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INTRODUCTION 

The SYMBOL-2R computer system[1] vas designed and constructed by the 

Digital Systems Research group at Fairchild Camera and Instrument 

Corporation in the late 1960*s for the purpose of re-examining a number of 

traditional assumptions regarding computing systems, including the 

functional division between hardware and software. One goal of the proj­

ect was to demonstrate that the capabilities of hardware had been grossly 

underestimated. This demonstration was accomplished by constructing a 

computer system, SYHB0L-2R, which incorporates an interpreter for a very 

high-level programming language, and an operating system to supervise its 

multiprogramming/multiprocessing/demand-paging environment, entirely in 

the hardware. The system is capable of supporting up to 15 terminals in a 

time-shared environment. No software is needed to accomplish this opera­

tion. 

SÏHB0L-2R was not intended to be a production prototype, and 

therefore a number of simplifying assumptions were made in the design of 

the machine and of the SYMBOL Programming Language (SPL)[2] which it 

implements. For example, many "features'* were omitted when their inclu­

sion would not have furthered the goals of the project or demonstrated 

significant principles. In particular, no claim of completeness* has been 

made for SPL. 

One of the goals of the SYMBOL project at Iowa State University has 

been to evaluate the SYHB0L-2R system and SPL. 7t will be our purpose 

here to examine SPL, identifying its deficiencies and proposing 

modifications and extensions to correct them. 

Although SPL contains an unusually powerful string-manipulation 

» In reference to a language, "complete" is difficult, if not impossible, 
to define satisfactorily. Since additional "features" can be added to any 
language definition, no language can be "complete" in the sense that 
"nothing useful could possibly be added," Attempts at producing languages 
which are complete in this sense lead to such abominations as PL/I or 
SN0B0L4[3]. We are inclined to consider a language "complete" if it 
contains no obvious omissions, but this definition does not escape 
subjectivity since what is obscure to one observer may be obvious to 
another. He shall leave to the reader the judgment as to whether the 
language which we propose deserves to be called complete. 
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operator (MASK), its facilities for testing and examining the contents of 

strings are limited to lexicographic comparison 2, p. 58], SPL shares 

this limitation with most other general-purpose programming languages 

[4,5,6,7]. Such limitations become troublesome in many applications, such 

as compilers, interpreters, and editors, involving the processing of text. 

The complexity and correctness difficulties regularly encountered in 

present-day compilers and interpreters, particularly in the lexical-

analysis sections, are at least partially chargeable to the lack of suffi­

ciently powerful string-processing facilities in the languages used to 

write then. 

Specialized pattern-matching languagesC8,9,10 ] provide greatly ex­

panded string-examination capabilities, but their control structures are 

typically limited to procedure-calls (which in some languages nay be re­

cursive) and GO TO statements (which usually incorporate some form of 

conditional). They do not provide such more recently developed constructs 

as nested conditionals (IF-THEN-ELSE), iteration statements (WHILE-EC, 

REPE&T-ONTIL, etc.), and multiple-choice conditionals ("case statements"), 

and their arithmetic capabilities are typically limited and inefficient. 

Furthermore, the pattern-matching operations themselves are generally 

guite complex and difficult to understand fully, and the determination of 

the manner in which a match "succeeded" involves dependence on side-effect 

assignment operations built into the "pattern". Since the specialized 

languages would require rather major overhaul jobs to correct their defi­

ciencies, it is perhaps not surprising that little has been attempted in 

this area. It is however quite surprising how little attention has been 

paid to the incorporation of pattern-matching facilities into general-

purpose programming languages. In one of the few publications on this 

subject, Balzer and Farber[11] have proposed a brute-force combination of 

the SNOBOLU pattém-matcher with PL/I. They could scarcely have chosen a 

worse host language for such a transfusion; Dijkstra[12] has correctly 

pointed out that PL/I is already excessively baroque. 
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Foc the benefit of those readers who may not be familiar with SPl, we 

shall begin by giving a brief overview; this overview will be followed by 

a detailed description of certain areas, pointing out the deficiencies 

which have been found. We shall conclude with detailed descriptions of 

the modifications and extensions which we propose in the interest of 

remedying the deficiencies, including a description of a simple yet power­

ful pattern-matching operator. 

Our proposed modifications and extensions are not all of egual impor­

tance. The extended control constructs WHILE and SELECT are included in 

the interest of completeness and because the WHILE is used in some 

illustrations and examples. Many of the mentioned deficiencies of MASK 

and FORMAT have been discovered in the course of operational experience 

with the SYMBOL-2H system; the correction of these deficiencies is consid­

ered to be of some significance and, in some cases, non-trivial and less 

than obvious. The notion of applying to aggregates operators defined upon 

scalars has been implemented in APL and to a lesser extent in PL/I, but 

the application of dyadic operators to structures of arbitrary and non-

conformable shapes is believed to be new. The proposed scalar-structure 

conversion operators merely make available, in contexts other than I/o, 

transformations already contained in SPL. The redefinition of 

subscription to permit subscript lists of varying length addresses a prob­

lem to which we know of no previous satisfactory solution. (The variable-

length subscript lists are also used in defining the HATCH operator.) 

The definition of the MATCH operator is considered to be the primary 

contribution of the research herein reported. HATCH is intended to make 

available the sort of string-searching capabilities found in SNOBOLWi and 

other specialized pattern-matching languages, without introducing side-

effect assignment operations and large numbers of difficult-to-remember 

"pattern primitives." some examples of its use are included. 

I A knowledge of SN0B0L4 is not reguired to understand our proposals. The 
reader who is unfamiliar with the SNOBOL languages should not be alarmed. 
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OVERVIEW OF SPL 

The syntax of SPL is given in [2], together with a description of its 

semantics. SPL is a block-structured, ALGOL-like language having two 

manipulable data types called scalars and structures. A scalar is a 

character-string of unlimited and dynamically-variable length; a structure 

is a vector containing one or more (but not more than 9999) components, 

each of which is either a scalar or a structure, certain subsets of the 

scalars are recognized semantically: numbers are scalars which can be in­

terpreted as representing numerical values (see [2] for details), Booleans 

are scalars containing only the characters 0, 1, and space, and truth-

values are the single-character Booleans 1 and 0 (to which are assigned 

the interpretations true and false, respectively). The default scope of a 

variable is local, i.e. if the same name is used in two different blocks 

the two uses reference different variables unless the name is declared 

GLOBAL (which extends its scope outward one level)[13]. 

Operators are defined upon scalar operands and produce scalar 

results. The arithmetic operators (addition, subtraction, multiplication, 

division, negation, and absolute value) require that their operands be 

numbers and produce results which are numbers. The JOIN operator produces 

as its result the concatenation of its operands. The FORMAT and MASK 

operators provide powerful editing capabilities for numbers, and for 

scalars in general, respectively; these two operators will be described in 

detail in a later section. The string-comparison operators BEFORE, SAME, 

and AFTER produce truth-values based on the lexicographic ordering of 

their operands; the six numeric-comparison operators produce truth-values 

based on the ordering of the numerical values represented by their 

operands (which must be numbers). The logical operators AND, OR, and NOT 

produce Boolean results by applying the corresponding operations of 

Boolean algebra to their operands (which must be Booleans) on a 

character-by-character basis. (Blanks in the operands are skipped and do 

not influence the result.) 



5 

A conventional assignment operation permits the value of a variable 

or of a structure component to be replaced. The right-hand side (new 

value) may be a variable (having either a scalar or structure value), an 

expression (which will always have a scalar value), or an assignment-

structure (which has a structure value). (An assignment-structure is a 

linearized representation of a vector in which components are separated by 

field-mark characters and the entire vector is enclosed in arouo-mark 

characters. Each component of the vector may be a variable, an expres­

sion, or an assignment-structure.) 

A component of a structure-valued identifier may be selected by a 

subscripted reference, in which the identifier is followed by a list of 

subscripts separated by commas and enclosed in brackets. A subscript may 

be a constant, a variable, or an expression; its value must be a non-

negative number less than 10,000. A subscripted reference may be guali-

fied by being preceded by the word IN, in which case the result is a 

truth-value designating whether the specified component exists rather 

than an access to the component. 

A substring of a scalar-valued structure component or identifier may 

be selected by means of a partial reference, which is specified by a 

bound-pair consisting of two subscripts separated by a colon. 

(Syntactically, a bound-pair is handled like a single subscript.) The 

first subscript of the pair, which must be at least 1, specifies the 

starting character position in the string; the second specifies the length 

of the substring. Thus the SPL reference X[I:J] is equivalent to the 

PL/I construct SUBSTR (X, I, J) . Following PL/I a bit farther, the 

subscript following the colon (J in the above example) may be omitted to 

denote that the substring extends to the end of the original string. 

Unlike SUBSTB, a partial reference produces a value rather than an access, 

and hence cannot serve as a recipient in an assignsient or INPUT statement. 

Procedures, labels, and GO TO statements are handled in a convention­

al manner, with the restriction that procedures may not be used 

recursively. Procedures may be called as functions, i.e. they may return 
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values. The equivalent of the PL/I "label array" is provided by the 

SWITCH statement, which creates a structure whose components may be used 

in 60 statements. 

The conditional (IP-THEN-ELSE) construct is somewhat unusual 

syntactically in that multiple statements are accommodated in the THEN and 

ELSE branches without recourse to such devices as enclosing them in a 

"begin-end" pair. This is accomplished by requiring that each conditional 

statement conclude with the word END, which serves to delimit the ELSE 

branch. The THEN branch is delimited by the word ELSE (or by the END if 

the statement has no ELSE branch). The semantics of the conditional 

statement are conventional. 

Input and output are handled via INPUT and OUTPUT statements, which 

are unusual in that they provide no formatting. (The idea is that, 

instead of putting the formatting in the I/O and then resorting to some 

kind of "core-to-core I/O" facility to make it available elsewhere, 

generalized formatting capabilities are provided in the form of the MASK 

and FORMAT operators which are usable in any context.) The I/O statements 

do contain a STRING qualifier (which influences the manner in which struc­

ture values are transmitted) and a DATA qualifier (whose effect is similar 

to thé rORTBÀM HAnELIST or PL/I GET/POT DATA statement), as well as TC and 

FROM qualifiers whose purpose is similar to FORTRAN "unit numbers" or PL/I 

"file names". 
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EXTENDED CONTROL CONSTRUCTS 

SPL's set of control constructs is complete in the sense that it is 

sufficient to express any algorithm; however the absence of any "looping" 

construct requires that repetition be specified by means of the GO state­

ment and controlled with the conditional. We shall not rehash here the 

plethcra of arguments concerning the desirability or undesirability of GO 

TO statements[14,15,16], but shall simply observe that a repetition con­

struct is a very useful thing for a programmer to have available, and a 

"Case Statement," while not greatly different from a series of IF-THEN-

ELSE's, is generally easier to follow when the algorithm involves a choice 

among more than two alternatives, we therefore propose to add to SFL two 

additional control constructs: the BHILE-DO-END and the SELECT-WHEN-END. 

The WHILE-DO-END is a conventional loop; the SELECT-WHEN-END is a form of 

case statement. In the notation of [2], the syntax of these statements is 

as follows: 

loop-stm :;= WHILE exp DO body END 

case-head ::= SELECT (FIRST)EACH) CASE; 

case-clause : ;= WHEN exp:body 

any-clause ::= WHEN ANYibody 

none-clausa ::= WHEN NONE:body 

case-stm ::= case-head List;case-clause 
(any-clause [none-clause ]|[none-clause ] [any-clause]) 
END 

Additionally, the definition of "compound-stm" must be changed to; 

compound-stm ;:= conditional-stm|envlronment-stm|case-stm|loop-stu 

The semantics of the WHILE-DO-END are conventional: the body of the 

loop is executed as long as the "exp" is true. If the e*p is false when 

th» statement is encountered, the body is not executed. 

The semantics of the SELECT-WHEN-END are inspired by similar 

constructs in other languages[6,17 ]: The exp*s are evaluated in the order 

in which they appear, whenever an exp is "false", the next exp is evalu­

ated. When an exp is "true", the body if its case-clause is executed; if 
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the case-head specified EACH the next exp is evaluated, otherwise the body 

of the any-clause (if one exists) is executed and the statement 

terminates, when no more exp's remain to be evaluated, the body of the 

none-clause or any-clause is executed if none or at least one of the exp's 

produced a "true" result (provided that the appropriate clause exists). 

It is our belief that the provision of more than one repetitive con­

trol construct in a general-purpose language constitutes an unnecessary 

complication of the language, and that there is little objective basis for 

selecting between the WHILE-DO and BEPEAT-ONTIL forms. Our choice of th* 

WHILE-DO form is largely arbitrary. 

Our selection of what may be termed a "multiple Boolean" case state­

ment over the more common "indexed" case (in which an expression is evalu­

ated ani, based on the value obtained, one of several succeeding 

statements or groups of statements is executed) is based on generality. 

The equivalent of the indexed case statement is readily constructed using 

the multiple Boolean construct by specifying case-clauses such as 

WHEN 1=1: ... WHEN 1=2: ... etc. The indexed case statement, on th= 

oth=r hand, does not readily lend itself to situations in which the suc­

cessive tests are not restricted to various possible values of a single 

variable or expression, we raccgnizo that the pries of this selection is 

likely to be reduced implementation efficiency, since a rather sophisti­

cated (and hence probably slow) compiler would be required to recognize 

those instances in which an indexed realization of a particular case 

statement could be used to advantage. If the compiler were not so sophis­

ticated, the resultant evaluation of several Boolean expressions when cne 

indexed jump would suffice would be somewhat wasteful of computational 

capacity. However, given the current (and presumably future) trend of 

ever-decreasing hardware costs and rapidly rising programming costs, we 

feel that the more general and hence more useful construct will render 

programming enough easier, faster, and more reliable to justify the cost. 
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THE SPL MASK AND FORMAT OPERATORS 

We shall now undertake to describe in detail the SPL operators MASK 

and FORMAT. Each produces an edited version of its left-hand operand (to 

which we shall refer as the source!. MASK treats its source as simply a 

string of characters; FORMAT is concerned with the numerical value repre­

sented by its source. Each of these operators treats its right-hand oper­

and as a control-string which directs the editing operation.* 

A MASK or FORMAT control-String consists of a series of control 

codes. In the case of MASK, these control codes are executed in sequence 

and the MASK operation is complete when the last control code in the 

string has been executed. In the case of FORMAT, the entire series of 

control codes, taken as a whole, forms a template onto which the source 

value is mapped; the mapping process will be described shortly. 

A control code for either operator consists of a control character 

chosen from Table I or Table II as appropriate, optionally preceded by a 

replicator and followed (in some instances) by a qualifier. A replicator 

is a one- or two-digit number (indicating that the control character 

should be repeated that number of times), or the letter F (indicating that 

the control character should be repeated zero or more times until the 

source is exhausted). An omitted replicator is assumed to be 1. 

A qualifier is a character or a series of characters which modifies 

or further specifies the action to be performed by the control character 

which it follows. Those control characters which require qualifiers are 

identified as such in the tables. 

: B. F. Rosin {forserly with the isn computer science Department) has 
pointed out that arrangements of this sort are in fact languages-within-
languagas, and Dakins[18] has defined a grammar for the SPL MASK and 
FORMAT control-strings^ The changes to MASK and FORMAT which we shall 
propose may in this sense be considered as changes to these specialized 
editing languages rather than as changes to SPL itself. 
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TABLE I. MASK CONTROL CHARACTEBS 

Character Replicationi Qualifier Semantics 

S F,n none Append* current source character. 
If source is empty, append a blank. 

I F,n none Discard current source character. 

B F,n none Append a blank. If F-replicated, 
also discard current source character. 

/ n none Append a carriage-return. 

E P,n none Append hex-unpacked current source 
character (2-character result). 

H P,n none Append character formed by hex-
packing current and following source 
characters. 

0 F,n none Append binary-unpacked current source 
character (4-character result). 

P F,n none Append character formed by binary-
packing current and 3 following 
source characters. 

A F,n one char Append current source character 
unless it is the same as the 
qualifier. 

C F none Discard all remaining source 
characters and append 4-digit count 
of them. Must be F-replicated. 

t none rest of 
literal 

Append literal (i.e. everything 
between this apostrophe and the next 
apostrophe which doesn't have another 
immediately following}. An apostrophe 
within the literal is represented as 
two adjacent apostrophes. 

1 "n" denotes a one- or two-digit number. 

2 Append to the result, and discard from the source. 
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TABLE II. FORMAT CONTROL CHARACTERS 

Character Replication^ Qualifier 

D P,n none 

N F,n none 

Z F,n none 

* F,n none 

I F,n none 

B n none 

/ n none 

C none none 

S 1 none 

1 none 

1 none 

1 none 

V 1 none 

Semantics 

Put digit in result. 

Put digit in result unless it is a 
leading zero. 

Put digit in result unless it is a 
leading zero, in which case put a 
space in result. 

Put digit in result unless it is a 
leading zero, in which case put an 
asterisk in result. 

Discard digit. 

Put a blank in result. 

Put a carriage-return in result. 

Put a comma in result unless the 
preceding digit-selector selected a 
leading zero, in which case put in 
result the same character as that 
digit-selector. 

Put a dollar sign ahead of the first 
digit in the result, following any 
blanks or asterisks inserted by Z or 
* controls ("floating" dollar sign). 
If used, $ must precede all control 
characters except B, Q, B, /, and '. 

Put a floating + or - sign, as 
appropriate, in the result. 
Positioning rules are the same as for 
S; if both S and * are used in the 
same template + mast follow $ and the 
floating sign will immediately follow 
the $ in the result. 

Same as *, but a blank will appear in 
the result in place of the * if the 
source is positive. + and - may not 
both be used in the same template. 

Put decimal point in result. Also 
serves as the decimal-point alignment 
reference for the template. 

Serves as the decimal-point alignment 
reference but puts nothing in the 
result. V and . may not both appear 
in the same template. 

1 - 1 -  designates a character which may not be replicated and may appear 
only once in a template. 
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TABLE II. (continued) 

Character Replication Qualifier Semantics 

u 1 none Causes the result to be in exponen­
tial form, and serves to separate the 
mantissa part of the template from 
the exponent part. 

X none none Put "EM" in the result if the source 
is "empirical", otherwise "EX". If 
used, X must follow all control 
characters except B, Q, R, /, and «. 

H none none same as X, except that the EX is 
omitted. 

Q none literal Put literal (enclosed in apostrophes) 
in result if source is negative, 
otherwise nothing. 

R none literal Put literal in result if source is 
positive, otherwise nothing. 

1 none rest of 
literal 

Put literal in result. 

The FORMAT control characters D, N, Z, *, and I are collectively 

referred to as digit-selectors. Each occurrence of a digit-selector in a 

template causes one digit to be taken from the source and placed in the 

result. (Exception: The digit-selector I does not place anything in the 

result.) Except for I, the digit-selectors differ only in their treatment 

of "leading" zeros. (A leading zero is one which precedes the decimal 

point and all significant digits of the source.) D represents a leading 

zero as 0, Z as a blank, * as an asterisk, and N as no character at all. 

Each FORMAT template is of either exponential or non-exponential 

form, depending on whether it does or does not contain the control code u. 

The two forms are most readily understood if described separately. 

In order to map a source value onto a non-exponential template, the 

decimal point of the value is aligned with the decimal-point reference of 

the taaplatB. (Unless explicitly established by the V or . ccntrol=ccda, 

the decimal-point reference is at the right-hand end of the template.) 

Each digit of the integer part of the source (i.e. that part left of the 

decimal point) is paired with a digit-selector left of the decimal-point 
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reference; an F-replicated digit-selector will be paired with zero ct more 

digits so as to pair the most-significant digit of the value with the 

left-most digit-selector. If the part of the template left of the 

decimal-point reference contains neither an F-replicated digit-selector 

nor enough digit-selectors to account for all significant digits of the 

integer part of the value, a processing error occurs. 

Beginning at the decimal point, the digits of the fractional part of 

the value are paired with the digit-selectors to the right of the decimal-

point reference. Here, an F-replicated digit-selector is paired with all 

remaining significant digits (if any exist), so any following digit-

selectors can only produce zeros in the result. 

The mantissa part of an exponential template is treated very similar­

ly to the fractional part of a non-exponential template. There are no 

leading zeros to worry about, and so the N, Z, and * digit-selectors 

behave like D. The first digit-selector in the template is always paired 

with the most-significant digit of the value, and an F-replicated digit-

selector will pair with all remaining significant digits. Floating dollar 

signs, however, are not permitted. 

The exponent part of an exponential template is treated like a one-

or two-iigit non-exponential template, except that a ù or 6 control char­

acter will interrogate the sign of the mantissa rather than the sign of 

the exponent. The value of the exponent is adjusted in accordance with 

the position of the decimal-point reference in the mantissa part. 

The result is constructed by replacing each control code (except $, 

and -) in the template with its paired digit(s) (in the case of a 

digit-selector), or the appropriate other character(s). Finally, the 

floating dollar sign and/or arithmetic sign is inserted immediately pre-

ceiing the first digit. 
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DEFICIENCIES OF THE SPl MASK OPERATOR 

The SPL MASK operator contains a number of special cases, 

asymmetries, omissions, and lacks of generality, including the following: 

The construct "nnS" (where nn represents any 1- or 2-digit number) 

has the effect of left-justification in a field of width nn, with space­

fill or truncation as required. No construct is provided for right-

justification. It is not possible to specify a different fill character. 

In general, the F replicator means "repeat the following control 

until the source-string is exhausted." One would expect, therefore, that 

the construct "PB" would result in an infinite loop (or be forbidden) 

since the B control does not consume any source-characters. However, "FB" 

has been defined as if the B did consume a source-character, i.e. "append 

to the result-string as many blanks as there are characters remaining in 

the source-string." Thus, in the case of the "FB" construct, replication 

has altered the semantics of the control character in addition to causing 

repetition. Strangely, the almost-identical construct "F/" is forbidden. 

The A control has been defined as appending to the result-string the 

current source-character, unless it is the same as the character following 

th m A in the control-string. It may however be useful to view the A as 

(equivalently) appending to the result-string either a null character or 

the current source-character, depending on whether the source-character 

do3S or does not match the character following the A. This second inter­

pretation gives rise to a generalization: Append to the result-string 

either a specified replacement character (which may or may not be null) or 

the current source-character, depending on whether the source-character is 

or is not contained in a given set. If the replacement character is now 

permitted to be determined as a function of the source-character, and the 

given set is allowed to encompass all possible characters, the result is a 

general one-for-one conversion operation, similar to the PL/I "TRANSLATE" 

built-in function. 

The ' (literal) control is the only MASK control which cannot be 

replicated. This is probably a concession to the hardware implementation. 
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as replicated literals would require either that the literal be copied 

into some kind of temporary storage or that the control-string be "backed 

up" for each repetition. 

Replicators are limited to two digits. This is definitely an isple-

mentation concession; it limits the size of the counter required. 

The C control is indeed a pathological case. It is required to be F-

replicated; the construct "FC" consumes all remaining source-characters 

and appends to the result-string the number of characters which it 

consumed (as a four-digit number). This may be another implementation 

concession, for if C were required to count the remaining source-

characters without consuming them it would be necessary to "back up" (or 

copy) the source-string. It may well be questioned whether this "string-

length" function belongs in MASK at all, bearing as it does virtually no 

relation to the other controls. 
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PROPOSED EXTENSIONS AND GENERALIZATIONS OF THE MASK OPERATOR 

Those aspects of the SPL MASK operator which we propose to redefine 

are summarized below. (Table III contains the complete set of control 

characters for this extended MASK operator.) 

A replicator may be of unlimited magnitude, and may be applied to a 

literal. 

Any sequence of controls may be enclosed in parentheses, and a repli­

cator may be applied to it. (We shall refer to such a parenthesized se­

quence as a group.> Parentheses may be nested to any depth. 

The controls * and permit reversal of the scan of the source-

string. 

The F replicator may be applied to any control or group (the 

replicand), with the effect of repeating it as long as at least one char­

acter remains in the source string. If the replicand does not explicitly 

consume at least one source-character, an I control will (in effect) be 

appended to it. 

The C control is eliminated. (Its function is served by the monadic 

operator LEN, described in a later section.) 

The R control is added to permit right-justification. It consumes 

all remaining source-characters and right-justifies them in a field whose 

width is equal to the value of its replicator. (Note that "FR", "FL", and 

"PS" are eguivalent.) 

The L control is added for mnemonic consistency with R; it is eguiva­

lent in all respects to S. 

The X control permits specification of the (ej^tra) fill-character to 

be used by L, R, and s. During each MASK operation, the fill-character 

will be a space until an X control is encountered, after which the charac­

ter which follows the X in the control-string will be used. Any non-null 

member of the external character set may be specified. 

The A control is eliminated and replaced by the T control, which 

performs a general translation operation. A literal-string, enclosed in 

apostrophes, follows the T in the control-string. The literal-string is 
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composed of character-pairs; if the source-character is the same as the 

first character of any pair, it is replaced in the result-string with the 

second character of the pair. Otherwise, it is copied to the result-

string unchanged. If some character appears as the first character cf 

more than one character-pair, the first pair encountered in the literal-

string is used. Within the literal-string, an apostrophe is represented 

as two consecutive apostrophes and a null character is represented by the 

pair "'N". (No ambiguity can arise from this arrangement, since N is not 

a valid control character.) If a null character is the last character in 

the literal-string, it may be omitted. 

These extensions and generalizations correct the previously-merticned 

deficiencies. They add the capability to scan the source-string 

backwards, to right-justify the source in the result, to perform character 

translation, and to repeat a series of controls a given number of times or 

until the source is exhausted. 
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TABLE III. EXTENDED MASK CONTPOL CHARACTERS 

Character 

S 

L 

R 

I 

B 

/ 

E 

Replication 

F,n 

F,n 

F,r 

none 

r,n 

F,n 

F,n 

F,n 

F,n 

F,n 

F,n 

F,n 

F,n 

none 

none 

F,n 

Qualifier Semantics 

none Append current source character. 
If source is empty, append the 
current fill character (see X). 

none Same as S. 

none Take all remaining source characters 
and right-lustify them in a tield cf 
width n. (FF is equivalent to FS) . 

one char Change the fill character to the 
qualifier. (The fill character is 
set to a blank at the beginning of 
the operation.) 

none Discard current source character. 

none Append a blank. 

none Append a carriage-return. 

none Append hex-unpacked current source 
character (2-character result) . 

none Append character formed by hex-packirg 
current and following source characters. 

none Append binary-unpacked current source 
character (4-character result). 

none Append character formed by binary-packing 
current and 3 following source characters. 

literal see text. 

rest of Append literal (i.e. everything 
literal between this apostrophe and the next 

apostrophe which doesn't have another 
immediately following). An apostrophe 
within the literal is represented as 
two adjacent apostrophes. 

none If presently scanning the source from 
left to right, switch to right-to-
left; the last character selected 
from the source will be selected again 
by the next control code which select? 
a source character. If presently 
scanning right to left, do nothing. 

none Reverse of 

rest of Execute the group (i.e. everything up 
group to the matching right parenthesis) n 

times (if n-replicated) or until the 
end of the source has been reached 
(if F-replicated) . 
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DEFICIENCIES OF THE SPL FORMAT OPERATOR 

Onlike MASK, the SPL FORMAT operator contains conditional elements 

which are or are not placed in the result, or which appear in different 

forms in the result, depending on such circumstances as the sign of the 

mantissa or the exponent, the significance of adjacent digits, and the 

"exact/empirical" attribute of the number. The deficiencies of FORMAT are 

similar to those of MASK, consisting mainly of omissions and lacks of gen­

erality. Many derive from the handling of conditional elements. 

The - and + controls cause a "floating" arithmetic sign to appear in 

the result, when they are used in a non-exponential template or in the 

mantissa part of an exponential template, the character placed in the 

result is selected on the basis of the sign of the number; when they are 

used in the exponent part of an exponential template the selection is 

based on the sign of the exponent. In contrast, the Q and G controls 

(which permit the conditional insertion of arbitrary character seguences 

depending on the sign) always Interrogate the sign of the number, even 

whan they appear in an exponent part. The ability to interrogate the sign 

of the exponent ought to be provided, at least within the exponent part. 

The $ control produces a "floating" dollar sign in the result. $ is 

not permitted in an exponential template. (There is really no such thing 

as a "floating" sign in the result produced by an exponential template, 

because such templates cannot produce leading zeros. However, + and - are 

permitted in exponential templates, and $ might as well be since the 

prohibition complicates the rules and serves no useful purpose.) No 

provision is made for "floating" anything else except for the arithmetic 

sign. 

The four digit-selectors D, N, Z, and • permit the programmer to 

specify that leading zeros be represented as 0, null, blank, or *, respec­

tively. Considerable simplification as well as added generality would 

result if only one digit-selector (in addition to I) were provided and an­

other control code (with a gualifier) were defined to specify the charac­

ter to be used for leading zeros. 
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The c control code places in the result a comma (if the preceding 

digit-selector selected a significant digit) or the same zero-suppression 

character as the preceding digit-selector (otherwise). No other means of 

interrogating the zero-suppression status is available. Only the comma 

can be handled in this way. 

Thq X and H control codes behave somewhat like + and - except that 

they interrogate the exact/empirical attribute of the number (instead of 

the sign) and produce the tag "BX" or "EH" as appropriate. No prevision 

comparable to the Q and R codes is provided for this attribute. 

The ability to replicate a series of control codes would be even more 

useful in FORMAT than in MASK, owing to the frequency with which one re­

quires, for example, a template specifying a comma every three positions. 
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PROPOSED EXTENSIONS AND GENERALIZATIONS OF THE FORMAT OPERATOR 

Our proposed changes to the FORMAT operator are summarized below. 

(See Table IV for the complete set of control characters.) 

As in MASK, a replicator may be of unlimited magnitude. Replication 

may be applied to any control character except V, and lo (for which it 

would not be meaningful), and Z (for which it could have no effect). Rep­

lication of parenthesized groups and nesting of parentheses are permitted. 

The F-replicator is treated as in SPL FORMAT, with straightforward 

extension to groups, F-replication is permitted only for digit-selectors 

(and groups containing them) and is restricted to one F-replicator in an 

exponential template, or one F-replicator on each side of the decimal-

point reference in a non-exponential template. 

D and I become the only digit-selectors. The functions of N, Z, and 

* are performed by D, with the zero-suppression character specified by Z. 

(Although we are aware of no immediate applications for the added general­

ity, we believe that the simplification alone is beneficial.) 

The C, +, -, X, and M controls are modified by the addition of 

qualifiers, and the $ control is replaced by L, to permit handling of ar­

bitrary literals. "X" variants of the Q and R controls are defined tc 

permit interrogation of the sign of the exponent. 

As in the case of MASK, the extensions and generalizations to FORMAT 

correct deficiencies and add capabilities, of particular note here is the 

ability to apply a replicator to a group of control codes. 
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TABLE IV. EXTENDED FORMAT CONTROL CHARACTERS 

Character Replication Qualifier Semantics 

D F,n none Put digit in result unless it is a 
leading zero, in which case put the 
current zero-suppression character 
in result (see Z) . 

Z none one char Change the zero-suppression character 
to the qualifier. A null is 
represented by the pair 'N; an 
apostrophe is represented by two 
apostrophes. (The zero-suppression 
character is set to 0 at the 
beginning of the opération.) 

I F,n none Discard digit. 

B n none Put a blank in result. 

/ n none Put a carriage-return in result. 

C none literal Put literal (enclosed in apostrophes) 

ic 

in result unless the preceding digit-
selector selected a leading zero, in 
which case put in result as many zero-
suppression characters as there are 
characters in the literal. 

n literal Put the literal ahead of the first 
digit in the result, following any 
zero-suppression characters 
("floating" literal). L may not 
follow any of the control characters 
C, D, I, ., or V. 

none literal "Float" the literal in the result if 
the source is positive. Positioning 
rules are the same as for L. 

none literal "Float" the literal in the result if 
the source is negative. Positioning 
rules are the same as for L and *. 
If a template contains more than one 
"floating" element, all will appear 
in the result adjacent to one another 
in the order in which they appear in 
the template. 

1 none Put decimal point in result. Also 
serves as the decimal-point alignment 
reference for the template. 

1 none Serves as the decimal-point alignment 
reference but puts nothing in the 
result. V and . may not both appear 
in the same template. 

1 none Causes the result to be in exponen­
tial form, and serves to separate the 
mantissa part of the template from 
the exponent part. 
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TABLE IV. (continued) 

Character Replication Qualifier Semantics 

X n literal Put literal in result unless the 
source is "empirical". 

n n literal Put literal in result if the source 
is empirical. 

Q n literal Put literal in result if source is 
or negative, otherwise nothing. If X 

Xliteral appears between Q and the literal, 
test the sign of the exponent. 

B n literal Put literal in result if source is 
or positive, otherwise nothing. X has 

Xliteral same effect as for Q. 

• n rest of Put literal in result. 
literal 

( F,n rest of As if the group (i.e. everything up 
group to the matching right parenthesis] 

appeared n times in the template. If 
F-replicated, the group must contain 
at least one digit-selector and may 
not contain another F-replicator. It 
will be treated as an n-replicated 
group with n the smallest possible 
integer (Including zero) such that 
all remaining significant digits are 
accounted for. 
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APPLICATION OF OPERATOR? TO STRUCTURES 

The domain of the SPL operators is limited to the scalars. He pro­

pose to define the result of applying a monadic operator to a structure to 

be a structure of the same shape, with each scalar component replaced by 

the result of applying the operator to it. Pig. 1. recursively defines 

the resulting interpretation. (APL[19] applies substantially the same in­

terpretation in such cases, the primary difference being that API does not 

have arbitrarily-shaped aggregates.) 

The generalization of dyadic operators to non-scalar values is 

slightly more complicated. We define the result of applying a dyadic op­

erator to a scalar and a structure to be (again following API) a structure 

of the same shape as the structure operand, with each scalar component re­

placed by the result of applying the operator to the scalar operand and 

the component. He then define the result of applying a dyadic operator to 

two vectors as a vector each of whose components is the result of applying 

the operator to the corresponding components of the operands. The defini­

tion is exemplified (for the case of addition) by the program in Fig. 2. 

(These examples should not be construed as implying that an implementation 

must employ recursive techniques.) 

we also propose to recognize the assignment-structure construct as 

equivalent to any other structure value, thus permitting it to appear 

anywhere that an expression would be permitted. 

The ability to apply operators to aggregates is useful in 

applications involving matrices, as in Gaussian elimination where each el­

ement of the pivotal row must be multiplied by the inverse of the pivotal 

element. The equivalence of assignment-structures with other structure 

values is of interest primarily as the elimination of a special case. 
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PHOCF.OUCL NEU(X); 

NOTE - APPLIES THE NOT OPERATOR TO AN ARBITRARY VALUE XI 

A «• XI 
IF SCALAKCA) 
THEN RESULT «• NOT AI 
ELSE J » II RESULT «• <>l 

WHILE IN AtJ] 
DU RESULT IJ] *• MECCA [J]) I J «• J t 11 
END 

END 
RETURN RESULTl 

PROCEDURE SCALAR(X)I RETURN NOT IN X[l]l END 

END 

Fig. 1. Application of a Monadic Operator to an Arbitrary Value 

PROCEDURE SUMCX, Y)l 

NOTE - ADDS ARblTRARY VALUES X AND Y, AND RETURNS THE SUMI 

A + XI B «• Yl 
IP SCALAR(A) 
THEN IF SCALAR(B) 

THEN RESULT » A * 8; 
ELSE J » II RESULT *• <>l 

WHILE IN B[J] 
DO RESULT [J] «• SUM(A, B[J])I J » J + 1| 
END 

END 
ELSE J t II RESULT » <>; 

IF SCALAR(B) 
THEN WHILE IN AtJ] 

DO RESULT[J] *• 3UM(A[J], 8)1 J * J + 1| 
END 

ELSE WHILE IN A[J] OR IN B[J] 
DO RfcSULTtJ] 3UM(AtJ], B [J] ) | J * J + 1| 
END 

END 
e n d  

RETURN RESULTl 

PROCEDURE SCALAR(X)I RETURN NOT IN X[l]l END 

END 

Pig. 2. Application of a Dyadic Operator to Arbitrary Values 
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SCALAR-STRUCTURE CONVERSION OPERATORS 

SPL has eliminated much of the special handling traditionally found 

in I/O statements, in favor of providing MASK and FORMAT as operators 

usable in any context. There remain, however, three distinct variants of 

the INPUT and OUTPUT statements. We propose to eliminate the STRING and 

DATA variants, allowing INPUT and OUTPUT to perform as INPUT STRING and 

OUTPUT STRING and defining general operators to perform the special 

conversions. 

The monadic operator STRING, applied to a structure, produces a 

scalar containing the external representation of the structure. Applied 

to a scalar, it encloses the value in field marks. 

The monadic operator NAME, applied to a variable, produces a scalar 

containing the name of the variable. Applied to an expression, it 

produces a null. Applied to a formal parameter, it produces the name cf 

the actual parameter or a null, depending on whether the actual parameter 

is a simple variable or an expression. 

The monadic operator DATA, applied to any variable or expression X, 

produces the equivalent of "NAME X JOIN (STRING X)". (X is evaluated only 

once, however.) Thus, the semantics of the statement "OUTPUT DATA X;" are 

substantially unchanged. 

The monadic operator STRUCTURE, applied to a scalar, produces the 

structure whose external representation is that scalar. If the operand is 

not a valid external representation of any structure, the result is a null 

scalar. If the operand of STRUCTURE is a structure, the usual extension 

of monadic operators defined upon scalars (as defined in the previous sec­

tion) applies. 

Thm monadic operator LEH produces the length of (number of characters 

in) a scalar. 

Thn monndic operator SI/.K, applied to a vector, produces the number 

cf components in the vector. Applied to a scalar, it produces a null. 

The elimination of SPL's INPUT and OUTPUT variants in favor of 

generalized conversion operations is a further application of the SPL 
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principle of removing special cases from the I/O and providing operators 

which are usable in any context, including that of I/O. The LEN operator 

provides a function whose usefulness is unquestioned but which, in SPL, 

was lumped in with MASK where it was a rather alien presence. The SIZE 

operator is not available in any form in SPL; this lack has occasioned the 

writing of procedures to perform its function, which seems to be of con­

siderable usefulness. 
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SUBSCRIPTION 

SPL permits structures of arbitrary size and shape. Unfortunately, 

much of the potential power of these objects is unavailable due to the 

fact that subscript lists cannot be of variable length. Ghandour and 

Hezei[20] have proposed a set of definitions which are directed toward 

solving this sort of problem in the context of the API language, but their 

proposal rests on data structures of needless complexity. For example, 

they make a fundamental distinction between a two-dimensional array of 

scalars and a vector each of whose components is a vector of scalars. 

SPL requires that each subscript in a subscript list be a number 

whose integer part is in the interval [0,9999]. (The zero-valued sub­

script is a special case[2]; it has not been found particularly useful.) 

Our proposal for the representation of subscript lists of varying 

length makes use of scalars which contain non-numeric characters and thus 

do not represent valid numeric values. He define a simple subscript to be 

a character-string containing one or more valid numbers separated by 

semicolons; the subscript list then consists of those numbers. A bound-

pair (p. 5) may appear at the end of the string. Thus if S has as its 

value the (13-chatactet) string 12;36;U2;5;10 the reference X[S] will be 

equivalent to the SPL reference X[12,36,42,5:10]. (He shall subsequently 

refer to the variable being subscripted — X in this example — as the 

referent.) A zero-valued subscript is treated as if it were a vector of 

all positive integers for which the components so accessed exist, one 

effect of this is that (if X happens to be a rectangular array) X[0,5] ac­

cesses the 5th column of X; another is that if the entire subscript is the 

null string the result is an access to the entire referent. A subscript 

may he a structure, in which case the result is the structure obtained by 

replacing each scalar component of the subscript with the component which 

it (as a simple subscript) selects from the referent. 

In those cases where a variable number of subscripts is not needed, 

we permit a subscript to consist of one or more expressions separated by 

commas or colons. For example, the construct x[o,e:w] is interpreted as 
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X[ (a) JOIN I; I JOIN (e) JOIN |:| JOIN (w)] 

and thus in simple cases it has the expected effect. There is however no 

restriction that the expressions in this construct produce numbers or even 

scalars, provided that the result of the implied expression is a valid 

subscript. 

We also propose: 

1. To permit assignment to a partial reference, with the (expected) 

effect of replacing the selected substring with the value obtained by 

evaluating the right-hand side of the assignment (which in this case must 

be a scalar), and 

2. To permit the application of subscription to expressions. 

These extensions to SPL's subscript handling make for a very powerful 

facility for the manipulation of aggregates. By way of illustration, two 

examples of primitive operations which turn out to be special cases of 

subscription are the insertion and deletion cf components of a vector. 

The deletion of the Jth component of a vector X is accomplished thus: 

X * X[< 1 I 2 I ... I J-2 I J-1 I J+1 I J+2 I ... I SIZE X >]; 

The insertion of a new component Q following the Jth component of a vector 

X is accomplished thus: 

N 4. SIZE X + 1; X[N] * 0; 

X • X[< 1 I 2 I ... I J-1 I J I M I J+1 I J+2 I ... I N-2 I N-1 >]; 
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THE BATCH OPERATOR 

we have now established the necessary constructs to enable us to 

define a powerful string-searching operator, which we call HATCH. In the 

following description, we shall refer to the left-hand operand of HATCH as 

the subject and to the right-hand operand as the pattern. Each operand 

may be either a scalar, or a structure of any shape. The result of the 

operation is formed by replacing each scalar component of the subject with 

a two-element vector which specifies the manner in which it matches the 

pattern, or with a null scalar if no match is found. The first element of 

the vector is the simple subscript which selects the matching component of 

the pattern; the second element identifies the character position in the 

subject at which the match was found. Fig. 3. is a program to emulate the 

BATCH operator. 
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PROCTDURE. MATCHCSUBJECT» PATTERN) | 
RESULT 4. ILL K 4- FIRSTSCALARCSUBJECT); 
WHILE K AFTER I I 
DO SK «• SUBJECTTK]; LEN3K «• LEN SK; 

L *• FIRSTSCALAR(PATTFCRN)> LOOK «• L; 
WHILE (L AFTER II) AND LOOK 
DU PL C PATTERN IL] ; LENPL «• LEN PL> 

I «• 1» STOP *• LENSK - LENPL + U 
WHILE (I LTE STOP) AND LOOK 
DO IK SK[ I I LENPL ] SAME PL 

THEN RESULT [K] «• < L I 1 >> LOOK *• 0> 
ELSE I «• I + U 
END 

END 
IF LOOK THEN L » NEXTSCALAR(PATTERN, L)> 

END 
K » NEXTSCALAR(SUBJECT, K)I 

END 
RETURN RESULT; 

PROCEDURE FIRSTSCALARCX)» 
SUBS * II; 
WHILE IN XfSUBS, U 
DO SUBS * SUBS JOIN (III JOIN 1); 
END 
IP SUBS SAME I I 
THEN RETURN 0| 
ELSE RETURN SUBS [21]) 
END 

END 

PROCEDURE NEXT9CALAR(X, CURRENT); 
SUBS CURRENT; LOOK «• I; 
WHILE (SUBS AFTER II) AND LOOK 
DO J «- LEN SUBS; 

WHILE SUBSLJtl] AFTER |%| AND J GTE 2 
DO J J - U 
END 
IF J • 1 
THEN LAST <• SUBS; 
ELSE LAST * •  S U t i S [ J * l t ] l  
END 
SUBS <• SUBStllJ-n; LAST » LAST + I) 
IF IN XTSUBS, LAST] 
THEN IF SUBS SAME || 

THEN SUBS 4- LAST; 
ELSE SUBS F SUBS JOIN (|;I JOIN LAST); 
END 
WHILE IN XESUBS, 1] 
00 SUBS *> sums JOIN ( i ; i  JOIN i ) ;  
END 
LUOK «" 0» 

END 
END 
RETURN SUBS; 

FND 

END 

Fig. 3. HATCH Operator 
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EXAMPLES OF THE USE OF EXTENDED SPL 

To illustrate the use of some of our proposed extensions to SPI, we 

shall now show how certain constructs of PL/I and SN0B0L4 may be imple­

mented using Extended SPL (ESPL). 

PL/I INDEX Function 

The PL/I statement X = INDEX (STB, 'ABXYZ'); (where X has any of 

various numeric types and STB is of type CHABACTER) is equivalent to the 

ESPL statement X • (STB HATCH |ABXYZ|)[2]; . This finds the first 

occurrence in the string named STR of the substring ABXYZ. 

PL/I VERIFY Function 

The PL/I statement X = VERIFY (STB, 'ABXYZ'); (under the same 

conditions as above) is equivalent to the following ESPL statements: 

X «• LIST(STR) MATCH LISTCI ABXYZ I ) I 
I » II 
WHILE IN XLI,1] 
DO I » I + 1) 
END 
IF IN x t n  
THEN X 4- I; 
ELSE X » o; 
END 

PROCEDURE LI3TCSTRNC)> 8 <• 3TRNG» 
NOTE • RETURNS A VECTOR CONTAINING THE CHARACTERS UF 3TRNG» 

VEC «• I I» J * i; 
WHILE CC STRNGlJJl] ) AFTER I I 
DO VECIJI CJ J + J + i; 
END 
RETURN VEC; 

END 

This finds the first character in the string named STB which is not a mem­

ber of the set (A,B,X,Y,Z). 

PL/I TBANSLATE Function 

The PL/I statement x = TBANSLATE (STB, 'OA', 'OB'); (where both x 

and STB are of type CHARACTER) is equivalent to the ESPL statement 

X 4- STB MASK IFT'OQAB' | ; . 
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Sample of SNOBOLt Pattern-Hatching Operation 

The SN0B0L4 Statement 

STB ABB . PI ('AB' | 'BC') . P2 'DE' ABB . P3 BPOS(O) 

which looks for the sequence ABDE or BCDE in the string named STB and (if 

thq search succeeds) assigns the part of STB preceding the sequence to the 

variable PI, the AB or BC to the variable P2, and the part of STB follow­

ing the DE to the variable P3, is equivalent to the following Extended SPL 

statements: 

PAT<ABDE|BCDfc>» 
J • (STR MATCH PAT)[2]f 
IF J NEQ 0 
THEN PI «• STKtliJ-l]; 

P2 » STR(Ji2]> 
P3 f 8TR[J+4;]; 

END 

It is worth noting that the ESPL version of this process is more easily 

understood than the SN0B0L4 version. 



k Practical Example 

The following example is typical of the sort of processing which is 

involved in a text-editing program. We shall assume that the user has re­

quested that the program find and print in context the first instance of 

any of several given words in his text. Only words completely matchir.g a 

list element are desired, i.e. a request to find "the" should not yield 

"hypothetical." The variable STB contains the text; the variable CP 

contains a carriage-return character. The variable WOPDS contains the 

list of words to be searched for, separated by commas. 

As we have noted before, the reader who is not familiar with SNOECLU 

shoull not be concerned. The SN0B014 solution is given only as a contrast 

to the ESPL solution for the benefit of SNOBOLU users, and can be safely 

skipped. 

SN0B0L4 solution 

* ALTERNATION OF «ORD-SEPAPATOR CHARACTERS 
PONCT = CB I  '  • I I  I  • » '  I I  
PUNCT = PUNCT I ' (• I •) ' I I I »?' I '!' 

* CONVERT WORDS TO AN APPROPRIATE ALTERNATION 
PAT = 
WORDS BREAK. WORDLEN(I) = :F{L2) 
PAT = WORD 

LI WORDS BREAK. WORD LEN(1) = :F(L2) 
PAT = PAT I WORD :(LI) 

L2 PAT = PftT ; SORDS 

6ANCH0B = 0 
STR (LEN(20) PUNCT PAT PUNCT LEN(20)) . OUTPUT 

ESPL solution 

NOTE - VECTOH OF CHARACTERS TO BE RECOGNIZED A3 WORD SEPARATORS» 
PUNCT<| l-I.M>ll|(l)IM"l?|l>l PUNCT [1] + CR; 

NOTE - INITIALIZE SPECIAL-CHARACTER VARIABLES; 
NOTE - LEFT GROUP MARK; LGM 4- (STRING <>)[lti]; 
NOTE - RIGHT GkOUP MARK; RGM * (STRING 
NOTE - FIELD MARK; FM (STRING I I) [111]; 

NOTE - CONVERT "*0RD8" TO AN APPROPRIATE VECTOR; 
M *• IFT',1 JOIN FM JOIN ) ' | ; 
PAT «• STRUCTURE (LGM JOIN (WORDS MASK M) JOIN RGM); 

J » i; TPAT «. I i; 
WHILE IN PAT [J] 
DO TPAT [J] *• PUNCT JOIN PAT [J] JOIN PUNCT; J • J + l; 
END 
J «• (STR MATCH PAT) C2] ; 
IF J NEO 0 THEN OUTPUT STR[J.20150]; END 
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CONCLUSION 

We have proposed modifications and extensions to SPL to correct vari­

ous deficiencies and to improve the completeness of the language. The 

extensions include definitions of: 

1. a powerful pattern-matching operator, 

2. a means of varying, during execution, the number of subscripts 

used in accessing a structure, 

3. iteration and case statements, and 

4. the application of operators defined upon scalar values to 

operands which are structures. 

For these extensions, we have adopted a host language which, without 

sacrificing capability, is exemplary in its simplicity, and we have 

avoided the baronial splendor of the SN0B014 pattern-matching operation in 

favor of a definition which we hope will be comprehensible tc mere 

mortals. 

The primary modifications deal with the MASK and FORMAT operators, 

which are made more general and from which a number of special cases have 

been removed. All recognized deficiencies of the MASK operator have been 

corrected; the result, together with the JOIN and HATCH operators, is a 

string-processing language whose power is comparable to that of SNOEOLt. 

The major deficiencies of SK0B0L4, lack of reasonable control constructs 

and the necessity of recourse to pattern-matching "side-effects" to retain 

information of interest, are avoided. The power of the FORMAT operator 

greatly exceeds that of the similar SN0B0L4 facilities. 

We claim that the significance of the facilities herein proposed is 

in no way limited to SPL or to the SYMB0L-2B system. The MASK operator is 

applicable to any programming language which provides a character-string 

data type (preferably varying-length strings), and the FORMAT operator is 

applicable to any such language which also supports the concept of a nu­

merical value. The MATCH operator could easily be adapted to any language 

which supports character-strings (the subject), vectors of character-

strings (the pattern), and vectors of numbers (the result). The SPl fa­
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cility of dynamically-varying structures of arbitrary size and shape is 

not needed for MATCH, and indeed is somewhat of a complication. 

While we have not mentioned implementation considerations in this 

discussion, our experience with the SYMB0L-2R system suggests that imple­

mentation of the facilities which we propose, given an implementation of 

SPL as it now exists, would be straightforward. With respect to implemen­

tation in the context of other languages, the fundamental requirements for 

implementing MASK and MATCH are the ability to scan a string on a 

character-by-character basis in both directions, and the ability to deter­

mine whether two characters are or are not the same. Any machine which 

cannot do such things easily will not likely be used for character manipu­

lation. (He might note that compilers of programming languages must 

inherently perform a considerable amount of string manipulation, and 

therefore a machine which is not well suited to such tasks should probably 

have a companion which can handle them, if only for the purpose of running 

a compiler.) FORMAT requires, in addition to string-scanning capability, 

some means of converting from the form in which numerical quantities are 

kept to a character-string representation. Usually, such facilities are 

provided, if only for the purpose of output. 

We have not addressed the interesting question of whether it is nec­

essary to view a scalar as fundamentally different from a vector of one 

component. He consider that question, as well as the task of implementing 

the language proposed herein, as suitable topics for further investiga­

tion. 
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