimated any other way.
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The use of the studentized bootstrap is somewhat controversial. To some, the endpoints of the intervals seem

too wide and the method seems to be sensitive to outliers [13]. For others, the studentized bootstrap seems to

be the only bootstrap with reasonable confidence interval coverage in difficult problems.

Bootstrap confidence intervals may not have the claimed coverage when computed from small samples. De-

tails, e.g. whether the empirical coverage is too large or too small and whether coverage is better in one tail

than the other, depend on the statistic being evaluated and characteristics of the population being sampled.

Numerous studies have evaluated bootstrap coverage for specific cases. Citations and examples are discussed in

[13, 5, 3]. Bootstrap iteration provides a way to improve the coverage of a confidence interval, at the cost of

additional computing [20].

Approximating the population

At the heart of the bootstrap is the concept that the distribution of the statistic of interest, Fθ(x), can be

approximated by estimates from repeated samples from an approximation to the unknown population. The

population can be approximated in different ways, each of which leads to a different type of bootstrap. The

most common approximations lead to the parametric and nonparametric bootstraps. Less frequently used

approximations lead to the smoothed and generalized bootstraps.

The parametric bootstrap assumes that Fx(x) is known except perhaps for one or more unknown parameters,

ψ. For example, Fx(x) might be known (or assumed) to be log-normal with unknown parameters, µ and σ2.

F̂x(x) is approximated by substituting estimates of ψ̂ for the unknown parameters, ψ. Often these estimates

are maximum likelihood estimates, but other estimates could also be used. The generalized bootstrap [10]

is a parametric bootstrap where Fx(x) is a flexible distribution with many (often four) parameters, e.g. the

generalized lambda distribution.

The nonparametric bootstrap is the bootstrap described previously. The population Fx(x) is approximated by

the empirical distribution of the observed values, a multinomial distribution. Nonparametric bootstrap samples

include repeats of many observations, which may lead to inconsistent estimators. The smoothed bootstrap [30]

approximates Fx(x) as a smoothed version of the empirical cdf. Smoothed bootstrap samples are generated

by sampling observations with replacement and jittering each bootstrap observation by adding a small amount

of random noise. Usually the noise distribution is normal with mean 0 and a small variance. Increasing the

variance increases the amount of smoothing. When the sample space is constrained, a slightly different smoothing
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procedure can generate bootstrap observations that satisfy the constraint [31].

Selecting bootstrap samples

In the ordinary nonparametric bootstrap described above, each bootstrap sample is a simple random sample,

with replacement, of the observations. The bootstrap samples are a subset of all possible samples of size n from

a finite population with n copies of each observation. Hence, the bootstrap estimates of bias, standard error, and

confidence interval endpoints are random variables. Their variance can be reduced by increasing the number of

bootstrap samples [13] or by using more complex sampling methods [5, pp 437-487].

The balanced bootstrap is an alternative sampling method that can increase the precision of the bootstrap

bias and standard error. The balanced bootstrap forces each observation to occur a total of nB times in the

collection of nB bootstrap samples. This does not force each bootstrap sample to contain all observations; the

first observation may occur twice in the first bootstrap sample and not at all in the second, while the second

observation may occur once in each sample. Balanced bootstrap samples can be generated by constructing a

population with n copies of each of the n observations, then randomly permuting that population. The first n

permuted values are the first bootstrap sample, the second n permuted values are the second sample, and so

on. While balancing often decreases the variance of the estimated bias and s.e., it appears to be less useful for

estimating confidence interval endpoints.

The moving blocks [17] and moving tiles bootstraps extend the bootstrap to correlated data [5, pp 396-

408]. The ordinary bootstrap assumes that observations are independent, which may not be appropriate for

time series data, spatial data or other correlated data. In a moving blocks bootstrap for time series data,

the series of observations is divided into b non-overlapping blocks of l sequential observations. The bootstrap

sample is constructed by randomly sampling b blocks with replacement and concatenating them into a series of

bl observations. Correlation between observations is assumed to be strongest within a block and relatively weak

between blocks. The choice of l is crucial. If l is large, b is small and there may be very few unique bootstrap

samples. If l is small, observations in different blocks may not be independent. Even if l is appropriately

chosen, the correlation between observations in the bootstrap sample is less than that in the original sample

because blocks are assumed to be independent. Bootstrapping spatial data using moving tiles is similar [5]. The

stationary bootstrap [25] is a variant of the moving blocks bootstrap with random block lengths. Model based

approaches to bootstrapping correlated data are described in the next section.
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EXTENSIONS TO NON-IID DATA

The bootstrap methods in the previous two sections are appropriate for a single sample of iid observations.

Many problems involve observations that are not iid. These include regression problems, temporally or spatially

correlated data, and hierarchical problems.

Regression and multi-sample data

One common source of non-iid observations is when they are presumed to come from some linear or non-linear

model with additive errors. This includes two sample problems, regression problems, or more complicated models

for designed experiments. The quantities of interest could be the difference in two means, the slope or intercept

of a regression, some parameter in the model, or a function of any of these. One environmetric application is

the use of the bootstrap to estimate RI50, the toxicant concentration that reduces reproductive output by 50%

[2]. This is a function of the parameters of a polynomial regression; the bootstrap can be used to estimate a

confidence interval for RI50 [2].

There are two general approaches for such data: 1) bootstrapping the observations, also called case resampling

and 2) bootstrapping the residuals, also called error resampling [13, pp. 113-115], [3, pp 76-78], [5, 261-266].

Consider a set of observations presumed to arise from a linear model, Yi = Xiβ + εi. Each observation is

a vector of covariate values and a response, (Xi, Yi)T . If observations are bootstrapped, the entire vector is

resampled with replacement. The moments and distribution of covariate values is not fixed in all the bootstrap

samples. When the data are grouped, as in a two sample problem, it is customary to condition on the number

of observations in each group. Bootstrapping the observations requires separately resampling each group of

observations.

Bootstrapping the residuals is a three step process. Residuals, ε̂i = Yi − Xiβ̂, are calculated for each

observation. Then a bootstrap sample of residuals, {εB
i }, is drawn with replacement from the observed residuals.

The bootstrap sample of observations is constructed by adding a randomly sampled residual to the original

predicted value for each observation: yB
i = Xiβ̂ + εB

i .

Bootstrapping the observations and bootstrapping the residuals are not equivalent in small samples, but they

are asymptotically equivalent [12]. The choice of bootstrap depends on the goal and context of the analysis.

Bootstrapping the residuals maintains the structure of the covariates, but the bootstrap inference assumes that
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the original model (used to calculate the residuals) is appropriate. Bootstrapping the observations repeats some

covariate values and omits others. It is the usual choice when the analysis includes some aspect of model selection.

Correlated data

The dichotomy between bootstrapping the observations and boostrapping the residuals recurs with time series and

spatial data. The moving blocks and moving tiles bootstraps, discussed above, are analogous to bootstrapping

observations. Neither assumes a specific model for the data. Bootstrapping residuals requires fitting a model.

For time series data, the model is often an ARMA model, but it could be a state-space model [16]. For spatial

data, the model specifies the mean and correlation structure of the observations. Consider spatial data that is

assumed to follow the model

Y = Xβ + ε. (1)

One approach is to estimate Σ̂, the variance-covariance matrix of the errors, ε, then calculate the Cholesky de-

composition, L̂ such that Σ̂ = L L′ [32]. The estimated errors, ε̂ = Z - Xβ̂, can be whitened by premultiplying

by L−1, i.e. ê = L−1ε̂. A bootstrap sample of spatially correlated observations is constructed by drawing a

bootstrap sample of the whitened residuals, {eB}, introducing the correlation structure and restoring the mean,

i.e. Y B = Xβ̂ + L eB . The distribution of the statistic of interest is estimated by the empirical distribution

of the statistic in many bootstrap samples.

Hierarchical data

Environmetric data often include multiple sources of variation that can be described using a hierarchical model.

When the model is sufficiently simple (e.g., a linear mixed model in which all random effects have a normal distri-

butions with constant variance), the data can be expressed in the form of equation 1 with a variance-covariance

matrix, Σ, that depends on the variance components. The model-based bootstrap of residuals described above

can be used to generate bootstrap samples. If, in addition, the distributions of all random effects are specified,

a parametric bootstrap can be used [5, p. 100]. One example of a hierarchical parametric bootstrap for a

complicated model is the construction of a confidence region for an evolutionary trajectory [21].

Nonparametric bootstrapping of hierarchical data is complicated by the need to estimate empirical distribu-

tion functions for two (or more) random variables. A simple example of the difficulty in constructing empirical

distributions with the correct first and second moments is given in [5, pp. 100-101]. Although procedures can
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be derived for specific cases, there is currently no general non-parametric method for bootstrapping hierarchical

data.

BOOTSTRAP THEORY

Bootstrap theory is an active area of statistical research. Detailed accounts of the theory of various forms of

the bootstrap can be found in [11, 15, 28, 5]. I provide a short introduction, without proofs, to the theory for

a single parameter, estimated from a single sample of independent, identically distributed observations. Details

and proofs can be found in [28]. Extensions to more complicated

Asymptotic properties can be derived for many different types of statistics. One of the most general ap-

proaches considers statistics that can be expressed as a functional, T , of an empirical distribution of n ob-

servations, Fn, i.e. statistics that can be written as Tn = T (Fn). The parameter is θ = T (F ), where F is

the distribution function of the population. Given an appropriate differentiability of the functional, T , and a

bounded second moment for the influence function of T , then the bootstrap distribution, FB(x) is a consistent

estimator of the true sampling distribution, Fθ(x) [28, pp. 80-86]. Given an extra constraint on the tails of the

distribution of Tn, then the bootstrap estimate of variance, s2b , is a consistent estimator of the sampling variance

of the parameter θ.

Coverage accuracy, where coverage is the probability that a confidence interval includes θ, is the important

property for a confidence interval procedure. Lower and upper bounds are considered separately, but their

asymptotic properties are similar. Bootstrap confidence intervals methods differ in their asymptotic properties.

Percentile intervals are first order accurate, i.e. P[θ < θ̂α] ≈ α + O(n−1/2), where θ̂α is the estimated lower

bound of a 1−2α% two-sided confidence interval [13, p 187]. Both the studentized and BCa intervals are second

order accurate, i.e. i.e. P[θ < θ̂α] ≈ α+O(n−1) [13, p. 187].

Another comparison of confidence interval procedures is the relationship between Fθ(x) and a normal dis-

tribution. If the sampling distribution, Fθ(x), is normal with known variance, then confidence intervals based

on z-scores have the desired coverage, and bootstrapping isn’t necessary. The percentile bootstrap limits are

correct if Fθ(x) can be transformed to normality. In others words, there exists some monotone g(x) such that

φ̂ = g(θ̂) ∼ N(φ, τ2), where φ = g(θ) and τ2 is a constant variance. Other bootstrap confidence interval proce-

dures are correct under more general models for the distribution of φ̂. For example, the BCa intervals are correct

if φ̂ ∼ N(φ − z0 τφ, τ
2
φ) where τφ = 1 + a φ, z0 is a bias correction coefficient and a is an acceleration coefficient

9



[12, p. 68-69].

COMPUTATION

A bootstrap can be implemented wherever there is the ability to generate uniform random numbers and draw

a random samples of observations [36, 9]. Macros and functions in various statistical packages include the more

complicated confidence interval calculations. These include the JACKBOOT macro in SAS [26] and various

libraries of Splus functions [13, 34, 5]. All macros and libraries can bootstrap a single sample of observations

and compute bias, s.e., and a variety of confidence intervals. Some packages (e.g. the boot() library [5]) can be

easily extended for multiple sample problems. In the example below, it is useful to force each bootstrap sample

to contain 38 observations from one area and 52 from the second. This can be done by specifying strata. Some

packages also include diagnostic methods [5].

EXAMPLE

The extended example will illustrate many different types of bootstrap confidence intervals and the relationship

between Jackknife Resampling and the bootstrap. The data are part of a study of heavy metal loading in

children, where the goal is to describe the relationship between creatinine and magnesium concentrations in

urine. Creatinine and magnesium concentrations were measured on 38 children from a relatively contaminated

area (Kapfenberg) and 52 children in a less contaminated area (Knittelfeld) of Styria, Austria. The data are

plotted as Figure 2 in Jackknife Resampling. The jackknife analysis in that article considers four statistics: ρ, the

correlation between creatinin and magnesium, β1 and β2, the slopes of a regression of magnesium on creatinine

for each area, and β1/β2, their ratio. The slopes, β1 and β2 are defined by a heterscedastic linear regression with

different parameters for each group of children

Mi = µi + εi

µi =




α1 + β1 Ci for children in Kapfenberg

α2 + β2 Ci for children in Knittelfeld

εi ∼ N(0, µi),

where Mi and Ci are the blood magnesium and creatinine concentrations. The model can be fit using the glm()

function in Splus. Here, the analysis is repeated using the bootstrap. The boot() library [5] of functions in Splus
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was used for the computations.

The sample correlation between creatinine and magnesium, treating all children as one sample of 90 obser-

vations, is 0.409. The bootstrap distribution of the correlation coefficient, F̂b(x) (Figure 1a), is estimated from

1000 bootstrap samples, each with 90 observations. That distribution is very slightly skewed. The estimated

bias and standard error (Table 2) are similar to those computed using various forms of the jackknife (compare

to Table 1 in Jackknife resampling). 95% confidence intervals for the correlation coefficient were constructed

using four bootstrap methods (Table 3). The studentized bootstrap intervals were not calculated for ρ because

the jackknife estimate of variance was very computer intensive. The endpoints are quite similar to each other,

although those from the BCa method are slightly different from the others. I would choose the BCa interval

because it makes the most general assumptions, it has the best asymptotic properties, and the data set is large

enough to provide a reasonable estimate of a, the acceleration constant.

Insert Figure 1 near here.

There are many ways to bootstrap in a regresion problem (see Regression and multi-sample data section).

The appropriate choice depends on how the data were collected. I assumed the number of children in each

area was fixed in the design, but the distribution of X values (blood creatinine levels) were not. Hence, it is

appropriate to bootstrap observations (not residuals) and specify strata to force each bootstrap sample to include

38 children from Kapfenberg and 52 from Knittelfeld.

The bootstrap distributions of β1 (Figure 1b) and β2 (Figure 1c) are reasonably symmetrical. Again, boot-

strap estimates of bias and standard errors (Table 2) are quite close to the delete-1 jackknife estimates (compare

to Table 3 in Jackknife resampling). The bootstrap standard errors are slightly (ca. 5%) smaller than the jack-

knife standard errors, possibly because the bootstrap samples are forced to have 38 and 52 children from the two

areas. Endpoints of four confidence interval procedures are quite similar (Table 3). Although the studentized

intervals for β1 are slightly wider than the other three intervals for β1, the studentized intervals for β2 are slightly

shorter than the other three intervals for β2. I would chose the studentized intervals here, but there is little

practical difference between any of intervals.

The bootstrap distribution of the ratio, β1/β2 is skewed (Figure 1d), so one might expect to find differences

among the confidence interval procedures. Both the lower and upper endpoints for the basic interval are much

smaller than those for the other three intervals. The endpoints of the BCa and the studentized intervals are

almost identical. I would chose either of those intervals.
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Although the bootstrap may seem to perform magic, in the sense that it permits statistical inference in very

general circumstances, it is not a substitute for data. The performance of the bootstrap depends on the sample

size. It isn’t possible to recommend minimum sample sizes, because each problem is different. However, increasing

the number of bootstrap replicates or using a more sophisticated bootstrap procedure does not compensate for

insufficient data. All the bootstrap can do is (approximately) quantify the uncertainty in the conclusion.
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TABLES

Method α-level Range

Endpoint: preserving?

Percentile F̂−1
b (α) Yes

Accelerated F̂−1
b

(
Φ(z0 + z0+zα

1−a(z0+zα)

)
Yes

ABC θ̂ + s(zα + a+ c− bs+ (2a+ c)z2
α) No

Basic 2θ̂ − F̂−1
b (1 − α) No

Studentized θ̂ − sθF̂
−1
s (1 − α) No

Table 1: Methods for estimating endpoints of bootstrap α-level confidence intervals. θ̂ is the observed estimate,

F̂b(x) is the bootstrap cdf, F̂s(x) is the studentized bootstrap cdf, Φ(x) is the normal cdf, z0 = Φ−1(Fb(θ̂)), a is

the acceleration constant, and zα is the α-percentile of a standard normal distribution.
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Statistic Estimate Bias s.e.

Correlation 0.409 0.00543 0.0752

Slope, Kapfenberg 232.9 2.93 38.5

Slope, Knittelfeld 105.2 -1.28 13.7

Ratio of slopes 2.215 0.056 0.508

Table 2: Parameter estimates, bootstrap estimate of bias, and bootstrap estimate of standard error for 4 quan-

tities describing the relationship between urine creatinine and magnesium concentrations.
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Statistic Bootstrap c.i. method 95% confidence interval

Correlation Percentile (0.252, 0.553)

Basic (0.265, 0.566)

BCa (0.227, 0.525)

ABC (0.252, 0.542)

Slope, β1 Percentile (166.0, 312.1)

Kapfenberg Basic (153.8, 300.0)

BCa (162.8, 308.6)

Studentized (143.8, 304.1)

Slope, β2 Percentile (73.9, 128.9)

Knittelfeld Basic (81.4, 136.4)

BCa (75.8, 130.9)

Studentized (79.9, 134.7)

Ratio of slopes Percentile (1.44, 3.44)

Basic (0.99, 2.99)

BCa (1.48, 3.55)

Studentized (1.47, 3.35)

Table 3: Endpoints of 95% confidence intervals for 4 quantities describing the relationship between urine crea-

tinine and magnesium concentrations. Confidence intervals are computed using the percentile, basic, and BCa

methods. The studentized bootstrap is included when it could be calculated easily.
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Figures

Figure 1: Bootstrap distributions of a) correlation between blood creatinine and magnesium concentrations, b)

slope of the linear regression of magnesium on blood creatinine concentrations for 38 children from a relatively

contaminated area (Kapfenberg), c) slope for 52 children in a less contaminated area (Knittelfeld), d) ratio of

the two slopes. The observed value is marked by the dotted vertical line in all four panels.
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