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ABSTRACT 

 
Condition-based maintenance is rapidly gaining favor as a way to prevent the failures of 

capital-intensive assets and to maintain them in good operating condition with minimum cost. 

A valuable and increasingly prevalent way to incorporate condition information into risk 

estimation is by the proportional hazards model (PHM), which explicitly includes both the 

age and the condition information in the calculation of the hazard function. This dissertation 

consists of three papers, in which the optimal replacement policies for systems whose 

deterioration process follows the PHM are developed under different settings; and a joint 

optimization of the asset and inventory management problem in the context of a product-

service system is considered. 

In the first paper, a continuous time Markov covariate process is assumed to describe the 

condition of a system that is under periodic monitoring. Although the form of an optimal 

replacement policy for such a system in the PHM was developed previously, an 

approximation of the Markov process as constant within inspection intervals led to a counter-

intuitive result that less frequent monitoring could yield a replacement policy with lower 

average cost. Accounting for possible state transitions between inspection epochs removes 

the approximation and eliminates the cost anomaly. A new recursive procedure to obtain the 

parameters of the optimal replacement policy is presented. By comparing the replacement 

and monitoring costs of different monitoring scheme, the value of condition information is 

evaluated.  

In the second paper, the optimal replacement policy for systems in the PHM with semi-

Markovian covariate process and continuous monitoring is developed. Numerical examples 

and sensitivity analysis provide some insights about the suitability of a Markov 

approximation and the impact of the variations in the input parameters on the cost. 

In applying the optimal replacement policies to a product-service system, where the 

producers provide the use of the products to customers while retaining ownership, the 

coupling between the decision making for preventive replacement and the decision making 



 x

for inventory management is evident. In the third paper, an integrated model is proposed for 

the preventive maintenance of a fleet of products and the inventory management of a hybrid 

manufacturing-remanufacturing system in the context of a product-service system. A joint 

optimization technique is developed to obtain the optimal parameters for the operational 

policy of the integrated model to minimize the long run average cost per unit time. In 

addition, the effect of the assumption that the replaced products are not sorted is evaluated. 



1 

CHAPTER 1 GENERAL INTRODUCTION 
 

1.1 Motivation 

Critical infrastructures depend on equipment and systems that deteriorate with age and 

are subject to failure. Because abrupt failures of capital-intensive physical assets such as 

high-voltage power transformers and heavy mining equipment may cause immense economic 

loss, preventive maintenance is essential.  

Optimal maintenance policies for deteriorating systems have been extensively studied for 

decades, and the recent research effort has been focused on condition-based maintenance 

(CBM). Compared to classical age-based preventive maintenance, CBM improves the 

decision-making process greatly by exploiting available information about the system’s 

operating conditions, such as use rate, temperature, humidity, vibration levels, or the amount 

of metal particles in the lubricant etc., in addition to the age information (Banjevic et al., 

2001). 

CBM relies heavily on condition monitoring technology. Increasingly, condition 

monitoring technology is gaining favor as a way to diagnose the health status, detect 

abnormal conditions and prevent catastrophic failure of valuable assets. Generally, there are 

two types of condition monitoring: periodic monitoring and continuous monitoring. The most 

rudimentary form of condition monitoring is periodic visual inspection by experienced 

operators to detect failure indicators such as cracking, leaking, corrosion, etc. More advanced 

periodic monitoring can be done by personnel through handheld data collectors and analyzers 

to collect information from oil analysis, vibration analysis, ultrasound analysis etc. 

With the advance of information and communication technology, remote and continuous 

monitoring of the condition information becomes accessible to decision makers. Today it is 

possible to install sensors and smart chips in a product to measure and record use 

rate/environmental data over the life of the product, and those data can be returned in real 

time to a central location to aid CBM decision making (Hong, 2009). This type of monitoring 



 2

is appealing particularly when distance or environmental conditions make regular inspections 

difficult.  

Condition monitoring may require substantial initial investment. Implementing CBM 

requires installation of instruments such as thermal sensors, debris detectors, dissolved gas 

analyzers or vibration monitors plus the information and communication devices to collect 

and transmit the condition data. The cost of sufficient instruments can be quite high, 

especially on equipment that is already installed. Therefore it is of vital importance to justify 

the value of condition monitoring before adding it to all equipment. 

In the first paper, two related challenging questions are addressed: 1) how to make best 

use of the condition information; and 2) whether the investment in condition monitoring 

technology is worthwhile. 

CBM models differ according to the approaches for utilizing the condition information to 

model the system’s lifetime. Many researchers assume that the system failure process can be 

described adequately by a multi-state deteriorating model derived from condition 

information, and extensive research has been done with Markov and semi-Markov decision 

models (Mine and Kawai, 1975, Mine and Kawai, 1982, Lam and Yeh, 1994, Chen and 

Trivedi, 2005). In this research, the proportional hazards (PH) model (Cox and Oakes, 1984) 

is adopted to incorporate condition information into system risk estimation. The condition 

information can be considered as a vector of covariates, each representing a certain 

measurement. The PH model combines a baseline hazard function which accounts for the 

aging degradation with a link function that takes the covariates into account to improve the 

prediction of failure. Compared to the Markovian deteriorating models, the PH model 

provides explicit expressions of the hazard function and the failure probability, which is more 

convenient to use and easier to calibrate from statistical point of view, and therefore is more 

accurate.  

Using a continuous time Markov chain to describe the evolution of the system condition, 

the form of an optimal replacement policy for systems that follow the PH model was 

developed by Makis and Jardine (1992). However, their approximation of the Markov 

process as constant within inspection intervals led to a counter-intuitive result that less 

frequent monitoring could yield a replacement policy with lower average cost. We explicitly 
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account for possible state transitions between inspection epochs to remove the approximation 

and eliminate the cost anomaly, and present a new recursive procedure to compute the 

optimal replacement age in each of the operating states and the optimal average cost for 

periodic monitoring. This allows an accurate comparison of monitoring at discrete intervals 

of different lengths against continuous monitoring (approximated as the interval vanishes) or 

no monitoring. 

We compare the average cost per unit time for monitoring and replacement under three 

monitoring schemes: no monitoring which corresponds to age-based replacement, periodic 

monitoring at various intervals, and continuous monitoring. We characterize the cost 

environments in which investment in condition monitoring equipment is justified. 

The second paper generalizes the CBM model in the first paper in two aspects. First the 

stochastic process characterizing the condition information is extended from a Markov 

process to a semi-Markov process, which allows arbitrary sojourn time distributions between 

transitions among the covariate states. Second the optimal replacement problem for systems 

in the PH model under continuous monitoring is investigated and a procedure is developed to 

obtain the optimal parameters and costs when the condition information is continuously 

available. Those generalizations endow our method with more capability and flexibility to 

model real world situations. In addition, sensitivity analysis is performed on a specific 

instance to demonstrate how the variations in the input parameters would affect the long-run 

average cost. 

A product-service system (PSS) is a strategy in which producers provide the use as well 

as the maintenance of products while retaining ownership. Prospective customers who 

become the clients pay fees for receiving the services or functions of products rather than 

purchasing them, and so are free of the risk, responsibility and cost burdens which are 

commonly associated with ownership. Since the introduction of this attractive concept in 

1999 (Goedkoop et al., 1999, White et al., 1999), a diverse range of PSS examples in the 

literature have demonstrated its economic success as well as its significant environmental 

benefits and social gains (Luiten et al., 2001, Manzini et al., 2001, Baines and Lightfoot, 

2007). 
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In PSS, a provider must maintain its products continuously in working order while they 

are dispersed among client firms. Because it retains ownership and control over the products, 

it can reuse and remanufacture them extensively. These practices motivate the use of 

condition monitoring to increase visibility of the product’s condition and environment while 

in use. In the attempt to apply CBM to the product-service system, the coupling between the 

decision making for preventive maintenance and the decision making for inventory 

management is evident.  

In particular, for the service paradigm to be viable from the provider’s perspective, the 

fee for service must allow for a profit margin over the cost of providing the service. The cost 

of service provision depends largely on the ability to manage and maintain products 

effectively in a closed-loop system. Unlike the common closed-loop supply chain for sold 

products, a distinct feature of the closed-loop supply chain in PSS is that the demands are 

driven by replacement of products in service and/or a capacity expansion requirement, and 

the returns are essentially generated by out-of-service products, replaced either preventively 

or due to failure. In other words, the demands and returns are controllable by the provider via 

replacement decisions, and the cost of replacement is affected by the inventory management 

decisions. Therefore, the replacement decisions are closely coupled with the inventory 

management decisions of this closed-loop supply chain. This coupling makes the decision 

making under PSS significantly more complicated than that under traditional product sales. 

In the third paper, we present an integrated model which takes into account both the 

maintenance decisions and the inventory management decisions in the context of a product-

service system to minimize the total cost per unit time. For maintenance, we consider the 

condition-based replacement policy presented in the second paper. For inventory 

management, a continuous review base stock policy is adopted due to its easy 

implementation and proven effectiveness in practice. Identifying and formulating the 

couplings between them, we develop an optimization technique to obtain the optimal 

parameters for the two policies simultaneously in the integrated model. In addition, the effect 

of the assumption that the replaced products have no quality difference is evaluated. 
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1.2 Dissertation Organization 

This dissertation consists of three main chapters, preceded by this general introduction 

and followed by a general conclusion. Each of those main chapters is a journal article, with 

the first two published and the third under review. Chapter 2 assesses the value of condition 

information for optimal replacement in the proportional hazards model with continuous 

degradation. Chapter 3 investigates the optimal replacement in the proportional hazards 

model with semi-Markovian covariate process and continuous monitoring. Chapter 4 studies 

the joint optimization of the asset and inventory management in the context of product-

service system. Chapter 5 concludes. 

References 

Baines, T. S. and Lightfoot, H. W. (2007). State-of-the-art in product-service systems. 

Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering 

Manufacture, 221:1543–1552. 

Banjevic, D., Jardine, A. K. S., Makis, V., and Ennis, M. (2001). A control-limit policy and 

software for condition-based maintenance optimization. INFOR, 39:32–50. 

Chen, D. and Trivedi, K. S. (2005). Optimization for condition-based maintenance with semi-

Markov decision process. Reliability Engineering & System Safety, 90(1):25–29. 

Cox, D. R. and Oakes, D. (1984). Analysis of Survival Data. Chapman & Hall, London. 

Goedkoop, M., van Halen, C., and te Riele, H. (1999). Product service-systems, ecological 

and economic basics. Report for Dutch ministries of environment (VROM) and 

economic affairs (EZ). http://www.pre.nl/download/ProductService.zip. 

Hong, Y. (2009). Reliability prediction based on complicated data and dynamic data. PhD 

thesis, Iowa State University. 

Lam, C. T. and Yeh, R. H. (1994). Optimal replacement policies for multi-state deteriorating 

systems. Naval Research Logistics, 41(33):303–315. 



 6

Luiten, H., Knot, M., and van der Horst, T. (2001). Sustainable product-service-systems: the 

kathalys method. In Proceedings of the Second International Symposium on 

Environmentally conscious design and inverse manufacturing, pages 190–197. 

Makis, V. and Jardine, A. K. S. (1992). Optimal replacement in the proportional hazards 

model. INFOR, 30(1):172–183. 

Manzini, E., Vezzoli, C., and Clark, G. (2001). Product service-systems: using an existing 

concept as a new approach to sustainability. Journal of Design Research, 1(2). 

Mine, H. and Kawai, H. (1975). An optimal inspection and replacement policy. IEEE 

Transactions on Reliability, 24:305–309. 

Mine, H. and Kawai, H. (1982). An optimal inspection and replacement policy of a 

deteriorating system. Journal of Operations Research Society of Japan, 25:1–15. 

White, A., Stoughton, M., and Feng, L. (1999). Servicizing: The Quiet Transition to Extended 

Producer Responsibility. Tellus Institute, Boston. 



7 

CHAPTER 2 VALUE OF CONDITION MONITORING FOR 
OPTIMAL REPLACEMENT IN THE PROPORTIONAL 

HAZARDS MODEL WITH CONTINUOUS DEGRADATION 
 

A paper published in IIE Transactions1 

 

Xiang Wu and Sarah M. Ryan 

 

Abstract 

We investigate the value of perfect monitoring information for optimal replacement of 

deteriorating systems in the proportional hazards model (PHM). A continuous time Markov 

chain describes the condition of the system. Although the form of an optimal replacement 

policy for system under periodic monitoring in the PHM was developed previously, an 

approximation of the Markov process as constant within inspection intervals led to a counter-

intuitive result that less frequent monitoring could yield a replacement policy with lower 

average cost. We explicitly account for possible state transitions between inspection epochs 

to remove the approximation and eliminate the cost anomaly. However, the mathematical 

evaluation becomes significantly more complicated. To overcome this difficulty, we present 

a new recursive procedure to obtain the parameters of the optimal replacement policy and the 

optimal average cost. A numerical example is provided to illustrate the computational 

procedure and the value of condition monitoring. By taking the monitoring cost into 

consideration, we observe the relationships between the unit cost of periodic monitoring and 

the upfront cost of continuous monitoring under which the continuous, periodic or no 

monitoring scheme is optimal. 

Keyword: optimal replacement; proportional hazards model; continuous time Markov 

chain; value of condition monitoring. 
                                                 

1 Appeared in IIE Transactions, 2010, 42, 553-563 
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2.1 Introduction 

Critical infrastructures depend on equipment and systems that deteriorate with age and 

are subject to failure. Because abrupt failures of assets such as high-voltage power 

transformers and heavy mining equipment may cause immense economic loss, preventive 

maintenance is essential.  Some of these assets or their electronic components are difficult 

and/or exorbitantly expensive to repair, and the need for continuous service precludes 

shutting down the dependent systems while on-site maintenance or repairs are done. In this 

paper, we consider replacement as the only maintenance option. 

Optimal replacement policies for deteriorating systems have been studied for decades  

(Aven and Bergman, 1986; Lam and Yeh, 1994b), and the recent research effort has been 

focused on the problem of optimal replacement when some concomitant (condition) 

information about the system, such as temperature, humidity, vibration levels, or the amount 

of metal particles in the lubricant, is available. Remote monitoring of condition information 

is appealing particularly when distance or environmental conditions make regular inspections 

difficult. Condition monitoring sensors along with information and communication 

technology increase the visibility of the system’s condition and environment while in use. 

Condition-based maintenance policies, such as those in Banjevic et al. (2001), Makis and 

Jiang (2003), Dieulle et al. (2003) and Ghasemi et al. (2007), exploit such information to 

determine when to preventively replace the system. Presumably, policies derived from more 

frequent observations of condition information have lower cost than those based on less 

frequent or no observations. The reduction in expected cost provided by frequent monitoring 

can be used to assess the value of the technology that enables the monitoring.  

Condition monitoring may require substantial initial investment in hardware and software 

installation, in contrast to traditional monitoring which typically incurs a cost associated with 

each observation. Taking this latter cost into consideration for systems under sequential or 

periodic monitoring, the optimal monitoring interval is usually determined by searching the 

possible parameter space within each step of a policy iteration algorithm, such as those in 

Yeh (1997) and Chiang and Yuan (2001). Continuous monitoring has been studied more 
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recently (Liao et al., 2006). Comparison of periodic and continuous monitoring for a two-

state system has been considered by Rosenblatt and Lee (1986). A more general comparative 

study of sequential and continuous monitoring strategies for a multistate model was 

presented by Lam and Yeh (1994a) for a deteriorating Markovian system; however, they did 

not include any cost for continuous monitoring. 

The concomitant information may be described by a stochastic process, which most 

frequently appears in the literature as a semi-Markov or Markov process. Models of the 

system’s failure probability differ according to their approaches for utilizing the condition 

information. Many researchers assume that the failure process of the system can be described 

adequately by a multi-state deteriorating Markov or semi-Markov process that leads to 

failure, and extensive research has been done with such models. For example, Chiang and 

Yuan (2001) proposed a state-dependent maintenance policy for a Markovian deteriorating 

system and they showed that many policies presented earlier were special cases of their 

proposed policy. Bloch-Mercier (2002) studied the preventive maintenance policy for a 

Markovian deteriorating system when a sequential checking procedure is applied. A dynamic 

preventive maintenance policy for a multi-state deteriorating system was developed by Chen 

et al. (2003).  

For many applications, it is most natural to model failures as dependent on system age in 

addition to some deterioration process. One way to account for these combined effects is to 

use the proportional hazards model (PHM), which explicitly includes both the age and the 

condition information in the hazard function (Makis and Jardine, 1992; Banjevic et al., 

2001). Makis and Jardine (1992) derived an optimal replacement policy for systems in the 

PHM with a continuous time Markov chain and periodic monitoring, and presented recursive 

methods to compute the optimal policy parameters. Banjevic et al. (2001) extended Makis 

and Jardine’s model by relaxing the monotonicity assumption of the hazard function and they 

developed methods for estimating model parameters as well. However, the computations in 

both papers relied on approximating the concomitant Markov chain as unchanging between 

inspection epochs. Ghasemi et al. (2007) also used the PHM to characterize the system 

failure process and, under the same discrete time approximation, derived an optimal 

replacement policy when the condition information of the system is only partially observed. 
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In this paper, we compare the average cost per unit time of monitoring, replacement and 

failure under three monitoring schemes: no monitoring which corresponds to age-based 

replacement, periodic monitoring at various intervals, and continuous monitoring.  For 

periodic monitoring, we follow the model of Makis and Jardine but remove their discrete-

time approximation by explicitly accounting for the possibility that the concomitant Markov 

chain may make transitions among its states between observation epochs. This allows an 

accurate comparison of monitoring at discrete intervals of different lengths against 

continuous monitoring (approximated as the interval vanishes) or no monitoring. Accounting 

for state transitions between observations introduces significant intricacies in the 

computation of policy parameters. These are addressed in Sections 2.3-2.5. We use 

conditioning to develop a new recursive procedure to obtain the parameters of the optimal 

replacement policy and its long-run average cost. We focus on systems with an underlying 

pure-birth process having an arbitrary number of states and illustrate the reasoning and 

computations for a three-state deterioration process in detail. In Section 2.6 we review the 

optimal replacement age for the no-monitoring scheme. Section 2.7 illustrates the 

computation of replacement policy parameters under periodic monitoring and the overall cost 

comparison of the three monitoring schemes in numerical examples. Based on the numerical 

results, we illustrate relationships between the costs of periodic or continuous monitoring 

under which the different monitoring schemes minimize the overall cost. Section 2.8 

concludes. 

2.2 Model Description 

We assume that the deterioration of the system follows a continuous time process and the 

system can fail at any time instant. The hazard rate of the system depends both on its age and 

on the values of concomitant variables that reflect the current system state or the operating 

environment. 

We use average cost per unit time to compare three schemes for monitoring and 

replacement decision-making.  The simplest is to choose a replacement time based only on 

the age of the system.  In this case the cost is due only to replacements and failures.  The 

second scheme is to inspect the condition at discrete time intervals of length Δ.  We assume 
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each inspection costs a fixed amount γ.  The third is to pay an amount Γ upfront to install 

equipment and software that will enable continuous monitoring with no additional cost per 

observation.  To evaluate continuous monitoring, we approximate the replacement and 

failure cost using periodic monitoring with 0Δ → . The goal is to determine relationships 

between γ and Γ under which each of these schemes minimizes the total average cost of 

inspection, failure and replacement per unit time, where Δ is optimized in the second 

approach.   

Let 1 2 3, ,G G G  be the average costs per unit time of the three schemes, respectively, and 

let gΔ  be the minimum replacement and failure cost per unit time for a periodic monitoring 

scheme with a fixed interval Δ . Assume r  is the interest rate for continuous discounting. 

Then 1 1( )G G τ= where τ is the replacement age, 2 2 ( )G G g γ
Δ= Δ = +

Δ
, and 3 0G g′= Γ + , 

where 0 0limg gΔ→ Δ=  and r′Γ ≡ Γ  is found from 
0

rte dt
∞ − ′Γ = Γ∫  as the equivalent average 

cost per unit time of Γ .  

For simplicity, we consider only one concomitant variable (covariate) in this paper. We 

assume that the operating condition of the system, which is described by the concomitant 

variable, may be classified into a finite set of states, {0,1,..., 1}S n= − . State 0 is the initial 

state of a new system. States 1, 2,., 1n −  reflect the increasingly deteriorating working 

condition of the system. Upon replacement, the system returns to state 0. The transition 

course among the states is formulated as a diagnostic stochastic process { , 0}tZ Z t= ≥  which 

is a continuous time homogeneous Markov chain on state space S .   

A convenient method to include both the age effect and the condition information in the 

hazard rate function is to employ the proportional hazards model (PHM), which has been 

applied successfully to engineering reliability problems in recent years (Cox and Oakes, 

1984). In the PHM, the hazard rate of a system is assumed to be the product of a baseline 

hazard rate 0 ( )h t  dependent only on the age of the system and a positive function ( )ψ i  that 

depends only on the values of concomitant variables (in our case, the states of the Z  

process). Thus, the hazard rate of the system at time t  can be expressed as  
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0( , ) ( ) ( ), 0t th t Z h t Z tψ≡ ≥ . 

From the above analysis, it is obvious that the key to comparing among different 

monitoring schemes is to obtain the optimal replacement policy and optimal replacement cost 

for periodic monitoring. Thus, first we assume that the Z  process is under periodic 

monitoring with a constant cost γ  per period. In other words, the states of the Z  process are 

available only at time instants 0 , Δ , 2Δ , …, where 0Δ > , in a replacement cycle. 

We adopt the following notation in this paper: 

t : The age of the system from time of replacement. 

T : The time to failure of the system. 

{ , 0}tZ Z t= ≥ : A continuous time Markov chain that reflects the condition of the system 

at age t with 0 0Z = ; in general, the effect of the operating environment on the system. 

kX : The sojourn time of the Z process in state k , 0,1,..., 2k n= − , assumed 

exponentially distributed.  

kv : The hazard rate of kX . 

0 ( )h t : The baseline hazard rate, which depends only on the age of the system. 

( )tZψ : A link function that depends on the state of the stochastic process Z . 

Δ : The length of the monitoring interval. 

C : The replacement cost without failure, 0C > . 

K : The additional cost for a failure replacement, 0K > . 

γ : The monitoring cost per period for periodic monitoring. 

Γ : The one-time initial cost for continuous monitoring. 

r:  Interest rate for continuous discounting. 

gΔ : Minimum replacement and failure cost per unit time for monitoring interval Δ . 

In addition, we introduce the following basic assumptions: 

1. The system must be kept in working order at all times. Replacement is 

instantaneous. 

2. The continuous time Markov chain Z is a pure birth process, i.e., whenever a 

transition occurs the state of the system always increases by one. Replacement 
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restarts the process at 0 0Z =  and state n-1 is absorbing. Note that the Markov chain 

governs how the condition variable evolves without intervention. If maintenance 

actions other than replacement were considered in the model, this monotonicity 

assumption would be violated.  

3. The baseline hazard rate, 0 ( )h t , is a non-decreasing function of the system age, that 

is, the system deteriorates with time. 

4. The link function, ( )tZψ , is a non-decreasing function with (0) 0ψ = . 

5. The practice of periodic monitoring influences neither the diagnostic Z process nor 

the system failure process. 

6. Failure of the system can occur at any time. Upon failure, system replacement is 

executed immediately. 

7.  The pair ( ),t tI Z , where 1tI =  if T > t and 0 otherwise, is a Markov process in the 

following sense: For any times 0 1 10 ks s s s t−≤ < < …< < <  and states 

0 1 1, , , , ,ki i i i j−… ,  

( ) ( )
1 01 0, , , , , , ,

kt s s k s t sP T t Z j T s Z i Z i Z i P T t Z j T s Z i
− −> = > = = … = = > = > = . 

As discussed by Banjevic et al. (2001), tZ  could represent either an “external” 

covariate such as environmental condition or an “internal” diagnostic variable.  

Under periodic monitoring, let kZ Δ  be the condition at time point kΔ  after the most 

recent replacement. Although condition information is available only at integer multiples of 

Δ , the continuous time Markov chain tZ  may shift among its discrete values at any time. 

Then for [ ]0,t ∈ Δ , define the expected conditional reliability function 

[ ] ( )0( , , ) ( | , ,..., ) exp ( ) ( )
k t

k k s kk
R k Z t E P T k t T k Z Z E h s Z ds Zψ

Δ+

Δ Δ Δ ΔΔ

⎡ ⎤≡ > Δ + > Δ = −⎢ ⎥⎣ ⎦∫ (2.1) 

This expression for the reliability function differs from the one in Makis and Jardine 

(1992).  In the previous work, the diagnostic process was approximated as not only 

unobserved but also unchanging between observation epochs. Approximating 

{ }, ( 1)tZ k t kΔ < ≤ + Δ  with the single value kZ Δ  allowed a deterministic evaluation of 
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  ( ) ( )0( , , ) | , exp ( ) ( )
k t

k k k k
R k Z t P T k t T k Z Z h s dsψ

Δ+

Δ Δ Δ Δ
≡ > Δ + > Δ = − ∫ .   

An attempt to apply that formula and others based on the same approximation resulted in 

the average replacement cost of the “optimal” replacement policy decreasing with Δ , 

suggesting that less frequent observations would enable better replacement decisions. This 

counter-intuitive result motivated the more detailed analysis in the next three sections of this 

paper. 

2.3 Optimal Replacement Policy for Periodic Monitoring 

The form of an optimal replacement policy, which minimizes the long-run expected 

average replacement cost per unit time for systems in the PHM with fixed Δ , was derived by 

Makis and Jardine (1992) while the computation of the optimal policy parameters was 

simplified by the discrete-time approximation of Z. To compare costs under different values 

of Δ  while considering the fact that the Z process may change state at any time, we find the 

parameters of an optimal replacement policy and its cost without the discrete-time 

approximation, given that the form of the replacement policy follows variant 2 of the policy 

in Makis and Jardine (1992); that is, the system may be replaced preventively either at an 

observation epoch or immediately if it fails between observation epochs.  

As in Makis and Jardine (1992), let decision 0 represent immediate replacement upon 

observation of the system state, and decision +∞  correspond to non-replacement (i.e., wait 

and see). They showed that an optimal replacement policy δ  for variant 2 exists and has the 

following form 

[ ]
0

if 1 ( , , ) ( , , )
( , )

0 otherwise,

K R k z g R k z t dt
k zδ

Δ⎧+∞ − Δ <⎪= ⎨
⎪⎩

∫  

where g  is the optimal average replacement cost per unit time, k  is the number of 

monitoring intervals since the last replacement and kz Z Δ=  is the condition of the system at 

age kΔ . This conclusion still holds upon substitution of ( , , )R k z t  by ( , , )R k z t  in the 

analysis. 
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The optimal replacement policy δ  is monotonic in the system age and state. It specifies 

that if the value of g  were known and no failure would occur, then the optimal replacement 

time for a specific condition z would be zk Δ , where zk  is the minimum integer that satisfies 

the inequality: 

0
1 ( , , ) ( , , )z zK R k z g R k z t dt

Δ
⎡ ⎤− Δ <⎣ ⎦ ∫ .    (2.2) 

On the other hand, if the system fails before zk Δ , then it is replaced immediately upon 

failure.  

According to Makis and Jardine (1992), the following algorithm may be employed to find 

g . Define  

  ( ) { }( ) min ,d dd C KP T T E T Tφ = + ≥⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦     (2.3) 

where dT  is the planned replacement time associated with the expected average cost d . Here, 

under a given replacement policy dδ , ( )dP T T≥  is the probability of failure replacement and  

{ }min , dE T T⎡ ⎤⎣ ⎦  is the mean replacement time considering failure. Thus, according to the 

theory of renewal reward processes (Ross, 2003), ( )dφ  is the long-run expected average cost 

per unit time for policy dδ . 

The algorithm is based on a fixed point result that for any 0 0d ≥ , if 

1( )m md dφ −= , 1, 2,...m = , then lim mm
d g

→+∞
= . It may be described as the following procedure: 

Algorithm 2-1 

1 Initialize the iteration counter 0m = , choose an arbitrary replacement policy, and set 

0d  equal to the cost of the chosen policy. 

2 For md , use (2.2) to find the planned replacement time ik Δ  associated with current 

system condition i , i.e., 

( ) ( ){ }0
min 0 : 1 ( , , ) ( , , ) ,i mk k K E R k i d E R k i t dt i S

Δ
⎡ ⎤= ≥ − Δ ≥ ∈⎣ ⎦ ∫ .  (2.4) 

3 Use the replacement policy obtained in step 2 and equation (2.3) with md d=  to 

calculate 1 ( )m md dφ+ = . 
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4 If 1m md d+ = , stop with mg d= ; otherwise, set 1m m← +  and go to step 2. 

Actually, Algorithm 2-1 is an example of the policy iteration algorithm as discussed by 

Tijms (1986), who proved that the sequence of d  values obtained from a policy 

improvement algorithm is monotonically decreasing and therefore the algorithm will 

converge in a finite number of iterations. 

For step 1, a good initial choice is 0 ( ) / ( )d C K E T= + , which is the long-run average 

cost of the policy that replaces only at failure. The crucial steps of this iteration procedure are 

steps 2 and 3; that is, to use equation (2.4) to identify current parameters of the replacement 

policy and then use equation (2.3) to update 1 ( )m md dφ+ = . The difficulties arise from the 

calculation of ( , , )R k i t  and the computation of (min{ , })dE T T  and ( )dP T T≥  under a given 

replacement police dδ . In the next two sections, we will derive formulas for computing 

( , , )R k i t , (min{ , })dE T T  and ( )dP T T≥  by conditioning. 

2.4 Analysis of the Expected Conditional Reliability Function 

2.4.1 Definitions 

Here we introduce some new definitions to facilitate the presentation of our method.  

Based on the assumption and notation in section 2.2, the sojourn time kX  is exponentially 

distributed with rate kv  and the 'kX s  are mutually independent. For convenience, define 

1nX − ≡ +∞  associated with the absorbing state n-1. 

For 0j ≥  and i S∈ , given that the age of the system is jΔ  and jZ iΔ = , define  

r

ir k
k i

S X
=

= ∑ , r S∈  and r i≥ . 

Then irj SΔ +  is the time point that the Z process makes a transition from state i  to state 

1r + . Therefore, if , 1[ , )i r irt S S−∈ , then j tZ rΔ+ = . For convenience, we also define , 1 0i iS − ≡ , 

, 1i nS − ≡ +∞ .   
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Define RT T j= − Δ , which is the residual time to failure if no preventive replacement is 

made. (Note that, for simplicity, dependence on j is suppressed in the notation for irS  and 

RT ). 

Then from the expected conditional reliability function (2.1), it follows that: 

 ( )0( , , ) ( | , ) exp ( ) ( ) |
j t

j R j s jj
R j Z t E P T t j Z E h s Z ds Zψ

Δ+

Δ Δ ΔΔ

⎡ ⎤⎡ ⎤= > Δ = −⎣ ⎦ ⎢ ⎥⎣ ⎦∫ . (2.5) 

Next, we evaluate ( , , )R j i t  by conditioning on , 1 , 2, ,...,ii i i i nS S S+ − . To better illustrate this 

procedure, first we examine a simple situation where the Z process has only three states 

{0,1,2} . Then we generalize the formulation of the three-state Z process to that of an n-state 

pure birth process. 

2.4.2 Derivation of ( , , )R j i t  for Three-State Z process 

As mentioned by Makis et al. (2003), a diagnostic process with three working states often 

is practical; e.g., one can view state 0 as a new system, state 1 as having some deterioration 

and state 2 as a warning state. Thus, it is helpful to detail the analysis for a three-state Z 

process for both illustrative and practical purposes. 

Here, we analyze ( ,0, )R j t  only. The formulas for ( , , ), 1, 2R j i t i = , may be deduced 

similarly and we relegate them to Appendix 2.A. 

For a three-state Z process, we can evaluate ( ,0, )R j t  by conditioning on 00S  and 01S . 

Using the law of total expectation, we have  

   
00 01

( ,0, ) ( | , 0)

( | , 0, , ) .

j

j

R j t E P T j t T j Z

E E P T j t T j Z S S

Δ

Δ

⎡ ⎤= > Δ + > Δ =⎣ ⎦
⎡ ⎤⎡ ⎤= > Δ + > Δ =⎣ ⎦⎣ ⎦

  

 (2.6) 

Given 0jZ Δ =  and for a given 0t > , the feasible region of the two-dimensional ( )00 01,S S  

space could be divided into 3 sub-regions (cases), as shown in Figure 2-1; that is, Case 0: 

00S t≥ , Case 1: 00 01S t S< ≤  and Case 2: 01S t< .  
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Figure 2-1 irS  Space partition 

Let irs  represent a value (realization) of irS . Then define conditional cumulative 

distribution functions (CDF’s) of RT  corresponding to the three cases above when 0jZ Δ = . 

For 00t s≤ , 

( ) ( )( )0
0 00 00 01 01 0( , ) ( | , , , 0) 1 exp 0

j t

R j j
F j t P T t S s S s j Z h u duψ

Δ+

Δ Δ
= ≤ = = Δ = = − − ∫ .(2.7) 

For 00 01s t s< ≤ , 

( ) ( ) ( ) ( )( )00

00

0
1 00 00 00 01 01

0 0

( , , ) ( | , , , 0)

1 exp 0 1 .

R j

j s j t

j j s

F j t s P T t S s S s j Z

h u du h u duψ ψ

Δ

Δ+ Δ+

Δ Δ+

= ≤ = = Δ =

= − − −∫ ∫
  (2.8) 

And for 01t s> , 

( ) ( ) ( ) ( ) ( ) ( )( )00 01

00 01

0
2 00 01 00 00 01 01

0 0 0

( , , , ) ( | , , , 0)

1 exp 0 1 2 .

R j

j s j s j t

j j s j s

F j t s s P T t S s S s j Z

h u du h u du h u duψ ψ ψ

Δ

Δ+ Δ+ Δ+

Δ Δ+ Δ+

= ≤ = = Δ =

= − − − −∫ ∫ ∫
 (2.9) 

We know that 0X  and 1X  are exponentially distributed and they are independent of each 

other. In addition, the event 00 00 01 01,S s S s= =  is equivalent to the event 

0 00 1 01 00,X s X s s= = − . Hence, the joint density function of 00 01,S S  is: 

0 00 1 01 00( )
00 01 0 1( , ) v s v s sf s s v e v e− − −=      (2.10) 
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Therefore, using equation (2.6) and setting the relevant integral domains according to the 

three sub-regions, we get  

0 00

01

0 0 00 1 00

0 0
0 0 00 00 01 1 00 00 010

0
00 01 2 00 01 00 010 0

( )0 0
0 0 1 00 000

0

( ,0, ) 1 ( , ) ( , ) 1 ( , , )

( , ) 1 ( , , , )

1 ( , ) 1 ( , , )

tv s

t t
t s

tv t v s v t s

R j t v e F j t ds f s s F j t s ds ds

f s s F j t s s ds ds

e F j t v e e F j t s ds

v

∞ ∞−

− − − −

⎡ ⎤ ⎡ ⎤= − + −⎣ ⎦ ⎣ ⎦

⎡ ⎤+ −⎣ ⎦

⎡ ⎤ ⎡ ⎤= − + −⎣ ⎦ ⎣ ⎦

+

∫ ∫ ∫
∫ ∫

∫
01

0 00 1 01 00( ) 0
1 2 00 01 00 010 0

1 ( , , , ) .
t s v s v s se v e F j t s s ds ds− − − ⎡ ⎤−⎣ ⎦∫ ∫

(2.11) 

2.4.3 Derivation of ( , , )R j i t  for an n-State Z process 

In the situation where the Z process has n states {0,1,..., 1}n − , the formulas for ( , , )R j i t  

may be derived in the same manner as in the three-state situation. Thus, in the following, we 

will present the formulas for ( , , ), 0,1,..., 1R j i t i n= − , directly. 

Let irs  represent a value (realization) of irS . Define conditional CDF’s of RT  when 

jZ iΔ = . For , 1 ,i i m i i ms t s+ − +< ≤ , 

,

, 1 , 1

, 1 , ,

1

0 0

( , , ,..., ) ( | , , , , )

1 exp ( ) ( ) ( ) ( ) , 0,1,..., 1.i k

i k i i m

i
m ii i i m R ii ii i i m i i m j

i m j s j t

j s j s
k i

F j t s s P T t S s S s j Z i

k h u du i m h u du m n iψ ψ
− + −

+ − + + Δ

+ − Δ+ Δ+

Δ+ Δ+
=

= ≤ = = Δ =

⎛ ⎞= − − − + = − −⎜ ⎟
⎝ ⎠

∑ ∫ ∫

"
(2.12) 

The joint density function of , 1 ,, ,...,ii i i i i mS S S+ +  is 

  1 , 1 , , 1( ) ( )
, 1 , 1( , ,..., ) ...i i i ii i m i i m i i mi ii v s s v s sv s

ii i i i i m i i i mf s s s v e v e v e+ + + + + −− − − −−
+ + + +=  (2.13) 

for all 0,1,..., 2m n i= − − . 

Thus, 

( )

( )

, 1 , 1

, 2 , 1

2

, , 1 , 2 , 1 ,0 0 0
0

, 2 1 , 20 0 0

( , , )

... ( ,..., ) 1 ( , , ,..., ) ...

... ( ,..., ) 1 ( , , ,..., ) ...

i i m i i

i n i i

n i t s s i
ii i i m m ii i i m ii i i m i i m i i mt

m

t s s i
ii i n n i ii i n ii i

R j i t

f s s F j t s s ds ds ds ds

f s s F j t s s ds ds

+ − +

− +

− − ∞

+ + − + − + − +
=

− − − −

= −

+ −

∑ ∫ ∫ ∫ ∫

∫ ∫ ∫ , 3 , 2n i nds− −

(2.14) 

for all i S∈ , where ,( ,..., )ii i i mf s s +  is given by (2.13). 
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2.5 Recursive Formulas for Mean Replacement Time and Failure 

Probability 

2.5.1 Derivation of (min{ , })dE T T  for an n-State Z process 

Like ( , , )R j i t , the mean replacement time (min{ , })dE T T  and failure probability 

( )dP T T≥  may be computed by conditioning on the variables irS . What’s more, they may be 

calculated efficiently using recursion. Next, we derive a recursive computational procedure 

for (min{ , })dE T T . The failure probability ( )dP T T≥  may be treated similarly and its 

derivation will be presented directly in Section 2.5.2. 

For a given value 0d > , the replacement policy dδ  may be found using (2.4). Then ik Δ  

is the planned replacement time associated with the current observed system condition, i . 

Let random variable 

( , ) min{ , }dT j i T T j= − Δ  

be the residual time to replacement given that the age of the system is jΔ , jZ iΔ =  and the 

replacement policy is dδ . Define 

[ ]( , ) ( , )W j i E T j i= , 

so that ( )(0,0) min{ , }dW E T T= . From the definitions above, it follows that 

( , ) 0W j i = , for ij k≥ , 

and for ij k< , we will evaluate ( , )W j i  by conditioning on , 1 , 2, ,...,ii i i i nS S S+ − . It is natural to 

assume that ij k<  for the remainder of this section.  

Again, using the law of total expectation, 

[ ] ( ), 1 , 2( , ) ( , ) ( , ) | , ,...,ii i i i nW j i E T j i E E T j i S S S+ −
⎡ ⎤⎡ ⎤= = ⎣ ⎦⎣ ⎦ .  

According to the state of the Z process at time point ( 1)j + Δ , there are ( )n i−  cases: 

Case m: ( 1)jZ i m+ Δ = + , that is , 1 ,i i m i i mS S+ − +< Δ ≤  
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( )
 if 

( , )
1,  if 

R R

R

T T
T j i

W j i m T
≤ Δ⎧

= ⎨Δ + + + > Δ⎩
 

where 0,1,..., 1m n i= − − . 

Then for , 1 ,i i m i i ms s+ − +< Δ ≤ , define: 

( )

, 1 , 1

, 1 , 1 , 1, 1 , ,

1

, 1 , 1

, 1

( , , , ..., ) ( , ) | , ,...,

( , , ,.., ) ( , , ,.., )

( ( 1, ))(1 ( , , ,..,

ik

i k i i m

ii i i i i m ii i i
i

m ii i i i i m i i m

i m s i i
k ii i k m ii i i ms s

k i

i
m ii i i m

j s s s sW E T j i S s S S s

tdF j t s s tdF j t s s

W j i m F j t s s

− + −

+ + − ++ + +

+ − Δ

− + −
=

+ −

== = =

= +

+ Δ + + + −

∑ ∫ ∫
)), 0,1,..., 1.m n i= − −

  (2.15) 

Note from (2.15) that the conditional value of ( , )T j i  is obtained in terms of 

( )1, , 0,1,..., 1W j i m m n i+ + = − − . Thus this is a recursive expression. 

To sum up above, we have  

, 1 , 1

, 2 , 1

2

, , 2 , 1 ,0 0 0
0

, 2 1 , 3 , 20 0 0

( , ) .. ( ,..., ) ...

... ( ,..., ) ...

i i m i i

i n i i

n i s s i
ii i i m m ii i i m i i m i i m

m
s s i

ii i n n ii i n i n

W j i f s s W ds ds ds ds

f s s W ds ds ds

+ − +

− +

− − ∞ Δ

+ + − + − +Δ
=

Δ

− − − −

=

+

∑ ∫ ∫ ∫ ∫

∫ ∫ ∫
 (2.16) 

where the density function ,( ,..., )ii i i mf s s +  is from (2.13) and the arguments of 

, 1 , 1( , , , ..., )ii i i i i m
i

m j s s sW + + −  as shown in (2.15) have been dropped for succinctness. 

2.5.2 Derivation of ( )dP T T≥  for an n-State Z process 

Define ( , ) ( | ( , ))dQ j i P T T j i= ≥ . Then (0,0) ( )dQ P T T= ≥  and ( , ) 0Q j i = , for ij k≥ . For 

ij k<  and , 1 ,i i m i i ms s+ − +< Δ ≤ , define 

( )

( )

, 1 , 1

, 1, 1 , ,

, 1

, 1

( , , , ..., )

| , ,...,

( , , ,.., )

( 1, ) 1 ( , , ,.., ) , 0,1,..., 1.

ii i i i i m

ii i i

i
m

d ii i i i i m i i m

i
m ii i i m

i
m ii i i m

j s s s

s

Q

E P T T S s S S s

F j s s

Q j i m F j t s s m n i

+ + −

++ + +

+ −

+ −

=⎡ ⎤= ≤ = =⎣ ⎦
= Δ

+ + + − = − −

   (2.17) 

Then we have 
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, 1 , 1

, 2 , 1

2

, , 2 , 1 ,0 0 0
0

, 2 1 , 3 , 20 0 0

( , ) .. ( ,..., ) ...

... ( ,..., ) ...

i i m i i

i n i i

n i s s i
ii i i m m ii i i m i i m i i m

m
s s i

ii i n n i ii i n i n

Q j i f s s Q ds ds ds ds

f s s Q ds ds ds

+ − +

− +

− − ∞ Δ

+ + − + − +Δ
=

Δ

− − − − −

=

+

∑ ∫ ∫ ∫ ∫

∫ ∫ ∫
 (2.18) 

for all i S∈  where ,( ,..., )ii i i mf s s +  is from (2.13) and i
mQ  is from (2.17) with arguments suppressed. 

2.6 Optimal Age-Based Replacement 

To investigate the value of condition monitoring, we also studied the optimal age-based 

replacement policy as a baseline for comparison. 

Without any condition monitoring, preventive replacement would be based only on the 

age of the system.  If ( )F t  is the distribution function of the failure time and the system is 

replaced whenever it fails or reaches age τ, then one can find the average replacement rate, 

( ) ( ) ( )( ) ( )
1 1

0 0
1 1 ( )r sf s ds F F s ds

τ τ
λ τ τ τ

− −
⎡ ⎤ ⎡ ⎤= + − = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫ , 

and the corresponding failure rate,  

( ) ( ) ( )d rFλ τ τ λ τ=  

(see (Ross, 2003), p.461). The optimal replacement age, *τ , is found by minimizing the total 

average cost per unit time, which is given by: 

( ) ( ) ( )
1

0
( ) ( ) ( ) 1 ( )r dw C K C KF F s ds

τ
τ λ τ λ τ τ

−
⎡ ⎤= + = + −⎢ ⎥⎣ ⎦∫ .  (2.19) 

In the notation of this paper, we have 

( ) ( )1 0,0,F t R t= −  

where ( )0,0,R t  is obtained from equation (2.14). 

2.7 Numerical Illustration 

To illustrate our model and its use in assessing the value of monitoring information, we 

consider the following numerical example. Assume that the baseline distribution is Weibull 

with hazard rate 
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1

0 ( ) th t
β

β

β
α

−

= , 

where 1, 2α β= = , and let ( ) exp(2 )t tZ Zψ = , 5C =  and 25K = . Assume the stochastic 

process Z has three states {0,1,2}  with transition rates 0 1 2ln(0.4), 0v v v= = − = . Since the 

forms of 0 ( )h t  and ( )tZψ  are predefined, the PHM here is parametric rather than semi-

parametric as described in Cox et al. (1984).  

2.7.1 Replacement Policy under Periodic Monitoring 

With 1Δ =  in Algorithm I, we initialize 0 ( ) / ( ) 46.8823d C K E T= + = , which is the cost 

of the policy that replaces only at failure. Then we illustrate how the first iteration for finding 

g  proceeds below. Other iterations are similar. 

Iteration 1: 0 46.8823d = . For 0tZ i= = , we get 0 1k =  from (2.2) and (2.14). Thus 

(1,0) 0W = , (1,0) 0Q = . Similarly, for 1i =  and 2i = , we get 1 1k =  and 2 1k = . Thus 

(1,1) 0W = , (1,1) 0Q = , (1,2) 0W = , (1,2) 0Q = . Based on these value, we obtain 

(1,0) 0.5943W =  from (2.16) and (1,0) 0.8410Q =  from (2.18).  

The complete results are shown in Table 2-1. The policy iteration algorithm converges 

after a single iteration to the optimal average cost 43.7905g = . The algorithm was 

implemented in Mathematica® for precise and efficient numerical evaluation of multiple 

integrals. 

Table 2-1 An Illustration of the Computation Procedure (three states) 

d  0k  1k  2k  (0,0)W  (0,0)Q  ( )dφ  

46.8823 1 1 1 0.5943 0.8410 43.7905 

43.7905 1 1 1 0.5943 0.8410 43.7905 

 

To study the effect of the interval between observations, we varied Δ  from 0.001 (to 

approach the case with continuous monitoring) to 10 (to approximate the situation without 

monitoring). Table 2-2 shows the optimal policies and replacement costs for various values 
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of Δ  with three-state Z process. Notably, if no preventive replacement is done, the mean time 

to failure of the system may be obtained from  

  
0

( ) (0,0, ) 0.6399E T R t dt
∞

= =∫ ,     (2.20) 

which agrees with the value of (0,0)W  when 10Δ = . Table 2-2 indicates that as the 

inspection interval Δ  decreases, the optimal replacement cost also decreases. This result is 

expected because with smaller Δ  values we obtain more timely information about the 

system, and thus can respond to condition deterioration more promptly.  

Table 2-2 Effect of Changing Δ  on the Optimal Policy and Cost with  

Comparison to Age-Based Replacement 

Δ  0k  1k  2k  (0,0)W  (0,0)Q  gΔ  *m  *( )w m Δ

0.001 487 66 9 0.3690 0.1606 24.4286 285 32.4929 

0.01 48 6 1 0.3664 0.1616 24.6698 29 32.4972 

0.05 9 1 1 0.3553 0.1658 25.7381 6 32.5318 

0.1 4 1 1 0.3329 0.1602 27.0455 3 32.5318 

0.2 2 1 1 0.3444 0.2062 29.4829 2 34.0449 

1 1 1 1 0.5943 0.8410 43.7905 1 43.7905 

10 1 1 1 0.6399 1.0000 46.8844 1 46.8844 

 

However, the opposite behavior occurred when we applied the discrete approximation 

formulas from Makis and Jardine (1992) directly to acquire the optimal policies. The results 

are shown in Table 2-3. To apply their discrete-time formulas, by uniformization we 

converted the continuous time Markov chain Z  discussed above to a discrete-time Markov 

chain, which makes a transition every Δ  units of time and has the transition probability 

matrix 

0.4 1 0.4 0
0 0.4 1 0.4
0 0 1

P

Δ Δ

Δ Δ

⎡ ⎤−
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

, 

and we assume that all else are held equal.  
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Since we ignored possible transitions between inspection intervals, there is no wonder 

that the results in Table 2-3 are all overoptimistic, that is, for the same Δ , the optimal 

replacement cost in Table 2-3 is smaller than that in Table 2-2. One apparent problem of 

Table 2-3 is that as Δ  increases from 0.001 to 0.2, the optimal replacement cost 

unexpectedly decreases. (We expected the optimal replacement cost to increase with Δ  

because less frequent observations lead to less information available, based on which it is 

impossible to make better decisions.) Another problem is that the average replacement time 

( )0,0W  when 1Δ =  or 10Δ =  is larger than the mean time to failure of the system (2.20). 

Despite these drawbacks, the results for 0.001Δ =  indicate that the discrete-version formulas 

from Makis and Jardine do provide an accurate approximation for the continuous time model 

when Δ  is sufficiently small. 

Table 2-3 Optimal Policies of Various Δ  According to Makis and Jardine (1992) 

Δ  0k  1k  2k  (0,0)W  (0,0)Q  g  

0.001 488 66 9 0.3695 0.1606 24.3967 

0.01 49 7 1 0.3720 0.1624 24.3503 

0.05 10 1 1 0.3821 0.1692 24.1569 

0.1 5 1 1 0.3907 0.1734 23.8946 

0.2 2 1 1 0.3491 0.1819 23.6061 

1 1 1 1 0.7468 0.6321 27.8553 

10 1 1 1 0.8862 1 33.8514 

2.7.2 Comparison with Age-Based Replacement 

To weigh the benefit of condition information against its cost, we can compare the 

optimal replacement cost of the policy based on more or less frequent monitoring to that of 

the age-based replacement policy. We also compute the optimal age-based replacement 

policy, shown with its cost in the last two columns of Table 2-2. The optimal replacement 

age, *τ , is found numerically by minimizing (2.19) using a heuristic search technique. To 

compare with the condition-based replacement policy, we constrain it to be an integer 

multiple, *m , of Δ . The numerical results quantify the savings *( )w m gΔ −  that are obtained 

with small values of Δ  by having access to more frequent observations of the product’s 
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condition. These cost savings could justify the investment in equipment and software 

required to monitor the condition frequently. 

The additional cost of a failure replacement, K , is usually difficult to estimate. But it 

could be very high for critical systems, often several times bigger than the regular 

replacement cost. Table 2-4 shows the impact of this cost on the optimal replacement policy 

and average cost when 0.01Δ = . As expected, for larger values of K , the cost savings 
*( )w m gΔ −  provided by condition monitoring is more substantial, which implies the great 

importance of the condition information in critical systems. 

Table 2-4 Effect of Increasing K  on the Optimal Policy and Cost when 0.01Δ =  with 

Comparison to Age-Based Replacement 

K  0k  1k 2k (0,0)W (0,0)Q g  *m  *( )w m Δ

5 25K C= =  91 12 2 0.5150 0.3637 27.3659 29 32.4972 

10 50K C= =  33 4 1 0.2773 0.0879 33.8817 20 43.6787 

20 100K C= =  23 3 1 0.2052 0.0465 47.0403 15 58.4512 

2.7.3 Optimal Monitoring Scheme 

We compare age-based, periodic monitoring and continuous monitoring based on total 

average cost per unit time. Without monitoring, the optimal value of 1G  is obtained in section 

2.6 by minimizing (2.19). We denote it as * *
1 1( )G G τ= . The cost of the periodic monitoring 

scheme, 2G , is a function of the inspection interval, Δ . Its optimal value, denoted as 

* *
2 2 ( )G G= Δ , is obtained numerically by searching the Δ  space. The continuous monitoring 

cost, 3G , achieves its optimal value, *
3G , when the system is under the optimal replacement 

policy of continuous monitoring, which we approximate by letting Δ  approach 0. If 

{ }* * * *
3 1 2 3min , ,G G G G= , then a one-time investment in continuous monitoring is worthwhile. 

Similarly, a smaller value of *
1G  than both *

2G  and *
3G  means that it is not worthwhile to 

devote any effort to collecting information on the system condition. This case can happen if 
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the covariates we study have an insignificant influence on the system hazard rate or the cost 

ratio ( ) /C K C+  is small. The optimal monitoring scheme is therefore determined by 

comparison among the values of * * *
1 2 3, ,G G G .  

In our numerical example of Table 2-2, we have *
1 32.4929G =  and *

3 24.4286G ′= + Γ  

(approximating 0g  as 0 0.001ĝ g= ). For simplicity, we restrict the value of Δ  to a finite set 

{0.01,0.05,0.1,0.2,1,10}Λ = . Then 

*
2 minG g γ

ΔΔ∈Λ

⎛ ⎞= +⎜ ⎟Δ⎝ ⎠
. 

Figure 2-2 displays a plot *
2 1( )G GΔ −  to compare between *

2G  and *
1G . The contour of 

*
2G  is highlighted with bold black. It is clear that if γ  is smaller than approximately 0.6 

(exact value is 0.6020), we can choose a proper Δ  to make the periodic monitoring scheme 

better than no monitoring.  

 
Figure 2-2 Comparison between *

1G  and *
2G  
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We would like to know under what conditions the continuous monitoring scheme would 

be the best option. Clearly, ( )( ) 0.001* 0.001 8.0643w m g′Γ ≤ − =  is necessary for * *
3 1G G≤ . 

Besides that, when 0.6020γ ≤ , for * *
3 2G G≤  we must have: 

• if 0.4875 0.6020γ< ≤ , then 0.2 0ˆ0.2 5 5.0543g gγ γ′Γ ≤ + − = + ; 

• if 0.1307 0.4875γ< ≤ , then 0.1 0ˆ0.1 10 2.6169g gγ γ′Γ ≤ + − = + ; 

• if 0.0134 0.1307γ< ≤ , then 0.05 0ˆ0.05 20 1.3095g gγ γ′Γ ≤ + − = +  

• if 0.0134γ ≤ , then 0.01 0ˆ0.01 100 0.2412g gγ γ′Γ ≤ + − = + . 

This analysis indicates that when it comes to choosing a proper monitoring scheme for a 

specific system, it is important to weigh the benefit of monitoring against its cost carefully. 

Although condition-based maintenance often leads to a lower cost than age-based 

maintenance, this is not always the case. In our numerical example, the combinations of 

monitoring costs γ  and ′Γ  under which the different monitoring schemes are optimal are 

shown in Figure 3. Note that the boundary between continuous and periodic monitoring 

could be described as the critical rΓ  being a concave piecewise-linear function of γ . This 

occurred when we restricted the value of Δ  to a finite set; we conjecture that if the value of 

Δ  is allowed to vary continuously, the critical rΓ  would be a smooth increasing concave 

function of γ . One implication of this concave shape is as follows. Suppose that current 

costs lie in the region where periodic monitoring is optimal; i.e., the initial cost, Γ, to set up 

continuous monitoring is prohibitively expensive relative to the periodic monitoring cost, γ . 

If γ  increases, for example due to growth in labor costs, then the drop in Γ required to make 

continuous monitoring worthwhile becomes disproportionately smaller.  
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Figure 2-3 Optimal cost regions for different monitoring schemes 

2.8 Conclusion 

In this paper, we investigated a condition-based replacement problem under various 

monitoring schemes for a deteriorating system with concomitant conditions described by a 

continuous time Markov chain. The proportional hazards model was applied to describe the 

failure time of this system. For such a model, although the form of the optimal replacement 

policy under periodic monitoring was given by Makis and Jardine (1992), computing the 

optimal policy parameters for a system with a continuous time diagnostic process is delicate. 

First, a recursive procedure was developed to obtain the optimal average cost and the 

parameters of the optimal policy for system with an n-state pure birth process. Then a 

numerical example with n=3 illustrated the computational procedure as well as the evaluation 

of condition information with more or less frequent monitoring. At last by taking the 

monitoring cost into consideration, we obtained the relationships between the cost γ of each 

inspection under periodic monitoring and the upfront cost Γ of continuous monitoring, under 
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which the continuous, periodic or no monitoring scheme minimizes the total average cost per 

unit time. Specifically, in the numerical example, no monitoring (i.e., age-based replacement) 

is optimal if both γ and Γ exceed certain values; and, for a fixed interest rate, the critical Γ on 

the boundary between continuous and periodic monitoring optimality is a concave increasing 

function of γ. 

Extensions of this research could include generalizing the one-dimensional covariate 

vector to multi-dimensional. Then the Z process would be a general Markov chain rather than 

a pure birth process. It could evolve along multiple paths, which would make the calculation 

of policy parameters by conditioning extremely intricate. In addition, the Markovian 

assumption of the diagnostic process could be relaxed to a semi-Markovian process, which 

allows arbitrary sojourn time distributions. Also in this paper, we assumed that the condition 

of the product is assessed perfectly, but in real situations it is only partially observed. The 

value of condition monitoring would be estimated more accurately by considering the 

element of uncertainty added by partial observations. Although Ghasemi et al. (2007) solved 

the partial observation problem on Makis and Jardine’s model using dynamic programming, 

the approximation of the Z process as constant within inspection intervals was left intact. 

Further extensions could generalize the underlying failure model. Using a different model to 

relate the concomitant information to system failure time distribution, such as a scale-

accelerated failure time (SAFT) model (Meeker and Escobar, 1998), could be of great 

practical value. In this case, both the optimal policy and its calculation must be reconsidered.  

Appendix 2.A Formulas for ( , , )R j i t  with 1,2i =  for Three-State Z 

Process 

2.A.1 Formulas for ( ,1, )R j t  

Define conditional CDF’s of RT  when 1jZ Δ = . For 11t s≤ , we have 

( ) ( )( )1
0 11 11 0( , ) ( | , , 1) 1 exp 1

j t

R j j
F j t P T t S s j Z h u duψ

Δ+

Δ
= ≤ = Δ = = − − ∫ , 

and for 11t s> , we have 
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( ) ( ) ( ) ( )( )11

11

1
1 11 11 11

0 0

( , , ) ( | , , 1)

1 exp 1 2

R j

j s j t

j j s

F j t s P T t S s j Z

h u du h u duψ ψ
Δ+ Δ+

Δ Δ+

= ≤ = Δ =

= − − −∫ ∫
 . 

Then we have  

1 1 111 1
0 1 1 11 110

( ,1, ) (1 ( , )) (1 ( , , ))
tv t v sR j t e F j t v e F j t s ds− −= − + −∫ . 

2.A.2 Formulas for ( , 2, )R j t  

Define conditional CDF’s of RT  when 2jZ Δ = , 

( ) ( )( )2
0 0( , ) ( | , 2) 1 exp 2

j t

R j j
F j t P T t j Z h u duψ

Δ+

Δ
= ≤ Δ = = − − ∫ . 

Then we have  

2
0( , 2, ) 1 ( , )R j t F j t−= . 
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CHAPTER 3 OPTIMAL REPLACEMENT IN THE 
PROPORTIONAL HAZARDS MODEL WITH SEMI-

MARKOVIAN COVARIATE PROCESS AND CONTINUOUS 
MONITORING 

 

A paper published in IEEE Transactions on Reliability2 

 

Xiang Wu and Sarah M. Ryan 

 

Abstract 

Motivated by the increasing use of condition monitoring technology for electrical 

transformers, this paper deals with the optimal replacement of a system having a hazard 

function that follows the proportional hazards model with a semi-Markovian covariate 

process, which we assume is under continuous monitoring. Although the optimality of a 

threshold replacement policy to minimize the long-run average cost per unit time was 

established previously in a more general setting, the policy evaluation step in an iterative 

algorithm to identify optimal threshold values poses computational challenges. To overcome 

them, we use conditioning to derive an explicit expression of the objective in terms of the set 

of state-dependent threshold ages for replacement. The iterative algorithm is customized for 

our model to find the optimal threshold ages. A three-state example illustrates the 

computational procedure, as well as the effects of different sojourn time distributions of the 

covariate process on the optimal policy and cost. Numerical examples and sensitivity 

analysis provide some insights into the suitability of a Markov approximation, and the 

sources of variability in the cost. The optimization method developed here is much more 

                                                 
2 Appeared in IEEE Transactions on Reliability, 2011, 60, 580-589 
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efficient than the approach that approximates continuous monitoring as periodic, and then 

optimizes the periodic monitoring parameters. 

 

Index terms—Optimal replacement, proportional hazards model, semi-Markov process, 

threshold replacement policy, sensitivity analysis 

 

ACRONYM 

CBM Condition-based maintenance 

DGA Dissolved gas analysis 

PHM Proportional hazards model 

STD Sojourn time distributions 

CV Coefficient of variation 

 

NOTATION 

t   The age of the current system. 

{ , 0}tZ Z t= ≥   A right continuous semi-Markov process with a finite state space 

{0,1,..., 1}n −  and 0 0Z =  that reflects the health condition of the system at 

age t. 

0 ( )h t   The baseline hazard rate, which depends only on the age of the system. 

( )tZψ   The link function in PH model that depends on the state of the covariate 

process Z . 

kX  The sojourn time of the Z process in state k , 0,..., 2k n= − . 

( )
kX kf x  The pdf of kX , 0,..., 2k n= − . 

kS  The age at which the covariate state changes from k  to 1k + , 

0,..., 2k n= − . 

0 1( , ,..., )k kg s s s   The joint pdf of 0 1, ,..., kS S S , 0,..., 2k n= − . 

0 1( , ,..., )k kG s s s   The joint Cdf of 0 1, ,..., kS S S , 0,..., 2k n= − . 

T   The time to failure of the system. 
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dT  A stopping time dependent on the age of the system and tZ . 

dTδ   A replacement policy that replaces at failure or at dT , whichever occurs 

first. 

C   The replacement cost without failure, 0C > . 

K   The additional cost for a failure replacement, 0K > . 

 

ASSUMPTIONS 

1. The system must be kept in working order at all times. Replacement is instantaneous. 

2. The baseline hazard rate, 0 ( )h t , is a non-decreasing function of the system age; that 

is, the system deteriorates with time. 

3. The link function, ( )tZψ , is a non-decreasing function with (0) 1ψ = . 

4. The practice of continuous monitoring influences neither the covariate process Z  nor 

the system failure process. 

 

3.1 Introduction 

This article concerns a condition-based maintenance (CBM) problem for critical assets. 

Compared to classical preventive maintenance, CBM improves the decision-making process 

by exploiting available information about the system’s operating conditions. Increasingly, 

condition monitoring technology is gaining favor as a way to diagnose the health status, and 

detect the impending failure of expensive assets.  

This work was motivated by the need to improve the management of capital-intensive 

assets such as high-voltage power transformers.  As explained by Wang et al. [1], “As 

transformers age, their internal condition degrades, which increases the risk of failure.  

Failures are usually triggered by severe conditions, such as lightning strikes, switching 

transients, short-circuits, or other incidents.  When the transformer is new, it has sufficient 

electrical and mechanical strength to withstand unusual system conditions.  As transformers 

age, their insulation strength can degrade to the point that they cannot withstand system 

events such as short-circuit faults or transient overvoltages.” Unexpected failure of power 
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transformers results in unscheduled outages with power delivery problems, and may cause 

immense economic loss. For example, the replacement cost of a single phase 500 MVA 

transformer is around 1 million dollars, while the failure cost could run several times as high 

as that number [2]. To reduce the risk of unexpected failure, on-line monitoring has become 

common practice, and the condition information concerning transformers in the field can be 

returned in real time to a central location for continuous assessment [2], [3]. A real example 

is described in [2], where on-line dissolved gas analyzers attached to transformers collect 

dissolved gas analysis (DGA) data six times each day, on a regular 4-hour schedule. In view 

of the multi-decade life cycle of transformers, it is adequate to view this kind of practice as 

continuous monitoring. The high cost of unexpected transformer failure motivates our study 

of how to make best use of the condition information to decide when to perform preventive 

replacement. 

CBM models of the system’s lifetime differ according to their approaches of utilizing the 

condition information. Many researchers assume that the system failure process can be 

described adequately by a multi-state deteriorating model, and extensive research has been 

done with Markov and semi-Markov decision models [4] - [9]. Douer and Yechiali [6] 

studied the optimal repair and replacement problem in Markovian systems, and they 

introduced a generalized control limit policy which is optimal under reasonable conditions. 

Lam and Yeh [7] used a semi-Markov process to model a multi-state deteriorating system, 

and considered state-age-dependent replacement policies. They showed that optimal 

replacement policies have monotonic properties under reasonable assumptions on 

replacement cost, replacement time, and failure rate. Chen and Trivedi [8] built a semi-

Markov decision model for condition-based maintenance policy optimization, and presented 

an approach to optimize the inspection rate and maintenance policy jointly. The issues of 

imperfect monitoring in state-based preventive maintenance were considered in [10], [11]. In 

contrast to the multi-state deteriorating models, Toscano and Lyonnet [12] proposed a 

dynamic failure rate model that predicts the reliability of the system in real time by taking 

into account the past and present operating conditions. 

Another valuable and increasingly prevalent way to incorporate condition information 

into risk estimation is the proportional hazards (PH) model [13], which explicitly includes 
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both the age and the condition information in the calculation of the hazard function. It 

combines a baseline hazard function which accounts for the aging degradation with a link 

function that takes the condition information into account to improve the prediction of 

failure. Generally, the condition information is described by a multi-state covariate 

(diagnostic) process { , 0}tZ Z t= ≥ . The PH-based replacement policies have been 

successfully applied in a variety of industrial sectors such as pulp and water, coal plants, 

nuclear plant refueling, military land armored vehicles, construction industry backhoes, 

marine diesel engines, and turbines in a nuclear plant [14].  

Several papers have been published to optimize the decision-making in the PH model 

setting. Makis and Jardine [15] investigated the optimal replacement policy for systems 

under a PH model with a Markov covariate process, and periodic monitoring; and they 

showed that the optimal replacement policy is of a control limit type in terms of the hazard 

function. Banjevic and Jardine [16] extended Makis and Jardine’s model by relaxing the 

monotonicity assumption of the hazard function, and they developed methods for parameter 

estimation in the PH model as well. The same model was extended in [17] by assuming the 

information obtained at inspection epochs is imperfect; that is, the condition information of 

the system is only partially observed. Wu and Ryan [18] removed the discrete-time 

approximation of the continuous time covariate process in [15], which could lead to a 

counter-intuitive result when comparing the cost of policies with different monitoring 

intervals. They presented a new recursive procedure to obtain the optimal policy, and assess 

whether the investment of condition monitoring technology in capital-intensive physical 

assets is worthwhile. All of these papers assumed the covariate processes to be Markov 

processes, and under periodic monitoring. 

In this paper, we extend the PH-based replacement models to systems with semi-Markov 

covariate processes under continuous monitoring. We consider parametric PH model with a 

baseline hazard function, and a time dependent covariate process. In the transformer 

application, it is reasonable to let the covariate process Z  represent the condition of the 

insulation, which degrades over time, and may be classified into several different states, such 

as new, normal, warning, and dangerous. Assume the state of the insulation can be perfectly 

inferred from a combination of monitored variables including acoustic and electrical signals 
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caused by partial discharge, moisture or gases in the insulating oil, or other quantities that 

indicate the condition of the insulation [1]. By modeling the evolution of the insulation state, 

the hazard function for the transformer can be evaluated, and further, the mean time to failure 

and the average cost associated with any given replacement policy can be calculated. In the 

PH model setting, a transformer failure can occur from any insulation state with increasing 

risk of failure as the insulation condition degrades. 

Maintenance to improve the condition of the insulation requires taking the transformer 

out of service for a significant period of time to replace the insulation, which is not a 

practical option. Besides, the maintenance cost is relatively low compared to the preventive 

replacement cost plus the failure cost [2], [19]. Thus, in this paper, we consider replacement 

of the transformer as the only maintenance option. 

Examining existing PH-based replacement models exposed the gaps between the 

literature and practice. So far, the form of the optimal policy for systems under continuous 

monitoring has not been articulated, and how to estimate the risk with continuously 

monitored information has not been addressed. In addition, a Markovian model may not be 

appropriate for the covariate process. Requiring that times between transitions among the 

covariate states be exponentially distributed is an added approximation which limits the 

usage of the model. Therefore, we adopt a semi-Markov covariate process with general 

transition time distributions. 

The contributions of this research and outline of the paper are as follows. By identifying 

our model as a special case of the one described in [20], we show in Section 3.3 that, if the 

hazard function of the system is non-decreasing, then the optimal replacement policy is of the 

control limit type with respect to the hazard function, and may be uniquely defined by a set 

of state-dependent threshold ages for replacement. To compute the optimal policy and 

optimal cost, we use conditioning arguments to derive explicit expressions for s-expected life 

and failure probability of transformers in terms of the policy parameters in Section 3.4. The 

iterative procedure developed by Bergman [20] is specified for our model to find the optimal 

threshold ages. The model and the solution procedure are illustrated by numerical examples 

in Section 3.5. We discuss its computational advantage over the recursive procedure [18], 

and we study the effect of different sojourn time distributions of the covariate process on the 
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optimal policy and cost. In addition, sensitivity analysis is performed on a specific instance to 

demonstrate how the variations in the input parameters would affect the long-run average 

cost. 

3.2 Model Description 

We assume the system deteriorates with time, and is subject to random failure. Upon 

failure, the system is instantaneously replaced by a new one, and the process renews. The 

hazard function of the system increases with the system’s age, as well as with the value of 

covariates that reflect the health condition of the system.  

For simplicity, we consider only one covariate. To account for both the age effect and the 

condition information in the system’s hazard function, the PH model is employed to describe 

the failure process of the system. That is, the hazard function of the system at time t  can be 

expressed as  

  0( , ) ( ) ( ), 0t th t Z h t Z tψ= ≥ .      (3.21) 

We assume that { , 0}tZ Z t= ≥  is a continuous-time semi-Markov process which depicts 

the evolution of the covariate, and is under continuous monitoring. It has a finite state space 

{0,1,..., 1}n − , where state 0 represents the covariate state corresponding to a new system, and 

states 1,2,..., 1n −  reflect the increasingly deteriorating condition. It follows that the 

conditional survivor function is given by 

  ( )00
( ; ) Pr( | ,0 ) exp ( ) ( ) , 0

t

s sR t Z T t Z s t h s Z ds tψ= > ≤ ≤ ≡ − ≥∫ . (3.22) 

From this function, we can see that a system failure can occur in any state at any time 

with increasing likelihood as the system ages, and the health condition degrades.  

Between any two consecutive replacements, the covariate process Z  changes states 

according to a pure birth process; i.e., whenever a transition occurs, the state of the process 

always increases by one, and state 1n −  is absorbing. Replacement is instantaneous, and the 

covariate returns to state 0 upon replacement. The time interval between two successive 

transitions is a random variable with any distribution. Let kX  be the sojourn time in state k . 

We allow kX  to follow an arbitrary distribution with density ( )
kX kf x , for 2k n≤ − ; the 
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distribution of 1nX −  is immaterial because the covariate process exits from that state only 

when the system is replaced. Define 
0

, 0,1,.., 2k
k ii

S X k n
=

= = −∑ , which is the age when the 

covariate moves from state k  to state 1k + . The joint pdf, and Cdf of 0 1, ,..., kS S S , for 

0,..., 2k n= − , are represented as 0 1( , ,..., )k kg s s s , and 0 1( , ,..., )k kG s s s  respectively, where 

0 10 ... ks s s< < < < . As will be shown in Section 4, the pdf 0 1( , ,..., )k kg s s s  is fully determined 

by ( )
kX kf x , 0,..., 2k n= − , as is 0 1( , ,..., )k kG s s s .  

In practice, the state of the covariate is inferred from continuously monitored variables. 

In the transformer application, the state of insulation is determined by a combination of 

acoustic and electrical signals, detection of moisture or gases in the insulating oil, dissolved 

gas analysis data, and so on. By carefully examining historical data, the point in time at 

which the covariate changes state would be known, and the forms and the parameters of 

( )
kX kf x  could be identified and estimated using standard statistical methods.  

Continuous monitoring usually involves an upfront investment in hardware and software 

installation, and each inspection action costs nothing thereafter. Because this upfront cost 

does not affect the optimal policy that minimizes the long-run average cost, we do not 

include the cost of continuous monitoring in our objective function.  

Define the replacement rule 
dTδ : Replace at failure or at dT , whichever occurs first. 

Utilizing the classical cost structure, assume each planned replacement costs 0C > , and each 

failure replacement incurs an additional cost 0K > . Then, according to the theory of renewal 

reward processes [21], the long run average cost per unit time can be expressed as 

  
[ ]

Pr( )( )
min{ , }

d
d

d

C K T TT
E T T

φ + ≥
=       (3.23) 

where Pr( )dT T≥  is the probability of failure replacement, and [ ]min{ , }dE T T  is the s-

expected replacement time. The main objective of this paper is to find an optimal 

replacement policy that minimizes the long-run average cost per unit time for systems with 

semi-Markovian covariate process, and continuous inspection; and to establish procedures to 

obtain the parameters of the optimal policy. 
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3.3 The Form of the Optimal Replacement Policies 

Bergman [20] investigated the optimal replacement problem under a general failure 

model, in which the hazard rate )(⋅h  of system failure is non-decreasing, and completely 

determined by a general stochastic process ( )X t , 0t ≥ . It is assumed that ( )X t  is also non-

decreasing, and under continuous monitoring. Under the same cost structure as in Section 2, 

Bergman showed that the optimal replacement policy is of the control limit type, and the 

optimal stopping time has the form 

  ( )* *inf{ 0 : ( ) / }dT t h X t d K= ≥ ≥      (3.24) 

where * *( )dd Tφ=  is the optimal cost. If the set in (3.24) is empty, then *
dT = ∞ , which means 

replacement only at failure.  

Equation (3.24) indicates that, for a given control limit * /d K , the optimal policy 

parameters can be calculated. However, *d  itself is dependent on the optimal policy. To 

solve this difficulty, Bergman proved the following proposition, which leads to an iterative 

algorithm that produces a sequence converging to an optimal cost. 

Proposition 3-1. Choose any positive 0d , and set iteratively  

( )inf{ 0 : ( ) / }n nT t h X t d K= ≥ ≥      (3.25) 

1 ( )n nd Tφ+ = ,  0,1,2, .n = …       (3.26) 

Then *lim nn
d d

→∞
= . 

A generalization made in the latter part of [20] greatly extends the application scope of 

this model. Therein Bergman stated that the process ( )X t  can be generalized to be a 

stochastic vector process with 1 2( , ,..., )nX X X X= , which represents n different 

measurements of deterioration. As long as each component of ( )X t  is non-decreasing, and 

the state-dependent hazard rate function ( )( )h X t  is non-decreasing in each component of 

( )X t , the above conclusions hold.  

The PH model with a semi-Markovian covariate process and continuous monitoring 

presented in Section 2 is a special case of the general failure model defined by Bergman, 

where the age of the system could be regarded as one component of the stochastic process 
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( )X t , and the covariate tZ  as the other component of ( )X t . Thus we obtain the following 

theorem.  

Theorem 3-1. For a system whose failure time follows the proportional hazards model (1) 

that is to be replaced at the smaller of its failure time or a replacement stopping time, the 

optimal stopping time satisfies 

  ( ) ( )* *
0inf{ 0, / }d tT t h t Z d Kψ= ≥ ≥      (3.27) 

where *d  is the optimal cost.  

The optimal replacement policy specified by (3.27) may be explained as: replace at 

failure or when the hazard rate of the system reaches or exceeds a certain level (control 

limit). Essentially, this is a control-limit policy with respect to the hazard rate. In our model, 

if we know the form of the baseline hazard function, and the link function, then for a certain 

state, (3.27) determines a unique threshold age for replacement because the hazard rate 

function is monotonic in time. Hence, the optimal replacement policy for our model can be 

uniquely defined by n threshold ages. Consider a system with a three-state Z process. As 

illustrated in Figure 3-1, the control limit * /d K  for the hazard rate fixes the planned 

replacement ages 0 1 2, ,t t t  for state 0, 1, 2 respectively. Because the link function increases 

with the covariate state, we have 0 1 2t t t> > .  

 

Figure 3-1 Replacement ages defined by the control limit. 
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We henceforth restrict our attention to the class of replacement policies in which a policy 

is composed of n threshold times for replacement, and we denote it as 0 1 1{ , ,..., }
dT nt t tδ −= , 

0 1 1... nt t t −> > > , where it  is the threshold age for replacement if the system is in state i. 

Obviously, the optimal policy in (3.27) falls within this class. 

With the form of the optimal policy known from Theorem 1, and the iterative algorithm 

given in Proposition 3-1, there is still one barrier in the way of obtaining the optimal policy 

and cost for our model, which is the evaluation of (3.26), or how to compute the 

corresponding cost for a given stopping rule. An explicit expression for the objective 

function (3.23) in terms of the policy parameters 0 1 1, ,..., nt t t −  is necessary to overcome the 

barrier. We address this issue in the next section. 

3.4 Explicit Expression of the Long-Run Average Cost 

From (3.23), calculation of the objective involves evaluating the failure probability 

Pr( )dT T≥ , and s-expected time to replacement [ ]min{ , }dE T T . For notational convenience, 

define [ ]0 1 1( , ,..., ) min{ , }nd dW W t t t E T T−= =  as the s-expected life of the system, and define 

( )0 1 1( , ,..., ) Prd n dQ Q t t t T T−= = ≤  as the probability of failure under policy 

0 1 1{ , ,..., }
dT nt t tδ −= . In what follows, we show that it is possible to explicitly represent dW  

and dQ  as functions of 0 1 1, ,..., nt t t −  by conditioning on the time instants at which the system 

changes state; that is, on 0 1 2, ,..., nS S S − . For simplicity, we take the system with a three state 

covariate process as an illustration. The results generalize to situations with more states. 

Assume the marginal pdfs of sojourn times 0X , and 1X  are )(
0

⋅Xf , and )(
1

⋅Xf  

respectively. It follows that the pdf of 0S  is  

  
00 0 0( ) ( )Xg s f s= .       (3.28) 

Also, note that the event [ ]0 0 1 1,S s S s= =  is equivalent to the event [ ]0 0 1 1 0,X s X s s= = − . 

Hence the joint pdf of 0S  and 1S  is  

 
0 11 0 1 0 1 0( , ) ( ) ( )X Xg s s f s f s s= − , 0 10 s s< < .    (3.29) 



 45

In accordance with the survivor function in (3.22), define the conditional Cdf of system 

failure time T  as follows by conditioning on 0S  and 1S , where 0s  and 1s  are realizations of 

0S  and 1S , respectively, and 0 1s s< .  

Let 1 0 0 1 10 Pr( | )( , ,; ) T t SF s st S ss ≤ = =≡ . 

Then, for 0t s≤ ,  

  ( ) ( )( )0 1 0 00
( ; , ) ( ) 1 exp 0

t
F t u ds uF s ht ψ≡ − −= ∫ . 

For 1 0s t s> > , 

  ( ) ( ) ( ) ( )( )0

0
0 1 0 0 001 ( ; ) 1 exp( ; 1, ) 0

s t

s
F t s h u du h u duF t s s ψ ψ≡ − − −= ∫ ∫ .  

For 1t s> , 

( ) ( ) ( ) ( ) ( ) ( )( )0 1

0 1
2 0 1 0 0 01 00 ( ; , ) 1 exp 0 1, 2( ; )

s s t

s s
F t s s h u du h u du h u duF t s s ψ ψ ψ≡ − − − −= ∫ ∫ ∫ . 

Again, conditioning on 0S  and 1S , there will be five different cases based on the relative 

positions among 2 1 0, ,t t t  and 0 1,s s , as discussed below. Note that 2 1 0t t t< < , and 0 1s s< . 

Under each case, the expressions of dW  and dQ  can be derived accordingly. 

Let  

( )0 1 2 0 1 0 0 1 1( , , ; , ) min{ , } | ,dW t t t s s E T T S s S s≡ = =  

00 1 2 0 0 111 Pr( , , ; , ) ( | , )dQ t t t s s s sT T S S≤≡ = = .  

By the Law of Iterated Expectation [22], 

  ( )( )0 1 2 0 1 0 1 0 0 1 1min{ , } | , , |( ; , ) ,, , dE E TW t t t s s T S S T S s S s= = = . 

Case 0: If 0 0s t> , then 

 0

0 0

 if 
min{ , }

 if d

T T t
T T

t T t
≤⎧

= ⎨ >⎩
 

 [ ]0

0 1 2 0 1 0 0 0 0 0 00
( , , ; , ) ( ) ( ) 1 ( )

t
W t t t s s W t tdF t t F t= ≡ + −∫       

0 1 2 0 1 0 0 0 0( , , ; , ) ( ) ( )Q t t t s s Q t F t= ≡ . 

Case 1: If 1 0 0t s t< < , then 
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 0

0 0

 if 
min{ , }

 if d

T T s
T T

s T s
≤⎧

= ⎨ >⎩
 

 [ ]0

0 1 2 0 1 1 0 0 0 0 00
( , , ; , ) ( ) ( ) 1 ( )

s
W t t t s s W s tdF t s F s= ≡ + −∫  

 0 1 2 0 1 1 0 0 0( , , ; , ) ( ) ( )Q t t t s s Q s F s= ≡ . 

Case 2: If 0 1s t< , 1 1s t>  then 

 1

1 1

 if 
min{ , }

 if d

T T t
T T

t T t
≤⎧

= ⎨ >⎩
  

 [ ]0 1

0
0 1 2 0 1 2 0 1 0 1 0 1 1 0 10

( , ) ( )( , ( , ) 1, ; , ) ( , )
s t

s
W s t tdF t tdF sW t t t s s t t F s t+≡ + −= ∫ ∫  

2 0 1 1 00 1 2 0 11 ( , ) (, ; , ) ,, )( QQ t t t s s s t F s t= ≡ . 

Case 3: If 0 1s t< , 2 1 1t s t< < , then 

 1

1 1

 if 
min{ , }

 if d

T T s
T T

s T s
≤⎧

= ⎨ >⎩
 

 [ ]0 1

0
0 1 2 0 1 3 0 1 0 1 0 1 1 0 10

( , ) ( )( , ( , ) 1, ; , ) ( , )
s s

s
W s s tdF t tdF sW t t t s s t s F s s+≡ + −= ∫ ∫   

 3 0 1 1 00 1 2 0 11 ( , ) (, ; , ) ,, )( QQ t t t s s s s F s s= ≡ . 

Case 4: If 0 1s t< , 1 2s t< , then 

2

2 2

 if 
min{ , }

 if d

T T t
T T

t T t
≤⎧

= ⎨ >⎩
  

[ ]0 1 2

0 1

4 0 1 2

0 1 0 2 0 1 2

0 1 2 0 1

2 0 1 20

( , , )

( ) ( , ) ( , , ) 1 ( , , )

( , , ; , )
s s t

s s

W W s s t

tdF t tdF s t tdF s s t t F s s t

t t t s s

+ +

=

≡ + −∫ ∫ ∫
 0 1 2 4 0 1 2 2 0 11 20 ( , , ) ( , ,( , , ; , ) )Q sQ t t t s s s t F s s t= ≡ . 

With the above five cases at hand, by another application of the Law of Iterated 

Expectation, 

( ) 0

0 1

1 1 1 2 1

1 2

0 1 0 0 0 0 0 1 0 0 0 0

2 0 1 1 0 1 0 1 3 0 1 1 0 1 0 1 4 0 1 2 1 0 1 0 10 0 0 0

min{ , } | , ( ) ( ) ( ) ( )

( , ) ( , ) ( , ) ( , ) ( , , ) ( , )

t

d d t t

t t s t s

t t

W E E T T S S W t g s ds W s g s ds

W s t g s s ds ds W s s g s s ds ds W s s t g s s ds ds

∞

∞

= = +⎡ ⎤⎣ ⎦

+ + +

∫ ∫

∫ ∫ ∫ ∫ ∫ ∫
 

(3.30) 
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[ ] 0

0 1

1 1 1 2 1

1 2

0 1 0 0 0 0 0 1 0 0 0 0

2 0 1 1 0 1 0 1 3 0 1 1 0 1 0 1 4 0 1 2 1 0 1 0 10 0 0 0

( | , ) ( ) ( ) ( ) ( )

( , ) ( , ) ( , ) ( , ) ( , , ) ( , )

t

d t t

t t s t s

t t

dQ E P T T S S Q t g s ds Q s g s ds

Q s t g s s ds ds Q s s g s s ds ds Q s s t g s s ds ds

∞

∞

= ≤ = +

+ + +

∫ ∫

∫ ∫ ∫ ∫ ∫ ∫

(3.31)

 

So far, we have obtained the integral expressions of dW  and dQ  in terms of the policy 

parameters 0 1 2, ,t t t  for the system with a three-state covariate process. For a system with an 

n-state covariate process, there are 2 1n −  different cases. Thus the expression for dW  

consists of 2 1n −  terms, each of which is an n-fold integral. The expression of dQ  is similar. 

Explicitly writing out the (2 1)n −  n-fold integrals seems to be a formidable task. However, 

thanks to the connection between the n state model and the ( 1)n +  state model, this task is 

reduced to something tractable. In fact, for the ( 1)n +  state model, the expression for dW  has 

2 1n +  cases, the first 2 2n −  cases of which are exactly the same as those of the dW  

expression for the n state model, and the last three cases of which form a partition of the last 

case of the n state model by values of the new transition instant, nS . Therefore, we can build 

the expressions of dW  and dQ  for an n-state covariate process by adding one state at a time. 

For comparison and illustration, we show the formulas for a system with a two-state 

covariate process in Appendix 3.A. 

Based on the explicit expressions of dW , dQ , and Proposition 3-1, we describe the 

following iterative algorithm, which can be employed to find the optimal policy parameters 

and the optimal cost simultaneously. 

Algorithm 3-1 

1. Initialize the iteration counter 0m = . Choose an arbitrary replacement policy, and let 

0d  equal the cost of the chosen policy. 

2. For md , use (3.25) to find the threshold time m
it  for replacement if the system state is 

in state i , i.e., 

{ }0inf 0 : ( ) ( ) / ,m
i mt t h t i d K i Sψ= ≥ = ∈ .     (3.32) 

3. Use the replacement policy 0 1 1{ , ,., }m m m
m nt t tδ −= obtained in step 2, (3.23), (3.30), and 
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(3.31) to update 1 ( )m md φ δ+ = . 

4. If 1m md d+ = , stop with *
1md d += , and * * * *

0 1 1 0 1 1{ , ,..., } { , ,..., }m m m
n nt t t t t tδ − −= = ; otherwise, 

set 1m m← + , and go to step 2. 

3.5 Numerical Example and Sensitivity Analysis 

3.5.1 Numerical Example 

To illustrate our model, and the procedure to construct the optimal policy, we consider a 

system with a three-state covariate process as a numerical example. In the following analysis, 

we assume that the functions that define the failure model, namely 0 ( )h t , ( )tZψ , and 

( )
kX kf x , are known, and their parameters are given (estimated). In practice, with historical 

monitoring data and lifetime data, the forms of those functions can be established either 

empirically, or through careful statistical analysis [23], [24]. The parameters of those 

functions can be estimated using the maximum likelihood method and its variants (to cope 

with the truncated and censored data), such as the one used in [16]. 

Assume the baseline hazard function is a Weibull hazard function given by 

  
1

0 ( )
b

b

bth t
a

−

=  

with 1a =  and 2b = ; and suppose that ( ) exp( )t tZ cZψ =  with 2c = . Assume 5C = , and 

25K = . Because the forms of 0 ( )h t  and ( )tZψ  are predefined, the PH model here is 

parametric rather than semi-parametric, as described in [13].  

Suppose the semi-Markov process Z  has three states {0,1,2} , and the sojourn times 0X  

and  1X  are s-independent identically distributed Weibull random variables with mean 1. 

The Weibull distribution is chosen here because it includes the exponential distribution as a 

special case, which allows convenient comparisons between systems with Markovian and 

semi-Markovian covariate processes. Assume the pdf of iX  is 

  
1

( ) exp
i

i i
X i

x xf x
ββ

β

β
η η

− ⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
, 0 , 0,1ix i< =  
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with 1.5β = , and 1.1077η = . It is not hard to check that the mean of iX  is approximately 1. 

In Algorithm 3-1, we initialize 0 ( ) / ( )d C K E T= + , which is the cost of the policy that 

replaces only at failure. The mean time to failure ( )E T  could be obtained from (3.30) by 

setting 0 1 2t t t= = = ∞ . In this way, we find ( ) 0.6813E T = , and 0 44.0335d = .  

The complete results are shown in Table 3-1. The iterative algorithm converges after five 

iterations to the optimal average cost * 23.4364d = . The algorithm was implemented in 

Mathematica®.  

Table 3-1 Illustration of the Computation Procedure with Weibull(1.2089, 1.5) Sojourn Time 

m 
md  0

mt  1
mt  2

mt  0 1 2,( , )m m mt tW t 0 1 2,( , )m m mt tQ t  0 1 2,( , )m m mt t tφ

0 44.0335 0.8807 0.1192 0.016 0.5618 0.3846 26.0157 

1 26.0157 0.5203 0.0704 0.0095 0.4248 0.1998 23.5262 

2 23.5262 0.4705 0.0637 0.0086 0.3958 0.1710 23.4365 

3 23.4365 0.4687 0.0634 0.0086 0.3947 0.1700 23.4364 

4 23.4364 0.4687 0.0634 0.0086 0.3947 0.1700 23.4364 

 

To study the effect of the parameters of the Weibull sojourn time, we varied the shape 

parameter β  from 0.8 to 2, and changed the scale parameter η  accordingly to ensure the 

same mean sojourn time. Table 3-2 shows the optimal replacement policies and costs for 

various Weibull sojourn time distributions (STD). We also include coefficients of variation 

(CV) of the distributions in Table 3-2 to gain more insight. One interesting observation is that 

the optimal cost increases with the CV of the STD, which is reasonable because in practice 

larger variability always tends to boost the cost.  

Another notable observation is that different STDs lead to different optimal policies and 

costs, even if they all follow Weibull distributions, and have the same mean. This 

observation implies a pitfall if we always model the covariate process as Markovian. Suppose 

the true STD is Weibull(1.1077, 1.5). If we use the Markov model, then the best estimated 

STD is Weibull(1, 1); i.e., Exp(1), which would lead to a non-optimal replacement policy, 

and higher replacement cost. The cost errors for using policy parameters from the Markov 

model in other sojourn times are shown in Table 3-3. We can see that the relative error 
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becomes smaller as the CV of the true STD gets closer to 1. In this example, those errors are 

relatively small, which means that, when the STD of the covariate process is unknown, and 

hard to estimate, a Markov process might be a good candidate, and the investment for a good 

estimation of the STD would be of only marginal value. Besides, the Markov model could 

simplify the computation for the optimal policy because exponential STD would simplify the 

evaluation of the multiple integrals. 

In the special case where the covariate process is Markovian; i.e., the STD is Weibull(1, 

1), the computational procedure for periodic monitoring [18] can be used to approximate 

continuous monitoring by setting the monitoring interval to be very small. In that approach, 

recursion is needed for calculation of both 0 1 2( , , )W t t t  (s-expected life), and 0 1 2( , , )Q t t t  

(failure probability), while the approach derived in this paper requires no recursion. This 

result gives the current approach a great computational advantage. For the example discussed 

here with a Weibull(1, 1) STD, the computational time to obtain the optimal policy and cost 

is 0.25 seconds on a computer with 1.83 GHz CPU, and 2GB main memory. However, if 

using periodic monitoring with an interval of 0.01 time units to approximate the continuous 

monitoring, the resulting policy is similar, but the computational time is 10.4 seconds, which 

is substantially longer. Based on this computational advantage, we suggest using the 

formulas in this paper to approximate the optimal policy under periodic monitoring when the 

monitoring interval is small, as well as to compute the exact optimal policy under continuous 

monitoring.  

Table 3-2 Effect of Different Weibull Parameters on the Optimal Policy and Cost 

Sojourn Time 

Distribution 
CV 0t  1t  2t  0 1 2( , , )W t t t  0 1 2( , , )Q t t t  *d  

Weibull(0.7900, 0.7) 1.4624 0.5293 0.0716 0.0097 0.3281 0.1473 26.4652 

Weibull(0.8826, 0.8) 1.2605 0.5125 0.0694 0.0094 0.3428 0.1514 25.6249 

Weibull(1, 1) 1 0.4913 0.0665 0.0090 0.3646 0.1582 24.5645 

Weibull(1.1077, 1.5) 0.6790 0.4687 0.0634 0.0086 0.3947 0.1700 23.4364 

Weibull(1.1284, 2) 0.5227 0.4609 0.0624 0.0084 0.4088 0.1769 23.0469 
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Table 3-3 Cost Errors for using Policy Parameters from a Markov model 

Sojourn Time Distribution CV Absolute Error Relative Error 

Weibull(0.7900, 0.7) 1.4624 0.0453 0.171% 

Weibull(0.8826, 0.8) 1.2605 0.0144 0.056% 

Weibull(1.1077, 1.5) 0.6790 0.0185 0.079% 

Weibull(1.1284, 2) 0.5227 0.0355 0.154% 

 

Table 3-4 shows the optimal policies and costs for Lognormal STDs. Again, all of these 

distributions have the same mean, approximately equal to 1. Table 3-4 confirms the 

conclusion that a large CV for the STD has a harmful effect on the optimal cost. Besides, 

comparing similar cases in Table 3-2 and Table 3-4 suggests that, for the same CV, the 

Lognormal sojourn time leads to a lower optimal cost than the Weibull sojourn time. 

Table 3-4 Optimal Policy and Cost when Sojourn time is Lognormal 

Sojourn time 

Distribution 
CV 0t  1t  2t  0 1 2( , , )W t t t  0 1 2( , , )Q t t t  *d  

Lognor(-0.5, 1) 1.3108 0.4805 0.0650 0.0088 0.3691 0.1548 24.0264 

Lognor(-0.3469, 0.83) 1 0.4680 0.0633 0.0086 0.3893 0.1645 23.4036 

Lognor(-0.1922, 0.62) 0.6846 0.4585 0.0621 0.0084 0.4108 0.1770 22.9264 

Lognor(-0.125, 0.5) 0.5329 0.4560 0.0617 0.0084 0.4192 0.1823 22.7990 

3.5.2 Sensitivity Analysis 

In the above numerical example, we assume all the model parameters are fixed. However, 

in practice, some of those parameters must be estimated from the historical data of the 

system. The quality of the estimates will directly affect the validity of the resulting 

replacement policy. In this subsection, we investigate how the variations in the model 

parameters impact the long-run average cost, and we assess the relative importance of model 

parameters through sensitivity analysis. In particular, we evaluate three input parameters, 

which are a and b in the baseline hazard function, 1
0 ( ) /b bh t bt a−= ; and c in the link function, 

( ) exp( )t tZ cZψ = . (For simplicity, we assume the forms of 0 ( )h t  and ( )tZψ  are known, and 

all the other parameters are given and the same as in Subsection 3.5.1) We choose 

Weibull(1.1077, 1.5) as the STD for the Z process. 
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Assume the true parameter values are 2, 2, 2a b c= = = , and their estimates â , b̂ , and 

ĉ  each s-independently follow the distribution ( )2, 0.4N . Performing the FAST sensitivity 

analysis method [25] with 1000 samples using SimLab [26], we get the FAST first-order 

indexes, as shown in Table 3-5. This index gives the expected reduction in the variance of the 

cost if an individual parameter is fixed. This table indicates that the scale parameter of the 

baseline hazard function, a, accounts for most of the variability in the output, and therefore is 

the most important of the three parameters. It implies that, if we can somehow reduce the 

variances of some input parameters’ estimates by investing more, we should give parameter a 

the highest priority.  

Notably, the conclusions reached by sensitivity analysis are case-specific, and should not 

be generalized if the model parameters are changed. 

Table 3-5 FAST First-Order Indexes 

Parameters First-order indexes on cost 

a 0.3329 

b 0.1069 

c 0.0383 

 

3.6 Conclusion 

In this paper, we studied the optimal replacement problem for general deteriorating 

systems. The aging and deterioration process is characterized by the proportional hazards 

model with a semi-Markovian covariate process, which we assume is under continuous 

monitoring. Allowing the covariate process to be semi-Markovian endows our method with 

great capability and flexibility to model real world situations. To minimize the long-run 

average cost per unit time, first we identified our model as a special case of Bergman’s 

model [20], and determined that the optimal replacement policy of our model is of the control 

limit type with respect to the hazard function. Given that an optimal policy may be uniquely 

defined by a set of state-dependent threshold ages for replacement, an explicit expression for 

the objective function was derived in terms of those threshold ages by conditioning. Then the 
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iterative procedure developed by Bergman was customized for our model to find the optimal 

threshold ages. 

A numerical example with n=3 covariate states illustrates the computational procedure, as 

well as the effects of different sojourn time distributions of the covariate process on the 

optimal policy and cost. The results show that larger variability in the sojourn time 

distributions (STD) tends to increase the cost of the optimal replacement policy. However, 

some numerical results show that, when the STD of the covariate process is difficult to 

estimate, viewing the process as a Markov process is not a bad option. Sensitivity analysis on 

an instance indicates that the variance of the scale parameter in the baseline hazard function 

accounts for most of the resulting variability in the cost, and therefore the scale parameter is 

of the most importance among the three chosen parameters.  

Possible extensions of the research could be to 1) generalize the one-dimensional 

covariate to a multi-dimensional vector which would permit the Z  process to evolve along 

multiple paths; 2) introduce uncertainty in the monitoring process, that is, the partial 

observation problem, to our current model; and 3) use a new failure model to relate the 

covariate information to system failure time distribution, such as an accelerated failure time 

model [23].  

Appendix 3.A Formulas for System with a Two-State Covariate 

Process 

For the system with a two-state covariate process, there will be only one time instant, 0S , 

at which the system changes states. In the following, we show how to explicitly represent the 

s-expected life of the system [ ]0 1( , ) min{ , }ddW W t t E T T= = , and the probability of failure 

( )0 1( , ) Pr ddQ Q t t T T= = ≤  under policy 0 1{ , }d t tδ =  by conditioning on 0S . 

Define the conditional Cdf of system failure time T  as follows.  

0 0 0Pr() )( ; |T t sF St s ≤ =≡ , 

where 0s  is the realization of 0S . 

Then for 0t s≤ ,  
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( ) ( )( )0 0 00
( ; ) ( ) 1 exp 0

t
F t s F t h u duψ= ≡ − − ∫ . 

For 0t s> , 

 ( ) ( ) ( ) ( )( )0

0
1 0 0 000 ( ; ) 1 exp 0( ; ) 1

s t

s
F t s h u dut us hF u dψ ψ− −= ≡ − ∫ ∫ . 

Let  

 ( )0 1 0 0 0( , ; ) min{ , } |dW t t s E T T S s≡ =  

1 000 0 Pr( ; |) ), ( dT sTQ t St s ≤≡ = . 

By the Law of Iterated Expectation [22], 

 ( )( )0 0 00 1 0 min{ , } |( ; ) , |, dE E T T S TW st St s = = . 

There will be three cases. 

Case 0: If 0 0s t> , then 

 0

0 0

 if 
min{ , }

 if d

T T t
T T

t T t
≤⎧

= ⎨ >⎩
 

 [ ]0

0 1 0 0 0 0 0 0 00
( , ; ) ( ) ( ) 1 ( )

t
W t t s W t tdF t t F t= ≡ + −∫      

 0 1 0 0 0 0 0( , ; ) ( ) ( )Q t t s Q t F t= ≡ . 

Case 1: If 1 0 0t s t< < , then 

 0

0 0

 if 
min{ , }

 if d

T T s
T T

s T s
≤⎧

= ⎨ >⎩
 

 [ ]0

0 1 0 1 0 0 0 0 00
( , ; ) ( ) ( ) 1 ( )

s
W t t s W s tdF t s F s= ≡ + −∫  

 0 1 0 1 0 0 0( , ; ) ( ) ( )Q t t s Q s F s= ≡ .  

Case 2: If 0 1s t< , then 

 1

1 1

 if 
min{ , }

 if d

T T t
T T

t T t
≤⎧

= ⎨ >⎩
 

 [ ]0 1

0
0 1 0 2 0 1 0 1 0 1 1 0 10

( , ; ) ( , ) ( ) ( , ) 1 ( , )
s t

s
W t t s W s t tdF t tdF s t t F s t= ≡ + + −∫ ∫  

 0 1 20 0 1 1 0 1( , ; ) ( , ) ( , )Q st t FQ st s t= ≡ . 
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Then by another application of the Law of Iterated Expectation, 

( ) 0 1

0 1
0 0 0 0 0 0 1 0 0 0 0 2 0 1 0 00

min{ , } | ( ) ( ) ( ) ( ) ( , ) ( )
t t

d d t t
W E E T T S W t g s ds W s g s ds W s t g s ds

∞
= = + +⎡ ⎤⎣ ⎦ ∫ ∫ ∫ , 

[ ] 0 1

0 1
0 0 0 0 0 0 1 0 0 0 0 2 0 1 0 00 0( | ) ( ) ( ) ( ) ( ) ( , ) ( )

t t

d t tdQ E P T T S Q t g s ds Q s g s ds Q s t g s ds
∞

= ≤ = + +∫ ∫ ∫ . 

Comparison with (3.30) and (3.31) shows the recursive nature of these expressions. 
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CHAPTER 4 JOINT OPTIMIZATION OF ASSET AND 
INVENTORY MANAGEMENT IN THE A PRODUCT-

SERVICE SYSTEM 
 

A paper submitted to IIE Transactions 

 

Xiang Wu and Sarah M. Ryan 

 

Abstract 

This article proposes an integrated model of the asset management decisions for a fleet of 

products and the inventory management decisions for a closed-loop supply chain in the 

context of a product-service system, in which the two types of decisions are closely coupled. 

A joint optimization technique is developed to obtain the parameters of the operational policy 

for the integrated model that minimize the long run average cost per unit time. A numerical 

example is provided to illustrate the computational procedures. In addition, the effect of a 

simplifying assumption that the replaced products have no quality difference is evaluated and 

the results suggest that as long as the quality difference between the preventively replaced 

products and failure replaced products is not too big, the simplification to treat them as one 

category is reasonable.  

 

 

Keywords: Joint optimization, product-service system, preventive maintenance, inventory 

management, closed-loop supply chain 
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4.1 Introduction 

A product-service system (PSS), or servicizing3, is a strategy in which producers provide 

the use as well as the maintenance of products while retaining ownership. Prospective 

customers who become the clients pay fees for receiving the services or functions of products 

rather than purchasing them, and so are free of the risk, responsibility and cost burdens that 

are commonly associated with ownership. Since the introduction of this attractive concept in 

1999 (Goedkoop et al., 1999, White et al., 1999), a diverse range of PSS examples in the 

literature have demonstrated its economic success, but most have tended to emphasize its 

significant environmental benefits and social gains (Luiten et al., 2001, Manzini et al., 2001). 

Although a variety of tools and methodologies have been developed for designing a 

servicizing system, such as those in Manzini et al. (2001), Maxwell and van der Vorst 

(2003), and Van Halen et al. (2004), how to effectively structure an organization to be 

competent at designing, making and delivering PSS is still difficult (Baines and Lightfoot, 

2007). Most literature in this area provides qualitative description and analysis of servicizing, 

and there is a lack of in-depth and rigorous research to develop models, methods and 

theories, to assess the implications of competitiveness, and to help manufacturers configure 

their products, technologies, operations, and supply chain (Baines and Lightfoot, 2007).  

The motivation for this research is to improve the economic viability of PSS. Rather than 

examining the benefits of PSS in a case study, we analyze and model the operation of the 

PSS and identify optimal parameters of a policy to minimize the overall cost in the long run. 

Providing product-based services requires the producer to extend its responsibility for the 

product both during and after the use phase. The service contracts frequently include 

replacement of the initial machines with newer or better ones, and the machines coming off 

lease are remanufactured extensively (Thierry et al., 1995). Service providers must balance 

the cost of building in durability and reusability against the lifecycle cost savings, choose 

when to take old products out of service, and decide whether to remanufacture them or to 

replace them with newly manufactured products. Servicizing motivates the use of condition 

monitoring; i.e., using sensors, information and communication technology to increase 

                                                 
3 The view of servicizing is quite similar to PSS. In this paper, I will not distinguish the two concepts. 
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visibility of the product’s performance and condition in the field, so as to improve asset 

utilization and make better maintenance decisions (Baines and Lightfoot, 2007). Under 

servicizing, the remanufacturing facilities frequently operate together with a manufacturing 

plant to satisfy the demand. Such systems are known as hybrid manufacturing and 

remanufacturing systems, and involve both forward and reverse flows of products.  

For the service paradigm to be viable from the provider’s perspective, the fee for service 

must allow for a profit margin over the cost of providing the service. The cost of service 

provision depends largely on the ability to manage and maintain products effectively in a 

closed-loop system. In particular, manufacturers who servicize must engage in reverse as 

well as forward logistics; and in addition, they must make maintenance decisions for their 

products. Unlike the common closed-loop supply chain for sold products, a distinctive 

feature of the closed-loop supply chain in PSS is that the demands are driven by maintenance 

actions on the products and/or a capacity expansion requirement, and the returns are 

generated by out-of-service products, replaced either preventively or due to failure. In other 

words, the demands and returns are controllable by the servicizing manufacturers via 

maintenance decisions, and the cost of replacement is affected by the inventory management 

decisions. Therefore, the maintenance decisions are closely coupled with the inventory 

management decisions of this closed-loop supply chain. This coupling makes the decision 

making under servicizing significantly more complicated than that under traditional product 

sales. 

Maintenance policies for deteriorating systems have been studied extensively for decades 

(Aven and Bergman, 1986, Lam and Yeh, 1994, Liu et al., 2010, Giorgio et al., 2011). The 

recent research effort has been focused on the problem of optimal replacement when some 

condition information about the system is available, such as temperature, humidity, vibration 

levels, or the amount of metal particles in a lubricant, which is often the case in PSS 

(Banjevic et al., 2001, Ghasemi et al., 2007, Kharoufeh et al., 2010, Wu and Ryan, 2010). A 

rapidly growing body of research in the operations management of closed-loop supply chains 

recognizes and tries to mitigate the complexities of managing the supply chain involving 

remanufacturable products under traditional product sales (Fleischmann et al., 1997, Guide, 

2000, Aras et al., 2004, Guide and Van Wassenhove, 2009).  
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However, little research has been done to consider the joint optimization of the 

maintenance policy and the closed-loop supply chain inventory management, to develop 

optimal decisions in the context of PSS. Some relevant work appears in the context of 

production inventory systems. For example, Das and Sarkar (1999) considered the optimal 

maintenance policies for a production inventory system where inventory is controlled 

according to an (S, s) policy. Rezg et al. (2004) studied the joint optimization problem of 

preventive maintenance and inventory control in a production line using simulation, and 

proposed a methodology combining simulation with genetic algorithms to obtain the optimal 

policy. In those cases, the maintenance is applied to the machines in the production line, 

rather than the service products in the fleet under PSS. Thus, their problems differ in nature 

from the one in PSS.  

More relevant work in the existing literature investigates the joint optimization of 

maintenance and inventory policies for deteriorating systems with spare-part inventory. In 

particular, Armstrong and Atkins (1996) examined the age replacement and ordering 

decisions for a system subject to random failure and with room for only one spare in stock, 

and several extensions have been made to generalize the cost terms and the order lead time in 

their subsequent paper (Armstrong and Atkins, 1998). Brezavscek and Hudoklin (2003) 

considered the problem of joint optimization of block replacement and periodic review spare-

provisioning policy for deteriorating systems to minimize the expected total cost per unit 

time. Ilgin and Tunali (2007) proposed a simulation optimization approach using genetic 

algorithms for the joint optimization of preventive maintenance and spare provisioning 

policies of a deteriorating system. Still, those studies differ fundamentally from the one we 

conduct in this paper, because they do not involve the production process of the spare parts. 

In this work, we present an integrated model that takes into account both the replacement 

decisions and the inventory management decisions in the context of a product-service system 

to minimize the total cost per unit time. For maintenance, we consider a condition-based 

replacement policy that uses the proportional hazards model (PHM) with a semi-Markovian 

covariate process to model the degradation of the products (Wu and Ryan, 2011). For 

inventory management, a continuous review base stock policy is adopted due to its easy 

implementation and proven effectiveness in practice. Identifying and formulating the 
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couplings between asset and inventory management in this context, we develop an 

optimization technique to obtain the optimal parameters for the two policies simultaneously 

in the integrated model. 

This paper is organized as follows. Section 4.3 presents the development and 

mathematical formulation of the final integrated model. In section 4.4, an optimization 

technique is developed and a two-step algorithm is presented to obtain the optimal policy 

parameters and cost. This is followed by a numerical example in Section 4.5 to illustrate the 

computational procedures of the optimization algorithm. Section 4.6 revisits the single return 

category assumption and evaluates its impact on the optimal cost by comparison with the 

analysis of a system with two categories of returns. Section 4.7 concludes with a discussion 

of future research directions. 

4.2 System Description 

We assume the service provider has a fleet of N  identical products in service. The 

objective is to develop an operational policy for the PSS to keep every product in the fleet in 

working condition at all times with minimum cost. The products deteriorate with age and 

operation, and are subject to failure. When a product is preventively replaced or fails, it is 

collected for remanufacturing and replaced by a new product. The output of the 

remanufacturing facility may not be able to fulfill all the demand for new products. We 

assume a manufacturing facility exists with sufficient capacity to cover any unsatisfied 

demand.  

The PSS consists of two subsystems: a service subsystem (SS) and a remanufacturing 

subsystem (RS) which is supplemented as needed by the manufacturing facility. The service 

subsystem employs products to provide service to clients and sends replaced products to the 

remanufacturing subsystem. The (hybrid) remanufacturing subsystem satisfies the demands 

of the service subsystem for replacement products through remanufacturing or 

manufacturing.  

The flow of products through the whole system is depicted in Figure 4-1. In the SS, the 

operational conditions of the products are continuously monitored and a condition-based 

replacement policy is applied to each product independently. The demand of the 
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remanufacturing system is driven by the replacement of products in the fleet. When a product 

is taken out of service due to preventive replacement or failure, it is replaced immediately 

with either a remanufactured product or a newly manufactured product. 

 

Figure 4-1 Product flow through the whole system 

The RS is a remanufacturing facility that replenishes serviceable inventory. The replaced 

products directly go to the remanufacturing process if needed to maintain a base stock level; 

otherwise, they are discarded to save storage costs. We focus on the remanufacturing facility 

and do not represent the manufacturing plant in detail. Priority is given to remanufactured 

products when satisfying demand. Based on the conventional wisdom that remanufacturing is 

cheaper than manufacturing, newly manufactured products are viable only when the 

serviceable inventory is unable to fulfill the demand (i.e., is empty). We assume 

manufactured products are available whenever necessary.  

The goal of the study is to investigate the replacement problem of the SS and the 

inventory management of the RS jointly in the context of PSS. Considering the coupling 

between two subsystems, an integrated model is built to address the uncertainties residing not 

only in the replacement problem but also in the inventory management, and a joint 

operational policy is developed to minimize the long-run average cost incurred in the whole 

system per unit time. In what follows, we shall first introduce the replacement policy for the 
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SS and the inventory management policy for the RS respectively, and then present the 

integrated model. First, we summarize the notations and assumptions used in this paper here. 

4.2.1 Notation 

Input parameters 

N : Number of products in the fleet. 

1C : The cost of preventive replacement with a remanufactured product in the SS, which 

is also the unit remanufacture (production) cost in the RS; 1 0C > . 

2C : The cost of preventive replacement with a manufactured product in the SS, which is 

also the aggregate acquisition cost for a newly manufactured product in the RS; 2 1C C> .  

K : The additional cost for a failure replacement; 0K > . 

{ , 0}tZ Z t= ≥ : A continuous semi-Markov process with a finite state space 

{0,1,..., 1}S n= −  and 0 0Z = , which depicts the evolution of the working condition of a 

product.  

0 ( )h t : The baseline hazard rate, which depends only on the age of the product. 

( )Ψ i : A link function; : SΨ ℜ6 . 

T : The time to failure of the product. 

μ : Processing rate for remanufacturing. 

Sh : Unit serviceable inventory holding cost. 

Wh : Unit remanufacturing work in process (WIP) holding cost. 

Internal variables 

0 1 1{ , , , }nt t tδ −= " : A replacement policy which replaces at failure or at age it  when in 

state i , whichever occurs first. 

( )M δ : The expected length of a replacement cycle under policy δ .  

( )Q δ : The probability of failure under policy δ . 

( )I t : The number of products in the serviceable inventory at time t . 

( )W t : The number of products in WIP at time t .  

c : Base stock level of the serviceable inventory position. 
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Lp : The proportion of time that the serviceable inventory is empty. 

Output variables 
*δ : Optimal replacement policy 
*c : Optimal base stock level 

4.2.2 Assumptions 

1 The service provider has a large fleet of identical products in service and maintains an 

inventory of serviceable products to satisfy the demand for replacements. 

2 Manufactured and remanufactured products are perfectly substitutable; that is, 

remanufactured products are considered as good as new. 

3 Setup cost for remanufacturing is negligible and there is no holding cost associated 

with the remanufacturable inventory.  

4 Remanufacturing capacity is unlimited and the time required to remanufacture a 

replaced product is exponentially distributed with rate μ . 

5 The newly manufactured products are always available and there is no lead time for 

acquiring one.  

6 We consider the replaced products as one category, whether they are replaced 

preventively or due to failure. In section 4.6, we will re-evaluate this assumption. 

7 The baseline hazard rate, 0 ( )h t , is strictly increasing with the product age and 

unbounded as the age approaches infinity; that is, the product deteriorates with time. In 

addition, 0 (0) 0h = . 

8 The covariate process Z  changes state according to a pure birth process; i.e., whenever 

a transition occurs, the state of the process always increases by one, and state 1n −  is 

absorbing. 

9 The link function, ( )Ψ ⋅ , is non-decreasing with (0) 1Ψ = . 

10 The fleet of products must be kept in working order at all times. Replacement is 

instantaneous 
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4.3 Model Development and Formulation 

4.3.1 Replacement Policy for the Service Subsystem 

In a PSS, the service provider retains ownership and maintains direct access to its 

products. This allows it to continuously collect data on the condition of products in service 

using condition monitoring technologies. Such data can help the service provider to improve 

the performance of products, lower failure probability, improve asset utilization and so 

reduce the total cost. For systems under continuous monitoring, a condition-based 

maintenance policy is natural.  

Assume that replacement is the only maintenance option in our PSS setting. The 

condition-based replacement policy developed in Wu and Ryan (2011) well suits the service 

subsystem, where the PHM (Cox, 1984) is employed to account for the impact of dynamic 

working conditions on the failure process of the system. Herein we adopt the policy 

described in Wu and Ryan (2011) as the replacement policy for the SS. 

Because the replacement policy is applied to each product independently, we first 

consider the replacement policy for a single product.  

We assume that { , 0}tZ Z t= ≥  is a continuous-time semi-Markov covariate process that 

depicts the evolution of the working condition of the product, and is under continuous 

monitoring. Under the proportional hazards model, the hazard rate of the product at time t  is 

expressed as 

0( ) ( ) ( ), 0th t h t Z t≡ Ψ ≥       (4.33) 

Denote the replacement policy as 0 1 1{ , , , }nt t tδ −= " , 0 1 1 0nt t t −≥ ≥ ≥ ≥"  , where it  is the 

threshold age for replacement if the covariate process of the product is in state i . According 

to renewal theory (Ross, 2003), the long run average replacement cost per unit time for a 

single product can be expressed as the ratio of the expected cost per replacement cycle to the 

expected length of a replacement cycle, which is given by 

1 2 1 2 1( ( ))(1 ) ( ( )) ( ) ( )
( ) ( )

L L L
R

C KQ p C KQ p C C C p KQ
M M

δ δ δφ
δ δ

+ − + + + − +
= =  (4.34) 
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Here Lp  is the proportion of products in the fleet replaced with manufactured products, 

which will be discussed further in the context of the remanufacturing subsystem. The explicit 

expressions for the expected length of a replacement cycle, ( )M δ , and the failure 

probability, ( )Q δ , in terms of 0 1 1, , , nt t t −"  given ( )Z t , 0 ( )h t  and ( )Ψ ⋅  can be found using 

the method described in Wu and Ryan (2011). We detail those expressions for a three-state 

Z  process and their partial derivatives with respect to it  in Appendix 4.A for convenience. 

Obviously, ( )M δ  is an increasing function of the threshold age for replacement it , i∀ . 

4.3.2 Inventory Policy for the Remanufacturing Subsystem 

For systems involving remanufacturing, two inventory control strategies are generally 

applied: “push” and “pull”. Under the push strategy, the returned products are batched and 

pushed into the remanufacturing process as soon as the remanufacturable inventory has 

sufficient products. Under the pull strategy, the timing of the remanufacturing process 

depends on the demands as well as inventory positions. Van der Laan et al. (1999) shows that 

pull control is preferable if the holding cost in remanufacturable inventory is lower than the 

holding cost in the serviceable inventory, which is true in most practical situations.  

Based on above findings, the inventory in the remanufacturing subsystem is assumed to 

be managed by a continuous review base stock policy. This policy aims at keeping the 

serviceable inventory position at a base stock level c  at all times, which is achieved by 

pulling returned products into the remanufacturing process each time a demand is served 

from the serviceable inventory. The serviceable inventory position at time t  includes the on-

hand serviceable inventory ( )I t  and the work in process (WIP) of remanufacturing ( )W t . 

Thus we have 

( ) ( ) 0I t W t c t+ = ∀ ≥ .      (4.35) 

The policy is easy to implement and is efficient when the setup cost for remanufacturing is 

negligible, which we assume is true in our PSS setting. 

Under the continuous review base stock policy, the remanufacturing subsystem is a pull 

system. An execution flowchart is shown in Figure 4-2. Priority is given to remanufactured 
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products when satisfying demand. Following the flowchart, we can see that Lp  defined in 

Section 4.3.1 equals the probability that the serviceable inventory is empty; i.e.,  

( ( ) 0)Lp P I t= =  

The cost 1C  defined in Section 4.3.1 is equivalent to the unit remanufacturing cost, and 2C  is 

equivalent to the unit acquisition cost for a manufactured product, which is incurred every 

time we resort to manufacturing.  

 

Figure 4-2 Flowchart of the remanufacturing subsystem 

For the serviceable inventory and remanufacturing WIP, we adopt a similar holding cost 

structure to that in Aras et al. (2004). The unit holding cost rate for serviceable inventory is 

1Sh h Cα= + , and the unit holding cost rate for remanufacturing WIP is 1Wh h Cβα= +  

( 1β < ). Here, h  denotes the basic holding cost and α  denotes the opportunity cost of 

capital. WIP is considered to have approximately 100 β % value added and the serviceable 

inventory has all the value added. 

In addition, we assume there is no capacity limitation on the remanufacturing process, so 

it could be modeled as an infinite-server station. The time for remanufacturing is highly 

variable due to various conditions of the replaced products. Thus the service time of each 
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server is assumed to be exponentially distributed with rate μ . In fact, since the WIP in the 

remanufacturing subsystem is bounded by the base stock level c , only c  servers are needed 

to avoid blocking in the remanufacturing process, and the subsystem can achieve steady 

state. So the loss probability Lp  is constant over time 

  ( 0)Lp P I= =         (4.36) 

and the long run average cost incurred in the remanufacturing subsystem is given by  

( ) ( )I S Wh E I h E Wφ = +        (4.37) 

The t  in the notations ( )I t  and ( )W t  has been suppressed. Only inventory costs are 

considered for the RS because we already account for the costs 1C  and 2C  in the SS. 

We consider the returns as a single category, regardless of whether they are preventively 

replaced or replaced due to failure. We do not differentiate the returned products in terms of 

inventory cost, processing time and cost. Therefore the remanufacturing node together with 

the serviceable inventory node can be modeled as a single-stage produce-to-stock system 

with a single product type.  

Examining our system carefully, we find that the inventory is virtually controlled by a 

target-level production authorization mechanism with lost sales as discussed in Buzacott and 

Shanthikumar (1993). In our case, the target-level is c . Production authorization is 

transmitted to the remanufacturing facility when the inventory position falls by one. A "lost 

sale" occurs when the serviceable inventory is empty, in which situation we resort to 

manufactured products and no new remanufacturing is authorized. According to Buzacott 

and Shanthikumar (1993), the performance of this produce-to-stock system may be obtained 

from the analysis of a fictitious / / /G M c c  queue, also known as / /G M c  loss system. The 

correspondence between our system and the fictitious system is as follows: 

 The demand process to the RS is the arrival process to the fictitious queue. 

 The probability that a demand is satisfied by manufacturing, Lp , is the loss 

probability of the fictitious queue.  

 The WIP of the RS is the number of products in the fictitious queue.  
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The demand process of the RS is generated from the replacements of products in the SS. 

Since the replacement policy is applied to each product independently, the replacement flow 

of each individual product is a renewal process. The demand process, which is a pool of N  

such renewal processes, is called a superposed renewal process (SRP) in the literature. In 

general, if the number of products in a service fleet, N , is sufficiently large, then the 

superposed renewal process can be approximated by a Poisson process with rate λ  (Cinlar 

and Lewis, 1972). Then the fictitious queue may be approximated by a / /M M c  loss 

system, also known as the Erlang loss system. 

For each product, the renewal rate 1
( )

r
M δ

= . Then the overall arrival rate is 

( )
NNr

M
λ

δ
= =        (4.38) 

Let L  be the average number of products in the / /M M c  loss system and np  be the steady-

state probability that there are n  products in the queue. From the performance of / /M M c  

loss system in steady state, we have 

0
0

0

( / )1/
!

( / ) , 1, 2,.,
!

(1 )

kc

k
n

n

c

p
k

p p n c
n

L p

λ μ

λ μ

λ
μ

=

=

= =

= −

∑

 

For our system,  

( )E W L=         (4.39) 

( )E I c L= −        (4.40) 

From equations (4.37)-(4.40), 

( ) (1 )I S W S Lh c h h pλφ
μ

= + − −      (4.41) 

where the probability that a demand must be satisfied by manufacturing is 

0

( / )( , ) lim ( ( ) 0)
( / )!

!

c

L L c kct

k

p p c P I t p
c

k

λ μδ
λ μ→∞

=

≡ = = = =

∑
  (4.42) 
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with / ( )N Mλ δ= . 

We state two important properties of Lp  as below. 

Lemma 4-1 0Lp
M

∂
<

∂
. 

Proof.  

The loss probability Lp  is a increasing function of the arrival rate λ , and thus a 

decreasing function of ( )M δ . Therefore 0Lp
M

∂
<

∂
. ■ 

Lemma 4-2 Lp
M

∂
∂

 is increasing in its parameter ,it i∀ . 

Proof.  

According to Proposition 3 of Harel (1990), for fixed number of servers and fixed arrival 

rate, the Erlang loss formula is strictly convex in service rate. The symmetric positions of μ  

and ( )M δ  in the loss formula (4.42) imply that Lp  is strictly convex in ( )M δ  for fixed c  

and μ . Thus 
2

2 0Lp
M

∂
>

∂
, which means Lp

M
∂
∂

 is increasing in ( )M δ . And since ( )M δ  is an 

increasing function of it , Lp
M

∂
∂

 is increasing in it , i∀ . ■ 

4.3.3 Integrated Model 

The service subsystem (SS) and the remanufacturing subsystem (RS) discussed above are 

closely coupled in terms of the demands and returns. The RS satisfies the demand of the SS, 

while the SS generates returns to the RS. A distinctive feature of this closed-loop system is 

that the demands and the returns are generated simultaneously. 

In particular, the decision making process couples the two subsystem. The decision 

variable in the SS, the replacement policy δ , affects the demand and return flows of the 

supply chain in the RS and, thus, affects the average cost incurred in the RS. On the other 

hand, the base stock level c  has a direct impact on Lp , the proportion of products replaced 

with manufactured products and thus, influences the average cost incurred in the SS.  
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To account for the coupling, we must optimize the decision variables of the two 

subsystems simultaneously. Treating them separately would lead to an inferior solution. 

Integrating the costs of subsystems, the total cost per unit time for the whole system can 

be expressed as 
1 1

1 2 1( ) ( ) [ ( ) ]( , )
( )

W S W S L
I R S

C h h KQ C C h h pc N h c N
M

μ δ μφ δ φ φ
δ

− −+ − + + − − −
= + = + (4.43) 

which incorporates the production cost for remanufactured products ( 1C  per unit), the 

acquisition cost for manufactured products ( 2C  per unit), additional cost for failure 

replacement ( K  per unit) and the inventory holding costs ( Sh  per unit per unit time for 

serviceable inventory and Wh  per unit per unit time for WIP). 

4.4 Optimization Technique 

Our objective function is the total cost per unit time given by (4.43). The decision 

variables are the parameters of the replacement policy 0 1 1{ , , , }nt t tδ −= "  and the base stock 

level c , where 0 1 1 0nt t t −≥ ≥ ≥ ≥"  and c  is a positive integer. The key variables are Lp , 

expressed in (4.42); and ( )M δ  and ( )Q δ , whose expressions can be obtained from 

Appendix 4.A.  

The objective function is a complicated function that appears to lack "nice" structure 

(such as convexity) and closed-form solutions are hard to achieve. To obtain the global 

minimum, we resort to a special optimization method -- the lambda minimization technique 

(Aven and Bergman, 1986) which is summarized in Appendix 4.B. For simplicity, we 

consider a three-state covariate process Z  to illustrate the optimization technique, which can 

be generalized to any number of states. 

In what follows, we find the optimal parameters *c  and * * * *
0 1 2{ , , }t t tδ = , and the global 

minimum through a two step process: 

1) For a fixed c , we find the optimal 0 1 2{ , , }c c c ct t tδ =  to minimize the objective using the 

lambda minimization technique.  
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2) From the objective value obtained in last step, we find an upper bound for c . By 

enumerating from the minimum base stock level ( 1c = ) to the upper bound, we can 

find the optimal parameters and the global minimum of the objective function. 

With c  fixed, minimizing (4.43) is equivalent to minimizing  

1 2( , ) ( )( )
( )

S Lc h c b KQ b pv
N M

φ δ δδ
δ

− + +
= = .    (4.44) 

where 1 1 2 2 1
( ) ( ), 0W S W Sh h h hb C b C C

μ μ
− −

= + = − − > .  

To apply the lambda minimization technique, define the γ -function (analogous to the λ -

function in Appendix 4.B) as 

  1 2( , ) ( , ( )) ( ) ( )Lu b b p c M KQ Mγ δ δ δ γ δ= + + − .   (4.45) 

For a fixed γ , with n = 3 states we have the following optimization problem, where 

0 1 2{ , , }t t tδ = : 

0 1 2

min ( , )
. . 0

u
s t t t t

γ δ
≥ ≥ ≥

 

Taking partial derivatives of (4.45) with respect to 0 1 2, ,t t t  and setting them to 0, we have  

2 0, 0,1,2L

i i i i

pu M Q Mb K i
t M t t t

γ∂∂ ∂ ∂ ∂
= + − = =

∂ ∂ ∂ ∂ ∂
, 

which is the system of equations that determines the critical point of u . With the partial 

derivatives of ( )M δ  and ( )Q δ  developed in Appendix 4.A and equation (4.56), the above 

system of equations can be reduced to 

2 0 0( ) (0) 0Lpb Kh t
M

γ∂
Ψ+ − =

∂
      (4.46) 

2 0 1( ) (1) 0Lpb Kh t
M

γ∂
Ψ+ − =

∂
     (4.47) 

2 0 2( ) (2) 0Lpb Kh t
M

γ∂
Ψ+ − =

∂
     (4.48) 

From (4.46)-(4.48), we have 
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   10 0
1 0 0 0 0

0 1

( ) (1) (0)( ) ( )
( ) (0) (1)

h t t t h h t
h t

− ⎡ ⎤Ψ Ψ
= ⇒ = ⎢ ⎥Ψ Ψ⎣ ⎦

    and   

   10 0
2 0 0 0 0

0 2

( ) (2) (0)( ) ( )
( ) (0) (2)

h t t t h h t
h t

− ⎡ ⎤Ψ Ψ
= ⇒ = ⎢ ⎥Ψ Ψ⎣ ⎦

 

Since 0 ( )h ⋅  is monotonically increasing, 1 0 2 0( ), ( )t t t t  are also monotonically increasing 

functions of 0t . Upon substituting them back into (4.46), we get an univariate equation in 0t , 

which is 

2 0 1 0 2 0 0 0( , ( ), ( )) ( ) (0) 0Lpb t t t t t Kh t
M

γ∂
+ − =

∂
Ψ    (4.49) 

Note, Lp
M

∂
∂

 is a function of the tuple 0 1 2{ , , }t t tδ = , which has been suppressed in its 

notation.  

Lemma 4-3 For a given γ , the multivariate function ( , )u γ δ  has a unique critical point.  

Proof. 

From Lemma 4-1 and Lemma 4-2, we know that 0 1 0 2 0( , ( ), ( ))Lp t t t t t
M

∂
∂

 is always negative 

and is a increasing function of 0t . In addition, 0 ( )h ⋅  is an increasing function with 0 (0) 0h =  

and is unbounded as its parameter approaches infinity. Thus the function 

    2 0 1 0 2 0 0 0( , ( ), ( )) ( ) (0)Lpb t t t t t Kh t
M

+ Ψ
∂
∂

  

equals the positive constant γ  at a unique point.  

Therefore equation (4.49) has a unique solution, which means that the for a given γ ,  

( , )u γ δ  has a unique critical point, denoted as 0 1 2{ , , }t t tγ γ γ γδ = . ■ 

The following theorem shows how to find the global minimum of ( , )u γ δ . 

Theorem 4-1 For a given γ , function ( , )u γ δ  achieves global minimum at its critical point 

0 1 2{ , , }t t tγ γ γ γδ = . 

The proof of Theorem 4-1 is in Appendix 4.C. 
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In light of Theorem 4-1 and the lambda minimization technique, we state the following 

algorithm to find the optimal δ  that minimizes ( )v δ  for a given c . 

Algorithm 4-1 

1. Initialize the iteration counter 0m =  and 0γ γ= . 

2. For mγ , use Theorem 4-1 to find , , , ,
0 1 2{ , , } arg min ( , )c m c m c m c m mt t t u

δ
δ γ δ= = .  

3. Use the replacement policy , , , ,
0 1 2{ , , }c m c m c m c mt t tδ =  obtained in step 2 and equation 

(4.44) to update 1 ,( )m c mvγ δ+ = . 

4. If 1m mγ γ+ = , stop with 1c mv γ +=  and ,c c mδ δ= ; otherwise, set 1m m← +  and go to 

step 2. 

In addition, an upper bound on the optimal stock level c  can be obtained. Denote the 

optimal parameters as * * * *
0 1 2{ , , }t t tδ =  and *c . Let 0

0 0( , )ccφ φ δ= , which is the optimal cost 

when c  is fixed at 0c . Then we have 

1 * 1
* * * *1 1

0 *

( ) ( ) ( ) ( )( , )
( ) ( )

W S W S
S S

C h h KQ C h h KQc h c N h c N
M M

μ δ μ δφ φ δ
δ δ

− − ′+ − + + − +
≥ ≥ + ≥ +

′
where the second inequality follows by omitting the Lp  term in * *( , )cφ δ , and the third 

inequality holds if δ ′  is the replacement policy that minimizes the term  

   
1

1 ( ) ( )
( )

W SC h h KQ
M

μ δ
δ

−+ − + . 

Using the methods developed in Wu and Ryan (2011), we can obtain δ ′  as an optimal policy 

for the condition-based replacement model described there with preventive replacement cost 
1

1 ( )W SC h h μ−+ −  and additional failure cost K . Thus an upper bound for *c  is given by 

1
11

0
( ) ( )

( )
W S

S
C h h KQc N h

M
μ δφ
δ

−
−⎢ ⎥′⎛ ⎞+ − +

= −⎢ ⎥⎜ ⎟′⎝ ⎠⎣ ⎦
   (4.50) 

In light of the above discussion, the following algorithm is presented to find the optimal 

parameters and the global minimum of (4.43). 

Algorithm 4-2 

1 Initialize 0c c= . 
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2 For fixed 0c , using Algorithm 4-1 to find the optimal parameters 0 , 0,1, 2c
it i = . Set 

0 0 00
0 0 1 2( , , , )c c cc t t tφ φ= .  

3 Obtain an upper bound c  for *c  using equation (4.50). 

4 For 1, ,c c= " , find the optimal , 0,1, 2c
it i =  and the corresponding optimal cost 

*
0 1 2( , , , )c c c

c c t t tφ φ= . Then the optimal stock level * *arg min c
c

c φ= , the optimal 

replacement policy * * * *
0 1 2{ , , }t t tδ =  and the global minimum is *min cφ . 

4.5 Numerical Example 

Suppose the covariate process ( )Z t  is a pure birth process with three states {0,1,2}  and 

transition rates 0 1 2ln(0.4), 0v v v= = − = . Let 0 ( ) 2h t t=  and ( ) exp(2 )t tZ ZΨ = . Assume  

1 25, 15, 25, 10, 0.2, 0.5, 0.5, 5.C C K N hα β μ= = = = = = = =  

The total cost per unit time is 

4.9 10.1 ) 25 ( )( , ) 1.5 10
( )

( ,Lp Qc c c
M

δ δφ δ
δ

+ +
= + . 

Let 0 10c = . In Algorithm 4-1 step 1, let 0 12γ = . As shown in Table 4-1, the lambda-

minimization converges after four iterations with 0 24.7330cv =  and the optimal parameter 
0 0.5440,  0.0736,  0.0 }00{ 1cδ = . The corresponding cost 0

0 0 262.33c
SNv h cφ = + = . 

Table 4-1 Illustration of Algorithm I and the Lambda-Minimization Process 

m γ  Critical point ,c mδ  Value of u at critical point ,( )c mv δ  

0 12 (0.3853, 0.0521, 0.0070) 4.4924 26.4098 

1 26.4908 (0.5705, 0.0772, 0.0104) -0.6750 24.7573 

2 24.7573 (0.5444, 0.0737, 0.0100) -0.0096 24.7330 

3 24.7330 (0.5444, 0.0737, 0.0100) 0 24.7330 
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Based on methods developed in Wu and Ryan (2011), the replacement policy that 

minimizes term 4.9 25 ( )
( )

Q
M

δ
δ

+  is {0.4826,0.0653,0.0088}δ ′ =  and the minimal value of the 

term is 24.1302. Thus from equation (4.50), an upper bound for c  is 

   4.9 25 ( ) 1262.33 10 14
( ) 1.5

Q
M

c δ
δ

⎢ ⎥′⎛ ⎞+
− =⎢ ⎥⎜ ⎟′⎝ ⎠⎣ ⎦

= . 

In step 4 of Algorithm 4-2, when c ranges from 1 to 14, the resulting total costs are 

shown in Figure 4-3. The optimal parameters are * 12c =  and * {0.5048,  0.0683,  0.0092}δ = . 

The global minimal cost is * 260.827φ = . 

 

Figure 4-3 The minimized total cost when c varies from 1 to its upper bound 

4.6 Evaluation of the Single Category Return Assumption 

In the previous analysis, we consider the returns as a single category. However, in reality, 

there is usually a quality difference between the preventively replaced products and failure 

replaced products in terms of remanufacturing time and remanufacturing cost.  
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To understand the effect of the single category assumption, in this section, we will 

examine the case when we categorize the returns into two types: Type 1 (T1), preventively 

replaced products and Type 2 (T2), failure replaced products, estimate its cost and compare 

to the cost of the no categorization case. 

In general, T1 products have better quality than T2 products, so it typically requires less 

remanufacturing effort to bring them to the "as good as new" condition. To quantify the 

quality difference, assume the statement “T1 is x% better than T2 in quality” implies that 

1) The unit remanufacturing cost of T1, 11C , is x% lower than that of T2, 12C ; i.e., 

11 12 (1 %)C C x= − . 

2) The remanufacturing time of T1, 11/ μ , is x% shorter than that of T2, 21/ μ ; i.e., 

1 21/ (1 %) / .xμ μ= −  

4.6.1 Model Analysis 

Let 1 2( ), ( )W t W t  be the number of T1, T2 products, respectively, in WIP at time t  .Then  

1 2( ) ( ) ( ) .W t W t I t c+ + =  

And let 1 2,λ λ  be the arrival rate of T1, T2 products, respectively. Assume the product mix 

that enters the remanufacturing process is the same as the product mix that enters the 

remanufacturable inventory at all times. Then under replacement policy δ ,  

1 2(1 ( )), ( )Q Qλ λ δ λ λ δ= − =  

where / ( )N Mλ δ= . 

It is not hard to see that 1 2( ( ), ( ) : 0)W t W t t ≥  consists of a continuous-time Markov chain 

with a finite state space 

{( , ) : , 0,1, , , 0,1, , }S i j i j c i c j c= + ≤ = … = …  

A typical portion of the transition diagram among those states is shown in Figure 4-4. 

Although on the boundaries, one or more of the states depicted in the figure may not exist, 

the transition rates for the rest are valid. It can be verified that this continuous-time Markov 

chain is irreducible and ergodic, so it has a limiting distribution.  



 79

 

Figure 4-4 Part of transition diagram 

Define the indicator function 

1 if ( , )
( , )

0 if ( , )S

i j S
I i j

i j S
∈⎧

= ⎨ ∉⎩
 

Then the balance equations of the limiting probabilities are  

2 1

2 1

2 1

2 1

( , 1) ( , 1) ( 1, ) ( 1, )
( 1) ( , 1) ( , 1) ( 1) ( 1, ) ( 1, )

[ ( , 1) ( 1, )
( , 1) ( 1, )] ( , ) for all ( , )

S S

S S

S S

S S

P i j I i j P i j I i j
j P i j I i j i P i j I i j

j I i j i I i j
I i j I i j P i j i j S

λ λ
μ μ

μ μ
λ λ

− − + − −
+ + + + + + + +

= − + −
+ + + + ∈

 

Let 1 1 2 2/ , /a bλ μ λ μ= = . The solution to the balance equations is  

0 0

1(0,0)

!

 

!

i jc c i

i j

P
a b
i j

−

= =

=

∑∑
      (4.51) 

( , ) (0,0) for all ( ,
! !

 )
i ja bP i j P i j S

i j
= ∈     (4.52) 

Therefore 

1 2
0

( )( ( ) ( ) ) ( , ) (0,0)
!

mm

i

a bP W t W t m P i m i P
m=

+
+ = = − =∑  

, 1 2
( )( ( ) ( ) ) (0,0)

!

c

L cat
a bp P W t W t c P

c
+

= + = =    (4.53) 

11

1 2
0

( )( ) ( ( ) ( )) (0,0)
!

kc

cat
k

a bE W E W t W t P
k

+−

=

+
= + = ∑   (4.54) 
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With categorization, the replacement cost per unit time for a single product is 

, 11 22 , 2
,

11 12 11 , 2 11 12 11

(1 )[(1 ( ))( ( )) ( )( ( ))] ( ( ))
( )

( ) ( ) [ ( )( )]
( )

L cat L cat
R cat

L cat

p Q C KQ Q C KQ p C KQ
M

C K C C Q p C C Q C C
M

δ δ δ δ δ
φ

δ
δ δ

δ

− − + + + + +
=

+ + − + − − −
=

 

and the total cost per unit time is 

,( , ) ( ) ( )cat R cat S W S catc N h c h h E Wφ δ φ= + + − .   (4.55) 

We can follow the two step process as described in section 4.4 to optimize this objective 

function. However, since this objective function involves more complicated expressions of 

the loss probability and mean WIP than that of (4.43), minimizing the γ -function in the 

lambda minimization technique is challenging. Thus for step 1, we resort to some numerical 

optimization methods to minimize the objective function for a given c . Because first 

derivatives are available, we adopt the BFGS method (Fletcher, 1987), which is generally 

considered as the best quasi-Newton method.  

The BFGS method cannot guarantee the global optimality of the obtained policy. 

However, for the single category case, we have verified that the policy and cost obtained 

using the BFGS method is the same as the optimal policy and cost obtained using lambda 

minimization technique. Since objective function for the two category case shares the same 

basic structure with the objection function for single category case, we use the result of 

BFGS method to approximate the optimal policy and cost in the two category case. 

4.6.2 Cost Impact of the Single Category Assumption 

Here we illustrate the cost impact of the single category assumption through a numeric 

example.  

Assume T1 products are 20% better than T2 products in quality. Let 11 15, 5C μ= = . Then 

12 26.125, 4C μ= = . Assume all the other parameters stay the same.  Then the optimal cost 

* 265.789catφ =  and the optimal parameters are * 12catc = , * {0.4911,0.0620,0.0091}catδ = . 

If the decision maker uses the single category assumption, then first he must estimate the 

equivalent unit remanufacturing cost 
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   1 11 12(1 ( )) ( )C C Q C Qδ δ= − +  

and equivalent unit processing rate 

   (1 )
( ) Lp

E W
λμ = −  

where / ( )N Mλ δ= . The estimation requires a realization of the operation policy { , }c δ . 

Assume the policy maker can observe the results of * *{ , }cat catc δ . Then under policy * *{ , }cat catc δ  

( ) 0.1619Q δ = , ( ) 0.3707M δ = , 0.0075Lp = , ( ) 5.5710E W =  

and the estimation would be  

   1 5.182, 5.000C μ= = . 

With those parameters, the optimal policy under the single category assumption is  

_ 12no catc = , _ {0.5120,0.0693,0.0094}no catδ = .  

Under this policy, the actual total cost is _ 265.916no catφ = , which is 0.05% bigger than *
catδ . 

This negligible cost difference indicates that the single category return assumption is 

acceptable in this case. 

Intuitively, the cost difference between the categorized and non-categorized cases 

depends on the quality difference between T1 and T2. To further evaluate the impact of 

single category assumption, we vary the quality difference, while keeping 11 15, 5C μ= =  

unchanged, and then obtain the corresponding cost differences following a similar procedure 

as above. The results are summarized in Table 4-2.  

As expected, for bigger quality difference, the additional cost introduced by the single 

category assumption is more substantial. And we can see that for our example, as long as the 

quality difference is below 50%, the cost error caused by the single category assumption is 

under 1%. Another observation is that as the quality difference increases, we tend to perform 

the preventive replacement more frequently and keep the stock level higher in the two-

category case, which are reasonable because, with a wider quality difference, it is more 

costly and time consuming to remanufacture a failure-replaced product. 

Table 4-2 The Impact of Single Category Assumption under Various Quality Difference 

between the Two Types of Products 
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Quality 
difference 

x% 

*
catc  *

catδ  *
catφ  _no catc  _no catδ  _no catφ  

Cost difference 
( _no catφ - *

catφ )/ *
catφ  

20% 12 
{0.4911, 
0.0620, 
0.0091} 

265.789 12 
{0.5120, 
0.0693, 
0.0094} 

265.916 0.05% 

40% 13 
{0.4697, 
0.0638, 
0.0088} 

276.206 12 
{0.5387, 
0.0729, 
0.0105} 

277.673 0.53% 

50% 13 
{0.4603, 
0.0622, 
0.0087} 

283.546 12 
{0.5323, 
0.0720, 
0.0102} 

285.766 0.78% 

60% 14 
{0.4364, 
0.0591, 
0.0081} 

294.168 12 
{0.5710, 
0.0773, 
0.0016} 

301.289 2.42% 

80% 17 
{0.3634, 
0.0492, 
0.0069} 

341.987 13 
{0.6146, 
0.0832, 
0.0116} 

374.794 9.60% 

 

4.7 Conclusion 

This paper investigates a joint operation problem in the context of a product-service 

system, which to the best of our knowledge has not been addressed in the literature. The 

system consists of a service subsystem and a remanufacturing subsystem where the 

replacement decision and the inventory management decision must be made at the same time. 

Identifying and formulating the couplings between the two subsystems, an integrated model 

aiming to minimize the total cost per unit time of the system is developed and an algorithm is 

presented to jointly optimize the replacement policy and the inventory management policy. 

Then we evaluate the cost impact of treating the preventively replaced products and products 

replaced due to failure as one category. A numerical example demonstrates that as long as the 

quality difference between the two types of replaced products is not too large, where how 

large depends on other parameters in the model, the single category assumption is 

reasonable.  

In this paper, for illustration the covariate process is assumed to have three states, which 

could be characterized as “like new,” “deteriorated,” and “critical.” It is straightforward to 

generalize our model to accommodate a finer-grained approximation of a continuous state 

space by adding more discrete states. The additional effort required for formulation mainly 
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lies in obtaining the explicit expressions of the mean replacement time and the failure 

probability for a given replacement policy, which is discussed in detail in Wu and Ryan 

(2011). Correspondingly, the additional computational effort lies in the evaluation of the 

mean replacement time and the failure probability. In particular, for an n-state covariate 

process, the expressions of the mean replacement time and the failure probability consist of 

several n-fold integrals. Monte Carlo integration methods are essential to evaluate them 

efficiently (Press et al., 2007).  

Other possible extensions to this paper are as follows. First, in our analysis, the demand 

process of the fleet for new products, which is a superposed renewal process, is approximated 

by a Poisson process assuming that the number of products in the fleet is sufficiently large. 

Evaluating the impact of this approximation in the situation of moderate or small fleet sizes 

is a possible extension of this research. Second, considering the capacity expansion problem 

of service subsystem in addition to maintenance would be an interesting and challenging 

problem, which is a natural generalization of the model presented in this study. Third, in a 

hybrid business model, where the producers operate traditional product sales as well as a 

PSS, the external returns in addition to the internal replaced products will become part of the 

input to the remanufacturing system. In this case, the inventory model needs to be 

reconsidered. Last but not least, the accelerated failure time (AFT) model (Meeker and 

Escobar, 1998) is considered as a strong competitor to the proportional hazards model when 

incorporating the covariate information into system failure time estimation. In case it is hard 

to decide which model to use, the general proportional hazards model (Bagdonavicius and 

Nikulin, 2001), which includes PHM and the AFT models as special cases, might be 

appropriate. 

 



 84

Appendix 4.A  The Explicit Expressions of ( )M δ  and ( )Q δ  for PH 

model with Three-State Covariate Process and Their Partial 

Derivatives 

Assume the covariant process ( )Z t  has three states {0, 1, 2}. Let iS  be the product age at 

which the state changes from i  to 1i + , 0,1i = . And let 0 0( )g s  be the pdf of 0S , 1 0 1( , )g s s  

be the joint pdf of 0 1,S S . Denote replacement policy 0 1 2{ , , }t t tδ = . Then the expected length 

of a replacement cycle ( )M δ  and the failure probability ( )Q δ  in terms of 0 1 2, ,t t t  are  

0 1

0 1 1

1 1 2 1

2

0 0 0 0 0 1 0 0 0 0 2 0 1 1 0 1 0 10

3 0 1 1 0 1 0 1 4 0 1 2 1 0 1 0 10 0 0

( ) ( ) ( ) ( ) ( ) ( , ) ( , )

( , ) ( , ) ( , , ) ( , ) ,

t t

t t t

t s t s
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M M t g s ds M s g s ds M s t g s s ds ds

M s s g s s ds ds M s s t g s s ds ds
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∞ ∞

= + +

+ +

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫
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Q s s g s s ds ds Q s s t g s s ds ds

δ
∞ ∞

= + +

+ +

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫
 

where 
0
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( ) ( ) (1 ( ) )
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M t tdF t t F t= + −∫  
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s s
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0 0 0 0( ) ( )Q t F t=   1 0 0 0( ) ( )Q s F s=  

2 0 1 1 0 1( , ) ( , )Q s t F s t=   3 0 1 1 0 1( , ) ( , )Q s s F s s=  

4 0 1 2 2 0 1 2( , , ) ( , , )Q s s t F s s t=  

and 
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( )0 0 00
( ) 1 (0) ( ) ,

t
F t exp h u du t s= − −Ψ ≤∫  

( )0

0
1 0 0 0 0 10
( , ) 1 ( 0) ( ) (1) ( ) ,

s t

s
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s s t
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The partial derivatives of ( )M δ  and ( )Q δ  with respect to it  are 
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Note that  

0
( ) ( )( ) ( ) ,i
i i

Q Mh t i i
t t
δ δ∂ ∂

= Ψ ∀
∂ ∂

.     (4.56) 

Appendix 4.B  Lambda Minimization Technique 

In this section, we will give a brief introduction to the lambda minimization technique 

developed in Aven and Bergman (1986), aiming to minimizing a function with the following 

form 

( )( )
( )

M XB X
S X

=        (4.57) 

where nX ∈ℜ  and ( ) 0,S X X> ∀ . 

Define the λ -function 
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   ( , ) ( ) ( )C X M X S Xλ λ= −   ( , )λ ∈ −∞ +∞ . 

For each λ , denote the value of X  that minimizes ( , )C X λ  as X λ . 

Now we will show how the problem of minimizing ( )B X  can be solved by minimizing 

the λ -function ( , )C X λ . Aven and Bergman proved the following proposition which 

associates the optimality of ( )B X  with the optimality of ( , )C X λ .  

Proposition 4-1: If X λ  minimizes ( , )C X λ  and ( , ) 0C X λ λ = , then X λ  is optimal for (4.57) 

and the optimal value of ( )B X  is *( )B X λ λ λ= ≡ .   

Aven and Bergman then proved another important proposition, stated below, which leads 

to an iteration algorithm that always produces a sequence converging to *λ . 

Proposition 4-2: Choose any 1λ  and set iteratively 1 ( )
nn B X λλ + = , 1,2,3, .n = "  Then  

*lim nn
λ λ

→∞
= . 

Propositions 1 and 2 imply that the minimization of ( )B X  can be transformed into the 

problem of minimizing ( , )C X λ  plus a succession of iterations. This is the essence of the 

lambda minimization technique. This technique is very suitable for situations where it is easy 

to find the optimal solutions to the λ -function ( , )C X λ  while it is hard to minimize ( )B X  

directly; this is often the case in replacement/maintenance applications. The optimal solution 

and the optimal value of ( )B X  can be attained simultaneously when the algorithm 

converges. 

Appendix 4.C  Proof of Theorem 4-1 

For readability, first we list all the monotonicity properties of various functions that are 

related to the proof of Theorem 4-1 in the following. 

1) ( )M δ  is increasing in it , i∀ . 

2) Lp
M

∂
∂

 is increasing in it , i∀ . 

3) 0 ( )h ⋅  is increasing in its parameter. 
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4) 1t  is increasing in 0t  if 1
1 0 0 0

(0) ( )
(1)

t h h t− ⎡ ⎤Ψ
= ⎢ ⎥Ψ⎣ ⎦

 and 2t  is increasing in 0t  if 

1
2 0 0 0

(0) ( )
(2)

t h h t− ⎡ ⎤Ψ
= ⎢ ⎥Ψ⎣ ⎦

. 

Since γ  is fixed, in the following discussion, it is suppressed in the notation of u . 

The feasible region of ( )u δ  is 0 1 2{ : 0}R t t tδ= ≥ ≥ ≥ . Divide this region into two sets: a 

closed and bounded set 0 1 2{ : 0}D t t tδ= Λ ≥ ≥ ≥ ≥  where Λ  is an arbitrary large positive 

number, and set \B R D= ; i.e., { , }B D  is a partition of R . Define it = +∞  represent failure 

replacement in state i. 

Lemma 4-4 ( )u δ  achieves its minimum at the critical point 0 1 2{ , , }t t tγ γ γ γδ =  in D . 

Proof 

Since u  is a continuous function on the closed and bounded region D , according to the 

extreme value theorem for multivariate functions (Stewart, 1999), u  has a global minimum 

which happens either at its critical point or a certain point on the boundary. 

The boundaries of ( )u δ  are where 0 1t t= , 1 2t t= , 2 0t =  or 0t = Λ  within the feasible 

region 0 1 2{ : 0}D t t tδ= Λ ≥ ≥ ≥ ≥ . We prove by contradiction that points on the boundaries 

are not optimal to ( )u δ . 

1) Points on the boundary where 0 1t t= . 

Assume an optimal point exists on this boundary and denote it as 0 0 2{ , , }a a aδ = , 

0 2 0a a≥ ≥ . Recall that the partial derivative of ( )u δ  with respect to 0 1 2, ,t t t  are  

   2 0 1 2 0( , , ) ( ) ( ) , 0,1, 2L
i

i i

pu M b t t t Kh t i i
t t M

γ∂∂ ∂ ⎛ ⎞= + − =⎜ ⎟∂ ∂ ∂⎝ ⎠
Ψ , 

and 0,
i

M i
t

∂
> ∀

∂
.  

i. If 2 0 0 2 0 0( , , ) ( ) (0) 0Lpb a a a Kh a
M

γΨ
∂

+ − ≥
∂

 

it follows that  
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2 0 0 2 0 0( , , ) ( ) (1) 0Lpb a a a Kh a
M

γΨ
∂

+ − >
∂

.  

According to definition of a continuous function, 

   1 2 0( , )a a a∃ ∈ , s.t. 2 0 1 2 0 1( , , ) ( ) (1) 0Lpb a a a Kh a
M

γΨ
∂

+ − >
∂

. 

From assumption #7 and Lemma 4-2, we know that 2 0 1 2 0 1( , , ) ( ) ( )Lpb t t t Kh t i
M

Ψ
∂

+
∂

 is 

increasing in 1t . Thus 

    0 1 2
1

( , , ) 0u a t a
t

∂
>

∂ 1 1 0[ , ]t a a∀ ∈ ,  

which means u  is an increasing function for 1 1 0[ , ]t a a∈  with fixed 0 0 2 2,t a t a= = . Therefore 

0 1 2 0 0 2({ , , }) ({ , , })u a a a u a a a< . Assumption disproved. 

ii. If 2 0 0 2 0 0( , , ) ( ) (0) 0Lpb a a a Kh a
M

γΨ
∂

+ − <
∂

 

It follows that 

   0 0a a′∃ > , s.t. 2 0 0 2 0 0( , , ) ( ) (0) 0Lpb a a a Kh a
M

γ∂ ′ ′ Ψ+ − <
∂

.  

Thus 0 0 2
0

( , , ) 0u t a a
t

∂
<

∂
, 0 0 0[ , ]t a a′∀ ∈ , which means u  is an decreasing function for 

0 0 0[ , ]t a a′∈  with fixed 1 0 2 2,t a t a= = . Therefore 0 0 2 0 0 2({ , , }) ({ , , })u a a a u a a a′ < . Assumption 

disproved. 

2) Points on the boundary where 1 2t t=  

Using the same argument as in 1), we can prove that points on this boundary are not 

optimal. 

3) Points on the boundary where 2 0t =   

Assume 0 1( , ,0)a a  is optimal.  

Since 0Lp
M

∂
<

∂
, 0 (0) 0h =  and 0γ > , 2 0 1 0( , ,0) (0) (2) 0Lpb a a Kh

M
γ∂

+ − <
∂

Ψ  

It follows 
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2 1(0, )a a∃ ∈ , s.t. 2 0 1 2 0 2( , , ) ( ) (2) 0Lpb a a a Kh a
M

γΨ
∂

+ − <
∂

.  

Thus 0 1 2
2

( , , ) 0u a a t
t

∂
<

∂
, 2 2[0, ]t a∀ ∈ , which mean u  is an decreasing function for 2 2[0, ]t a∈  

with fixed 0 0 1 1,t a t a= = . Therefore 0 1 2 0 1({ , , }) ({ , ,0})u a a a u a a< . Assumption disproved. 

4) Points on the boundary where 0t = Λ   

Since K  is arbitrary large and 0 ( )h ⋅  is increasing and unbounded, then we have 

2 1 2 0( , , ) ( ) (0) 0Lpb a a Kh
M

γ∂
ΨΛ + Λ − >

∂
 

It follows 

   0 1[ , )a a∃ ∈ Λ , s.t. 2 0 1 2 0 0( , , ) ( ) (0) 0Lpb a a a Kh a
M

γΨ
∂

+ − >
∂

. 

Thus 0 1 2 0 0
0

( , , ) 0 [ , )u t a a t a
t

∂
> ∀ ∈ Λ

∂
, which means u  is an increasing function for 0 0[ , )t a∈ Λ  

with fixed 1 1 2 2,t a t a= = . Therefore 0 1 2 1 2({ , , }) ({ , , })u a a a u a a< Λ . Assumption disproved.  

In summary, in region D , ( )u δ  can not achieve its global minimum at its boundaries; 

which means ( )u δ  can only achieve its global minimum at its unique critical point 

0 1 2{ , , }t t tγ γ γ γδ = . ■       

 

Lemma 4-5 ,B Dδ δ ′∀ ∈ ∃ ∈ , such that ( ) ( )u uδ δ′ < . 

Proof  

There are only three types of points in B : 1 2{ , , }a aδ = ∞ , 2{ , , }aδ = ∞ ∞  and 

{ , , }δ = ∞ ∞ ∞ , 1 2 0a a∞ > > ≥ . 

1) For points in the form of 1 2{ , , }a aδ = ∞  

Since 0 ( )h ⋅  is increasing and unbounded, then we have 

   
0

2 0 1 2 0 0lim ( , , ) ( ) (0) 0L

t

pb t a a Kh t
M

γ
→∞

∂
+ −Ψ >

∂
. 

Thus  
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   0 1[ , )a a∃ ∈ ∞ , s.t. 2 0 1 2 0 0( , , ) ( ) (0) 0Lpb a a a Kh a
M

γΨ
∂

+ − >
∂

. 

Thus 0 1 2 0 0
0

( , , ) 0u t a a t a
t

∂
> ∀ ≥

∂
, which means u  is an increasing function for 0 0t a≥  with 

fixed 1 1 2 2,t a t a= = . Therefore if we let 0 1 2{ , , }a a aδ ′ = , then Dδ ′∈  and ( ) ( )u uδ δ′ < . 

2) For points in the form of 2{ , , }aδ = ∞ ∞  

Using the similar argument as in 1), there exists 1 2[ , )a a∈ ∞ , such that 

1 2 1 1
1

( , , ) 0u a a t a
t

∂
∞ > ∀ ≥

∂
. Therefore 1 2({ , , }) ( )u a a u δ∞ < . And based on the result in 1), 

Dδ ′∃ ∈ , such that 1 2( ) ({ , , }) ( )u u a a uδ δ′ < ∞ < .  

3) For points in the form of { , , }δ = ∞ ∞ ∞  

Similarly, we can prove that  

2, [0, )D aδ ′∃ ∈ ∈ ∞ , such that 2( ) ({ , , }) ( )u u a uδ δ′ < ∞ ∞ < . 

To sum up, ,B Dδ δ ′∀ ∈ ∃ ∈ , such that ( ) ( )u uδ δ′ < .  ■ 

 

From Lemma C.1 and Lemma C.2, we conclude that for a given γ , function ( , )u γ δ  

achieves a global minimum at its unique critical point, 0 1 2{ , , }t t tγ γ γ γδ = .  
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CHAPTER 5 GENERAL CONCLUSION 

 
In this dissertation, we studied the condition-based replacement problem for general 

deteriorating systems whose aging and deterioration process is assumed to follow the 

proportional hazards (PH) model. The condition information of the system is characterized 

by a stochastic covariate process. For various covariate processes and various monitoring 

schemes, we identified the forms of the optimal replacement policies and developed 

procedures to obtain the optimal policy parameters and optimal costs. In addition, an 

application of the PH-based models to a product service system was carefully investigated. 

In Chapter 2, we considered the condition-based replacement problem for systems in the 

PH model with continuous time Markov covariate process and periodic monitoring. We 

followed the model of Makis and Jardine (1992) but removed their discrete-time 

approximation by explicitly accounting for the possibility that the concomitant Markov chain 

may make transitions among its states between observation epochs. Accounting for state 

transitions between observations introduces significant intricacies in the computation of 

policy parameters. We used conditioning to develop a new recursive procedure to obtain the 

parameters of the optimal replacement policy and its long-run average cost. Based on that, 

we compared the costs of three monitoring schemes: no monitoring which corresponds to 

age-based replacement, periodic monitoring at various intervals, and continuous monitoring 

(approximated as the interval vanishes). We illustrated the relationships between the unit cost 

of periodic monitoring and the upfront cost of continuous monitoring under which the 

continuous, periodic or no monitoring scheme is optimal. 

In Chapter 3, we extended the PH-based replacement models to systems with semi-

Markov covariate processes and continuous monitoring. We identified our model as a special 

case of the one described in Bergman (1978), and showed that, if the hazard function of the 

system is non-decreasing, then the optimal replacement policy of our model is of the control 

limit type with respect to the hazard function. Given that an optimal policy may be uniquely 

defined by a set of state-dependent threshold ages for replacement, an explicit expression for 
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the objective function was derived in terms of those threshold ages by conditioning. Then the 

iterative procedure developed by Bergman was customized for our model to find the optimal 

threshold ages. The model and the computation procedure were illustrated by numerical 

examples, and its computational advantage over the recursive procedure in Wu and Ryan 

(2010) was discussed. The effect of different sojourn time distributions of the covariate 

process on the optimal policy and cost was also studied. 

In Chapter 4, we investigated a joint operation problem in the context of a product-

service system. The system consists of a service subsystem and a remanufacturing subsystem 

where the condition-based replacement decision and the inventory management decision 

must be made at the same time. Identifying and formulating the couplings between the two 

subsystems, an integrated model aiming to minimize the total cost per unit time of the system 

was developed and an algorithm was presented to jointly optimize the replacement policy 

and the inventory management policy. Then we evaluated the cost impact of treating as one 

category the preventively replaced products and products replaced due to failure. 

Future research directions for the PH-based replacement models could be 

• Generalize the one-dimensional covariate to a multi-dimensional vector which 

would permit the covariate process to evolve along multiple paths. 

• Introduce uncertainty in the monitoring process. Extend our models to systems 

with imperfect monitoring; that is, where the information obtained through 

monitoring can only be used to calculate the probability that the system is in a 

certain diagnostic state. 

In the analysis of the joint optimization of the PSS, the demand process of the fleet for 

new products, which is a superposed renewal process, is approximated by a Poisson process 

assuming that the number of products in the fleet is sufficiently large. Evaluating the impact 

of this approximation in the situation of moderate or small fleet sizes is a possible extension 

of this research. Also, considering the capacity expansion problem of the service subsystem 

in addition to replacement would be interesting and challenging problem, which is a natural 

generalization of the model presented in Chapter 4. 
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