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ABSTRACT 

The increasing pressure in industry to maintain tight control over processes has led to 

the development of many advanced control algorithms.  Many of these algorithms are model-

based control schemes, which require an accurate predictive model of the process to achieve 

good controller performance.  Because of this, research in the fields of nonlinear process 

modeling and predictive control has advanced over the past several decades.   

In this dissertation, a new method for identifying complicated block-oriented 

nonlinear models of processes will be proposed.  This method is applied for LNL and LLN 

“sandwich” block-oriented models and will be shown to accurately predict process response 

behavior for a simulated continuous-stirred tank reactor (CSTR) and a pilot-scale distillation 

column.  In addition, it will be shown to effectively model the pilot-scale distillation column 

using closed-loop, highly correlated input data.   

Using the block-oriented models identified, a new feedforward control framework has 

been developed.  This feedforward control framework represents the first that compensates 

for multiple input disturbances occurring simultaneously.  Only a single process model is 

needed to account for all measured disturbances.  In addition, it allows a plant engineer to 

develop the predictive model of the process from plant historical data instead of introducing a 

series of disturbances to the process to try to identify the model.  This has the potential to 

considerably reduce the cost of implementing an advanced control scheme in terms of time, 

effort and money.  The proposed feedforward control framework is tested on a simulated 

CSTR process in Chapter 4, and on a pilot-scale distillation column in Chapter 5.   
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CHAPTER 1.  INTRODUCTION 

1.  General Introduction 

In industry, it is desirable to have good control of processes to maintain both 

operational safety and product quality standards.  The field of process control has evolved 

over time to meet these ever-changing standards.  A process control system must monitor 

process outputs and implement input changes based on the current process conditions [1].  In 

the past few decades, many different advanced control algorithms have been developed.  

Among these are several types of model-based control algorithms, including Smith 

predictors, feedforward controllers and model predictive control (MPC) schemes [2].  As 

more and more industries apply the concepts to their processes, the limitations and strengths 

of model-based control have been seen under many conditions.   

The application of any model-based control strategy requires determination of an 

accurate process model.  Controller performance is highly dependent upon the model that is 

chosen to predict process behavior.  The procedures used for developing the process model 

can be time-consuming and costly, and generally require that the process be perturbed in 

order to determine cause-and-effect behavior between the process inputs and outputs.   

There are many challenges to developing accurate process models.  Many chemical 

and biological systems exhibit some type of nonlinear behavior, but model-based control 

schemes have often used linear models to reduce the computational load on the control 

system.  This can be sufficient when the process is operated over a small range of inputs [3, 

4].  Real process systems also often exhibit complex dynamic responses to changes in the 

process inputs, including nonlinear dynamics, which can make the process response 

prediction even more difficult.  Several types of nonlinear models have been proposed to 
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address some of these challenges.  These include Radial Basis Functions (RBFs) and 

Artificial Neural Networks (ANNs) [5, 6], ARMAX models [7, 8, 9], Genetic Algorithms 

[10], Feedforward Neural Networks (FNNs) [11] and Block-Oriented Models (BOMs) [12-

17].   

2.  Advanced Control Techniques 

Among the different advanced control methodologies, the topic of feedforward 

control is one of the oldest.  The basic concept was applied as early as 1925 to level control 

systems for boiler drums [2].  However, it wasn’t widely used in industry until the 1960s 

[18].  Since then, it has been applied in many types of chemical processes, including boilers, 

evaporators, solids dryers, direct-fired heaters and waste neutralization plants [19].   

The concept of feedforward control allows for theoretically perfect control of a 

process system.  Using measured values of process input disturbances (loads), corrective 

action can be taken before the process output deviates from its desired set point.  However, 

because not all disturbances can be measured efficiently or in a timely manner and the model 

used may not be perfect, it is usually used in conjunction with feedback control, which 

compensates for any deviation of the output variable from its set point, regardless of what 

caused the deviation [2].   

Most feedforward control schemes approximate the feedforward controller by a linear 

model [20], but nonlinear process models can also be used [21, 22].  A feedforward control 

law for each disturbance variable is typically determined separately, and interactive behavior 

between these input variables is not addressed.   
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3. Motivation and Dissertation Organization 

Because the application and performance of any model-based control scheme is 

highly dependent upon the predictive model that is used, the model identification step is 

critical.  In addition, the ability of a model-based control scheme to address nonlinear and 

interactive process response behaviors to accurately predict process outputs is vitally 

important.  Given that most applications of feedforward control do not address these 

behaviors, the focus of this research has been to develop accurate, compact nonlinear process 

models that are applied easily in a feedforward control scheme to improve control of a 

process.  The nonlinear process models used are block-oriented models (BOMs) which are 

capable of addressing both interactive input behaviors and nonlinearities, as well as complex 

process dynamics.  Of particular interest are the Hammerstein, Wiener and sandwich block-

oriented models.   

This dissertation is organized as follows.  Chapter 2 will give an overview of model 

types, with particular attention being paid to block-oriented models.  The H-BEST and W-

BEST modeling methodologies developed by Rollins et al. [13, 16] will be presented, and 

will be followed by a brief discussion on the use of statistical design of experiments in model 

identification procedures.  In Chapter 3, preliminary work using simulated processes that are 

Hammerstein, Wiener and sandwich BOMs will be introduced.  Chapter 4 is a paper 

presenting a new method for using the LNL “sandwich” type BOM in a 

feedforward/feedback control scheme, and applies this to a simulated continuous-stirred tank 

reactor (CSTR).  Chapter 5 is a paper that will present a methodology for applying the W-

BEST modeling methodology to a real distillation process in both open- and closed-loop 

modes.  In addition, the identified model will be used in a feedforward/feedback control 
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scheme on the distillation column, and compared with standard feedback control.  Finally, 

Chapter 6 will give general conclusions about the work discussed and propose future 

research avenues.   

4.  References   

[1] Ogunnaike, B.A. and W.H. Ray, Process Dynamics, Modeling and Control, Oxford 
University Press, Inc., New York, 1994. 

[2] Seborg, D.E., T.F. Edgar and D.A. Mellichamp, Process Dynamics and Control, 2nd 
edition, John Wiley and Sons, 2003 {check date} 

[3] Clarke, D.W., C. Mohtadi and P.S. Tuffs, “Generalized Predictive Control- Part 1: 
The Basic Algorithm,” Automatica, Vol. 23, pp. 137-148, 1987. 

[4] Muske, K.R. and J.B. Rawlins, “Model Predictive Control with Linear Models,” 
AIChE Journal, Vol. 39, pp. 262-287, 1993. 

 [5] Alexandridis, A. and H. Sarimveis, “Nonlinear Adaptive Model Predictive Control 
Based on Self-Correcting Neural Network Models,” AIChE Journal, Vol. 51. No. 9, 
September 2005. 

[6] Fischer, M., O. Nelles and R. Isermann, “Adaptive Predictive Control of a Heat 
Exchanger Based on a Fuzzy Model,” Control Engineering Practice, Vol. 6, pp. 259-
269, 1998. 

[7] Di Palma, F., L. Magni, “A Multi-Model Structure for Model Predictive Control,” 
Annual Reviews in Control, Vol. 28, pp. 47-52, 2004. 

[8] Gao, J, R. Patwardhan, K. Akamatsu, Y. Hashimoto, G. Emoto, S.L. Shah, B. Huang, 
“Performance Evaluation of Two Industrial MPC Controllers,” Control Engineering 
Practice, Vol. 11, pp.1371-1387, 2003. 

[9] Havlena, V. and J. Findejs, “Application of Model Predictive Control to Advanced 
Combustion Control,” Control Engineering Practice, Vol. 13, pp. 671-680, 2005. 

[10] Al-Duwaish H. and Naeem, Wasif , “Nonlinear Model Predictive Control of 
Hammerstein and Wiener Models Using Genetic Algorithms,” Proceedings of the 
2001 IEEE International Conference on Control Applications, September 5-7, 2001, 
Mexico City, Mexico 



 
5 

[11] Gao, F., F. Wang and M. Li, “Predictive Control for Processes with Input Dynamic 
Nonlinearity,” Chemical Engineering Science, Vol. 55, pp. 4045-4052, 2000. 

[12] Pearson, R.K. and B.A. Ogunnaike, “Nonlinear Process Identification,” Nonlinear 
Process Control, Prentice-Hall PTR, Upper Saddle River, NJ, pp. 11-110, 1997. 

[13] Rollins, D.K., N. Bhandari, A.M. Bassily, G.M. Colver and S. Chin, “A Continuous-
Time Nonlinear Dynamic Predictive Modeling Method for Hammerstein Processes,” 
Industrial and Engineering Chemistry Research, Vol. 42, No. 4, pp. 861-872, 2003. 

[14] Greblicki, W., “Continuous-Time Hammerstein System Identification,” IEEE 
Transactions on Automatic Control, Vol. 45, No. 6, pp. 1232-1236, 2000. 

[15] Bhandari, N. and D.K. Rollins, “Continuous-Time Hammerstein Nonlinear Modeling 
Applied to Distillation,” AIChE Journal, Vol. 50, No. 2, pp. 530-533, 2004. 

[16] Bhandari, N. and D.K. Rollins, “A Continuous-Time MIMO Wiener Modeling 
Method,” Industrial and Engineering Chemistry Research, Vol. 42, No. 22, pp. 5583-
5595, 2003. 

[17] Chin, S., N. Bhandari and D.K. Rollins, “An Unrestricted Algorithm for Accurate 
Prediction of MIMO Wiener Processes,” Industrial and Engineering Chemistry 
Research, Vol. 43, pp. 7065-7074, 2004. 

[18] Shinskey, F.G., Process Control Systems: Application, Design, and Tuning, 4th ed. 
McGraw-Hill, New York, 1996, Chapter 7. 

[19] Shinskey, F.G., M.F. Hordeski and B.G. Liptak, “Feedback and Feedforward 
Control”, in Instrument Engineer’s Handbook: Vol. 2, Process Control, 3rd ed., B.G. 
Liptak (Ed.), Chilton Book Col, Radnor, PA, 1995, Section 1.8. 

[20] Zhang, J. and R. Agustriyanto, “Inferential Feedforward Control of a Distillation 
Column,” Proceedings of the American Control Conference, pp. 2555-2560, 
Arlington, VA, June 25-27, 2001. 

[21] Smith, C.A. and A.B. Corripio, Principles and Practice of Automatic Process 
Control, Wiley, New York, 1985.Smith & Corripio 

[22] Luyben, W.L., Process Modeling, Simulation and Control for Chemical Engineers, 
2nd ed., McGraw-Hill, New York, 1990.Luyben, W.L. 



 
6 

CHAPTER 2.  BACKGROUND 

 1.  Model Types 

Any model-based control scheme that is implemented requires some predictive model 

of the process being controlled.  The ability of the control algorithm to maintain adequate 

control of the process is highly dependent upon the ability of the model to accurately predict 

the process behavior.  Most chemical processes exhibit some type of nonlinear behavior; 

however, in order to simplify the computational efforts of the controller, many of the model-

based control schemes have used a linear process model, which can be sufficient for 

processes which operate over a small region [1, 2].   

Over the past decade, advances in computational technology have allowed for the 

introduction of nonlinear models to be used for the process response prediction [3-7].  Some 

authors have proposed using multiple linear models for the process, separating them into 

operating regions within the process [8, 9].  Others have used nonlinear models, and the types 

of nonlinear models that have been used include Radial Basis Functions (RBF) and Artificial 

Neural Networks (ANN) [7, 8], ARMAX models [9, 10, 11], Genetic Algorithms (GA) [12] 

and Feedforward Neural Networks [13].   

2.  Hammerstein and Wiener Models 

The model identification process varies depending upon the type of model used.  

Many of the nonlinear models mentioned previously use a pseudo-random sequence (PRS) of 

input changes to estimate model parameters.  This can allow for good estimation of dynamic 

or non-linear effects but does not effectively account for interactive effects among multiple 

inputs [14].  In addition to the types of models previously mentioned, a class of models 

known as block-oriented models (BOM) has been developed.  The Hammerstein model is 
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one of the most common types, and it combines static nonlinearity with linear dynamics.  It 

can be represented in block form, as described by Pearson and Ogunnaike [15] and is shown 

as Fig. 1 below.  Another common BOM is the Wiener model, which also combines the static 

nonlinearity with linear dynamics, but the order of the blocks is reversed.   

Figure 1: A description of a MIMO Hammerstein model as it appears in Pearson and 
Ogunnaike [15].  The input vector X passes through a static map, resulting in the vector f(X), 
which can be nonlinear.  This vector then passes through the linear dynamic map and 
produces the output vector Y.   
 

Much has been discussed about these types of systems.  Most of the models that have 

been proposed use discrete-time modeling, which places this type of approach into the class 

of NARMAX models [16].  While these have the capability of addressing any non-linear and 

interactive effects, they are usually developed assuming all these terms are zero, due to the 

enormous parameter identification burdens that exist [14].   

There have been some who have successfully identified continuous-time 

Hammerstein and Wiener models and used them for prediction [16-20].  Among these, there 

exists an identification method that uses statistical design of experiments (SDOE) [21, 22] 

which has been proven to be a more efficient method of identifying process parameters [21, 

23].  These types of models have successfully been used to represent several types of 

nonlinear processes, including pH neutralizations, distillation columns and continuous-stirred 

tank reactors (CSTR) [24].  

 
 

G( ) 
 

 
 

H(s) 
f(X) 

Y(s) 
X(s) 
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 The first papers discussing the use of Hammerstein models appeared in 1966 by 

Narendra and Gallman [25].  They have become increasingly popular because of their simple 

structure and ability to effectively model many types of nonlinear processes.    Rollins et al. 

(1998) [26] developed a continuous-time Hammerstein modeling method that gives an 

explicit algorithm for the continuous-time, integrated form of the model and takes full 

advantage of SDOE [21].  This method was developed using a single-input, single-output 

(SISO) study on a CSTR [26], and has been named the Hammerstein Block-oriented Exact 

Solution Technique (H-BEST) because it has been shown to give an exact solution for a true 

Hammerstein process [8].  This method has been shown to be an accurate method of 

modeling both open- and closed-loop processes [27] and they contain a substantial amount of 

intelligent information about the process as well [14].  The algorithm and its applications will 

be discussed in more detail below.   

 Two general methods are typically used to identify Wiener models [14].  These are 

parametric and non-parametric methods.  The primary difference between these two methods 

is that the non-parametric method results in a purely empirical model of the process, while 

the parametric method assumes some particular structure for both the static nonlinearity and 

the linear dynamics.  The model identification for the parametric form then just requires 

estimation of the parameters.  An exact solution for a true Wiener process was developed by 

our research group and is known as the Wiener Block-oriented Exact Solution Technique, or 

W-BEST.  It follows a parametric approach to model identification and has been shown to 

accurately model both single-input, single-output (SISO) and multiple-input, multiple-output 

(MIMO) CSTR processes [14, 19].  It will be presented and discussed in more detail below.   
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2.1.  H-BEST 

The H-BEST algorithm was first introduced by Rollins et al. in 1998, and at the time 

it was known as the semi-empirical technique, or SET [26].  It was the first explicit 

continuous-time algorithm used to predict the output response of a Hammerstein process to a 

step change in the input that was able to fully exploit SDOE.  At the time of its introduction, 

the authors were unaware that the method was an exact solution for a true Hammerstein 

process.  In 2002, the mathematical proof that it was indeed an exact solution was discovered 

and its name was updated to H-BEST to reflect this.  The H-BEST algorithm for a single step 

input change to the process can be written as 

( ) ( )( ) ( ) ( )ttgtufty Sτβ ;; ⋅=       (1) 

where β is the vector of coefficients, S(t) is the unit step function, and the dynamics are 

described by g(t;τ), defined as  

( ) ( ) ( )[ ] ( )
⎭
⎬
⎫

⎩
⎨
⎧ ⋅=⋅= −−

s
sGsUsGtg 1; 11 LLτ      (2) 

where L-1 is the inverse Laplace transform operator.  For a series of step input changes, the 

H-BEST solution can be written as 

( )

( )( ) ( )
( ) ( )( ) ( ) ( )[ ] ( )

( ) ( )( ) ( ) ( )[ ] ( )⎪
⎪
⎩

⎪
⎪
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⎧

≤−⋅−=+

<≤−⋅−=+
<≤⋅

=

−− ttttgtyyttufty
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iiiii ;;0;

;;0;
0;;;0

11

211111

1

τβ

τβ
τβ

M
  (3) 

 

where the inputs and outputs are in terms of deviation variables.  The process of identifying 

an H-BEST model can be given in four simple steps.  These are as follows [14]: 



 
10 

i. Determine the statistical experimental design to be used. 
ii. Run the experimental design as a series of step tests, allowing steady state to 

occur after each change while collecting the data dynamically over time. 
iii. Use the steady-state data to determine the ultimate response function, f(v(t)). 
iv. Use the dynamic data to determine the dynamic response function, g(t;τ) for 

each output. 
 

The H-best model is identified when the model forms for f(v(t)) and g(t;τ) are specified and 

the parameter estimates are determined.   

 The H-BEST algorithm as described above has been applied to several different 

processes, including an industrial flow loop in both open- and closed-loop modes [14], a 

household clothes dryer [16] and a distillation column [18].  It was able to accurately model 

systems with various types of dynamics in these cases.  However, in all the early studies done 

using the H-BEST modeling method, each of them was restricted to step input changes, 

which often do not occur in real processes.  For processes where the inputs were periodic, the 

input to the H-BEST algorithm needed to be approximated as piece-wise step changes.  If the 

process variables are sampled frequently enough, then there is no problem with using this 

type of approximation, and it was done successfully by Rollins et al. [16] in 2003.  But, in 

some cases, it is not possible to sample frequently enough to adequately approximate the 

periodic input behavior, and will not produce an acceptable model of the process [24, 28].   

This changed in 2004 when Zhai et al. presented a form of the H-BEST algorithm that 

could be used for systems with sinusoidal input sequences [29].  They were able to accurately 

predict the output of true SISO Hammerstein systems with both first- and second-order 

dynamics. In 2006, Zhai et al. also demonstrated the ability of this algorithm to accurately 

predict the output response of a MIMO Hammerstein system with second-order plus lead 

dynamics [30].  The H-BEST algorithm for a SISO system with first-order dynamics and all 
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variables initially at steady state is described by Eqs. 4-6 below for the time interval tn-1 < t 

<tn.   

( ) ( )( )1sin −−+= nnnn ttAbtu ω        (4) 

( )( ) ( ) ( ) ,2
21 tuatuatuf +=         (5) 

( ) ( ) ( ) ( )
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12110
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Where g0(t;τ), gs(t;ω,τ) and gc(t;ω,τ) are defined as: 

( ) ττ tetg −−= 1;0          (7) 
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( )
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c e

t
tg     (9) 

In this case, the input change u(t) has a sinusoidal element imposed upon a step input change.  

Other forms of the H-BEST algorithm for the more complicated second-order and second-

order plus lead dynamics under sinusoidal input changes, as well as those for sinusoidal input 

changes with changing phase can be found in [29] and [30].   

 In addition to the work done to handle sinusoidal inputs, Rollins et al. introduced a 

method of handling systems that have serially correlated noise on the process measurements 

[31].   

2.2.  W-BEST 

 The W-BEST method of model identification was introduced in 2002 [14] and 

follows the same general procedure as that of H-BEST model identification.  The static 
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nonlinearity is first recovered from steady-state process information, and it is assumed to be 

of polynomial form [12, 32, 33].  Once the static nonlinearity has been determined, the linear 

dynamics are determined.  The form of the linear dynamic block is restricted to one of the 

basic types, such as first-order plus dead time (FOPDT) or second-order plus dead time 

(SOPDT).  This is done to simplify the parameter estimation process [14, 32].  The primary 

difference between the W-BEST algorithm and other Wiener models is that the W-BEST 

algorithm is a continuous-time model of a process and can be viewed as a “gray-box” model.  

That is, the linear dynamic part of the system is assumed to be of some known structure, and 

is determined by observation of the process response to input changes.  Most other Wiener 

models are discrete-time.  The only notable exception is the Wiener model developed by 

Huang et al. [32], which is similar in nature to the W-BEST model but is unable to address 

interactions between inputs in a multiple-input system.   

For a system with dead time θ and a series of step input changes u0, u1, …, ui 

occurring at times 0, t1, …, ti, respectively, the W-BEST algorithm can be described as 

follows [14]: 

( ) ( )( )tvfty =          (10) 

( ) ( )
( ) ( ) ( )[ ] ( )
( ) ( ) ( )[ ] ( )( )

( ) ( ) ( )[ ] ( )( )τθθθ
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τθθθ
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;ˆ

;ˆ
;00ˆ

0ˆ0

11

101021

01

+−−++=<+

+−+−++=+≤<+
−−+=+≤<

=≤<

−− iiiii ttgtvutvtvtt

ttgtvutvtvttt
tgvuvtvtt
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M

 (11) 

where the linear dynamics are described by g(t-ti; t), v(0) is the initial condition for v(t), and τ 

is the parameter vector for the dynamic system.  As in the case of the H-BEST algorithm, all 

variables are initially at steady state and the algorithm is given for deviation variables.   
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 This algorithm was successfully used to describe the behavior of a SISO CSTR which 

had second-order-plus-dead-time-plus-lead (SOPDPL) dynamics, and it proved to be better 

than the H-BEST algorithm for this case because of the nature of the process [14].  It was 

later applied to another CSTR system with seven (7) inputs and five (5) outputs by Bhandari 

and Rollins in 2003 [19] and was able to accurately model that system.   

 A restriction of the W-BEST algorithm as presented above was its inability to directly 

model processes with periodic input changes.  Zhai et al. (2006) presented an algorithm that 

addresses this weakness and provides an exact solution for the Wiener system with sinusoidal 

input changes [37].  If the sinusoidal input change described by Eq. 4 above is introduced 

into the Wiener system with first-order dynamics, then the W-BEST algorithm for the 

interval tn-1 < t < tn becomes: 

( ) ( ) ( ) ( ) ( ) ττωτ 1
110 ,;; −−−

−− ⋅+−⋅+−⋅= ntt
nnnsnnn etvttgAttgbtv    (12) 

where g0(t;t) and gs(t; w,t) are defined as they were in the case of the H-BEST algorithm.  

Other forms of the W-BEST algorithm for systems with more complex dynamics have also 

been presented [29, 30].  The proposed algorithms were also used to model a simulated 

CSTR process similar to the one used by Bhandari and Rollins (2003) [19].  In this case, 

sinusoidal input changes were imposed upon the step input changes and the process response 

was predicted and compared to the simulated process response, with good results [30].  The 

results were compared with those given by the piecewise step change approximation [16] and 

quantitatively compared using two criteria: the sum of squared prediction error (SSPE) and 

average relative error (ARE).  For all outputs, the W-BEST algorithm with the modifications 

for sinusoidal input changes performed better than that of the piecewise step input change 

approximation [24].   
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 Another important aspect of the work done by Zhai et al. (2006) was the recognition 

that any input signal that is noisy can be decomposed into a sum of sinusoidal components, 

and written as 

( ) ( ) ( )( )
πωω

ωω

<<<<

+= ∑
=

k

k

j
jjjj tBtAtX

K1

1

0

,sincos
       (13) 

where the Aj’s and Bj’s are uncorrelated random variables with E[Aj]=0, and 

Var(Aj)=Var(Bj)=σ2, j=1, …, k [37].  They point out that an infinite number of sinusoidal 

terms should be used in the above equation; however, this may be reduced to a finite number 

to approximate a stationary time series as long as it includes all of the major frequencies and 

amplitudes [34].  By using this approximation, they were able to simulate input signals that 

look like noisy signals in real processes.  Hajjair and Eloutassi described how to extract these 

sinusoidal components from a noisy signal [35].  We will also use this approximation later 

when we are discussing a distillation column with noisy inputs. 

3.  Other Block-Oriented Models 

While the Hammerstein and Wiener models are probably the most common block-

oriented models in the literature, there are other types as well.  The Uryson model consists of 

several Hammerstein models in parallel, driven by a common input and having the outputs 

summed [15, 38].  There are also “sandwich” block-oriented models, consisting of varying 

combinations of linear dynamic and static nonlinear blocks.  These types of models can be 

used where a process response follows even more complex behavior and cannot be 

adequately described by a Hammerstein or Wiener model.   
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The LNL sandwich model consists of a linear dynamic block followed by a nonlinear 

static block followed by another linear dynamic block, and is shown in Fig. 2 below.   

 

Figure 2:  A block diagram of the LNL sandwich block-oriented model structure. The input 
vector x passes through the linear dynamic block gi,1 to give the vector v, which then passes 
through the nonlinear static map to give w, and finally through the linear dynamic block g2 to 
give the output variable y.   
 
Chapter 4 will discuss in more detail the LNL sandwich block-oriented model, and it will be 

used to identify the process response of a simulated CSTR process with complex input 

behavior.  It will also be used for developing a feedforward controller to be used to maintain 

control of the reactor temperature of the simulated CSTR process.   

4.  Statistical Design of Experiments 

Although many different approaches have been proposed for addressing both 

Hammerstein and Wiener systems, the H-BEST and W-BEST BOM methods first exploited 

the use of statistical design of experiments (SDOE).  The ability to use SDOE ensures that a 

pure cause-and-effect relationship between inputs and outputs can be obtained [23].  Most 

methods for identifying Hammerstein and Wiener systems make use of a pseudo-random 

sequence (PRS), in which a series of deterministic or random input changes occurs at fixed or 

randomly determined times [36].  If these changes are deterministic, then only a specified 

number of levels over the input space are used.  For the special case of only the minimum 

and maximum input levels being used in the input sequence, the design is called a pseudo-

random binary sequence (PRBS).   

 
gi,1(xi;t,τ) 

 
f(v) 

 
g2(w;t,τ') x y w v 
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Rollins and Bhandari (2004) [21] and Bhandari and Rollins (2003) [19] have 

demonstrated that for a simulated process, using SDOE in the model building process gives 

substantially more information than a PRS design requiring the same amount of experimental 

test time in the identification process.  To demonstrate quantitatively that SDOE is a more 

efficient method of obtaining significant information, Rollins et al. (2006) [23] introduced an 

efficiency term to compare the D-optimum criterion (see [37]) for each experimental design 

type, as applied to Hammerstein processes.  In this way, they were able to objectively 

evaluate competing designs and determine which is more effective.  A similar study was 

done by Hardjasamudra et al. (2006) for Wiener systems [22].  In both of these cases, the 

authors found that the dynamic parameters could be sufficiently estimated by using a PRS 

design, but these designs did not allow for the ultimate response behavior to be accurately 

predicted.  Because of this, for BOM development, SDOE appears to be the better choice.    

However, in many real processes, making any changes to the inputs for the purpose of 

developing a reliable process model can cause problems with normal operations.  It is 

desirable to be able to easily identify the process model without causing significant upsets to 

the everyday operations of the process.  Ideally, historical data from the plant database could 

be used to develop these models.  There are many advantages to using this historical data: the 

data is readily available and generally abundant, it is collected frequently, it covers the 

“typical” operating space of the process, and does not require specific perturbations to be 

introduced, which may cause process upsets.  The work done by Rollins et al. [31] which 

introduced a method of dealing with serially correlated noise has been extended by Rollins et 

al. [39] to modeling glucose response in Type 2 diabetic patients with highly correlated 

inputs.  Chapter 5 of this dissertation will extend this work further and apply it to modeling 
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the process output response on a real distillation column with highly correlated inputs, and 

show that an accurate process model can be found using the W-BEST modeling methodology 

under these conditions.  In addition, it will be implemented into a feedforward controller to 

maintain control of the process output (top tray temperature) on the distillation column,.   
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CHAPTER 3.  PRELIMINARY INVESTIGATIONS 

1.  Motivation for Research 

The process of model identification for model-based control algorithms takes on 

many different forms, depending upon the type of model to be used.  In this research, the 

focus will be on block-oriented models, which combine linear dynamic (L) and nonlinear 

static (N) blocks to approximate nonlinear process response behavior.  Most of the methods 

for identifying block-oriented models make use of a pseudo-random sequence (PRS).  The 

PRS consists of a series of deterministic or random input changes occurring at fixed or 

randomly determined times [1].  Studies have been done by Rollins et al. [2] and 

Hardjasaumdra et al. [3] that showed that while dynamic parameters can be sufficiently 

estimated by using a PRS design, the ultimate response behavior of a process is not 

accurately predicted using the PRS design.  This contributes to process-model mismatch that 

will negatively affect performance of a model-based controller. 

In a real process, the inputs are usually not stepwise deterministic.  They often have 

periodic and stochastic behavior.  This has been noted and some work has been done to 

properly identify models for systems that have periodic inputs [4, 5] or serially correlated 

inputs [6, 7].  However, the general equations for model-based control do not explicitly 

account for these types of inputs.  In addition, the inputs to a process typically have a 

dynamic response to controller set point changes and not an instantaneous, constant-level 

response.  Dynamic interactions between the input variables exist in many processes, and 

these are also not explicitly accounted for.  Instead, any dynamic or interactive behavior of 

the inputs contributes to mismatch of the overall process model.   
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To illustrate the effect of input dynamics, consider a simple two-input, one-output 

Hammerstein process.  We could express this in block diagram form as in Fig. 1.   

Figure 1: The block diagram for a simple two-input, one-output Hammerstein process.  The 
inputs are represented by X1

sp and X2
sp, v is the intermediate vector representing the static 

map of X and Y is the output.   
 

In this example, the set points are given by X1
sp and X2

sp.  If there are input dynamics, 

then the block diagram would need to be modified, as in Fig. 2.  This accounts for both input 

dynamics and the process dynamics.  Essentially this is what is known as a sandwich block-

oriented model (BOM), in which linear dynamic blocks and static nonlinearities can be 

assembled in any of a number of arrangements [8].  The process represented by Fig. 2 is 

considered an LNL sandwich process, in which the input goes through a linear dynamic 

block, then a nonlinear static block and finally another linear dynamic block.  If the input 

dynamics can be separated from the process dynamics in the modeling of the process that is 

done for the control system, the overall control and stability of the process could be better 

maintained.   
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Figure 2: The block diagram for a two-input, one-output LNL sandwich process that has 
input dynamic behavior.  The input set points have been modified to show the dynamic 
response of the inputs to the set point changes.   
 
2.  Scope of Research 

 As discussed previously, the inputs to a process are often nonstationary.  If we 

consider this variability to be significant, we can break the input signal up into three specific 

parts: dynamic, periodic and stochastic contributions to noise.  Mathematically, the 

variability can be represented by Eq. 1 below.  It can also be described in block-diagram 

form, with the input xi(t) entering into a Hammerstein system in Fig. 3.   

( ) ( ) ( ) ( )tttwtx iiii ξε ++=       (1) 

where xi(t) represents the input, wi(t) represents the dynamic contribution, εi(t) represents the 

stochastic contribution and ξi(t) represents the periodic contribution to the process variability.   

 

Figure 3: A block diagram representing an LNL sandwich system with input process 
variability consisting of three parts: dynamic, stochastic and periodic.   
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All three contributions to the input process variability are often due to real process 

variability.  However, the research presented in this dissertation will focus on one of the two 

deterministic components, the dynamic component. The goal is to model these contributions 

and implement them into a model-based control scheme.  Zhai [5] has proposed methods for 

handling the stochastic component.   

The examples to be investigated include a simulated true LNL sandwich process, a 

simulated continuous-stirred tank reactor (CSTR) process and a real distillation process.  The 

true LNL sandwich process will be used to illustrate the importance of understanding the 

input dynamics and the effects of interactive inputs.  Using the simulated CSTR process, an 

LNL block-oriented model will be developed and implemented into a feedforward/feedback 

control algorithm.  This will be compared to the performance of a traditional feedback 

controller, and is shown in Chapter 4.  For the pilot-scale distillation column we will identify 

a Wiener block-oriented model in both open- and closed-loop modes using data typical of 

what could be found in a plant historical database, and implement this model into a 

feedforward/feedback control scheme to show the response of the process output.  

Comparisons will be made between this and a traditional feedback control system.  This is 

given in Chapter 5.   

3.  Preliminary Work 

3.1.  Example 1: Simulated NL Process 

To demonstrate that the dynamics of the process inputs can have a significant effect 

on the process response, let us consider a simple two-input, single-output NL (Hammerstein) 

process.  This process is defined by Eqs. 2 and 3 and is illustrated by the block diagram 

shown in Fig. 1 above. 



 
25 

( ) ( )( )
2
2524213

2
12110 xaxaxxaxaxaa

tftv
+++++=

= u
   (2) 

( ) ( ) ( )⎪⎩

⎪
⎨
⎧

≥+

<
=

w

w

ttw
dt

tdw
t

tv
θτ

τ

;

;0
     (3) 

In this case, all initial conditions and derivatives are equal to zero, a0 = 2.0, a1 = 0.5, a2 = 

0.75, a3 = 1.0, a4 = 2.5, a5 = -0.5, τw = 5.0 and θw = 2.0.  An arbitrary set of input set point 

changes were made to the process using a random number generator with a uniform 

distribution.  This input sequence is shown in Fig. 4.  If these set point changes are the true 

input changes to the process, then the output response to the changes is given in Fig. 5.     
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Figure 4: The set point changes made to the inputs x1 and x2 used in the simulated NL 
process described by Eqs. 2 and 3.   
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Figure 5: The simulated NL process output response to the input changes that are shown in 
Figure 4.   
 

3.2.  Example 2: Simulated LNL Process 

In many cases, however, there is dynamic behavior in the measured input to a process 

as compared to the changes in the input set points that occur.  The process is then an LNL 

process, depicted in Fig. 2 above.  Suppose that each of the two inputs in our NL process 

exhibit simple second-order overdamped dynamic behavior, as represented in Eqs. 4 and 5 

below: 

( ) ( )( )11
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211

1
1 ++

==
ssx
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      (4) 

( ) ( )( )11
1

432

2
2 ++

==
ssx

xsG sp ττ
      (5) 

where xi and xi
sp represent the ith input and ith  input set point values, respectively.  In the 

example given, τ1 = 1.0, τ2 = 2.5, τ3 = 4.0 and τ4 = 7.5.   
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Graphically, the dynamic change in the inputs is shown in Fig. 6.  We can see that the 

input to the process is now much different than what was given by the set point changes 

alone.  Because of this, the output response of the process is also significantly different, and 

is shown in Fig. 7.   
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Figure 6: The inputs x1 and x2 are shown along with their set point changes.  Each of the 
inputs has a second-order overdamped dynamic response to the change in set point.   
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Figure 7: The simulated process output response, w, shown for both the pure set point 
changes (the NL process) and for inputs that have a dynamic response to the set point 
changes (the LNL process).   
 

3.3.  Example 3: Interactive Effects of Inputs 

In addition to the dynamic behavior of inputs that can exist, there can also be 

interactive effects of the inputs on the process.  The steady-state interactions are addressed in 

BOM by the nonlinear static block, which can be any nonlinear function.  In the simulated 

LNL process that we have been discussing, this can be easily seen by holding one of the 

inputs constant while changing the other one.  That is, if we use the same input sequence for 

x1 that we have already introduced in Fig. 4 but keeping x2 constant, we can see the process 

response to the changes in x1.  The ultimate response of the process to these changes is 

shown in Fig.8.  Note that since the lines are not parallel, there is an interaction between the 

two inputs.  The same is true if we hold x1 constant while changing x2.   
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Figure 8: The ultimate response of the output, w, given by the simulated LNL process to 
changes in the two inputs, x1 and x2.  The intersection of the lines demonstrates an interaction 
between the two inputs. 
 
 
This interaction also has an effect on the dynamics of the process.  We can see in Fig. 9 that 

the dynamics vary depending on whether x1, x2 or both are changing.   

 Again, by understanding the dynamics of the interactions between the two inputs and 

modeling these explicitly using an LNL BOM, we should be able to maintain better control 

of the process than if we use a Hammerstein or Wiener model within a model predictive 

control scheme.   
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Figure 9: The simulated LNL process output response to input changes in x1 only, x2 only, 
and both x1 and x2.  This shows the interactive effect that changing both input variables has 
on the output, w. 
 
 
3.4.  Example 4: A Pilot-Scale Distillation Process 

 Tests were conducted on a pilot-scale distillation column to demonstrate the dynamic 

behavior of the inputs on a real process.  The column is used to separate a mixture of 

methanol and water, and is shown schematically in Fig. 10.  The column consisted of 12 

sieve trays and had an inside diameter of 6 inches.   
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 Figure 10:  The distillation column used for the experimental tests.  The column separated 
methanol and water and was operated by a DeltaV distributed control system [9].  
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The input variables to the process include the feed flow rate, feed temperature, 

reboiler steam pressure, reboiler level and reflux flow rate.  Other inputs that were considered 

were the distillate flow rate, bottoms flow rate and overhead temperature; however, these 

were not included in the experimental design.  The distillate flow and overhead temperature 

were held constant, and the bottoms flow rate was cascaded with the reboiler level in order to 

maintain proper control of the column.  In addition, although there are three possible feed 

trays, for these experiments the feed was only introduced on tray 6 in the middle of the 

column.  The output variable examined was the top tray (Tray 12) temperature, from which a 

composition could be inferred.   

A statistical experimental design was determined and carried out on the distillation 

column.  The design was a Box-Behnken design [10] with four factors and three center 

points, resulting in a total of 27 runs.  The four inputs that were manipulated were the feed 

flow rate, the feed temperature, the reboiler level and the reboiler steam pressure.    It is 

important to note that we also consider reflux flow rate to be an input to the process.  It was 

not specifically manipulated for the experiments because doing so may have caused 

instability in the operation of the column.  Instead, the reflux flow rate is cascaded to an 

overhead condensate accumulator level controller.  In the modeling of the distillation column 

that will be performed, we will consider this flow as an input, but it could not be included as 

part of the design due to safety and operational reasons.   

The experimental design is shown in Fig. 11.  Note that Fig.11 shows the set point 

changes for each of the inputs.  The measured value of each of the inputs that was varied in 

the experiment showed significant dynamic behavior.   
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Figure 11: The set point changes used for the experimental design of the distillation column.  
The design used was a Box-Behnken design with 27 points.   
 
The measured responses of the inputs to their set point changes can be seen in Figures 12 

through 15, and the dynamic behavior of these inputs is clearly visible in these plots.   
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Figure 12:  Reboiler steam pressure response to the set point changes made during the 
experiments that were conducted on the distillation column.  SP represents the change in set 
point and PV represents the measured process value of the reboiler steam pressure.  
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Figure 13:  Reboiler level response to the set point changes made during the experiments that 
were conducted on the distillation column.  SP represents the change in set point and PV 
represents the measured process value of the reboiler level.  
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Figure 14:  Feed flow response to the set point changes made during the experiments that 
were conducted on the distillation column.  SP represents the change in set point and PV 
represents the measured process value of the feed flow rate.  
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Figure 15:  Feed temperature response to set point changes during the experiments that were 
conducted on the distillation column.  SP represents the change in set point and PV 
represents the measured process value of the temperature. 
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Based upon our previous discussion of the variability in a process input, we can see 

from these figures that each of the inputs on the distillation column behave according to 

different combinations of the three variability contributions.  The reboiler level and feed 

temperature inputs appear to demonstrate significant dynamic behavior, while the feed flow 

and steam pressure inputs do not.   

 Let us examine more closely the feed temperature input.  This one is of particular 

interest because the feed temperature is affected not only by the set point changes of the feed 

temperature controller, but also by changes in the feed flow rate.  Fig. 15 shows the input 

sequence for the set point changes in feed temperature along with the feed temperature that 

was measured during the experiments.   

The H-BEST model algorithm introduced by Rollins, et al. (1998) [11] was used to fit 

the temperature data.  For one change occurring at t = 0, this can be written as 

( ) ( )( ) ( ) ( )ttgtufty sτβ ;; ⋅=       (6) 

where β is the vector of coefficients and the dynamics are described by g(t;τ).  It is important 

to note that in this case the function f(u(t);β) is equal to 1 because the input is a set point and 

the output is the process response to set point.  Therefore, we essentially have only the 

dynamic block to model the process response.  The dynamic behavior of the process was fit 

to a second-order underdamped model, which is represented as 

( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
−

−
+−−= − τζ

ζ
ζτζτζ ttetg t 2

2
2 1sin

1
1cos1    (7) 
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The parameters found for this model of the process were τ̂  = 1.49 and ζ̂ = 0.659.  The fit of 

the model to the process can be seen in Fig. 16.  As this demonstrates, the model did a very 

good job of fitting the process data.   
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Figure 16: The feed temperature response (PV) to the set point changes (SP) introduced 
during the experimental runs, along with the second-order underdamped model (SO Model) 
fit to the feed temperature.   
 

4.  Dissertation Research 

The questions to be addressed in this research are the following: how do we include 

this input information into a model-based control algorithm without requiring excessive 

computational effort?  How will this work on a process that has multiple inputs?  Can we 

develop a practical method for identifying the model and implementing it into a model-based 

control algorithm without requiring any extra model identification effort?  These questions 

will be addressed in detail in the forthcoming chapters. 
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The goal was to ultimately implement the models developed into a model-based 

control scheme on the pilot-scale distillation column that was discussed earlier, and use that 

control algorithm to maintain product quality.  The pilot-scale distillation column initially 

had no overall composition control but instead used several individual controllers to maintain 

specific operating parameters.  Steps will be taken toward achieving the ultimate goal by first 

testing a new feedforward/feedback control algorithm on a simulated continuous-stirred tank 

reactor (CSTR) process that can be adequately modeled by an LNL block-oriented model.  

This is demonstrated in Chapter 4.  The control scheme will then be developed further, to 

show that the models can be identified using data similar in nature to plant historical data, 

and then implemented into a feedforward/feedback control algorithm that will be applied to 

the pilot-scale distillation process in the laboratory.  Chapter 5 discusses the methods for 

identifying the model and applying the control scheme to the distillation process.   
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CHAPTER 4.  NONLINEAR MULTIPLE INPUT FEEDFORWARD 
CONTROL UNDER BLOCK-ORIENTED MODELING 

 
A paper to be submitted to the Journal of Process Control 

Stephanie D. Loveland, Derrick K. Rollins and Nidhi Bhandari 

1.  Background 

The control of chemical processes is a very important part of an industrial plant.  

Traditional feedback control makes adjustments to some manipulated variable after the 

process has deviated from its desired operating condition.  In the past few decades, more 

sophisticated control algorithms have been introduced that use predictive models to correct 

for disturbances before a deviation of the process output from its set point occurs.  Many of 

these are model-based control algorithms, including feedforward control, internal model 

control and model predictive control (MPC).  Each of these types of model-based control 

uses a model of the process.  In most instances, these control algorithms use linear models to 

predict process behavior based on input changes.  However, many real processes exhibit 

complicated nonlinear behavior so these linear estimations are limited as to when they can be 

used.  Therefore, the use of linear models is often restricted to certain input or output ranges 

[1, 2].   

Some nonlinear models have been proposed for model-based controllers, including 

artificial neural networks (ANNs) and radial basis functions (RBF) [3, 4], genetic algorithms 

(GA) [5] and NARMAX models [6, 7, 8].  Another type of nonlinear model that has been 

used is a block-oriented model (BOM) [9-14], which combines blocks of static nonlinearities 

with blocks of linear dynamics.  The simplest of the block-oriented models are the 

Hammerstein model, which has a static nonlinear block (N) followed by a linear dynamic 
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block (L), and the Wiener model, which reverses the order of these two blocks.  More 

complicated block-oriented structures include sandwich models such as the LNL model, 

which has a linear dynamic block followed by a nonlinear static block followed by a second 

linear dynamic block.  A diagram showing the block-oriented structure of these three models 

is given in Fig. 1.   

 

 

 

(a) 

 

 

(b) 

 

 

(c) 

 

Figure 1: (a) Hammerstein model; (b) Wiener model; (c) LNL model 

Many have studied the identification of model parameters for the Hammerstein and 

Wiener models, including Greblicki [11, 15], Eskinat et al. [16] and Al-Duwaish and Naeem 

[5].  The LNL process has not gotten as much attention, but some have proposed methods for 

its parameter identification [17].  In this paper, we present a method for parameter 

identification for the LNL model that draws from the discrete-time H-BEST and W-BEST 

identifications presented by Rollins and Bhandari for Hammerstein and Wiener models, 
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respectively [18].  We will apply the methodology to a simulated continuous-stirred tank 

reactor (CSTR).  In addition, we will implement the model identified into a feedforward-

feedback controller and demonstrate its effectiveness in reducing the variability of the 

process output when the inputs are changing.   

The paper is organized as follows.  In the next section we will present the method for 

identifying the LNL model parameters, and introduce the proposed feedforward control 

algorithm.  In Section 3 we will present the simulated CSTR process that was used for the 

study, as well as the input series that were used for training and testing the model.  Finally, 

we will implement the proposed feedforward controller using the LNL model on the 

simulated CSTR process, and show how it improves control of the output (reactor tank 

temperature) as compared to a traditional feedback controller.   

2. Methodology 

2.1.  Building the Proposed LNL model 

This section introduces the method for formulating the proposed discrete-time LNL 

model of a process.  For a process such as that shown in Fig. 1(c), the general mathematical 

form is given by Eqs. 1-3.   
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where i refers to the output with i=1, …, q, j refers to the input with j=1, …, p, vi(t) = [vi1, vi2, 

…, vip]T, wi is the unobservable intermediate variable after the nonlinear static function, and 

ηi is the true value of the output.  Eqs. 1 and 3 are written without dead time for simplicity, 

and the form of Eq. 2 is not restricted.  Eqs. 1 and 3 can be converted to a discrete-time form 

by using a backwards difference approximation, resulting in Eqs. 4 and 5.  
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where the δ’s, ω’s, γ’s and λ’s are all functions of the dynamic parameters (a’s, b’s, c’s and 

d’s) in Eqs. 1 and 3.  They are derived after the form of the linear dynamic block has been 

chosen by discretizing the differential equation, separating and collecting terms to get the 

forms given by Eqs. 4 and 5.  The output, ŷ, is then described by 

tititiy ,,, ˆˆ ll εη +=         (6) 

where εil,t  is the noise term such that  

( ) ll ∀2
, ,0~ iti N σε         (7) 

Nonlinear least squares regression is used to determine the estimates of the δ’s, ω’s, γ’s and 

λ’s in Equations 4 and 5.  This is obtained by 

( )2ˆ∑ −= yySSE measured        (8) 

The H-BEST and W-BEST model identification methods are described by Rollins et 

al. and Bhandari and Rollins [19, 20].  These methodologies have been extended to apply to 

an LNL model structure as follows: 
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1. Determine the statistical experimental design to be used. 
2. Run the experimental design as a series of step tests, allowing steady state to be 

reached after each change and collect data dynamically over time. 
3. Use the steady-state data to determine the ultimate response function, f(Δv;β) for each 

output.  Δv is a deviation variable, i.e., Δv(t) = v(t) – vss, where vss is the steady state 
value. 

4. Use the dynamic data to determine both the dynamic response functions: gi,1(t,τ) for 
the ith input and g2(t;τ) for each output.  

 
The static nonlinearity is determined using only steady state data, and the dynamic functions 

gi,1 and g2 are selected from typical linear dynamic forms (i.e., first order, second order plus 

lead, etc.).   

Once the initial parameters for the f(·) and g(·) functions are identified, these are used 

as initial guesses in a nonlinear parameter estimation routine to simultaneously determine all 

the parameters to obtain the best fit for the data, if necessary.  The identified model is then 

tested against a new set of experimental or simulated data obtained from the same process.  A 

new sequence of input changes is generated and used to change the inputs of the process and 

the output response is compared to the predicted output response of the identified model.   

2.2.  General Feedforward Control 

The concept of feedforward control was first applied as early as 1925 to level control 

systems for boiler drums [21].  It allows for theoretically perfect control of a process system, 

because it corrects for input disturbances before the process outputs deviate from their 

desired values.  However, this requires timely and efficient measurement of all possible 

process disturbances, which is nearly impossible, so it is typically used in conjunction with 

feedback control.  The addition of feedback control compensates for any deviation of the 

process output from its setpoint, regardless of the cause of the deviation.  Feedforward 

controllers are typically found independently for each disturbance variable that is placed on 
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feedforward control, and the feedforward controller is generally approximated by a linear 

model [22].  A block diagram of a typical feedforward/feedback controller is shown in Fig. 2.   

GL1 

GL2 

Y

Gf1 
MFF1 X1 

Gp 

Gf2 
X2 

Km Gc Gv 
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Figure 2: A typical feedforward/feedback control block diagram, with two disturbance 
variables (X1 and X2) on feedforward control. The lower loop is for feedback control and the 
upper loops are for feedforward control.     
 

Ideal feedforward controllers can be physically unrealizable if the process transfer 

function, Gp has a longer dead time or is a higher-order transfer function than GLi.  In these 

cases, the feedforward controller (Gf) is typically approximated by a lead-lag unit [21].   

2.2.  Proposed Feedforward Control Methodology 

The block diagram for the proposed feedforward/feedback controller under 

Hammerstein modeling is shown in Fig. 3.  In order for perfect control to be achieved, we 

must first find the closed-loop response to an arbitrary change in the disturbance variable Xi.  

Note that all variables are given in terms of deviation from an initial steady state.   
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Figure 3: The proposed feedforward/feedback controller under Wiener modeling.  The Xi’s 
represent the input variables, Y represents the controlled variable, M represents the controller 
signal. 
 
For any and all Xi ≠ 0, vi ≠ 0.  The change in MFF required for Y = f(v) = 0 is determined as 

follows.   
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Rearranging Eq. 9 gives 

( ) cbxaxxf mvmv ++= 2         (10) 
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Therefore, xmv can be determined using the quadratic equation.  As shown by Fig. 3, after 

determining xmv, MFF, the feedforward control law, is determined by  

mvvFF XGM 1−=          (12) 

which gives y = 0 for changes in the measurable loads shown in Figure 3 as required.  In the 

case where Gv
-1 is physically unrealizable, an approximation will be used.  This takes on a 

form much like a derivative filter in an ideal PID controller, and its use will be demonstrated 

when we implement the LNL model into a feedforward/feedback controller on the simulated 

CSTR process.   

3.  The Process Studied 

To test the LNL model identification process above, a simulated continuous-stirred 

tank reactor (CSTR) was used.  The process originally appears in Smith & Corripio [23] and 

a schematic diagram can be found in Fig. 4.  A dynamic model of the process was developed 

using first principles on the mass, species and energy of the process for the simulation.  The 

assumptions made include the following: densities and heat capacities of the tank and jacket 

contents are constant, volumes in the tank and jacket are constant, perfect mixing occurs in 

the tank, the thermal capacitance of the tank wall is negligible, heat capacity at constant 

volume (Cv, Cvc) and heat capacity at constant pressure (Cp, Cpc) are approximately equal for 

both the jacket and reactor contents and are constant, and the internal energy of the system is 

adequately described by the enthalpy.  For this study, we have added valve dynamics to the 



 
48 

coolant flow rate in order to show the LNL model structure.  A list of variables and initial 

values is given in Table 1.   

 
 

Figure 2: The simulated CSTR process used for this study. 

The CSTR process is described mathematically in Eqs. 13-17.   
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Table 1: Definition of variables and initial steady-state values for the CSTR process. 
Variable Definition SS value (units) 
A Heat transfer area 5.40 (m2) 
α Control valve rangeability parameter 50 (none) 
CA Concentration of species A in reactor 1.0302 (kgmol/m3) 
CAi Concentration of species A in inlet stream 2.88 (kgmol/m3) 
cp Heat capacity of feed and product streams 1.815x105 (J/kgmol-°C) 
cpc Heat capacity of coolant 4184 (J/kg-°C) 
ΔHR Heat of reaction -9.86x107 (J/kgmol) 
E Activation energy 1.182x107 (J/kgmol) 
F Feed flow rate 0.45 (m3/s) 
FC Coolant flow rate 0.44 (m3/s) 
FCmax Maximum flow rate of coolant through control valve 1.2 (m3/s) 
k Reaction rate constant 0.09 (m3/s-kgmol) 
ko Arrhenius frequency parameter 0.0744 (m3/s-kgmol) 
MM Controller output signal  0.26 (none) 
R Gas law constant 8314.39 (J/kgmol-K) 
ρ Density of reactor contents 19.2 (kgmol/m3) 
ρc Density of coolant 1000 (kg/m3) 
Tc Coolant temperature in the jacket 50.48 (°C) 
TCi Coolant inlet temperature 27 (°C) 
TT Reactor temperature 88 (°C) 
TTM Measured reactor temperature 88 (°C) 
U Overall heat transfer coefficient 2.13x105 (J/s-m2-°C) 
VC Cooling jacket volume 1.82 (m3) 
V CSTR volume 7.08 (m3) 
 

To identify the model parameters for the LNL model, a Box-Behnken experimental 

design with three center points was chosen using four inputs: feed flow rate, concentration of 

A in the inlet stream, controller signal, and coolant inlet temperature.  This gave a total of 27 

input combinations.  The input sequence is shown in Fig. 5, and the response of reactor 

temperature to this series of input changes is given in Fig. 6. 
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Figure 5: The input sequence used for training the LNL model for the CSTR process.   
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Figure 6: The reactor temperature response to the input sequence shown in Figure 3 above.  
 
 

The valve dynamics of this process will be estimated using a linear dynamic block.   

The LNL model for this process, then, has the structure given in Fig. 7. 
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Figure 7: The LNL model for the CSTR process used in this study.  MM is the controller 
signal, the vector x includes the three input variables TCI, CAI and F.  
 

The fitted model for the process follows the form given in equations 18 through 20.  

The G1 block is equal to unity.  The parameters for the model are listed in Table 2.   
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Table 2:  Fitted model parameters for the LNL block-oriented model used to predict the 
reactor temperature response to the input changes shown in Figure 7.   
Parameter  Value Parameter  Value 
a0 0 a8 -0.40434 
a1 26.91867 a9 11.52124 
a2 16.98205 a10 -0.3336 
a3 30.4157 τ 8.572204 
a4 0.333564 ζ 1.063172 
a5 -64.9391 τa 0.17824 
a6 23.30424 Kv 1.003916 
a7 -25.9394 τv 3.196657 
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The fitted model response to the input series is shown in Fig. 8.  A test sequence was 

then applied to test the fitted model, and the input sequence for this is shown in Fig. 9, while 

the reactor temperature response is shown in Fig. 10.   
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Figure 8:  The fitted model response to the training sequence given in Figure 3.  TTM is the 
measured reactor temperature, TTs-hat is the predicted reactor temperature, and TTss-hat is 
the predicted steady-state value for the reactor temperature.   



 
53 

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0.0 500.0 1000.0 1500.0 2000.0 2500.0
Time (s)

Fl
ow

 R
at

e 
(L

/s
), 

C
on

ce
nt

ra
tio

n 
(m

ol
/L

) o
r S

ig
na

l

0

5

10

15

20

25

30

35

Te
m

pe
ra

tu
re

 (°
C

)

Feed Flow
Inlet Concentration of A
Controller Signal
Coolant Inlet Temperature

 

Figure 9:  The input sequence used to test the model that was identified for the reactor 
temperature response to input changes. 
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Figure 10:  The reactor temperature response to the test input sequence given in Figure 7.  
TTM is the measured reactor temperature, TTs-hat is the predicted reactor temperature, and 
TTss-hat is the predicted steady-state values for the reactor temperature.   
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4.  The Feedforward-Feedback Controller 

A typical proportional-integral (PI) controller was implemented to control the reactor 

temperature by manipulating the coolant flow rate.  It was tuned to give the best possible 

response (quick response with minimal overshoot) to a step change of +2 degrees Celsius to 

the reactor temperature set point.   

The LNL model generated from the open-loop training in Section 3 was then used to 

implement a feedforward controller in conjunction with the feedback PI controller.  The 

manipulated variable chosen to maintain the reactor temperature is the coolant flow rate 

through the jacket of the CSTR vessel and can be varied by changing the controller signal.  

Following Eqs. 9-12, the feedforward controller is implemented.  Since Eq. 9 gives that f(x) 

was determined to be a quadratic function, xmv can be found by solving the quadratic 

equation.  The root chosen depends upon the input variables that are changing, and varies 

with different combinations of inputs.  The decision of which root to use is made based on 

which solution is within the physical limits of the controller output.  This was implemented 

in the simulation by a simple IF statement.   

Once xmv has been determined, MFF must be found.  Taking the inverse of Eq. 18 will 

give MM from a known value of xmv, and this is shown in Eq. 20.   

( )
v

v

mv

FF

K
s

x
MsG

11 +
==− τ

      (20) 

Eq. 20 is physically unrealizable, so in order to make this a physically realizable function 

when transformed into the time domain, the variable τav is introduced.  This is shown in Eq. 

21.   
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This τav is a tuning parameter for the feedforward controller, and is similar in function to a 

derivative filter that is used to make an ideal PID controller physically realizable (see [21]).  

Its value is chosen to be a very small value, in this case, 0.2.  Varying the parameter τav does 

not have a considerable effect on the behavior of the controller as long as it remains small.   

5.  Comparison of Feedback only controller with Feedforward/feedback controller 

The feedforward/feedback controller developed in Section 4 was tested and compared 

to the feedback controller (PI) alone.  The input series given in Fig. 9 was applied to the 

process in closed-loop mode for both controller configurations.  The results are shown in 

Figs. 11-12.   
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Figure 11:  The reactor temperature response under feedback control to the test input 
sequence given in Fig. 9. 
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Figure 12:  The reactor temperature response under feedforward/feedback control to the test 
input sequence given in Fig. 9. 
 

We have use the average absolute error (AAE) as the quantitative measure to 

compare the responses of the two controllers.  AAE is given by 

n

TT
AAE n

measuredsetpo∑ −
=

int

       (22) 

where Tsetpoint is the set point of the reactor temperature, Tmeasured is the measured value of the 

tank temperature and n is the number of sample points.  In this work, for the feedback 

controller, AAE is equal to 0.4942.  For the feedforward/feedback controller, AAE = 0.3215.  

This represents a 35% reduction in process variability by using the proposed 

feedforward/feedback controller.   
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6.  Conclusions 

In this work, we have proposed a new methodology for identifying the models and 

estimating the parameters therein for an LNL sandwich block-oriented model that takes full 

advantage of statistical design of experiments to account for input interactions.  We have 

developed a feedforward controller that uses this LNL model to compensate for multiple 

process input disturbances simultaneously, and have demonstrated its use on a simulated 

CSTR process.  The proposed feedforward/feedback controller has been shown to reduce 

process variability considerably.   
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CHAPTER 5.  DEVELOPMENT OF NONLINEAR FEEDFORWARD 
CONTROL FROM CLOSED-LOOP FREELY-EXISTING TYPE DATA 

WITH APPLICATION TO A PILOT-SCALE DISTILLATION 
COLUMN 

 
A paper to be submitted to Industrial and Engineering Chemistry Research 

Stephanie D. Loveland, Nidhi Bhandari and Derrick K. Rollins 

1.  Introduction 

The control of chemical processes in industry is a very important aspect of everyday 

operations.  The ability to maintain control has an impact on process safety, product quality 

and plant profitability.  In recent years, many different advanced control techniques have 

been developed.  Included among these are many types of model-based control schemes, 

including Smith predictors, feedforward controllers and model predictive control schemes 

[1].   

In order to use any of these model-based control schemes, several obstacles must be 

overcome.  Many chemical and biological processes exhibit nonlinear behavior, but model-

based control schemes have often used linear models, which can be sufficient if the process is 

operated over a small range of inputs [2, 3].  Real processes also often exhibit complicated 

dynamic responses to changes in the process inputs, including nonlinear dynamics.  In the 

past decade, advances in computational capabilities have allowed for nonlinear models to be 

used for the process response prediction.  Some of the types of models that have been 

proposed include Radial Basis Functions (RBFs) and Artificial Neural Networks (ANNs) [4, 

5], ARMAX models [6, 7, 8], Genetic Algorithms [9], Feedforward Neural Networks (FNNs) 

[10] and Block-Oriented Models (BOMs) [11-16].   
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The performance of any model-based controller is highly dependent on the model that 

is used to predict process behavior.  The procedures for developing the model can be time-

consuming and costly, requiring the process to be perturbed in order to determine cause-and-

effect behavior between the process inputs and outputs.  It is desirable to be able to identify 

the process model without causing significant upsets to everyday operations.  Ideally, 

historical data from the plant database could be used to develop the models to be used for 

prediction of process output response to changes in the inputs.  The advantages of using this 

historical data are numerous.  The data is readily available, is collected frequently, covers the 

“typical” operating space of the process, and does not require specific perturbations of the 

process inputs.  However, several problems can be encountered if plant historical data is 

used.  The process inputs are likely to be highly correlated, and the range of the inputs may 

not be very broad.  For purely empirical models such as neural networks, this can be a 

significant shortcoming because the model cannot be used outside the input space that was 

used in the model identification procedure.  The ability of the model to accurately predict 

behavior deteriorates if extrapolation occurs.   

Distillation is an example of a process that would benefit from a model-based 

controller that can be built using plant historical data.  Distillation is one of the most 

commonly used processes in industry.  The high degree of interaction between process 

variables makes it a complicated problem for control.  Many different approaches have been 

applied to the product composition control problem.  Use of feedforward control algorithms 

along with standard feedback controllers was proposed as early as 1969 [17].  Since that 

time, there have been many applications of feedforward control to distillation processes.  

Among these, several have attempted to address the process response of product composition 
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to various input disturbances such as feed flow and feed composition [18-20], but none have 

attempted to compensate for multiple input disturbances occurring simultaneously.  Most of 

the work done has focused on one or two input disturbances, occurring at separate times.  In 

addition, most of the examples found in the literature are those of simulated distillation 

processes, not real processes.     

The purpose of this work is to demonstrate a method of developing a nonlinear 

process model under highly correlated inputs that can be used for a feedforward controller 

that will compensate for multiple input disturbances simultaneously.  The model can be 

developed using historical plant data collected under closed-loop conditions and still 

effectively determine cause-effect behavior between the inputs and output of the process.  To 

present this advancement, this paper is organized as follows.  The next section will present 

the methodology for developing the process model that will be used for the design of the 

proposed feedforward/feedback controller.  We will also discuss the methodology for typical 

feedforward/feedback control schemes, and then introduce the proposed 

feedforward/feedback control scheme.  In Section 3 we will present the distillation process 

that was used to evaluate the proposed methodology.  Then we will discuss the procedures 

for building the model on the distillation process, the implementation of a standard feedback 

controller and then the implementation of the proposed feedforward/feedback controller.  We 

will present the responses of the distillation process to a set of input disturbances for both 

feedback and feedforward/feedback control and demonstrate the improvement in control by 

using the proposed feedforward/feedback controller.  Finally, in Section 4 we will discuss the 

implications of this work for other types of processes.   
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2. Methodology 

2.1 Modeling Methodology 

Block-oriented models have been used to accurately describe many types of nonlinear 

process behavior.  The two most common block-oriented models are the Hammerstein and 

Wiener models, which have simple arrangements of two blocks, as shown in Fig. 1.  The 

Hammerstein model consists of a nonlinear static block (N) followed by a linear dynamic 

block (L), and the Wiener model has these two blocks reversed.  More complicated block-

oriented models consist of multiple blocks in various arrangements.  In this paper, we will 

discuss the LNL block-oriented model shown in Fig. 1(c), which has a linear dynamic block 

followed by a nonlinear static block and then another linear dynamic block.  

  

 

(a) 

 

 

(b) 

 

 

(c) 

 

 

Figure 1: (a) Hammerstein block-oriented model structure; (b) Wiener block-oriented model 
structure; (c) LNL sandwich block-oriented model structure. 
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Closed-form solutions to the Hammerstein and Wiener processes have been proposed 

by Rollins et al. [21] and Bhandari and Rollins [22] for continuous-time modeling (CTM), 

and are called the H-BEST and W-BEST methodologies, respectively.  A discrete-time 

modeling (DTM) method has also been developed by Rollins and Bhandari [23] that follows 

the CTM procedures for H-BEST and W-BEST.  This work is an extension of the DTM 

method for the W-BEST methodology.  This work also extends the developments of Rollins, 

et al. [24] in modeling diabetic subjects under free-living data collection to the modeling of 

real process data under freely existing conditions such as plant data.  In addition, it applies 

the principles used by Rollins et al. [25] to address inputs that are serially correlated.   

2.1.1. The Wiener model 

This section presents the formulation for the proposed discrete-time W-BEST 

method.  For a process such as that shown in Fig. 1(b), the general mathematical form is 

shown in Eqs. 1-2.   
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( ) ( )( )tft iii v=η         (2) 

where i refers to the output with i=1, …, q, j refers to the input with j=1, …, p, and vi(t) = 

[vi1, vi2, …, vip]T.   

Eq. 1 is written without dead time for simplicity, and there are no restrictions on the 

form of Eq. 2.  These can be converted to a discrete-time form by using a backwards 

difference approximation, resulting in Eq. 3.   
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where the δ’s and ω’s are functions of the dynamic parameters (a’s, and b’s) in Eq. 1.  

They are derived after the form of the linear dynamic block has been chosen by discretizing 

the differential equation, separating and collecting terms to get the form given by Eq. 3.   

The predicted output, ŷ, is then described by 

tititiy ,,, ˆˆ
ll εη +=         (4) 

under the assumption that  

( ) ll ∀2
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Under the condition of white noise, this is referred to as Model 1 [25].  In the presence of 

serially correlated inputs, the output ŷ is given by  
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Thus, the noise term Nt is ARMA(p,q).  If we let 
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then from Eqs. 7-8 we will get 
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And this is now in the white noise form, and Eq. 6 (the estimate of the output) becomes 

( ) ( ) L+−+−+= −−−− 222111 ˆˆˆˆ tttttt yyy ηφηφη       (10) 

This is now referred to as Model 2 [25].  In practice, the number of terms in Eq. 10 is finite 

because φi dies out as i increases.  Nonlinear least squares regression is used to determine the 

estimates of the δ’s, and ω’s in Eq. 3.  Note that the structures of the Model 1 and Model 2 

estimators (ŷ) are equivalent, but the coefficients will be different because the objective 

function for obtaining the SSE for each case is different.  In the case of Model 1, the 

nonlinear least squares objective function is  

( )2)1( ˆ∑ −= yySSE measured        (11) 

And in the case of Model 2, it is 

( )2)2( ˆ∑ −= ηmeasuredySSE        (12) 

2.1.2. Procedure for Model-Building 

The following is the procedure we developed for model building under freely existing 

data, and is a modification of the experimental design method in Rollins et al. [25]: 

1. Select the dynamic model form for Eq. 1, and estimate the static and dynamic 
model parameters under Model 1.  This is repeated until an acceptable model 
form is found.   

2. Using the residuals from step 1, determine the ARMA (p,q) form of Eq. 7 and 
estimates of the θp and φq parameters.   

3. Simultaneously refit the dynamic, ultimate response, and ARMA parameters 
under Model 2 if necessary.   

4. Check the residuals in step 3 for compliance to white noise 
 

The form of the ARMA (p,q) model is found using the autocorrelation function 

(ACF) and partial autocorrelation function (PACF).  Box and Jenkins [26] gives more 

complete information on how to use these to find the form and initial estimates of the 
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parameters p and q.  Note that in Rollins et al. [25], statistical design of experiments (SDOE) 

was used to determine input changes to the process.  In this case, we will be using historical 

plant data so no additional experiments need to be determined.   

2.2. Feedforward Control Methodology 

2.2.1. General Feedforward Controller Methods 

Feedforward control has been used in many industrial applications since the 1960s, 

including boilers, evaporators, dryers, waste neutralization plants and distillation processes.  

The basic concept was applied as early as 1925 in level control systems for boiler drums [1].  

 The concept of feedforward control allows for theoretically perfect control of a 

process system.  By measuring the disturbances (loads) of a process and modeling how these 

disturbances affect the process outputs, corrective action can be taken before the process 

outputs deviate from their desired values [1].  However, because there are many process 

disturbances that cannot be measured in a timely or efficient manner, feedforward control is 

typically used in conjunction with standard feedback control, which compensates for any 

deviation of the output variable from its setpoint, regardless of what caused the deviation.   

A typical feedforward/feedback control block diagram is shown in Fig. 2 .  The 

feedforward controller, Gf, is generally approximated by a linear model [27], but nonlinear 

process models can also be used [28, 29].  The model is found by determining how the 

process output responds to a given input disturbance.  By ignoring interactive behavior, a 

different Gf is typically found independently for each disturbance that is implemented into 

the feedforward control scheme [1], as shown in Fig. 2.   
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In order for the feedforward/feedback controller to provide perfect control of the 

output variable Y, we must first find the closed-loop response to an arbitrary change in the 

disturbance variable Xi.  The result is given by Eq. 13.   
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       (13) 

In the case of perfect control, Eq. 13 is set equal to zero and can be solved for Gf, the 

feedforward controller, as follows:   
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Figure 2: A typical feedforward/feedback control block diagram, with two disturbance 
variables on feedforward control.   
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Ideal feedforward controllers are physically unrealizable if Gp has a longer dead time than 

GLi or if Gp is a higher-order transfer function than GLi.  In these cases, the feedforward 

controller is often approximated by a lead-lag unit [1].  We will discuss how this problem is 

addressed with the feedforward controller of the proposed approach in the next section.   

2.2.2. Proposed Feedforward Controller Methodology 

The block diagram for the feedforward/feedback controller under Wiener modeling is 

shown in Fig. 3.  The first step in implementing this version of feedforward control is to 

identify the model parameters for the process being studied.  Once the model has been 

identified, the feedforward controller is designed. 
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Figure 3: The proposed feedforward/feedback controller under Wiener modeling.  The Xi’s 
represent the input variables, Y represents the controlled variable, M represents the controller 
signal. 
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As in the case of the traditional feedforward controller, we can find the closed-loop output 

response to a change in the input disturbance Xi.  Note that all variables are given in terms of 

deviation from an initial steady state.   

For any and all Xi ≠ 0, vi ≠ 0.  The change in MFF required for Y = f(v) = 0 is 

determined as follows.   
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Rearranging Eq. 16a gives 

( ) cbvavf mvmv ++= 2v         (16b) 
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Therefore, vmv can be determined using the quadratic equation.  As shown by Fig. 3, after 

determining vmv, MFF, the feedforward control law, is determined by  

mvvmvFF vGGM 11 −−=          (17) 

which gives y = 0 for changes in the measurable loads shown in Fig. 3 as required.  In the 

case where Gmv
-1Gv

-1 is physically unrealizable, an approximation will be used that takes on a 

form much like a derivative filter in an ideal PID controller.  For example, if  
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then the approximation takes on the form of 
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3. The Distillation Process 

The distillation process used was a pilot-scale methanol/water distillation column 

consisting of 12 trays, with an inside diameter of 6 inches.  Feed was introduced at Tray 4 

and had a concentration of 15% (mol) methanol.  A process instrumentation diagram of the 

column is shown in Fig. 4.  The column is connected to a DeltaV distributed control system 

from Emerson Process Management.   

3.1. Open-Loop Model Building 

3.1.1. Training Phase 

In order to first determine the feasibility of developing a Wiener model under highly 

correlated inputs for the distillation process, training and test data were collected in the open-

loop mode.  The input variables chosen for the experimental tests that were conducted 

included feed flow rate, feed temperature set point, reboiler level and reboiler steam pressure.  

Other variables that were measured on-line and used as input variables included reflux flow 

rate, column pressure, bottoms product flow rate, distillate product flow rate and overhead 

condensate temperature.  The output response of the process was the top tray (Tray 12) 

temperature, which was also measured on-line.   

An experimental design was chosen for three levels of the first four input variables, 

using a Box-Behnken statistical design (see [32]), with the feed flow rate and feed 

temperature set point having a correlation coefficient of 0.94.  This was done to give the 

effect of highly correlated inputs to demonstrate effective modeling of the proposed approach 
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under conditions typical of plant data.  The input changes used for the training of the model 

are shown in Figs. 5-9.   

 
Figure 4: Process instrumentation diagram of the distillation process used for the 
experimental tests [30].  The column is connected to a DeltaV control system from Emerson 
Process Management.  The dashed boxes indicate the four input variables that were 
deliberately changed.  (1-feed temperature, 2-feed flow, 3-reboiler level, 4-steam pressure) 

1 

 
 
 
 
 
   2 

 
 
 
 
 
    
 
 
   3 

 
 
 
 
        4 



 
73 

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 50 100 150 200 250

Time (min)

St
ea

m
 P

re
ss

ur
e 

 (p
si

)  
   

.

 
Figure 5: The input changes in steam pressure that occurred during the open-loop model 
identification.  The changes are in terms of deviation variables. 
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Figure 6: The feed temperature set point input changes that occurred during the open-loop 
model identification.  The changes are in terms of deviation variables.   
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Figure 7: The feed flow input changes that occurred during the open-loop model 
identification.  The changes are in terms of deviation variables.  
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Figure 8: The reboiler level input changes that occurred during the open-loop model 
identification.  The changes are in terms of deviation variables.  
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Figure 9: The reflux flow rate input changes that occurred during the open-loop model 
identification.  The changes are in terms of deviation variables.  
 
 

Note that in Fig. 6 the feed temperature set point was the input variable, but the feed 

temperature displays significant dynamic response to the set point changes and also to the 

feed flow changes.  Because of this, we included dynamics on the feed temperature set point 

which relate the observed feed temperature with the feed temperature set point and feed flow 

changes.  The other input changes displayed very little dynamic response to set point 

changes, so the measured values of those input variables were used directly in the model 

building process.  The block diagram for the open-loop process is shown in Fig. 10.   
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Figure 10: The block diagram for the open-loop distillation process.  T12 is the Tray 12 
temperature, TF

set is the feed temperature set point, F is the feed flow rate, RL is the reboiler 
level, RF is the reflux flow rate, Ps is the steam pressure, PC is the column pressure, DF is the 
distillate flow rate, BF is the bottoms flow rate and TOH is the overhead condensate 
temperature.   
 
 

Using the procedures listed in Section 2 above, the dynamic blocks were chosen to be 

second-order-plus-lead forms.  That is, in the Laplace domain, all the dynamic blocks have 

the form 

( ) ( )
( ) 12

1
22 ++

+
==

ss
s

sX
sVsG

iii

ai

i

i
i ζττ

τ       (20) 
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where i=1,…,p, p is the number of inputs, τai is the lead (or zero) parameter, τi is the time 

constant and ζi is the damping coefficient.  For the static nonlinear block, we used a second-

order regression model that included interactions between the inputs, given by 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )tvtvctvtvc

tvbtvbtvatvaaty

pppp

ppp

1,1212,1

2
1

2
11110

−−++

++++++=

L

LL
   (21) 

All of the variables represent deviations from an initial steady state.  In order for the system 

to be dynamically stable and physically meaningful, the parameters are restricted to τi > 0 

and ζi > 0.  It should be noted that the use of the discrete-time model equations given by 

Equations 4 and 5 allow for the linear dynamics to vary between underdamped (i.e., 0 < ζi < 

1) and overdamped behavior (i.e., ζi > 1) during the optimization process to estimate the 

parameters [24].  It should also be noted that parameter estimation for the training phase of 

the open-loop model identification was done under Model 1.   

Given the model form chosen, the differential equation representing the linear 

dynamic blocks is of the form  

( ) ( ) ( ) ( ) ( )tx
dt

tdxtv
dt

tdv
dt

tvd
i

i
aii

i
ii

i
i +=++ τζττ 22

2
2     (22) 

This results in a discrete-time solution for vi(t) = vi,t at sampling time t of 

2,,21,,12,,21,,1, −−−− +++= tiitiitiitiiti xxvvv ωωδδ      (23) 

where ω2,i = 1-δ1,i-δ2,i-ω1,i in order to satisfy the requirement of unity gain, and 
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where Δt is the sampling interval.  For a complete overview of how to do derive these 

parameters from Eq. 25, see Rollins et al. [24].  The optimization routine changed the 

parameters τi, τai and ζi under the constraints for dynamic stability given above, calculated 

the dynamic discrete-time parameters using Eq. 24, determined the values for vi,t using Eq. 

23, and finally, computed the predicted value of the output, ŷt using Eq. 21.   

The fitted model parameters from the open-loop model identification process are 

shown in Table 1.  The fit of the feed temperature based upon feed temperature set point and 

feed flow rate changes are shown in Fig. 10, and the output response (Tray 12 temperature) 

to the input changes made during the model identification process are shown in Fig. 11.   

Table 1: Fitted model parameters from the open-loop model identification process. 
Input Parameter (i) τi ζi τai 
Steam Pressure 1.396978 2.820889 -3.03288 
Feed Temperature 4.58391 5.402179 -0.67471 
Feed Flow Rate 0.165333 2.157524 1.274657
Reflux Flow Rate 4.377505 1.399567 -0.70564 
Reboiler Level 1.572078 3.431548 0.743615
Column Pressure 0.02197 1.192745 -0.01899 
Overhead Temperature 3.11355 2.491256 0.683125
Bottoms Flow Rate 2.425401 1.497818 0.71684 
Distillate Flow Rate 0.99697 1.998645 0.000325
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Figure 10: The feed temperature input changes made during the open-loop model 
identification process.  The feed flow rate and feed temperature setpoint inputs are used to fit 
a model to represent the observed feed temperature. 
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Figure 11a: The observed top tray temperature response and fitted (Model 1) response to the 
input changes made during training for the open-loop model identification process.   
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Figure 11b: A close-up look at Fig. 11a with time ranging from 40-70 minutes. 
 
3.1.2. Testing Phase 

In order to test the model that was built during the training phase, another series of 

input changes was made to the distillation process.  In this case, a Box-Behnken design with 

four factors and three center points was run, but this time the correlation between the feed 

flow rate and feed temperature set point was zero.  This was done to demonstrate that the 

model built under high correlation was able to determine accurate cause-and-effect behavior 

between the input and output variables.  As in the training phase, only four inputs were 

deliberately changed, but an additional five inputs were measured on-line and used in the 

prediction of the output response.  The input sequence used for the testing phase is shown in 

Fig. 12.   
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Figure 12: The input changes made during the testing phase of the open-loop model 
identification process.   
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Figure 13a: The observed and predicted values of the Tray 12 temperature under Model 1 
during the testing phase of the open-loop model identification process.   
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Figure 13b: Close-up look at the observed and predicted values of the Tray 12 temperature 
under Model 1 during the testing phase for time ranging from 120-160 min   
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Figure 14a: The observed and predicted values of the Tray 12 temperature under Model 2 
during the testing phase of the open-loop model identification process. 
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Figure 14b: Close-up look at the observed and predicted values of the Tray 12 temperature 
under Model 2 during the testing phase for time ranging from 120-160 min. 
 

Under Model 1, the testing phase of the model identification process in open-loop 

showed that there was some small but observable bias between the predicted and observed 

values of the output variable.  This can be seen in Fig. 13b.  As a result, Model 2 was 

implemented and the fit of the predicted values was much better, and is shown in Fig. 14b.  

Quantitatively, this can be summarized by the coefficient of determination, defined as 

( )SSTSSEr /12 −= .  For Model 1, r2 = 0.832 and for Model 2, r2 = 0.965.  Therefore, Model 

2 was chosen for the closed-loop model building process.   

3.2. Closed-Loop Feedback Control and Model Building 

A standard proportional-integral (PI) feedback controller was implemented using the 

DeltaV software connected to the distillation column.  The controlled variable was the Tray 

12 temperature, and the manipulated variable that we chose was the reflux flow rate.  Tuning 



 
84 

parameters for the PI controller were found using the “DeltaV Tune” feature built in to the 

control system.  This feature made small changes to the reflux flow valve, determined the 

process dynamics, and provided suggested values for the tuning parameters based upon 

Ziegler-Nichols estimations [31, 1].    

Given that we were able to accurately model the column behavior with large cross-

correlations in open-loop mode, we felt confident in our ability to develop a model under 

closed-loop control. For the closed-loop model identification, the input series was the same 

as that used during the training phase of the open-loop model building. The model 

parameters that were identified are given in Table 2, and the process response to the input 

changes is shown in Fig. 15.  This model was developed from data collected from the column 

on March 18, 2008.  Once again, the model identified is able to accurately predict the output 

behavior, and this is seen in Fig. 15.   

Table 2:  Model parameters identified during the closed-loop model identification process.   
Input Parameter (i) τi ζi τai 
Steam Pressure 1.056943 0.546046 -1.05117 
Feed Temperature 3.0194371 2.7537438 -1.0203227
Feed Flow Rate 0.593302 0.07315 0.616065 
Reflux Flow Rate 0 0 0 
Reboiler Level 1.364168 0.409419 0.196817 
Column Pressure 0.365075 2.643698 -4.66672 
Overhead Temperature 1.685189 0.700723 0.887374 
Bottoms Flow Rate 1553132 0.365697 0.553574 
Distillate Flow Rate 1.986547 0.844026 -1.07884 
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Figure 15a: The observed and predicted values of the Tray 12 temperature under Model 2 
during the training phase of closed-loop model identification on March 18, 2008. 
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Figure 15b: The observed and predicted values of the Tray 12 temperature under Model 2 
during the training phase of closed-loop model identification for time between 70-110 min. 
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To evaluate this model, test data collected on March 8, 2008 were used.  As shown in Fig. 

16, even though there are 10 days separating these runs, the agreement is excellent, verifying 

that the model can hold up over time, despite the fact that the distillation column is shut 

down in between runs.   
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Figure 16a: The observed and predicted values of the Tray 12 temperature under Model 2.  
This data was collected from the tests run on March 8, 2008.  
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Figure 16b: The observed and predicted values of the Tray 12 temperature under Model 2 for 
time between 60-100 min.  This data was collected from the test run on March 8, 2008.  
 
3.3. Implementation of the proposed feedforward/feedback control scheme 

The controller parameters (gain, reset) for the PI controller were not changed when 

the feedforward controller was implemented, for the sake of demonstrating the effect of the 

feedforward controller on the process output.  The feedforward controller was implemented 

using Eqs. 21-22 above.   

For this particular case, the reflux flow rate had virtually no dynamics associated with 

it.  Because of this, the linear dynamic function Gmv
-1 is essentially equal to unity, and  

mvmv xv ≈          (25) 

In addition, the valve dynamic function in this case is a simple static nonlinear function given 

by  

cbxaxout mvmv ++= 2%        (26) 
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where out% represents the position of the control valve (0 = fully closed, 100 = fully open) 

and xmv is the desired value of the reflux flow rate, as determined by the feedforward 

controller.  In cases where the manipulated variable has significant process dynamics, the 

implementation of the feedforward controller will become slightly more complex.   

3.4. PI controller vs. FFPI controller process responses 

The feedforward/feedback controller that we developed was tested and compared to 

the feedback controller alone.  The column was tested first under regulatory control, where 

all inputs only varied as a result of normal process operations.  In this case, by turning the 

feedforward part of the controller on, a significant reduction in process variability was 

observed.  This is shown in Fig. 17.  To test the feedforward/feedback controller under more 

extreme conditions, a series of three input changes was made to the process with the 

feedforward controller active, and this input sequence can be seen in Fig. 18.  After the three 

changes were made, the feedforward controller was turned off and the system was allowed to 

reach steady state before introducing the same three input changes again.  Fig. 19 shows the 

response of the tray 12 temperature in both feedforward/feedback and feedback only control 

to the input changes that were made under these conditions.   
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Figure 17:  The observed Tray 12 temperatures under feedback only (PI) and 
feedforward/feedback (FFPI) control when process inputs are not deliberately being 
disturbed.  Changes in the inputs are a result of only normal operational variability.   
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Figure 18: The input changes made to test the proposed feedforward/feedback controller and 
the feedback only controller.   
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Figure 19: The output responses of the tray 12 temperature under feedforward/feedback (FF 
+ FB) control and feedback (FB) only control to the series of input changes that is given in 
Fig. 17.   

 
In order to quantitatively compare the results of implementing the feedforward 

controller, the average absolute error (AAE) term is used.  This is defined as 

n

TT
AAE n

measuredsetpo∑ −
=

int

        (27)  

Under regulatory control, for the PI only controller, AAE = 0.563 and for the FFPI controller, 

AAE = 0.168.  This represents a reduction in process variability of 70.1%.  In the case where 

inputs were deliberately changed to test more extreme process conditions, for the PI 

controller the AAE = 0.192, while in the case of the FFPI controller, AAE = 0.134.  This 

represents a 42.8% reduction in the variability of the Tray 12 temperature.  In addition, we 

can also examine the range of the temperature that is measured on Tray 12.  Under the more 

extreme process conditions, for the PI controller the temperature varies from 63.5°C to 
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66.7°C (3.11° range), and for the FFPI controller the temperature varies from 64.4°C to 

65.8°C (1.41° range).  Thus, the range of the temperature measured on Tray 12 is reduced by 

54.6%.   

4. Conclusions 

In this paper, we have presented a methodology for developing a Wiener block-

oriented model from plant data that accurately predicts process response behavior to multiple 

input disturbances that are occurring simultaneously.  The model was implemented into a 

feedforward/feedback control scheme and demonstrated marked improvements over 

traditional feedback control.  The ability to develop the model with plant historical data 

under closed-loop conditions represents a significant advantage over traditional model-

building techniques, which require specific perturbations of the process that can affect plant 

operations.   

This work will be extended to other types of chemical and biological process systems 

for further investigation.  Specifically, the work done by Rollins et al. [24] to predict glucose 

response in type 2 diabetics will be extended to close the loop on glucose concentration.  The 

implications of this for persons with type 1 and type 2 diabetes are tremendous, as the ability 

to control glucose levels at a desired level will greatly affect their longevity and quality of 

life.   
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CHAPTER 6.  CONCLUSIONS AND FUTURE WORK 

1.  Conclusions 

The increasing pressure in industry to maintain tight control of processes has led to 

the development of many advanced control algorithms.  Many of these are model-based 

control schemes, which require an accurate predictive model of the process to achieve good 

controller performance.  Because of this, research in the field of nonlinear process modeling 

has advanced over the past several decades.  Included among the types of nonlinear models 

that have been developed are block-oriented models, which combine linear dynamic blocks 

(L) with static nonlinear blocks (N) in varying configurations.   

As we have seen, the Hammerstein Block-oriented Exact Solution Technique (H-

BEST) and Wiener Block-oriented Exact Solution Technique (W-BEST) modeling 

methodologies have been shown to give accurate and efficient predictions of process output 

behavior for several different types of processes.  The methodologies can be easily extended 

to include other types of block-oriented models, such as LNL “sandwich” type models, and 

accurately predict process output behavior in these systems as well.  The initial studies into 

using these methods were presented in Chapter 3.   

In Chapter 4, the complete methodology for identifying the LNL block-oriented 

model was presented.  It used statistical design of experiments to determine the input changes 

to be made to the process in order to identify model parameters.  The methodology was 

demonstrated on a simulated continuous-stirred tank reactor (CSTR) process and accurately 

predicted the reactor temperature response to changes in four input variables.  A new 

feedforward/feedback control algorithm was introduced that uses the identified LNL model 

to compensate for multiple input disturbances that were occurring simultaneously.  This 
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represents a significant advancement in model-based control, because it is able to account for 

interactions between process inputs, nonlinearities in the process dynamics and does not 

require the process model to be invertible.   

Chapter 5 presents an extension of the W-BEST modeling methodology to include the 

ability to identify a process model using highly correlated input data, such as that which 

would be found in a plant historical database.  It was shown that a model could be built under 

open- or closed-loop process conditions, and still give accurate predictions of process 

behavior.  In this case, real data from a pilot-scale distillation column was used to develop 

the model.  A new feedforward/feedback control algorithm based upon the identified Wiener 

model was presented, and it is able to compensate for multiple input disturbances 

simultaneously.  It was implemented on the real distillation column with excellent results - 

the feedforward/feedback controller performance was compared to standard feedback 

control, and showed a significant reduction in process output variability.   

The work in Chapter 5 introduces an exciting possibility for control engineers in 

industry.  Using the proposed methodology, they will have the ability to retrieve data from 

their plant historical database, use it to build a model of the process, and implement this 

model into a feedforward control algorithm that compensates for multiple input disturbances 

simultaneously.  This eliminates the sometimes tedious and costly task of introducing 

perturbations to an industrial process, which may cause significant process upsets and pose a 

risk to the safety of the plant operations personnel.   
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2.  Future Work 

Along with the successful implementation of the proposed model identification 

methodologies and feedforward/feedback control algorithms, there have been numerous 

questions raised that require further extension of this work.   

Although the feedforward/feedback control scheme makes a significant improvement 

in the process variability and can compensate for multiple input disturbances simultaneously, 

it can only address those inputs that are measurable in a timely and efficient manner.  Many 

other variables exist that may not be able to be addressed.  Because of this, further research 

should be done to apply the concepts of model predictive control in conjunction with the 

feedforward algorithms proposed here.  Doing this could result in an even greater 

improvement in the control of the process output variables.  Ideally, this work will be 

implemented on a real process in an industrial setting, and will contribute to greater 

efficiency in plant operations, and a higher level of safety, quality and production yield.   

In addition, other types of processes should be investigated.  In this work, only a 

CSTR and a distillation process were examined.  Some preliminary work has been done by 

Rollins et al. [1, 2] to predict blood glucose response in type 1 and type 2 diabetic patients 

using the principles of the W-BEST methodology.  Understanding how different input 

variables affect the glucose response is the first step toward being able to control glucose 

levels.  By using the feedforward control principles developed here, one could essentially 

“close the loop” on glucose response in patients.  For type 1 diabetics, this would include 

manipulating the flow from an insulin pump that currently operates only on feedback control.  

For type 2 diabetics, this would be more indirect, but it would help them to understand how 

to eat, exercise, etc. to best control blood glucose levels on a given day.   
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