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Abstract

The failure probability of a produck'(¢) and the life time quantile, are commonly used
metrics in reliability applications. Confidence intervate used to quantify the statistical uncertainty
of estimators of these two metrics. In practice, a set of tpoge confidence intervals fdr(¢) or the
quantileg,, are often computed and plotted on one graph, which we refes fwintwise “confidence
bands.” These confidence bands #(t) or ¢, can be obtained through normal approximation,
likelihood, or other procedures. In this paper, we comparenal approximation and likelihood
methods and introduce a new procedure to get the confidetewars for F'(t) by inverting the
pointwise confidence bands of the quantilfunction. We show that it is valid to interpret the set
of pointwise confidence intervals for the quantile functaana set of pointwise confidence intervals
for F'(t) and vice-versa. Our results also indicate that the likelthbased pointwise confidence

bands have desirable statistical properties, beyond tthagevere known previously.

Index Terms

Asymptotic approximation; Confidence bands; Life data wsia) Likelihood confidence inter-
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ACRONYMS
cdf cumulative distribution function

ML maximum likelihood

NOTATION
% chi-square distribution with 1 degree of freedom

NOR(0, 1) standard normal distribution
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. INTRODUCTION
A. Motivation

The cdf F'(t) of a random variabld” can be interpreted as the probability that a unit
will fail by time ¢ or the proportion of units in the population that will fail kyne ¢. In
particular, the cdf can be used to estimate the proportica foduct that will fail before a
particular point in time such as the end of the warranty gerithe quantile functiort, is
the inverse of the cdf and corresponding to the time at whispexified proportiop of the
population fails. For example, if it is felt that it is accapte to repair/replace no more that
5% of a product population during the warranty period, thes warranty period should be
at most equal td@ o5, the .05 quantile.

Confidence intervals are used to quantify statistical ung#y. For reliability applications,
it is standard practice to plot on one graph a set of pointadsdidence intervals foF'(¢) over
a range oft values or a set of pointwise confidence intervalstfpover a range op values
(e.g., MINTAB [1], WEIBULL++ [2], PROC RELIABILITY in SAS [3], S-PLUS/SPLIDA
in [4] provide such graphics). We will refer to these poirgwisets as “confidence bands.”
Figure 1 shows pointwise confidence intervals for the failjprobability F'(¢) when10 < ¢ <
100. Details for the computation Figure 1 are given in Section RIbtting the confidence
intervals for an entire interval of values of(or p) relieves the user from having to specify
the particular time (or quantile) of interest, making thdtware easier to use. In general,
the plot obtained from the pointwise bands #(¢) is not exactly the same obtained from
the pointwise bands fat,.

The results in this paper show that it is valid to interpret #et of pointwise confidence
intervals for the quantile function as a set of pointwise fi@mce intervals forF'(¢) and
vice-versa. In particular, we show that normal approxioratbased pointwise confidence
bands for the cdf and the quantile function are asymptdyiegjuivalent and that likelihood
based pointwise confidence bands for the cdf and the qudutitgion are equivalent. Our
results are presented for the family of log-location-sadikributions, which includes the
commonly used Weibull and lognormal distributions as sgletases.

B. Literature Review

Statistical methods (including confidence intervals) fog-location-scale distributions,
especially with application to lifetime studies are givéor, example, in Chapters 6 and
8 of Nelson [5], Chapter 8 of Meeker and Escobar [6], and Giraptof Lawless [7].
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Fig. 1. Weibull Probability Plot of the Censored Ball Begribife Test Data with ML Estimate and Pointwise Confidence
Bands Based on Likelihood Procedures

C. Overview

The remainder of this paper is organized as follows. Sedtidescribes the log-location-
scale model used in the paper and ML estimation for the modelmpeters and functions
of the parameters. Sections Il and IV describe existing@dores to construct confidence
intervals fort, and F'(t) and a new procedure for constructing confidence intervafFiay
by inverting the confidence bands for the quantiles. Thesegolures are based either on
a normal approximation or on the likelihood. Section V presesome equivalence results
for the confidence bands @f(¢) andt,. Section VI illustrates the methods and results with
some application to real data and Section VIl contains aahol remarks. Some technical
details are given in the appendix.

[I. MODEL AND ML ESTIMATION
A. Model and Data

The results of this paper have been developed specificalth&ocommonly used location-
scale and log-location-scale families, although simieuits certainly hold for other families
of distributions. A random variablg belongs to the location-scale family, with locatierand
scaleo, if its cdf can be written agy (y; u, o) = ®[(y—p) /0], where—oo < y < 0o, —00 <
< oo,0 >0, and®(z) is the parameter free cdf 9% — 1) /0. The normal distribution, the



smallest extreme value distribution, the largest extremleev distribution, and the logistic
distribution are commonly used location-scale distrisgi. A positive random variablg is

a member of the log-location-scale family¥f = log(7") is a member of the location-scale
family. Then the distribution off" is F(t; u,0) = ®{[log(t) — )] /c}. The lognormal, the
Weibull, the Fréchet, and the loglogistic are among theartgnt distributions of this family.
For example, the cdf of the Weibull random varialilds F(t; i, o) = ®sef[log(t) — u]/o}
where ®ge(2) = 1 — exp|—exp(z)] is the standard (i.ey = 0,0 = 1) smallest extreme
value cdf. For the lognormal distribution, repla®e,, above with®,,,, the standard normal
cdf.

Suppose thal’ is a lifetime that has a distribution in the log-locatiorakcfamily. Some
quantities of interest are the failure probabili#(t.) = F'(t.; u, o) att. and thep quantile
t, = exp(u + z,0) of the distribution where,, = ®~!(p) is thep quantile of d(z).

Life tests often result in censored data. Type | (time) ceetsalata result when unfailed
units are removed from test at a prespecified time, usuakly tddimited time for testing.
Type Il (failure) censored data result when a test is tertauhafter a specified number of
failures, say2 < r < n. If all units fail, the data are called complete or uncendatata.

The results in this paper hold for complete, Type | and Typeehsored data, as well as
to noninformative randomly censored data that generalean field tracking studies and
warranty data analysis.

B. ML Estimation

For a censored sample withindependent exact and right censored observations from a
log-location-scale random variablg the likelihood of the data & = (i, o)’ is

e =) (o2

i=1
whered; = 1 if t; is an exact observation ard= 0 if ¢; is a right censored observation,
is defined in Section II-A an@(z) is the densityd®(z)/dz, andC is a constant that does
not depend on the unknown parameters. Standard computemsef(e.g., JIMP, MINITAB,
SAS, S-PLUS/SPLIDA) provide ML estimates @fand functions of such as quantiles and
failure probabilities. We denote the ML estimator @y 6 = (11,0). From the invariance
property of ML estimators, the ML estimator of is 7, = exp [ + ®~'(p) 5]. Similarly,
the ML estimator ofF'(t) att, is F(t,) = ®{[log(t.) — ] /o }. See, for example, Chapter 8
in Meeker and Escobar [6] for more details.
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In large samples, the ML estimatér has a distribution that can be approximated by a
bivariate normal distribution BV, ¥), where: can be estimated by
o {_ a%(e)} o Var(i)  Cov(7i.5)
° L o606 Cov(fi,5)  Var(5)

0=0

and £(0) = log[L(0)] is the log likelihood of the data. In the following sectionge also
use the scaled estimate of variance-covariance matrix

R (2)5=| 5]

)\12 )\22
[1l. NORMAL APPROXIMATION BASED CONFIDENCE INTERVAL PROCEDURES

(1)

A. Normal Approximation Confidence Procedure fpr

Under standard regularity conditions met by the log-larascale distributions used here,
properties of ML estimators imply that
log(t,) — log(t,)
SQOg(tAP)

in large samples, wher& means “approximately distributed” and an estimator of tb- e

NOR(0, 1) )

mated standard error dbg(z,) is

Suyr,) = /VaI(f) + 22,Cov(fi, 3) + 2Var(5) . 3)
Following from (2), a normal approximation confidence imtérfor log(¢,) is
og(t,), 1og(fy) | =108(E,) F 12 Sy

Thus, the corresponding normal approximation confidenterval for¢, is

b B | = exp [log(6) F 210/ 88006, |- (@)

This method is described, for example, in Nelson [5, pagq.331

B. z Confidence Interval Procedure fdr(t)

Similarly, in large samples

Z—z

z

where? = & 1[F(t,)] = [log(t.) — 7i] /3, = = [log(t.) — p] /o, and, by the delta method, an
estimator of the standard error fis

- 1 [~ e~ —
Se = — \/ Var(iz) + 2zCov(pi, o) + z2Var(o) . (6)
g



Approximation (5) can be used to obtain an approximate centid interval forF'(z.). In
particular, the confidence interval is

where[z, Z|=7ZF z_q/2 S&. This method is described, for example, in Nelson [5, page
332].

C. t, Confidence Interval Procedure fdr(t)

This section illustrates a new confidence interval procedar F'(t.), based on the rela-
tionship between estimates 6f(t) and¢,. The procedure, which we call tktAg procedure,
is defined by inverting the confidence bands for the quantifetion. The general idea is
illustrated in Figure 2. In particular,

« Compute the confidence intervals,, ,] for the quantilest,. In Figure 2 the lower
endpointst,, and the upper endpoint’sv,,, of these confidence intervals are indicated
by «— and—, respectively.

« The confidence bands for the cdf(t), 0 < t < oo are defined as follows. The upper
boundary of the confidence band fél(¢) is obtained by joining the lower endpoints,
t,, of the quantile confidence intervals. The lower boundaryhefconfidence bands is
obtained by joining the upper endpoints,

« A pointwise confidence interval faf'(t.) is obtained from the intersections of a vertical
line throught. with the boundaries of the confidence bands f4dt). In Figure 2, this
is illustrated fort. = 2.0.

Using (1), one can re-express,, ; , as?f\/(Xll + 2X12zp +X22z§)/n . Hence

[log(ip), IOg(%Vp) } = IOg(tAp) + CAT\/%W(XM + 2/)\\122:]) + X222;,2,)

where v, , = zf_a/z/n. In Figure 2, this confidence interval fdr(¢.) is indicated with
the | symbol. Specifically, etAp procedure confidence interval fdf(¢.) based on a normal
approximation is given by the solutiopsandp for the equations

log(t.) = log(f,) + 8\/ Yom(Ar1 + 2X122 + A2272)

log(t.) = log(ts) — 8\/%,”@11 + 2X12z,7 + /)\\222%) :

The solutions forp andp are

[Ev ﬁ] = [(I)(Z), (I)(E)]v (8)
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Fig. 2. lllustration of thet, Procedure

where

iy e (o) i (ke )
- I — YanA2 I — YanA2
The procedure leading to the interval (8) requires HMXQZ < 1 for the solution to be
unique. If%mXZz > 1, one or both roots might be complex, infinite, or non-unigDee can
show that this anomaly occurs when a joint confidence regiofyf, o) includes non-positive
values ofo, in which case the confidence bands provided by procedurand)(7) are not
monotonically increasing.

ThetAp procedure links together the procedures for constructogfidence intervals for
t, and for F'(¢). This link allows us to show analytically the relationshipstween the
two procedures. An alternative procedure for defining cemfo@ intervals oft, can be

similarly obtained based on an inversion of the confidencedbdor F'(¢). We do not give

the details here.

V. LIKELIHOOD BASED CONFIDENCE INTERVAL PROCEDURES

This section introduces likelihood based procedures fonping confidence intervals
for ¢, and F(t). We also introduce a likelihood basegl procedure forF(t) in a manner
similar to thetAp procedure in Section IlI-C. Generally, there are no closgdh§ for these
likelihood procedures and numerical methods are needed.



A. Confidence Intervals faf,

Standard large sample theory also provides the result that

2{£(71,5) — max L [log(t) ~ 0,01} < ©)

for fixed 0 < p < 1 andt = ¢, (e.g. Meeker and Escobar [6, page 182]). This result would
be the basis for a likelihood ratio test for a quantile Likelihood confidence intervals for
t, can be obtained by inverting likelihood ratio tests. In fatftr, a100(1 — «)% likelihood
based confidence interval for thg using (9) is

b ) (10)
where
L PO
t, = min {t : t satisfying max L [log(t) — 2,0 ,0] > L(i,0) — §X%;l—a}
1

t, = max {t : t satisfying m;xxﬁ log(t) — z,0,0] > L(i,0) — 5)&;1_&}.

B. Confidence Intervals foF'(t)

Similarly, we have the fact that
2 {c (i, 5) — max £ [log(t.) — zpa,a]} S (11)

for fixed t. > 0 andp = F(t.). Using (11), the likelihood based confidence interval for
F(t.) is

[p, D] (12)

where

o 1
p= min {p : p satisfying mj}xﬁ log(te) — zp0,0] > L(j1,0) — ixil_a}

_ L 1

p = max {p : p satisfying max £ [log(t.) — z,0,0] > L(1,75) — 5)&;1_0‘}.
Note that both procedure (10) and (12) also give confidenoes#or the quantile function
and the cdf, respectively. One can show that these bandsnxagsamonotonically increasing,
which is in contrast to the normal approximation confidenaads in Section Ill that can,
especially in small samples, be non-monotone.



C. t, Confidence Interval Procedure fdr(t)

To show the relationship between the likelihood confidermeds obtained from (10) and
(12), we define a likelihood basetTg procedure confidence interval fdf(¢) in a manner
similar to the normal approximatioﬁp procedure in Section 1lI-C. A confidence interval
from this procedure, as illustrated in Figure 2, is

[P, D] (13)

wherep andp are obtained by solving from equatiohs= EJ; andt, = tz. Thatis,p is chosen
such that the upper endpoint of the confidence interval fepptiquantile ist.. Similarly, p
is chosen such that the lower endpoint of the confidencevaitéor the p quantile ist,.

V. EQUIVALENCE RESULTS

This section outlines some equivalence results among thédemce interval procedures
given in Section Il and IV.

Result 1: The normal approximation based confidence interval praesdior /'(t) defined
by (7) and (8) are asymptotically equivalent.
This result implies that there is a difference in these piaces, but that the difference
becomes smaller in large samples. This result also sugthedti is valid to interpret the set
of approximate pointwise confidence intervals for the guefinction as a set of approximate
pointwise confidence intervals fdr(¢) and vice-versa. See Appendix A for a proof.

Result 2: The likelihood based confidence interval procedures (18)(a8) for F'(t) are
equivalent.
This result shows that if one uses the likelihood based phaes, it makes no difference
whether one computes pointwise confidence bandsFig) or ¢,; the bands will be the
same. See Appendix B for a proof. The propertyResult 2 is in addition to the property
that likelihood based confidence intervals procedures terdhve better coverage properties
(e.g., as described in Jeng and Meeker [8]).

VI. APPLICATION TO THE BALL BEARING DATA

To illustrate the procedures, we consider a well-known sub$ the Lieblein and Zelen
[9] ball bearing life test data. As described in Lawless [@ge 98], this data set has 23
observations on millions of cycles to failure for each bahbng. To introduce censoring to
the data, we assume the life test ended after the first 10ngetailures.
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Fig. 3. Weibull Probability Plot of the Censored Ball Begribife Test Data with ML Estimate and Pointwise Confidence
Bands Based on Normal Approximation Procedures

Figures 1 and 3 are Weibull probability plots of the WeibulLMstimate and pointwise
confidence bands faoF'(¢) using the censored ball bearing life test data. Figure 3 shbe
pointwise confidence bands fdf(¢) based on procedures (4) and (7). Result 1 shows,
these two sets of confidence bands are not exactly the samef e sample size were
to get larger, we would expect these two sets of confidencdsbanget closer. Because of
Result 2, only the pointwise confidence bands f6(t) based on procedure (10) are shown
in Figure 1, the bands obtained from procedure (12) are gxtet same.

VIlI. CONCLUDING REMARKS

This paper compares confidence interval procedures farldigon probabilities and quan-
tiles. We also show the relationships between the pointeis#gidence bands foF'(¢) and
the pointwise confidence bands figrand show that the bands féf(t) and¢, are the same
in the case of likelihood based intervals. The results plevadditional motivation (e.g.,
beyond motivation described in Jeng and Meeker [8]) to mowefthe traditional normal
approximation intervals to likelihood based intervals.

Even though the advantages of likelihood-based intenadsieen known to many statisti-
cians for the past 15 to 20 years, as far as we know, the onlynsnial computer packages
to have implemented likelihood-based confidence interf@dunctions of parameters are
SAS PROC RELIABILITY (only for quantiles, not for probakiks) and Weibull++ (for
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both probabilities and quantiles). The results in this pab®w that if the likelihood based
intervals are used, only one set of confidence bands, eith@idence bands for quantile
function or for cdf, are needed because another set of comgdbands are exact the same.
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APPENDIX
A. Proof of Result 1

This appendix shows the asymptotic equivalence of confeldrands from th& proce-
dure in (7) and the?p procedure in (8). In either case, the confidence band for tie c
can be expressed 49, p] = [P(z), P(2)]. It suffices to consider the lower band
because the proof for the upper band is similar. Using (1 oan re-expresse as
\/(XH + 2X122+ /):2222)/71 . For confidence bands defined by (2), = Z — z1_q/25& =

zZ— \/704,71(/)\\11 + 2X12E+ XZQEQ). For confidence bands defined by (8),

(/)\\12 + 3/):22) \/’Ya,n ()\11 + 2/2\)\12 + /2;2)\22) - ’}/gém <)\11)\22 — )\%2)

22 = /Z\—‘— 70(,77/ — —~
- 1-— f)/a,n)\22 1- f)/a,n)\QQ
Note that
-2 \/(Xn + 25000 + 22/):22> — Ya,n (Xuxm - X%g) - \/mau + ZAa2) 1
A~ = ﬁ
a=s (1- %7n)\22)\/()\11 + 2127 + A22?)

asn — oo becausey, , = zf_a/2/n — 0 (holdingr/n or expectation of-/n constant). Thus
the confidence bands defined by (7) and defined by (8) are astiogty equivalent.

B. Proof of Result 2

This appendix shows the equivalence of the likelihood basedidence interval procedures
for F'(t) in (12) and in (13). The claims is that the upper band for thentjle function is
exactly the same as the lower band of the cdf and that the Ibaed for the quantile
function is exactly the same as the upper band of the cdf. @wyproof of the first case is
given, as the proof of the second case is similar.
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Let (¢.,pr) and (t.,py) (With p, < py), as illustrated in Figure 2, be the points at
which the vertical line through, intersects the confidence bands for the quantile function.
Because. is the upper ending point of the confidence intervaldgr, that is,t, = max{t :

t satisfying max, L[log(t) — 0z, ,0] > k} wherek = L(fi,0) — 1x}.,_,. Thus,

max Lllog(t.) — 02,,,0] >k (14)
mgxﬁ[log(te +0) —o0z,,0] < k forall § > 0. (15)
Considerp < p;, and suppose that maximizesL[log(t.) — oz,, c|. It follows that
max L[log(t.) — 02,, 0] = L[log(t.) — 72, 0]
= L[log(te) + (2p, = 2) = 62, 0]
= L[log(t. +0) — 72p,0] < k (16)

whered = t.{exp[d(z,, — z,)] — 1} > 0 and the inequality in (16) follows from (15). Then
from (14) and (16), it follows that

pr = min{p : p satisfying max L[log(t.) — 0z,,0] > k}

which meang,, is the lower ending point of confidence interval fBXt.) from (12). That
is, the upper band for the quantile function is exactly thmesas the lower band of the cdf.
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