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Abstract

The failure probability of a productF (t) and the life time quantiletp are commonly used

metrics in reliability applications. Confidence intervalsare used to quantify the statistical uncertainty

of estimators of these two metrics. In practice, a set of pointwise confidence intervals forF (t) or the

quantilestp are often computed and plotted on one graph, which we refer toas pointwise “confidence

bands.” These confidence bands forF (t) or tp can be obtained through normal approximation,

likelihood, or other procedures. In this paper, we compare normal approximation and likelihood

methods and introduce a new procedure to get the confidence intervals forF (t) by inverting the

pointwise confidence bands of the quantiletp function. We show that it is valid to interpret the set

of pointwise confidence intervals for the quantile functionas a set of pointwise confidence intervals

for F (t) and vice-versa. Our results also indicate that the likelihood based pointwise confidence

bands have desirable statistical properties, beyond thosethat were known previously.

Index Terms

Asymptotic approximation; Confidence bands; Life data analysis; Likelihood confidence inter-
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ACRONYMS

cdf cumulative distribution function

ML maximum likelihood

NOTATION

χ2
1 chi-square distribution with 1 degree of freedom

NOR(0, 1) standard normal distribution
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I. INTRODUCTION

A. Motivation

The cdf F (t) of a random variableT can be interpreted as the probability that a unit

will fail by time t or the proportion of units in the population that will fail bytime t. In

particular, the cdf can be used to estimate the proportion ofa product that will fail before a

particular point in time such as the end of the warranty period. The quantile functiontp is

the inverse of the cdf and corresponding to the time at which aspecified proportionp of the

population fails. For example, if it is felt that it is acceptable to repair/replace no more that

5% of a product population during the warranty period, then the warranty period should be

at most equal tot.05, the .05 quantile.

Confidence intervals are used to quantify statistical uncertainty. For reliability applications,

it is standard practice to plot on one graph a set of pointwiseconfidence intervals forF (t) over

a range oft values or a set of pointwise confidence intervals fortp over a range ofp values

(e.g., MINTAB [1], WEIBULL++ [2], PROC RELIABILITY in SAS [3], S-PLUS/SPLIDA

in [4] provide such graphics). We will refer to these pointwise sets as “confidence bands.”

Figure 1 shows pointwise confidence intervals for the failure probabilityF (t) when10 ≤ t ≤
100. Details for the computation Figure 1 are given in Section VI. Plotting the confidence

intervals for an entire interval of values oft (or p) relieves the user from having to specify

the particular time (or quantile) of interest, making the software easier to use. In general,

the plot obtained from the pointwise bands forF (t) is not exactly the same obtained from

the pointwise bands fortp.

The results in this paper show that it is valid to interpret the set of pointwise confidence

intervals for the quantile function as a set of pointwise confidence intervals forF (t) and

vice-versa. In particular, we show that normal approximation based pointwise confidence

bands for the cdf and the quantile function are asymptotically equivalent and that likelihood

based pointwise confidence bands for the cdf and the quantilefunction are equivalent. Our

results are presented for the family of log-location-scaledistributions, which includes the

commonly used Weibull and lognormal distributions as special cases.

B. Literature Review

Statistical methods (including confidence intervals) for log-location-scale distributions,

especially with application to lifetime studies are given,for example, in Chapters 6 and

8 of Nelson [5], Chapter 8 of Meeker and Escobar [6], and Chapter 5 of Lawless [7].
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Fig. 1. Weibull Probability Plot of the Censored Ball Bearing Life Test Data with ML Estimate and Pointwise Confidence

Bands Based on Likelihood Procedures

C. Overview

The remainder of this paper is organized as follows. SectionII describes the log-location-

scale model used in the paper and ML estimation for the model parameters and functions

of the parameters. Sections III and IV describe existing procedures to construct confidence

intervals fortp andF (t) and a new procedure for constructing confidence interval forF (t)

by inverting the confidence bands for the quantiles. These procedures are based either on

a normal approximation or on the likelihood. Section V presents some equivalence results

for the confidence bands ofF (t) and tp. Section VI illustrates the methods and results with

some application to real data and Section VII contains concluding remarks. Some technical

details are given in the appendix.

II. M ODEL AND ML ESTIMATION

A. Model and Data

The results of this paper have been developed specifically for the commonly used location-

scale and log-location-scale families, although similar results certainly hold for other families

of distributions. A random variableY belongs to the location-scale family, with locationµ and

scaleσ, if its cdf can be written asFY (y; µ, σ) = Φ[(y−µ)/σ], where−∞ < y <∞, −∞ <

µ <∞, σ > 0, andΦ(z) is the parameter free cdf of(Y −µ)/σ. The normal distribution, the
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smallest extreme value distribution, the largest extreme value distribution, and the logistic

distribution are commonly used location-scale distributions. A positive random variableT is

a member of the log-location-scale family ifY = log(T ) is a member of the location-scale

family. Then the distribution ofT is F (t; µ, σ) = Φ {[log(t)− µ)]/σ}. The lognormal, the

Weibull, the Fréchet, and the loglogistic are among the important distributions of this family.

For example, the cdf of the Weibull random variableT is F (t; µ, σ) = Φsev{[log(t)− µ]/σ}
whereΦsev(z) = 1 − exp[− exp(z)] is the standard (i.e.,µ = 0, σ = 1) smallest extreme

value cdf. For the lognormal distribution, replaceΦsev above withΦnor, the standard normal

cdf.

Suppose thatT is a lifetime that has a distribution in the log-location-scale family. Some

quantities of interest are the failure probabilityF (te) = F (te; µ, σ) at te and thep quantile

tp = exp(µ + zpσ) of the distribution wherezp = Φ−1(p) is thep quantile ofΦ(z).

Life tests often result in censored data. Type I (time) censored data result when unfailed

units are removed from test at a prespecified time, usually due to limited time for testing.

Type II (failure) censored data result when a test is terminated after a specified number of

failures, say2 ≤ r ≤ n. If all units fail, the data are called complete or uncensored data.

The results in this paper hold for complete, Type I and Type IIcensored data, as well as

to noninformative randomly censored data that generally arise in field tracking studies and

warranty data analysis.

B. ML Estimation

For a censored sample withn independent exact and right censored observations from a

log-location-scale random variableT , the likelihood of the data atθ = (µ, σ)′ is

L(θ) = C
n∏

i=1

{
1

σti
φ

[
log(ti)− µ

σ

]}δi
{

1− Φ

[
log(ti)− µ

σ

]}1−δi

whereδi = 1 if ti is an exact observation andδi = 0 if ti is a right censored observation,Φ

is defined in Section II-A andφ(z) is the densitydΦ(z)/dz, andC is a constant that does

not depend on the unknown parameters. Standard computer software (e.g., JMP, MINITAB,

SAS, S-PLUS/SPLIDA) provide ML estimates ofθ and functions ofθ such as quantiles and

failure probabilities. We denote the ML estimator ofθ by θ̂ = (µ̂, σ̂). From the invariance

property of ML estimators, the ML estimator oftp is t̂p = exp [µ̂ + Φ−1(p) σ̂] . Similarly,

the ML estimator ofF (t) at te is F̂ (te) = Φ{[log(te)− µ̂]/σ̂}. See, for example, Chapter 8

in Meeker and Escobar [6] for more details.
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In large samples, the ML estimator̂θ has a distribution that can be approximated by a

bivariate normal distribution BVN(θ, Σ), whereΣ can be estimated by

Σ̂bθ
=

[
−∂2L(θ)

∂θ∂θ
′

]
−1

θ=bθ

=

[
V̂ar(µ̂) Ĉov(µ̂, σ̂)

Ĉov(µ̂, σ̂) V̂ar(σ̂)

]

andL(θ) = log[L(θ)] is the log likelihood of the data. In the following sections,we also

use the scaled estimate of variance-covariance matrix

Λ̂ =
( n

σ̂2

)
Σ̂bθ

=

[
λ̂11 λ̂12

λ̂12 λ̂22

]
. (1)

III. N ORMAL APPROXIMATION BASED CONFIDENCE INTERVAL PROCEDURES

A. Normal Approximation Confidence Procedure fortp

Under standard regularity conditions met by the log-location-scale distributions used here,

properties of ML estimators imply that

log(t̂p)− log(tp)

ŝelog(btp)

∼̇ NOR(0, 1) (2)

in large samples, wherė∼ means “approximately distributed” and an estimator of the esti-

mated standard error oflog(t̂p) is

ŝelog(btp) =

√
V̂ar(µ̂) + 2zpĈov(µ̂, σ̂) + z2

pV̂ar(σ̂) . (3)

Following from (2), a normal approximation confidence interval for log(tp) is
[
log(t

˜
p), log(t̃p)

]
= log(t̂p)∓ z1−α/2 ŝelog(btp).

Thus, the corresponding normal approximation confidence interval for tp is
[
t
˜

p, t̃p

]
= exp

[
log(t̂p)∓ z1−α/2 ŝelog(btp)

]
. (4)

This method is described, for example, in Nelson [5, page 331].

B. ẑ Confidence Interval Procedure forF (t)

Similarly, in large samples

ẑ − z

ŝebz
∼̇ NOR(0, 1) , (5)

where ẑ = Φ−1[F̂ (te)] = [log(te)− µ̂]/σ̂, z = [log(te)− µ]/σ, and, by the delta method, an

estimator of the standard error ofẑ is

ŝebz =
1

σ̂

√
V̂ar(µ̂) + 2ẑĈov(µ̂, σ̂) + ẑ2V̂ar(σ̂) . (6)
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Approximation (5) can be used to obtain an approximate confidence interval forF (te). In

particular, the confidence interval is

[ p
˜
, p̃ ] = [ Φ(z

˜
), Φ(z̃) ] (7)

where[ z˜, z̃ ] = ẑ ∓ z1−α/2 ŝebz. This method is described, for example, in Nelson [5, page

332].

C. t̂p Confidence Interval Procedure forF (t)

This section illustrates a new confidence interval procedure for F (te), based on the rela-

tionship between estimates ofF (t) and tp . The procedure, which we call thêtp procedure,

is defined by inverting the confidence bands for the quantile function. The general idea is

illustrated in Figure 2. In particular,

• Compute the confidence intervals[ t˜p, t̃p ] for the quantilestp. In Figure 2 the lower

endpoints,t˜p, and the upper endpoints,̃tp, of these confidence intervals are indicated

by← and→, respectively.

• The confidence bands for the cdfF (t), 0 < t < ∞ are defined as follows. The upper

boundary of the confidence band forF (t) is obtained by joining the lower endpoints,

t˜p, of the quantile confidence intervals. The lower boundary ofthe confidence bands is

obtained by joining the upper endpoints,t̃p.

• A pointwise confidence interval forF (te) is obtained from the intersections of a vertical

line throughte with the boundaries of the confidence bands forF (t). In Figure 2, this

is illustrated forte = 2.0.

Using (1), one can re-expresŝselog(btp) as σ̂
√

(λ̂11 + 2λ̂12zp + λ̂22z2
p)/n . Hence

[
log(t˜p), log(t̃p)

]
= log(t̂p)∓ σ̂

√
γα,n(λ̂11 + 2λ̂12zp + λ̂22z2

p)

where γα,n = z2
1−α/2/n. In Figure 2, this confidence interval forF (te) is indicated with

the l symbol. Specifically, âtp procedure confidence interval forF (te) based on a normal

approximation is given by the solutionsp
˜

and p̃ for the equations

log(te) = log(t̂p
˜
) + σ̂

√
γα,n(λ̂11 + 2λ̂12zp

˜
+ λ̂22z2

p

˜
)

log(te) = log(t̂ep)− σ̂
√

γα,n(λ̂11 + 2λ̂12zep + λ̂22z
2
ep) .

The solutions forp
˜

and p̃ are

[ p
˜
, p̃ ] = [ Φ(z

˜
), Φ(z̃) ], (8)
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Fig. 2. Illustration of thebtp Procedure

where

[ z
˜
, z̃ ] = ẑ +

γα,n(λ̂12 + ẑλ̂22)

1− γα,nλ̂22

∓

√
γα,n

(
λ̂11 + 2ẑλ̂12 + ẑ2λ̂22

)
− γ2

α,n

(
λ̂11λ̂22 − λ̂2

12

)

1− γα,nλ̂22

.

The procedure leading to the interval (8) requires thatγα,nλ̂22 < 1 for the solution to be

unique. Ifγα,nλ̂22 ≥ 1, one or both roots might be complex, infinite, or non-unique.One can

show that this anomaly occurs when a joint confidence region for (µ, σ) includes non-positive

values ofσ, in which case the confidence bands provided by procedure (4)and (7) are not

monotonically increasing.

The t̂p procedure links together the procedures for constructing confidence intervals for

tp and for F (t). This link allows us to show analytically the relationshipsbetween the

two procedures. An alternative procedure for defining confidence intervals oftp can be

similarly obtained based on an inversion of the confidence bands forF (t). We do not give

the details here.

IV. L IKELIHOOD BASED CONFIDENCE INTERVAL PROCEDURES

This section introduces likelihood based procedures for computing confidence intervals

for tp and F (t). We also introduce a likelihood based̂tp procedure forF (t) in a manner

similar to thet̂p procedure in Section III-C. Generally, there are no closed forms for these

likelihood procedures and numerical methods are needed.
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A. Confidence Intervals fortp

Standard large sample theory also provides the result that

2
{
L (µ̂ , σ̂)−max

σ
L [log(t)− zp σ , σ]

}
∼̇ χ2

1 (9)

for fixed 0 < p < 1 and t = tp (e.g. Meeker and Escobar [6, page 182]). This result would

be the basis for a likelihood ratio test for a quantiletp. Likelihood confidence intervals for

tp can be obtained by inverting likelihood ratio tests. In particular, a100(1−α)% likelihood

based confidence interval for thetp using (9) is
[
t
˜

p , t̃p

]
(10)

where

t
˜

p = min
{
t : t satisfying max

σ
L [log(t)− zp σ , σ] ≥ L(µ̂ , σ̂)− 1

2
χ2

1;1−α

}

t̃p = max
{
t : t satisfying max

σ
L [log(t)− zp σ , σ] ≥ L(µ̂ , σ̂)− 1

2
χ2

1;1−α

}
.

B. Confidence Intervals forF (t)

Similarly, we have the fact that

2
{
L (µ̂ , σ̂)−max

σ
L [log(te)− zp σ , σ]

}
∼̇ χ2

1 (11)

for fixed te > 0 and p = F (te). Using (11), the likelihood based confidence interval for

F (te) is

[ p
˜

, p̃ ] (12)

where

p
˜

= min
{
p : p satisfying max

σ
L [log(te)− zp σ , σ] ≥ L(µ̂, σ̂)− 1

2
χ2

1;1−α

}

p̃ = max
{
p : p satisfying max

σ
L [log(te)− zp σ , σ] ≥ L(µ̂, σ̂)− 1

2
χ2

1;1−α

}
.

Note that both procedure (10) and (12) also give confidence bands for the quantile function

and the cdf, respectively. One can show that these bands are always monotonically increasing,

which is in contrast to the normal approximation confidence bands in Section III that can,

especially in small samples, be non-monotone.
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C. t̂p Confidence Interval Procedure forF (t)

To show the relationship between the likelihood confidence bands obtained from (10) and

(12), we define a likelihood based̂tp procedure confidence interval forF (t) in a manner

similar to the normal approximation̂tp procedure in Section III-C. A confidence interval

from this procedure, as illustrated in Figure 2, is

[ p
˜

, p̃ ] (13)

wherep
˜

andp̃ are obtained by solving from equationste = t̃p
˜

andte = tep

˜
. That is,p

˜
is chosen

such that the upper endpoint of the confidence interval for the p
˜

quantile iste. Similarly, p̃

is chosen such that the lower endpoint of the confidence interval for the p̃ quantile iste.

V. EQUIVALENCE RESULTS

This section outlines some equivalence results among the confidence interval procedures

given in Section III and IV.

Result 1: The normal approximation based confidence interval procedures forF (t) defined

by (7) and (8) are asymptotically equivalent.

This result implies that there is a difference in these procedures, but that the difference

becomes smaller in large samples. This result also suggeststhat it is valid to interpret the set

of approximate pointwise confidence intervals for the quantile function as a set of approximate

pointwise confidence intervals forF (t) and vice-versa. See Appendix A for a proof.

Result 2: The likelihood based confidence interval procedures (12) and (13) for F (t) are

equivalent.

This result shows that if one uses the likelihood based procedures, it makes no difference

whether one computes pointwise confidence bands forF (t) or tp; the bands will be the

same. See Appendix B for a proof. The property inResult 2 is in addition to the property

that likelihood based confidence intervals procedures tendto have better coverage properties

(e.g., as described in Jeng and Meeker [8]).

VI. A PPLICATION TO THE BALL BEARING DATA

To illustrate the procedures, we consider a well-known subset of the Lieblein and Zelen

[9] ball bearing life test data. As described in Lawless [7, page 98], this data set has 23

observations on millions of cycles to failure for each ball bearing. To introduce censoring to

the data, we assume the life test ended after the first 10 bearing failures.
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Fig. 3. Weibull Probability Plot of the Censored Ball Bearing Life Test Data with ML Estimate and Pointwise Confidence

Bands Based on Normal Approximation Procedures

Figures 1 and 3 are Weibull probability plots of the Weibull ML estimate and pointwise

confidence bands forF (t) using the censored ball bearing life test data. Figure 3 shows the

pointwise confidence bands forF (t) based on procedures (4) and (7). AsResult 1 shows,

these two sets of confidence bands are not exactly the same. But if the sample size were

to get larger, we would expect these two sets of confidence bands to get closer. Because of

Result 2, only the pointwise confidence bands forF (t) based on procedure (10) are shown

in Figure 1, the bands obtained from procedure (12) are exactly the same.

VII. CONCLUDING REMARKS

This paper compares confidence interval procedures for distribution probabilities and quan-

tiles. We also show the relationships between the pointwiseconfidence bands forF (t) and

the pointwise confidence bands fortp and show that the bands forF (t) and tp are the same

in the case of likelihood based intervals. The results provide additional motivation (e.g.,

beyond motivation described in Jeng and Meeker [8]) to move from the traditional normal

approximation intervals to likelihood based intervals.

Even though the advantages of likelihood-based intervals has been known to many statisti-

cians for the past 15 to 20 years, as far as we know, the only commercial computer packages

to have implemented likelihood-based confidence intervalsfor functions of parameters are

SAS PROC RELIABILITY (only for quantiles, not for probabilities) and Weibull++ (for
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both probabilities and quantiles). The results in this paper show that if the likelihood based

intervals are used, only one set of confidence bands, either confidence bands for quantile

function or for cdf, are needed because another set of confidence bands are exact the same.
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APPENDIX

A. Proof of Result 1

This appendix shows the asymptotic equivalence of confidence bands from thêz proce-

dure in (7) and thêtp procedure in (8). In either case, the confidence band for the cdf

can be expressed as[ p
˜
, p̃ ] = [ Φ(z˜), Φ(z̃) ]. It suffices to consider the lower band

because the proof for the upper band is similar. Using (1), one can re-expresŝsebz as√
(λ̂11 + 2λ̂12ẑ + λ̂22ẑ2)/n . For confidence bands defined by (7),z˜1 = ẑ − z1−α/2 ŝebz =

ẑ −
√

γα,n(λ̂11 + 2λ̂12ẑ + λ̂22ẑ2). For confidence bands defined by (8),

z
˜

2 = ẑ +
γα,n(λ̂12 + ẑλ̂22)

1− γα,nλ̂22

−

√
γα,n

(
λ̂11 + 2ẑλ̂12 + ẑ2λ̂22

)
− γ2

α,n

(
λ̂11λ̂22 − λ̂2

12

)

1− γα,nλ̂22

.

Note that

z
˜

2 − ẑ

z
˜

1 − ẑ
=

√(
λ̂11 + 2ẑλ̂12 + ẑ2λ̂22

)
− γα,n

(
λ̂11λ̂22 − λ̂2

12

)
−√γα,n(λ̂12 + ẑλ̂22)

(1− γα,nλ̂22)

√
(λ̂11 + 2λ̂12ẑ + λ̂22ẑ2)

→ 1

asn→∞ becauseγα,n = z2
1−α/2/n→ 0 (holdingr/n or expectation ofr/n constant). Thus

the confidence bands defined by (7) and defined by (8) are asymptotically equivalent.

B. Proof of Result 2

This appendix shows the equivalence of the likelihood basedconfidence interval procedures

for F (t) in (12) and in (13). The claims is that the upper band for the quantile function is

exactly the same as the lower band of the cdf and that the lowerband for the quantile

function is exactly the same as the upper band of the cdf. Onlythe proof of the first case is

given, as the proof of the second case is similar.
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Let (te, pL) and (te, pU) (with pL < pU ), as illustrated in Figure 2, be the points at

which the vertical line throughte intersects the confidence bands for the quantile function.

Becausete is the upper ending point of the confidence interval fortpL
, that is,te = max{t :

t satisfying maxσ L[log(t)− σzpL
, σ] ≥ k} wherek = L(µ̂, σ̂)− 1

2
χ2

1;1−α. Thus,

max
σ
L[log(te)− σzpL

, σ] ≥ k (14)

max
σ
L[log(te + δ)− σzpL

, σ] < k for all δ > 0. (15)

Considerp < pL and suppose that̃σ maximizesL[log(te)− σzp, σ]. It follows that

max
σ
L[log(te)− σzp, σ] = L[log(te)− σ̃zp, σ̃]

= L[log(te) + σ̃(zpL
− zp)− σ̃zp, σ̃]

= L[log(te + δ)− σ̃zp, σ̃] < k (16)

whereδ = te{exp[σ̃(zpL
− zp)]− 1} > 0 and the inequality in (16) follows from (15). Then

from (14) and (16), it follows that

pL = min{p : p satisfying max
σ
L[log(te)− σzp, σ] ≥ k}

which meanspL is the lower ending point of confidence interval forF (te) from (12). That

is, the upper band for the quantile function is exactly the same as the lower band of the cdf.
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