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A unified analysis is presented of submonolayer nucleation and growth of two-dimensional islands and
the subsequent transition tomultilayer growthduringmetal-on-unreconstructedmetal(100) homoepitaxy.
First, we review and augment recent developments in submonolayer nucleation theory for general critical
size i (above which islands are effectively stable against dissociation). We discuss choices of “capture
numbers” foraggregationofadatomswith islands,andramifications for islanddensity scalingwithdeposition
flux and substrate temperature. We also characterize a “direct” transition from critical size i ) 1 to a
well-defined regime of i ) 3 scaling, with increasing temperature, for sufficiently strong adatom-adatom
bonding. We note that there exists no well-defined regime of integer i >3. The submonolayer island
distribution provides a template for subsequent unstable multilayer growth or “mounding” (which we
contrast with “self-affine” growth). This mounding is induced by the presence of a step-edge barrier for
downward diffusive transport in these systems. We characterize resulting oscillatory height correlation
functions and non-Gaussian height and height-difference distributions. We also develop an appropriate
kinematic diffraction theory to elucidate the oscillatory decay of Bragg intensities and the evolution from
split to nonsplit diffraction profiles. Finally, we analyze experimental data for Fe(100) and Cu(100)
homoepitaxy and extract key activation barriers for these systems.

I. Introduction

In this report we review and further develop under-
standing of submonolayer nucleation and growth of two-
dimensional (2D) islands during deposition,1-3 and of the
subsequent kinetic roughening of the growingmultilayer
film.4,5 We focus on application to metal-on-unrecon-
structedmetal(100) homoepitaxy.3 Deposition for typical
fluxes and substrate temperatures results in the system
being driven far from equilibrium, since equilibrating
processes such as coarsening (e.g., via Ostwald ripening6
or large cluster diffusion7 ) are ineffective on the time
scale of deposition. The film structure is thus kinetically
rather than thermodynamically determined. Through
modeling, one attempts to elucidate the detailed atomic
mechanisms controlling film structure, while extracting
basic system parameters.
These parameters include the activation barrier, Ed,

for terrace diffusion, the adatom-adatom bond energy,
Ebond, and the additionalEhrlich-Schwoebel or step-edge
barrier,ESch, to downward diffusive transport.8 At lower

temperatures, T, where island formation is irreversible,
the submonolayer island density,Nav, is controlled by the
rate for the dominant terrace diffusion mechanism, h )
ν exp[-Ed/(kBT)], be it bridge hopping or place exchange.9
However,Nav also depends onEbond at higherTwhere the
effective rate at which single bonds break, hdiss )
ν exp[-(Ed + Ebond)/(kBT)], is significant and thus where
island dissociation is operative. The kinetic roughening
of multilayer films is very sensitive to the dominant rate,
hSch ) ν exp[-(Ed + ESch)/(kBT)], at which adatoms are
transported down off the edge of islands, be it by hopping
or exchange. Here we have assumed a single value for
theprefactors, ν, and ignore thepossibility of distinct step-
edge barriers at kinks.
A general theme in this paper is that submonolayer

structure, which is determined by the details of the
nucleation and growth processes, influences the subse-
quent structure of the growing multilayer film. This
correlation should be particularly strong for thin films up
to a few dozen monolayers, which is often the regime of
experimental interest. Thus below we first describe
models for submonolayernucleationandgrowthof islands,
before discussing general paradigms and specific models
for multilayer kinetic roughening. We focus on recent
developments and controversies.
The followingmodels for submonolayer nucleation and

growth have been studied by simulation and rate equa-
tions. In all cases, atoms deposit randomly at rate R per
site, diffuse on the terrace with rate h, and subsequently
nucleate, aggregate with, and possibly dissociate from
islands.
(A) Models with Prescribed Critical Size, i. Here

islands or clusters of size s > i are stable and never
dissociate.1-3 For i > 1, key parameters controlling
nucleation of stable islands include Ed and the binding
energy, Ei > 0, for critical clusters of i adatoms. (Ei is
related to Ebond.) In rate-equation studies, it is often
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assumedthat substable clustersare inquasiequilibrium.10
In simulation studies, onemust prescribe the dissociation
and recombination of substable islands, stable-island
structure,mobility, andpossible restructuring before and
after coalescence with other islands,11 etc.
(B) Models with Prescribed Bond Scission.12

Choices include (i) no breaking of any (single or multiple)
bonds, corresponding to i ) 1; or (ii) breaking of single,
but not multiple bonds. The latter produces a model
similar to i) 2 on a triangular lattice (triangular trimers
are stable, but not larger islands with singly bonded
adatoms) and i ) 3 on a square lattice (tetramers are
stable, but not larger islands with singly bonded atoms).
Island restructuring must also be prescribed. These
models produce behavior similar to (A).
(C) Nearest-Neighbor (NN) Pair-Interaction

Models.13-15 Here there is no a priori prescription of
island stability and structure, or of the critical size, i.
Adatoms can hop to empty nearest neighbor sites, with
an activation barrier commonly chosen to satisfy Eact )
Ed + nEbond, where n is the number of intralayer NN
adatoms before hopping, and again Ebond > 0 is the bond
energy. Here hopping at island edges and around island
corners is greatly inhibited, contrastingbehavior inmetal-
(100) homoepitaxy.3 Thus equilibration of island shapes
to compact (square) forms, via edge diffusion, is difficult.
(However, evaporation-recondensation can provide an
efficient alternative pathway15 for higher T.) Of course,
one could implement alternative forms of Eact which
enhance rates for edge hops, while preserving detailed
balance.16

(D) Classically “Exact” Treatments of Surface
Diffusion. At the level of transition state theory, this
requires a “catalogue” of exact Eact values17 for all
configurationsof the local environment influencingadatom
hop rates. These are incorporated into growth simula-
tions. Only approximateEact values can be obtained from
theories such as the embedded atom method18 (EAM),
corrected effective medium theory19 (CEM) and its sim-
plifications, or effective medium theory20 (EMT). Since
nucleation behavior depends sensitively on the values of
a few key barriers, uncertainties in these values limit the
predictive capability of this approach. However, some
success has been achieved21 by, e.g., uniformly rescaling
all theoretical values to match an observed Ed.
A central issue of nucleation theory is the scaling ofNav

with substrate temperature, T, and deposition flux, R.
Traditional rate-equation analysis for models of type (A)
yields1-3

with

at fixed coverage, θ, and assuming quasi-equilibrium of
substable clusters. However, the traditional analysis
assumes that the “capture numbers”, Ks, describing the
propensity of islands to incorporate diffusing adatoms,
are independent of island size, s. In section II, we discuss
a recent and more realistic treatment for i ) 1, and
generalizations to i > 1, but only considering the tradi-
tional models of type A. A recent simulation study14,15
using amodel of type C suggested that the classic scaling
(1) breaksdown, and that therearenowell-defined critical
sizes with integer valued i > 1. If true, this would have
significant ramifications for the interpretation of experi-
mental data. Thus we address and clarify this issue in
section III. We shall always assume that stable islands
are immobile. It has been shown22-24 that small cluster
mobility can potentially affect Nav scaling, but we have
not found24 strong experimental evidence that small
cluster mobility is significant in metal(100) homoepitaxy
at low T. (At higher T, the increase in critical size, i, has
the dominant effect on Nav.) However, we note that the
island size distribution is much more sensitive to even
small amounts of small cluster mobility (see section VI
and ref 24).
For multilayer growth and kinetic roughening, two

general paradigms, A and B below, are available to
describe film morphology and evolution.25-28 Their com-
mon feature is that the film roughens globally due tonoise
in the deposition process but that counterbalancing local
equilibratingprocesses tend toproducea locally stationary
structure. The interfacewidth,W, definedas the standard
deviation of the film height distribution, characterizes
surface roughness. It is assumed25 tohave theasymptotic
form W ∼ θâ (or W2 ∼ ln θ, if â ) 0), for multilayer films
with coverages (or average heights) θ . 1.
(A) Selection of a Locally Self-Affine Stationary

Structure.25 Here the local structure of the filmbecomes
invariant under a rescaling of the lateral dimensions by
x f λx, and of the vertical dimension by z f λRz. The
exponent R is nontrivial and, together with â mentioned
above, determines the universality class of film growth.
A large number of so-calledMBEmodels,29 which display
this behavior, have been developed to describe real film
growthprocessesandtodetermineassociateduniversality.
However, these typically oversimplify or neglect the
process of submonolayernucleationandgrowthof islands,
neglect the step-edge barrier, andhave focused on scaling
in the asymptotic regime of very thick films.
(B) Unstable Growth or “Mounding” Induced by

a Step-Edge Barrier.26-28 - Here the tendency for
adatoms tobe reflectedat descending steps leads to biased
incorporation at ascending steps. This constitutes a
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lateral mass flow or current in the uphill direction. This
current produces unstable growth, and specifically “mound-
ing”. One possibility is that due to the presence of some
counterbalancing downhill current, a stable slope of the
mounds is selected, and thereafter the mounds continue
to coarsenwithbothbasewidthandtheirheight increasing
as θn (so â ) n here). While the presence of a downhill
current has been proposed based on crystal symmetry
arguments,27 it is primarily determined by details of the
deposition dynamics, as we discuss below. We also note
that recent simulation studies do not always find perfect
slope selection and instead sometimes find a slowly
increasing slope.30

We describe basic real-space behavior in both these
models in section IV, as well as the corresponding
kinematic diffraction theory necessary for interpretation
of surface-sensitive diffraction data in section V. While
the self-affine models have received themost attention,25
and the diffraction theory has been developed exclusively
for these,5 the unstable growth models are more ap-
propriate for the systems of interest here. For unstable
growth models, we make some basic new observations
concerning oscillatory height correlations, vertical asym-
metry in the filmheight distribution, and deviations from
anticipated Gaussian height-difference distributions, which
lead to dramatic refinements in the existing diffraction
theory.31

Nextwe remark that it is crucial to incorporate a correct
description of adsorption site geometry, and a realistic
treatmentof thedepositiondynamics, forprecisemodeling
of multilayer growth in systems such as metal(100)
homoepitaxy.32 Anunphysical simple-cubicgeometrywith
on-top adsorption sites has been used almost universally
in previous modeling. In contrast, a 4-fold-hollow (4FH)
adsorption site geometry applies for both fcc(100) andbcc-
(100) homoepitaxy, and the deposition dynamics involves
adownward funnelingordeflection fromindividualatoms,
step edges, or other small microprotrusions to such 4FH
sites.32 Other (nonthermal) transientmobility, clumping,
andknockoutprocessesarealsopossibleduringdeposition
and would affect film morphology.32

Perhaps the most dramatic effect of incorporating
realistic adsorption site geometry and dynamics is that
one finds very smooth (rather thanvery rough) growth33,34
at lowT. Onemightexpect that theseeffectswouldquickly
become insignificant with increasing T, i.e., with increas-
ing diffusion length and submonolayer island sizes.
However, replacing the standard simple-cubic geometry
with a realistic geometry and deposition dynamics in
standardMBEmodels produces significant differences in
roughening behavior even for substantial diffusion
lengths.35 We shall also see that appropriate geometry
anddepositiondynamicsarecrucial ingredients inrealistic
models of unstable growth and mounding in metal(100)
homoepitaxy.
Finally, in section VI, we apply the above ideas for

submonolayernucleationandgrowth,aswellasmultilayer
kinetic roughening, toanalyze indetail theexperimentally
observed behavior in Fe(100) and Cu(100) homoepitaxy.

II. Submonolayer Nucleation and Growth with
Prescribed Critical Size

Wefirst discuss “mean-field” rate-equationdescriptions
fornucleationandgrowthof compact islandswith isotropic
diffusion and prescribed critical size i, models of type A
in section I. Here “mean-field” means that the local
environment of each island is assumed to be independent
of the size and shape of the island. We also assume that
stable islands are immobile. Such rate equations have
been invaluable in elucidating scaling behavior of the
island density,1-3 Nav, although here we also note their
limitations in predicting full island size distributions.
Below, R denotes the deposition rate and h the isolated
adatom diffusion rate, as described in section I.
LetNs denote thedensity (per adsorption site) of islands

of size s, so θ ) ∑sg1sNs is the total coverage, and Nav )
∑s>iNs. WealsodefineN1*)N1/(1- θ) as the renormalized
density of isolated adatoms on the bare substrate.1 Then,
for precoalescence θ, the rate equations for the densities
of stable islands are1-3,14

wherebs∼ s1/2 gives themeanperimeter length for compact
islands of size s atoms, and the Ks are “capture numbers”
describing the propensity for islands of size s to capture
diffusing adatoms. One typically assumes that islands of
size s e i are in quasi-equilibrium. This leads to the
Walton relation1-3,10 for the density of critical clusters,Ni
≈ (1 - θ) exp[Ei/(kBT)](N1*)i, which, together with the
identity θ ) Rt ≈ N1 + ∑s>isNs, allows integration of (2).
The solutions of (2) are expected to exhibit scaling of

the form3,11

for large average island size, sav≡ ∑s>isNs/∑s>iNs∼ θ/Nav.
The scaling function, F(), satisfies ∫0∞ dx F(x,θ) )
∫0∞ dx xF(x,θ) ) 1. The dependence of F(x,θ) on θ is weak
in the precoalescence regime below about 0.2 monolayer
(ML), but it is strong forhigher coverageswheresignificant
island coalescence and, ultimately, percolation occur.11
Since some degree of coalescence occurs even at low θ,
there can be no strict “dynamic scaling”,36 i.e., strict
independence of θ (except for idealized “point island”
models37 ).
The scaling of Nav (or sav) is most easily assessed by

reducing the full set of equations (2) to an approximate
coupled pair1-3 for Nav and N1:

where Kav ) ∑s>iKsNs/∑s>iNs ∼ (sav)-1∑sKsF(s/sav,θ) is the
average capture number for stable islands. Analysis of
(4) reveals a “short” transient regime, where N1 rapidly
builds up.1-3 This is followed by a “steady-state” regime,
where the gain inN1 due to deposition is roughly balanced
by the loss primarily due to aggregation to islands, so one
has dN1/dt ≈ 0 or N1* ≈ R(1 - θ)/(hKavNav). This result
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dNs>i/dt ) R[(s - 1)Ns-1 - sNs] on-top deposition

+ R[bs-1Ns-1 - bsNs] adjacent deposition

+ hN1*[Ks-1Ns-1 - KsNs] aggregation (2)

Ns>i ) [θ/(sav)
2]F(s/sav,θ) (3)

dN1/dt ≈ R (1 - θ) - hKav (N1*) Nav (4a)

dNav/dt ≈ (1 - θ)hKi exp[Ei/(kBT)](N1*)
i+1 (4b)
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canbe substituted into theNav-rate equation in (4b),which
can thenbe integrated givenKav (andKi). Wenowdiscuss
various choices for the Ks and determine the associated
basic scaling exponents, ø and ω, where Nav ∼ Rø and N1
∼ Rω, at fixed T and θ.
II.1. Idealized Choices of Capture Numbers Ks.

(A) Constant Ks ) K, so Kav ) K. We motivate this
traditional choice1-3 with the observation that diffusing
adatoms execute 2D space-filling random walks, so their
capture by islands should not depend strongly on their
size (at least for well-separated islands at low θ). This
choice produces the conventional scaling1-3 (1)

the latter following from the steady-state relation
(h/R)KNavN1 ≈ 1.
(B)Ks∼ spNav

q for s> i, with constant p and q, and
Ksei ) O(1), so Kav ) θpNav

q-p∫dx xpF(x), ignoring the
θ-dependence of the island size scaling function, F().
Blackman and Wilding38 considered the choice p > 0 and
q) 0 (soKs∼ sp), attempting to describe perimeter-length
mediated capture (so p ≈ 1/2 for compact islands). The
more general choice, p > 0 and q > 0 (in particular p )
q > 0), is motivated by the work of Ratsch et al.14
Limitations of these choices are discussed below. In the
general case, integration of (4) yields

for p e 1/(i + 1), and

for p g 1/(i + 1). In either case, one has (1 + q - p)ø +
ω ) 1, which follows from the steady-state relation
(h/R)KavNavN1 ≈ 1. Other ø(p,q) and ω(p,q) forms result
for different choices of Ki (see ref 39).
We remark that the case p g 1/(i + 1) is complicated by

the feature that the “rapid” decrease of Kav to zero, as θ
f 0, creates a divergence in the integration of the Nav-
rate equation. In fact, this equation should only be
integrated back to the beginning of the steady-state
regime, θ≈ θmin. One alternative approach herematches
transient regime behavior, Nav ≈ (i +2)-1Ki(h/R) ×
exp[Ei/(kBT)]θi+2 andN1≈ θ, to steady-state behavior,Nav
≈R/(hKavN1), when θ ) θmin. This determines the scaling
of θmin and Nav(θ ) θmin). We have shown that the latter
coincides with Nav scaling at fixed θ, and reproduces (7).

II.2. Realistic Choices for Capture Numbers Ks.
(A) Bales and Chrzan40 (BC) Ks values were obtained
byanalyzing thediffusionequation for irreversible capture
of adatoms at circular islands of radii Rs ≈ (2π)-1/2s1/2,
with an approximate treatment of the “stochastic back-
ground” of other islands. One finds that

where the Kn are modified Bessel functions of order n.
Thus g(y) ∼ 1/|ln(y)|, as y f 0, and g(y) ∼ y, for larger y.
Noting that sNav)2π(Rs/lav)2, it immediately follows that
Ks ) k(sNav), corresponding to “p ) q” in the formalism
(B) of section II.1. Here k() is a scaling function satisfying
k(x) ∼ 1/|ln(x)|, as x f 0, and k(x) ∼ x1/2, for larger x, so
“p ) q f 0”, as θ f 0, and “p ) q ≈ 1/2”, for higher θ.
Although the BC analysis was for i ) 1, it is clear that

their results for Ks apply also for irreversible capture by
stable islands for any i > 1. Integration of the Nav rate
equation in (4b) is free of divergence since Kav ) Kav(θ) )
∫ dx k(xθ)F(x,θ) ∼ 1/|ln(θ)| f 0 so slowly, as θ f 0, and
produces conventional scaling (1). Clearly, the BC Ks
values do not apply for higher θ where coalescence is
significant; however presumably Nav scaling is already
“locked in” by this stage.
(B) Generic Form for the Ks. Since the BC form

derives from a circular island geometry and incorporates
only an approximate treatment of the “background
islands”, it is appropriate to search for a generic form.
This would hopefully incorporate the essential features
of the exact capture numbers for general compact island
geometries. We propose41 Ks ∼ (sNav)p(sNav), where p(x) ∼
1/|ln(x)|f 0 as x f 0, and p(x) ≈ 1/2 for larger x. Thus Ks
values are effectively independent of s (p ≈ 0) for low θ
but reflect perimeter-mediated capture (p≈ 1/2) at higher
θ.
We remark that conventional scaling (5) is in fact found

in simulations ofnucleationandgrowthof compact islands
with prescribed critical size11 i g 1 (model A in section I),
as shown in Table 1, or with prescribed bond-breaking12
(model B in section I). This is expected from the above
extension of theBCanalysis. It is instructive to note that
this behavior is not produced by choosing Ks ∼ sp, with p
) 1/2, for any i g1 [see (6) and (7)], or even by choosing Ks
∼ spNav

q, with p ) q ) 1/2, for any i g 2 [see (7)].
II.3. RandomWalk Formulation of Adatom Cap-

ture by Islands. On the basis of random walk theory,
we have replaced11,37 the term hKsNsN1, for the total rate
of aggregation of isolated adatoms with islands of size s,
withPsN1/τs. HerePs∼Ns/Nav is the probability to deposit
in the vicinity of an island of size s, and τs gives the mean
time for an atom deposited on a finite lattice of 1/Nav sites
(with periodic boundary conditions) to diffuse and reach
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q) - q] for p e 1/(i + 1), and ø ) (i + 1 - p)/[(i + 3) - (i + 1)(p - q) -
pq] for p g 1/(i + 1), with (1 + q - p)ø + ω ) 1 in either case.
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Table 1. h/R-Dependence of Nav and N1 and Estimates of the Exponents ø and ω for h/R ≈ 108 a

h/R Nav
(SIM) (i ) 1) N1

(SIM) (i ) 1) Nav
(BC) (i ) 1) N1

(BC) (i ) 1) Nav
(SIM) (i ) 2) N1

(SIM) (i ) 2) Nav
(BC) (i ) 2) N1

(BC) (i ) 2)

104 1.19E-2 3.09E-3 1.07E-2 1.92E-3 7.48E-3 5.14E-3 5.91E-3 9.14E-3
105 7.27E-3 6.73E-4 5.95E-3 3.96E-4 3.08E-3 1.38E-3 2.18E-3 2.18E-3
106 3.86E-3 1.46E-4 2.97E-3 8.36E-5 1.13E-3 4.06E-4 7.60E-4 6.07E-4
107 1.92E-3 3.25E-5 1.40E-3 1.80E-5 3.98E-4 1.30E-4 2.58E-4 1.77E-4
108 9.21E-4 6.93E-6 6.50E-4 3.92E-6 1.40E-4 4.20E-5 8.53E-5 5.34E-5

ø(SIM) ω(SIM) ø(BC) ω(BC) ø(SIM) ω(SIM) ø(BC) ω(BC)

∼0.32 ∼0.67 0.33≈ 1/3 0.66 ≈ 2/3 >0.45 ∼0.50 J0.48≈1/2 j0.52≈1/2
a We show results from simulations of square islands [SIM] of critical size i ) 1 at 0.05 ML, and i ) 2 with E2 ) 0 at 0.1 ML, and from

corresponding rate equations using Bales-Chrzan Ks [BC]. For the same parameters, rate equations using constant p ) q ) 1/2, yield
exponents ø ≈ 0.31 ≈ 1/3 and ω ≈ 0.69 ≈ 2/3 for i ) 1, and ø ≈ 0.43 ≈ 5/11 and ω ≈ 0.58 ≈ 6/11 for i ) 2.

ø ) i/(i + 2) and ω ) 2/(i + 2), so ø + ω ) 1 (5)

ø ) i/[(i + 2) - (i + 1)(p - q)] (6a)

ω ) (2 + q - p)/[(i + 2) - (i + 1)(p - q)] (6b)

ø ) (i + 1 - p)/[(i + 3) - (i + 1)(p - q) + q] (7a)

ω ) (2 + q - p)(1 + p)/[(i + 3) - (i + 1)(p - q) + q]
(7b)

Ks ) g(Rs/lav) with g(y) ≡ 2πyK1(y)/K0(y) (8)
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for the first time an island of s atoms placed on the lattice.
This formulation recovers, e.g., the behavior K1 ∼
1/|ln(Nav)| fromtheNav dependenceof τs, entirely consistent
with (8). It also has the advantage of naturally extending
to treat anisotropic or one-dimensional adatom diffu-
sion,37,42 and even “anomalous” diffusion.43
II.4. Natural Rescaling of Island and Adatom

Densities. Examination of the rate equations (4) for low
θ , 1 and constant Ks suggests the natural rescaled
variables

satisfying

This generalizes Tang’s rescaling44 for i ) 1. The “clean”
temporal scaling Nav ∼ t1/(i+2) in (10) is observed for
nucleation and growth of “point islands”37 (occupying a
single site), but not in practice for compact islands, where
Nav “quickly saturates” (as, e.g., demonstrated by rate
equations including the full θ-dependence of rates for
various processes11,40). However, the “point island” tem-
poral scalingdoes ina certain sense control theh/R-scaling
for compact islands. This is best demonstrated in plots
of N̂av (and N̂1) versus θ̂ (see Figure 1). These clearly
show that the N̂av ∼ θ̂1/(i+2) curves for “point islands” (for
largeh/R) providean envelope for the correspondingcurves
for compact islands. This enforces the same asymptotic
h/R-scaling behavior, at fixed θ, for both “point” and
compact islands.
II.5. Island Size and Separation Distributions.

Next we consider the full island size distribution. Specif-
ically, we compare predictions of the rate equations (2),
using the most sophisticated BC choice of capture num-
bers, with exact simulation results using our model for
nucleation and growth of square islands11 mimicking
metal(100) homoepitaxy. In Figure 2we show results for
the scaling function, F(x,θ) defined in (3), for the case i )
1 at low θ. The rate-equation predictions reasonably
match the “exact” simulation results for typical h/R.
However, it seems that the true asymptotic (h/R f ∞)
scaling functionmight beanalytic for the exact simulation
model, but nonanalytic and discontinuous for the rate
equations (cf. the “point-island” analysis in ref 37). This
points to a fundamental limitation of the neglect of
fluctuations in the mean-field rate-equation approach.45
Both rate-equation and simulation studies show that

the scaling function becomes narrower and taller with
increasing critical size, i. A generic analytic form, Fi )
Cixi exp[-iaix1/ai], with i-dependent constants ai and Ci,
hasbeenproposed for this dependence.12 However, it does
not capture the feature thatFi(x)0)> 0,whichwe believe
applies for nucleation and growth of compact islands.3,11
Finally,wenote that islands formedby thesenucleation

and growth processes are not distributed “randomly” on
the surface. Rather, examination of the island separation
distribution shows that there is a depletion in the
population of nearby pairs of islands, which is actually

enhanced with increasing i (see refs 1-3, 11, and 46).
Since the edges of stable islands act as sinks for diffusing
adatoms, the isolated adatom density is depleted nearby
islands. Consequently, the probability of nucleating an
island in the “vicinity” of an existing island is reduced.
This effect was observed in simulations3,11,46 but also
follows from diffusion-equation analyses.1,2,46

III. Transitions in Critical Size with Increasing
Temperature

For sufficiently low T, the critical size, i, for stable
islands clearlymustbeunity, i.e., all islandsareeffectively
stable against dissociation.1-3 However, increasing T so
that bond breaking becomes operative should lead to an
increase in i. For “high” T, one might anticipate some
effective “large” i above which islands are more likely to
grow than to shrink, rather than being absolutely stable.1
The traditional view is that (1) still applieswith this i and
can be used to extract energies.1 However, recent
simulation studies of the pair-interaction model, (C) in
section I, which does not prescribe i, have suggested a
breakdown in scaling (1) once bond-breaking becomes

(42) Bartelt, M. C.; Evans, J. W. Europhys. Lett. 1993, 21, 99.
(43) Liu, S.; Bönig, L.; Detch, J.; Metiu, H. Phys. Rev. Lett. 1995, 74,

4495.
(44) Tang, L.-H. J. Phys. I 1993, 3, 935.
(45) Bartelt, M. C.; Evans, J. W. Bull. Am. Phys. Soc., in press. (46) Evans, J. W.; Bartelt, M. C. Surf. Sci. 1993, 284, L437.

Figure 1. Behavior of N̂av ) (h/R)(i+1)/(i+3)Nav versus θ̂ )
(h/R)2/(i+3)θ ∝ θ/θmin, for isotropic diffusion. In (a) we show
simulation data for i ) 1, in the range 104 e h/R e 108, as
indicated, and θ e 0.5 ML. Thin solid lines correspond to
simulations of square islands, and thick lines to “point islands”.
Insets A and B show pictures of the adlayer from simulations
of “point” and square islands, respectively, with h/R ) 108 and
θ ) 0.5 ML. In (b) we give a schematic of expected behavior for
general i on a log-log plot of N̂av versus θ̂.

θ̂ ) θ (h/R)-2/(i+3) ∼ θ/θmin (9a)

N̂1 ) N1 (h/R)
-2/(i+3) (9b)

N̂av ) Nav (h/R)
-(i+1)/(i+3) (9c)

N̂av ≈ (i + 2)1/(i+2) exp[(i + 2)-1Ei/(kBT)] (θ̂)
1/(i+2)

and N̂1N̂av ≈ 1 (10)
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operative.14,15 We wish to clarify this issue, and at the
sametimeprovideaprecise characterizationof transitions
between “small discrete” critical sizes for unreconstructed
metal(100) homoepitaxy,16 in the experimentally relevant
range of “lower” T and “small” i.
III.1. Energetics and Kinetics of Island Dissocia-

tion. Details of critical size variation with T depend on
the effective rates for dissociation (i.e., removal of a
perimeter atom) from islands of various sizes, s. (Here
these islands are assumed to have their most stable
configuration.) We denote the associated effective activa-
tion barriers by Ediss(s) > 0. If the total binding energy
of the island is given by Eb(s) > 0, then δEb(s) ) Eb(s) -
Eb(s - 1) - Eb (1) gives the net change in binding energy
upon “fully” separating an adatom from the island, and
δEb(2) ) Ebond corresponds to the previously introduced
bond energy between adatoms in a surface dimer. Then
typically one has

Note that, in general, there will be several pathways,
P, for fully separating or dissociating an adatom from an
island, each involving a few steps with barriers typically
distinct from Ed or Ediss(s). Let EP(s) denote the height of
the largest barrier (above the initial energy) for each
dissociation pathway, P, and let Ebar(s) ) minP{EP(s)}
denote the minimum of these over all pathways. Then
the effective dissociation barrier,Ediss(s), is themaximum

of Ebar(s) and δEb(s) + Ed. The latter is normally much
larger formetal homoepitaxy, leading to (11). See Figure
3.
Insight into transitions in critical size follows directly

fromappropriate comparisonof dissociationenergies.One
expects that δEb(s)g δEb(2), soEdiss(s)gEdiss(2), and thus
all islands are stable if dimers are stable (corresponding
to i ) 1 at low T). We also expect that δEb(2) ≈ δEb(3) ≈
δEb(5) ≈ δEb(7), since dissociation of islands of sizes s )
2, 3, 5, 7 shown in Figure 4 requires just “single-bond
breaking”, but that all other δEb(s) ≈ δEb (4) are
substantially higher, since dissociation here requires
“double-bond breaking”. MD/MC-CEM and EAM
calculations16-18 support these claims. Thus, with in-
creasingT, onemight expect a jump directly from critical
size i ) 1 to an unconventional i ) 3. (The i ) 3 regime
is unconventional in that not all islands of size s > 3 are
stable.)
III.2. Crossover Analysis. One expects that the

crossover from i) 1 should be determined by the relative
magnitudes of the rate of dimer dissociation, Hdiss(2) ∼
ν exp[-(Ed + Ebond)/(kBT)], and the rate,Hagg(2) ∼ hK2N1,
at which adatoms aggregate with and “stabilize” dimers
by creating larger, more stable, doubly-bonded islands.16
Thus a natural “crossover variable” is the ratio R )
Hdiss(2)/Hagg(2), but it is more useful to choose Y )
(ν/R) exp[-(Ed +3Ebond/2)/(kBT)]. Note thatR∼Y2/3when
i ) 1 and R ∼ Y2/5 when i ) 3 is always a simple function
ofY. Indeed,asimplerate-equationanalysis incorporating
single-bond breaking (but artificially excluding double-
bond breaking) indicates clean i ) 1 scaling of Nav for Y
j 1/50, crossing over to clean i ) 3 scaling for Y J 50.
Thuswe can identify the upper-T limit of the i)1 regime,
T1+, by the condition Y(T ) T1+) ≈ 1/50, and the lower-T
limit of the i )3 regime, T3-, by Y(T ) T3-) ≈ 50. Note
that classic i) 3 scaling occurs for high T despite the fact

Figure 2. Island size distributionswith i) 1, obtained at 0.05
ML, for 104 e h/Re 109, from (a) simulations of square islands,
and (b) numerical integration of rate equationswithBCcapture
numbers.

Ediss(s) ) δEb(s) + Ed (11)

Figure3. MD/MC-CEMestimates (ineV) of activationbarriers
for each step during dissociation of Cu dimers on Cu(100) (L.
S. Perkins, unpublished). For the pathway (P*) shown, EP*(2)
) Ebar(2) ≈ 0.55 eV is only slightly larger than Ed ≈ 0.52 eV.
Hdiss(2) is calculated as the product of the (relative) quasi-
equilibrium concentration, exp[-δEb(2)/(kBT)], of the almost
fully dissociated dimer (*), and the hop rate, h, for the last
dissociation step.Note that theMD/MC-CEMbarrier for dimer
diffusion (0.48 eV) is lower than that for monomer diffusion
(0.52 eV), inconsistent with the analysis of section VI.

Figure 4. Schematic of dissociation of adatoms from compact
cluster configurations.
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that certain islands of size s>3arenot stable. Analogous
behavior has been observed in simulation studies.47
In reality, the i ) 3 regime is limited by the onset of

double-bond breaking.15,16 For i ) 3 behavior to apply, it
is certainly sufficient that double-bond breaking be
negligible on the time scale of the experiment. Roughly,
this implies thatHdiss(4) < R. A more refined criterian is
derived in ref 16. [The weaker condition that double-
bond breaking be negligible on the time scale of aggrega-
tion, i.e., that Hdiss(4) < Hagg(4) ) hK4N1 is not sufficient.
Aggregationwith tetramersdoesnot lead to the formation
of more stable islands.] The condition that Hdiss(4) )
ν exp[-(Ed + δEb(4))/(kBT)] ≈ R can be used to crudely
estimate the upper-T limit of the i) 3 regime,T3+. In the
special case where δEb(4) ) 2δEb(2) ) 2Ebond, one can
combine the criteria for T3- and T3+ to obtain

Thus a “well-defined” regime of i ) 3 (i.e., extending over
a significant temperature range) will only be observed if
the key parameter σ ) Ebond/Ed is not too small. These
ideas are applied to analyze behavior of Fe/Fe(100) and
Cu/Cu(100) epitaxy in section VI, where we report
associated values of Ed and Ebond, as well as transition
temperatures T1+, T3-, and T3+.
This analysis clarifies recent simulation results14,15 for

the pair-interaction model, (C) in section I, which sug-
gested the breakdown of classic scaling and the lack of
well-defined critical sizes for i > 1. These studies were
indeed performed assuming δEb(4) ) 2δEb(2), as above,
and which is reasonable for metal(100) homoepitaxy.16
However, they focused on small values of σ (for higher T)
and thus saw no well-defined i ) 3 regime.15 Such i ) 3
behavior would no doubt emerge for larger σ, or for δEb(4)
sufficiently larger than2δEb(2). In any case, akey insight
from these studies is that, even for larger σ, one should
expect a broad crossover range of temperatures between
i ) 1 and i ) 3 scaling (i.e., between T1+ and T3-).
Reference 15 further found that the shape of the island
size distribution in the transition region was naturally
parameterized by R (or one could use Y). Finally, we
emphasize that, even for larger σ, the classic scaling (1)
cannot be applied directly when 1 < i < 3. Instead, a
suitable interpolation formula must be used.16
It is appropriate to note that when T > T3+ (square

tetramers are unstable due to double-bond scission), one
expects dissociation of all islands to also be operative, so
one should not expect well-defined regimes of integer
critical size i > 3 (cf. ref 15). Certainly (1) can be used to
estimate energies treating i as an output parameter
obtained from flux scaling,48 but the precision of such
estimates has yet to be rigorously investigated.
Finally, wemention that critical size behavior depends

on the adsorption site geometry. Consider a systemwith
a triangular lattice of adsorption sites [e.g., the fcc
adsorption sites on a fcc(111) surface]. For strong ada-
tom-adatombonding, onemight expect a transition from
i ) 1 (all islands are stable) to i ) 2 (doubly bonded
triangular trimersarestable) to i)6scaling (triplybonded
pentamers are stable), but also expect no well-defined
regimes of integer i > 6.

IV. Transition to Multilayer Growth: Real-Space
Morphology

Let us first introduce basic quantities characterizing
film structure.4,5,25 We label layers by an index j ) 0, 1,

2, ..., with j ) 0 denoting the substrate. Let θj denote the
coverage of layer j, and Pj ) θj - θj+1 denote the average
fraction of surface (or exposed) atoms in layer j. Then one
has ∑jg0Pj ) 1, θj ) Pj + Pj+1 + Pj+2 + ... (so θ0 ) 1), and
θ ) ∑jg1θj ) ∑jg0jPj ) jav. The basic measure of film
roughness is the interface width,W, which satisfiesW2 )
∑jg0(j - jav)2Pj.
We also introduce the probabilities, Pij(δl), for finding

two surface atoms in layers i and j, separated laterally by
the vector δl. These generate the height-difference
distributions, Gn(δl) ) ∑j-i)nPij(δl), for finding surface
atoms separated laterally by δl, with a height difference
n ) 0, (1, .... By symmetry, Gn(δl) ) Gn(-δl) ) G-n(δl),
for all n and δl. Finally, we introduce the height-height
correlation function or mean square height-difference
H(δl) ) ∑nn2Gn(δl), for lateral separation δl. Note that
triviallyH(0) ) 0 andH(∞) ) 2W2, since Pij(δl) f PiPj, as
δl) |δl|f ∞. Strictly, the above notation applies only for
an unphysical simple-cubic geometry since, in realistic
fcc(100) and bcc(100) geometries, one should distinguish
several types of surface atoms covered to various degrees
by higher layer atoms.49 However, we ignore this com-
plication here. We also note that an alternative notation
for simple cubic geometries is available (see ref 50).
IV.1. Submonolayer or Layer-by-Layer Growth.

Consider submonolayer growth with no higher layer
population, or more generally layer-by-layer growth. If θ
) k+ δθ, where 0e δθ < 1 (so k) 0 for the submonolayer
case), thenPk ) 1- δθ andPk+1 ) δθ are the only nonzero
Pj’s, and one hasW2 ) δθ(1 - δθ). Also, the only nonzero
Gn(δl)’s areG0 andG+1 )G-1,which satisfyG0 )1-2G+1.
Here these Gn are completely determined by H(δl) )
2G+1(δl). Furthermore, C(δl) ) 1/2[H(∞)-H(δl)] corre-
sponds to the usual two-point correlation function for the
partially filled layer.11
The typical form of H(δl) for submonolayer nucleation

andgrowth reflects the islanddistributionandspecifically
the average island separation, lav ) (Nav)-1/2. H(δl) first
increases linearly, with slope ∝δθ/lav, and then “over-
shoots” before reaching the asymptotic value of 2W2 )
2δθ(1 - δθ). See Figure 5a. The linear increase reflects
intraisland correlations. The overshoot feature is due to
“depletion effects”: for δl < lav somewhat larger than the
typical linear island size, (δθ)1/2lav, there is enhanced
likelihood of amaximumheight difference of unity due to
one point coinciding with an island and the other being
in the surrounding depletion zone.11
IV.2. Rough Multilayer Growth. We have noted

that kinetic roughening25 is generally characterized by
an increase in the interface width, W, with increasing
coverage or mean film height, θ, of the formW ∼ θâ. It is
convenient to write51

where

Here f gives the shape of the film height distribution. The
constraints on f followby recalling that thePjdistribution
is normalized with mean θ and variance W2. It will be

(47) Schroeder, M.; Wolf, D. E. Phys. Rev. Lett. 1995, 74, 2062.
(48) Venables, J. A. Phys. Rev. B 1987, 36, 4153.

(49) Kang, H. C.; Flynn-Sanders, D. K.; Thiel, P. A.; Evans, J. W.
Surf. Sci. 1991, 256, 205.

(50) In termsofheight variable, h(l), for the surface at lateralposition
l, if 〈〉 denotes an ensemble average, then one has θ ) 〈h(l)〉,W2 ) 〈[h(l)
- 〈h(l)〉]2〉, H(δl) ) 〈[h(l + δl) - h(l)]2〉, and C(q⊥,δl) ) 〈exp{iq⊥[h(l + δl)
- h(l)]}〉.

(51) Kang, H. C.; Evans, J. W. Surf. Sci. 1992, 271, 321. Evans, J.
W. Phys. Rev. B 1989, 39, 5655.

T3+/T3- ≈ 1 + σ (2 + 3σ)-1, where σ ) Ebond/Ed
(12)

Pj ≈ W-1f[(j - θ)/W] (13)

∫dx f(x) ) ∫dx x2f(x) ) 1 and ∫dx xf(x) ) 0
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instructive to note that for a general distribution f, one
can always develop a cumulant expansion52 for f̂(k)) ∫dx
eikxf(x), such that ln[f̂(k)] ) ∑mg0(ik)mκm/m!. For the
distribution in (13), the cumulants, κm, satisfy κ0 ) ∫dx
f(x)) 1, κ1 ) ∫dx xf(x)) 0, κ2 ) ∫dx x2f(x)) 1, κ3 ) ∫dxx3f(x)
(which measures the skewness), etc. Since the height-
difference distributions,Gn(δl), are normalized, even, and
have variance H(δl), we also naturally write

with even g satisfying

We now describe behavior of the two basic paradigms
for kinetic roughening mentioned in Section I:
(A) Self-affine growth models are discussed first,

for completeness and contrast. The locally self-affine
structure of the growing film produces the “short-separa-
tion” scaling behavior25

before crossing over toH(δl) ≈ 2W2, for δl J ê. Here l0 is
a short-range cutoff, and η is a time-invariant constant.5
The parameter ê is a measure of the (total) lateral
correlation length, and must satisfy W ∼ (ê/η)R ∼ θâ. If
this relation applies for θ ) O(1), where ê ≈ lav, then one

hasη∼ lav, i.e., lav determines the time-invariant constant,
η, which characterizes subsequent rough growth.
We note that H(δl) is often approximated by the

monotonically increasing form5,25 H(δl) ≈ 2W2{1 - exp-
[-(δl/ê)2R]}. See Figure 5c. Also, it is invariably either
implicitly or explicitly assumed that both Pj and Gn are
described by Gaussian distributions (but see ref 53).
(B) Unstable growth due to a step-edge barrier is

a more appropriate paradigm than (A) for metal(100)
homoepitaxy. Behavior here is characterized by the
developmentof “mounds”with selected (or slowly-varying)
slope. This correspondsmost closely toR ) 1 in paradigm
(A) above. These “mounds” are observed30,31,54 to coarsen
slowly in time (t), with “base” width, Λ, increasing
asymptotically like tn, with n ) 0.16-0.25. Clearly, one
has â ) n for strictly fixed mound slope. Studies by us31
and others30 find that H(δl) does not increase monotoni-
cally with δl, but rather develops damped oscillations, as
might be expected for a disordered array of mounds. See
Figure 5e. For very well-developed mounds with slope S
∝W/Λ, oneexpects thatH∼ [(δl)S]2, forδl, Λ, butdiscrete
lattice effects inhibit the development of this quadratic
form.
Our studies also show consistent deviation of the film

height distribution, Pj, from a perfectly Gaussian form,
reflecting a slight skewness corresponding to a negative
third moment and cumulant,31 κ3. See parts a and c of
Figures 6. For the height-difference distributions,Gn, we
also find31 that aGaussian fit is poorer than a rational fit,
for the range of small (<lav) lateral separations most
relevant in determining thediffractionprofile (see section
V).
IV.3. Effect of Adsorption Site Geometry and

Deposition Dynamics. For metal(100) homoepitaxy,
where there is a “significant” step-edge barrier, we now
comment on the influence of the 4-fold hollow (4FH)
adsorption site geometry and of the downward funneling
deposition dynamics. For a model with a simple-cubic
geometry (and no transient mobility or knockout pro-
cesses), one expects the roughness to increase monotoni-
cally with decreasing T, since it becomes progressively
more difficult to surmount the step-edge barrier. In fact,
as T f 0, where thermal diffusion is inoperative, this

(52) Stochastic Processes in Physics andChemistry; vanKampen, N.
G., Ed.; North-Holland: Amsterdam, 1981.

(53) Krug, J.; Meakin, P.; Halpin-Healy, T. Phys. Rev. A 1992, 45,
638.

(54) Stroscio, J. A.; Pierce, D. T.; Stiles, M. D.; Zangwill, A.; Sander,
L. M. Phys. Rev. Lett. 1995, 75, 4246.

Figure 5. Schematic of the behavior of the height-height
correlation function,H(δl), for lateral separation δl, associated
with (a) quasi-layer-by-layer (or submonolayer) growth, (c) the
traditional multilayer kinetic roughening model of self-affine
growth, (e) the observed behavior in our multilayer growth
model with a Schwoebel barrier. In (b), (d), and (f), we show
schematics of the corresponding (antiphase) kinematic diffrac-
tion profiles.

Gn ≈ H-1/2g(n/H1/2) (14)

∫dy g(y) ) ∫dy y2g(y) ) 1

H(δl) ∼ (δl/η)2R, for l0 , δl , ê (15)

Figure 6. Schematic of the behavior of the film height
distribution,Pj, versus j, for (a)Gaussian (κ3)0)and (d) skewed-
Gaussian (with κ3 < 0) Pj-forms. In (b) and (d) we show
schematics of the corresponding ABragg(π) versus θ.
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model produces a very rough “Poisson” growth,55 Pj )
θje-θ/j!, where â ) 1/2. However, smooth growth is often
observed in metal(100) homoepitaxy at low tempera-
tures.33,34 This is a direct consequence of the 4FH
adsorption site geometry, together with downward fun-
nelingduringdeposition. Indeed, simple randomaddition
at 4FH sites alone produces substantially smoother
growth51 with â ≈ 1/4. (This model is unphysical in that
atoms not impinging at 4FH sites do not adsorb, so the
sticking probability is not unity.) The additional effect of
downward funneling to 4FH sites (recovering a sticking
probability of unity) results in even smoother growth51
with â ) 0 orW2 ∼ ln(θ), although actual behavior could
be more complicated (see below).
This smooth growth at low T reflects the presence of a

downhill currentdue to downward funneling to 4FHsites.
Of course, this current is present at higher T, although
it has reduced influencedue to the lower step-edgedensity
as a result of islanding. However, it plays a crucial role
in counterbalancing theuphill current inducedby thestep-
edge barrier and in determining mound morphology. See
Figure 7. Thus the following overview emerges for the
temperaturedependenceof roughening. Growth is smooth
at low T due to the influence of downward funneling.
Growth then first becomes rougher with increasing T, in
a range where the step-edge barrier is insurmountable.
This is due to the above mentioned reduced influence of
downward funneling. If the islands become large enough,
so that the downward funneling current is insignificant,
before the step-edge barrier can be surmounted, then
quasi-Poisson growth will be achieved. But, in general,
the film becomes smoother again for higher T where the
barrier becomes surmountable. We note that the above
underlying mechanism for reentrant smooth growth
during metal(100) homoepitaxy is different from the
mechanism identified21 for metal(111) homoepitaxy.
Finally, we mention possible complications in the

deposition dynamics not accounted for in the basic
downward funnelingmodel. Clearly, downward funneling
will breakdown for impingement on largemicropyramids,
whose sides are (111) facets. In this case, incomingatoms
will tend to approach orthogonal to and remain on the
sides, rather than funnel down to the base. This has been
observed in molecular dynamics studies.56 However, we
havepreviously emphasized that these configurations are
statistically insignificant for low-T growth.32,35 Even for
higher T, where the formation of mounds or “pyramids”
occurs, the sides typically havemuch smaller slopes than
(111) facets, and the funneling componentof thedeposition
dynamics corresponds to incoming atoms deflecting from
step edges on a locally (100) surface. We note, however,
that there may be other “transient dynamics” processes
associated with deposition, not included in the funneling
model,32 andwhich canaffect filmmorphology (see section
VI).

V. Transition to Multilayer Growth: Kinematic
Diffraction Theory

Below we develop a kinematic or single-scattering
theory5,57 appropriate for diffraction from the general film
morphologies described in section IV. We use notation
appropriate to a simple-cubic geometry to avoid added
complications which arise for an fcc or bcc geometry (cf.
section IV and ref 49). This theory should accurately
describe diffraction profiles obtained from low energy
electron diffraction (LEED). However, it might be less
precise for reflection high energy electron diffraction
(RHEED) due to dynamic scattering and also since the
electron beam might be shadowed from parts of the
mounded surface due to its small incident angle. The
theory also does not reflect the strong step sensitivity of
atom beam scattering.
For lateral momentum transfer, q, and vertical mo-

mentum transfer, q⊥ (in units where the width of the
Brillouin zone is 2π), the total kinematic diffracted
intensity is given by the Fourier transform5,57

where

Then thekinematic intensity isnaturallydecomposed into
Bragg delta-function and diffuse components as

Using Gng0(∞) ) ∑jg0PjPn+j, from section IV, one obtains

and setting ∆C(q⊥,δl) ) C(q⊥,δl) - C(q⊥,∞), one obtains

V.1. Submonolayer or Layer-by-Layer Growth.
Here we consider submonolayer growth with no second
layer population, or strict layer-by-layer growth, and set
θ ) k + δθ with integer k ()0 for submonolayer growth).
One has the exact relations

so the antiphase Bragg intensity satisfiesABragg(π)) (1-
2δθ)2. It also follows exactly that

so Idiff(q,q⊥) is obtained essentially by direct Fourier
transform ofH(δl). The previously mentioned overshoot
or “weak oscillation” in H(δl), results in a negative
minimumin∆C,whichproducesa “Henzler ring” feature58
in Idiff(q,q⊥) with the diameter of the ring, d*, roughly
proportional3,11,46 to 1/lav (see Figure 5b).
V.2. RoughMultilayer Growth. Using the general

representation (13) for the height distribution Pj, one can

(55) Weeks, J. D.; Gilmer,G.H.; Jackson,K. A.J. Chem. Phys. 1976,
65, 712.

(56) Halstead, D.; DePristo, A. E. Surf. Sci. 1993, 286, 275.

(57) Wollschläger, J.; Falta, J.; Henzler, M. Appl. Phys. A 1990, 50,
57.

(58) Hahn, P.; Clabes, J.; Henzler, M. J. Appl. Phys. 1980, 51, 2079.

Figure 7. Schematic of the uphill (JSch) and downhill (JDF)
currents, associated with reflection at step-edge barriers and
with downward funneling (DF), respectively.

I(q,q⊥) ) ∑δl exp[iq‚δl]C (q⊥,δl) (16)

C(q⊥,δl) ) ∑n exp[iq⊥n]Gn(δl) (17)

IBragg(q,q⊥) ) (2π)2ABragg(q⊥)∑n,m δ[q - 2π(n,m)] +
Idiff(q,q⊥) (18)

ABragg(q⊥) ) C(q⊥,∞) ) |∑jg0 exp[iq⊥j]Pj|2 (19)

Idiff(q,q⊥) ) ∑δl exp[iq‚δl]∆C(q⊥,δl) (20)

ABragg(q⊥) ) 1 - 2[1 - cos(q⊥)](1 - δθ)δθ )

1 - 2[1 - cos(q⊥)]W
2 (21)

∆C(q⊥,δl) ) [H(∞) - H(δl)][1 - cos(q⊥)] (22)
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apply the Poisson summation formula59 to evaluate the
dominant contribution to the antiphase Bragg intensity
ABragg(π). One obtains ABragg(π) ≈ 4Re[{e-iπθ f̂(πW)] for
large enough W that one can ignore higher order terms
in the Poisson summation formula (but W must also be
small compared with the Poisson growth value of θ1/2).
Further, invoking the cumulant expansion for f yields31

This provides the first correct characterization of the
oscillatory decay ofABragg(π). A detailed derivation of this
result will be presented elsewhere.60 While it might be,
at least implicitly, assumed that the height distributions,
f, are Gaussian (at least in self-affine growth models),
leading to the simple form ABragg(π) ≈ 4 cos2(πθ) exp(-
π2W2), we find significant deviations for unstable growth
models. In particular, an observed negative skewness, κ3
< 0, leads to a shift in the zeros of ABragg(π) below half-
monolayer coverages.31 See parts b and d of Figure 6.
Similarly, using the representation (14) forGn, together

with the Poisson summation formula, yields

where ĝ(k) ) ∫dx eikxg(x) f 0, as k f (∞, and [q⊥] means
“q⊥ modulo 2π”, with -π , [q⊥] , π. At the out-of-phase
condition, [q⊥] ≈ (π, there is an extra factor of 2 on the
right hand side of (24). For large W, where C(q⊥,∞) is
negligible, one naturally implements the approximation

It is clear that if H(δl) adopts a stationary form for fixed
δl, then Idiff will also adopt a stationary form. Further-
more, Idiff will be independent of the details of the evolving
form of H(δl) for “large” δl, where H ) O(W2), and the ĝ
factor in (25) is small. Finally, ifH increases slowly over
a broad range of δl (as is expected for large submonolayer
lav), and ifH(δl)≈H(δl) is roughly rotationally invariant,
then one naturally writes

We now discuss the form of Idiff for the two growth
paradigms:
(A) Self-Affine Growth Models. Assuming a Gauss-

ian form for Gn (or g), one obtains C(q⊥,δl) ≈
exp{-[q⊥]2H(δl)/2} from (24). Then invoking the form (15)
for H(δl) (assuming that l0 , η), and substituting into
(26), leads directly to the key result of Yang et al.5

This profile exhibits no ring structure or “splitting” (see
Figure 5d). Clearly, the full-width-at-half-maximum
(fwhm) is inversely proportional to the time-invariant
constant η. If η ∼ lav, then one could say that the
submonolayer structure selects the width of the subse-
quent time-invariant diffraction profile (cf. ref 61).

(B) Unstable GrowthDue to a Step-Edge Barrier.
Here our studies suggest that the standard assumption
ofGaussianheight-differencedistributions isnot justified.
On the other hand, for a range of shorter separations, g
maybe reasonably approximatedwitha rational function.
Now (24) becomes31

where λ is the pole of g closest to the real axis (see refs
31 and 60 for details). This form can be used in (25) or
(26) to obtain a suitable expression for Idiff.
It is clear from(28) that theenhanced “overshoot” region

of H(δl) with increasing θ has little influence on C(q⊥,δl)
since it is in the “exponential tail”. Consequently, just as
for (A), the splitting in the profile disappears (Figure 5f).
For very well-developedmounds with slope S, whereH∼
[(δl)S]2, the fwhm of Idiff must be proportional to S.

VI. Analysis of Metal(100) Homoepitaxy for
Specific Systems

Hereweconsider just twosystems,but thebasic features
described should apply in general to metal(100) homoepi-
taxy.
VI.1. HomoepitaxyonFe(100). ScanningTunneling

Microscopy (STM) studies62 have examined submonolayer
nucleation and growth for T between 295 and 625 K, and
R≈ 0.7 ML/min. The variation of the island density,Nav
∼ exp[0.15 eV/(kBT)] ∼ exp[1/3Ed/(kBT)], for 295 K < T <
525 K, at a fixed coverage of θ ) 0.07 ML, implies that62
Ed≈ 0.45 eV if one assumes a critical size of i) 1 (at least
for the lower portion of this T-range). The variation of
Nav with R was not measured to determine if ø ) 1/3.
Support for the claim that i ) 1 comes only from
comparison with an appropriate simulation model for
irreversible nucleation and growth of square islands.11
With the above Ed, this model matches the actual
experimental values of Nav.
For a more detailed comparison, in Figure 8 we show

the full island size distribution from these i ) 1 square-(59) Courant, R.; Hilbert, D. Methods in Mathematical Physics
Interscience: New York, 1953; Vol. 1.

(60) Evans, J. W.; Bartelt, M. C.; Thiel, P. A. To be submitted to
Surf. Sci. Rep.

(61) Ernst, H.-J.; Fabre, F.; Folkerts, R.; Lapujoulade, J. Phys. Rev.
Lett. 1994, 72, 112.

(62) Stroscio, J. A.; Pierce, D. T.; Dragoset, R. A. Phys. Rev. Lett.
1993, 70, 3615. Stroscio, J. A.; Pierce, D. T.Phys. Rev. B 1994, 49, 8522.
J. Vac. Technol. B 1994, 12, 1783.

Figure 8. Scaled island size distributions, [(sav2)/θ]Ns, versus
s/sav. Symbols are Fe/Fe(100) STM data62 at 295 K (b), 383 K
(9), and 407 K ([), for θ≈ 0.07 ML and R≈ 0.7 ML/min. Solid
lines are i ) 1 simulation results24 at 295 K, with Ed ) 0.45 eV
and ν ) 1012/s. Solid lines indicate no cluster mobility. Dashed
lines include dimer mobility with a barrier of 0.55 eV. Dot-
dashed lines include dimer and trimer mobility with an equal
barrier of 0.55 eV.

C(q⊥,δl) ≈ exp{-|Imλ[q⊥]|H(δl)1/2} (28)

ABragg(π) ≈ 4 cos2[πθ - κ3π
3W3/3! + ...] exp[-π2W2 +

2κ4π
4W4/4! - ...] (23)

C(q⊥,δl) ≈ ĝ[[q⊥]H(δl)
1/2] (24)

Idiff(q,q⊥) ≈∑δl<ê exp[iq‚δl]ĝ[[q⊥]H(δl)
1/2] (25)

Idiff(q,q⊥) ≈ 2π∫0ê dr rJ0(qr)ĝ[[q⊥]H(r)
1/2] (26)

Idiff(q,q⊥) ≈
(η[q⊥]

-1/R)2 ∫0∞ dy y exp(-y2R)J0(qη[q⊥]
-1/Ry) (27)
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island simulations,11 together with the experimental
observations forTj 400K. The agreement is fairly good,
certainly compared with results from models with i > 1
(see refs 3, 12, and 15). However, the simulations predict
higher densities of small islands than those observed and
thus a slightly lower peak in the normalized scaling
function. This discrepancy can be removed by incorpo-
rating some diffusion of small clusters,27 which does not
significantly affect Nav, but it could also be due to
coarsening effects. Other simulation studies12,15 with i)
1 and nomobility of small clusters appeared to better fit
the experimental data, but we believe that this was an
artifact of the fractal structure of islands incorporated in
these models [which is inappropriate for Fe/Fe(100)].
TheaboveSTMstudies62 also reveal adistinct variation

ofNav ∼ exp[0.5 eV/(kBT)] ∼ exp[(i + 2)-1(iEd + Ei)/(kBT)]
withT> 525 K. Using a rate-equation analysis to match
observed Nav values, we first identified this behavior3 as
corresponding to a direct jump from i ) 1 to i ) 3 (cf.
section III),withEbond≈E3/2≈0.65 eV. Using the criteria
of section III, one obtains T1+ ≈ 460 K, T3- ≈ 585 K, and
T3+ ≈ 640 K (using δEb(4) ) 2Ebond), consistent with the
above observations. Since σ ) Ebond/Ed ≈ 1.4 is quite
“large”, there is awell-defined i)3 regime. Simulations12
have been performed for the shape of the island size
distribution fromamodel of typeBwith significant single-
bond breaking, but excluding double-bond breaking on a
square lattice, and thus corresponding to i ) 3. These
agreewell with the experimental results forT≈ 575-625
K. However, we also wish to emphasize the broad
transition region from i ) 1 to i ) 3: T3- - T1+ ≈ 125 K.
Ratsch et al.15 have shown that the shape of the size
distribution changes continuously across this transition,
and can be parameterized by R. (Alternatively, Y could
be used.)
Contrasting the above analysis, Feibelman63 suggests

that Ebond should be much smaller. To reproduce the
high-T Arrhenius behavior of Nav, he then proposes a
crossover fromadominant exchangediffusionmechanism
with Ed ) 0.45 eV at low T, to another mechanism with
much larger Ed ≈ 0.8 eV, say, at higher T (so then Ebond
≈ 25 meV). Note that this also requires the prefactor for
the high-T mechanism to be at least three orders of
magnitude larger than for the low-T mechanism. Also,
lowering Ebond dramatically reduces the extent of the i )
1 regime, which becomes apparently inconsistent with
experimental observations.
Next we analyze multilayer growth and kinetic rough-

ening for Fe/Fe(100) atT) 295Kwhere island formation
is irreversible. Here STM images reveal that the film
roughens quickly.54 Analysis of the layer coverage dis-
tributions54 shows that â ≈ 0.15-0.18. Parallel RHEED
studies54 revealeda consistent strongdampingof the (0,0)-
beam intensity oscillations, anda transition from initially
strongly split diffraction profiles, to profiles where the
splitting has almost disappeared by ∼100 ML. Indepen-
dent high-resolution (HR) LEED studies64 of growth
estimated that â ≈ 0.22 and R ≈ 0.79 based on (27),
although one might expect that R ) 1 due to mounding.
Nonsplit profiles were always observed in contrast to
RHEED(but the lackof initial splittingwasa consequence
of starting from an imperfect “substrate”).
To model this behavior, we extended our simulations

of submonolayer nucleation and growth of square islands
with i ) 1 to the multilayer regime. We used the correct
4-fold-hollow (4FH) adsorption site geometry, and incor-

porated realistic downward funneling or deflection dy-
namics. (Atoms deposited at step edges and on micro-
protrusions are funneled down to lower 4FH sites.) The
only additionalmodel parameter is an effectiveSchwoebel
barrier,ESch, for downward transport of diffusingadatoms
that reach step edges. (Note that we take the same ESch
for all island edge sites.) ChoosingEd ) 0.45 eV tomatch
the submonolayer island density, as above, we then vary
ESch to obtain the bestmatch to the experimental54 θj (and
thus toW), at various coverages below about 5 ML. This
yieldsESch = 0.045 ( 0.005 eV (see Table 2 and Figure 9).
This choice produces kinetic rougheningwith an effective
â ≈ 0.2 (for 5 ML < θ < 30 ML, see Figure 10), which
reasonably matches the experimental value. Similar
resultshavebeenobtainedbyAmarandFamily.65 Amuch
more detailed presentation of our simulation results for
film morphology will be published elsewhere. We have
alsoperformedananalysis of the temperaturedependence
of rougheningwhich is entirely consistentwith thegeneral
scenario described in section IV.
We emphasize that precise treatment of adsorption site

geometry and downward funneling deposition dynamics
is crucial here in fitting the experiment. Use of a simple-
cubic geometry allows reasonable estimation of ESch and
prediction of behavior for θ < 5 ML but produces much
greater subsequent roughening than seen in experiment.

(63) Feibelman, P. Phys. Rev. B 1995, 52, 12447.
(64) He, Y.-L.; Yang, H.-N.; Lu, T.-M.; Wang, G.-C. Phys. Rev. Lett.

1992, 69, 3770.
(65) Amar, J.G.; Family, F.Phys.Rev.B1995,52, 13801 andprivate

communication.

Table 2. Comparison of Simulation [SIM] Results for the
Root Mean Square Interface Width, W (in Vertical

Lattice Units), with Experiment [EXP], up to 20.5 ML, for
Different Choices of the Step-Edge Barrier, ESch

a

θ(ML) W[EXP]
W[SIM] < W[EXP]

(ESch ) 40 meV)
W[SIM] ≈ W[EXP]

(ESch ) 45 meV)
W[SIM] > W[EXP]

(ESch ) 50 meV)

0.8 0.509 0.491 0.508 0.520
1.8 0.598 0.583 0.612 0.640
2.9 0.801 0.656 0.688 0.728
5.3 0.850 0.771 0.812 0.856
10.0 0.952 0.905 0.962 1.019
20.5 1.053 0.975 1.049 1.083
a The simulations used the Fe/Fe(100) parameters: Ed ) 0.45

eV, ν ) 1012/s, T ) 20 °C, and R ) 0.7 ML/min. These choices
match the observed62 mean island density, Nav = 3 × 10-3/site, at
0.07 ML.

Figure 9. Variation of W with θ j 20 ML, at 20 °C, for R ≈
0.7ML/min. Circles are experimental data62 for Fe/Fe(100).
Simulation results usingEd ) 0.45 eV and ν ) 1012/s, withESch
) 45 meV (thick solid line) and ESch ) 0 (dotted line), using a
4FHadsorption site geometry.Wealso showsimulation results
for an on-top adsorption site geometrywithESch ) 35meV (thin
solid line),which fits the experimental data (only) up to∼5ML.
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See Figure 9. The same is true even if one mimics
downward funneling in the simple-cubic geometry, e.g.,
by allowing 50% of atoms depositing on top of sites at the
straight edges of islands to “deflect” down.
VI.2. Homoepitaxy on Cu(100). Submonolayer

nucleation and growth has been studied in this system
primarily via surface-sensitivediffraction techniques.66-69

A ring structure is invariably observed in the “split”
diffraction profile. The ring diameter, d*, is typically
assumed to be inversely proportional to the mean island
separation, i.e., d* ∝ 1/lav ) Nav

1/2 ∼ (h/R)ø/2. However,
interpretation of observed behavior has been controver-
sial.3,41,66,67,70

He-beam scattering studies66 found that d* ∼ R0.27 for
T ) 220 K, and d* ∼ R0.23 for T ) 230 K, with 1/2000 ML/s
< R < 1/100 ML/s, at fixed θ ) 0.5 ML. They also found
that d* ∼ exp[0.07 eV/(kBT)] for 170 K < T < 250 K with
R ≈ 1/1270 ML/s. This suggests66,67 that øeff ≈ 1/2, so i ) 2
from (1), so 2Ed + E2 ≈8 × 0.07 eV from the Arrhenius
behavior of d*. However, one then obtains a rather low
Ed < 0.2 eV, for reasonable E2 ) Ebond ≈ 0.2 eV. Ernst et
al.66,67 insteadargue thatd* ismost sensitive to the largest
islands, whose separation satisfies a different “transient”
scaling, andextractEd accordingly. However, simulations
do not support their claim.3,11 The situationwas clarified
by recentHRLEEDstudies68 of flux scalingat 223Kwhich
do in fact show that øeff crosses over from ∼1/2 to an
asymptotic value of ∼1/3 at sufficiently low fluxes (R <
1/1000 ML/s). This provides convincing evidence that i )
1 here.

Onthebasisof thisobservation,wehavesimplymatched
the ringdiameter behavior,d*≈4.6(R/h)1/6, obtained from
our square-island simulationswith i) 1, to theHRLEED
behavior, d* ≈ 1.66R0.17, for asymptotically small R, at
fixed θ ) 0.3 ML. See Figure11. This yields h ≈ 450/s
at 223 K, so in fact Ed ≈ 0.40 eV, assuming that ν ≈ 5 ×
1011/s.
The origin of the “anomalous” ∼R1/4 behavior of d* for

R > 1/1000 ML/s, duplicated by HRLEED68 and He-beam
scattering66,67 studies at fixed θ ) 0.3-0.5 ML and T ≈
220 K, has been examined in recent simulations by
Breeman et al.71 tailored to this system. Their results
indicate that the key ingredient is the restructuring of
islands upon coalescence. Described below is an analysis
that we have performed to test and elucidate this idea.

(66) Ernst, H.-J.; Fabre, F.; Lapujoulade, J. Phys. Rev. B 1992, 46,
1929.

(67) Ernst, H.-J.; Fabre, F.; Folkerts, R.; Lapujoulade, J. J. Vac. Sci.
Technol. A 1994, 12, 1809.

(68) Zuo, J.-K.;Wendelken, J. F.; Dürr, H.; Liu, C.-L.Phys. Rev. Lett.
1994, 72, 3064.

(69) Dürr,H.;Wendelken, J. F.; Zuo, J.-K.Surf. Sci.1995,328, L527.
(70) Zangwill, A. In Evolution of Surface and Thin Film Microstruc-

ture; Atwater, H. A.; Chason, E.; Grabow, M.; Lagally, M. Eds.; MRS
Proceedings; Materials Research Society: Pittsburgh, PA, 1993; Vol.
280, p 121.

Figure 10. Adlayer morphologies from simulations using Ed ) 0.45 eV, ESch ) 45 meV, ν ) 1012/s, T ) 295 K, andR≈ 0.7 ML/min.
Darker regions correspond to lower levels. Total coverages (in ML) from (a-f) are 0.1, 0.5, 1, 5, 50, and 100.

Figure 11. Characteristic real-space length, Lav ) 4π/d*,
obtained from the ring diameter, d*, of the diffraction profile,
versus the inverse flux, 1/R, at 0.3 ML. Open circles are
experimental data68 for Cu/Cu(100) at 223 K. Solid line are i
) 1 square-island simulation data with h ) 450/s.
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Our abovementioned square-island simulations yielding
d*∼R1/6, at fixed θ, were performedwith no restructuring
(NR) of islands upon coalescence. Modifying the simula-
tions to allow complete restructuring (R) to form larger
squares produces the same scaling. Furthermore,we find
that d*(R)/d*(NR) ≈ 1 for θ below about 0.3 ML (due to
limited coalescence). However, d*(R)/d*(NR) decreases
below unity for higher θ, since the onset of significant
restructuring increases the correlation length of the
adlayer, thus reducing d*. This suggests71 the following
scenario for the observed variation ofd* withR. For large
R, there is insufficient time for restructuring following
coalescenceof islands, and thusd*(exp)∼d*(NR)∼ANRR1/6.
For low R, significant restructuring is possible, and thus
d*(exp) ∼ d*(R) ∼ ARR1/6 with AR > ANR. The anomalous
scaling reflects a crossover between these two regimes.72
The aboveHRLEED study43 also showed a distinct flux

scaling, d* ∼ R0.3 or ø ≈ 3/5, in the range 1/4000 < R < 1/1000
ML/s, at the higher temperature of 263 K. One might
naturally identify this as a transition from i ) 1 at 220
K, to i ) 3 at 263 K (cf. section III). We believe that this
behavior is best fit choosing Ebond around 0.2 eV, so then
T1+ ≈ 215 K, T3- ≈ 270 K, and T3+ ≈ 280 K (using Ed )
0.4 eV, δEb(4) ) 2Ebond, and R ) 0.001 ML/s). Then σ ≈
0.5 is “small”, so no extended regime of i ) 3 exists. ø
should vary stronglywithT, so the observation of a classic
i ) 3 value at 263 K is somewhat accidental!
An HRLEED study of the Arrhenius behavior of d* for

T between 180 and 260 K, for R ) 3.21 × 10-4 ML/s,
revealed an apparent sharp break in slope from 0.06 eV,
for T < 225 K, to 0.12 eV, for T > 225 K. Assuming that
the region ofT< 225 K corresponds to i) 1, as supported
by the flux scaling results, yields the estimate Ed ) 0.36
( 0.03 eV, consistent with our simulation result above.
In ref 69, the data above 223 K were fit to a clean i ) 3
regime69, producinganunreasonably lowestimate forEbond≈ 0.06 eV. We find72 that the observed behavior corre-
sponds instead to a gradual crossover from i ) 1 to i ) 3,
with Ebond ≈ 0.2 eV (cf. ref 16).
The multilayer growth and kinetic roughening of Cu/

Cu(100) is also rather complicated. He-beam scattering
studies61,67 reveal a transition from “smooth growth” for
T g 250 K, to rough growth for T ≈ 200 K with â ≈ 1/2,
to smoother “reentrant” growth for T ≈ 160 K with â ≈
0.26 (and possibly smoother growth for lowerT). Large-q
features of the diffraction profile indicated the develop-
ment of “pyramids” or mounds with sides corresponding
to (113) facets at 160 K, and (115) facets at 200 K. It was
also found that R≈ 1 at both 200 K and 160 K, consistent
withmounds of selected slope.26 Finally, a transitionwas
observed67 during film growth from a split diffraction
profile to the nonsplit form, expected for rough films (cf.

section V). The final saturation width of the profile
appearedtocorrelatewith thesubmonolayercharacteristic
length.67
Roughgrowthwith â≈ 1/2 at 200Khas been explained67

by the presence of a “large” Schwoebel barrier,ESch. This
barrier is insurmountable prohibitingdownward thermal
transport at T ) 200 K and below, but not at T g 250 K.
To explain the smoother growth at 160 K, it has been
suggested67 either that ESch is lowered or becomes less
effective due to the smaller size or perhaps “frizzier” edges
of islands. Instead, as in section IV, we propose that
smoother growth is a natural consequence of enhanced
nonthermal downward funneling from step edges. The
concentration of edges increases as the islands become
smaller for decreasing T, and eventually the adlayer
becomes a quasi-random distribution of adatoms. The
decrease in â is consistent with such amodel since, based
on studies of the downward funnelingmodel,51 one should
expect that â f 0, as T f 0.
However, the “anomalously” large lateral correlation

lengths observed33 in this system for submonolayer
coverages at very low T are not consistent with the
standard downward funneling model49 (they appear
narrower than those predicted by the model). We previ-
ously disputed the claim33 that this behavior is due to
“transient mobility” between 4FH adsorption sites.32,51
Instead, we are exploring a modified model involving
nonthermal short-range motion or “clumping” of atoms
depositednearbyexistingadatoms. This featureproduces
an increase in the correlation length and thus narrowing
of the profiles, as required, but could also potentially
modify the roughening behavior. Details of this analysis
will be reported elsewhere.

VI. Conclusions

We have examined realistic models for submonolayer
nucleation and growth in metal(100) homoepitaxy, and
subsequent multilayer growth. Some basic issues re-
garding the scaling of submonolayer island density, and
transitions in critical size, are discussed. Fundamental
and generic features of the real-space morphology of
roughening multilayer films are identified, and an ap-
propriate reciprocal-space kinematic diffraction theory is
developed. These models and results are applied to
provide a detailed understanding of observed behavior
during Fe(100) and Cu(100) homoepitaxy.
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