
INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While
the most advanced technological means to photograph and reproduce this document
have been used, the quality is heavily dependent upon the quality of the original
submitted.

The following explanation of techniques is provided to help you understand
markings or patterns which may appear on this reproduction.

1.The sign or "target" for pages apparently lacking from the document
photographed is "Missing PagB(s)". If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages.
This may have necessitated cutting thru an image and duplicating adjacent
pages to insure you complete continuity.

2. When an image on the film is obliterated with a large round black mark, it
is an indication that the photographer suspected that the copy may have
moved during exposure and thus cause a blurred image. You will find a
good image of tiie page in the adjacent frame.

3. When a map, drawing or chart, etc., ms part of the material being
photographed the photographer followed a definite method in
"seeticnins" the material. It is customary to begin photoing at the upper
left hand corner of a large sheet and to continue photoing from left to
right in equal sections with a small overlap. If necessary, sectioning is
continued again - beginning below the first row and continuing on until
complete.

4. The majority of users indicate that the textual content is of greatest value,
however, a somewhat higher quality reproduction could be made from
"photographs" if essential to the understanding of the dissertation. Silver
prints of "photographs" may be ordered at additional diarge by writing
the Order Department, giving the catalog number, title, auAor and
specific pages you wish reproduced.

5. PLEASE NOTE: Soma pages may have indistinct print. Filmed as
received.

University Microfilms International
300 North Zeeb Road
Ann Arbor, Michigan 48106 USA

St. John's Road, Tyler's Green
High Wycombe, Bucks, England HP 10 8HR

77-10,320

HUTCHISON, Perry Charles, 1949-
EXTENSIONS TO A BLOCK-STRUCTURED
PROGRAMMING LANGUAGE TO SUPPORT
PROCESSING OF SYMBOLIC DATA AND
DYNAMIC ARRAYS.

Iowa State University, Ph.D., 1976
Computer Science

XOrOX UniVGrsity Microfilms, Ann Arbor, Michigan 48106

Extensions to a block-structured programming language

to support processing of symbolic data and dynamic arrays

Approved:

by

Perry Charles Hutchison

k Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of

The Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

In Charge of HajoiSuoric

For the Major Department

For the Graduate College

Iowa State University
Ames, Iowa

1976

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

ii

TABLE OF CONTENTS

INTRODUCTION 1

OVERVIEW OF SPL H

EXTENDED CONTROL CONSTRUCTS 7

THE SPL MASK AND FORMAT OPERATORS 9

DEFICIENCIES OF THE SPL MASK OPERATOR 14

PROPOSED EXTENSIONS AND GENERALIZATIONS OF THE MASK OPERATOR 16

DEFICIENCIES OF THE SPL FORMAT OPERATOR 19

PROPOSED EXTENSIONS AND GENERALIZATIONS OF THE FORMAT OPERATOR 21

APPLICATION OF OPERATORS TO STRUCTURES 24

SCALAR-STRUCTURE CONVERSION OPERATORS 26

SUBSCRIPTION 28

THE HATCH OPERATOR 30

EXAMPLES OF THE USE OF EXTENDED SPL 32

CONCLUSION 35

ACKNOWLEDGEMENTS 37

REFERENCES 38

1

INTRODUCTION

The SYMBOL-2R computer system[1] vas designed and constructed by the

Digital Systems Research group at Fairchild Camera and Instrument

Corporation in the late 1960*s for the purpose of re-examining a number of

traditional assumptions regarding computing systems, including the

functional division between hardware and software. One goal of the proj­

ect was to demonstrate that the capabilities of hardware had been grossly

underestimated. This demonstration was accomplished by constructing a

computer system, SYHB0L-2R, which incorporates an interpreter for a very

high-level programming language, and an operating system to supervise its

multiprogramming/multiprocessing/demand-paging environment, entirely in

the hardware. The system is capable of supporting up to 15 terminals in a

time-shared environment. No software is needed to accomplish this opera­

tion.

SÏHB0L-2R was not intended to be a production prototype, and

therefore a number of simplifying assumptions were made in the design of

the machine and of the SYMBOL Programming Language (SPL)[2] which it

implements. For example, many "features'* were omitted when their inclu­

sion would not have furthered the goals of the project or demonstrated

significant principles. In particular, no claim of completeness* has been

made for SPL.

One of the goals of the SYMBOL project at Iowa State University has

been to evaluate the SYHB0L-2R system and SPL. 7t will be our purpose

here to examine SPL, identifying its deficiencies and proposing

modifications and extensions to correct them.

Although SPL contains an unusually powerful string-manipulation

» In reference to a language, "complete" is difficult, if not impossible,
to define satisfactorily. Since additional "features" can be added to any
language definition, no language can be "complete" in the sense that
"nothing useful could possibly be added," Attempts at producing languages
which are complete in this sense lead to such abominations as PL/I or
SN0B0L4[3]. We are inclined to consider a language "complete" if it
contains no obvious omissions, but this definition does not escape
subjectivity since what is obscure to one observer may be obvious to
another. He shall leave to the reader the judgment as to whether the
language which we propose deserves to be called complete.

2

operator (MASK), its facilities for testing and examining the contents of

strings are limited to lexicographic comparison 2, p. 58], SPL shares

this limitation with most other general-purpose programming languages

[4,5,6,7]. Such limitations become troublesome in many applications, such

as compilers, interpreters, and editors, involving the processing of text.

The complexity and correctness difficulties regularly encountered in

present-day compilers and interpreters, particularly in the lexical-

analysis sections, are at least partially chargeable to the lack of suffi­

ciently powerful string-processing facilities in the languages used to

write then.

Specialized pattern-matching languagesC8,9,10] provide greatly ex­

panded string-examination capabilities, but their control structures are

typically limited to procedure-calls (which in some languages nay be re­

cursive) and GO TO statements (which usually incorporate some form of

conditional). They do not provide such more recently developed constructs

as nested conditionals (IF-THEN-ELSE), iteration statements (WHILE-EC,

REPE&T-ONTIL, etc.), and multiple-choice conditionals ("case statements"),

and their arithmetic capabilities are typically limited and inefficient.

Furthermore, the pattern-matching operations themselves are generally

guite complex and difficult to understand fully, and the determination of

the manner in which a match "succeeded" involves dependence on side-effect

assignment operations built into the "pattern". Since the specialized

languages would require rather major overhaul jobs to correct their defi­

ciencies, it is perhaps not surprising that little has been attempted in

this area. It is however quite surprising how little attention has been

paid to the incorporation of pattern-matching facilities into general-

purpose programming languages. In one of the few publications on this

subject, Balzer and Farber[11] have proposed a brute-force combination of

the SNOBOLU pattém-matcher with PL/I. They could scarcely have chosen a

worse host language for such a transfusion; Dijkstra[12] has correctly

pointed out that PL/I is already excessively baroque.

3

Foc the benefit of those readers who may not be familiar with SPl, we

shall begin by giving a brief overview; this overview will be followed by

a detailed description of certain areas, pointing out the deficiencies

which have been found. We shall conclude with detailed descriptions of

the modifications and extensions which we propose in the interest of

remedying the deficiencies, including a description of a simple yet power­

ful pattern-matching operator.

Our proposed modifications and extensions are not all of egual impor­

tance. The extended control constructs WHILE and SELECT are included in

the interest of completeness and because the WHILE is used in some

illustrations and examples. Many of the mentioned deficiencies of MASK

and FORMAT have been discovered in the course of operational experience

with the SYMBOL-2H system; the correction of these deficiencies is consid­

ered to be of some significance and, in some cases, non-trivial and less

than obvious. The notion of applying to aggregates operators defined upon

scalars has been implemented in APL and to a lesser extent in PL/I, but

the application of dyadic operators to structures of arbitrary and non-

conformable shapes is believed to be new. The proposed scalar-structure

conversion operators merely make available, in contexts other than I/o,

transformations already contained in SPL. The redefinition of

subscription to permit subscript lists of varying length addresses a prob­

lem to which we know of no previous satisfactory solution. (The variable-

length subscript lists are also used in defining the HATCH operator.)

The definition of the MATCH operator is considered to be the primary

contribution of the research herein reported. HATCH is intended to make

available the sort of string-searching capabilities found in SNOBOLWi and

other specialized pattern-matching languages, without introducing side-

effect assignment operations and large numbers of difficult-to-remember

"pattern primitives." some examples of its use are included.

I A knowledge of SN0B0L4 is not reguired to understand our proposals. The
reader who is unfamiliar with the SNOBOL languages should not be alarmed.

I»

OVERVIEW OF SPL

The syntax of SPL is given in [2], together with a description of its

semantics. SPL is a block-structured, ALGOL-like language having two

manipulable data types called scalars and structures. A scalar is a

character-string of unlimited and dynamically-variable length; a structure

is a vector containing one or more (but not more than 9999) components,

each of which is either a scalar or a structure, certain subsets of the

scalars are recognized semantically: numbers are scalars which can be in­

terpreted as representing numerical values (see [2] for details), Booleans

are scalars containing only the characters 0, 1, and space, and truth-

values are the single-character Booleans 1 and 0 (to which are assigned

the interpretations true and false, respectively). The default scope of a

variable is local, i.e. if the same name is used in two different blocks

the two uses reference different variables unless the name is declared

GLOBAL (which extends its scope outward one level)[13].

Operators are defined upon scalar operands and produce scalar

results. The arithmetic operators (addition, subtraction, multiplication,

division, negation, and absolute value) require that their operands be

numbers and produce results which are numbers. The JOIN operator produces

as its result the concatenation of its operands. The FORMAT and MASK

operators provide powerful editing capabilities for numbers, and for

scalars in general, respectively; these two operators will be described in

detail in a later section. The string-comparison operators BEFORE, SAME,

and AFTER produce truth-values based on the lexicographic ordering of

their operands; the six numeric-comparison operators produce truth-values

based on the ordering of the numerical values represented by their

operands (which must be numbers). The logical operators AND, OR, and NOT

produce Boolean results by applying the corresponding operations of

Boolean algebra to their operands (which must be Booleans) on a

character-by-character basis. (Blanks in the operands are skipped and do

not influence the result.)

5

A conventional assignment operation permits the value of a variable

or of a structure component to be replaced. The right-hand side (new

value) may be a variable (having either a scalar or structure value), an

expression (which will always have a scalar value), or an assignment-

structure (which has a structure value). (An assignment-structure is a

linearized representation of a vector in which components are separated by

field-mark characters and the entire vector is enclosed in arouo-mark

characters. Each component of the vector may be a variable, an expres­

sion, or an assignment-structure.)

A component of a structure-valued identifier may be selected by a

subscripted reference, in which the identifier is followed by a list of

subscripts separated by commas and enclosed in brackets. A subscript may

be a constant, a variable, or an expression; its value must be a non-

negative number less than 10,000. A subscripted reference may be guali-

fied by being preceded by the word IN, in which case the result is a

truth-value designating whether the specified component exists rather

than an access to the component.

A substring of a scalar-valued structure component or identifier may

be selected by means of a partial reference, which is specified by a

bound-pair consisting of two subscripts separated by a colon.

(Syntactically, a bound-pair is handled like a single subscript.) The

first subscript of the pair, which must be at least 1, specifies the

starting character position in the string; the second specifies the length

of the substring. Thus the SPL reference X[I:J] is equivalent to the

PL/I construct SUBSTR (X, I, J) . Following PL/I a bit farther, the

subscript following the colon (J in the above example) may be omitted to

denote that the substring extends to the end of the original string.

Unlike SUBSTB, a partial reference produces a value rather than an access,

and hence cannot serve as a recipient in an assignsient or INPUT statement.

Procedures, labels, and GO TO statements are handled in a convention­

al manner, with the restriction that procedures may not be used

recursively. Procedures may be called as functions, i.e. they may return

6

values. The equivalent of the PL/I "label array" is provided by the

SWITCH statement, which creates a structure whose components may be used

in 60 statements.

The conditional (IP-THEN-ELSE) construct is somewhat unusual

syntactically in that multiple statements are accommodated in the THEN and

ELSE branches without recourse to such devices as enclosing them in a

"begin-end" pair. This is accomplished by requiring that each conditional

statement conclude with the word END, which serves to delimit the ELSE

branch. The THEN branch is delimited by the word ELSE (or by the END if

the statement has no ELSE branch). The semantics of the conditional

statement are conventional.

Input and output are handled via INPUT and OUTPUT statements, which

are unusual in that they provide no formatting. (The idea is that,

instead of putting the formatting in the I/O and then resorting to some

kind of "core-to-core I/O" facility to make it available elsewhere,

generalized formatting capabilities are provided in the form of the MASK

and FORMAT operators which are usable in any context.) The I/O statements

do contain a STRING qualifier (which influences the manner in which struc­

ture values are transmitted) and a DATA qualifier (whose effect is similar

to thé rORTBÀM HAnELIST or PL/I GET/POT DATA statement), as well as TC and

FROM qualifiers whose purpose is similar to FORTRAN "unit numbers" or PL/I

"file names".

7

EXTENDED CONTROL CONSTRUCTS

SPL's set of control constructs is complete in the sense that it is

sufficient to express any algorithm; however the absence of any "looping"

construct requires that repetition be specified by means of the GO state­

ment and controlled with the conditional. We shall not rehash here the

plethcra of arguments concerning the desirability or undesirability of GO

TO statements[14,15,16], but shall simply observe that a repetition con­

struct is a very useful thing for a programmer to have available, and a

"Case Statement," while not greatly different from a series of IF-THEN-

ELSE's, is generally easier to follow when the algorithm involves a choice

among more than two alternatives, we therefore propose to add to SFL two

additional control constructs: the BHILE-DO-END and the SELECT-WHEN-END.

The WHILE-DO-END is a conventional loop; the SELECT-WHEN-END is a form of

case statement. In the notation of [2], the syntax of these statements is

as follows:

loop-stm :;= WHILE exp DO body END

case-head ::= SELECT (FIRST)EACH) CASE;

case-clause : ;= WHEN exp:body

any-clause ::= WHEN ANYibody

none-clausa ::= WHEN NONE:body

case-stm ::= case-head List;case-clause
(any-clause [none-clause]|[none-clause] [any-clause])
END

Additionally, the definition of "compound-stm" must be changed to;

compound-stm ;:= conditional-stm|envlronment-stm|case-stm|loop-stu

The semantics of the WHILE-DO-END are conventional: the body of the

loop is executed as long as the "exp" is true. If the e*p is false when

th» statement is encountered, the body is not executed.

The semantics of the SELECT-WHEN-END are inspired by similar

constructs in other languages[6,17]: The exp*s are evaluated in the order

in which they appear, whenever an exp is "false", the next exp is evalu­

ated. When an exp is "true", the body if its case-clause is executed; if

8

the case-head specified EACH the next exp is evaluated, otherwise the body

of the any-clause (if one exists) is executed and the statement

terminates, when no more exp's remain to be evaluated, the body of the

none-clause or any-clause is executed if none or at least one of the exp's

produced a "true" result (provided that the appropriate clause exists).

It is our belief that the provision of more than one repetitive con­

trol construct in a general-purpose language constitutes an unnecessary

complication of the language, and that there is little objective basis for

selecting between the WHILE-DO and BEPEAT-ONTIL forms. Our choice of th*

WHILE-DO form is largely arbitrary.

Our selection of what may be termed a "multiple Boolean" case state­

ment over the more common "indexed" case (in which an expression is evalu­

ated ani, based on the value obtained, one of several succeeding

statements or groups of statements is executed) is based on generality.

The equivalent of the indexed case statement is readily constructed using

the multiple Boolean construct by specifying case-clauses such as

WHEN 1=1: ... WHEN 1=2: ... etc. The indexed case statement, on th=

oth=r hand, does not readily lend itself to situations in which the suc­

cessive tests are not restricted to various possible values of a single

variable or expression, we raccgnizo that the pries of this selection is

likely to be reduced implementation efficiency, since a rather sophisti­

cated (and hence probably slow) compiler would be required to recognize

those instances in which an indexed realization of a particular case

statement could be used to advantage. If the compiler were not so sophis­

ticated, the resultant evaluation of several Boolean expressions when cne

indexed jump would suffice would be somewhat wasteful of computational

capacity. However, given the current (and presumably future) trend of

ever-decreasing hardware costs and rapidly rising programming costs, we

feel that the more general and hence more useful construct will render

programming enough easier, faster, and more reliable to justify the cost.

9

THE SPL MASK AND FORMAT OPERATORS

We shall now undertake to describe in detail the SPL operators MASK

and FORMAT. Each produces an edited version of its left-hand operand (to

which we shall refer as the source!. MASK treats its source as simply a

string of characters; FORMAT is concerned with the numerical value repre­

sented by its source. Each of these operators treats its right-hand oper­

and as a control-string which directs the editing operation.*

A MASK or FORMAT control-String consists of a series of control

codes. In the case of MASK, these control codes are executed in sequence

and the MASK operation is complete when the last control code in the

string has been executed. In the case of FORMAT, the entire series of

control codes, taken as a whole, forms a template onto which the source

value is mapped; the mapping process will be described shortly.

A control code for either operator consists of a control character

chosen from Table I or Table II as appropriate, optionally preceded by a

replicator and followed (in some instances) by a qualifier. A replicator

is a one- or two-digit number (indicating that the control character

should be repeated that number of times), or the letter F (indicating that

the control character should be repeated zero or more times until the

source is exhausted). An omitted replicator is assumed to be 1.

A qualifier is a character or a series of characters which modifies

or further specifies the action to be performed by the control character

which it follows. Those control characters which require qualifiers are

identified as such in the tables.

: B. F. Rosin {forserly with the isn computer science Department) has
pointed out that arrangements of this sort are in fact languages-within-
languagas, and Dakins[18] has defined a grammar for the SPL MASK and
FORMAT control-strings^ The changes to MASK and FORMAT which we shall
propose may in this sense be considered as changes to these specialized
editing languages rather than as changes to SPL itself.

10

TABLE I. MASK CONTROL CHARACTEBS

Character Replicationi Qualifier Semantics

S F,n none Append* current source character.
If source is empty, append a blank.

I F,n none Discard current source character.

B F,n none Append a blank. If F-replicated,
also discard current source character.

/ n none Append a carriage-return.

E P,n none Append hex-unpacked current source
character (2-character result).

H P,n none Append character formed by hex-
packing current and following source
characters.

0 F,n none Append binary-unpacked current source
character (4-character result).

P F,n none Append character formed by binary-
packing current and 3 following
source characters.

A F,n one char Append current source character
unless it is the same as the
qualifier.

C F none Discard all remaining source
characters and append 4-digit count
of them. Must be F-replicated.

t none rest of
literal

Append literal (i.e. everything
between this apostrophe and the next
apostrophe which doesn't have another
immediately following}. An apostrophe
within the literal is represented as
two adjacent apostrophes.

1 "n" denotes a one- or two-digit number.

2 Append to the result, and discard from the source.

11

TABLE II. FORMAT CONTROL CHARACTERS

Character Replication^ Qualifier

D P,n none

N F,n none

Z F,n none

* F,n none

I F,n none

B n none

/ n none

C none none

S 1 none

1 none

1 none

1 none

V 1 none

Semantics

Put digit in result.

Put digit in result unless it is a
leading zero.

Put digit in result unless it is a
leading zero, in which case put a
space in result.

Put digit in result unless it is a
leading zero, in which case put an
asterisk in result.

Discard digit.

Put a blank in result.

Put a carriage-return in result.

Put a comma in result unless the
preceding digit-selector selected a
leading zero, in which case put in
result the same character as that
digit-selector.

Put a dollar sign ahead of the first
digit in the result, following any
blanks or asterisks inserted by Z or
* controls ("floating" dollar sign).
If used, $ must precede all control
characters except B, Q, B, /, and '.

Put a floating + or - sign, as
appropriate, in the result.
Positioning rules are the same as for
S; if both S and * are used in the
same template + mast follow $ and the
floating sign will immediately follow
the $ in the result.

Same as *, but a blank will appear in
the result in place of the * if the
source is positive. + and - may not
both be used in the same template.

Put decimal point in result. Also
serves as the decimal-point alignment
reference for the template.

Serves as the decimal-point alignment
reference but puts nothing in the
result. V and . may not both appear
in the same template.

1 - 1 - designates a character which may not be replicated and may appear
only once in a template.

12

TABLE II. (continued)

Character Replication Qualifier Semantics

u 1 none Causes the result to be in exponen­
tial form, and serves to separate the
mantissa part of the template from
the exponent part.

X none none Put "EM" in the result if the source
is "empirical", otherwise "EX". If
used, X must follow all control
characters except B, Q, R, /, and «.

H none none same as X, except that the EX is
omitted.

Q none literal Put literal (enclosed in apostrophes)
in result if source is negative,
otherwise nothing.

R none literal Put literal in result if source is
positive, otherwise nothing.

1 none rest of
literal

Put literal in result.

The FORMAT control characters D, N, Z, *, and I are collectively

referred to as digit-selectors. Each occurrence of a digit-selector in a

template causes one digit to be taken from the source and placed in the

result. (Exception: The digit-selector I does not place anything in the

result.) Except for I, the digit-selectors differ only in their treatment

of "leading" zeros. (A leading zero is one which precedes the decimal

point and all significant digits of the source.) D represents a leading

zero as 0, Z as a blank, * as an asterisk, and N as no character at all.

Each FORMAT template is of either exponential or non-exponential

form, depending on whether it does or does not contain the control code u.

The two forms are most readily understood if described separately.

In order to map a source value onto a non-exponential template, the

decimal point of the value is aligned with the decimal-point reference of

the taaplatB. (Unless explicitly established by the V or . ccntrol=ccda,

the decimal-point reference is at the right-hand end of the template.)

Each digit of the integer part of the source (i.e. that part left of the

decimal point) is paired with a digit-selector left of the decimal-point

13

reference; an F-replicated digit-selector will be paired with zero ct more

digits so as to pair the most-significant digit of the value with the

left-most digit-selector. If the part of the template left of the

decimal-point reference contains neither an F-replicated digit-selector

nor enough digit-selectors to account for all significant digits of the

integer part of the value, a processing error occurs.

Beginning at the decimal point, the digits of the fractional part of

the value are paired with the digit-selectors to the right of the decimal-

point reference. Here, an F-replicated digit-selector is paired with all

remaining significant digits (if any exist), so any following digit-

selectors can only produce zeros in the result.

The mantissa part of an exponential template is treated very similar­

ly to the fractional part of a non-exponential template. There are no

leading zeros to worry about, and so the N, Z, and * digit-selectors

behave like D. The first digit-selector in the template is always paired

with the most-significant digit of the value, and an F-replicated digit-

selector will pair with all remaining significant digits. Floating dollar

signs, however, are not permitted.

The exponent part of an exponential template is treated like a one-

or two-iigit non-exponential template, except that a ù or 6 control char­

acter will interrogate the sign of the mantissa rather than the sign of

the exponent. The value of the exponent is adjusted in accordance with

the position of the decimal-point reference in the mantissa part.

The result is constructed by replacing each control code (except $,

and -) in the template with its paired digit(s) (in the case of a

digit-selector), or the appropriate other character(s). Finally, the

floating dollar sign and/or arithmetic sign is inserted immediately pre-

ceiing the first digit.

m

DEFICIENCIES OF THE SPl MASK OPERATOR

The SPL MASK operator contains a number of special cases,

asymmetries, omissions, and lacks of generality, including the following:

The construct "nnS" (where nn represents any 1- or 2-digit number)

has the effect of left-justification in a field of width nn, with space­

fill or truncation as required. No construct is provided for right-

justification. It is not possible to specify a different fill character.

In general, the F replicator means "repeat the following control

until the source-string is exhausted." One would expect, therefore, that

the construct "PB" would result in an infinite loop (or be forbidden)

since the B control does not consume any source-characters. However, "FB"

has been defined as if the B did consume a source-character, i.e. "append

to the result-string as many blanks as there are characters remaining in

the source-string." Thus, in the case of the "FB" construct, replication

has altered the semantics of the control character in addition to causing

repetition. Strangely, the almost-identical construct "F/" is forbidden.

The A control has been defined as appending to the result-string the

current source-character, unless it is the same as the character following

th m A in the control-string. It may however be useful to view the A as

(equivalently) appending to the result-string either a null character or

the current source-character, depending on whether the source-character

do3S or does not match the character following the A. This second inter­

pretation gives rise to a generalization: Append to the result-string

either a specified replacement character (which may or may not be null) or

the current source-character, depending on whether the source-character is

or is not contained in a given set. If the replacement character is now

permitted to be determined as a function of the source-character, and the

given set is allowed to encompass all possible characters, the result is a

general one-for-one conversion operation, similar to the PL/I "TRANSLATE"

built-in function.

The ' (literal) control is the only MASK control which cannot be

replicated. This is probably a concession to the hardware implementation.

15

as replicated literals would require either that the literal be copied

into some kind of temporary storage or that the control-string be "backed

up" for each repetition.

Replicators are limited to two digits. This is definitely an isple-

mentation concession; it limits the size of the counter required.

The C control is indeed a pathological case. It is required to be F-

replicated; the construct "FC" consumes all remaining source-characters

and appends to the result-string the number of characters which it

consumed (as a four-digit number). This may be another implementation

concession, for if C were required to count the remaining source-

characters without consuming them it would be necessary to "back up" (or

copy) the source-string. It may well be questioned whether this "string-

length" function belongs in MASK at all, bearing as it does virtually no

relation to the other controls.

16

PROPOSED EXTENSIONS AND GENERALIZATIONS OF THE MASK OPERATOR

Those aspects of the SPL MASK operator which we propose to redefine

are summarized below. (Table III contains the complete set of control

characters for this extended MASK operator.)

A replicator may be of unlimited magnitude, and may be applied to a

literal.

Any sequence of controls may be enclosed in parentheses, and a repli­

cator may be applied to it. (We shall refer to such a parenthesized se­

quence as a group.> Parentheses may be nested to any depth.

The controls * and permit reversal of the scan of the source-

string.

The F replicator may be applied to any control or group (the

replicand), with the effect of repeating it as long as at least one char­

acter remains in the source string. If the replicand does not explicitly

consume at least one source-character, an I control will (in effect) be

appended to it.

The C control is eliminated. (Its function is served by the monadic

operator LEN, described in a later section.)

The R control is added to permit right-justification. It consumes

all remaining source-characters and right-justifies them in a field whose

width is equal to the value of its replicator. (Note that "FR", "FL", and

"PS" are eguivalent.)

The L control is added for mnemonic consistency with R; it is eguiva­

lent in all respects to S.

The X control permits specification of the (ej^tra) fill-character to

be used by L, R, and s. During each MASK operation, the fill-character

will be a space until an X control is encountered, after which the charac­

ter which follows the X in the control-string will be used. Any non-null

member of the external character set may be specified.

The A control is eliminated and replaced by the T control, which

performs a general translation operation. A literal-string, enclosed in

apostrophes, follows the T in the control-string. The literal-string is

17

composed of character-pairs; if the source-character is the same as the

first character of any pair, it is replaced in the result-string with the

second character of the pair. Otherwise, it is copied to the result-

string unchanged. If some character appears as the first character cf

more than one character-pair, the first pair encountered in the literal-

string is used. Within the literal-string, an apostrophe is represented

as two consecutive apostrophes and a null character is represented by the

pair "'N". (No ambiguity can arise from this arrangement, since N is not

a valid control character.) If a null character is the last character in

the literal-string, it may be omitted.

These extensions and generalizations correct the previously-merticned

deficiencies. They add the capability to scan the source-string

backwards, to right-justify the source in the result, to perform character

translation, and to repeat a series of controls a given number of times or

until the source is exhausted.

18

TABLE III. EXTENDED MASK CONTPOL CHARACTERS

Character

S

L

R

I

B

/

E

Replication

F,n

F,n

F,r

none

r,n

F,n

F,n

F,n

F,n

F,n

F,n

F,n

F,n

none

none

F,n

Qualifier Semantics

none Append current source character.
If source is empty, append the
current fill character (see X).

none Same as S.

none Take all remaining source characters
and right-lustify them in a tield cf
width n. (FF is equivalent to FS) .

one char Change the fill character to the
qualifier. (The fill character is
set to a blank at the beginning of
the operation.)

none Discard current source character.

none Append a blank.

none Append a carriage-return.

none Append hex-unpacked current source
character (2-character result) .

none Append character formed by hex-packirg
current and following source characters.

none Append binary-unpacked current source
character (4-character result).

none Append character formed by binary-packing
current and 3 following source characters.

literal see text.

rest of Append literal (i.e. everything
literal between this apostrophe and the next

apostrophe which doesn't have another
immediately following). An apostrophe
within the literal is represented as
two adjacent apostrophes.

none If presently scanning the source from
left to right, switch to right-to-
left; the last character selected
from the source will be selected again
by the next control code which select?
a source character. If presently
scanning right to left, do nothing.

none Reverse of

rest of Execute the group (i.e. everything up
group to the matching right parenthesis) n

times (if n-replicated) or until the
end of the source has been reached
(if F-replicated) .

19

DEFICIENCIES OF THE SPL FORMAT OPERATOR

Onlike MASK, the SPL FORMAT operator contains conditional elements

which are or are not placed in the result, or which appear in different

forms in the result, depending on such circumstances as the sign of the

mantissa or the exponent, the significance of adjacent digits, and the

"exact/empirical" attribute of the number. The deficiencies of FORMAT are

similar to those of MASK, consisting mainly of omissions and lacks of gen­

erality. Many derive from the handling of conditional elements.

The - and + controls cause a "floating" arithmetic sign to appear in

the result, when they are used in a non-exponential template or in the

mantissa part of an exponential template, the character placed in the

result is selected on the basis of the sign of the number; when they are

used in the exponent part of an exponential template the selection is

based on the sign of the exponent. In contrast, the Q and G controls

(which permit the conditional insertion of arbitrary character seguences

depending on the sign) always Interrogate the sign of the number, even

whan they appear in an exponent part. The ability to interrogate the sign

of the exponent ought to be provided, at least within the exponent part.

The $ control produces a "floating" dollar sign in the result. $ is

not permitted in an exponential template. (There is really no such thing

as a "floating" sign in the result produced by an exponential template,

because such templates cannot produce leading zeros. However, + and - are

permitted in exponential templates, and $ might as well be since the

prohibition complicates the rules and serves no useful purpose.) No

provision is made for "floating" anything else except for the arithmetic

sign.

The four digit-selectors D, N, Z, and • permit the programmer to

specify that leading zeros be represented as 0, null, blank, or *, respec­

tively. Considerable simplification as well as added generality would

result if only one digit-selector (in addition to I) were provided and an­

other control code (with a gualifier) were defined to specify the charac­

ter to be used for leading zeros.

20

The c control code places in the result a comma (if the preceding

digit-selector selected a significant digit) or the same zero-suppression

character as the preceding digit-selector (otherwise). No other means of

interrogating the zero-suppression status is available. Only the comma

can be handled in this way.

Thq X and H control codes behave somewhat like + and - except that

they interrogate the exact/empirical attribute of the number (instead of

the sign) and produce the tag "BX" or "EH" as appropriate. No prevision

comparable to the Q and R codes is provided for this attribute.

The ability to replicate a series of control codes would be even more

useful in FORMAT than in MASK, owing to the frequency with which one re­

quires, for example, a template specifying a comma every three positions.

21

PROPOSED EXTENSIONS AND GENERALIZATIONS OF THE FORMAT OPERATOR

Our proposed changes to the FORMAT operator are summarized below.

(See Table IV for the complete set of control characters.)

As in MASK, a replicator may be of unlimited magnitude. Replication

may be applied to any control character except V, and lo (for which it

would not be meaningful), and Z (for which it could have no effect). Rep­

lication of parenthesized groups and nesting of parentheses are permitted.

The F-replicator is treated as in SPL FORMAT, with straightforward

extension to groups, F-replication is permitted only for digit-selectors

(and groups containing them) and is restricted to one F-replicator in an

exponential template, or one F-replicator on each side of the decimal-

point reference in a non-exponential template.

D and I become the only digit-selectors. The functions of N, Z, and

* are performed by D, with the zero-suppression character specified by Z.

(Although we are aware of no immediate applications for the added general­

ity, we believe that the simplification alone is beneficial.)

The C, +, -, X, and M controls are modified by the addition of

qualifiers, and the $ control is replaced by L, to permit handling of ar­

bitrary literals. "X" variants of the Q and R controls are defined tc

permit interrogation of the sign of the exponent.

As in the case of MASK, the extensions and generalizations to FORMAT

correct deficiencies and add capabilities, of particular note here is the

ability to apply a replicator to a group of control codes.

22

TABLE IV. EXTENDED FORMAT CONTROL CHARACTERS

Character Replication Qualifier Semantics

D F,n none Put digit in result unless it is a
leading zero, in which case put the
current zero-suppression character
in result (see Z) .

Z none one char Change the zero-suppression character
to the qualifier. A null is
represented by the pair 'N; an
apostrophe is represented by two
apostrophes. (The zero-suppression
character is set to 0 at the
beginning of the opération.)

I F,n none Discard digit.

B n none Put a blank in result.

/ n none Put a carriage-return in result.

C none literal Put literal (enclosed in apostrophes)

ic

in result unless the preceding digit-
selector selected a leading zero, in
which case put in result as many zero-
suppression characters as there are
characters in the literal.

n literal Put the literal ahead of the first
digit in the result, following any
zero-suppression characters
("floating" literal). L may not
follow any of the control characters
C, D, I, ., or V.

none literal "Float" the literal in the result if
the source is positive. Positioning
rules are the same as for L.

none literal "Float" the literal in the result if
the source is negative. Positioning
rules are the same as for L and *.
If a template contains more than one
"floating" element, all will appear
in the result adjacent to one another
in the order in which they appear in
the template.

1 none Put decimal point in result. Also
serves as the decimal-point alignment
reference for the template.

1 none Serves as the decimal-point alignment
reference but puts nothing in the
result. V and . may not both appear
in the same template.

1 none Causes the result to be in exponen­
tial form, and serves to separate the
mantissa part of the template from
the exponent part.

23

TABLE IV. (continued)

Character Replication Qualifier Semantics

X n literal Put literal in result unless the
source is "empirical".

n n literal Put literal in result if the source
is empirical.

Q n literal Put literal in result if source is
or negative, otherwise nothing. If X

Xliteral appears between Q and the literal,
test the sign of the exponent.

B n literal Put literal in result if source is
or positive, otherwise nothing. X has

Xliteral same effect as for Q.

• n rest of Put literal in result.
literal

(F,n rest of As if the group (i.e. everything up
group to the matching right parenthesis]

appeared n times in the template. If
F-replicated, the group must contain
at least one digit-selector and may
not contain another F-replicator. It
will be treated as an n-replicated
group with n the smallest possible
integer (Including zero) such that
all remaining significant digits are
accounted for.

2U

APPLICATION OF OPERATOR? TO STRUCTURES

The domain of the SPL operators is limited to the scalars. He pro­

pose to define the result of applying a monadic operator to a structure to

be a structure of the same shape, with each scalar component replaced by

the result of applying the operator to it. Pig. 1. recursively defines

the resulting interpretation. (APL[19] applies substantially the same in­

terpretation in such cases, the primary difference being that API does not

have arbitrarily-shaped aggregates.)

The generalization of dyadic operators to non-scalar values is

slightly more complicated. We define the result of applying a dyadic op­

erator to a scalar and a structure to be (again following API) a structure

of the same shape as the structure operand, with each scalar component re­

placed by the result of applying the operator to the scalar operand and

the component. He then define the result of applying a dyadic operator to

two vectors as a vector each of whose components is the result of applying

the operator to the corresponding components of the operands. The defini­

tion is exemplified (for the case of addition) by the program in Fig. 2.

(These examples should not be construed as implying that an implementation

must employ recursive techniques.)

we also propose to recognize the assignment-structure construct as

equivalent to any other structure value, thus permitting it to appear

anywhere that an expression would be permitted.

The ability to apply operators to aggregates is useful in

applications involving matrices, as in Gaussian elimination where each el­

ement of the pivotal row must be multiplied by the inverse of the pivotal

element. The equivalence of assignment-structures with other structure

values is of interest primarily as the elimination of a special case.

2%

PHOCF.OUCL NEU(X);

NOTE - APPLIES THE NOT OPERATOR TO AN ARBITRARY VALUE XI

A «• XI
IF SCALAKCA)
THEN RESULT «• NOT AI
ELSE J » II RESULT «• <>l

WHILE IN AtJ]
DU RESULT IJ] *• MECCA [J]) I J «• J t 11
END

END
RETURN RESULTl

PROCEDURE SCALAR(X)I RETURN NOT IN X[l]l END

END

Fig. 1. Application of a Monadic Operator to an Arbitrary Value

PROCEDURE SUMCX, Y)l

NOTE - ADDS ARblTRARY VALUES X AND Y, AND RETURNS THE SUMI

A + XI B «• Yl
IP SCALAR(A)
THEN IF SCALAR(B)

THEN RESULT » A * 8;
ELSE J » II RESULT *• <>l

WHILE IN B[J]
DO RESULT [J] «• SUM(A, B[J])I J » J + 1|
END

END
ELSE J t II RESULT » <>;

IF SCALAR(B)
THEN WHILE IN AtJ]

DO RESULT[J] *• 3UM(A[J], 8)1 J * J + 1|
END

ELSE WHILE IN A[J] OR IN B[J]
DO RfcSULTtJ] 3UM(AtJ], B [J]) | J * J + 1|
END

END
e n d

RETURN RESULTl

PROCEDURE SCALAR(X)I RETURN NOT IN X[l]l END

END

Pig. 2. Application of a Dyadic Operator to Arbitrary Values

26

SCALAR-STRUCTURE CONVERSION OPERATORS

SPL has eliminated much of the special handling traditionally found

in I/O statements, in favor of providing MASK and FORMAT as operators

usable in any context. There remain, however, three distinct variants of

the INPUT and OUTPUT statements. We propose to eliminate the STRING and

DATA variants, allowing INPUT and OUTPUT to perform as INPUT STRING and

OUTPUT STRING and defining general operators to perform the special

conversions.

The monadic operator STRING, applied to a structure, produces a

scalar containing the external representation of the structure. Applied

to a scalar, it encloses the value in field marks.

The monadic operator NAME, applied to a variable, produces a scalar

containing the name of the variable. Applied to an expression, it

produces a null. Applied to a formal parameter, it produces the name cf

the actual parameter or a null, depending on whether the actual parameter

is a simple variable or an expression.

The monadic operator DATA, applied to any variable or expression X,

produces the equivalent of "NAME X JOIN (STRING X)". (X is evaluated only

once, however.) Thus, the semantics of the statement "OUTPUT DATA X;" are

substantially unchanged.

The monadic operator STRUCTURE, applied to a scalar, produces the

structure whose external representation is that scalar. If the operand is

not a valid external representation of any structure, the result is a null

scalar. If the operand of STRUCTURE is a structure, the usual extension

of monadic operators defined upon scalars (as defined in the previous sec­

tion) applies.

Thm monadic operator LEH produces the length of (number of characters

in) a scalar.

Thn monndic operator SI/.K, applied to a vector, produces the number

cf components in the vector. Applied to a scalar, it produces a null.

The elimination of SPL's INPUT and OUTPUT variants in favor of

generalized conversion operations is a further application of the SPL

27

principle of removing special cases from the I/O and providing operators

which are usable in any context, including that of I/O. The LEN operator

provides a function whose usefulness is unquestioned but which, in SPL,

was lumped in with MASK where it was a rather alien presence. The SIZE

operator is not available in any form in SPL; this lack has occasioned the

writing of procedures to perform its function, which seems to be of con­

siderable usefulness.

28

SUBSCRIPTION

SPL permits structures of arbitrary size and shape. Unfortunately,

much of the potential power of these objects is unavailable due to the

fact that subscript lists cannot be of variable length. Ghandour and

Hezei[20] have proposed a set of definitions which are directed toward

solving this sort of problem in the context of the API language, but their

proposal rests on data structures of needless complexity. For example,

they make a fundamental distinction between a two-dimensional array of

scalars and a vector each of whose components is a vector of scalars.

SPL requires that each subscript in a subscript list be a number

whose integer part is in the interval [0,9999]. (The zero-valued sub­

script is a special case[2]; it has not been found particularly useful.)

Our proposal for the representation of subscript lists of varying

length makes use of scalars which contain non-numeric characters and thus

do not represent valid numeric values. He define a simple subscript to be

a character-string containing one or more valid numbers separated by

semicolons; the subscript list then consists of those numbers. A bound-

pair (p. 5) may appear at the end of the string. Thus if S has as its

value the (13-chatactet) string 12;36;U2;5;10 the reference X[S] will be

equivalent to the SPL reference X[12,36,42,5:10]. (He shall subsequently

refer to the variable being subscripted — X in this example — as the

referent.) A zero-valued subscript is treated as if it were a vector of

all positive integers for which the components so accessed exist, one

effect of this is that (if X happens to be a rectangular array) X[0,5] ac­

cesses the 5th column of X; another is that if the entire subscript is the

null string the result is an access to the entire referent. A subscript

may he a structure, in which case the result is the structure obtained by

replacing each scalar component of the subscript with the component which

it (as a simple subscript) selects from the referent.

In those cases where a variable number of subscripts is not needed,

we permit a subscript to consist of one or more expressions separated by

commas or colons. For example, the construct x[o,e:w] is interpreted as

29

X[(a) JOIN I; I JOIN (e) JOIN |:| JOIN (w)]

and thus in simple cases it has the expected effect. There is however no

restriction that the expressions in this construct produce numbers or even

scalars, provided that the result of the implied expression is a valid

subscript.

We also propose:

1. To permit assignment to a partial reference, with the (expected)

effect of replacing the selected substring with the value obtained by

evaluating the right-hand side of the assignment (which in this case must

be a scalar), and

2. To permit the application of subscription to expressions.

These extensions to SPL's subscript handling make for a very powerful

facility for the manipulation of aggregates. By way of illustration, two

examples of primitive operations which turn out to be special cases of

subscription are the insertion and deletion cf components of a vector.

The deletion of the Jth component of a vector X is accomplished thus:

X * X[< 1 I 2 I ... I J-2 I J-1 I J+1 I J+2 I ... I SIZE X >];

The insertion of a new component Q following the Jth component of a vector

X is accomplished thus:

N 4. SIZE X + 1; X[N] * 0;

X • X[< 1 I 2 I ... I J-1 I J I M I J+1 I J+2 I ... I N-2 I N-1 >];

30

THE BATCH OPERATOR

we have now established the necessary constructs to enable us to

define a powerful string-searching operator, which we call HATCH. In the

following description, we shall refer to the left-hand operand of HATCH as

the subject and to the right-hand operand as the pattern. Each operand

may be either a scalar, or a structure of any shape. The result of the

operation is formed by replacing each scalar component of the subject with

a two-element vector which specifies the manner in which it matches the

pattern, or with a null scalar if no match is found. The first element of

the vector is the simple subscript which selects the matching component of

the pattern; the second element identifies the character position in the

subject at which the match was found. Fig. 3. is a program to emulate the

BATCH operator.

31

PROCTDURE. MATCHCSUBJECT» PATTERN) |
RESULT 4. ILL K 4- FIRSTSCALARCSUBJECT);
WHILE K AFTER I I
DO SK «• SUBJECTTK]; LEN3K «• LEN SK;

L *• FIRSTSCALAR(PATTFCRN)> LOOK «• L;
WHILE (L AFTER II) AND LOOK
DU PL C PATTERN IL] ; LENPL «• LEN PL>

I «• 1» STOP *• LENSK - LENPL + U
WHILE (I LTE STOP) AND LOOK
DO IK SK[I I LENPL] SAME PL

THEN RESULT [K] «• < L I 1 >> LOOK *• 0>
ELSE I «• I + U
END

END
IF LOOK THEN L » NEXTSCALAR(PATTERN, L)>

END
K » NEXTSCALAR(SUBJECT, K)I

END
RETURN RESULT;

PROCEDURE FIRSTSCALARCX)»
SUBS * II;
WHILE IN XfSUBS, U
DO SUBS * SUBS JOIN (III JOIN 1);
END
IP SUBS SAME I I
THEN RETURN 0|
ELSE RETURN SUBS [21])
END

END

PROCEDURE NEXT9CALAR(X, CURRENT);
SUBS CURRENT; LOOK «• I;
WHILE (SUBS AFTER II) AND LOOK
DO J «- LEN SUBS;

WHILE SUBSLJtl] AFTER |%| AND J GTE 2
DO J J - U
END
IF J • 1
THEN LAST <• SUBS;
ELSE LAST * • S U t i S [J * l t] l
END
SUBS <• SUBStllJ-n; LAST » LAST + I)
IF IN XTSUBS, LAST]
THEN IF SUBS SAME ||

THEN SUBS 4- LAST;
ELSE SUBS F SUBS JOIN (|;I JOIN LAST);
END
WHILE IN XESUBS, 1]
00 SUBS *> sums JOIN (i ; i JOIN i) ;
END
LUOK «" 0»

END
END
RETURN SUBS;

FND

END

Fig. 3. HATCH Operator

32

EXAMPLES OF THE USE OF EXTENDED SPL

To illustrate the use of some of our proposed extensions to SPI, we

shall now show how certain constructs of PL/I and SN0B0L4 may be imple­

mented using Extended SPL (ESPL).

PL/I INDEX Function

The PL/I statement X = INDEX (STB, 'ABXYZ'); (where X has any of

various numeric types and STB is of type CHABACTER) is equivalent to the

ESPL statement X • (STB HATCH |ABXYZ|)[2]; . This finds the first

occurrence in the string named STR of the substring ABXYZ.

PL/I VERIFY Function

The PL/I statement X = VERIFY (STB, 'ABXYZ'); (under the same

conditions as above) is equivalent to the following ESPL statements:

X «• LIST(STR) MATCH LISTCI ABXYZ I) I
I » II
WHILE IN XLI,1]
DO I » I + 1)
END
IF IN x t n
THEN X 4- I;
ELSE X » o;
END

PROCEDURE LI3TCSTRNC)> 8 <• 3TRNG»
NOTE • RETURNS A VECTOR CONTAINING THE CHARACTERS UF 3TRNG»

VEC «• I I» J * i;
WHILE CC STRNGlJJl]) AFTER I I
DO VECIJI CJ J + J + i;
END
RETURN VEC;

END

This finds the first character in the string named STB which is not a mem­

ber of the set (A,B,X,Y,Z).

PL/I TBANSLATE Function

The PL/I statement x = TBANSLATE (STB, 'OA', 'OB'); (where both x

and STB are of type CHARACTER) is equivalent to the ESPL statement

X 4- STB MASK IFT'OQAB' | ; .

33

Sample of SNOBOLt Pattern-Hatching Operation

The SN0B0L4 Statement

STB ABB . PI ('AB' | 'BC') . P2 'DE' ABB . P3 BPOS(O)

which looks for the sequence ABDE or BCDE in the string named STB and (if

thq search succeeds) assigns the part of STB preceding the sequence to the

variable PI, the AB or BC to the variable P2, and the part of STB follow­

ing the DE to the variable P3, is equivalent to the following Extended SPL

statements:

PAT<ABDE|BCDfc>»
J • (STR MATCH PAT)[2]f
IF J NEQ 0
THEN PI «• STKtliJ-l];

P2 » STR(Ji2]>
P3 f 8TR[J+4;];

END

It is worth noting that the ESPL version of this process is more easily

understood than the SN0B0L4 version.

k Practical Example

The following example is typical of the sort of processing which is

involved in a text-editing program. We shall assume that the user has re­

quested that the program find and print in context the first instance of

any of several given words in his text. Only words completely matchir.g a

list element are desired, i.e. a request to find "the" should not yield

"hypothetical." The variable STB contains the text; the variable CP

contains a carriage-return character. The variable WOPDS contains the

list of words to be searched for, separated by commas.

As we have noted before, the reader who is not familiar with SNOECLU

shoull not be concerned. The SN0B014 solution is given only as a contrast

to the ESPL solution for the benefit of SNOBOLU users, and can be safely

skipped.

SN0B0L4 solution

* ALTERNATION OF «ORD-SEPAPATOR CHARACTERS
PONCT = CB I ' • I I I • » ' I I
PUNCT = PUNCT I ' (• I •) ' I I I »?' I '!'

* CONVERT WORDS TO AN APPROPRIATE ALTERNATION
PAT =
WORDS BREAK. WORDLEN(I) = :F{L2)
PAT = WORD

LI WORDS BREAK. WORD LEN(1) = :F(L2)
PAT = PAT I WORD :(LI)

L2 PAT = PftT ; SORDS

6ANCH0B = 0
STR (LEN(20) PUNCT PAT PUNCT LEN(20)) . OUTPUT

ESPL solution

NOTE - VECTOH OF CHARACTERS TO BE RECOGNIZED A3 WORD SEPARATORS»
PUNCT<| l-I.M>ll|(l)IM"l?|l>l PUNCT [1] + CR;

NOTE - INITIALIZE SPECIAL-CHARACTER VARIABLES;
NOTE - LEFT GROUP MARK; LGM 4- (STRING <>)[lti];
NOTE - RIGHT GkOUP MARK; RGM * (STRING
NOTE - FIELD MARK; FM (STRING I I) [111];

NOTE - CONVERT "*0RD8" TO AN APPROPRIATE VECTOR;
M *• IFT',1 JOIN FM JOIN) ' | ;
PAT «• STRUCTURE (LGM JOIN (WORDS MASK M) JOIN RGM);

J » i; TPAT «. I i;
WHILE IN PAT [J]
DO TPAT [J] *• PUNCT JOIN PAT [J] JOIN PUNCT; J • J + l;
END
J «• (STR MATCH PAT) C2] ;
IF J NEO 0 THEN OUTPUT STR[J.20150]; END

35

CONCLUSION

We have proposed modifications and extensions to SPL to correct vari­

ous deficiencies and to improve the completeness of the language. The

extensions include definitions of:

1. a powerful pattern-matching operator,

2. a means of varying, during execution, the number of subscripts

used in accessing a structure,

3. iteration and case statements, and

4. the application of operators defined upon scalar values to

operands which are structures.

For these extensions, we have adopted a host language which, without

sacrificing capability, is exemplary in its simplicity, and we have

avoided the baronial splendor of the SN0B014 pattern-matching operation in

favor of a definition which we hope will be comprehensible tc mere

mortals.

The primary modifications deal with the MASK and FORMAT operators,

which are made more general and from which a number of special cases have

been removed. All recognized deficiencies of the MASK operator have been

corrected; the result, together with the JOIN and HATCH operators, is a

string-processing language whose power is comparable to that of SNOEOLt.

The major deficiencies of SK0B0L4, lack of reasonable control constructs

and the necessity of recourse to pattern-matching "side-effects" to retain

information of interest, are avoided. The power of the FORMAT operator

greatly exceeds that of the similar SN0B0L4 facilities.

We claim that the significance of the facilities herein proposed is

in no way limited to SPL or to the SYMB0L-2B system. The MASK operator is

applicable to any programming language which provides a character-string

data type (preferably varying-length strings), and the FORMAT operator is

applicable to any such language which also supports the concept of a nu­

merical value. The MATCH operator could easily be adapted to any language

which supports character-strings (the subject), vectors of character-

strings (the pattern), and vectors of numbers (the result). The SPl fa­

36

cility of dynamically-varying structures of arbitrary size and shape is

not needed for MATCH, and indeed is somewhat of a complication.

While we have not mentioned implementation considerations in this

discussion, our experience with the SYMB0L-2R system suggests that imple­

mentation of the facilities which we propose, given an implementation of

SPL as it now exists, would be straightforward. With respect to implemen­

tation in the context of other languages, the fundamental requirements for

implementing MASK and MATCH are the ability to scan a string on a

character-by-character basis in both directions, and the ability to deter­

mine whether two characters are or are not the same. Any machine which

cannot do such things easily will not likely be used for character manipu­

lation. (He might note that compilers of programming languages must

inherently perform a considerable amount of string manipulation, and

therefore a machine which is not well suited to such tasks should probably

have a companion which can handle them, if only for the purpose of running

a compiler.) FORMAT requires, in addition to string-scanning capability,

some means of converting from the form in which numerical quantities are

kept to a character-string representation. Usually, such facilities are

provided, if only for the purpose of output.

We have not addressed the interesting question of whether it is nec­

essary to view a scalar as fundamentally different from a vector of one

component. He consider that question, as well as the task of implementing

the language proposed herein, as suitable topics for further investiga­

tion.

37

ACKNOWLEDGEMENTS

The author wishes to acknowledge the efforts of Hamilton Richards,

whose assistance in familiarization with and understanding of the SYHECL

system was invaluable, and of professors B. J. Zingg, C. T. Wright, and

J. P. Basart, who examined the manuscript and made many helpful

suggestions. Thanks are also due to Mrs. LaDena Bishop of the ISO Thesis

Office for assistance with the form of and annotations in the tables and

for pointing out a number of clerical errors which would surely not have

been corrected otherwise.

The proposed case statement is very similar to a proposal relating to

the COBOL language which the author accidentally found some time ago while

looking for something else. Un extensive search has failed to turn up the

source.

Financial support for the SYMBOL project, with which the author has

been associated, has been provided by the National Science Foundation

under grant GJ33097X.

38

REFERENCES

1. Smith, W.R., &!. "SYMBOL — A Large Experimental System
Exploring Major Hardware Replacement of Software." AFIPS Conference
Proceedings M (Spring 1971); 575-587.

2. Richards, H. SYMBOL II-R Programming Language Reference Manual.
Cyclone Computer Laboratory, Iowa State University, 1971.

3. Strong, J., et al. "The Problem of Programming Communication with
Changing Machines." Communications of the ACM 1,8 (August, 1958):
12-18.

U. OS PL/I Checkout and Optimizing Compilers: Language Reference
Manual. IBM Corporation, White Plains, New York, 1974.

5. HATFIV User's Guide. University of Waterloo, Waterloo, Ontario,
Canada, 1972.

6. Wirth, N. "The Programming Language Pascal." Acta Informatica j, 1
(1971); 35-63.

7. Green, J. "Remarks on ALGOL and Symbol Manipulation."
Communications of the ACM 2, 9 (September, 1959): 25-27.

8. Yngve, v. H. "A Programming Language for Mechanical Translation."
Mechanical Translation 5, 1 (July, 1958): 25-41.

9. Farber, D. J., Griswold, R. E., and Polonsky, I. P. "SNOBOL, A
String Manipulation Language." Journal of the ACM XI» 1 (January,
1964): 21-30.

10. Griswold, R. E., Poage, J. F., and Polonsky, I. P. The SNCB0L4 Pro­
gramming Language. Prentice-Hall, Inc., Englewood cliffs. New
Jersey, 1971.

11. Balzer, R. M., and Farber, D. J. "APABEL -- A Parse-Beguest Lan­
guage." Communications of the ACM 11 (November, 1969): 624-631.

12. Dijkstca, E. u. "The Humble Programmer." communications of the ACM
J5, 10 (October, 1972): 859-866.

13. Richards, H. and Wright, C. "Introduction to the SYMBOL 2R Program­
ming Language." Proceedings of the ACM-IEEE Symposium on High-Level-
Language Computer Architecture, Association for Computing Machinery,
New York, 1973: 27-33.

14. Dijkstca, g. w. "GO TO Statement Considered Harmful."
Communications of the ACM JJ, 3 (March, 1968): 147-148.

15. Rice, John R. "The GO TO Statement Reconsidered," and reply by K. W.
Dijkstca, Communications of the ACM n, 8 (August, 1968); 538 ff.

16. Knuth, D. E. "Structured Programming with GO TO Statements." Com­
puting Surveys 6, 4 (December, 1974): 261-301.

17. Richards, M., Evans, A., and Babae, S. F. The BCPL Reference
Manual. Project MAC Technical Report HAC-TB-141, Massachusetts
Institute of Technology, Cambridge, Mass., 1974.

18. Dakins, M. C. "Nonnumeric Processing in the SYMBOL 2B Computer
System." M.S. Thesis, Iowa State University, 1974.

39

19. Pakin, S, APL/360 Reference Manual. Science Research Associates,
Chicago, 1972.

20. Ghandour, Z., and Hezei, J. "General Arrays, Operators, and
Functions." IBM Journal of Research and Development J2, 4 (July,
1973): 335-352.

