INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality $6^{\prime \prime} \times 9^{\prime \prime}$ black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

UM.I

Order Number 9821156

Bounds for Faber coefficients of functions univalent in an ellipse

Haliloğlu, Engin, Ph.D.
Iowa State University, 1993

Bounds for Faber coefficients of functions univalent in an ellipse

by
Engin Haliloğlu

A Dissertation Submitted to the Graduate Faculiy in Partial Fulfillment of the Requirements for the Degree of
DOCTOR OF PHILOSOPHY'
Department: Mathematics
Major: Applied Mathematics

Approved:
Signature was redacted for privacy.
In (!lynge of Mafor Work of the Comminfec:
Signature was redacted for privacy.
For the Major Department
Signature was redacted for privacy.
Por the Graduate College
lowa State University
Ames, lowa
1993
Copyright © Engin Haliloğlu, 1993. All rights reserved.

DEDICATION

This thesis is dedicated to my father.

TABLE OF CONTENTS

DEDICATION ii
ACKNOWLEDGEMENTS v
CHAPTER 1. INTRODUCTION 1
Functions Univalent in the Unit Disc I
Faber Polynomials 5
Faber Series 11
Functions Univalent in a Simply Connected and Bounded Domain 11
CHAPTER 2. BOUNDS FOR FABER COEFFICIENTS OF FUNC- TIONS UNIVALENT IN AN ELLIPSE 17
Main Results 18
CHAPTER 3. ON THE FABER COEFFICIENTS OF FUNC- TIONS UNIVALENT IN AN ELLIPSE 28
Nain Results 28
CHAPTER 4. CONCLUSION 4
Suntmary 4.1
Fulure Work 4
BIBLIOGRAPHY 46

ACKNOWLEDGEMENTS

I wish to thank Dr. Blgin II. Johnston for his guidance during my rescarch and for his suggestions during the writing of this thesis. I also wish to thank to the members of my POS Comittee, especially, Dr. James A. Wilson lor his great help. I am especially gratelul to my wife for her great understanding and patience during my research. I am also thankful to my family for their encouragement and moral support. Finally, I wish to thank to the Turkish Goverment for providing me financial support during my graduate studies.

CHAPTER 1. INTRODUCTION

Functions Univalent in the Unit Disc

In this section we introduce the class S of univalent functions and some important rhated classes. We also give examples of the use of extreme point theory in solving linear extremal problems.

Definition 1.1 a function $f(z)$ is called univalent in a domain $\Omega \subset \mathbf{C}$ if $f(z)$ is drfincd in Ω and $f\left(z_{1}\right) \neq f\left(z_{2}\right)$ for cach pair of points z_{1} and z_{2} with $z_{1} \neq z_{2}$ in Ω.

Definition 1.2 a function $f(z)$ is said to be in the class S if it is analyfic and unimalent in the unit disc $\Delta(0,1)=\{z:|z|<1\}$, and satisfics the conditions $f(0)=0$ (1 nd $f^{\prime}(0)=1$.

The study of the class S ' seems to have started with Koebe at the beginning of t. his century. Koebe [12] proved the existence of an alsolute constant r such that the disk $\{|=|<r\}$ is contained in $f(\Delta(0,1))$ for every $f(z) \in S$. Bieberbach $[2,3]$ found the best possible value of r to be $\frac{1}{4}$. la 1916 , Bieberbach $[3]$ showed that if $f(z) \in S$ is giem by

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

When $\left|a_{2}\right| \leq 2$. He then conjectured that in addition,

$$
\left|a_{n}\right| \leq n, \quad(n=2,3,4, \cdots)
$$

This conjecture was one of the most chatlenging open problems of mathematics for 68 years. It was proved by L. deBranges [4] in 1984. deBranges also proved that equality holds in (1.2) if aud only if $f(z)$ is given by

$$
f(z)=e^{-i \theta} k\left(e^{i \theta}\right), \quad \theta \in[0,2 \pi),
$$

where

$$
k(z)=\frac{z}{(1-z)^{2}} .
$$

The function $k(z)$ is known as the Koebe function.
We now define some subclasses of S that have nice geometric properties and serve as "test cases" for problems about S.

Definition 1.3 A function $f(z) \in S$ is called convex if $f(\Delta(0,1))$ is a connex set. We denote the class of conver functions by C.

Definition 1.4 A function $f(z) \in S$ is called typically real if $f(z)$ is ral for real malues of zand nonval for nomeal values of z. We denote the class of typically real functions by T.

Definition 1.5 The class of odd functions in S is denoted by $S^{(2)}$.

The class C' is closely related to the following subclass of analytic functions.

Definition 1.6 A function $p(z)$ analytic in $\Delta(0,1)$ and satisfying the conditions $p(0)=1$ and $\operatorname{Re}\{p(z)\}>0$ for $z \in \Delta(0,1)$ is said to be of positine ral part. We denote the class of such functions by P.

In this thesis we will study the problem of maximizing certain linear functionals orer some compact subsets of functions analytic in $\Delta(0,1)$. It was shown that [5] extreme point theory is useful in solving this type of problems.

Definition 1.7 Let A be a subset of a vector space X and $f \in A$. We say f is an rotrme point of A if when $f_{1}, f_{2} \in A$ and $0<t<1$ with

$$
f=t f_{1}+(1-t) f_{2}
$$

then $f_{1}=f_{2}$. We denote extreme points of A by eath .

Definition 1.8 Let X be a topological vector space. Then the closed conver hull of $A \subset X$, denoled by $\overline{c o}(A)$, is the smallest closed convex set containing A.

The following theorem (See [17]) shows that to find the maximum value of a linear finctional over a compact set it suffices to find the maximum over the set of extreme points.

Theorem 1.1 Let X be a locally conver lincar topological space and let $K \subset X$ br a compuet set. If l(x) is a continuous linear functional on X . then

$$
\max _{x \in K} \operatorname{Re}\{l(x)\}=\max _{x \in e_{x} t_{K}} \operatorname{Rc}\{l(x)\}
$$

If. in addition, $\overline{\mathrm{co}}(K)$ is compact, then

$$
\max _{x \in K} \operatorname{Re}\{l(x)\}=\max _{x \in \operatorname{col}(\overline{c o}(K))} \operatorname{Re}\{l(x)\}
$$

The following theorem of Braman, Clunie, and Kirwan [5] identifies ext $(\overline{\operatorname{co}}(P))$.

Theorem 1.2 The extreme points of the closed convex hull of P consists of funclions $p_{\theta}(z)$ given by

$$
\begin{equation*}
p_{\theta}(\tilde{z})=\frac{1+e^{i \theta} \tilde{z}}{1-e^{i \theta} \tilde{z}}, \quad \theta \in[0,2 \pi) . \tag{1.2}
\end{equation*}
$$

The following two theorems due to L. Brickman, T. H. Mac Gregor, and D. R. Wilken [G] determine $\operatorname{ext}\left(\overline{\mathrm{co}}\left(C^{\prime}\right)\right)$ and $\operatorname{ext}(\overline{\mathrm{co}}(T))$, respectively.

Theorem 1.3 The catrome points of the closed convex hull of C consists of functions $c_{\theta}(z)$ given by

$$
\begin{equation*}
c_{\theta}(z)=\frac{z}{1-e^{i \theta} z}, \quad \theta \in[0,2 \pi) . \tag{1.3}
\end{equation*}
$$

Theorem 1.4 The ertreme points of the closed conver hull of T consists of functions $t_{0}(z)$ given by

$$
\begin{equation*}
t_{\theta}(z)=\frac{z}{1-2 z \cos \theta+z^{2}}, \quad \theta \in[0, \pi] . \tag{1.4}
\end{equation*}
$$

The problem of determining the collection of all extreme points of $S^{(2)}$ and S are still open problems.

The following three theorems are immediate conseguences of applications of the Theorems 1.2, 1.3, and 1.4, respectively.

Theorem 1.5 If

$$
\begin{equation*}
f(z)=1+\sum_{n=1}^{\infty} b_{n} z^{n} \in P \tag{1.5}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|b_{n}\right| \leq 2, \quad(n=1,2,3, \cdots) \tag{1.6}
\end{equation*}
$$

This incquality is sharp.

Theorem 1.6 If $f(z) \in C$ is given by (1.1), then

$$
\begin{equation*}
\left|a_{n}\right| \leq 1, \quad(n=2,3,4, \cdots) \tag{1.7}
\end{equation*}
$$

Strict inequality holds in (1.7) unless $f(z)=c_{\theta}(z)$, for some $\theta \in[0,2 \pi)$.

Theorem 1.7 If $f(z) \in T$ is given by (1.1), then

$$
\begin{equation*}
\left|a_{n}\right| \leq n, \quad(n=2,3,4, \cdots) \tag{1.8}
\end{equation*}
$$

This incquality is sharp for each firrd n.

The coefficient problem for the class $S^{(2)}$ is still an open problem. Lititewood and Paley [14] showed that for functions $f(z)=z+\sum_{n=1}^{\infty} a_{2 n+1} z^{2 n+1} \in S^{(2)}$ there exist.s an absolute constant such that $\left|a_{2 n+1}\right| \leq A,(n=1,2,3, \cdots)$. Then they went on 1.o conjecture that $\left|a_{2 n+1}\right| \leq 1,(n=1,2,3, \cdots)$. This conjecture was proved to be false at least for $n=2$, by Fekete and Szego [10]. Milin [15] has shown that $\left|a_{2 n+1}\right| \leq 1.14, \quad(n=1,2,3, \cdots)$. This is the best global result known, though sharp results for some individual coefficients have been found.

Faber Polynomials

In this section we give a brief discussion of the Faber polynomials associated with a simply comected and bounded domain $\Omega \subset C$ with analytic boundary.

Definition 1.9 Dcfine Σ to be the class of functions $g(z)$ analytic and uninalrnt in $\Delta=\{z:|z|>1\}$ with

$$
\begin{equation*}
g(z)=z+\sum_{n=0}^{\infty} \frac{c_{n}}{z^{n}}, \quad(z \in \Delta) \tag{1.9}
\end{equation*}
$$

Definition 1.10 Let Ω be a simply connected, bounded domain in \mathbf{C} with $0 \in \Omega$. Assume Ω has rapacity 1 and a function $g(i) \in \Sigma$ is the unique mapping of Δ onto $\mathrm{C} \backslash \bar{\Omega}$. Then the Fuber polynomials, $\left\{\Phi_{n}(z)\right\}_{n=0}^{\infty}$, associated with Ω (or $g(z)$) wre drfined by the generating function relation [7, p.218]

$$
\begin{equation*}
\frac{\xi g^{\prime}(\xi)}{g(\xi)-z}=\sum_{n=0}^{\infty} \Phi_{n}(z) \xi^{-n} \tag{1.10}
\end{equation*}
$$

Substituting (1.9) into (1.10) and equating like powers of ξ yields

$$
\begin{gather*}
\Phi_{0}(z)=1, \tag{1.11}\\
\Phi_{1}(z)=z-c_{0}, \tag{1.12}
\end{gather*}
$$

and the recursion relation,

$$
\begin{equation*}
\Phi_{n+1}(z)=\left(z-c_{0}\right) \Phi_{n}(z)-\sum_{k=1}^{n-1} c_{n-k} \Phi_{k}(z)-(n+1) c_{n}, \quad(n=1,2,3, \cdots) \tag{1.13}
\end{equation*}
$$

Hence $\Phi_{n}(z)$ is a monic polynomial of degree n
The following theorem [18, p.130] provides another proof that $\Phi_{n}(z)$ is a monic polynomial of degree n.

Theorem 1.8 Let $\left\{\Phi_{n}(z)\right\}_{n=0}^{\infty}$ be the Faber polynomials associated with $g \in \Sigma$. Then $\Phi_{n}(z)$ is the principal part of $\left(g^{-1}(z)\right)^{n}$ at $z=\infty$, i.e.

$$
\begin{equation*}
\left(g^{-1}(z)\right)^{n}=\Phi_{n}(z)+O\left(\frac{1}{z}\right) \quad \text { as } \quad z \rightarrow \infty . \tag{1.11}
\end{equation*}
$$

Proof: For $r>1$, let $\Gamma_{r}=\left\{g\left(r e^{i \theta}\right), \theta \in[0,2 \pi)\right\}$ and Ω_{r}, be the inside of I_{r}. (Note $\Omega_{1}=\Omega$.) Let $1<r<\rho<\infty$. By the Cauchy Integral Formula, it follows from (1.10) that

$$
\Phi_{n}(z)=\frac{1}{2 \pi i} \int_{|\xi|=\rho} \frac{\xi^{n} g^{\prime}(\xi)}{g(\xi)-z} d \xi, \quad z \in \overline{\Omega_{r}} .
$$

Then

$$
\begin{equation*}
\Phi_{n}(z)=\frac{1}{2 \pi i} \int_{\Gamma_{r_{2}}} \frac{\left(g^{-1}(w)\right)^{n}}{w-z} d w . \tag{1.1.5}
\end{equation*}
$$

Since $g(\infty)=\infty$ and $g^{\prime}(\infty)=1$ we may write

$$
g^{-1}(z)=z+\sum_{n=0}^{\infty} \frac{d_{n}}{z^{n}},
$$

for sulficiently large values of z. Thus the function $\frac{\left(g^{-1}(w)\right)^{n}}{w-z}$ has a pole of order n al $w=\infty$, and we may write (1.15) as

$$
\begin{equation*}
\Phi_{n}(z)=\frac{1}{2 \pi i} \int_{|u|=R} \frac{\left(g^{-1}(w)\right)^{n}}{w-z} d w, \tag{1.16}
\end{equation*}
$$

where R is sufficiently large. Writing

$$
\begin{equation*}
\left(g^{-1}(w)\right)^{n}=w^{n}+D_{1}^{(n)} w w^{n-1}+\cdots+D_{n}^{(n)}+\frac{D_{-1}^{(n)}}{w}+\frac{D_{-2}^{(n)}}{w^{2}}+\cdots \tag{1.17}
\end{equation*}
$$

and

$$
\frac{1}{w-z}=\frac{1}{w}+\frac{z}{w^{2}}+\cdots+\frac{z^{n}}{w^{n+1}}+\cdots
$$

and then taking the product we obtain from (1.16) that

$$
\begin{equation*}
\Phi_{n}(z)=z^{n}+D_{1}^{(n)} z^{n-1}+\cdots+D_{n}^{(n)} . \tag{1.18}
\end{equation*}
$$

Substituting (1.18) into (1.17) completes the proof of the theorem.
We conclude this section by giving three examples of Faber polynomials:

Example 1.0.1 Lft

$$
g(z)=z .
$$

Then

$$
g(\Delta)=\Delta=\mathrm{C} \backslash \Delta(0,1)
$$

Substituting $g(\xi)=\xi$ into (1.10) yields

$$
\frac{\xi}{\xi-z}=\frac{1}{1-\frac{z}{\xi}}=\sum_{n=0}^{\infty} z^{n} \xi^{-n}=\sum_{n=0}^{\infty} \Phi_{n}(z) \xi^{-n}
$$

Hence the Faber polynomials associated with $\Delta(0,1)$ arf $\left\{z^{n}\right\}_{n=0}^{\infty}$.

Example 1.0.2 Lct

$$
y(z)=z+\frac{1}{4 z}
$$

and $r>1$. Then

$$
g\left(r e^{i \theta}\right)=r e^{i \theta}+\frac{1}{4 r} e^{-i \theta}=\left(r+\frac{1}{4 r}\right) \cos \theta+i\left(r-\frac{1}{4 r}\right) \sin \theta, \quad \theta \in[0,2 \pi) .
$$

Hence $g\left(r e^{i \theta}\right)$ is a parametric representation of an allipse with foci at the points ± 1.
We deduce that

$$
\begin{gathered}
g(\Delta)=\mathbf{C} \backslash \bar{E} \text { where } \\
E=\left\{x+i y: \frac{x^{2}}{(5 / 4)^{2}}+\frac{y^{2}}{(3 / 4)^{2}}<1\right\}
\end{gathered}
$$

Substituting $g(\xi)=\xi+\frac{1}{4 \xi}$ into (1.10) gives

$$
\frac{\xi g^{\prime}(\xi)}{g(\xi)-z}=\frac{4 \xi^{2}-1}{4 \xi^{2}-4 \xi z+1}=1+\frac{z \xi-\frac{1}{2}}{\left(\xi-\xi_{1}\right)\left(\xi-\xi_{2}\right)}
$$

where

$$
\xi_{1}=\frac{z+\sqrt{z^{2}-1}}{2} \text { and } \xi_{2}=\frac{z-\sqrt{z^{2}-1}}{2} .
$$

Then wer have

$$
\begin{equation*}
\frac{\xi g^{\prime}(\xi)}{g(\xi)-z}=1+\frac{1}{\xi_{1}-\xi_{2}}\left(\frac{\xi_{1} z-\frac{1}{2}}{\xi-\xi_{1}}-\frac{\xi_{2} z-\frac{1}{2}}{\xi-\xi_{2}}\right) . \tag{1.1!}
\end{equation*}
$$

Substiluting

$$
\xi_{1}-\xi_{2}=\sqrt{z^{2}-1}
$$

$$
\xi_{1} z-\frac{1}{2}=\frac{z^{2}-1+z \sqrt{z^{2}-1}}{2}=\xi_{1} \sqrt{z^{2}-1}
$$

and

$$
\xi_{2} z-\frac{1}{2}=\frac{z^{2}-1-z \sqrt{z^{2}-1}}{2}=-\xi_{2} \sqrt{z^{2}-1}
$$

into (1.19) gines

$$
\begin{aligned}
\frac{\xi g^{\prime}(\xi)}{g(\xi)-z} & =1+\frac{1}{\xi}\left(\frac{\xi_{1}}{1-\frac{\xi_{1}}{\xi}}+\frac{\xi_{2}}{1-\frac{\xi_{2}}{\xi}}\right) \\
& =1+\sum_{n=1}^{\infty}\left(\xi_{1}{ }^{n}+\xi_{2}^{n}\right) \xi^{-n}
\end{aligned}
$$

Hence it follows from (1.10) that

$$
\begin{gathered}
\Phi_{0}(z)=1 \\
\Phi_{n}(z)=\xi_{1}^{n}+\xi_{2}^{n}=2^{-n}\left[\left(z+{\sqrt{z^{2}-1}}^{n}+\left(z-\sqrt{z^{2}-1}\right)^{n}\right], \quad(n=1,2,3, \cdots)\right.
\end{gathered}
$$

IV sec that the Faber polynomials associated with E are the monic Chebyshen polynominls of ($-1,1$).

Example 1.0.3 Lct

$$
g(z)=z+\frac{1}{2 z^{2}}
$$

Thrn $g(\Delta)$ is the exterior of the there-cusprd hypocycloid (shown in Figure 1.1) whose parametric cquation is given by

$$
z=e^{i \theta}+\frac{1}{2} e^{-2 i \theta}, \quad 0 \leq 0<2 \pi
$$

Ising (1.11), (1.12), and (1.13) we find that the Faber polymomials, $\left\{\phi_{n}(=)\right\}_{u=0}^{\infty}$. associaled with $g(z)=z+\frac{1}{2 z^{2}}$ are given by

$$
\Phi_{0}(z)=1
$$

Figure 1.1: Three C.usped Hypocycloid

$$
\begin{gathered}
\Phi_{1}(z)=z \\
\Phi_{2}(z)=z^{2} \\
\Phi_{3}(z)=z^{3}-\frac{3}{2}
\end{gathered}
$$

and

$$
\Phi_{n+1}(z)=z \Phi_{n}(z)-\frac{1}{2} \Phi_{n-2}(z), \quad(n=3,4,5, \cdots)
$$

Faber Series

In this section we discuss how Faber polynomials may be used to represent analytic functions in more general domains than clisks.

Theorem 1.9 ([14, p.伨) Let $g \in \Sigma$ and $\left\{\Phi_{n}(z)\right\}_{n=0}^{\infty}$ be the Faber polynomials ussocinted with g. Suppose $F(z)$ is a function analytic in $\Omega_{r}=$ inside of $g(|z|=$ $r)$, for some $r>1$.
(i) Then $F(z)$ has the representation

$$
\begin{equation*}
F(z)=\sum_{n=0}^{\infty} A_{n} \Phi_{n}(z), \quad z \in \Omega_{r} \tag{1.20}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n}=\frac{1}{2 \pi i} \int_{1:=1=0} F(g(z)) z^{-n-1} d z \quad \text { for any } \rho \text { with } \quad 1<\rho<r \tag{1.21}
\end{equation*}
$$

In addition.

$$
\operatorname{limsun}_{n \rightarrow \infty}\left|A_{n}\right|^{1 / n} \leq \frac{1}{r}
$$

(ii) The serifs given in (1.20) converges uniformly on compart subsets of Ω_{r}.
(iii) The rapansion of $F^{\prime}(z)$ as Faber series given by (1.0()) is unique.
(iv) Connersly, if $\left\{A_{n}\right\}_{n=0}^{\infty}$ is a sequence with $\lim \sup _{n \rightarrow \infty}\left|A_{n}\right|^{1 / n} \leq \frac{1}{r}$ then the serics $\sum_{n=0}^{\infty} A_{n} \Phi_{n}(z)$ represents an analytic function in Ω_{r}.

Proof: (i) Let $1<\rho<r$ and let $\Gamma_{\rho}=g(|z|=\rho)$. For $z \in \overline{\Omega_{p}}$, the Cauchy Integral Formula gives

$$
\begin{aligned}
F(z) & =\frac{1}{2 \pi i} \int_{\Gamma_{\rho}} \frac{F(w)}{w-z} d w=\frac{1}{2 \pi i} \int_{|\xi|=\rho} \frac{F(g(\xi)) g^{\prime}(\xi)}{g(\xi)-z} d \xi \\
& =\frac{1}{2 \pi i} \int_{|\xi|=\rho} F(g(\xi))\left(\sum_{n=0}^{\infty} \Phi_{n}(z) \xi^{-n-1}\right) d \xi \\
& =\sum_{n=0}^{\infty} A_{n} \Phi_{n}(z)
\end{aligned}
$$

where A_{n} is given by (1.21). Interchange of integration and summation is justified by uniform convergence of the series $\sum_{n=0}^{\infty} \Phi_{n}(z) \xi^{-n-1}$ to $\frac{g^{\prime}(\xi)}{g(\xi)-z}$ for $|\xi|=\rho$ and z in a compact subset of Ω_{ρ}. Since

$$
M_{p}=\max _{|=|=p}|F(g(z))|<\infty
$$

it follows from (1.21) that

$$
\limsup _{n \rightarrow \infty}\left|A_{n}\right|^{1 / n} \leq \frac{1}{\rho} \limsup _{n \rightarrow \infty}\left(\max _{|=|=\rho}|F(g(z))|\right)^{1 / n}=\frac{1}{\rho}
$$

Lelling $\rho \rightarrow r$ completes the proof of (i).
(ii) Let $K \subset \Omega_{r}$ be a compact set. Choose ρ so that $K \subset \Omega_{\mu}$. Then

$$
\left|\Phi_{n}(z)\right|=\left|\frac{1}{2 \pi i} \int_{|\xi|=\rho} \frac{\xi^{n} g^{\prime}(\xi)}{g(\xi)-z} d \xi\right| \leq M \rho^{n+1}
$$

where

$$
M=\max _{|\xi|=\mu,=\in K}\left|\frac{g^{\prime}(\xi)}{g(\xi)-z}\right| .
$$

Now choose ρ^{\prime} so that $\rho<\rho^{\prime}<r$. Then as in the prool of part (i)

$$
\left|A_{n}\right| \leq \frac{M_{\rho^{\prime}}}{\rho^{\prime \prime}}
$$

Therefore if $z \in K$, then

$$
\left|A_{n} \Phi_{n}(z)\right| \leq \frac{M_{p^{\prime}}}{\rho^{\prime n}} M \rho^{n+1}
$$

Hence, by the Weierstrass M-test, the series $\sum_{n=0}^{\infty} A_{n} \Phi_{n}(z)$ converges uniformly on compact subsels of Lut I_{ρ}. Letting $\rho \rightarrow r$ completes the proof.
(iii) Let

$$
F(z)=\sum_{n=0}^{\infty} A_{n} \Phi_{n}(z)=\sum_{n=0}^{\infty} B_{n} \Phi_{n}(z) .
$$

Then for $1<\rho<r$

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{|z|=\rho}\left[\sum_{n=0}^{\infty}\left(A_{n}-B_{n}\right) \Phi_{n}(g(z))\right] z^{-m-1} d z=0 \tag{1.22}
\end{equation*}
$$

Prom (1.11) we have

$$
\begin{equation*}
\Phi_{n}(g(z))=z^{n}+\mathrm{O}\left(\frac{1}{z}\right) \quad \text { as } z \rightarrow \infty \tag{1.2:3}
\end{equation*}
$$

Substifuting (1.23) into (1.22) yiedls

$$
A_{m}-B_{m}=0, \quad \forall m \geq 0
$$

This proves assertion (iii).
(iv) Let

$$
A(z)=\sum_{n=0}^{\infty} A_{n} z^{n} .
$$

Since limsup $p_{n \rightarrow \infty}\left|A_{n}\right|^{1 / n} \leq \frac{1}{r}$ the series $\sum_{n=0}^{\infty} A_{n} \sim^{n}$ converges uniformly for $|:|<r$ and $A(z)$ is analytic in $\Delta(0, r)$. For each ρ with $1<\rho<r$, the function

$$
\frac{1}{2 \pi i} \int_{|\xi|=\rho} \frac{A(\xi) g^{\prime}(\xi)}{g(\xi)-z} d \xi
$$

is analytic for $z \in \Omega_{p}$. Since the series for $A(z)$ converges uniformly for $|\because|=\rho$, it follows that

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{|\xi|=\rho} \frac{A(\xi) y^{\prime}(\xi)}{g(\xi)-z} d \eta & =\sum_{n=0}^{\infty} A_{n} \frac{1}{2 \pi i} \int_{|\xi|=\rho} \xi^{n}\left[\sum_{k=1}^{\infty} \Phi_{k}(z) \xi^{-k-1}\right] d \xi \\
& =\sum_{n=0}^{\infty} A_{n} \Phi_{n}(z)
\end{aligned}
$$

Hence the series $\sum_{n=0}^{\infty} A_{n} \Phi_{n}(z)$ converges miformly to an analytic function in Ω_{p}. Letting $\rho \rightarrow r$ completes the proof.

Functions Univalent in a Simply Comnected and Bounded Domain

In this section we introduce analogues of the class S and some of its related classes for a general simply counected and bounded domain Ω. Afterwards we state the main results of this thesis.

Let Ω be a simply connected and bounded domain in C with $\partial \Omega$ analytic. Assume that $0 \in \Omega$. Let $\varphi(z)$ be the unique, one-to-one, and analytic mapping of Ω onto $\Delta(0,1)$ with $\varphi(0)=0$ and $\varphi^{\prime}(0)>0$. We define classes analogues to the classes S, P, C, T, and $S^{(2)}$ for Ω as follows:

Definition 1.11 Let $S(\Omega)$ denotc the class of functions $F(z)$ analytic and univalent in Ω and satisfying $F(0)=0$ and $F^{\prime}(0)=1$.

Definition 1.12 A function $P(z)$ annlytic in Ω is suid to be of positive real part if $P^{\prime}(0)=\frac{1}{\varphi^{\prime}(0)}$ and $\operatorname{Re}\{P(z)\}>0$ for $z \in \Omega$. We use $P(\Omega)$ to denote the rlass of such functions. (7 he condition $P(0)=\frac{1}{\varphi^{\prime}(0)}$, instcad of $P(0)=1$. is imposed for conmenience.)

Definition 1.13 A function $F(z) \in S(\Omega)$ is called convc: if $F(\Omega)$ is a connsx dommin in C . We denote the class of conver functions in Ω by $C(\Omega)$.

Definition 1.14 Assume that Ω is symmetric about the real axis. Then a function $F(z) \in S(\Omega)$ is ralled typically real if $F(z)$ is ral for real values of $z \in \Omega$ and nonreal for nomral values of $z \in \Omega$. We denote the class of typically ral functions in Ω by $T(\Omega)$.

Definition 1.15 If Ω is symmetric about origin then we use $S^{(2)}(\Omega)$ to denote the class of odd functions $F(z) \in S(\Omega)$.

Assume that Ω has capacity $1, \partial \Omega$ is analytic, and $g(\Delta)=C \backslash \bar{\Omega}$ for some $g(z) \in \Sigma$. Then by Theorem 1.9 the functions $F(z)$ in the classes defined above have Faber expansions $F(z)=\sum_{n=0}^{\infty} A_{n} \Phi_{n}(z)$ which converge uniformly on compact subsets of Ω.

Assume that Ω is symmetric with respect to both the real axis and origin. Then we note that if $F(z)$ is in one of the classes defined above then $F(z)$ may be written as

$$
\begin{equation*}
F(z)=\frac{f(\varphi(z))}{\varphi^{\prime}(0)} \tag{1.24}
\end{equation*}
$$

for some lunction $f(z)$ in the corresponding class of $\Delta(0,1)$. Therefore for the Faber series of $F(z)$ we use the notation

$$
\begin{equation*}
F(z)=\sum_{n=0}^{\infty} A_{n}(f) \Phi_{n}(z) \tag{1.25}
\end{equation*}
$$

where $f(z)$ is the finction characterized by (1.2f). Now we pose the following prol)lem:

Problem: If a function $F^{\prime}(z)$, is in one of the classes defined above, has the Faber expansion given by (1.25), then what can be said about the Faber coefficients $\left\{A_{n}(f)\right\}_{n=0}^{\infty}$? (Note that the case $\Omega=\Delta(0,1)$ reduces to the problems discussed in 1.1, in particular, to the Bieberbach Conjecture and related problems.)

To investigate this problem we must deal with both exterior and interior mappings for Ω. This is very difficult for general domains. Therefore we focus on the elliphical domain E, given in Example 1.0.2, for which exterier and interior mappings are known.

The following theorem [$16, p .296$] gives the required interior mapping.

Theorem 1.10 The function

$$
\varphi(z)=\sqrt{k_{0}} \operatorname{sn}\left(\frac{2 K}{\pi} \sin ^{-1} z ; \frac{1}{16}\right)
$$

is the onc-lo-onf, analytic mapping of E onto $\Delta(0,1)$ with $\varphi(0)=0$ and $\varphi^{\prime}(0)=$ $\frac{2 \pi \sqrt{\hbar_{0}}}{\pi}>0$.

In the next two chaplers we investigate bounds for the Falser coeflicients of functions $F(z)$ in the dasses $S(E), \Gamma(E), C(E), T(E)$, and $S^{(2)}(E)$.

For information about Jacobi elliptic functions see the Appendix.

CHAPTER 2. BOUNDS FOR FABER COEFFICIENTS OF FUNCTIONS UNIVALENT IN AN ELLIPSE

We define $S^{\prime}(E)$ as the class of functions $F(z)$ which are analytic and mivalent. on E and normalized by the conditions $F(0)=0$ and $F^{\prime}(0)=1$. We define two subclasses of $S(E)$ as

$$
C^{\prime}(E)=\left\{F(z) \in S^{\prime}(E): F(E) \text { is couvex }\right\}
$$

and

$$
S^{(2)}(E)=\left\{F^{\prime}(z) \in S^{\prime}(E): F(z) \text { is odd }\right\} .
$$

In addition, we let $P(E)$ denote the class of functions analytic in E and satisfying the conditions $F^{\prime}(0)=\frac{1}{\varphi^{\prime}(0)}=\frac{2 K \sqrt{k_{0}}}{\pi}$ and $\operatorname{Re}\{F(\tilde{z})\}>0$. (The condition $F(0)=\frac{1}{\varphi^{\prime}(0)}$ is imposed for convenience.)

Note that if $F(z)$ is in one of the classes defined above then $F(z)$ may be writ ten as in (1.24) for some $f(z)$ in the corresponding class of $\Delta(0,1)$.

Let the Paber expansions of functions $F(z)$ in the classes indicated above be given by (1.25), where the relation between $F(z)$ and $f(z)$ is given by (1.21). In this chapter, we obtain sharp bounds for the Faber cocflicionts $A_{0}(f), A_{1}(f)$, and $A_{2}(f)$ for functions in the classes $S(E), C(E)$, and $P(E)$. In cach case, equality is at taned
for functions giveu by

$$
\begin{gather*}
k(z)=t_{0}(z)=\frac{z}{(1-z)^{2}}, \tag{2.1}\\
c(z)=c_{0}(z)=\frac{z}{1-z}, \tag{2.2}
\end{gather*}
$$

or

$$
\begin{equation*}
p(z)=p_{0}(z)=\frac{1+z}{1-z} . \tag{2.3}
\end{equation*}
$$

For functions in $S^{(2)}(E)$ a sharp, bound for $A_{1}(f)$ is obtained and the corresponding extremal function in $S^{(2)}$ is shown to be

$$
\begin{equation*}
o(z)=\frac{z}{1-z^{2}} . \tag{2.1}
\end{equation*}
$$

In addition, sharp bounds for certain linear combinations of the Faber coefficients of functions in the classes given above are obtaned in Theorems 2.4, 2.5, and 2.6. Extremal functions in the unit disc are given by (2.1), (2.2), (2.3), and (2.4), as before. These theorems lead us to make conjectures for the Faber coefficients $A_{n}(f)$ of the functions $F^{\prime}(z)$ in the classes $S^{\prime}(E), C^{\prime}(E), P(E)$, and $S^{(2)}(E)$.

Main Results

We will work with the following expansion for the Faber coefficients. $\left\{A_{n}\right\}_{n=0}^{\infty}$. of functions analytic in E.

Lemma 2.1 If $F(z)$ is analylic in E and has the Faber serics given by (1.20) then the Puber corfficients $\left\{A_{n}\right\}_{n=0}^{\infty}$ are given by

$$
A_{n}=\frac{2^{n}}{\pi} \int_{0}^{\pi} F^{\prime}(\cos \theta) \cos n \theta d \theta, \quad(n=0,1,2, \cdots)
$$

Prool: We have from (1.20)

$$
\begin{equation*}
F^{\prime}(\cos \theta)=\sum_{n=0}^{\infty} A_{n} \Phi_{n}(\cos \theta) \tag{2.5}
\end{equation*}
$$

where $\Phi_{n}(x)$ is the monic Chebyshev polynomial of degree n. Substituting

$$
\Phi_{n}(\cos \theta)=2^{1-n} \cos n \theta
$$

inlo (2.5) gives

$$
\begin{equation*}
F(\cos \theta)=\sum_{n=0}^{\infty} A_{n} 2^{1-n} \cos n \theta \tag{2.6}
\end{equation*}
$$

Multiplying (2.6) by $\cos m 0$ and then integrating from 0 to π completes the proof of He lemma.

Corollary 2.1 If the functions in the rlasses $S(E), C(E), S^{(2)}(E)$, and $P(E)$ hate the Faber arpansions, given by (1.25), then the Faber cocfficients, $\left\{A_{n}(f)\right\}_{n=0}^{\infty}$. are given by

$$
\begin{equation*}
A_{n}(f)=\frac{2^{n}}{2 K \sqrt{k_{0}}} \int_{0}^{\pi} f(\varphi(\cos \theta)) \cos n \theta d \theta, \quad(n=0,1,2, \cdots) \tag{2.7}
\end{equation*}
$$

Proof: Corollary 2.1 follows from the Lemma 2.1 and the relation (1.24), since $\varphi^{\prime}(0)=\frac{2 K \sqrt{\hbar_{0}}}{\pi}$.

In the next corollary we show that for functions in $S^{(2)}(E)$, the even Faber coelficients are 0.

Corollary 2.2 If $F(z) \in S^{(2)}(E)$ then $A_{2 n}(f)=0, \quad(n=0,1.2, \cdots)$.

Prool: From (2.7) we have

$$
A_{2 n}(f)=\frac{2^{2 n}}{2 \pi \sqrt{k_{0}}} \int_{0}^{\pi / 2}[f(\varphi(\cos \theta))+f(\varphi(-\cos \theta))] \cos 2 n \theta d \theta . \quad(n=0,1,2, \cdots)
$$

Thus $A_{2 n}(f)=0, \quad(n=0,1,2, \cdots)$, because both $f(z)$ and $\varphi(z)$ are odd functions.
Another representation formula for the Paber coefficients, $\left\{A_{n}(f)\right\}_{n=0}^{\infty}$, is given in the following corollary.

Corollary 2.3 With the same conditions as in the Corollary 2.1.

$$
\begin{equation*}
A_{n}(f)=\left.\frac{2^{2 n} n!}{2 K \sqrt{k_{0}}(2 n)!} \int_{0}^{\pi} \frac{d^{n}}{d x^{n}}(f(\varphi(x)))\right|_{x=\cos \theta} \sin ^{2 n} \theta d \theta, \quad(n=0,1,2, \cdots) \tag{2.8}
\end{equation*}
$$

Prool: Multiplying the identity

$$
\frac{\Phi_{n}(: n)}{\sqrt{1-x^{2}}}=\frac{(-1)^{n} 2^{1-n}}{1 \cdot 3 \cdots(2 n-1)} \frac{d^{n}}{d x^{n}}\left[\left(1-x^{2}\right)^{n-\frac{1}{2}}\right]
$$

[1, p. 785] by $f(\varphi(x))$ and then integrating from -1 to I we obtain

$$
\begin{equation*}
\int_{-1}^{1} \frac{\Phi_{n}(x)}{\sqrt{1-x^{2}}} f(\cdot p(x)) d x=\frac{(-1)^{n} 2^{1-n}}{1 \cdot 3 \cdots(2 n-1)} \int_{-1}^{1} \frac{d^{n}}{d \cdot x^{n}}\left[\left(1-x^{2}\right)^{n-\frac{1}{2}}\right] f(\varphi(x)) d x \tag{2.9}
\end{equation*}
$$

Integrating the right hand side of (2.9) ber parts results in

$$
\int_{-1}^{1} \frac{\Phi_{n}(: x)}{\sqrt{1-: r^{2}}} \int(\varphi(x)) d x=\frac{(-1)^{n-1} 2^{1-n}}{1 \cdot 3 \cdots(2 n-1)} \int_{-1}^{1} \frac{d^{n-1}}{d x^{n-1}}\left[\left(1-x^{2}\right)^{n-\frac{1}{2}}\right]\left(\int(\varphi(: r))\right)^{\prime} d x
$$

Continuing this process n-times yields

$$
\begin{equation*}
\int_{-1}^{1} \frac{\varphi_{n}(x)}{\sqrt{1-x^{2}}} f(\varphi(x)) d x=\frac{2^{1-n}}{1 \cdot 3 \cdots(2 n-1)} \int_{-1}^{1} \frac{d^{n}}{d x^{n}}(f(\varphi(x)))\left(1-x^{2}\right)^{n-\frac{1}{2}} d x \tag{2.10}
\end{equation*}
$$

The result follows from Corollary 2.1 by letiting $x=\cos 0$ in (2.10).
Theorem 2.1 If $k(z), c(z)$, and $p(z)$ are given by (2.I), (2.2), and (3.3), resportincly, then we have

$$
\begin{array}{ll}
\left|A_{0}(f)\right| \leq A_{0}(k), & l \in S \\
\left|A_{0}(f)\right| \leq A_{0}(c), & l \in C \\
\left|A_{0}(f)\right| \leq A_{0}(p), & f \in P \tag{2.13}
\end{array}
$$

Proof: From (2.7) we have

$$
A_{0}(f)=\frac{1}{2 K \sqrt{k_{0}}} \int_{0}^{\pi} f(\varphi(\cos \theta)) d \theta .
$$

Since $\varphi(z)$ is an odd function we may write

$$
\begin{equation*}
A_{0}(f)=\frac{1}{2 K \sqrt{k_{0}}} \int_{0}^{\pi / 2}[f(\varphi(\cos \theta))+f(-\varphi(\cos \theta))] d \theta . \tag{2.14}
\end{equation*}
$$

Substituting (1.1) into (2.14) yiclds

$$
A_{0}(f)=\frac{1}{K \sqrt{k_{0}}} \int_{0}^{\pi / 2}\left(\sum_{n=1}^{\infty} a_{2 n} \varphi^{2 n}(\cos \theta)\right) d \theta
$$

Thens

$$
\left|A_{0}(f)\right| \leq \frac{1}{\kappa \sqrt{k_{0}}} \int_{0}^{\pi / 2}\left(\sum_{n=1}^{\infty}\left|a_{2 n}\right| \varphi^{2 n}(\cos \theta)\right) d \theta
$$

since $\varphi(: x) \geq 0$ for $x \in[0,1]$. Hence (2.11) follows from the Bicberbach conjecture as

$$
\left|A_{0}(f)\right| \leq \frac{1}{K \sqrt{k_{0}}} \int_{0}^{\pi / 2}\left(\sum_{n=1}^{\infty} 2 n \varphi^{2 n}(\cos \theta)\right) d \theta=A_{0}(k)
$$

In a similar way, the proof of (2.12) follows from the coefficient estimate (1.7).
Substituting (1.5) into (2.14) gives

$$
A_{0}(f)=\frac{1}{\kappa \sqrt{k_{0}}} \int_{0}^{\pi / 2}\left[1+\sum_{n=1}^{\infty} b_{2 n} \varphi^{2 n}(\cos \theta)\right] d \theta
$$

Thus

$$
\begin{equation*}
\left|A_{0}(f)\right| \leq \frac{1}{\kappa \sqrt{k_{0}}} \int_{0}^{\pi / 2}\left[1+\sum_{n=1}^{\infty}\left|b_{2_{2}}\right| \varphi^{2 n}(\cos \theta)\right] d \theta \tag{2.15}
\end{equation*}
$$

since $\varphi(x) \geq 0$ for $x \in[0,1]$. Using the coefficient estimate (1.6) in (2.15) yidils (2.13) as

$$
\left|l_{0}(f)\right| \leq \frac{1}{K \sqrt{k_{0}}} \int_{0}^{\pi / 2}\left[1+2 \sum_{n=1}^{\infty} \varphi^{2 n}(\cos \theta)\right] d \theta=\Lambda_{0}(\rho) .
$$

 respectively, then

$$
\begin{align*}
& \left|A_{1}(f)\right| \leq A_{1}(h), \quad f \in S \tag{2.16}\\
& \left|A_{1}(f)\right| \leq A_{1}(c), \quad f \in C \tag{2.17}\\
& \left|A_{1}(f)\right| \leq A_{1}(p), \quad f \in P \tag{2.18}\\
& \left|A_{1}(f)\right| \leq A_{1}(o), \quad f \in S^{(2)} \tag{2.1!}
\end{align*}
$$

Proof: From (2.7) we have

$$
\begin{equation*}
A_{1}(f)=\frac{1}{K \sqrt{k_{0}}} \int_{0}^{\pi / 2}[f(\varphi(\cos \theta))-f(-\varphi(\cos \theta))] \cos \theta d \theta \tag{2.20}
\end{equation*}
$$

since $\varphi(x)$ is an odd function. Substituting (1.1) into (2.20) gives

$$
A_{1}(f)=\frac{2}{K \sqrt{k_{0}}} \int_{0}^{\pi / 2}\left[\varphi(\cos \theta)+\sum_{n=1}^{\infty} a_{2 n+1} \varphi^{2 n+1}(\cos \theta)\right] \cos \theta d \theta .
$$

Hence

$$
\left|A_{1}(f)\right| \leq \frac{2}{K \sqrt{k_{i 0}}} \int_{0}^{\pi / 2}\left[\varphi(\cos \theta)+\sum_{n=1}^{\infty}\left|a_{2 n+1}\right| \varphi^{2 n+1}(\cos \theta)\right] \cos \theta d \theta,
$$

since $\varphi(: x) \geq 0$ for $x \in[0,1]$. As in the proof of Theorem 2.1, inequalities (2.16) and (2.17) result from applying coefficient estimates (1.8) and (1.7), respectively. Similarly, if $f(z) \in P$ is given by (1.5) then

$$
\begin{equation*}
\left|A_{1}(f)\right| \leq \frac{2}{K \sqrt{k_{0}}} \int_{0}^{\pi / 2}\left[\varphi(\cos \theta)+\sum_{n=1}^{\infty}\left|b_{2 n+1}\right| \varphi^{2 n+1}(\cos \theta)\right] \cos \theta d \theta . \tag{2.21}
\end{equation*}
$$

since $p(x) \geq 0$ for $x \in[0,1]$. Hence using (1.6) in (2.21) results in (2.18).
For $f \in S^{(2)},(2.20)$ gives

$$
A_{1}(f)=\frac{2}{K \sqrt{k_{0}}} \int_{0}^{\pi / 2} f(\varphi(\cos \theta)) \cos \theta d \theta .
$$

Thus

$$
\begin{equation*}
A_{1}(f) \leq \frac{2}{\Pi \sqrt{k_{0}}} \int_{0}^{\pi / 2}|f(\varphi(\cos \theta))| \cos \theta d \theta . \tag{2.22}
\end{equation*}
$$

By the distortion theorem

$$
\begin{equation*}
|f(z)| \leq \frac{|z|}{1-|z|^{2}}, f \in S^{(2)} \tag{2.2:3}
\end{equation*}
$$

it follows from (2.22) that

$$
\left|A_{1}(f)\right| \leq \frac{1}{\Pi \sqrt{k_{0}}} \int_{0}^{\pi / 2} \frac{\varphi(\cos \theta)}{1-\varphi^{2}(\cos \theta)} \cos \theta d \theta=A_{1}(o)
$$

because $0 \leq \varphi(x)<1$ for $: r \in[0,1]$.
Remark: We can also oblain (2.16), (2.17), and (2.18) by applying (2.8) instead of (2.7), and moting that $\left.\varphi^{\prime}(x)\right|_{x=\cos \theta} \geq 0$, since $\varphi(x)$ is increasing for $: x \in[-1,1]$. Using $\varphi^{\prime}(\cos \theta) \geq 0$ for $\theta \in[0, \pi]$ and the distortion theorem,

$$
\left|f^{\prime}(z)\right| \leq \frac{1+|\xi|^{2}}{1-|z|^{2}}, \quad f \in S^{(2)}
$$

in (2.8) leads to (2.19).

Theorem 2.3 If $k(z), c(z)$, and $p(z)$ arc given by (2.1), (2.2), and (2.3), resperiowly. then

$$
\begin{array}{ll}
\left|A_{2}(f)\right| \leq A_{2}(k), & f \in S \\
\left|A_{2}(f)\right| \leq A_{2}(c), & f \in C^{\prime} \\
\left|A_{2}(f)\right| \leq A_{2}(p), & f \in I^{\prime} . \tag{2.26}
\end{array}
$$

Prool: From (2.7) we have

$$
A_{2}(f)=\frac{2}{\Pi \sqrt{k_{0}}} \int_{0}^{\pi} f(\varphi(\cos \theta)) \cos 2 \theta d \theta
$$

Then

$$
A_{2}(f)=\frac{2}{\kappa \sqrt{k_{0}}} \int_{0}^{\pi / 2}[f(\varphi(\cos \theta))+f(-\varphi(\cos \theta))] \cos 2 \theta d \theta
$$

Hence
$A_{2}(f)=\frac{2}{R \sqrt{k_{0}}} \int_{0}^{\pi / 4}\{[f(\varphi(\cos \theta))+f(-\varphi(\cos \theta))]-[f(\varphi(\sin \theta))+f(-\varphi(\sin \theta))]\} \cos \varphi \theta d \theta$.

Sulstituting (1.1) into (2.27) gives

$$
A_{2}(f)=\frac{4}{\Pi \sqrt{k_{0}}} \int_{0}^{\pi / 4}\left[\sum_{n=1}^{\infty} a_{2 n}\left(\varphi^{2 n}(\cos \theta)-\varphi^{2 n}(\sin \theta)\right)\right] \cos 2 \theta d \theta .
$$

Since $\varphi(x) \geq 0$ and $\varphi(x)$ is increasing for $x \in[0,1]$, we have

$$
\varphi^{2 n}(\cos \theta)-\varphi^{2 n}(\sin \theta) \geq 0, \quad(n=1,2,3, \cdots) \text { for } 0 \leq \theta \leq \frac{\pi}{1}
$$

Thus

$$
\begin{equation*}
\left|A_{2}(f)\right| \leq \frac{4}{\Lambda \sqrt{k_{0}}} \int_{0}^{\pi / 1}\left[\sum_{n=1}^{\infty}\left|\omega_{2 n}\right|\left(\varphi^{2 n}(\cos \theta)-\varphi^{2 n}(\sin \theta)\right)\right] \cos 2 \theta d \theta . \tag{2.28}
\end{equation*}
$$

Using (1.8) in (2.28) gives (2.24). In a similar way, (2.25) is oltanerl from the coefficient estimate (1.7). If $f(z) \in P$ is given by (1.5) then (2.26) follows from

$$
\left|L_{2}(f)\right| \leq \frac{1}{K \sqrt{k_{0}}} \int_{0}^{\pi / 4}\left[1+\sum_{n=1}^{\infty}\left|b_{2 n}\right|\left(\varphi^{2 n}(\cos \theta)-\varphi^{2 n}(\sin \theta)\right)\right] \cos 2 \theta d \theta
$$

by using the corfficient estimate (1.6).

Theorem 2.4 If $k(z), c(z)$, and $p(z)$ arr given by (3.1), (?.2), and (3.3), respertively. then for $n=0,1,2, \cdots$, we have

$$
\begin{equation*}
\left|A_{0}(f) \pm 2^{-2 n} A_{2 n}(f)\right| \leq A_{0}(k) \pm 2^{-2 n} A_{2 n}(k), \quad f \in S \tag{2.29}
\end{equation*}
$$

$$
\begin{equation*}
\left|A_{0}(f) \pm 2^{-2 n} A_{2 n}(f)\right| \leq A_{U}(c) \pm 2^{-2 n} A_{2 n}(c), \quad f \in C \tag{2.30}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|A_{0}(f) \pm 2^{-2 n} A_{2 n}(f)\right| \leq A_{0}(p) \pm 2^{-2 n} A_{2 n}(p), \quad f \in P . \tag{2.31}
\end{equation*}
$$

Proof: To prove (2.28) let $f \in S$ be given by (1.1) and consider

$$
I_{n}=\int_{0}^{\pi} f(\varphi(\cos \theta))(1 \pm \cos 2 n \theta) d \theta, \quad(n=0,1,2, \cdots)
$$

Then

$$
\begin{aligned}
I_{n} & =\int_{0}^{\pi / 2}[f(\varphi(\cos \theta))+f(-\varphi(\cos \theta))](1 \pm \cos 2 n \theta) d \theta \\
& =2 \int_{0}^{\pi / 2}\left[\sum_{m=1}^{\infty} a_{2 m} \varphi^{2 m}(\cos \theta)\right](1 \pm \cos 2 n \theta) d \theta
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left|I_{n}\right| \leq 2 \int_{0}^{\pi / 2}\left[\sum_{m=1}^{\infty}\left|a_{2 m}\right| \varphi^{2 m}(\cos \theta)\right](1 \pm \cos 2 n \theta) d \theta \tag{2.32}
\end{equation*}
$$

Hence (2.29) follows from (2.32) by using the coefficient estimate (1.8).
Incqualitios (2.30) and (2.31) may be proved in the same way by applying inequalities (1.7) and (1.6), respectively. Note that the case $n=0$ (with + sign) in Theorem 2.t yields Theorem 2.1.

Theorem $2.5 \mathrm{l} k \mathrm{k}(z), c(z), p(z)$, and o(z) are given by (2.1), (2.2), (2.3), and (2.1). respectively, then for $n=0,1,2, \cdots$, we have

$$
\begin{align*}
& \left|A_{1}(f) \pm 2^{-2 n-2} A_{2 n+1}(f) \pm 2^{-2 n} A_{2 n-1}(f)\right| \leq \\
& A_{1}(k) \pm 2^{-2 n-2} A_{2 n+1}(k) \pm 2^{-2 n} A_{2 n-1}(f), \quad f \in S^{\prime}, \tag{2.3:3}\\
& \left|A_{1}(f) \pm 2^{-2 n-2} A_{2 n+1}(f) \pm 2^{-2 n} A_{2 n-1}(f)\right| \leq \\
& \quad A_{1}(c) \pm 2^{-2 n-2} A_{2 n+1}(c) \pm 2^{-2 n} A_{2 n-1}(c), \quad f \in C^{\prime}, \tag{2.3.1}
\end{align*}
$$

$$
\begin{align*}
& \left|A_{1}(f) \pm 2^{-2 n-2} A_{2 n+1}(f) \pm 2^{-2 n} A_{2 n-1}(f)\right| \leq \\
& \quad A_{1}(p) \pm 2^{-2 n-2} A_{2 n+1}(p) \pm 2^{-2 n} A_{2 n-1}(p), \quad f \in P \tag{2.35}\\
& \left|A_{1}(f) \pm 2^{-2 n-2} A_{2 n+1}(f) \pm 2^{-2 n} A_{2 n-1}(f)\right| \leq \\
& A_{1}(o) \pm 2^{-2 n-2} A_{2 n+1}(o) \pm 2^{-2 n} A_{2 n-1}(o), \quad f \in S^{(2)} \tag{2.36}
\end{align*}
$$

where $A_{-1}(f)=0$.

Proof: Let $f \in S$ be given by (1.1) and consider

$$
L_{n}=\int_{0}^{\pi} f(\varphi(\cos \theta)) \cos \theta(1 \pm \cos 2 n \theta) d \theta .
$$

Then

$$
\begin{aligned}
L_{n} & =\int_{0}^{\pi / 2}[f(\varphi(\cos \theta))-f(-\varphi(\cos \theta))] \cos \theta(1 \pm \cos 2 n \theta) d \theta \\
& =2 \int_{0}^{\pi / 2}\left[\varphi(\cos \theta)+\sum_{m=1}^{\infty} a_{\left.2 m+1 \varphi^{2 m+1}(\cos \theta)\right] \cos \theta(1 \pm \cos 2 n \theta) d(\theta} .\right.
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left|L_{n}\right| \leq 2 \int_{0}^{\pi / 2}\left[\varphi(\cos \theta)+\sum_{m=1}^{\infty}\left|a_{2 m+1}\right| \varphi^{2 m+1}(\cos \theta)\right] \cos \theta(1 \pm \cos 2 n \theta) d \theta \tag{2.37}
\end{equation*}
$$

Using (1.8) in (2.37) yiclds (2.33).
In a similar way, (2.34) and (2.35) result from the inegualities (1.7) and (1.6). respectively:

If $f \in S^{(2)}$ then

$$
L_{n}=2 \int_{0}^{\pi / 2} f(\varphi(\cos \theta)) \cos \theta(1 \pm \cos 2 n \theta) d \theta
$$

Thus

$$
\begin{equation*}
\left|L_{n}\right| \leq 2 \int_{0}^{\pi / 2}|f(\varphi(\cos \theta))| \cos \theta(1 \pm \cos 2 n \theta) d \theta \tag{2.38}
\end{equation*}
$$

So (2.36) follows from (2.38), by using the distortion theorem (2.23).
Note that the case $n=0($ with + sign $)$ in Theorem 2.5 yields Theorem 2.2.

Theorem 2.6 If $k(z), c(z), p(z)$, and o(z) are given by (2.1), (2.2), (ㅇ.3), and (2.⿰亻) respectively. then for $n=0,1,2, \cdots$, we have

$$
\begin{aligned}
& \left|(2 n+1)^{2} A_{1}(f) \pm 2^{-2 n-1} A_{2 n+1}(f)\right| \leq(2 n+1)^{2} A_{1}(k) \pm 2^{-2 n-1} A_{2 n+1}(k), \quad l \in S \\
& \left|(2 n+1)^{2} A_{1}(f) \pm 2^{-2 n-1} A_{2 n+1}(f)\right| \leq(2 n+1)^{2} A_{1}(c) \pm 2^{-2 n-1} A_{2 n+1}(c), \quad f \in C \\
& \left|(2 n+1)^{2} A_{1}(f) \pm 2^{-2 n-1} A_{2 n+1}(f)\right| \leq(2 n+1)^{2} A_{1}(p) \pm 2^{-2 n-1} A_{2 n+1}(p), \quad f \in P \\
& \left|(2 n+1)^{2} A_{1}(f) \pm 2^{-2 n-1} A_{2 n+1}(f)\right| \leq(2 n+1)^{2} A_{1}(0) \pm 2^{-2 n-2} A_{2 n+1}(0), \quad f \in S^{(2)}
\end{aligned}
$$

Prool: Let

$$
M_{n}=\int_{0}^{\pi} f(\varphi(\cos \theta))\left[(2 n+1)^{2} \cos \theta \pm \cos (2 n+1) \theta\right] d \theta
$$

Then Theorem 2.6 is proved by using the argument of Theorem 2.3 and noting that

$$
(2 n+1)^{2} \cos \theta \pm \cos (2 n+1) \theta \geq 0, \quad \theta \in[0,2 \pi)
$$

We note that the case $n=0($ with + sign) in Theorem 2.6 gives Theorem 2.2.
Theorems 2.1, 2.2, 2.3, 2.4, 2.5, and 2.6 lead us to make the following conjectures:
Conjecture $2.1\left|A_{n}(f)\right| \leq A_{n}(k), \quad(n=0,1,2, \cdots), \quad f \in S$.

Conjecture 2.2 $\left|A_{n}(f)\right| \leq A_{n}(c), \quad(n=0,1,2, \cdots), \quad f \in C$.
Conjecture 2.3 $\left|A_{n}(f)\right| \leq A_{n}(p), \quad(n=0,1,2, \cdots), \quad f \in P$.
Conjecture $2.4\left|A_{n}(f)\right| \leq A_{n}(0), \quad(n=0,1,2, \cdots), \quad f \in S^{(2)}$.

CHAPTER 3. ON THE FABER COEFFICIENTS OF FUNCTIONS UNIVALENT IN AN ELLIPSE

In this chapter, we obtain sharp bounds for the Faber cooflicients $\left\{A_{n}\left(f^{\prime}\right)\right\}_{n=0}^{\infty}$ of functions $F^{\prime}(z)$ in the classes $C^{\prime}(E), 7^{\prime}(E)$, and $P(E)$. We also show that equality holds if and only if $f(z)=c(z), f(z)=k(z)$, and $f(z)=p(z)$, where $c(z), k(z)$, and $p(z)$ are given by (2.2), (2.1), and (2.3), respectively. Hence, in all three cases, extremal functions are mique unlike the analogues results lor the $\Delta(0,1)$. This shows that the Conjectures 2 and 3 made in Chapter 2 are true. In addition, we restate Conjechures I and 4 made in Chapter 2 explicitly by evaluating $A_{n}(k)$ and $A_{n}(o)$ where $k(z)$ is the Koebe function given by (2.1) and $o(z)$ is given by (2.1).

Main Results

Let \mathcal{F} denote one of the sets C, T, and P. Then \mathcal{F} is a compact sel. Hence the closed convex hull of $\mathcal{F}, \overline{\operatorname{Co}}(\mathcal{F})$, is also compact and since $A_{n}\left(f^{\circ}\right)$ is a continnous lincar functional

$$
M=\max _{f \in \overline{\mathrm{CO}}(\mathcal{F})}\left|A_{n}(f)\right|
$$

exists. In addition, we have

$$
\begin{equation*}
\max _{f \in \mathcal{F}}\left|A_{n}(f)\right|=\max _{\operatorname{exil}(\overline{\operatorname{Co}(\mathcal{F}))}}\left|A_{n}(f)\right| . \tag{3.1}
\end{equation*}
$$

Using (3.1) with Theorems 1.3, 1.4, and 1.2, we see that the problem of maximizing $\left|A_{n}(f)\right|$ over the classes $C^{\prime}, 7$, and P reduces to the problem of maximizing the values of $\left|A_{n}\left(c_{\theta}\right)\right|(0 \in[0,2 \pi)),\left|A_{n}\left(t_{\theta}\right)\right|(0 \in[0, \pi])$, and $\left|A_{n}\left(p_{\theta}\right)\right|(\theta \in[0,2 \pi))$ orer θ, respectively.

In the following incorems we evaluate the values of $A_{n}\left(c_{\theta}\right), A_{n}\left(t_{\theta}\right)$, and $A_{n}\left(p_{0}\right)$, where $A_{n}(f)$ is given by (2.7). We need to use different countours for different quadrants of θ. So each theorem includes one quadrant of θ.

Theorem 3.1 If $c_{\theta}(z)$ is given by (1.3) then
$A_{n}\left(r_{\theta}\right)=\frac{\pi^{2} e^{-i \theta}\left(e^{i n c(\theta)}-2^{-2 n} e^{-i n o(\theta)}\right)}{4 \pi^{2} \sqrt{k_{0}}\left(1-2^{-4 n}\right)\left(1+k_{0}^{2}-2 k_{0} \cos 2 \theta\right)^{1 / 2}}, 0 \leq \theta \leq \frac{\pi}{2}, \quad(n=0,1,2, \cdots)$
where $0 \leq o(\theta) \leq \frac{\pi}{2}$ is given by

$$
\varphi\left[\cos \left(\Omega(\theta)+\frac{\pi \tau}{4}\right)\right]=c^{-i \theta}, \quad 0 \leq 0 \leq \frac{\pi}{2} \text { with } \tau=\frac{4 i \ln 2}{\pi}
$$

Prool: 'The finnction cos z maps the rectangle R with vertices at the points $-\frac{\pi T}{I}$. $\pi-\frac{\pi \tau}{4}, \pi+\frac{\pi \tau}{4}$, and $\frac{\pi \tau}{4}$ onto E. Therefore the function $\varphi(\cos z)$ maps R onlo $\Delta(0.1)$ with

$$
\begin{equation*}
\varphi\left[\cos \left(c r(t)+\frac{\pi \tau}{4}\right)\right]=e^{-i t}, \quad 0 \leq t \leq \frac{\pi}{2} \tag{3.2}
\end{equation*}
$$

where $a(t)$ increases from 0 to $\frac{\pi}{2}$ as t increases from 0 to $\frac{\pi}{2}$.
Integrate the function $h(z)=c_{\theta}(\varphi(\cos z)) e^{i n z}$ over the parallelogram $A B(' D)$ with vertices at the points $-\pi, \pi, \pi \tau$, and $\pi \tau-2 \pi$, respectively. From (3.2) we ser that $a(\theta)+\frac{\pi \tau}{4}$ is a pole of $h(z)$ insite $A B C D$.

Let

$$
i K^{\prime}=K \tau
$$

and refer to $\operatorname{sn}\left(z ; \frac{1}{16}\right)$ as su z for convenience. Then

$$
\varphi(\cos (\pi \tau-z))=\sqrt{k_{0}} \sin \left(\frac{2 K}{\pi}\left(\frac{\pi}{2}-\pi \tau+z\right)\right)=\sqrt{k_{0}} \sin \left(\frac{2 K}{\pi}\left(\frac{\pi}{2}+z\right)\right)
$$

since sn z is doubly periodic with periods $2 i K^{\prime \prime}$ and $4 K$. Thus

$$
\begin{equation*}
\varphi(\cos z)=\varphi(\cos (-z))=\varphi(\cos (\pi \tau-z)) . \tag{3.3}
\end{equation*}
$$

It follows from (3.3) that $-\alpha(\theta)+\frac{3 \pi \tau}{4}$ is the other pole of $h(z)$ inside $A B C D$. So by the residue theorem

$$
\begin{equation*}
\oint_{A B C D} h(z) d z=2 \pi i\left(\operatorname{Res}_{\alpha(\theta)+\frac{\pi r}{4}}+\operatorname{Res}_{\left.-a(\theta)+\frac{3 \pi r}{4}\right)}\right) \tag{3.1}
\end{equation*}
$$

where Res $s_{z_{0}}$ denotes the residue of the function $h(z)$ at the point $z=z_{0}$.
The contribution of the integrals on $B C$ and $D A$ cancel each other becanse $h(=)$ is a periodic function with period 2π. Now

$$
\begin{equation*}
\int_{A B} h(z) d z=\int_{-\pi}^{\pi} h(x) d x=2 \int_{0}^{\pi} c_{\theta}(\varphi(\cos x)) \cos n x d x \tag{3.5}
\end{equation*}
$$

and

$$
\int_{C^{\prime} D} h(z) d z=\int_{2 \pi}^{0} h(x+\pi \tau-2 \pi) d x=-\int_{0}^{2 \pi} h(x+\pi \tau) d x
$$

From (3.3) we obtain

$$
\begin{equation*}
\int_{C D} h(z) d z=-\int_{0}^{2 \pi} e^{i n(x+\pi \tau)} c_{0}(\varphi(\cos x)) d x=2 \cdot 2^{-4 n} \int_{0}^{\pi} \operatorname{co}(\varphi(\cos x)) \cos n x d x \tag{i}
\end{equation*}
$$

Then adding (3.5) and (3.6) results in

$$
\begin{equation*}
\oint_{A B C D} h(z) d z=2\left(1-2^{-4 n}\right) \int_{0}^{\pi} c_{\theta}(\varphi(\cos x)) \cos n x d x \tag{3.7}
\end{equation*}
$$

To evaluate $\operatorname{Res}_{o(\theta)+\frac{\pi r}{4}}$, expand the function $c_{\theta}\left(\sqrt{k_{0}} \sin \left(u+u_{0}\right)\right)$ about $u=0$, where

$$
\begin{equation*}
u_{0}=\frac{2 K}{\pi}\left(\frac{\pi}{2}-\alpha(\theta)-\frac{\pi \tau}{4}\right) \tag{3.8}
\end{equation*}
$$

The addition formula for sn $u[8, p .33]$ yields

$$
\begin{equation*}
\sqrt{k_{0}} \sin \left(u+u_{0}\right)=\frac{\sqrt{k_{0}} \sin u \operatorname{cn} u_{0} \ln u_{0}+\sqrt{k_{0}} \sin u_{0} \operatorname{cou} u \ln u}{1-k_{0}^{2} \sin ^{2} u_{0} \sin ^{2} u} \tag{3.9}
\end{equation*}
$$

where $\mathrm{cn} z$ and $\mathrm{dn} z$ refer to $\mathrm{con}\left(z ; \frac{1}{16}\right)$ and $\mathrm{dn}\left(z ; \frac{1}{16}\right)$, respectively. It follows from (3.2) that

$$
\begin{equation*}
\sqrt{k_{0}} \sin u_{0}=e^{-i \theta}, \quad 0 \leq \theta \leq \frac{\pi}{2} . \tag{3.10}
\end{equation*}
$$

To craluate con u_{0} and du u_{0} employ the identities

$$
\begin{equation*}
\sin ^{2} z+\operatorname{cn}^{2} z=1 \quad[8, p \cdot 25] \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{0}^{2} \operatorname{snn}^{2} z+\mathrm{d} n^{2} z=1 \quad[8, p, 25] . \tag{3.12}
\end{equation*}
$$

To determine whether to use + or $-\operatorname{sign}$ for en u_{0} and din u_{0} check the signs of $\operatorname{Rc}\left\{\left(\operatorname{cn}\left(x-\frac{i K^{\prime}}{2}\right)\right\}\right.$ and $\operatorname{Rc}\left\{\operatorname{dn}\left(x-\frac{i K^{\prime}}{2}\right)\right\}$, respectively. Deduce from the addition formulas for $\mathrm{cn} u$ and dn u [$8, \mathrm{p} .34$]

$$
\mathrm{cn}\left(x-\frac{i K^{\prime}}{2}\right)=\sqrt{\frac{1+k_{0}}{k_{0}}} \frac{\mathrm{cn} x+i \operatorname{sn} x \ln x}{1+k_{0} \operatorname{sn}^{2}: r}
$$

and

$$
\ln \left(x-\frac{i k^{\prime}}{2}\right)=\frac{\sqrt{1+k_{0}}\left(\operatorname{dn} x+i k_{0} \sin x \operatorname{con} x\right)}{1+k_{0} \sin ^{2} x} .
$$

Thus $\operatorname{Re}\left\{\operatorname{cn}\left(x-\frac{i K^{\prime}}{2}\right)\right\} \geq 0$ and $\operatorname{Re}\left\{\operatorname{dn}\left(x-\frac{i K^{\prime}}{2}\right)\right\} \geq 0$ for $x \in\left[0, K^{\prime}\right]$ since cn x decreases from 1 to 0 and dn x decreases from 1 to $\sqrt{1-h_{0}^{2}}$ for $x \in[0, h]$. Hence
using (3.11) and (3.12) we obtain

$$
\operatorname{cn} u_{0}=\sqrt{1-\frac{e^{-2 i \theta}}{k_{0}}}
$$

and

$$
\operatorname{dn} u_{0}=\sqrt{1-k_{0} e^{-2 i \theta}}
$$

Choosing the principal branch as $-\pi<\arg z \leq \pi$ we obtain

$$
0 \leq \arg \left(c n n_{0}\right) \leq \frac{\pi}{2}
$$

and

$$
0 \leq \arg \left(\operatorname{dn} u_{0}\right) \leq \frac{\pi}{4}
$$

Therefore

$$
0 \leq \arg \left(\operatorname{cn} u_{0} \operatorname{dn} u_{0}\right) \leq \frac{3 \pi}{4}
$$

which implies

$$
\begin{equation*}
\sqrt{k_{0}} \operatorname{cn} u_{0} d u u_{0}=i \epsilon^{-i \theta}\left(1+k_{i 0}^{2}-2 k_{0} \cos 2 \theta\right)^{1 / 2} \tag{3.13}
\end{equation*}
$$

Using

$$
\begin{align*}
\operatorname{sun} u=u & -\frac{1}{3!}\left(1+k_{0}^{2}\right) u^{3}+\cdots \quad[8,1 \mathrm{p} .37] \tag{3.1.1}\\
\operatorname{cn} u & =1-\frac{1}{2!} u^{2}+\cdots \quad[8, \text { p.37] } \tag{3.15}\\
\operatorname{dn} u & =1-\frac{1}{2!} h_{0}^{2} u^{2}+\cdots \quad[8, \text { p.3T] }, \tag{3.16}
\end{align*}
$$

and (3.13) in (3.9) and doing necessary calculations result in

$$
\begin{equation*}
\sqrt{k_{0}} \operatorname{sn}\left(u+u_{0}\right)=\epsilon^{-i \theta}+i e^{-i \theta}\left(1+k_{0}^{2}-2 k_{0} \cos 2 \theta\right)^{1 / 2} u+\cdots . \tag{3.17}
\end{equation*}
$$

Thus

$$
c_{\theta}\left(\sqrt{k_{0}} \operatorname{sun}\left(u+u_{0}\right)\right)=\frac{i r^{-i \theta}}{\left(1+k_{0}^{2}-2 k_{0} \cos 2 \theta\right)^{1 / 2} u}+\cdots
$$

or

$$
c_{\theta}\left(\sqrt{k_{0}} \sin \left(\frac{2 K}{\pi}\left(\frac{\pi}{2}-z\right)\right)\right)=-\frac{\pi i e^{-i \theta}}{2 K\left(1+k_{0}^{2}-2 k_{0} \cos 2 \theta\right)^{1 / 2}\left(z-\alpha(\theta)-\frac{\pi r}{4}\right)}+\cdots
$$

Hence we oblain

$$
\begin{equation*}
\operatorname{Res}_{\alpha(\theta)+\frac{\pi r}{4}}=-\frac{\pi i e^{-i \theta \theta_{2}-n} e^{i n \alpha(\theta)}}{2 h\left(1+k_{0}^{2}-2 k_{0} \cos 2 \theta\right)^{1 / 2}} . \tag{3.18}
\end{equation*}
$$

In a similar way, residue of $h(z)$ at the point $-a(\theta)+\frac{3 \pi \tau}{4}$ may be obtained as

$$
\begin{equation*}
\operatorname{Res}_{-\alpha(\theta)+\frac{3 \pi r}{4}}=\frac{\pi i e^{-i \theta_{2}-3 n} e^{-i n \alpha(\theta)}}{2 K\left(1+k_{0}^{2}-2 k_{0} \cos 2 \theta\right)^{1 / 2}} \tag{3.1!}
\end{equation*}
$$

Substituting (3.18) and (3.19) into (3.1) yields

$$
\begin{equation*}
\oint_{A B C D} h(z) d z=\frac{\pi^{2} e^{-i \theta_{0}} 2^{-n}}{\Lambda\left(1+k_{0}^{2}-2 k_{0} \cos 2 \theta\right)^{1 / 2}}\left(\epsilon^{i n \alpha(\theta)}-2^{-2 n} e^{-i n o(\theta)}\right) \tag{3.20}
\end{equation*}
$$

Comparing (3.7) and (3.20) gives the desired result.
For θ in other quadrants, proofs are similar to the proof of Theorem 3.1. Therefore we will state the theorems and then in the proofs indicate only the integration countours and poles of $h(z)$ inside the comintours.

Theorem 3.2 If $c_{0}(z)$ is given by (1.3) then
$A_{n}\left(c_{\theta}\right)=\frac{(-1)^{n} \pi^{2} e^{-i \theta}\left(e^{-i n c(\pi-\theta)}-2^{-2 n} e^{i n \alpha(\pi-\theta)}\right)}{4 k^{2} \sqrt{k_{0}}\left(1-2^{-1 n}\right)\left(1+k_{0}^{2}-2 k_{0} \cos 2 \theta\right)^{1 / 2}}, \quad \frac{\pi}{2} \leq \theta \leq \pi, \quad(n=0,1,2, \cdots)$, where $n(\theta)$ is as in Throrem 3.1.

Prool: Integrate the function $h(z)=c_{0}(\varphi(\cos z)) e^{i n z}$ over the parallelogram $A B C \cdot D$ with vertices at the points $0,2 \pi, 3 \pi+\pi \tau, \pi+\pi \tau$. Inside $A B C D$ there are two poles of $h(z)$ at the points $\pi-a(\pi-\theta)+\frac{\pi \tau}{4}$ and $\pi+a(\pi-\theta)+\frac{3 \pi \tau}{4}$.

Theorem 3.3 If $c_{\theta}(z)$ is given by (1.3) then
$A_{n}\left(c_{\theta}\right)=\frac{(-1)^{n} \pi^{2} e^{-i \theta}\left(e^{i n \alpha(\theta-\pi)}-2^{-2 n} e^{-i n c(\theta-\pi)}\right)}{4 k^{-2} \sqrt{k_{0}}\left(1-2^{-4 n}\right)\left(1+k_{0}^{2}-2 k_{0} \cos 2 \theta\right)^{1 / 2}}, \quad \pi \leq \theta \leq \frac{3 \pi}{2}, \quad(n=0,1,2, \cdots)$, where $\alpha(\theta)$ is as in Theorem 3.1.

Proof: Integrate the function $h(z)=c_{\theta}(\varphi(\cos z)) e^{i n z}$ over the parallelogram $A B C \cdot D$ with vertices at the points $0,2 \pi, 3 \pi-\pi \tau$, and $\pi-\pi \tau$. luside $A B C D$, there are two poles of $h(\dot{i})$ at the points $\pi-\alpha(\theta-\pi)-\frac{\pi \tau}{4}$ and $\pi+n(\theta-\pi)-\frac{3 \pi \tau}{4}$.

Theorem 3.4 If $c_{\theta}(: 氵)$ is given by (1.3) then
$A_{n}\left(c_{\theta}\right)=\frac{\pi^{2} e^{-i \theta}\left(e^{-i n o(2 \pi-\theta)}-2^{-2 n} e^{i n c(2 \pi-\theta)}\right)}{4 \pi^{-2} \sqrt{k_{0}}\left(1-2^{-4 n}\right)\left(1+k_{0}^{2}-2 k_{0} \cos 2 \theta\right)^{1 / 2}}, \quad \frac{3 \pi}{2} \leq \theta<2 \pi, \quad(n=0,1,2, \cdots)$, where a(θ) are is in Throrem 3.1.

I'rool: Integrate the function $h(z)=c_{\theta}(\varphi(\cos z)) e^{i n z}$ over the parallelogran $A B C D$ with vertices at the points $-\pi, \pi,-\pi \tau$, and $-2 \pi-\pi \pi$. Two poles of $h(z)$ occur at the points $\alpha(2 \pi-\theta)-\frac{\pi \tau}{4}$ and $-\alpha(2 \pi-\theta)-\frac{3 \pi \tau}{4}$.

Theorem 3.5 If $p_{\theta}(z)$ is given by (1.2) then

$$
A_{n}\left(p_{\theta}\right)=2 A_{n}\left(r_{\theta}\right), \quad 0 \leq \theta<2 \pi, \quad(n=0,1,2, \cdots)
$$

The proof is similar to the proofs of Theorems 3.1-3.4.
Since the function

$$
t_{\theta}(z)=\frac{\tilde{z}}{1-2 z \cos \theta+z^{2}}, \quad 0 \leq \theta \leq \pi
$$

has a double pole at $\theta=0$ we will treat this case separately. (Note that for $\theta=0$, $t_{\theta}(z)$ becomes the Koebe function.)

Theorem 3.6 If $k(z)$ is given by (2.1) then

$$
A_{n}(k)=\frac{\pi^{3} n}{8 R^{3} \sqrt{k_{0}}\left(1-k_{0}\right)^{2}\left(1-2^{-2 n}\right)}, \quad(n=1,2, \cdots)
$$

Proof: Iutegrate the function $h(z)=k(\varphi(\cos z)) e^{\text {inz }}$ over the countour used in the proof of Theorem 3.1. Inside the parallelogram $A B C D$, there are two double poles of $h(z)$ at the points $\frac{\pi \tau}{4}$ and $\frac{3 \pi \tau}{4}$. So by the residue theorem

$$
\begin{equation*}
\oint_{A B C D} h(z) d z=2 \pi i\left(\operatorname{Res}_{\frac{\pi r}{4}}+\operatorname{Res}_{\frac{3 \pi r}{4}}\right) \tag{3.21}
\end{equation*}
$$

As in Theorem 3.1,

$$
\begin{equation*}
\oint_{A B C D} h(z) d z=2\left(1-2^{-4 n}\right) \int_{0}^{\pi} k(\varphi(\cos x)) \cos n x d x \tag{3.22}
\end{equation*}
$$

To lind Res $\frac{\pi r}{4}$ expand $k\left(\sqrt{k_{0}} \operatorname{sn}\left(u+K-\frac{i K^{\prime}}{2}\right)\right)$ about $u=0$. Doing necessary calculations we obtain

$$
\begin{equation*}
k\left(\sqrt{k_{0}} \sin \left(\frac{2 K}{\pi}\left(\frac{\pi}{2}-z\right)\right)\right)=-\frac{\pi^{2}}{4 K^{2}\left(1-k_{0}\right)^{2}\left(z-\frac{\pi r}{4}\right)^{2}}+\frac{0}{\left(z-\frac{\pi r}{4}\right)}+\cdots \tag{3.23}
\end{equation*}
$$

Writing

$$
\begin{equation*}
e^{i n z}=2^{-n} e^{i n\left(z-\frac{\pi r}{4}\right)}=2^{-n}\left[1+i n\left(z-\frac{\pi \tau}{t}\right)+\cdots\right] \tag{3.21}
\end{equation*}
$$

and multiplying (3.23) by (3.24) yields

$$
\begin{equation*}
\operatorname{Res}_{\frac{\pi r}{4}}=-2^{-n} i n \frac{\pi^{2}}{4 R^{2}\left(1-k_{(1)}\right)^{2}} \tag{3.25}
\end{equation*}
$$

In a similar way, residue of $h(z)$ at $z=\frac{3 \pi \tau}{4}$ is olbtained as

$$
\begin{equation*}
\operatorname{Res}_{\frac{3 \pi r}{4}}=-2^{-3 n} i n \frac{\pi^{2}}{4 \pi^{2}\left(1-h_{0}\right)^{2}} \tag{3.26}
\end{equation*}
$$

Substituting (3.25) and (3.26) into (3.21) yichds

$$
\begin{equation*}
\oint_{A B C D} h(z) d z=\frac{\pi^{3} n 2^{-n}\left(1+2^{-2 n}\right)}{2 K^{2}\left(1-k_{0}\right)^{2}} \tag{3.2.3}
\end{equation*}
$$

Equating (3.22) and (3.27) and solving for $A_{n}(k)$ gives the desired result.

Theorem 3.7 If $t_{0}(z)$ is given by (1.4) then
$A_{n}\left(t_{\theta}\right)=\frac{\pi^{2} \sin n \alpha(\theta)}{4 k^{2} \sqrt{k_{0}}\left(1-2^{-2 n}\right) \sin \theta\left(1+k_{0}^{2}-2 k_{0} \cos 2 \theta\right)^{1 / 2}}, \quad 0<\theta \leq \frac{\pi}{2}, \quad(n=1,2, \cdots)$ wher $a(\theta)$ is as in Theorem 3.1.

Prool: lntegrate the function $h(z)=t_{0}(\varphi(\cos z)) \epsilon^{i n z}$ over the rectangle $P Q R S$ with vertices at the points $-\pi, \pi,-\pi+\pi \tau$, and $-\pi+\pi \tau$. The poles of $h(z)$ occur at the points z for which

$$
\begin{equation*}
\varphi(\cos z)=e^{-i \theta}, \quad 0<\theta \leq \frac{\pi}{2} \tag{3.28}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi(\cos z)=e^{i \theta}, \quad 0<\theta \leq \frac{\pi}{2} \tag{3.29}
\end{equation*}
$$

We found in Theorem 3.1 that solutions of (3.28) inside $P Q R S$ are $\alpha(\theta)+\frac{\pi T}{4}$ and $-n(\theta)+\frac{3 \pi \tau}{4}$. Similarly, solutions of (3.29) inside $P Q R S^{\prime}$ are found to be $-n(\theta)+\frac{\pi \tau}{4}$ and $a(\theta)+\frac{3 \pi \tau}{4}$. So by the residue theorem

$$
\begin{equation*}
\oint_{\Gamma Q R S} h(z) d z=2 \pi i\left(\operatorname{Res}_{\alpha(\theta)}+\frac{\pi r}{4}+\operatorname{Res}_{-\alpha(\theta)+\frac{3 \pi r}{4}}+\operatorname{Res}_{-\alpha(\theta)+\frac{\pi r}{4}}+\operatorname{Res}_{\alpha(\theta)+\frac{3 \pi r}{4}}\right) . \tag{3.30}
\end{equation*}
$$

By periodicity of $h(z)$ integrals over $Q R$ and $S P$ cancel each other. We have

$$
\begin{equation*}
\int_{\Gamma Q} h(z) d z=2 \int_{0}^{\pi} t_{A}(\varphi(\cos x)) \cos n x d x \tag{3.31}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{R S} h(z) d z=\int_{\pi}^{-\pi} t_{\theta}(\varphi(\cos (: x+\pi \tau))) e^{i n(\cdot+\pi r)} d x . \tag{3.32}
\end{equation*}
$$

Using (3.3) in (3.32) gives

$$
\begin{equation*}
\int_{R S} h(z) d z=-2 \cdot 2^{-4 n} \int_{0}^{\pi} l_{\theta}(\varphi(\cos x)) \cos n x d x \tag{3.3.3:3}
\end{equation*}
$$

Adding (3.31) and (3.33) yields

$$
\begin{equation*}
\oint_{P Q R S} h(z) d z=2\left(1-2^{-4 n}\right) \int_{0}^{\pi} t_{\theta}(\varphi(\cos x)) \cos n x d x \tag{3.3.1}
\end{equation*}
$$

It follows from (3.17)

$$
t_{\theta}\left(\sqrt{k_{0}} \sin \left(u+u_{0}\right)\right)=\frac{1}{2 \sin \theta\left(1+k_{0}^{2}-2 k_{0} \cos 2 \theta\right)^{1 / 2}}+\cdots
$$

where u_{0} is given by (3.8). Hence

$$
\begin{equation*}
\operatorname{Res}_{\alpha(\theta)+\frac{\pi r}{4}}=-\frac{\pi 2^{-n} e^{i n \alpha(\theta)}}{4 K^{\prime} \sin \theta\left(1+k_{0}^{2}-2 k_{0} \cos 2 \theta\right)^{1 / 2}} \tag{3.35}
\end{equation*}
$$

To find $\operatorname{Res}_{-\alpha(\theta)+\frac{3 \pi r}{4}} \operatorname{expand}$ the function $t_{\theta}\left(\sqrt{k_{0}} \sin \left(v+v_{0}\right)\right)$ about $v=0$, where

$$
v_{0}=\frac{2 K}{\pi}\left(\frac{\pi}{2}+a(\theta)-\frac{3 \pi \tau}{4}\right)
$$

The addition formula for the Jacobi elliptic sine function gives

$$
\begin{equation*}
\sqrt{k_{0}} \sin \left(v+v_{0}\right)=\frac{\sqrt{k_{0}}\left(\sin v \operatorname{con} v_{0} d n v_{0}+\sin v_{0} \operatorname{cnv} v \ln v\right)}{1-h_{0}^{2} \sin ^{2} v_{0} \sin ^{2} v^{\prime}} . \tag{3.36}
\end{equation*}
$$

We have

$$
\sqrt{t_{0}} \sin c_{0}=\epsilon^{i \theta}, \quad 0<\theta \leq \frac{\pi}{2}
$$

By using addition formulas for co u and dn u we can easily show that

$$
\operatorname{Re}\left\{\operatorname{cn}\left(x-\frac{3 i K^{\prime \prime}}{2}\right)\right\} \geq 0
$$

and

$$
\operatorname{Re}\left\{\ln \left(x-\frac{3 i K^{\prime}}{2}\right)\right\} \leq 0
$$

for $K<x \leq 2 k$. Hence it follows from (3.11) and (3.12) that

$$
\operatorname{cn} v_{0}=\sqrt{1-\frac{e^{-2 i \theta}}{k_{0}}}
$$

and

$$
\operatorname{dn} v_{0}=-\sqrt{1-k_{0} c^{-2 i \theta}}
$$

Therefore (3.13) results in

$$
\begin{equation*}
\sqrt{k_{0}} \cos v_{0} \text { du } v_{0}=-i e^{-i \theta}\left(1+k_{0}^{2}-2 k_{0} \cos 2 \theta\right)^{1 / 2} \tag{3.37}
\end{equation*}
$$

Using (3.11), (3.15), (3.16), and (3.37) in (3.36) and doing some manipulation gives

$$
\sqrt{k_{0}} \sin \left(v+v_{0}\right)=e^{-i \theta}-i e^{-i \theta}\left(1+k_{0}^{2}-2 k_{0} \cos 2 \theta\right)^{1 / 2} v+\cdots .
$$

Thus

$$
t_{\theta}\left(\sqrt{k_{0}} \sin \left(v+v_{0}\right)\right)=-\frac{1}{2 \sin \theta\left(1+k_{0}^{2}-2 k_{v} \cos 2 \theta\right)^{1 / 2} v}+\cdots
$$

As a result.

$$
\begin{equation*}
\operatorname{Res}_{-\alpha(\theta)+\frac{3 \pi r}{4}}=\frac{\pi 2^{-3 n} c^{-i n c(\theta)}}{4 K \sin \theta\left(1+k_{0}^{2}-2 k_{u} \cos 2 \theta\right)^{1 / 2}} \tag{3.3:}
\end{equation*}
$$

Choosing a prinsipal branch we obtain

$$
\begin{equation*}
\sqrt{k_{0}-\varepsilon^{2 i \theta}} \sqrt{1-k_{0} e^{2 i \theta}}=-i^{i \theta}\left(1+k_{0}^{2}-2 k_{0} \cos 2 \theta\right): r^{1 / 2} \tag{3.39}
\end{equation*}
$$

Then using the above argument with (3.39) gives

$$
\begin{equation*}
R \epsilon s_{-\alpha(\theta)+\frac{\pi r}{4}}=\frac{\pi 2^{-n} \epsilon^{-i n \alpha(\theta)}}{4 K \sin \theta\left(1+k_{0}^{2}-2 k_{0} \cos 2 \theta\right)^{1 / 2}} \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Res}_{-i(\theta)+\frac{3 \pi r}{4}}=-\frac{\pi 2^{-3 n} e^{i n c(\theta)}}{4 K^{\sin } \theta\left(1+k_{0}^{2}-2 k_{0} \cos 2 \theta\right)^{1 / 2}} \tag{3.41}
\end{equation*}
$$

Substituting (3.35), (3.38), (3.40), and 3.41) into (3.30) yields

$$
\begin{equation*}
\oint_{P Q R S} h(z) d z=\frac{\pi^{2} 2^{-n}\left(1+2^{-2 n}\right) \sin n o(\theta)}{K \sin \theta\left(1+k_{0}^{2}-2 k_{0} \cos 2 \theta\right)^{1 / 2}} \tag{3.+2}
\end{equation*}
$$

Equating (3.3-4) and (3.42) gives the desired result.

Theorem 3.8 If $\mathrm{l}_{\theta}(z)$ is given by (9.1) then

$$
A_{n}\left(t_{\theta}\right)=\frac{(-1)^{n-1} \pi^{2} \sin n[\alpha(\pi-\theta)]}{K \sin \theta\left(1+k_{0}^{2}-2 k_{0} \cos 2 \theta\right)^{1 / 2}}, \quad \frac{\pi}{2} \leq \theta \leq \pi, \quad(n=1,2, \cdots)
$$

where $\mathrm{a}(\theta)$ is as in Theorem 3.1.

Proof: Similar to the proof of Theorem 3.7.
In the following three theorems we obtain sharp bounds for the Faber coefficients of lunctions in the classes $C^{\prime}(E), P^{\prime}\left(E^{\prime}\right)$, and $T^{\prime}\left(E^{\prime}\right)$. We first need the following two lemmas:

Lemma 3.1 If $\cap(\theta)$ is given by (3.2) then $\alpha^{\prime}(\theta)$ decreases as θ increases from 0 to $\pi / 2$.

Lemma 3.2 If $\mathrm{a}(\theta)$ is given by (3.2) then

$$
\frac{|\sin n \sigma(\theta)|}{\sin \theta} \leq \frac{\pi n}{2 K\left(1-k_{0}\right)}, \quad 0 \leq 0 \leq \frac{\pi}{2} .
$$

Proof of Lemma 3.1: We have from (3.2)

$$
\frac{2 K}{\pi}\left(\frac{\pi}{2}-\alpha(\theta)-\frac{\pi \tau}{4}\right)=\operatorname{su}^{-1}\left(\frac{\epsilon^{-i \theta}}{\sqrt{k_{0}}}\right)=\int_{0}^{\varepsilon^{-i \theta} / \sqrt{k_{0}}} \frac{d t}{\sqrt{1-t^{2}} \sqrt{1-k_{0}^{2} t^{2}}}
$$

Hence we obtain

$$
\alpha^{\prime}(\theta)=\frac{i e^{-i \theta}}{\sqrt{k_{0}}} \frac{\pi}{2 \pi} \frac{1}{\sqrt{1-\frac{e^{-2 i \theta}}{k_{0}}} \sqrt{1-k_{0} e^{-2 i \theta}}}
$$

Thus it follows from (3.13) that

$$
\alpha^{\prime}(\theta)=\frac{\pi}{2 k\left[\left(1-k_{0}\right)^{2}+4 k_{0} \sin ^{2} \theta\right]^{1 / 2}}, \quad 0 \leq 0 \leq \frac{\pi}{2}
$$

Hence

$$
\alpha^{\prime \prime}(\theta)=-\frac{2 k_{u} \pi \sin 2 \theta}{k^{\prime}\left[\left(1-k_{0}\right)^{2}+4 k_{u} \sin ^{2} \theta\right]^{3 / 2}} \leq 0
$$

since $0 \leq \theta \leq \frac{\pi}{2}$, and Lemma 3.1 follows.
Proof of Lemma 3.2: Let

$$
g(\theta)=\alpha^{\prime}(0) \sin \theta-\sin \alpha(\theta), \quad 0 \leq \theta \leq \frac{\pi}{2}
$$

1t. follows from Lemma 1

$$
\begin{equation*}
g^{\prime}(\theta)=\alpha^{\prime}(0) \cos \theta-\alpha^{\prime}(\theta) \cos a(\theta) \geq \alpha^{\prime}(0)(\cos \theta-\cos \sigma(\theta)) . \tag{3.13}
\end{equation*}
$$

Since $\alpha(\theta)$ increases from 0 to $\frac{\pi}{2}$ as θ increases from 0 to $\frac{\pi}{2}$ and $\alpha^{\prime}(\theta)$ decreases as θ increases from 0 to $\frac{\pi}{2}$ we have

$$
\begin{equation*}
\alpha(\theta) \geq \theta, \quad 0 \leq \theta \leq \pi / 2 . \tag{3.41}
\end{equation*}
$$

Thus it follows from (3.43) and (3.44) that $g^{\prime}(\theta) \geq 0$, i.e.

$$
\begin{equation*}
\frac{\sin n(\theta)}{\sin \theta} \leq \alpha^{\prime}(0)=\frac{\pi}{2 \pi\left(1-k_{0}\right)} \tag{3.45}
\end{equation*}
$$

Hence (3.45) yields

$$
\frac{|\sin n a(\theta)|}{\sin \theta}=\frac{|\sin n a(\theta)| \sin a(\theta)}{\sin a(\theta)} \frac{\sin \theta}{\sin \left(1-l_{i n}\right)}
$$

which completes the proof of Lemma 2.
Theorem 3.9 If $\cdot(z)=c_{0}(z)=\frac{z}{1-z}$ and $f \in C^{\prime}$, then

$$
\left|A_{n}(f)\right| \leq A_{n}(c)=\frac{\pi^{2}}{4 K^{2} \sqrt{h_{0}}\left(1-h_{0}\right)\left(1+2^{-2 n}\right)}, \quad(n=0,1, \therefore \cdots) .
$$

Prool: Using (3.1) with $\mathcal{F}=C$ and Theorem 1.3 it is enough to show that

$$
\max _{0 \leq \theta<2 \pi}\left|A_{n}\left(c_{\theta}\right)\right|=A_{n}(c) .
$$

We will give the proof for only $\theta \in\left[0, \frac{\pi}{2}\right]$. For other values of θ proofs may be given by using either Theorem 3.2 or Theorem 3.3 or Theorem 3.4 depending on the quadrant of 0 . Using Theorem 3.1 it suffices to show

$$
\frac{\left(1-2^{-2 n}\right)^{2}+4 \cdot 2^{-2 n} \sin ^{2} n c r(\theta)}{\left(1-k_{0}\right)^{2}+4 k_{0} \sin ^{2} \theta} \leq \frac{\left(1-2^{-2 n}\right)^{2}}{\left(1-k_{0}\right)^{2}}
$$

or equivaleutly

$$
\begin{equation*}
\frac{\sin ^{2} n o(\theta)}{\sin ^{2} \theta} \leq \frac{k_{0} 0^{2 n}\left(1-2^{-2 n}\right)^{2}}{\left(1-k_{0}\right)^{2}}, \quad(n=1,2, \cdots) . \tag{3.16}
\end{equation*}
$$

11. Follows from Lemma 3.2 that

$$
\frac{\sin ^{2} n a(\theta)}{\sin ^{2} \theta} \leq \frac{\pi^{2} n^{2}}{4 \pi^{2}\left(1-k_{0}\right)^{2}}, \quad(n=1,2, \cdots)
$$

Thus the proof is completed if we show

$$
\frac{\pi^{2} n^{2}}{4 K^{2}\left(1-k_{0}\right)^{2}} \leq \frac{k_{0} 2^{2 n}\left(1-2^{-2 n}\right)^{2}}{\left(1-k_{0}\right)^{2}}, \quad(n=1,2, \cdots)
$$

or

$$
\frac{\pi}{2 K \sqrt{k_{0}}} \leq \frac{2^{n}\left(1-2^{-2 n}\right)}{n}, \quad(n=1,2, \cdots)
$$

The seguence $\left\{\frac{2^{n}\left(1-2^{-2 n}\right)}{n}\right\}_{n=1}^{\infty}$ is an increasing sequence. Hence

$$
\frac{2^{n}\left(1-2^{-2 n}\right)}{n} \geq \frac{3}{2}>\frac{\pi}{2 \pi \sqrt{k_{u}}}, \quad(n=1,2, \cdots)
$$

which completes the proof for $n=1,2, \cdots$. We may include $n=0$ since (3.16) holds drivially in this case.

Theorem 3.10 If $p(z)=p_{0}(z)=\frac{1+z}{1-z}$ and $l \in P$, then

$$
\left|A_{n}(f)\right| \leq A_{n}(p)=2 A_{n}(c), \quad(n=0,1,2, \cdots)
$$

Proof: Using (3.1) with $\mathcal{F}=P$ and Theorem 1.2 it suffices to show that.

$$
\max _{u \leq 0<2 \pi}\left|A_{n}\left(p_{\theta}\right)\right|=A_{n}\left(p_{0}\right)=A_{n}(p)
$$

Hence Theorem 3.10 follows from Theorems 3.5 and 3.9 .

Theorem 3.11 If $k(z)$ is the Liocbe function and $f \in T$, then

$$
\left|A_{n}\left(f^{\prime}\right)\right| \leq A_{n}(k)=\frac{\pi^{3} n}{8 \kappa^{3} \sqrt{k_{01}}\left(1-k_{10}\right)^{2}\left(1-2^{-2 n}\right)}, \quad(n=1,2, \cdots)
$$

(Nole the proof for $n=0$ is given in Throrem 9.0.)

Proof: Ising (3.1) with $\mathcal{F}=T$ and Theorem 1.4 it is enough to show that

$$
\max _{0 \leq \theta \leq \pi}\left|A_{n}\left(t_{\theta}\right)\right|=A_{n}\left(t_{0}\right)=A_{n}\left(t_{i}\right)
$$

We obtain from Theorem 3.7 and Lemma 3.2

$$
\begin{aligned}
\left|\cdot 1_{n}\left(t_{\theta}\right)\right| & \leq \frac{\pi^{3} n}{8 h^{3} \sqrt{k_{0}}\left(1-k_{0}\right)\left(1-2^{-2 n}\right)\left(1+k_{0}^{2}-2 k_{0} \cos 2 \theta\right)^{1 / 2}}, 0<\theta \leq \frac{\pi}{2} \\
& \leq \frac{\pi^{3} n}{8 k^{3} \sqrt{k_{0}}\left(1-k_{0}\right)^{2}\left(1-2^{-2 n}\right)}
\end{aligned}
$$

Hence

$$
\left|A_{n}\left(t_{\theta}\right)\right| \leq A_{n}(k), \quad 0<0 \leq \frac{\pi}{2} .
$$

Proof for $\frac{\pi}{2} \leq \theta \leq \pi$ follows from Theorem 3.8 in the same way.
Note that here we also showed that

$$
\lim _{\theta \rightarrow 0} A_{n}\left(t_{\theta}\right)=A_{n}\left(k^{\prime}\right)
$$

Theorems 3.9 and 3.10 show that Conjectures 2 and 3 made in Chapter 2 are trine. 'Theorem 3.6 implies that Conjecture 1 may be writien explicilly as

$$
\left|A_{n}(f)\right| \leq \frac{\pi^{3} n}{8 \pi^{3} \sqrt{k_{0}}\left(1-k_{0}\right)^{2}\left(1-2^{-2 n}\right)}, \quad(n=1,2, \cdots), \quad f \in S
$$

and

$$
A_{U}(f) \leq A_{0}(k)=10.5984, \quad f \in S
$$

Prool of this conjecture for the cases $n=0,1,2$ are given in 'Theorems 2.1, 2.2, and 2.3. respectively.

To replace Conjecture t by an explicit conjecture we calnate $A_{n}(0)$ where o($(=)$ is given by (2.1).

Theorem 3.12 I/ o(z) is given by (2.f), then

$$
A_{2 n-1}(o)=\frac{\pi^{2}}{4 K^{2} \sqrt{k_{i 0}}\left(1-k_{0}\right)\left(1+2^{-4 n+2}\right)}, \quad(n=1,2, \cdots)
$$

(Notr we showed in Corollary g.e that if $f \in S^{(2)}$ then $A_{2 n}(f)=0$.)

Proof: Integrate the function $h(z)=o(\varphi(\cos z)) e^{i n z}$ over the parallelogrann with vertices at the points $\pi-\frac{\pi \tau}{2}, 3 \pi-\frac{\pi \tau}{2}, \pi+\frac{\pi \tau}{2}$, and $-\pi+\frac{\pi \tau}{2}$. Inside the parallelogram, there are four poles of $h(B)$ at the points $\frac{\pi \tau}{4}, \pi+\frac{\pi T}{4}, \pi-\frac{\pi \tau}{4}$ and $2 \pi-\frac{\pi \tau}{4}$. The rest. of the proof is similar to the proof of the Theorem 3.7.

Wi now restate Conjecture 4 as follows:
If $f \in S^{(2)}$ then

$$
\left|\cdot i_{2 n-1}(f)\right| \leq \frac{\pi^{2}}{4 k^{2} \sqrt{k_{0}}\left(1-k_{0}\right)\left(1+2^{-4 n+2}\right)}, \quad(n=1,2, \cdots)
$$

Note that the proof of this conjecture for $n=1$ is given in Theorem 2.2 .

CHAPTER 4. CONCLUSION

Summary

In (hapter 2 , we fomd sharp bommd for the Faber coefficients A_{0}, A_{1}, and A_{2} of finctions $F^{\prime}(z)$ in the classes $S^{\prime}(E), C^{\prime}(E)$, and $P^{\prime}\left(E^{\prime}\right)$. We also fomud a sharp bound for the Paber coefficient A_{1} of functions $F(z)$ in the class $S^{(2)}(E)$. In addition, we obtained sharp bounds for certain linear combinations of the Faber coefficients of finuctions $P^{\prime}(z)$ in the classes $S^{\prime}\left(E^{\prime}\right), C^{\prime}\left(E^{\prime}\right), P(E)$, and $S^{(2)}(E)$.

In Chapher 3 , we obtained sharp bounds for the Paber coeflicients A_{n}, ($n=$ $0.1,2, \cdots)$ of functions $F(z)$ in the classes $C(E), P(E)$, and $T(E)$. Then we made conjectures for bounds of the Faber corfficients $A_{n},(n=0,1,2, \cdots)$ of functions $F(:)$ in the classes $S(E)$, and $S^{(2)}(E)$.

Future Work

Two conjectures made in Chapter 3 are future research problems. We will mention some other future work problems about "Faber transformations."

Let Ω be bomoled, simply connected domann in C with amalytic bomdary and let $\left\{\Phi_{n}(\xi)\right\}_{n=0}^{\infty}$ be the Paber polynomials associated with Ω. If $\int(z)=\sum_{n=1}^{\infty} a_{n} z^{\prime \prime}$ is
analytic in $\Delta(0,1)$, then we define the Faber transformation of $f(z)$ by

$$
T(f(z))(\xi)=F(\xi)=\sum_{n=0}^{\infty} a_{n} \Phi_{n}(\xi)
$$

By Theorem 1.0.9, the Faber transformation of $f(z), F^{\prime}(\xi)$, is analytic in Ω. It is cleat that if $f(z)$ is a polynomial of degree n then so is $F(\xi)$. Ellacott [9] showed that if $f(z)$ is a rational function then so is $F(\xi)$. So il is natural to ask whether a property of $f(z)$ is preserved by the Faber transformation. Johnston [11] showed that if $f(z)$ is analytically continuable across a subare of $|z|=1$ then so is $F^{\prime}(\xi)$ analytically continuable across a subare of $\partial \Omega$. Now we ask the following three future work problems:
I. If $f(z) \in I^{p}(\Delta(0,1)),(p>0)$ (sce [8]) then is there a $q>0$ for which $F^{\prime}(\xi) \in I^{\prime \prime}(\Omega)$? If so, what is the best value of q ?
2. If $f(z)$ is differentiable on $\overline{\Delta(0,1)}$ then what can be said about differentiability ol ${ }^{\prime}(\xi)$ on $\bar{\Omega}$?
3. If $f(z)$ is univalent in $\Delta(0,1)$ then what can be said about univalence of $F(\xi)$ in S?

BIBLIOGRAPHY

[1] M. Abramowitz and I. A. Stegum. Handbook of Mathematical Functions with Formulas, (iraphs, and Mathematical Tabless. Dover Publications, huc., New York. 1972.
[2] L. Bielserbach. Ïber einige Extremalprobleme im Cebicte der konformen Abbildung. Math. Amu., 77 (1915-1!916), 15:3-172.
[3] L. Bielocbach. Über die Koeffizirnten derjenigen Potenzreihen, wethe cine schliche Abbildung des Pinheitskerises vermilteln. S.-B. Preuss. Akad. Wiss., (1916), $910-955$.
[.1] L. de Branges. A proof of the Bicberbach conjecture. Acta. Math., 151 (1985), 137-152.
[5] D. A. Brannan, J. Clumic and W. B. Kirwan. on the corfficient problem for funclions of bounded boundary rotation. Amn. Acad. Sci. Fenn. Ser. AI Math. Ph's. 523 (1973), is pp.
[i] L. Brickman, T. II. MacGregor and D. R. Wiken. C'onver hulls of some rlassicul familirs of univalent functions. 'Trans. Amer. Math. Soc., I5G (1971), 91-107.
[7] P. L. Duren. Univalent Functions. Springer-Verlag, New York, I983.
[N$]$ P. L. Duren. Theory of II ${ }^{p}$ Spaces. Academic Press, New York, 1970.
[!] S. W. Ellacolt. On the Faber transformation and cofficient numerical rutional approrimations. SLAM J. Numerical Anal., 20 (1983), 989-1000.
[10] M. Pokete and (i. Szegö. Bine Bemerkung über unycrude sehlichte Funkionen. J. London Malli. Soc., 8 (1933:3), 85-89.
[11] E. II. Johuston. The Faber transformation and analytic contimualion. SIAM J. Math. Anal., 103 (1988), 227-243.
[12] P. Kocbe. Z̈̈ber dic Uniformisicrung belicbiger andylischer Kurnen. Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl., (1907), 191-210.
[1:3] I). F. Lawden. Elliptic Functions and Applications. Springer-Verlag, New Vork, $1!89$.
[11] J. E. Lithlewood and R. E. A. (.. Paley. A moof that an odd schlicht function has boundrd cocfficients. J. London Math. Soc., 7 (1932), 167-169.
[1.5] V. I. Milin. Estimation of corfficients of odd univalent functions. in Metric Questions in the Throry of Functions. (edited by G. D). Suroror: "Naukora Dumka": Kier, (1980), $78-86$ (in Russian).
[16] Z. Nehari. Conformal Mapping. Mc(iraw-IIIl, New York, l!5e.
[17] (: Schober. Univalent Functions-Selected Topics. Lecture Noles in Math. No. 178, Springer-Verlag, 1975.
[I8] V. I. Smirnov and N. A. Lebedev. Constructive Theory of Functions of a Complex Variable. Ialat. "Nanka": Moscow and Leningrad, L96I; Eanglish 1.ransl., M.I.T'. Press: ('ambridge, Mass., 1968.

APPENDIX JACOBI ELLIPTIC FUNCTIONS

In this section we give a summary of some of the basic properties of the Jacobi clliplic functions. (See [13, Chapters 1 and 2])

We first need to introduce four theta functions:

Theta Functions

Definition The first theta function $\theta_{1}(z \mid \tau)$ for $z \in \mathbf{C}, \operatorname{Im}\{\tau\}>0$ is defincel by the srrics

$$
0_{1}(z \mid \tau)=-i \sum_{n=-\infty}^{\infty}(-1)^{n} \exp \left\{i\left[\left(n+\frac{1}{2}\right)^{2} \pi \tau+(2 n+1) z\right]\right\} .
$$

Let q be defined by the equation $q=e^{i \pi r}$. Since $\operatorname{Im}\{\tau\}>0$ we have $|q|<1$. The paramoters τ and q are called the parameter and nome, respectively, of the $\theta_{1}(\sim \mid \tau)$. Drpendence of $\theta_{1}(z \mid r)$ on the nome q is shown by

$$
\begin{equation*}
\theta_{1}(z, q)=-i \sum_{n=-\infty}^{\infty}(-1)^{n} q^{\left(n+\frac{1}{2}\right)^{2}} e^{i(2 n+1) z} . \tag{A.I}
\end{equation*}
$$

The series on the right hand side of (A.1) converges uniformly for $\forall z \in \mathbb{C}$ since $|y|<1$. Using the identity:

$$
c^{i 0}=\cos a+i \sin \alpha
$$

we olvain from (A.I) another representation of $\theta_{1}(z, q)$:

$$
\theta_{1}(z, q)=2 \sum_{n=0}^{\infty}(-1)^{n} q^{\left(n+\frac{1}{2}\right)^{2}} \sin (2 n+1) z
$$

It is clear that $\theta_{1}(z)=\theta_{1}(z \mid \tau)$ is an odd, entire, and periodic function of z with period 2π.

Definition The sreond thela function, $\theta_{2}(z)$. is definced by

$$
\begin{aligned}
\theta_{2}(z)=\theta_{1}\left(z+\frac{\pi}{2}\right) & =\sum_{n=-\infty}^{\infty} q^{\left(n+\frac{1}{2}\right)^{2} e^{(2 n+1) i z}} \\
& =\sum_{n=0}^{\infty} q^{\left(n+\frac{1}{2}\right)^{2}} \cos (2 n+1) z
\end{aligned}
$$

Hence $O_{2}(z)$ is an even, entire, and periodic function of z with period 2π.
Definition The fourth theta function. $O_{4}(z)$. is difined by

$$
\begin{aligned}
O_{4}(z) & =\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n^{2}} c^{2 n i z} \\
& =1+2 \sum_{n=1}^{\infty}(-1)^{n} q^{n^{2}} \cos 2 n \varepsilon .
\end{aligned}
$$

Note that $\theta_{A}(z)$ is an even, entire, and periodie finnction of z with period π.
Definition The third thata function, $\theta_{3}(z)$, is asfinad by replacing $:$ by $z+\frac{\pi}{2}$ in $\theta_{1}(\because)$. i.!.

$$
\begin{aligned}
\theta_{3}(z)=\theta_{4}\left(z+\frac{\pi}{2}\right) & =\sum_{n=-\infty}^{\infty} q^{n^{2}} e^{2 n i z} \\
& =1+2 \sum_{n=1}^{\infty} q^{n^{2}} \cos 2 n z
\end{aligned}
$$

Note that $\theta_{3}(z)$ is also an even, contire, and periodic function of z with period π.
Becanse of the identity $\theta_{1}(z+\pi \tau)=-\left(4 e^{2 i z}\right)^{-1} \theta_{1}(z), \pi \tau$ is callerl a quasi-period of $\theta_{1}(z)$ will periodicity lactor $-\left(q \epsilon^{2 i z}\right)^{-1}$. Writing $\lambda=q^{2 i z}$ and $\mu=q^{\frac{1}{1} c^{i z}}$ it is casy to verify the following identilies:

$$
\begin{equation*}
\theta_{1}(z)=-\theta_{1}(z+\pi)=-\lambda \theta_{1}(z+\pi r)=\lambda \theta_{1}(z+\pi+\pi r) . \tag{1.2}
\end{equation*}
$$

$$
\theta_{2}(z)=-\theta_{2}(z+\pi)=\lambda \theta_{2}(z+\pi \tau)=-\lambda \theta_{2}(z+\pi+\pi \tau) .
$$

$$
\begin{gather*}
\theta_{3}(z)=\theta_{3}(z+\pi)=\lambda \theta_{3}(z+\pi \tau)=\lambda \theta_{3}(z+\pi+\pi \tau), \\
\theta_{1}(z)=\theta_{4}(z+\pi)=-\lambda \theta_{4}(z+\pi \tau)=-\lambda \theta_{4}(z+\pi+\pi \tau), \tag{A.3}\\
\theta_{1}(z)=-\theta_{2}\left(z+\frac{\pi}{2}\right)=-i \mu \theta_{4}\left(z+\frac{\pi \tau}{2}\right)=-i \mu \theta_{3}\left(z+\frac{\pi}{2}+\frac{\pi \tau}{2}\right), \\
\theta_{2}(z)=\theta_{1}\left(z+\frac{\pi}{2}\right)=\mu \theta_{3}\left(z+\frac{\pi \tau}{2}\right)=\mu \theta_{4}\left(z+\frac{\pi}{2}+\frac{\pi \tau}{2}\right), \\
\theta_{3}(z)=\theta_{4}\left(z+\frac{\pi}{2}\right)=\mu \theta_{2}\left(z+\frac{\pi \tau}{2}\right)=\mu \theta_{1}\left(z+\frac{\pi}{2}+\frac{\pi \tau}{2}\right), \\
\theta_{4}(z)=\theta_{33}\left(z+\frac{\pi}{2}\right)=-i \mu \theta_{1}\left(z+\frac{\pi \tau}{2}\right)=-i \mu \theta_{2}\left(z+\frac{\pi}{2}+\frac{\pi \tau}{2}\right) .
\end{gather*}
$$

It follows from $\theta_{1}(0)=0$ and $(\Lambda .2)$ that the zeros of $\theta_{1}(z)$ occur at the points $z=m \pi+n \pi t$ where m and n are integers. The zeros of the other theo theta finctions can then be obtaned from equations ($A .4$) as follows:

$$
\begin{gather*}
\theta_{2}(z)=0 \text { when } z=\left(m+\frac{1}{2}\right) \pi+n \pi r \\
\theta_{3}(z)=0 \text { when } z=\left(m+\frac{1}{2}\right) \pi+\left(n+\frac{1}{2}\right) \pi r \tag{A.i}\\
\theta_{4}(z)=0 \text { when } z=m \pi+\left(n+\frac{1}{2}\right) \pi r
\end{gather*}
$$

Jacobi's Elliptic Functions

Definition The Jucobi's clliptic functions snu, cnu. and dnu arr defincol in terms. of the thefa fiunctions as folloms:

$$
s n u=\frac{\theta_{3}(0) \theta_{1}\left(\frac{u}{\theta_{3}^{2}(0)}\right)}{\theta_{2}(0) \theta_{\cdot}\left(\frac{u}{\theta_{3}^{2}(0)}\right)} .
$$

$$
\begin{aligned}
& \operatorname{cn} u=\frac{\theta_{4}(0) \theta_{2}\left(\frac{u}{\theta_{3}^{2}(0)}\right)}{\theta_{2}(0) \theta_{4}\left(\frac{u}{\theta_{3}^{2}(0)}\right)}, \\
& \operatorname{dn} u=\frac{\theta_{1}(0) \theta_{33}\left(\frac{u}{\theta_{3}^{2}(0)}\right)}{\theta_{3}(0) \theta_{4}\left(\frac{u}{\theta_{3}^{2}(0)}\right)}
\end{aligned}
$$

Definition The modulus and complementary modulus of the Jacobi clliptic functions "rr !inen b!y the formulas $l_{i 0}=\frac{\theta_{2}^{2}(0)}{\theta_{3}^{2}(0)}$ and $k^{\prime}=\frac{\theta_{-1}^{2}(0)}{\theta_{3}^{2}(0)}$, respectinely.
'The following identities can be found in [13]:

$$
\begin{gather*}
k_{0}^{2}+k^{\prime 2}=1, \\
\operatorname{sun}^{2} u+\operatorname{cu}^{2} u=1, \tag{A.8}\\
d n^{2} u+l_{0}^{2} \operatorname{sun}^{2} u=1, \\
\operatorname{dun}^{2} u-k_{0}^{2} \mathrm{c}^{2} u=k^{\prime 2} .
\end{gather*}
$$

Definition The constants K and $K^{\prime \prime}$, are defined by the relations $K=\frac{1}{2} \pi 0_{3}^{2}(0)$ and $i \boldsymbol{K}^{\prime \prime}=\boldsymbol{\kappa} \tau$.

Zeros of sin u, cnu, and dnu

Zeros of sin u, cin u, and dn u occur at the zeros of $\theta_{1}\left(\frac{u}{\theta_{3}^{2}(0)}\right) \cdot 0_{2}\left(\frac{u}{\theta_{3}^{2}(0)}\right)$. and $\theta_{3}\left(\frac{11}{a_{3}^{2}(0)}\right)$, respectively. Thims it follows from (A.5), ($\left.\Lambda .6\right)$, and ($\Lambda . T$) that.

$$
\begin{gathered}
\text { sin } u=0 \quad \text { when } \quad u=2 m h+2 i n h^{\prime} . \\
\operatorname{cn} u=0 \quad \text { when } \quad u=(2 m+1) k+2 i n h^{\prime} .
\end{gathered}
$$

$$
\text { du } u=0 \text { when } u=(2 m+1) K+i(2 n+1) K^{\prime} .
$$

Poles of sn $u, c_{n} u$, and $\ln u$
The linctions sin u, $n u$, and do u are analytic for all complex numbers u, except 1.hose satislying $\theta_{1}\left(\frac{u}{\theta_{3}^{2}(0)}\right)=0$. Hence we cleduce from (A.T) that the poles of the linuctions suu, cun, and dnu orcur at the points $u=2 m K+i(2 n+1) k^{\prime}$.

Double Periodicity of the Elliptic Functions

11. follows from the definition of the finction sn u and the periodicity of the finnctions $\theta_{1}(11)$ and $O_{4}(10)$ that,

$$
\sin (u+1 K)=\frac{\theta_{3}(0) \theta_{1}\left(\frac{u+4 K}{\theta_{3}^{2}(0)}\right)}{\theta_{2}(0) \theta_{4}\left(\frac{u+4 i}{\theta_{3}^{2}(0)}\right)}=\frac{\theta_{3}(0) \theta_{1}\left(\frac{u}{\theta_{3}^{2}(0)}+2 \pi\right)}{\theta_{2}(0) \theta_{4}\left(\frac{u}{\theta_{3}^{2}(0)}+2 \pi\right)}=\operatorname{sn} u
$$

In addition, using (A.2) and (A.3) gives

$$
\operatorname{sn}\left(u+2 i \Lambda^{\prime \prime}\right)=\frac{0_{3}(0) \theta_{1}\left(\frac{u}{\theta_{3}^{2}(0)}+\pi \tau\right)}{\theta_{2}(0) \theta_{4}\left(\frac{u}{\theta_{3}^{2}(0)}+\pi \tau\right)}=\operatorname{sn} u .
$$

It may be shown in a similar way that cu u has two periods given by 4 an and $2 K+2 i K^{\prime \prime}$ and du u has also two periods, given by $2 K$ and $1 i K^{\prime \prime}$.

Period Parallelogram

Suppose an elliptic function $f(z)$ has wo periods $2 u_{1}$ and $2 w_{2}$. Let $\Omega_{m, n}=2 m w_{1}+$ $2 n w_{2}$ where m and n are integers. A parallelogram with rettices at the points $\Omega_{m, \ldots}$. $\Omega_{m+1, n}, \Omega_{m+1, n+1}$. and $\Omega_{m, n+1}$ is called a period parallelogram. Two points a and w
with $z=w\left(\bmod 2 w_{1}, 2 w_{2}\right)$ are called congruent points. Thus for each pair of congrome points z and w we have $f(z)=f(w)$. Hence $f(z)$ is completely determined bits values inside and on a pair of adjacent sides of a period parallelogram.

Addition Theorems

We state the following addition theorems for sn u, cu u, and du u. Prool's of these islontilies can le fomm in [13]:

$$
\begin{aligned}
& \operatorname{sn}(u+v)=\frac{\sin u \operatorname{cn} v d n v+\operatorname{sn} r \operatorname{cn} u d n u}{1-k_{0}^{2} \sin ^{2} u \sin ^{2} v}, \\
& \operatorname{cn}(u+v)=\frac{\operatorname{cn} u \operatorname{cn} v-\sin u \operatorname{sn} v d n u d n c}{1-k_{0}^{2} \sin ^{2} u \sin ^{2} v},
\end{aligned}
$$

aml

$$
d n(u+v)=\frac{\operatorname{dnu} u \ln v-k_{0}^{2} \sin u \sin v \operatorname{con} u \operatorname{con} v}{1-k_{0}^{2} \sin ^{2} u \sin ^{2} v} .
$$

Maclaurin Expansions of $\operatorname{sn} u, c_{n} u$, and dnu
The following formulas for the derivalives of the functions sn u, con u, du" can be found in [1:3]:

$$
\begin{align*}
& \frac{d}{d u} \operatorname{sn} u=\operatorname{cn} u d n u, \tag{A.I0}\\
& \frac{d}{d n} \operatorname{cn} u=-\sin u d \ln u, \tag{A.11}\\
& \frac{d}{d u} d n u=-k_{10}^{2} \operatorname{sn} u \operatorname{cn} u . \tag{A.12}
\end{align*}
$$

Repeated applications of (A.10), (A.11), and (A.12) and using $\operatorname{sn}(0)=0$. $\operatorname{mon}(0)=1, \operatorname{dn}(0)=1$ yiold

$$
\sin u=n-\frac{1}{3!}\left(1+k_{0}^{2}\right) u^{3}+\frac{1}{5!}\left(1+1 \cdot k_{0}^{2}+k_{0}^{1!}\right) u^{5}-\cdots .
$$

$$
\operatorname{cn} u=1-\frac{1}{2!} u^{2}+\frac{1}{4!}\left(1+4 k_{0}^{2}\right) u u^{4}-\cdots,
$$

and

$$
d \ln u=1-\frac{1}{2!} k_{0}^{2} u^{2}+\frac{1}{4!} k_{0}^{2}\left(4+k_{0}^{2}\right) u^{4}-\cdots
$$

Elliptic Functions with Imaginary Argument

The formulas given below can be found in [13]:

$$
\begin{array}{ll}
\operatorname{sn}\left(i u, k_{0}\right)=i \frac{\operatorname{sn}\left(u, k^{\prime}\right)}{\operatorname{cn}\left(u, k^{\prime}\right)}, & \operatorname{sn}\left(u, k^{\prime}\right)=-i \frac{\operatorname{sn}\left(i u, k_{0}\right)}{\operatorname{cn}\left(i u, k_{0}\right)}, \\
\operatorname{cn}\left(i u, k_{0}\right)=\frac{1}{\operatorname{cn}\left(u, k^{\prime}\right)}, & \operatorname{cn}\left(u, k^{\prime}\right)=\frac{1}{\operatorname{cn}\left(i u, k_{0}\right)}, \\
\operatorname{dn}\left(i u, k_{0}\right)=\frac{\ln \left(u, k^{\prime}\right)}{\operatorname{cn}\left(u, k^{\prime}\right)}, \quad \ln \left(u, k^{\prime}\right)=\frac{\ln \left(i u, k_{0}\right)}{\operatorname{cn}\left(i u, k_{0}\right)} .
\end{array}
$$

Inverse Jacobi Elliptic Functions

The restricted fiunction

$$
y=\operatorname{sn}\left(x, k_{0}\right), \quad 0 \leq x \leq \pi
$$

is 1-1, and hence, will have an inverse. Writing

$$
w=\operatorname{sn}^{-1}\left(x, k_{0}\right) \text { implies su } w=x, \quad 0 \leq x \leq K, \quad 0 \leq x \leq 1 .
$$

Hence (A.10). (A.S), and (A.9) yield

$$
\frac{d x}{d w}=\cos w^{\prime} d n w=\sqrt{\left(1-x^{2}\right)\left(1-k_{0}^{2} x^{2}\right)}
$$

'Ihus

$$
\sin ^{-1}\left(x, k_{0}\right)=w=\int_{0}^{x} \frac{d t}{\sqrt{1-t^{2}} \sqrt{1-k_{0}^{2} f^{2}}}, \quad 0 \leq x \leq 1
$$

In a similar way we obtain

$$
\mathrm{cn}^{-1}\left(x, k_{0}\right)=\int_{x}^{1} \frac{d t}{\sqrt{1-t^{2}} \sqrt{k^{\prime 2}+k_{0}^{2} t^{2}}}, \quad 0 \leq x \leq 1
$$

