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CHAPTER 1: GENERAL INTRODUCTION 

I. Dissertation Organization 

Modern quantum chemistry as a science usually presents itself in two 

different aspects: the development of new theoretical methods and the 

application of existing methods to chemical problems. This Dissertation 

addresses both the theoretical and the applied side of quantum chemistry, 

and thus can be divided in two parts. 

The first, theoretical, part includes Chapters 2 through 4 and deals 

with various theoretical problems of calculating magnetic properties of 

molecules, related to the electron spin density at the nuclei. Chapter 2 

provides a review of mechanisms responsible for the indirect spin-spin 

coupling and contains a modified derivation of formulae for analytical 

calculation of spin-spin coupling constants at the restricted Hartree-Fock 

(RHF) level of theory, currently being implemented in the widely available 

quantum chemistry program GAMESS [1]. This Chapter also discusses 

possibilities for incorporating solvation effects into the calculation of spin-

spin coupling. 

Chapter 3 addresses various issues related to the calculation of 

electronic spin density at the nuclei, in particular the suitability of Gaussian 

basis sets for such calculations and the required level to account for electron 

correlation. 

In Chapter 4, an analytic method for calculating the hyperfine coupling 

tensors for the second order multi-configurational quasidegenerate 

perturbation theory (MC QDPT) is derived within the response function 

formalism. 

Chapters 5 and 6 constitute the second part of the dissertation and 

deal with application of various methods of quantum chemistry to the study 
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of the reaction of aluminum atoms with molecular oxygen. Chapter 5 is a 

study of the electronic structure of AIO2 - an important intermediary in the A1 

combustion reaction. Chapter 6 presents a multi-configurational study of the 

potential energy surfaces for the A1 + 02 system. 

Chapters 3 through 6 are papers either published, submitted to, or in 

preparation for submission to refereed journals. Chapter seven contains 

general conclusions for the entire Dissertation. 

H. Magnetic Properties 

Nuclear spin-spin coupling constants are among the most interesting 

and yet arguably the most difficult to calculate properties of a molecule. They 

depend on the chemical environment of the nuclei concerned and because of 

that contain a lot of information about the molecular electronic structure. 

These constants are also relatively easy to compare with experiment, since 

they can be obtained directly from NMR spectra and do not depend on the 

value of the applied field in an NMR experiment. 

Chapter 2 contains a brief review of mechanisms responsible for the 

indirect spin-spin coupling, observed in high-resolution NMR experiments. 

The difficulty of calculating the spin-spin coupling by standard methods of 

quantum chemistry arises from the fact that in most cases the largest 

contribution to the nuclear spin-spin interactions is provided by the so called 

contact interaction between the electron and nuclear spins [2-3]. This type of 

interaction, also known as the Fermi contact interaction, is proportional (in 

the non-relativistic theory) to the electron spin density at the positions of the 

nuclei. The spin density at a given point in space is determined by the 

amplitude of the wave function at that point, and since most approximate 

molecular wave functions are optimized by some kind of global energy 

criterion, they may have significant errors at certain points in space. Indeed, 
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obtaining a wave function that very accurately describes some global 

properties of the molecule, - like transition energies or polarizabilities, does 

not guarantee that this wave function will behave correctly in a very small 

region around the nuclei. 

Calculating the spin density at the nuclei presents even more difficult 

problems for standard quantum-chemical methods, since the majority of 

these methods employ Gaussian basis sets to approximate molecular orbitals. 

However, Gaussian functions have zero radial slope at the nucleus and are 

unable to satisfy the cusp condition associated with the singularity of the 

Coulomb potential at the nucleus. Chapter 3 deals with some of the problems 

associated with the suitability of Gaussian basis sets for spin density 

calculations, as well as with the required level of treatment of electron 

correlation. 

Accurate evaluation of spin density at the nuclei and of the total 

indirect spin-spin coupling often requires a very high level of electron 

correlation treatment. There are a variety of standard correlated methods 

available for the calculation of spin-spin coupling constants, including the 

Moller-Plesset perturbation theory (MP), the coupled-cluster theory (CC) and 

various levels of configuration interaction (CI) treatment. However, all these 

methods are only applicable to systems that are well described by a single 

configuration. If static correlation is important, the description of the 

molecular electronic structure must be based on the multi-configurational 

SCF (MCSCF) wave function. However, the only multi-determinant method for 

which analytical calculation of spin-spin coupling is currently available is the 

MCSCF theory itself. In Chapter 4, a combined analytical-numerical method is 

proposed for calculating spin-spin coupling for MCQDPT theory. This method 

involves analytical calculation of hyperfine splitting tensors using the 

response function formalism. 
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ni. Al as a HEDM additive to solid H2 

In the second part of this Dissertation, ab-initio methods of quantum 

chemistry are applied to the study of mechanisms of reactions of aluminum 

atoms with Oz. This study is motivated by the proposed use of atomic Al as a 

high energy density material (HEDM) additive to solid H2. The expected 

improvement of energetic properties of solid molecular hydrogen used as a 

rocket propellant can be best understood in terms of the so called specific 

impulse (ISP) of a rocket. By definition, the specific impulse is the amount of 

thrust achieved for the weight of fuel burned. However, it can also be thought 

of as a measure of the overall efficiency of a rocket engine. The specific 

impulse of a rocket propellant is a rough measure of how fast the propellant 

is ejected. The exhaust speed is primarily determined by the temperature of 

combustion and the molecular weight of the fuel. The following expression 

parametrizes the specific impulse as a function of the enthalpy of combustion 

of the fuel AH and the molecular mass of the exhaust gases M: 

As can be seen from Eq(l), the specific impulse of solid hydrogen used as a 

rocket fuel can be increased by additives with low molecular weight and high 

enthalpy of combustion. Depositing certain atomic species in solid hydrogen 

at just 5% concentrations can increase the specific impulse by more than 

20%. In addition to the increase in specific impulse, HEDM additives have the 

potential to increase propellant density, allowing for more compact vehicles, 

and thus for a higher percentage of deliverable pay load weight to vehicle 

weight. 

Aluminum, with its high enthalpy of combustion and relatively low 

atomic mass, appears to be a very good candidate for the role of a HEDM 

additive. It has been predicted that solid H2 doped with 5% aluminum atoms 

(1) 
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would be 80% more dense than liquid H%, and would therefore give a 10% 

specific impulse increase, corresponding to a 200% pay load increase [4]. 

However, this prediction is based on the assumption that all of the aluminum 

present in the system is oxidized into A1203. In fact, using pure solid H2 is 

preferable over Al-doped H2, if any other A1 oxides are generated in 

substantial quantities as final products of combustion, since the 

exothermicities of all other aluminum oxides are much smaller than that of 

A1203 [5]. Therefore, it is important to develop a quantitative understanding 

of the energetics of aluminum combustion. Chapter 5 deals with the 

electronic structure of A102 which is expected to play a key role in the A1 + 02 

reaction. Chapter 6 presents a general study of the A1 + 02 reaction, including 

the potential energy surfaces for the A1 + 02 system as well as possible 

mechanisms of the reactions of AlO with A102 to form A1203. 

IV. Theoretical Methods 

This section contains a brief review of standard quantum chemical 

methods used throughout this Dissertation. 

The simplest ab initio approach to solving the Shrôdinger equation for 

a molecular system is the Hartree-Fock self-consistent field approximation 

(SCF). The molecular wave function is taken as an antisymmetrized product 

(Slater determinant) of molecular orbitals. Each molecular orbital is a product 

of some spatial function and either a or p eigenfunction of the spin operator. 

In the Restricted Hartree-Fock theory (RHF), the spatial parts of each a, P 

electron pair in the Slater determinant are required to be identical. For 

systems with unpaired electrons this requirement represents a serious 

restriction. Indeed, the exchange interaction only affects electrons of the 

same spin, and in a system where the number of a or p electrons are not 
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equal, an unrestricted optimization of the wave function would always result 

in different forms of a vs. P orbitals. If this restriction is removed and the 

spatial parts of a and P molecular orbitals are allowed to vary independently, 

the resulting wave function permits a considerably more accurate 

representation of the electron density in open shell systems. This type of SCF 

theory is called the unrestricted Hartree-Fock (UHF) method. In most cases, 

the UHF wave function is not an eigenfunction of the total spin operator. This 

means that it is not possible to obtain pure spin states from UHF theory. 

The number of molecular orbitals that can be obtained by solving 

Hartree-Fock equations is equal to the number of functions in the basis set 

used to approximate these orbitals. Those molecular orbitals that are not 

included in the HF wave function are called virtual orbitals. For a given basis 

set, the best possible approximation for the exact solution of the Shrôdinger 

equation can be obtained as a linear combination of all possible 

antisymmetrized poducts of N molecular orbitals, where N is the number of 

electrons in the molecule. Each of these antisymmetrized products 

(configurations) can be considered to be the result of an excitation of one or 

several electrons in the HF wave function from occupied to virtual orbitals. 

The coefficients CK in the linear combination of all possible configurations 

are optimized variationally. The resulting full configuration 
K 

interaction (FCI) wave function is the most accurate solution of the 

Shrôdinger equation for the basis set used. 

For reasonably large basis sets, FCI calculations are prohibitively 

expensive even for small molecules. There are a variety of approaches that 

aim at recovering most of the energy difference between FCI and HF at a 

much smaller cost. In various CI methods, only configurations accounting for 

excitations up to a certain level are included into the CI expansion. For 

example, in the Singles and Doubles CI (SD-CI) approximation, only the singly 
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and doubly excited (relative to HF) configurations are included. In the 

coupled cluster (CC) method, the excitations are organized in a very specific 

form by using the exponential excitation operator 

|CC>= exp(T)|HF> T = 7J+7^+..., where 7J produces single excitations, Tt 

double excitations, and so on. 

Another commonly used method of improving the Hartree-Fock energy 

is perturbation theory. In the most popular scheme, Moller-Plesset 

Perturbation Theory (MP PT), the perturbation is chosen as the difference 

between the exact Hamiltonian and the sum of one-electron Fock operators, 

forming the zeroth-order, unperturbed, Hamiltonian. 

The single determinant Hartree-Fock approach does not always 

represent a reasonable zeroth-order approximation to the wave function. In 

systems involving degenerate or near-degenerate configurations, the HF 

description is not even qualitatively correct. The generalization of Hartree-

Fock theory to systems that are not well described by a single configuration is 

the multi-configurational SCF (MCSCF) theory. The MCSCF wave function is a 

linear combination of two or more configurations, and both the molecular 

orbitals and the CI coefficients are optimized variationally. In the most 

popular type of MCSCF theory, the Complete Active Space SCF (CASSCF) [6-7] 

methods, the orbital space is partitioned into three subspaces - inactive, 

active and virtual. The inactive orbitals are doubly occupied in all 

configurations, and the virtual orbitals are always unoccupied. Distributing 

the active electrons in the active orbitals in all possible ways produces the set 

of CASSCF configurations. 

The same hierarchy of methods can be based on the MCSCF wave 

function as the HF based methods described above. In the multi-

configurational version of SD-CI theory called multy-reference CI (SD) 

(MRCI(SD)), configurations representing all single and double excitations 
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from all CASSCF configurations are included in the CI expansion. The multi-

reference coupled cluster (MRCC) approach is significantly more difficult 

than the HF based CC method, and has not yet gained much popularity. 

There are many different ways to formulate the multi-reference perturbation 

theory using an MCSCF wave function as the zeroth-order unperturbed wave 

function. The multi-reference analog of MP perturbation theory used in this 

Dissertation is described in detail in Chapter 4. 
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CHAPTER 2: SPIN-SPIN COUPLING CONSTANTS -

SCF THEORY 

I. Introduction 

It is well known that the fine structure observed in high resolution NMR 

spectra is caused by the interaction between the magnetic moments of 

neighbouring nuclei. The largest part of this interaction is the direct dipole-

dipole interaction of nuclear dipoles, responsible for very broad absorption 

lines in the NMR spectra of solids. However, in liquids the direct dipole-dipole 

interaction through space is averaged to zero by the rapid tumbling of the 

molecules. What is left is the much weaker indirect nuclear spin-spin 

coupling, resulting from the interaction of nuclear dipoles mediated by the 

surrounding electrons. This interaction determines the multiplet splitting of 

NMR absorption lines in liquids and is independent of the value of the 

applied magnetic field. Because the indirect coupling is transmitted through 

the electron subsytem, it is very sensitive to many aspects of molecular 

electronic structure. 

The first theoretical interpretation for the mechanisms of indirect spin-

spin coupling was provided by Ramsey and Purcell [1,2]. Since then, a variety 

of quantum chemical methods have been applied to calculating the spin-spin 

coupling constants, and at present they can be computed at various levels of 

theory with most of the commonly available electronic structure codes. An 

extensive review by Helgaker, Jaszunski and Ruud [3] discusses the most 

important ab initio methods for calculation of indirect spin-spin coupling as 

well as the availability of those methods in different widely used quantum 

chemistry programs. 

Calculations of spin-spin coupling are usually carried out in the gas 

phase. However, the indirect coupling is of greater importance for NMR 

spectra in the liquid phase, and accounting for solvent effects presents a 
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major problem for theoretical study of magnetic properties. The most 

common approach to including solvent effects in calculation of spin-spin 

coupling is the supermolecule model, where some of the neighbouring solvent 

molecules are explicitly included in the calculation for the solute molecule. 

Because of the large size of the resulting system, most such calculations are 

restricted to the Hartree-Fock level [3]. Several recent theoretical studies also 

employed various continuum models of solvation, which describe the solvent 

by a surrounding dielectric medium [3-4]. There appears to be much need for 

using considerably more sophisticated methods for treating solvent effects on 

magnetic properties, which would match the increased accuracy of describing 

spin-spin coupling in the gas phase calculations. The Effective Fragment 

Potential (EFP) [5] method available in the quantum chemistry package 

GAMESS [6] is one such method, and coupling it with ab initio calculations of 

indirect spin-spin coupling would provide a valuable tool for studying 

solvation effects on molecular electronic structure. 

In this chapter, a modified derivation of the formalism for analytic 

calculation of indirect spin-spin coupling constants at the Hartree-Fock level 

of theory is presented in the form in which it is being coded in the electronic 

structure code GAMESS. The evaluation of specific one-electron integrals of 

spin-spin coupling operators is also discussed, as well as the problems related 

to incorporating the EFP model in the spin-spin coupling calculations. 

n. Spin-spin coupling constants - general theory 

The main features of the NMR spectrum can be adequately described 

by the solutions of the energy equation for a simple effective Hamiltonian, 

which can be written as 

MK(DKL + KKL)ML ( 1 ) 
K " K*L 
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where the nuclear magnetic moments MK are related to the nuclear spin 

operators IK as MK = YKMK. The nuclear gyromagnetic ratios Yk can also be 

expressed in terms of the nuclear g factors and the nuclear Bohr magnetons: 

Yifi — 8kPb- The first term in Eq. (1) describes the interaction of the applied 

magnetic field B  with the magnetic moment M K ,  and includes the nuclear 

magnetic shielding tensor Ok. The second term accounts for the spin-spin 

interaction, described by the classical dipolar interaction tensor DKL and the 

indirect spin-spin coupling tensors KKL. For rapidly rotating molecules in an 

isotropic medium, the direct spin-spin coupling constants DKL vanish after 

the rotational averaging of the spin Hamiltonian, and the entire spin-spin 

coupling is described by the reduced indirect spin-spin coupling constants 

^KL~~^r^KL- The isotropic spin-spin coupling Hamiltonian is then 

h%=\'LMkKklMl (2) 
K*L 

Note that in NMR experiments another form of spin-spin coupling constants is 

_  y  ̂  y  ̂ 
often used - the indirect spin-spin coupling tensors = & which 

K K 

explicitly depend on the gyromagnetic ratios of the interacting nuclei. 

In experimental work the values for the indirect spin-spin coupling 

constants are determined so that the spectrum of the effective Hamiltonian 

Eq. (1) coincides with the observed NMR spectrum. From the theoretical 

perspective, these constants are related to the derivatives of the molecular 

energy, obtainable from the electronic wave function. This relationship is best 

understood in the framework of perturbation theory. Indeed, the 

contribution to the total energy due to nuclear spin-spin interactions is very 

small, on the order of 10~13 a.u. [3], thus justifying the use of perturbation 
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approaches. Expand the electronic energy in the nuclear magnetic moments 

Mk around zero magnetic moments 

E(M) = £"" + £ ES'M, +1£ *£ »A (3) 

Here ~ 
dE(Af) 

dM t  

K K*L 

2 ,  

M=0 
and 

, and the higher order terms 
Af=0 

may be neglected due to the smallness of the perturbation. Comparing Eq.(3) 

with the effective Hamiltonian in Eq.(l), the second derivative of the energy 

Ei^)can be identified with the spin-spin coupling 

k ) ~ Dkl + Kkl (4) 

Thus, the spin-spin coupling constants can be calculated from second 

derivatives of the molecular energy with respect to the nuclear magnetic 

moments. In nondegenerate perturbation theory for a variational wave 

function, the first order expression for the second derivative of the electronic 

energy 

d2E(M) 

dMKdML 

d2H 

dMKdML 
% HI-

dH 

dMu 
 ̂ ?» dH 

dML 

n*0 E n ~ E 0  
(5) 

includes two terms: the expectation value of the second derivative of the 

molecular Hamiltonian H for the unperturbed ground state wave function 

and the sum of contributions from all excited states with energy £„. 

For magnetic derivatives, the second term is commonly referred to as the 

paramagnetic part, and the expectation-value term is known as the 

diamagnetic part. 

To obtain explicit expressions for the energy derivative, the first and 

dH 
the second order perturbation corrections to the Hamiltonian 

dMv 
and 
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d2H 
need to be derived. Consider the unperturbed molecular 

dMKdML 

Hamiltonian 

f iK 'iK Z K*L nKL * i*j 'ij 

The presence of nuclear magnetic moments results in several contributions to 

this standard Hamiltonian of molecular quantum mechanics. First, a term 

describing the direct interaction of the magnetic moments has to be 

introduced: • Second, each magnetic moment MK generates a 
K>L 

7 / ~*\ x 
magnetic field with vector potential —# 3 (where Of is the fine 

riK 

structure constant) and magnetic induction — V, X AK(/;). The total 

magnetic field created by magnetic moments of all nuclei in the molecule is 

the sum of contributions from each nucleus: 

À®=£4© S®=£»* ( * ;>  (? )  
K K 

This magnetic field interacts with magnetic moments of electrons, 

contributing —to the Hamiltonian, and with magnetic moments of 
1 

nuclei, contributing ~^MKB(rK). The magnetic moment of the electrons m, 
K 

is related to the electron spin operator as m, = —sh assuming that the electron 

g factor is equal to 2 and the Bohr magneton is 1/2 in atomic units. Finally, 

in the presence of a magnetic field the momentum operators have to be 

replaced by so called generalized' momentum operators, accounting for the 

gage invariance of the electron field: p, ^ = p.t + Â(ri) = -/V, + Â(fj). The 

resulting molecular electronic Hamiltonian may be written in atomic units as 
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«(AO 4K-.V, + À(r-,]2-1^41^41} 
^ i iK 'iK ^ K*L KKL Z «>/ 'ij 

( g )  
% M,D,A 

i JC AT>L 

To reveal the explicit dependence of the perturbed Hamiltonian Eq. (8) on the 

magnetic moments MK, the contributions to the magnetic induction 

x ^3—~j need to be evaluated. The mathematical details of 

calculating the curl of a singular vector field are presented in the Appendix. 

The resulting contribution to the total magnetic induction from the magnetic 

moment MK is 

BK(n) = -a2 4 (9) 
riK J 3 

where riKr£ is a second rank tensor formed from vector riK and transposed 

vector r£. 

dH d2H 
The perturbations ... and ... ... can now be obtained by 

differentiating the Hamiltonian Eq. (8) with respect to the nuclear magnetic 

moments MK. The first order correction is the hyperfine coupling operator 

H K ,  containing three distinct contributions : 

dH 

dMK 
= H?=hr+hlD+h£c (10) 

These contributions are the paramagnetic spin-orbit (PSO) operator 

du 
riK 

the spin-dipole (SD) operator 
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JlSP —^2 Y1 riKmi 3(mi rx)riK 
K 2—i „5 (12) 

I 

and the Fermi contact (FC) operator 

riK 

lfc Sk(X2 
s. . -

K =-3—2-ff(r*)m' (13) 

The PSO operator couples the nuclear magnetic moments to the orbital 

moments of the electrons (it is also known as the orbital hyperfine operator). 

The SD and FC operators couple the nuclear magnetic moments to the 

electron magnetic moments. In most systems, the FC interaction is the 

dominant mechanism of indirect spin-spin coupling. 

The second order interaction term is obtained by differentiating the 

Hamiltonian Eq. (8) twice with respect to the magnetic moments MK and ML 

at zero magnetic moments: 

eu» 

where hf£° is the diamagnetic electron operator 

Ldso _ ft2 y* (fx ' fr.) ~ .... 
nKL - J 2* r3_3 (15) 

i iK iL 

Before proceeding to the calculation of energy derivatives for RHF 

theory, it is important to note the effect of the magnetic operators on a single 

determinant closed-shell wave function. From the form of the operators in 

Eqs.(11-13) it follows that h^so\RHF> is an imaginary singlet, while 

h^D I RHF > and h^c | RHF >are real triplet wave functions. The triplet 

character of the SD and FC operators is due to the presence of the electron 

spin operator £,, related to the electron magnetic moment m, = —5,. As a 

result, these operators act differently on a and f) orbitals, creating a triplet 

contribution to the wave function. Thus, the first order magnetic 
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perturbation transforms a closed-shell HF wave function into a combination 

of imaginary singlet and real triplet wave functions. As a result, an RHF wave 

function is often not flexible enough to properly accommodate the effects of 

operators responsible for indirect spin-spin coupling. This problem is 

discussed further in chapter 4. 

HI. Evaluation of one-electron integrals 

It follows from Eqs. (11-13) and Eq.(15) that calculation of spin-spin 

coupling constants at any level of theory will require evaluation of four types 

of integrals with Gaussian functions. These are the PSO integrals 

<&(/;, a,) the SD integrals 

rix™i ~3(*w, • riK)fL 

rx 
®(ru\nj,lj,mj,aj)j the FC integrals 

{®(ru\n lJ l,m l,a /p(r iK)rh ifo(ru\nj,lj,mj,aj)) and the DSO integrals 

(f iKr iL)-f iK-rl 
Q{?a\nnl„mna,) 

rV i K i L  

H e r e  

| is the standard Cartesian Gaussian function 

I mK'® AT ) ~ XiK XxZ-iK 6XP(—'^K^iK) (16) 

centered at the nucleus K, and its angular momentum is given by the 

prefactor. For example, an s-function has (n/+Z/+m/) = 0, for a d-function 

(n, +/z + m/) = 2, etc. 

The calculation of FC integrals is trivial, involving only the evaluation 

of Gaussian functions centered on nuclei I and J at the position of nucleus K. 

The PSO integrals are evaluated using the Rys polynomials method [7] 

including a small modification of the scheme for calculating spin-orbit 

integrals, already implemented in GAMESS by Furlani [8]. 
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For evaluation of SD integrals, the method suggested by Vahtras et al. 

[9] is currently being implemented. The integrals are calculated in terms of 

field-gradient integrals using the McMurchie-Davidson scheme [10]. The field-

gradient integrals contain both SD and FC contributions [9] 

m (17) 

Therefore, the previously computed FC integrals have to be subtracted from 

the calculated field-gradient integrals to obtain the SD integrals. 

Evaluation of DSO integrals has been implemented in two different 

schemes. In a numerical method proposed by Matsuoka et al. [11], the second 

r r T  

J. iK it, part of the DSO operator 3 3 is transformed using the following relation: 
racriL 

~  J 0  '  &K ' XiK e x p ( — 1 =  J 0  d(XK • (XK • 0 ( ^  I  1 , 0 , 0 , a )  ( 1 8 )  

riK 
which can be applied to any components of For example, a similar 

-iK transformation of the operator ~~5~ results in an integral involving the pz-type 
riK 

Gaussian function 0(^x 10,0,1,Of). Applying this transformation to all 

'̂iK *̂iL components of both and —, the DSO integrals can be reduced to 
riL 

16 

riK 

iK *iL 
_3 3 
riK riL 

1>7 J = —j~[da • ' dai ' «5 < > (19) 

where <^1^k^>lO j> is a four-center overlap integral of four Gaussian 

functions, of which the middle two Gaussians are always of p-type. These 

four-center exchange intagrals are already available in the grid-free DFT 
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package in GAMESS. The integrals Eq. (19) are computed numerically, using 

the Gauss-Legendre quadrature [11]. 

However, the numerical integration approach, at least in our 

implementation, appears to be much slower than the direct evaluation of the 

DSO integrals using the resolution of the identity [12]. Using the converged 

HF molecular orbitals *Pvto expand the identity operator E = >< *PV|, 

components of the DSO operator can be written as 

*, 
XiK X i L ,  

3 3 
riK riL 

=Z(*,  
XiK 

4 
h, 
i (20) 

Since every 4^, is a linear combination of atomic Gaussian orbitals, the 

products ( iK 
_3 %) u *iL 

3 
iK / \ iL 

in Eq. (20) can be expressed in terms of 

integrals of Gaussian functions ($/ 
XiK 

-4 *AX*. 
rl 

), where the integrals 

<&. 
KiL 

riL 

), required in calculations of molecular polarizabilities, are 

available in GAMESS. The number of molecular orbitals ^ to be used in the 

expansion Eq. (20) is determined by comparing with the results of numerical 

integration. In principle, an expansion >< is exactly equal to the 
V 

identity operator only if the summation runs over a complete set of functions 

{¥„}. However, reasonable accuracy can be achieved with smaller sets of 

basis functions, although this brings in a certain dependence of the results on 

the number of functions used in the expansion. 
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IV. RHF spin-spin coupling constants 

As was mentioned above, the first order magnetic perturbations 

transform the RHF wave function into a combination of imaginary singlet and 

real triplet wave functions. Such transformations are more convenient to deal 

with using the formalism of second quantization, in which both the wave 

function and the perturbation operator are described uniformly in terms of 

singlet and triplet excitation operators. Using creation operators âpa, â*p and 

annihilation operators âpa, âpP associated with molecular spin-orbitals Ypa, 

we define the unitary group generators ÊM=âpaâqa+â+
ppâlP, which can 

also be interpreted as singlet excitation operators. The triplet excitation 

operators fw = {7^,7^,7^} in Cartesian form can be written as 

^-5(5^-5^) (21) 

t - K A > )  

Using the excitation operators and fM, the real and imaginary orbital 

rotation operators can now be defined [13]: 

Ê%=ÈK±È„, 12=%±% (22) 

Here the operators Ê~ and carry out real singlet and triplet rotations (y 

in the definition of triplet operators runs over the three Cartesian directions), 

while the operators i£^ and if£ are responsible for imaginary orbital 

rotations between molecular orbitals p and q. A completely general form of 

the orbital rotation operator [3] can now be written as 

' I  I  ' k ' A ~ ê » )  
p>q p>q y P>R Y P>1 

This operator is characterized by a set of parameters {} t'iat 

describe all possible rotations in the orbital space. Parameters**^ and 'ks
n 
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describe the real and imaginary singlet rotations respectively, while the 

parameters Rkr
n and 'k^ describe the real and imaginary triplet rotations. 

In standard HF theory, the RHF wave function is optimized by singlet 

real orbital rotations only, and therefore the general parametrizarion for this 

type of wave function can be written as 

where 's *e HP orbital rotation operator, and 112> is some 

single-determinant trial function. The choice of initial orbitals in the trial 

function |£2> is relatively arbitrary. One possible choice is to use the atomic 

basis functions, although this choice may result in slower convergence of the 

HF optimization. The parameters Rk'pq are found from variational optimization 

of RHF energy 

However, when the magnetic perturbation operators are introduced in the 

Hamiltonian, the full set of rotations must be present in the wave function 

perturbation exp(-£( l )) |  RHF >. 

* y«\ 
The first order magnetic perturbations HK (Eq. (10)) in second 

quantization formalism is expressed in terms of second-quantized PSO, SD 

and FC operators: 

\RHF(Km)> = exp(-5;X^)|n> (24) 

p>q 

Ehf =< RHF(Ki0)) I Hhf I RHF(t0)) > (25) 

(26) 
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«2 = + Âf° = 0«. + yX( f„(r) (27) 

Finally, the second order perturbation defined in Eq. (14), in second 

quantization is written as 

\ *Py,i' ,3r3 
pq \ iK iL 

Having defined the unperturbed HF wave function and the 

perturbation operators, it is possible now to formulate the analytic 

expressions for the energy derivatives. The standard perturbation expansion 

of the HF energy [3,14] to second order is 

£ (0)  =< HF | Hhf  I HF > 

E<»=<HF\H?\HF> , 28 )  

E% =< HF | H<„]' | H F > + < .H'T̂ HF > 

where the second derivative of the energy E™ has previously been identified 
A ... 

with the spin-spin coupling constant (Eq. (4)). The operator KL describes 

Pm _ M"" 
the first order correction to the HF wave function: **l — . 

dML 

Of the set of parameters characterizing the optimized 

HF wave function, only the subset of real singlet orbital rotation parameters 

{Rk'pq} is nonzero: £(0) = Y, Rkj„Èn„. However, due to the specific nature of the 
p>q 

magnetic perturbations, the first order perturbation correction to the HF 

wave function must include imaginary singlet and real triplet orbital 

rotations. The general form of the orbital rotation operator describing the 

perturbation to the RHF function due to the presence of nuclear magnetic 

moments is 
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In other words, even though all are equal to zero (after the HF 

optimization), some of them may have non-zero derivatives with respect to 

nuclear magnetic moments. 

The Hartree-Fock conditions in the zeroth and first order in 

perturbation theory can be written as [3] 

The summation in the second equation above runs over all orbital rotations 

j-pq. The zeroth-order condition for the unperturbed RHF wave function is 

also known as the Brillouin theorem. The first-order conditions (second 

equation) represent a set of linear equations for the first order perturbation 

correction to the wave function. They can also be interpreted as the first-

order response equations, discussed in chapter 4. 

Combining Eq. (4) with Eq. (28) for the second derivative of the HF 

energy, as well as with equations for the first and second order magnetic 

perturbations to the Hamiltonian Eqs. (26,27), we obtain the final expression 

for the indirect spin-spin coupling constants for RHF theory: 
i / i i  

>^3-
p>q dML 

< 3 , )  

r p>» dML 

Kkl =< HF\h°[° \HF>+Z< HffiÊ^hr\fiF ^ 
p>q 

Here we have taken into account that <is nonzero only in 

d'k* 
two instances: when H{^=h^so and J* or when 

p>q dML 

H1* — hl° + hlca n d k(
r
X) — T!• The perturbation correction J0̂ is 

r p>q 
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determined from the first order conditions Eq. (30), which can now be 

written as: 

Eqs. (31,32) comprise the complete set of equations necessary for the 

analytic evaluation of the indirect coupling constants. The response equations 

Eq. (32) are solved iteratively, starting from some non-zero trial vector 

the triplet equations is very poor. This can be attributed to the fact that only 

six out of the nine triplet equations are linearly independent [3]. A linear 

transformation of the triplet perturbation vector can be used to resolve this 

problem. Once the perturbation corrections to the wave function are 

calculated, computing the spin-spin coupling constants using Eq. (31) 

presents a relatively simple task. 

V. Solvent effects 

To understand various aspects of incorporating solvation effects into 

calculation of magnetic properties, it is convinent to classify these effects as 

direct or indirect [3], The direct effects result from the polarization of the 

electronic structure of the solute molecule by the surrounding solvent 

molecules. The indirect effects arise from changes in molecular geometry 

caused by the surrounding medium. 

Accounting for the indirect effects does not require any substantial 

modifications in the way magnetic properties are calculated. The changes in 

the molecular geometry caused by the solvent are described by the solvation 

current implementation in GAMESS, convergence for 
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model used, and the spin-spin coupling constants computed at this new 

geometry fully incorporate the indirect solvent effects on the spin-spin 

interaction. There are some indications that for systems where the indirect 

spin-spin coupling constant is dominated by the Fermi contact contribution, 

the indirect effects are significantly more important than the direct effects 

caused by solvent molecules [15]. 

Accounting for the direct effects presents a more complex problem. It 

follows from the form of the indirect spin-spin coupling constants in RHF 

theory Eq. (31), that the solvent polarization effects can affect these constants 

through two different channels. First, the matrix elements of the perturbation 

operators (e.g., < HF| hf£° |  HF>, < jj/ZF >, etc.) should be 

calculated with a wave function reflecting the polarization effects caused by 

the solvent molecules. This part of the direct effects is accounted for by the 

EFPmodel through the polarizability term [5]. The wave function modified by 

the solvent molecules in the EFP method is then used to compute the spin-

spin coupling, thus transferring some of the polarization effects to the 

coupling constants. Second, the polarization of the wave function of the 

solute by the solvent molecules also affects the perturbation correction to the 

dK orbital rotation operator AT(I) (with components in Eq. (31)). This 
dML 

operator is determined by the response equations Eq. (32). From these 

equations, it appears that the polarization effects are again limited to the 

changes in the zeroth-order HF wave function. It is therefore reasonable to 

expect that the bulk of the polarization effects on the spin-spin coupling will 

be accounted for if the unperturbed (by magnetic moments of the nuclei) HF 

wave function is calculated within the EFP model, and then used to calculate 

the coupling constants in the usual fashion. 
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VI. Conclusions 

This chapter presents a revised formalism for analytic evaluation of 

indirect spin-spin coupling constants for RHF theory, in the form in which it 

is being implemented in the electronic structure code GAMESS. Our ultimate 

goal is to take advantage of the relatively sophisticated EFP method for 

treating solvent effects, already available in GAMESS, to analyze and 

understand how the surrounding solvent molecules affect the indirect spin-

spin interactions. A considerable part of the solvent effects: the indirect 

effects due to changes in molecular geometry and the direct effects of 

polarization of the electronic structure caused by the solvent, can be included 

in the indirect spin-spin coupling calculations by using the HF wave function 

obtained from the EFP model to calculate the coupling constants. 
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Abstract 

The reliability of spin polarization method results for atomic spin 

densities, obtained with several widely used Gaussian basis sets, is examined 

by comparison with the results of full configuration interaction (FCI) 

calculations. The spin densities obtained with these basis sets using the spin 

polarization model and some other methods disagree with the FCI 

treatment. Since the FCI wave function is exact for a given basis, it is not 

clear that the spin polarization model will be generally reliable. A large 

active space multi-configurational (CASSCF) calculation is shown to be 

inadequate as an alternative to FCI treatment. The importance of 

accounting at least to some extent for excitations to all orbitals in the 

complete space of basis functions is illustrated by very slow convergence of 

CASSCF results with increasing size of active space. The FCI results reported 

here can be used as benchmarks to test various approaches to spin density 

calculation. 
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1. Introduction 

Electronic spin density at the positions of the nuclei determines the 

isotropic part of the interaction between the magnetic moments of the 

electron and the nuclei, also referred to as the Fermi contact interaction. 

Since this interaction is experimentally observable in electron paramagnetic 

resonance spectroscopy (EPS) as an isotropic hyperfine coupling constant 

(hfcc), calculation of the spin density at the nuclei is an important problem 

for electronic structure methods. It is also a difficult problem, because 

unlike most other electronic properties such as dipole moments, 

polarizabilities, etc. the hfcc's are determined by the amplitude of the wave 

function at a single point in space. However, in most quantum chemistry 

methods the wave function is found by optimization based on some global 

energy criterion. As a result, a variationally very good wave function may 

have significant error at some particular point in space. 

The local character of the hfcc's makes the calculation very sensitive 

to the quality and size of the atomic basis. This sensitivity becomes extreme 

for systems in which unpaired electrons do not contribute directly to the 

spin density at the nuclei. For example, the unpaired electron in the ground 

state of boron atom occupies a p orbital having a node at the position of 

the nucleus, and thus cannot contribute directly to the spin density at the 

nucleus. The remaining s electrons do have non-zero density at the 

nucleus, but they all are paired. In this case the restricted open shell 

Hartree-Fock (ROHF) method predicts a value of zero for the isotropic hfcc, 

while experimentally it is equal to 12 MHz. This non-zero value is due to 

spin polarization contributions, resulting from nominally paired electrons 

having different exchange interactions with the unpaired electrons. A great 

number of open-shell radicals with an unpaired electron in a ic-type orbital 

belong to this class of systems. This most difficult and arguably the most 

interesting case is the only type of hfcc calculations we will be concerned 

with here. 



29 

One way to describe the spin polarization effects is to use a spin-

unrestricted Hartree-Fock wave function (UHF). The semiempirical INDO 

method, based on the UHF wave function, in many instances gives 

quantitative agreement with experiment [1], A variety of ab-initio methods 

using UHF wave functions have been used to calculate hfcc's, sometimes 

giving very accurate results. Some of the methods included electron 

correlation, e.g. MBPT(4) [2], CCSD [2], QCISD [3]. The UHF-based methods 

also provide a physical explanation for often observed negative spin 

densities. However, the problem of spin contamination makes the use of 

any spin-unrestricted methods suspect, even if those methods include some 

procedures to remove the contamination (PUHF [4], UHF-AA [5]). 

Another approach to describing the spin polarization effects requires 

construction of a multi-determinant wave function, to include all 

excitations accounting for orbital and spin polarization of s, p and 

sometimes d shells. This spin polarization' wave function is then optimized 

using some kind of MCSCF or CI procedures. An extensive review of the spin 

polarization method can be found in reference [6]. One important feature 

of this approach is the incomplete character of the wave function. 

Including into the wave function only those configurations which appear to 

be important according to a very simple physical picture of the 

phenomenon greatly simplifies the calculations; it also seems to allow a 

better understanding of the roles of different contributions to hfcc's. The 

latter problem has been a subject of thorough analysis, since it is relevant 

not only in the context of the spin polarization model, but also for various 

levels of CI treatment. In fact, the spin-polarized MCSCF (SP-MCSCF) and 

various CI methods alike take advantage of the idea that only some 

particular excitations are responsible for the spin density at the nucleus, 

while a great number of other configurations are unimportant in this 

respect and can be omitted from the wave function. A detailed discussion of 

the influence of various CI excitation classes on hfcc's can be found in 
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references [7,8], while references [6,9] deal with the same problem with 

respect to the SP-MCSCF approach. It should be noted that unlike the UHF 

treatment of spin polarization, all multi-determinant based methods 

account to some extent for true electron correlation effects, which are found 

to be significant for accurate description of hfcc's. 

Unfortunately, many conclusions made regarding the role of various 

contributions to the spin density appear to be very much basis set 

dependent. When Gaussian basis sets are used for hfcc calculations, 

additional difficulty arises due to the fact that Gaussian functions, having 

zero radial slope at the nucleus, are unable to satisfy the correct cusp 

condition associated with the singularity of the Coulomb potential at the 

nucleus [10]. Slater-type orbitals, on the other hand, do have a cusp and 

can satisfy the cusp condition. However, using Slater-type orbitals (STO) 

instead of Gaussians for hfcc calculations, as suggested in reference [11] is 

generally not convenient, since most quantum chemistry programs 

currently available use Gaussian basis sets. Another approach, developed in 

reference [12] suggests expanding an STO basis set in Gaussian functions, 

calculating the wave functions with GTO's and then replacing the Gaussians 

with the corresponding STO's for the single purpose of hfcc evaluation, 

assuming no change in the expansion coefficients. This method, although 

quite effective, limits the choice of basis sets to be used in calculations to 

only those sets, for which STO-GTO conversion is available. The deficiency of 

Gaussian functions, on the other hand, does not necessarily make them 

unsuitable for hfcc calculations. In many simple cases, if the bulk of the 

spin density at the nucleus comes from an unpaired electron and the total 

value is relatively large, even small Gaussian basis sets do reproduce the 

experimental values for hfcc's. It has been shown that with very large 

Gaussian basis sets high accuracy can also be achieved for the most difficult 

systems, like a nitrogen atom [13]. 



31 

An entirely different approach, initially suggested by Hiller, Sucher 

and Feinberg (HSF) [14] for the charge density, and later developed by 

Harriman [15] for spin density, substitutes a global operator for the local 

delta function type operator, thus avoiding most of the problems discussed 

above. With the recent development of HSF formalism to a more general 

class of global operators [16], this approach allows one to calculate hfcc's 

with high accuracy. Another advantage of this method is that unlike S 

function based approaches it always gives better values for hfcc's as the 

wave function is variationally improved. 

In view of the previous discussion, it is understandable that the 

choice of a method and a basis set for hfcc calculations can be a very 

confusing problem. There are numerous examples for which a particular CI 

expansion used together with some particular Gaussian basis set 

systematically give quite accurate values for hfcc's, whereas including more 

CI configurations into the wave function or using a larger basis set destroys 

the good agreement with experiment. For instance, a single excitations CI (S-

CI) often gives very accurate hfcc's, but adding double excitations (SD-CI) 

leads to much poorer results [17]. A number of studies observed 

deterioration of results when larger and more flexible basis sets were used 

with the same computational method [11,12,17]. Several other examples of 

such paradoxical' behavior will be given in the present paper. 

One possible way to analyze this problem is to separate the two main 

var i ab les  de te rmin ing  the  accuracy  o f  h fcc  ca lcu la t ions  -  the  s i ze  and  

flexibility of the basis set and the number and type of excitations to be 

included in the wave function. Since a full CI (FCI) calculation gives an 

exact wave function for a given basis set, the accuracy of hfcc's obtained by 

a FCI treatment reflects only the suitability of the basis set used in 

calculations, and not the sufficiency of the level of electron correlation. The 

suitability of various Gaussian basis sets for hfcc calculations has been a 

topic of several studies, with FCI calibration' calculations used as an 
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ultimate test [6,7,13]. Two of these works [7,13] address the nitrogen atom. 

Several Gaussian basis sets demonstrated to be inadequate for spin density 

calculations for N, however, are shown to perform well for other systems [6]. 

Among the first row atoms, nitrogen is perhaps the easiest system for spin 

density calculations (although it is much more difficult than most 

molecules). 

In this work we calculate the FCI limit for hfcc's of the boron and 

carbon atom ground states, using a Gaussian basis set designed specifically 

for the purpose of spin density calculations [18]. The results in reference 

[18] are based entirely on the spin polarization model. Having the exact 

(FCI) spin densities allows us to place this method in perspective with 

regard to the suitability of various basis sets for hfcc calculations, and also 

provides one with a good benchmark for testing different approaches for 

these very difficult systems. The experimental values for boron and carbon 

are not well established [19]. Therefore, despite the deficiencies of our FCI 

results due to incompleteness of the basis sets used, they are nevertheless 

the best results currently available for these basis sets and as such can be 

used to test less computationally expensive methods. 

2. Computational methods 

In this work all calculations were performed using the GAMESS 

program [20]. The Gaussian basis sets used in the present work are those 

developed by Chipman [18]. These basis sets are various segmented 

contractions, suggested by Dunning [21], of the commonly used (9s5p) 

primitive Gaussian basis set of Huzinaga [22]. The changes suggested by 

Chipman include uncontracting the outer member of the innermost 

contraction and adding diffuse s and p functions and one or more d 

functions. For comparison, calculations were also done with the original 

Dunning basis sets, with and without diffuse sp and d polarization 

functions. A complete list of all basis sets employed in our calculations is 
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given in Table 1. The diffuse sp exponents used in all basis sets are (.0330 s, 

.0226 p) for boron and (.0479 s, .0358 p) for carbon. When only one set of d 

polarization functions is added to basis sets, its exponent is .32 for boron 

and .51 for carbon. When two sets of d functions are added, the exponents 

are (.1600, .6400) for boron and (.2800, 1.1200) for carbon. 

It should be noted that Chipman's basis sets use 5-component 

spherical d functions instead of the 6 Cartesian components, and therefore 

all calculations were done with spherical functions. Using Cartesian d 

functions changes results significantly, since they essentially add an extra s 

function to the basis set. 

Full CI calculations with the basis sets discussed above result in CI 

expansions containing millions of determinants and were greatly facilitated 

by  us ing  a  ve ry  f a s t  de t e rminan t -based  CI  code  wr i t t en  by  Ivan ic  and  

Ruedenberg [23]. 

Since electronic ground states of B and C atoms are 2P and 3P 

respectively, in all complete active space self-consistent field (CASSCF) 

calculations reported in this work, the electron density was averaged over 

all degenerate states, to ensure that the resulting wave function was a true 

Z? (angular momentum) eigenfunction. 

3. Results and discussion 

As noted in the Introduction, FCI provides the ultimate test of the 

suitability of an atomic orbital (AO) basis set for spin density calculations. 

FCI spin densities are essentially of benchmarking value; if any other 

method gives better results for spin densities using the same basis set, these 

results are likely to be due to fortuitous cancellation of errors. In this work 

we report FCI spin densities in boron and carbon atoms, obtained with 

several basis sets commonly used for spin density calculations. Table 2 

contains total energies and spin densities for boron, Table 3 presents the 

same data for carbon. The best available experimental spin densities are 
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0.0081 for boron [24] and 0.0173 for carbon [25]. Our choice of Chipman's 

Gaussian basis sets for this study was prompted by the illustration [18,26] 

that these basis sets are capable of providing a reasonably good description 

of Fermi contact spin densities. The last column of the tables gives the spin 

dens i ty  ob ta ined  by  Ch ipman  [18]  us ing  the  co r respond ing  bas i s  se t s  and  

the spin polarization MCSCF model discussed above. 

For each basis set studied, adding diffuse sp functions and then one 

or two d functions results in a continuous increase of the spin density at 

the nucleus. All sequences appear to converge to values considerably 

d i f f e ren t  f rom the  exper imen ta l  sp in  dens i t i e s ,  even  in  the  case  o f  t he  

[6s,3p]+sp+dd basis set specifically designed for spin density calculations. 

For  ca rbon ,  even  wi th  a  s ing le  d  func t ion  FCI  cons ide rab ly  ove res t ima tes  t he  

cor rec t  va lue  fo r  the  sp in  dens i ty .  I t  i s  r easonab le  to  expec t  [13 ,18]  t ha t  

adding the second and then the third d function to the basis set would 

further increase the spin density, thus making the results even less accurate. 

The results of spin polarization calculations apparently do not agree 

well with the FCI limit, and there appears to be no systematic dependence 

on the way in which the results of these two methods differ. This would 

suggest that the spin polarization model overlooks some excitations that are 

impor tan t  fo r  a  co r rec t  desc r ip t ion  o f  the  sp in  dens i ty  a t  t he  nuc le i .  On  t he  

o the r  hand ,  t he  h igh ly  unsa t i s f ac to ry  r e su l t s  o f  FCI  ca lcu la t ions  sugges t  t ha t  

the basis sets considered here are inadequate for the task; therefore, spin 

density obtained with these basis sets must be considered suspect. Since 

these  bas i s  s e t s  approach  the  accuracy  o f  a  comple te  bas i s  s e t  wi th in  t he  

spin polarization model [18], the current results illustrate the inadequacy 

of this level of theory. 

One alternative to FCI is a smaller CI expansion. For nitrogen atom, 

which is a much simpler system with respect to spin density calculations 

than  boron  o r  ca rbon  [19 ,27] ,  i t  was  demons t ra t ed  tha t  a t  l eas t  quadrup le  

exc i t a t ions  a re  r equ i red  i f  a  s ing le  r e fe rence  wave  func t ion  i s  u sed .  A  mul t i -
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reference CI wave function based on a relatively small CASSCF reference 

function predicts a N spin density that is very close to FCI [13,28]. There is 

a number of studies of the relative roles of single, double, triple and higher 

excitations available in literature [7,8]. In this work we take a different 

approach and investigate the convergence of spin density with increasing 

size of the CASSCF active space. In other words, instead of including a 

limited number of excitations within the space spanned by all basis 

func t ions ,  we  inc lude  a l l  exc i t a t ions  wi th in  a  sma l l e r  space ,  and  t hen  

gradually increase the size of that active space, up to FCI. It should be 

emphas ized  tha t  we  use  a  comple te  ac t ive  space  wave  func t ion ,  wh ich  

inc ludes  a l l  exc i t a t ions  wi th in  the  ac t ive  space .  Th i s  i s  qu i t e  d i f f e ren t  f rom 

the  sp in  po la r i za t ion  MCSCF wave  func t ion ,  wh ich  inc ludes  on ly  a  l imi t ed  

number of spin polarization configurations. The results of these CASSCF-

based calculations for the [5's,2p]+sp +d (d exponent 0.40) basis set are given 

in Table 4. 

As can be seen from the table, the convergence of the spin density is 

very slow; the CASSCF value for an active space which is only three orbitals 

short of the full space is still 20% off the FCI value. It appears that at least 

some excitations to orbitals of very high orbital momentum should be 

inc luded  in  the  wavefunc t ion  [29] ,  and  the re fo re  we  a re  fo rced  to  conc lude  

that CASSCF calculations probably can not be used as a substitute for FCI. 

4. Conclusions 

It appears that the basis sets studied in this work are largely 

inadequate for calculation of spin densities at the nuclei, at least in case of 

boron  and  ca rbon  a toms .  The  re su l t s  ob ta ined  wi th  these  bas i s  s e t s  u s ing  

the spin polarization model and some other methods disagree with the FCI 

t r ea tmen t .  S ince  the  FCI  wave  func t ion  i s  exac t  fo r  a  g iven  bas i s ,  i t  i s  no t  

clear that the spin polarization model will be generally reliable. It is 

unlikely that a method that does not account at least to some extent for 
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excitations to all orbitals in the complete space of basis functions would be 

successful in correctly describing atomic spin densities at the nuclei. 

Inc lud ing  exc i t a t ions  wi th in  on ly  a  subspace  o f  the  comple te  space  i s  no t  

sufficient, even if all such excitations are included. This is illustrated by 

very slow convergence of CASSCF results with increasing size of active space. 

The FCI results reported in this work can be used as benchmarks to test 

various approaches to spin density calculation. 
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Table 1. Gaussian basis sets used for spin density calculations 

in boron and carbon atoms. 

Basis set Reference 

[4s,2p], [5s,3p] [21] 

[4s,2p], [5s,3p] + diffsp, 

[4s,2p], [5s,3p] + diff sp + d [18] 

[5s',2p], [6s,3p] [18] 

[5s',2p]# [6s,3p] + diff sp + d, 

[5s',2p], [6s3p] + diff sp + dd [18] 
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Table 2. Full CI spin density of boron atom 

calculated with various basis sets. 

Total energy 
(a.u.) 
(FO) 

Spin density (a.u.) 
(FCI) 

Spin density 
(a.u.) 

(SP MCSCF)1 

[4s»2p] -24.582402 -.0008180 -.0019 

[4s,2p]+sp -24.582889 -.0005524 

[4s,2p ]+sp+d -24.603558 .0163919 

[4s,2p ]+sp+dd -24.606311 .0190476 

[5's,2p]2 -24.583794 -.0128072 

[5's,2p]+sp -24.584257 -.0098031 -.0079 

[5's,2p]+sp+d -24.604987 .0091495 

[5's,2p]+sp+dd -24.607736 .0112065 

[5s,3p] -24.587073 .0094219 .0133 

[5s,3p]+sp -24.587435 .0091669 .0132 

[5s,3p]+sp+d -24.608220 .0268019 

[5s,3p]+sp+d<i -24.611127 .0290120 

[6s,3p] -24.589024 -.0214443 

[6s3p]+sp -24.589309 -.0172626 -.0079 

[6s,3p]+sp+d -24.610144 .0041297 .0140 

[6s,3p ]+sp+dd -24.613042 .0055280 .0143 

1 Spin polarization MCSCF results [18] 
2 Notation introduces by Chipman and described in reference [18] 



40 

Table 3. Full G spin density of carbon atom 

calculated with various basis sets. 

Total energy 
(a.u.) 
(FCI) 

Spin density (a.u.) 
(FCI) 

Spin density 
(a.u.) 

(SP MCSCF) 

[5's,2p] -37.738055 .0014321 

[5's,2p]+s p -37.739280 .0163082 .0012 

[5's,2p]+sp+d -37.778178 .0359382 

[5's,2p ]+sp+dd -37.784688 .0415749 

[5s3p] -37.744352 .0692087 .0331 

[5s3p]+sp -37.745363 .0749169 .0340 

[5s,3p]+sp+</ -37.784815 .0935047 

[5s,3p ]+sp+dd i 

[6s3p] -37.746956 -.0235588 

[6s,3p]+sp -37.747824 -.0041899 .0018 

[6s,3p]+sp+d -37.787278 .0234380 .0198 

[6s,3p ]+sp+dd .0212 

1 Too large to permit FCI calculations 
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Table 4. Convergence of CASSCF spin density with increasing size 

of active space: from small CASSCF to full CI (all electrons included) 

EfCASSCF) Spin Density 

MCSCF(9) 
Is2s2p3s3p 

-24.570213 .0451845 

MCSCF(13) 
Is2s2p3s3p4p4s 

-24.583678 -.0132546 

MCSCF(14) 
Is2s2p3s3p4p4s5s 

-24.584180 -.0099208 

MCSCF(15) 
[Is2s2p]3s3p4s3d 

-24.604076 -.0056539 

MCSCF(18) 
Is2s2p3s3p4p4s3d 

-24.604223 -.0057322 

MCSCF(19) 
Is2s2p3s3p4p4s3d5s 

-24.604663 -.0011207 

FCI=MCSCF(22) 
Is2s2p3s3p4p4s3d5s6p 

-24.604715 -.0009381 
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CHAPTER 4: MCQDPT HYPERFINE COUPLING TENSOR 

A paper to be submitted for publication to 

Journal of Chemical Physics 

Michael V. Pak and Mark S. Gordon 

1. Introduction 

There are two main reasons why multi-reference methods are crucial 

for calculating spin-spin coupling. First, as was discussed in chapter 2, single-

reference methods can be very unreliable for calculating the spin-spin 

coupling constants, due to the triplet nature of perturbing operators [1], In 

general, for molecules without multiple bonds or lone pairs the spin-spin 

coupling constants can be calculated with reasonable accuracy with Hartree-

Fock based methods, while single-reference calculations of coupling to nuclei 

with lone pairs can be in error by orders of magnitude [1-3]. In principle, this 

particular problem can be dealt with by using a UHF wave function, which 

usually contains some contributions from the triplet and higher spin states. 

However, systems involving degenerate or nearly degenerate configurations 

cannot be adequately studied with any single-reference methods, including 

UHF [4]. The MCSCF wave function is much better suited for describing 

systems in which non-dynamic correlation is important. The MCSCF wave 

function is also flexible enough to properly accommodate the effects of 

operators responsible for indirect spin-spin coupling [1]. However, it is 

important to recall that while MCSCF is a generalization of Hartree-Fock 

theory for systems that are not well described by a single configuration, it 
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does not account for dynamic correlation effects. At present, analytic 

calculation of spin-spin coupling is available for MCSCF theory itself [5], but 

not to our knowledge for any MCSCF based methods that include dynamic 

correlation. 

Direct analytic calculation of spin-spin coupling constants for MCQDPT 

theory appears to be prohibitively difficult. Since MCQDPT theory is not 

variational, calculating even the first derivatives of the MCQDPT energy 

requires evaluation of the responses of the MCQDPT wave function. However, 

even deriving the response equations is very complicated due to the specific 

nature of some of the MCQDPT optimization parameters, such as the energy 

shifts and the MCQDPT orbital energies discussed below. If the response 

function formalism is used, solving response equations is not necessary for 

the first derivatives, but is required for the spin-spin coupling constants, 

which are the second derivatives of the energy with respect to the magnetic 

moments. A combined analytical - numerical approach seems to be more 

practical. In this approach, the first derivatives of the MCQDPT energy with 

respect to the nuclear magnetic moments (hyperfine coupling tensors) are 

calculated analytically, using the variational Lagrangian technique described 

below. These gradients can then be numerically differentiated to obtain the 

spin-spin coupling constants. A similar approach is frequently used in 

electronic structure codes for calculating numerical Hessians by numerical 

differentiation of analytic energy gradients. 

In this chapter, a derivation of the analytic gradient with respect the 

nuclear magnetic moments for MCQDPT theory is presented. This derivation 

is original, although the first half follows closely the derivation of the only 

other kind of analytic gradients available for MCQDPT theory - with respect 

to nuclear coordinates, developed by Nakano, Hirao and Gordon [6,7]. 
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2. Derivatives for non-variational wave functions 

The difficulty of calculating magnetic and other properties for MCQDPT 

theory lies in the non-variational character of the MCQDPT energy. This can 

be illustrated by the following example. Consider the hyperfine coupling 

tensor 

A"=̂ k ( 1 )  

For simplicity, we ignore the details of the parametrization of the electronic 

energy E and write the energy functions as E(M,X), where M represents the 

nuclear magnetic moments and X={Xj} is the set of all parameters that 

determine the wave function. The gradient of the electronic energy with 

respect to the magnetic moment of nucleus K, calculated for variationally 

optimal values of the electronic parameters X=X* is 

dE(M,X) _ f8E(Af, A) ( y 9£(M,A) 9A, 1 
<#f, [ mK r dA, àM,Jj-r 

If the electronic energy is fully variational with respect to all the optimization 

parameters X, the optimized energy satisfies the variational condition 

mm,-
for all values of the nuclear magnetic moments M, and the hyperfine coupling 

tensor does not depend on the response of the optimization parameters 

dX/d Mk: 

T d£(A/,A") 
1,~L~55T~ 1=0 

A r =  ' . V  ( 4 )  

The expressions for second order properties, such as spin-spin coupling 

constants, are also simplified greatly if the variational condition (3) is 

satisfied. 
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However, if the parameters X are not determined variationally, the 

condition Eq.(3) is not satisfied, and one needs to evaluate the responses of 

the wave function even for first order properties. Obtaining these responses 

also becomes a much more difficult task, since one can no longer rely on the 

variational condition Eq. (3) to derive the response equations. To deal with 

these problems, it was suggested by Helgaker and J0rgensen [8,9] to apply 

Lagrange's method of undetermined multipliers and to introduce an energy 

functional which would give the same energy as the standard energy function 

and yet be fully variational. 

In non-variational methods, the optimization parameters X are 

determined not from the variational condition Eq.(3) but from some set of 

equations f(X)=0, and then the optimized values X*p, are used to calculate the 

electronic energy E(Xopt). A variational functional (Lagrangian) can be 

constructed by introducing an additional set of optimization parameters g, 

including one parameter for each of the optimization conditions f(X)=0: 

UX,n) = E(X) + ttfm (5) 

This Lagrangian is variational with respect to the new parameters g. In fact, 

the variational conditions for the Lagrangian with respect to the n's are 

identical to the set of equations f(X)=0, from which the optimal values of 

parameters X are determined: 

BLM=fa) = Q 

Bn 

On the other hand, the parameters g are arbitrary, since for the optimized 

values of X=X*p, the last term in Eq. (5) vanishes, and L(X*p„n) = E(Xopl) for any 

value of g. Thus, it is possible to make the Lagrangian fully variational in both 

sets of parameters X and \i by imposing a constraining condition on the g's: 
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BUX, M) dE(X) df(X)_Q 

dA 9A dA 
(7 )  

The set of equations (7) represents variational conditions for the Lagrangian 

with respect to parameters X. However, it should be emphasized that by 

solving Eq. (7) the optimal values HoP, of parameters g are found, while the 

optimal values of parameters X are found from variational conditions of the 

Lagrangian with respect to the n's Eq. (6). If parameters X are determined 

from Eq. (6), and parameters g - from Eq. (7), the Lagrangian yields the same 

energy as the original energy functional E(X), and at the same time it is 

variational with respect to all optimization parameters: 

This Lagrangian can now be used in place of the original energy functional to 

calculate various energy derivatives through the standard response function 

formalism. 

3. MCQDPT magnetic gradients - general strategy 

Consider the main steps involved in calculating the hyperfine coupling 

tensors analytically. First, a variational functional is constructed, which 

requires identifying all of the optimization parameters in the energy 

expression and the corresponding equations for these parameters. The 

Lagrange multipliers are determined by solving the variational equations (7). 

Since these equations are solved for zero magnetic moments, it is not 

necessary to include in the energy function E the perturbation due to the 

presence of the nuclear magnetic moments M at this stage: 

UKpt^op,) - E(Kpt) 
dL(X,n) = 0 

dA 
dL01£) = o 

d/t 

(8)  
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d£(Af,A,/i) 
( 8 )  

jK=0 OA OA (/A dA 

As a result, the set of equations (8) is identical to the set of equations used in 

ref. [6] for MCQDPT gradients with respect to nuclear coordinates. However, 

not all of the equations (8) need to be solved, because not all of the 

Lagrangian multipliers are necessary for calculating the magnetic gradients: 

dl(M,A ,̂,%*,)| p£(A/,A,/i) | d£(Af,A,M) 9A | dL(M,A,/Q dp j 
=Af 

Af=0 
dMK  |M=0 [ dMK  dA dMK  d/x dAf* 

"=0 (9) 
JdLjMXu)] fd£(A/,A) d/(M,A)l 

L dA/* L dAf*  ̂
M=0 M=0 

Indeed, if some of the constraining conditions f(M, X) in Eq.(9) do not depend 

explicitly on the nuclear magnetic moments, their derivatives with respect to 

Mic are equal to zero, and we don't need the corresponding Lagrange 

multipliers g to calculate the gradient. 

The next step involves calculating the derivatives of the optimization 

equations f(M, X) and the energy function E(M, X) with respect to the nuclear 

magnetic moments. It should be noted that we only need the derivatives of 

those optimization equations that correspond to non-zero Lagrange 

multipliers. If some Lagrange multipliers g associated with constraining 

conditions f(M, X) happen to be equal to zero, the corresponding 

contributions to the derivative of the Lagrangian in Eq.(9) are also 
omk 

automatically equal to zero, and hence the derivatives of those particular 

constraining conditions d/(A/,A) nee(j not %e calculated. Finally, the gradients 
oMk 

are computed using these derivatives and the Lagrange multipliers obtained 

from variational conditions Eq. (8). 
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4. MCQDPT Lagrangian 

All derivations in this Section and Section 5 are analogous to the results 

of Nakano, Hirao and Gordon [6]. The MCQDPT total energy to second order 

can be written as 

£=Ed«d»<"#)*'I£5 do) 
afi a 

where H^ is the effective Hamiltonian and D„ are elements of the eigenvectors 

which diagonalize it. The effective Hamiltonian is given by 

where the sum is over the set of all singly and doubly excited configurations 

K from the reference configurations in the complete active space (CAS). The 

vectors |a> and |p> are CASSCF eigenfunctions. As was mentioned earlier, the 

Hamiltonian operator H does not contain any contributions from nuclear 

magnetic moments at this stage. The perturbation operator V of the MCQDPT 

theory [10-11] in second-quantized form is 

f -fA,#. (12) 
2 pq W* 

where Epq are unitary group generators defined in terms of the creation 

operators a*at apP and annihilation operators apa, apP associated with 

molecular orbitals p, 4 with spins a,f): 

(13> 

and hpq=(p\h\q) are the elements of the one-electron Hamiltonian matrix in 

the molecular orbital basis. The orbital energies e p  in the MCQDPT theory 

are uniquely defined by orbital canonicalization, and are important 

parameters of the MCQDPT perturbation operator. In the two-electron part of 

the perturbation, Epq„ = EpqEn-5qrEps, and (pq\rs) are the four index matrix 
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e l e m e n t s  o f  t h e  e l e c t r o n - e l e c t r o n  r e p u l s i o n  

(Pq\rs) = jjdrldr2(p'p(rl)qfr(r2)—<pq(rl)<pj(r1). Using the relations [6] 
r\i 

= E„,rsEu - (14) 

and introducing the one-electron perturbation operator v with matrix 

elements defined as (p\v\q) = (p\h\q)-epSp<i, an expanded expression for the 

effective Hamiltonian can be written: 

L l«.8 «• £e-£q +A£|te 

,  1  y  ( p a  I  r b ) ( a q  |  b s )  1 

2 (a,6) - e, + A£fla J 

(15)  

In Eq.(15), B refers to a configuration state function (CSF) in the CASSCF wave 

function and CB(P) is a CASSCF CI coefficient for the CSF B in state p. Active 

orbitals have indices p,q,r,s,t,u and the virtual orbitals are indicated by 

indices e,f. Indices a,b refer to both active and virtual orbitals, but a and b 

cannot both be virtual orbitals simultaneously. The energy shift AEBa is the 

difference between the energies of the MCSCF state a and CSF B. 

The optimization parameters in MCQDPT theory are the molecular 

orbital coefficients, MCSCF orbital energies (uniquely defined by orbital 

canonicalization) and MCSCF CI coefficients. These parameters are 

determined by the MCSCF orbital canonicalization conditions, which are used 

as constraining conditions to build the MCQDPT Lagrangian. Following 
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Nakano et al. [6], the equations for the optimization parameters are listed 

here in the order they are determined in the MCQDPT calculation. 

First, the CI and molecular orbital coefficients are found by solving the 

MCSCF equations. The CI coefficients for the MCSCF state a are determined 

from the MCSCF Hamiltonian diagonalization 

%(%u, - a„E™(a))C,(a) = 0; %C/«z) = l (16) 
B B 

The variational conditions for the molecular orbital coefficients can be 

written as symmetry conditions Xpq = Xqp for the state-averaged matrix X 

defined as 

= ̂ œia)Xn(a) = £<o(aJ <a|£„ |a> +\^(pi\jk)<a\ Eqi jk |a > 
a a L ' '/* 

(17) 

where <o(a)is the weight of the MCSCF state a. Using pure state MCSCF wave 

function somewhat simplifies the derivation. However, if the MCSCF states are 

degenerate, averaging over several MCSCF states can be important for 

calculation of molecular properties, and thus for generality a state-averaged 

MCSCF wave function is used in this work. 

The orthonormality conditions for the molecular orbitals (p \q )  =  8 p q  

implied in the MCSCF orbital optimization, have to be included in the 

Lagrangian explicitly. 

The MCSCF optimization determines molecular orbitals not uniquely, 

but up to arbitrary rotations within either the doubly occupied, active or 

virtual orbital subspaces. The MCQDPT energy is not invariant with respect to 

such rotations, and this rotational freedom of MCSCF orbitals has to be 

removed by orbital canonicalization, which can be thought of as the 

diagonalization of the MCSCF Fock matrix. The canonicalization conditions 

also uniquely define the orbital energies used in the MCQDPT energy 

functional. These conditions can be written as 
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fpr ~ epsp« =  ( P I A  k ) + X  I  « )  -  ̂(pr  |s<?)]- epSM =0 (18) 
n * 

Here DAve is the state averaged density matrix 

Z£" = 5/o(a)<a|E,Ja> (19) 
a 

and each block (doubly occupied, active and external) of the Fock matrix FN 

is diagonalized separately. 

The last set of MCQDPT optimization parameters comes from 

diagonalization of the effective Hamiltonian 

£(("„>«,-V>D»=°; 2>„2=i (20) 
P a 

Introducing one Lagrange multiplier jL for each of the constraining 

conditions described above, one can write the MCQDPT Lagrangian as 

t=flD-0/^r)-»/I^|+[EZ''âiafl(y«-5A,£c"(«))C„(a)} 
| aft a J L <* A I B J 

+5>œ{lC>)-l}+ J "*«.} + I HZsm{F„-eA} (2D 
a LA J p>qeO piqeD 

+X/c»{(p 19>-6„}+X/q£(*y,A 
piq a L 0 J L a J 

Here the summation over p>qeO means that orbitals p and q are in 

different orbital subspaces (doubly occupied, active or virtual), and the sum 

over p>qeD indicates that both orbitals belong to the same orbital subspace. 

The procedures for determining the Lagrange multipliers fi in Eq.(21) are 

discussed in the following section. 

5. Lagrange multipliers 

The Lagrange multipliers g are calculated from variational conditions 

Eq.(8). However, in order to compute the derivatives of the Lagrangian, each 
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M is to be multiplied by the derivative of the corresponding constraining 

condition 

dUM, 

dM, 
A../WI pewo w.)l 

L a*/, a*f„ L 

Therefore, it is not necessary to calculate those multipliers for which 

=0. It follows from Eq.(21) that the multipliers Hokmo 
°Mk m=O 

andfiH need not be calculated, since none of the orthonormalization 

conditions depends explicitly on the magnetic moments of the nuclei. 

Furthermore, for the optimized values of Da, the MCQDPT energy is 

stationary with respect to any changes in D„, and since —^&2 = 0, the 
°Da 

variational condition Eq.(8) for has the solution //^=0. This means that 

only three kinds of Lagrange multipliers: H^sC, and the two types of 

need to be evaluated to calculate the derivatives of the Lagrangian with 

respect to the nuclear magnetic moments: 

dL(M,Xop„Hopl) 

dMK M=0 \afi acnK a J a A B amK 
(23) 

+ X ^casmo \Xpq ~ Xqp} + X McaSMO 
p><,eO OI"K piqzD OMK Jw=0 

The equations for evaluating these multipliers were derived by Nakano et al. 

[6]. The multipliers for the MO rotations mixing different subspaces and for 

the CI coefficients are obtained by solving coupled linear equations 

corresponding to the state-averaged CASSCF equations (see Eq.(43) in ref. 

[6]). The multipliers corresponding to the canonicalization procedure for the 

doubly occupied and external subspaces can be determined without having to 

solve linear equations, and a small set of linear equations of dimension 
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n,c((n.crl)/2, where nac, is the number of active orbitals, must be solved to 

obtain multipliers for the active subspace (Eq.(41) in ref. [6]). 

6. Derivatives of the constraining conditions 

The derivatives of the Lagrangian with respect to the nuclear magnetic 

moments (Eq. (23)) are determined by the derivative of the MCQDPT effective 

Hamiltonian , as well as by the following three derivatives of 
K 

constraining conditions: ^AB, and The evaluation of 
oMk BMk 

these derivatives is relatively straightforward. 

As was shown in chapter 2, differentiating the non-relativistic 

Hamiltonian with respect to the nuclear magnetic moment MK results in the 

hyperfine operator 

= + + H? (24) 
dmK 

where H^°, H]® and Hff are the paramagnetic spin-orbit, the spin-dipole 

and the Fermi contact operators accordingly. These operators and the 

corresponding one-electron hyperfine operators hK are discussed in detail in 

chapter 2. 

The first term in the expression for the MCQDPT hyperfine coupling 

tensor Eq.(23) is the derivative of the MCQDPT energy. Introducing the 

matrix elements of the one-particle perturbation h™ = (p | hK | q), the derivative 

of the effective Hamiltonian can be written as 
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v k )  

*?d?ag:HH 
Evaluation of < a \ H K \ P >  in Eq.(2S) involves calculation of the matrix 

elements <A\HK\B> of the hyperfine operator HK for two CSFs |A> and |B> 

belonging to two different CASSCF states |a> and |P>: 

<a\HK \P>=Y iCA{a)CB0)<A\HK \B> (26) 
A,B 

The derivative of the constraining condition for the CI coefficients is 

X Q(*X where is simply the matrix element < A \ H K \ B >  of the 
g dwfg uAfj^ 

hyperfine operator HK for two CSFs in the same CASSCF eigenfunction. 

Calculation of the derivatives of the remaining two constraining 

d dF 
conditions -—[ x  - X  \  and r-22- requires evaluation of the matrix 

elements of the one-particle hyperfine operator h£*, already used for 

calculating the MCQDPT energy derivative Eq.(25): 

dMK 
= K = X&XOf)|X< <«|£„l« >j (27) 

Once all the derivatives are calculated, they can be combined with the 

Lagrange multipliers to compute the hyperfine coupling tensors using 

Eq.(23): 

dUM 

dM 

£ûKa)|5X < a I £•„ I « > < « | | a >11+ % 
a |_ pi qi J J piqeD 

^ X PcASMO 
p>qeO 
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w h e r e  ^ i s  g i v e n  b y  E q . ( 2 5 ) ,  a n d  M o î s c i  a n d  a r e  d e t e r m i n e d  b y  
oMk 

solving Eq.(41) and Eq.(43) in ref. [6]. 

7. Concluding remarks 

Analytic calculation of the hyperfine coupling tensors for MCQDPT 

theory developed in this chapter relies on the evaluation of the Lagrange 

multipliers using the formalism derived in ref. [6]. Once these multipliers are 

calculated, the evaluation of the magnetic derivatives presents a relatively 

straightforward task. The derivation presented in this chapter includes all the 

limitations placed on the evaluation of the Lagrange multipliers in ref. [6]. 

However, these limitations are not related to the evaluation of magnetic 

derivatives in particular. One important limitation put on the derivation here 

and in ref. [6] is the use of the same set of reference functions for both the 

MCSCF and MCQDPT calculations. It is often advantageous to use a different 

reference in the MCQDPT calculation. For example, using orbitals from a 

singlet MCSCF calculation for triplet MCQDPT states often simplifies 

calculations of excited states. Equations for the Lagrange multipliers obtained 

without this restriction on the set of reference functions can be found in ref. 

[7]. Using these multipliers to evaluate the hyperfine coupling tensors 

according to the procedure derived here does not require any modifications. 
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Abstract 

We report a systematic multi-configurational study of several low 

lying states of A1Q2 in a wide region of the coordinate space, in order to 

provide additional insight into the electronic structure of the A1Q2 

molecule. This work attempts to resolve the question of the global 

minimum energy structure for the A102 molecule. A symmetry breaking 

observed in the vicinity of the linear geometry at the multi-configurational 

self-consistent field (CASSCF) level of theory is shown to be due to 

insufficient accounting of dynamic correlation, since it does not appear in 

multi-reference configuration interaction (MRCI) or multi-reference 

perturbation theory calculations (MCQDPT). 

1. Introduction 

It has been suggested, based primarily on thermodynamic 

considerations, that adding a small number (~ 5% by weight) of A1 atoms to 

solid hydrogen to be used as a rocket propellant can considerably increase 

the fuel efficiency. However, the possibility of a practical implementation of 

this idea depends on various details of the reaction of A1 with 02, thus 

providing a strong impetus for theoretical studies of this reaction. It is quite 
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reasonable to expect that A102 plays a key role in the A1 + 02 reaction. 

Several studies have suggested that AIO2 is one of the major products 

observed in a reaction of evaporated A1 atoms with Oz in a cryogenic matrix 

[1,2]. A complete analysis of the structure and mechanism of the 

formation of A102 is an important and necessary step toward a detailed 

understanding of the process of A1 combustion. 

In the present work we attempt to determine definitively the global 

minimum energy structure for the A102 molecule. There is a large amount 

of experimental data available from numerous matrix isolation experiments 

[1,3-5] and at least one gas-phase study [6] of the A1 + 02 reaction. 

However, characterization of the structure of the products of this reaction 

r e l i e s  s u b s t a n t i a l l y  o n  t h e  a n a l y s i s  o f  t h e  i n f r a r e d  ( I R )  s p e c t r a ,  a n d  

definitive assignments of frequencies are not always possible without the 

necessary complementary information from theoretical studies. The 

available experimental data are insufficient to firmly establish the structure 

of the A102 molecule, and must therefore be complemented by results of 

high accuracy ab initio calculations. 

The conclusion of the experimental works [1,3-6], that the A102 

molecule exists as two different isomers - one linear and one cyclic, seems to 

be in good agreement with the results of previous theoretical studies [2,7-

8,12]. Calculations by Rubio et al. [7,8] predicted a C2V cyclic structure, with 

an 0-A1-0 angle of about 70°, to be a true minimum on the restricted 

Hartree-Fock (RHF) potential energy surface (PES). This study did not locate 

a stable Cs structure, even though such a structure was predicted in the 

experimental work of Sonchik, Andrews and Carlson [4]. An unrestricted 

Hartree-Fock (UHF) calculation predicted one imaginary frequency for the 

C2v structure. This was attributed to a Hartree-Fock instability problem [9-

11].  

An extensive theoretical study by Nemukhin and Almlôf [12] 

employed large basis sets and the CASSCF [13,14,15] approximation. The 
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study supported the results of Rubio et al. [8], predicting the cyclic form of 

A102 to be an energy minimum on the A2 PES, with an O-Al-O angle of 41.8°. 

However, another stationary point, corresponding to a linear D_h structure, 

n o t  i n v e s t i g a t e d  a t  a l l  i n  [ 8 ] ,  w a s  f o u n d  t o  h a v e  e v e n  l o w e r  e n e r g y  t h a n  t h e  

c y c l i c  s t r u c t u r e .  I t  w a s  n o t  c l e a r  i f  t h i s  s t r u c t u r e  i s  a  t r u e  m i n i m u m  o n  t h e  

PES, since there was an apparent symmetry breaking in the CASSCF wave 

function. This symmetry breaking was attributed to the omission of the O 

2s orbitals from the CASSCF active space. Since all other frequencies 

calculated for the linear and the cyclic isomers of A102 seemed to be in good 

a g r e e m e n t  w i t h  t h e  r e s u l t s  o f  s p e c t r o s c o p i c  s t u d i e s ,  i t  w a s  c o n c l u d e d  t h a t  

n o  f u r t h e r  s t u d i e s  o f  t h e  g r o u n d  s t a t e  P E S  w e r e  n e c e s s a r y  t o  e x p l a i n  t h e  

existing experimental data. The energy difference between the two structures 

was found to be only about 6 kcal/mol, thus leaving the final conclusion 

regarding the ground state structure of A102 unresolved. 

A relatively high lying structure having Cs symmetry was found by 

Marshall et al. [16]. This study also reported an instability in the D_h wave 

function, resulting in symmetry breaking distortions from D„h to C„v-

However, the UHF level of theory employed in this work may not be reliable 

[7,8,12]. 

The cyclic structure was studied again by Archibong, Leszczynski and 

Sullivan [2], employing larger basis sets and a more complete treatment of 

electron correlation. Using the coupled cluster method including all single 

and double excitations with the effect of connected triple excitations 

included perturbatively (CCSD(T)) reproduces the findings of Nemukhin 

and Almlôf regarding this C2V structure, except for some minor details. 

Linear A102 was not studied by these authors. 

The brief review of previous theoretical studies given above 

demonstrates that the identity of the ground state of A102 is still 

unresolved. In particular, the problem of symmetry breaking remains a n 
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open question. Some of the vibrational frequencies predicted in the most 

accurate of the above reports [2,12] disagree with experimentally observed 

frequencies by up to 100 cm1. In this work, we report a systematic multi-

configurational study of all low lying states of both C2V and Cs symmetry i n 

a wide region of the coordinate space, including the vicinity of linear C_v 

and D-h geometries, in order to provide additional insight into the 

electronic structure of the A102 molecule. 

2. Methods 

All calculations were performed with the GAMESS [17] and MOLPRO 

[18,19] programs, using the 6-311G* basis set [20] with a total of 65 basis 

functions. Geometry optimizations were carried out at the MCSCF level, 

with a CASSCF active space including all valence orbitals of Al and O atoms 

(15 electrons in 12 orbitals). The MCQDPT2 [21,22] and MRCI [18,19] 

calculations employed the same active space as the MCSCF calculations. 

All electronic states discussed here are doublet states. 

3. Results and discussion 

An overview of the MCSCF PES for the C2V A,, A2 and B, states and the 

Cs A' and A" states is given in Figure 1. The 0-A1-0 angle, chosen as a 

reaction coordinate, was varied from about 40 to 180 degrees, and the Al-O 

bond lengths were optimized for each fixed angle. Thus, the curves 

p r e s e n t e d  i n  F i g u r e  1  m a y  b e  t h o u g h t  o f  a s  r e a c t i o n  p a t h s  f o r  t h e  

isomerisation reaction leading from cyclic to linear A102. 

The dominant MCSCF configuration near the cyclic A2 minimum can 

be w r itten a s  ( 6 a , ) 2 ( 7 a i ) 2 ( 4 b l ) 2 ( 2 b 2 ) 2 ( 8 a , ) 2 ( l a 2 ) 1 .  H e r e ,  4 b ,  a n d  l a 2  a r e  t h e  

t w o  i t *  0 - 0  o r b i t a l s ,  a n d  8 a ,  i s  a l m o s t  e n t i r e l y  t h e  3 s  o r b i t a l  o f  A l .  T h e r e  a r e  

three orbitals in the MCSCF active space which have the character of the 3 p 

Al orbitals; all of them are vacant in the leading configuration. These three 
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orbitals remain vacant everywhere on all PES's studied, including the 

v i c i n i t y  o f  t h e  l i n e a r  g e o m e t r y .  T h e  l e a d i n g  M C S C F  c o n f i g u r a t i o n  n e a r  t h e  

linear geometry is (6al)2(7a,)2(4b1)2(2b2)2(5bl)2(la2)1, with almost an equal 

contribution from the (6a,)2(7al)l(4bl)2(2b2)2(8a,)l(5b1)2(la2)1 

configuration. The 5b, orbital here has a a* O-O character. 

For angles smaller than about 60° the Cs states are identical to the 

c o r r e s p o n d i n g  C 2 V  s t a t e s .  F o r  t h e s e  s m a l l  a n g l e s ,  t h e  l o w e s t  e n e r g y  m i n i m u m  

is on the A2 PES, with both A, and B, minima lying higher. Our results for 

the geometric parameters at all C2V minima agree well with the previous 

MCSCF study [12] (see Table 1). 

For angles larger than 80° a symmetry breaking occurs in the MCSCF 

w a v e  f u n c t i o n .  A s  a  r e s u l t ,  t h e  t w o  A l - O  d i s t a n c e s  b e c o m e  u n e q u a l ,  a n d  

optimized structures have Cs symmetry. Constrained geometry 

optimizations of course provide optimized structures with C2V symmetry, 

b u t  t h e y  a p p e a r  t o  b e  u n s t a b l e  w i t h  r e s p e c t  t o  t h e  a s y m m e t r i c  s t r e t c h  m o d e  

a n d  t h u s  a r e  n o t  t r u e  m i n i m a  o n  t h e  M C S C F  P E S .  I t  w a s  s u g g e s t e d  [ 1 2 ]  t h a t  

this symmetry breaking might be caused by omitting the 2s oxygen orbitals 

from the active space in the CASSCF wave function. In this work the active 

s p a c e  i n c l u d e d  t h e  2 s  O  o r b i t a l s ,  s o  t h i s  i s  c l e a r l y  n o t  t h e  o r i g i n  o f  t h e  

apparent symmetry breaking. 

It is worth emphasizing that, unlike most usual cases of symmetry 

brea k i n g  ( e . g .  d o u b l e t  i n s t a b i l i t y )  [ 2 3 ] ,  t h e  C $  s y m m e t r y  s t r u c t u r e s  a r e  

e n e r g e t i c a l l y  f a v o r e d  o v e r  t h e  C 2 V  s t r u c t u r e s  n o t  o n l y  i n  t h e  i m m e d i a t e  

vicinity of the linear geometry, but in a large region of coordinate space. 

The MCSCF wave function does not change smoothly between C2V and 

Cs nuclear c o n f i g u r a t i o n s ,  a n d  t h e  r e s u l t i n g  P E S  h a s  a n  a r t i f i c i a l  c u s p  a t  t h e  

C2V geometry. For example, for a fixed bond angle of 120°, changing one of 

the Al-0 distances from its C2V optimized value of 1.7002Â to 1.7001Â, 

w h i c h  f o r m a l l y  l o w e r s  t h e  s y m m e t r y  o f  t h e  m o l e c u l e  t o  C s ,  r e s u l t s  i n  t h e  

e n e r g y  b e i n g  l o w e r e d  b y  2 . 6  k c a l / m o l .  A  s u b s e q u e n t  g e o m e t r y  o p t i m i z a t i o n  
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in Cs symmetry lowers the energy by only 1.8 kcal/mol, although the bond 

distances change substantially (to 1.7561 Â and 1.6452 Â). An analysis of 

the MCSCF wave function shows that the energy lowering does not involve 

any significant changes in the optimized orbitals; however, the CI 

coefficients change considerably in a very small region of coordinate space 

around the C2V geometry. 

At 180° (Fig.l) the A and A" states become two degenerate n states in 

C_v symmetry. This appears to be the global minimum on the CASSCF 

doublet PES of A102. 

Now, consider the effect of dynamic correlation on the A102 potential 

energy curves. Figure 2 shows single point MCQDPT2 energies calculated a t 

t h e  M C S C F  o p t i m i z e d  g e o m e t r i e s .  A t  t h i s  l e v e l  o f  t h e o r y ,  C 2 v  s t r u c t u r e s  h a v e  

lower energy than the corresponding Cs states at all angles. Apparently, 

d y n a m i c  c o r r e l a t i o n  i s  m o r e  i m p o r t a n t  f o r  s y m m e t r i c  g e o m e t r i e s  t h a n  f o r  

s y m m e t r y  b r o k e n  o n e s .  T h i s  i s  i l l u s t r a t e d  b y  t h e  M C S C F ,  M C Q D P T 2  a n d  

MRCI energies given in Table 2 for the D„h ng states (corresponding to the C2V 

A2 and B, states for nonlinear structures) and the C_v n states 

(corresponding to the Cs A' and A" states). 

The MCQDPT2 and MRCI results clearly demonstrate that the 

symmetry breaking observed at MCSCF level of theory is not physical and is 

due to insufficient accounting for dynamic correlation. So, the MCSCF 

treatment of A102 is not sufficient. 

The MCSCF energy difference between the cyclic and the linear 

structures is only 0.0062 Eh. This makes these structures almost isoenergetic 

[12]. At the MCQDPT2 level the difference is almost 10 times larger (.05 Eh), 

thus firmly establishing the Iïg state of the linear structure as the global 

energy minimum of A102. 
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4. Conclusions 

The doublet potential energy surfaces of A102 have been studied in a 

wide region of the coordinate space between the linear and the cyclic 

s t r u c t u r e s ,  u s i n g  t h e  C A S S C F ,  M C Q D P T  a n d  M R C I  m e t h o d s .  I t  i s  s h o w n  t h a t  

an insufficient treatment of dynamic correlation at the CASSCF level of 

theory leads to a symmetry breaking in the vicinity of the linear geometry. 

This symmetry breaking is not observed in MCQDPT and MRCI calculations. 

At the MCQDPT/6-31 lG(d) level, linear A102 is about 31 kcal/mol 

lower th a n  t h e  c y c l i c  s t r u c t u r e .  T h e  b a r r i e r  l e a d i n g  f r o m  t h e  c y c l i c  t o  t h e  

l i n e a r  A 1 0 2  a t  t h i s  l e v e l  o f  t h e o r y  i s  a p p r o x i m a t e l y  6 0  k c a l / m o l .  U s i n g  t h e  

same level of theory with the larger cc-pvtz basis set results i n 

approximately the same energy difference between the two isomers: 33 

kcal/mol favoring the linear structure. The large energy difference between 

the two main isomers of the A102 molecule at the MCQDPT level disagrees 

w i t h  t h e  r e s u l t s  o f  t h e  c u r r e n t  a n d  p r e v i o u s  M C S C F  s t u d i e s  [ 1 2 ]  w h i c h  

p r e d i c t  t h e  t w o  s t r u c t u r e s  t o  h a v e  s i m i l a r  e n e r g i e s .  T h e  l i n e a r  s t r u c t u r e  

appears to be well established as the global energy minimum for the A102 

molecule. 
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Table 1. Molecular parameters for symmetric A102 structures. 

Method linear (D„h) cyclic (C^) 

[8] CIPSI 1.794 1.994 69.9 

[13] UHF 1.655 1.930 39.5 

[12] MCSCF 1.670 1.930 41.8 

[2] CCSD(T) - 1.940 40.9 

This MCSCF 1.675 1.956 41.1 
work 
This MCQDPT2 1.676 1.952 41.1 
work 

Table 2. MCSCF, MCQDPT and MRCI energies for the symmetric (D„h) 

and symmetry-broken (C„,v) linear A102 (a.u.) (6-31G* basis set) 

MCSCF -391.69455 -391.71224 

SA-MCSCFa -391.69267 -391.71059 

MCQDPT -391.97286 -391.96180 

MRCI -391.96105 -391.95985 

1 State averaged MCSCF, averaging over two degenerate n states 
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Figure 1. MCSCF/6-311G(d) reaction paths for the 2A„ 2A2,2B„ 2A' and 2A" states. 
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CHAPTER 6: POTENTIAL ENERGY SURFACES FOR THE Al + O2 

REACTION 

A paper to be submitted for publication to 

Journal of Chemical Physics 

Michael V. Pak and Mark S. Gordon 

Abstract 

We present a systematic multi-configurational study of the first two 

doublet potential energy surfaces of atomic aluminum with molecular 

oxygen. The most likely products, AlO and AIO2, are expected to figure 

prominently in subsequent reactions to form AI2O3. The main reaction 

pathways on both surfaces invariably lead to the formation of cyclic AIO2, 

possibly followed by isomerization to the lower energy linear AIO2 isomer. A 

reaction path leading from Al + O2 directly to AlO + O was not located. 

However, both AIO2 isomers can dissociate to AlO + O with no barrier 

beyond endothermicity. There is also no barrier for the reaction of AlO, with 

AlO to form AI203, and this reaction is highly exothermic. 
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I. Introduction 

The reaction of AI atoms with oxygen is of considerable interest in 

view of the potential use of aluminum doped solid hydrogen as a rocket 

propellant. It has been predicted that solid H2 doped with 5% aluminum 

atoms would be 80% more dense than liquid H%, and would therefore give a 

10% specific impulse increase, corresponding to a 200% payload increase 

[1]. However, this prediction is based on the assumption that all of the 

aluminum present in the system is oxidized into AI2O3. In fact, using pure 

solid H2 is preferable over Al-doped H2, if any other A! oxides are generated 

in substantial quantities as final products of combustion, since the 

exothermicities of all other aluminum oxides are much smaller than that of 

Al2C>3[2]. Therefore, it is important to develop a quantitative 

understanding of the energetics of aluminum combustion. 

In this paper, we report a systematic study of the potential energy 

surfaces for possible mechanisms of the reactions of A1 with 02, since the 

most likely products, AlO and AIO2, are expected to figure prominently i n 

subsequent reactions to form AI2O3. 

Most of the theoretical and experimental works on aluminum 

combustion available in the literature [3-5] deal with the combustion of 

metallic aluminum. While some thermodynamic data provided in those 

studies are also relevant for the reaction of isolated A1 atoms with oxygen, 

there are some important differences between these two processes which 

make most of the conclusions made regarding the combustion of solid A1 

inapplicable to the present study. For example, in a very extensive 

theoretical study of energetics of aluminum combustion by Politzer, Lane 

and Grice [4] it is implied that there is a large number of molecules 

containing carbon, nitrogen and other elements present in the system. This 

is certainly true in the case of combustion of metallic aluminum, usually 

added to organic propellants. However, the major route to AI2O3 in such 
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systems is believed to be the CO2 oxidation of aluminum, and this is not 

directly relevant to the combustion of Al atoms trapped in solid matrix. 

Another important distinction is the number of Al atoms involved in 

the first elementary steps of the combustion mechanism. Since the present 

study addresses a reaction of isolated Al atoms very sparsely dispersed in a 

solid hydrogen matrix, with less than 5% of Al present [1,6], elementary 

steps involving more than one Al atom are unlikely. For example, the 

possibility of formation of AI2O in a reaction of two Al atoms with either O2 

or O, which could be important in the combustion of solid Al particles, is 

not considered. 

There are a number of experimental and theoretical studies of various 

molecular species present in the Al + O2 system available in the literature 

[3-5,7-16]. Most of these works focus on the electronic structure and 

properties of Al oxides and not on the reaction mechanisms leading to their 

formation. An exception is the theoretical study by Marshall et al. [4], that 

provides some information about the thermochemistry and kinetics of the 

Al + 02 reaction. However, the unrestricted Hartree-Fock (UHF) formalism 

used in that work for AlO and AIO2 (two of the key products) may be 

suspect due to serious spin contamination. For the two key structures in the 

Al + O2 reaction, AlO and A102, the UHF wave functions showed 

instabilities, and the authors concluded that more flexible wave functions 

were needed to describe these molecules. Since a broad section of the 

potential energy surfaces for several electronic states are of interest, the 

multi-reference wave functions used in the present work seem more 

appropriate. 

The goal of this paper is to present a systematic and consistent study 

of the potential energy surfaces for the Al + O2 system, using multi-

configurational wave functions and dynamic correlation corrections for all 

stationary states on these surfaces. Based on the following analysis of the 
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low-lying PES s for this system, the most probable mechanisms leading to the 

formation of AI2O3 are proposed. 

II. Methods 

All calculations reported in the present work have been carried out 

with the GAMESS [17] and MOLPRO [18,19] programs. The PES's were studied 

at the MCSCF level with the complete active space SCF (CASSCF) or the fully 

optimized reaction space (FORS) [20-21] active spaces varying in size from 

including all valence electrons to including only the electrons involved in 

chemical changes. The full valence active space was used in MCSCF 

calculations of all minima on the potential energy surfaces. The active 

spaces used in the MCSCF study of reaction mechanisms will be described 

later in this paper. 

The energies of the minima and the transition states were 

recalculated at the CCSD(T), second order multi-reference perturbation 

theory (MRMP2 [22-23]) and multi-reference configuration interaction 

(MRCI [18-19]) levels of theory. The MRCI wave function included all single 

and double excitations from the FORS reference space into the virtual space, 

referred to as MR(SD)-CI [18,19]. Dynamic reaction path (DRP) [24-25] 

calculations were used to examine the most probable reaction channels on 

the PES's. To verify the basis set convergence, most of the calculations, 

including geometry optimizations of all stationary points on the PES's, were 

performed subsequently with 6-311G* [26], aug-cc-pvTZ and aug-cc-pvQZ 

[27] basis sets. 

III. Results and discussion 

A. AIO2 and AlO. The reaction of a single Al atom with 

an oxygen molecule can result in the formation of either AIO2, or AlO and 

an oxygen atom: 
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Al + 02 -> A102 ( 1 ) 

Al + 02 -> AlO + O (2) 

In order to predict the most probable outcome of this reaction, it is 

important to understand the electronic structure of all the species involved. 

First, consider aluminum dioxide, AIO2 The global minimum energy 

structure of AIO2 has been a subject of extensive study [11-14,28], with two 

potential candidates being the linear OAIO and the cyclic AIO2 isomers. The 

lowest energy PES for C2v AIO2 is the ^A2 state, with the %Ai state being 

higher in energy for both isomers. The ^A2 state corresponds to 2flg and 

to 2Z+g in Dcoh symmetry. It was shown earlier [28] that at the MRMP2/cc-

pvTZ level, linear AIO2 lies about 33 kcal/mol lower than the cyclic 

structure. The barrier leading from the cyclic to the linear AIO2 is 

approximately 60 kcal/mol at this level of theory. 

In this work, the energy splitting between the %A2 and states of 

AIO2 has been re-evaluated for both the linear and the cyclic structure. The 

results are presented in Table 1, together with the results of Archibong et al. 

[7] for the cyclic structure. No similar data are available in the literature 

for the linear structure, probably because this species presents additional 

difficulty for theoretical study due to a symmetry breaking in the MCSCF 

wave function (see discussion in [28]). The ^A2 - ^A[ energy difference is 

relatively small for the cyclic structure, converging to a value of 

approximately 4.5 kcal/mol. One clearly needs a good basis set and a well-

correlated wave function to achieve this result. For linear AIO2, the energy 

difference is much larger. The dynamical correlation effects are significant 

at this geometry, with MCSCF overestimating the splitting by more than 10 

kcal/mol compared to the MRCI result for the same basis set. 
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At the CCSD(T)/aug-cc-pvQZ level, the %A2 state of cyclic A10% is 

about 68 kcal/mol lower in energy than the reactants Al + 02 ( 63.5 

kcal/mol for the ^Ai state). The energy of the linear structure on the ^A2 

potential energy surface is almost 30 kcal/mol lower; however, there is a 60 

kcal/mol barrier (at the MRMP2/aug-cc-pvTZ level) between the cyclic and 

the linear isomers. For the %Ai state both the energy difference between the 

cyclic and the linear structures and the barrier between those isomers are 

much smaller than the corresponding values for the %A2 PES. At the 

MRMP2/aug-cc-pvTZ level, on the surface the linear isomer is only 18 

kcal/mol lower in energy than cyclic AIO2, and the barrier between the 

isomers is smaller than 10 kcal/mol. 

For AlO the 2j;+ state is predicted to be lower in energy than the 

doubly degenerate state. The energy splitting between these two states, 

calculated at different levels of theory, is given in Table 2. The estimated 

best value (MRCI/aug-cc-pvQZ) of 15.6 kcal/mol is in very good agreement 

with the experimental value of 15.0 ± 0.3 kcal/mol [2,29]. The overall 

exothermicity of reaction (2) for the lowest energy electronic state (2%+) of 

AlO, calculated at the CCSD(T)/aug-cc-pvQZ level of theory is estimated at 

3.1 kcal/mol, very close to the experimental value of about 3.2 kcal/mol 

[2,30]. The formation of AlO in the ^rif state is 12 kcal/mol endothermic (at 

the MRCI/aug-cc-pvQZ level). 

It appears that at least thermodynamically the formation of AIO2 is 

greatly favored over the formation of AlO + O. Even if we consider the 

higher energy cyclic AIO2, the energy gain in reaction (1) is almost 65 

kcal/mol greater than that in reaction (2). The products of reaction (2) are 

almost isoenergetic with the reactants, while the formation of AIO2 is highly 

exothermic. 
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B. Reaction mechanisms. To predict the kinetics of these 

reactions, detailed knowledge of the PES for the Al + O2 system is required. 

The next goal is to find the reaction paths and transition states for both 

reactions (1) and (2), as well as a reaction path for possible dissociation of 

AIO2 into AlO + O - another possible source of AlO in the system: 

AIO2 -> AlO + O (3). 

To build a map of the potential energy surface for the Al + 02 

reaction, consider an Al atom approaching the oxygen molecule from 

different directions (Figure la). Ideally, it would be desirous to use a full 

valence active space MCSCF wave function to describe this process. However, 

if all valence electrons of Al and O2 are included in the active space, the 

MCSCF optimization converges to an intruder state at all geometries for 

which the Al-O distance is larger than about 2.5Â. 

A logical active space is composed of those electrons and orbitals that 

are involved in the chemical changes due to the interaction of Al and O2 

The formation of the ^A2 state of A102 can be qualitatively described as 

electron transfer from the singly occupied p orbital of Al into the in-plane 

it* orbital of the 02 molecule. The out-of-plane it* orbital remains singly 

occupied. The %Ai state of AIO2 arises from the transfer of two electrons 

from Al - one p and one s - into the two n* orbitals of O2 Therefore, a n 

active space including the two it* orbitals of O2 plus the 3s and one of the 

3p orbitals of Al should be adequate for the description of orbital changes in 

this reaction. In fact, the results obtained with the active space just 

described are in good agreement with results produced with various larger 

active spaces, up to the full valence active space, when the latter is not 

plagued by intruder states. The orbital changes in reaction (2) require all of 

the 02 valence orbitals to be present in the active space, as well as the 3 s 
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and at least one of the 3p Al orbitals. The inclusion of the remaining two 3 p 

orbitals of Al does not appear to be necessary. 

Therefore, to study reaction (1), an active space composed of the two 

it* orbitals of O2 and the 3s and one of the 3p orbitals of the Al atom was 

used. The 3px orbital of Al was used for the ^PES, and the 3py orbital - for 

the 2a 1 state. The active space used for reaction (2) includes all valence 

orbitals of the two oxygen atoms and the 3s and one of the 3p orbitals of Al. 

Expanding the active space used for reaction (1) to include all valence 

orbitals of oxygen does not have any noticeable effect on the results, 

justifying the use of a smaller active space for this reaction. 

The MCSCF PES for the system shown in Figure la was investigated for 

a large variety of distances R and angles a. The ^A\ state of the Al + O2 

system becomes A' in Cs symmetry, and the ^A2 state becomes A". The A' 

and A" potential energy surfaces were investigated using a series of 

constrained optimizations, with the 0-0 distance optimized for different 

fixed values of distance R and angle a. It appears that on both the A' and A" 

PES's there are no minima that have Cg symmetry. A geometry optimization 

beginning at any C$ geometry always results in a C2v symmetric structure. 

There also appears to be no first-order saddle point with C$ symmetry. 

Apparently, the interaction of an Al atom approaching the 02 molecule 

from different directions invariably leads to the formation of cyclic AIO2, on 

both the A' and A" PES's. On the A" surface, there seems to be no barrier for 

this reaction in Cg symmetry; for the C2v (%A2) approach there is a very 

small barrier of about 4 kcal/mol at the MRMP2/6-311G* level of theory. 

The 2A2 transition state has RA10=2.87Â and ROO=L 16À. At the MCSCF/6-

311G* level, the imaginary frequency is 176.9 cm'1. Following the intrinsic 

reaction coordinate (IRC) along the normal mode associated with this 
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frequency leads to the cyclic AIO2 in one direction and free Al + 02 in the 

opposite direction. 

The structure of the A' PES is somewhat different from that of the A" 

surface. The barrier for the C2v (^A1 ) approach is about 22 kcal/mol at the 

MRMP2/6-311G* level. 

To locate a reaction path leading from Al + 02 directly to AlO + O 

(reaction (2)), consider the C„v arrangement shown in Figure lb, with Al 

aligned in a collinear arrangement with the O2 molecule. Constrained 

geometry optimizations for various fixed values of one AlO distance produce 

a stationary point in C„v symmetry. This stationary point has two 

imaginary frequencies that correspond to the degenerate linear bend. 

Therefore, it appears that there is no C$ or C_v reaction path that leads to 

AlO + O. This is consistent with the results of Politzer et al [5], who were 

unable to find a doublet transition state for reaction (2) anywhere on the 

PES (they did not consider reaction (1)). 

To further analyze the lowest energy PES for the Al + O2 system, a 

series of MCSCF dynamic reaction path (DRP) calculations were performed, 

in which an Al atom having some initial kinetic energy was directed 

towards the 02 molecule with different angles a. Depending on the angle of 

attack and the initial kinetic energy, the DRP calculations produced only 

two types of trajectories. For relatively small initial energies (less than 15 

kcal/mol) the resulting trajectory almost invariably led to the formation of 

cyclic AIO2 For initial kinetic energies greater that 15 kcal/mol, most 

trajectories resulted in dissociation of the AI-O2 complex back to Al + 02 

immediately after collision. No DRP trajectories leading to AlO + O were 

observed. 

The existence of a very high barrier for the cyclic to-liner 

isomerization of AIO2 provides a hint at a possible explanation for the 
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difficulty of locating a minimum energy path for reaction (2). Breaking the 

very strong 02 bond results in a relatively high barrier on the reaction path, 

even if the final products of the reaction are considerably lower in energy. 

In the case of the AI+O2 system, the formation of cyclic AIO2 does not 

involve completely breaking the O-O bond (only the it bond), results in a 

large energy gain and has either a very small or zero barrier, depending on 

the angle of attack of the Al atom. The formation of AlO + O, on the other 

hand, involves breaking the O2 bond, which implies a large barrier, and the 

exothermicity of this reaction is only about 3 kcal/mol. Therefore, it is 

reasonable to expect that the main reaction channel leading to AlO should 

go through the formation of AIO2, followed by its dissociation to AlO + O. 

The reaction paths for the dissociation of AIO2 (reaction 3), starting 

from both the cyclic and the linear AIO2 have also been investigated. At the 

MRMP2/6-311G* level of theory, the dissociation of both structures appears 

to have no barrier beyond the endothermicity, in agreement with Marshall 

et al. [4]. Depending on the initial state of the AIO2 molecule, the 

dissociation results in either 2%+ (from the 1 state of A102) or (from 

the 2^2 state) state of AlO. At the MRCI/aug-cc-pvQZ level of theory, the 

combined energy of O + AlO in the state (resulting from dissociation of 

the %A2 state of AIO2) is about 12 kcal/mol higher than the energy required 

to dissociate AIO2 into Al + 02 However, due to the 4 kcal/mol barrier for 

the Al + O2 dissociation reaction, the activation energy for this reaction is 

only 8 kcal/mol lower than the energy required for the AlO + O dissociation. 

The A102 -> AlO + O dissociation from the ^-A\ state is 

thermodynamically more favorable than the AIO2 -> Al + 02 dissociation 

by 3 kcal/mol. However, the relatively high barrier is 85 kcal/mol (at the 
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MRMP2/6-311G* level) for the reaction AIO2 -> Al + O2 in the state, 

while the AlO + O dissociation requires only about 60 kcal/mol. 

C. AIO2 + AlO reactions. According to an extensive theoretical 

study of Archibong and St-Amant [31], the lowest energy isomer of AI2O3 is 

the triplet C2v structure, shown in Figure 2. This structure is about 7 

kcal/mol lower in energy than the linear isomer previously established as 

the lowest energy stationary point on the singlet PES [15,32]. The lowest 

energy triplet state of C2v AI2O3 is 3B2- The 3B1 state is about 3.5 kcal/mol 

higher in energy, and the linear 'I* AI2O3 is another 3.5 kcal/mol higher 

than the state of C2v AI2O3. In this work, the formation of both the 

singlet and the triplet structures has been investigated. 

First, consider the triplet potential energy surface. In C2v symmetry, 

the 2z+ state becomes 2A1, and the doubly degenerate j state corresponds 

to i/2B2- The ^B2 state of C2v AI2O3 can result from the reaction of 2a 1 

AIO2 with the 2fi2 state of AlO, or from the reaction of 2^2 AIO2 with the 

2fi 1 state of AlO. The ^B[ state can be formed in the reaction of AlO in the 

2lli (2B1/2B2) state with either 2a 1 or 2^2 states of AIO2 It is not possible 

to form either one of the lowest energy triplet states of AI2O3 from the 

lowest energy doublet states of AIO2 and the 2g+ (2a 1) state of AlO. There is 

no barrier (at the MRMP2 level of theory) for the reaction of cyclic A102 i n 

the 2a 1 state with the 2bi/2b2 states of AlO, to form the ^B 1/^82 states of 

AI2O3 respectively. On the other hand, the reaction of 2a2 AIO2 with AlO in 

one of the 2n; states does not lead to the formation of the lowest energy 

minima on the triplet PES of AI2O3. The triplet ^B^B2 potential energy 

surfaces resulting from this reaction do not appear to have a stationary 
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point around the C2v structure of AI2O3. Our results indicate that the 

triplet AI2O3 isomers are formed in the reaction of ^rij AlO with cyclic AIO2 

in the ^A% state, but not in the lower energy %A2 state. 

On the singlet KS, the 'L* state of AI2O3 results from the reaction of 

linear A102 in the state with the 2%+ state of AlO. There is no barrier for 

this reaction at the MRMP level of theory. The reaction of 2m AlO with the 

2ng state of linear AIO2 leads to the formation of higher energy states of 

AI2O3. 

IV. Conclusions 

A survey of the 2*2 PES of the Al + 02 system predicts that the most 

favorable reaction pathways lead to the formation of cyclic AIO2 Once this 

isomer of AIO2 is formed, it can proceed further to the linear isomer, which 

involves surmounting a very high barrier of about 60 kcal/mol, or dissociate 

to AlO + O without any barrier beyond the endothermicity of about 80 

kcal/mol. The dissociation of linear AIO2 in ^Tlg state to AlO + O is more 

than 100 kcal/mol endothermic. 

The general features of the 2a j PES are quite similar. The most 

important differences between the two surfaces are the much smaller barrier 

leading from cyclic to linear AIO2 on the 2a 1 PES [28] and the more 

favorable dissociation to AlO + O on this surface. Both AIO2 minima on the 

2A1 surface are higher in energy than the corresponding minima on the 2a2 

PES: at the MRCI/aug-cc-pvTZ level the difference is 4.6 kcal/mol for the 

cyclic structure and about 16 kcal/mol for the linear isomer. 

The reaction paths to AlO + O appear to go through the dissociation 

of AIO2 There is no barrier for such dissociation on both potential energy 
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surfaces. For the 2*i state of cyclic A102 and the corresponding 2£+g state 

of linear AIO2 this reaction is energetically favored over dissociation to Al + 

02 The activation energy of the AlO + O dissociation of the 2*2 state of 

AIO2 is only 8 kcal/mol higher than the activation energy of the Al + O2 

dissociation. 

The lowest energy triplet AI2O3 isomers can be formed in the reaction 

of 2ni AlO with cyclic AIO2 in the 2a 1 state, but not in the lower energy 2*2 

state. The linear AI2O3 isomer results from the reaction of linear AIO2 in 

the state with the 2%+ state of AlO. There is no barrier for either of these 

reactions. 
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Table 1. Energy splitting between the %A2 and ̂ Ai states of 

cyclic A102 (2A2 lower) and between the ̂ Hg and %+g states of 

linear A102 (%+g lower) (kcal/mol). 

Method cyclic (Cjv) linear (D„h) 

UHF/6-311G++(3df)1 13.9 -

MCSCF/6-311G* b 12.0 26.0 

MCSCF/aug-cc-pvTZ b 8.8 26.6 

MCSCF/aug-cc-pvQZ b 7.8 25.7 

CCSD(T)/cc-pvTZb 8.2 15.7 

CCSD(T)/6-311G(2df) * 8.2 -

CCSD(T)/6-311G++(3df) ' 6.8 -

CCSD(T)/aug-cc-pvQZ b 4.4 15.0 

MRMP2/aug-cc-pvTZ b 3.3 11.5 

MRCI/aug-cc-pvTZ b 4.6 16.3 

a) Results from reference [7] 
b) This work. All MRCI, MRMP2 and CCSD(T) calculations were performed at MCSCF optimized 

geometries 
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Table 2. Energy splitting between the 2Z+ and ^rii states of AlO (kcal/mol). 

Method E (2ni) - E (2Z+) 

HF/6-311G* -21.7 

HF/aug-cc-pvQZ -17.5 

MCSCF/6-311G* 15.0 

MCSCF/aug-cc-pvTZ 17.4 

MCSCF/aug-cc-pvQZ 17.9 

MRMP2/aug-cc-pvTZ 13.4 

MRMP2/aug-cc-pvQZ 14.4 

MRCI/aug-cc-pvTZ 14.4 

MRCI/aug-cc-pvQZ 15.6 

a) All MRMP2 and MRCI calculations were performed at MCSCF optimized geometries 
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Figure la. Geometrical parameters of Al + Oz reaction 
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Figure lb. Al + 02 reaction in C„v symmetry 
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Figure 2. Lowest energy structures of A1203 investigated in this work 
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CHAPTER 7: GENERAL CONCLUSIONS 

Spin-spin coupling presents a unique challenge for ab initio quantum 

chemistry, since unlike most molecular properties it is almost entirely 

determined (in non-relativistic theory) by the behavior of the molecular wave 

function in a very small region of space - around atomic nuclei. This leads to 

a variety of problems, including the requirements for the size of the atomic 

basis set and the level of electron correlation treatment. The spin-spin 

coupling constants are very sensitive to even the smallest changes in the 

electronic structure of the molecule, and since the indirect coupling is of 

particular significance for NMR in the liquid phase, accounting for solvent 

effects is also important. The theoretical part of this Dissertation addresses, at 

least to some extent, all of the problems mentioned above. In chapter 2, the 

formalism for analytic evaluation of RHF indirect spin-spin coupling 

constants is reviewed and various aspects of including solvent effects in the 

calculation of spin-spin coupling are discussed. Chapter 3 deals with the 

problem of suitability of Gaussian basis sets for calculations of properties 

related to Fermi contact interaction, as well as the electron correlation 

treatment requirements for such properties. It is demonstrated, although for 

the particularly difficult cases of boron and carbon atoms, that very large 

basis sets and accounting at least to some extent for excitations to all orbitals 

in the complete space of basis functions may be required to correctly 

describe spin density at the nuclei. Chapter 4 contains an original derivation 

of analytic hyperfine coupling tensors for MCQDPT theory. The derivation is 

based on the response functions formalism and incorporates some of the 

earlier results by other authors for analytic MCQDPT energy gradients. Once 

computed, the hyperfine coupling tensors can be numerically differentiated 

to obtain indirect spin-spin coupling constants. Future development of the 
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theoretical work presented in this Dissertation includes a computational 

study of solvation effects on RHF spin-spin coupling using the EFP model, as 

well as coding in GAMESS the MCQDPT hyperfine coupling tensors derived 

here. 

The second part of this Dissertation is dedicated to the computational 

side of quantum chemistry. Chapter 5 deals with electronic structure of A102. 

In chapter 6, a multi-configurational study of mechanisms of reactions of 

aluminum atoms with oxygen is presented. Both studies are motivated by the 

potential use of aluminum to improve energetic properties of solid H2 used as 

a rocket fuel. Aluminum is indeed a very good candidate for the role of a 

HEDM additive. However, a detailed understanding of the mechanism of 

combustion of aluminum atoms dispersed in a solid hydrogen matrix is 

required to make a definitive prediction. Our results indicate that the 

reaction of Al with Oz initially leads to the formation of the A102 molecule. A 

multi-configurational analysis of the PES for A102 shows that the linear form 

of this molecule is considerably lower in energy than the cyclic isomer. A102 

can dissociate to AlO and atomic oxygen without any barrier beyond the 

endothermicity of this reaction. There is also no barrier for the reaction of 

A102 with AlO to form A1203, and this reaction is highly exothermic. While an 

additional study of the A102+A102 reaction is still necessary to make the final 

conclusion, most of our results suggest that A1203, may indeed be the main 

product of the Al combustion. 
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APPENDIX: ORIGIN OF THE Ô-FUNCTION 

IN THE FERMI CONTACT OPERATOR 

The problem of evaluating how the momentum operator —/V acts on a 

function f(r) in quantum mechanics is quite different from the problem of 

taking a derivative of some function f(r) in standard real analysis. This 

difference lies in the requirement that —/V be a hermitean operator, i.e. for 

any two functions / and g 

< f \ - & \ g >  =  < g \ - i V \ f >  ( 1 )  

If both functions are bounded, the differentiation can be done in the usual 

way. However, if one of the functions has a singularity, more careful 

consideration may be required. 

Consider an integral 3 = J(Vr~3)/(r )</(», where /(r) is an arbitrary non-

singular function, and the integration is done over the entire three-

dimensional space. It is convenient to choose the function /(F) vector-valued. 

Then the integral 3 can be interpreted as a scalar product. For simplicity, we 

choose /(r) = rg(r), where g(r) is a scalar function. Since —t'V is hermitean, 

3 = J (Vr"3 )f(r)d<0 = -f r"3(V/(F))<to = -J r~3(Vrg(r))dûJ (2) 

" x 2 x  
In spherical coordinates, jjjdxdydz = jj j r2sin6drdQd<p, and hence 

0 0 0 

J r~\Vrg(r))d(D = -3j r~3g(r)dûi - j r~2g' (f)dœ = -12ttJ r~lg(r)dr - 4jtJg' (r)dr ( 3 ) 
o o 

Integrating the second term on the right hand side, where g' (r)dr = d\g(rj\, 

-12jt J r~lg(r)dr - 4 jtJ g' (r)dr = -12/rJ r~lg(r)dr - (4flg(r))£ (4) 
0 0 0 

Using a well known property of ^-functions: 
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g(0) = j g(\r | )S(r)dr = 2 J g(r)S(r)dr ( 5 ) 
-«» 0 

as well as the fact that /(F) is integrable and hence /(F)—>0, obtain 
r— 

3 = -l2Jcjr~lg(r)dr-(4ng(ry)fc = -12/rJ r~lg(r)dr - 8^J g(r)S(r)dr (6) 
0 0 0 

From Eq. (6) it follows that Vr 3 = —3rr 5 —1rr~*8{f), since inserting this 

expression into Eq. (2) leads directly to Eq. (6). Derivatives of other singular 

functions can be evaluated in a similar fashion. 
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