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CHAPTER 1. INTRODUCTION

Functions Univalent in the Unit Disc

In this section we introduce the class S of univalent functions and some important
related classes. We also give examples of the use of extreme point. theory in solving

linear extremal problems.

Definition 1.1 A function f(z) is called univalent in ¢ domain @ C C if f(z) is

defined in Q) and f(z1) # f(z2) for each pair of points z; and zp with =y # = in ).

Definition 1.2 .1 funclion f(z) is said lo be in the cluss S if it is analylic and
univalent in the unit dise A(0,1) = {z: |z] < 1}, and satisfies the conditions f(0) = 0

and f'(0) = 1.

The study of the class S seems to have started with Koebe at the beginning of
this century. Koebe [12] proved the existence of an absolute constant » such that the
disk {]z] < r} is contained in f(A(0,1)) for every f(z) € S. Bieberbach [2,3] found
the best possible value of » to be i lu 1916, Bieberbach [3] showed that il f(z) € S
is given by

I(: = 7+ianzn (ll)

n=2

then |ap| < 2. He then conjectured that in addition,

|<l-n| <n, (n=234..-).



This conjecture was oue of the most challenging open problems of mathematics for
68 yecars. It was proved by L. deBranges [1] in 1984. deBranges also proved that

equality holds in (1.2) if and only il f(z) is given by
f(z) = e k(e?), 0€[0,2n),

where

-~
-~

k(z) = —.
(=) (1 —z)?
The function k(=) is known as the IKoebe [unction.

We now define some subclasses of S that have nice geometric properties and

serve as “test cases” for problems about S.

Definition 1.3 . function f(z) € S is called convex if f(A(0,1)) is a conver scl.

We denote the class of convex functions by C.

Definition 1.4 /A function f(z) € S is called typically rveal if (=) is rvcal for real
values of = and nonrcal for nonveal values of =. We denole the class of typically real

funetions by T.
Definition 1.5 The class of odd functions in S is denoted by S,
The class (! is closely related to the following subclass of analytic functions.

Definition 1.6 /A function p(z) analytic in A(0,1) and satisfying the conditions
MO0) =1 and Re{p(z)} > 0 for : € A(0,1) is said to be of positive real parl. We

denote the class of such functions by P.



In this thesis we will study the problem of mmaximizing certain linear functionals
over some compact subsets of functions analytic in A(0,1). It was shown that [5]

extreme point theory is useful in solving this type of problems.

Definition 1.7 Let A be a subsel of a vector space X and [ € A. We say [ is an

cxtreme poind of A if when fi, [ € A and 0 <t < | with

f=thi+ (L= t)fy,
then [y = f,. We denote extreme points of A by extA.

Definition 1.8 Let X be a topological veclor space. Then the closed conver hull of

AC X, denoled by To(A), is the smallest closcd convex sel conlaining A.

The following theorem (See [L7]) shows that to find the maximum value of a
linear functional over a compact set it suffices to find the maximum over the set of

extreme points.

Theorem 1.1 Let X be a locally convex lincar topological space and lct K C X be a

compuel sel. If l{x) is a conlinuous lincar functional on X, then

max Re{l(x)} = max Re{l(x)}.

rEKN reedl

If, in addition, To(K) is compact, then

max Re{l(x)} = max  Re{l(x)}.

reC(CO(K))

The lollowing theorem of Braunan, Clunie, and Kirwan [5] identifies ext(co( P)).



Theorem 1.2 The extreme points of the closed convex hull of P consists of funclions
pa( =) given by

146l
Pa(z) = %ﬁ—?, 0 €[0,2r). (1.2)

The following two theorems due to L. Brickian, T. Il. Mac Gregor, and D. R.

Wilken [6] determine ext(To(C')) and ext(e6(T')), respectively.

Theorem 1.3 The cxtreme points of the closed convex hull of C' consists of functions

co(z) given by

co(z) = l_—:cT:’ 0 € [0,27). (1.3)

Theorem 1.4 The exlreme poinis of the closed convex hull of T consists of functions
To(=) given by

-~
<

- 5 Y
— 2z cos6 + =2

fo(z) = - 0 € [0,x]. (1.4)

The problem of determining the collection of all extreme points of S and §
ave still open problems.
Fhe [ollowing three theorems are immediate consequences of applications of the

Theorems 1.2, 1.3, and 1.4, respectively.
Theorem 1.5 If
o0
[(:) =1+ Z b.z" € P, (1.5)
n=1
then
|0, <2, (n=1,2,3,--+) (1.6)

This incqualily is sharp.



(o7 ]

Theorem 1.6 If f(z) € C' is given by (1.1), then
el ST, (n=2,3,4,--), (17)
Strict inequality holds in (1.7) unless f(z) = cp(z), for some 0 € [0,2r
Theorem 1.7 If [(z) € T is given by (1.1), then
|y < ny (n=2,3,4,-). (1.8)
This incquality is sharp for each fived n.

The coeflicient problem for the class S is still an open problem. Littlewood
and Paley [11] showed that for functions f(z) = z + £0%, a9, 22" € SO there
exists an absolute constant such that Jag,4q] < A, (n=1,2,3,---). Then they went
on to conjecture that |egusy| < 1, (n = 1,2,3,--+). This conjecture was proved to
be false at least for n = 2, by Fekete and Szegé [10]. Milin [15] has shown that
lazmgr] < 14, (0= 1,2,3,---). This is the best global result known, though sharp

results for some individual coefficients have been found.

Faber Polynomials

In this section we give a brief discussion of the Faber polynomials associated

with a simply connected and bounded domain @ C C with analytic boundary.

Definition 1.9 Dcfinc T to be the class of functions g(z) analylic and univalent in

A={s1]z] > 1} with

ll
u

(LIQ

(z € ). (1.9)
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Definition 1.10 Let Q be a simply connected, bounded domain in C with O € ().
Assume Q has capacity 1 and a function g(z) € I is the unique mapping of A\ onlo
C\ Q. Then the Faber polynomials, {®,(z)}°%,, associalcd with @ (or g(z)) are

defined by the genervating function relation [7, p.218]

£J - .
@, (=)™ (1.10)
9§ — = Zu

Substituting (1.9) into (1.10) and equating like powers of ¢ yields

dy(z) =1, (1.11)
®y(z) =z — co,s (1.12)
and the recursion relation,
n-1
q)n+l( )—(~_(U q)n Z('n k(I) < _(71-+J)Crn (”'——-172,33"') (I]:;)

Ifence @,(z) is a monic polynomial of degree n
The following theorem [18, p.130] provides another proof that ®,(z) is a monic

polynomial of degree n.

Theorem 1.8 Let {0,(2)}3%, be the Faber polynomials associated with g € S. Then

D,(=) is the principal part of (¢~ (2))" at = = 00, i.r.
1
(671z))" = &,u(2) + ()(j) as z — oo. (1.11)

Prool: For » > I, let I', = {g(re”), 0 € [0,27)} and €, be the inside of T',.
(Note ) = Q.) Let 1 < r < p < oco. By the Cauchy Integral Forinula, it follows from

(1.10) that

(o L[ L) T
Pulz) = 27ri/|c'|=n gl&) — = a6,z el



-1

Then

: 1,
®,(z) -L/I (Ui C I (1.15)
r2

21 w—z

Since g(oo) = oo and ¢'(00) = 1 we may write

- =
97N =24 )

n=0 -~

for sufficiently large values of z. Thus the function has a pole of order n

(g~ (w)"

w—z
at w = oo, and we may write (1.15) as
. 1 “w))"
$,(z)=-— / M)—— dw, (1.16)
. 2wt Jlwl=R W — 2

where R is sulficiently large. Writing

(n) n
D n D.(..z)

(g—l(w))n =" + D(ln)wn—l e D'(l?x) + =1 + - (1[7)
w w
and
1 1 z ="
w—z w @ W ”‘+w"+1
and then taking the product we obtain from (1.16) that
(I)"(Z) — 2” + D&"):n-’l + e + 1)7("1!). (l. IS)

Substituting (1.18) into (1.17) completes the proof of the theorem.

We conclude this section by giving three examples of Faber polynomials:

Example 1.0.1 Let

Then
g(A)=A=C\A(0,1).



Substituting g(&) = € indo (1.10) yields

1 X o
E — _:: — Z zné-*n = Z ‘I’,,,(.‘Z)f—n.

€ z 1 - n=0 n=0

Henee the Faber polynomials associated with A(0,1) are {222,

Example 1.0.2 Lct
L
y(z)=z+ o

and r > 1. Then

: : I _; 1 '
g(re'®) = re® + ———.e"’o =(r+ E) cos @+ i(r — f;)sin 0,

42

0 € [0,2r).

Henee g(re'®) is a pavametvic vepresentation of an ellipse with foci al the points 1.

We deduce that

g(A)=C\E where

22 y? |
e ey <

E={e+1iy:

l
Substituting g(€) = € + T into (1.10) gives

e __ae-1 . st
g&) — = 4 —déz + 1 (€= &)~ &)
where
£1=:+ ‘:2—1 and £2=~—“.:2_1_

Then we have

=J. 2 _ 2 )
(&) — = +5_l_£2(£_£1 T

Substituling

G-b=V2-1,

(1.19)
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I 22—142/:7-1 :
513—;;= m =&V -,
and
1 221 —2yz2—1
fzs~§= 5 = -6V -1

into (1.19) gives

&'(¢) =1+%( &, & )

GEE [
= 14+ (&"+&ME
n=1
Henee it follows from (1.10) thal
Bo(z) = 1,

C () =6"+&" =27 +VE-D) + (= V1)), (n=123,-1).

We sce that the Faber polynomials associated with IJ are the monic Chebysher poly-

nomials of (-1,1).

Example 1.0.3 Lct
1
g(z) =475

252
Then g(A) is the exterior of the threc-cusped hypocyeloid (shown in Figure 1.1) whose

paramelric cquation is given by

1L
= ¢'f + ;-)—(::“2'0, 0<0 < 2.

Using (1.11). (1.12). and (1.13) we find that the Faber polynomials, {®,(2)}7%,.

. . 1 .
associaled with g(z) = z + 5o ore given by

(bu(s) = .l,
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Figure L.1:  Three Cusped Hypocycloid



q)l(z) =,
(1)2(3) = ':23

3

(1)3(3) = 2‘3 - 3,

and

. 1
(1’n+l(3) = 3(1)71.(3) - i(pn—2(z)a (n’ = 374» '5» v ')'

Faber Series

In this section we discuss how Faber polynomials may be used to represent

analytic functions in more general domains than disks.

Theorem 1.9 ([14, p./2]) Let ¢ € T and {®,(2)}%, be the Faber polynomials
associated with g. Suppose F(z) is a function analytic in Q, = inside of g(|z] =
r), for some r > 1.

(i) Then F(z) has the representation

(]
F(z)=35 4,0,(2), z2€9, (1.20)
n=0
where
l
A, = 7 /” F(g(z))z™™ "z forany p with 1< p<r. (L.21)
2T J)z|=p

In addition,

1
limsup A,/ <

N—20 r

(ii) The servies given in (1.20) converges uniformly on compacl subscls of §),.

(iti) The expansion of '(z) as Iaber series given by (1.20) is unique.
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(iv) Conversly, if {A}oo, is a sequence with limsup
)
serics Z Apd,(2) represents an analytic function in §,.
n=0

N

IA”I/N S

11-, then the

Prool: (i) Let 1 < p <randlet T'y = g(|z] = p). For 2 € Q,,, the Cauchy Integral

FFormula gives

F(z) = _’_/r fi‘ﬂ,lu,,__l_/k' _ Fe€)g'(€)

27 Jr, w—z 2mi glé) — =
1
= — g b, —n=1yd
37 Sy, FLO1E) }_: (20671 dg
= 3 A, (2)
n=0

where A, is given by (1.21). Interchange ol integration and summation is justified

by unilorm convergence of the series Z D,.(2)6" to (2)(6)
n=0
a compact subset of £2,. Since
M, = max [17(g(=))] < o0
z=p
it. follows from (1.21) that
. ; l/n t/n l
limsup |A,]Y" < = Ilm sup (max|F(g(z)))"" = -.
n—m p n— lzl=p r

Letting p — r completes the prool of (i).

(ii) Let ' C 2, be a compact set. Choose p so that K C €,. Then

I £'9'€)
D,(2) =— ] < Mpr¥!
I ( )I 2m /I‘EI =p ¢ (&) (E
where
/
M= max —i—(-f—)—
lel=p, ek {g(€) —

Now choose p' so that p < p’ <. Then as in the prool of part (i)

|4, < M’"

for [£| = p and = in



Therelore if z € I, then

M ,,l

I 471(1)1; | < — ‘I/’H-H

0

Hence, by the Weierstrass M-test, the series Z An®,(z) converges uniformly on
n=0

compact subsets of Int I',. Letting p — r completes the prool.

(1ii) Let

F(:) Z /qu)n 3 Z Bnq’u
n=0 n=0
Thenlor I <p<r
1 ad -m-— DT
5 [Z(A,L—B )b, (g(= ))] TNz =0, (1.22)

Il £ Ln=0
IFrom (1.11) we have

D,(g(2)) = = "+O( ) as z — 00. (1.23)

Substituting (1.23) into (1.22) yields

Apy =B =0, VYm>0.

This proves assertion (iii).

(i\) Let

[ 'w]
A(z) = Z Apz™.
n=0
1 o<
Since limsup, . |A|"/" < - the series | A, z" converges uniformly for || < r and

n=0

A(z) is analytic in A(0, 7). For each p with | < p < r, the function

1 (£)J(£)
., et

2mi Jjgl=p J(f)
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is analytic for = € @,. Since the series for A(z) converges uniformly for [z| = p, it
lollows that

L AQg© sy ] S e
55 Jees g1 = 1 = Z""%/m:pf [ @u(2)6™*] e

El=p ¢ ~ n=0 k=1
[». ]

= Z A,,(D,,,(S)-

n=0

N

llence the series Z A, ®,.(z) converges unilormly to an analytic function in 2,. Let-
n=0

ting p — 1 completes the prool.

Functions Univalent in a Simply Connected and Bounded Domain

In this section we introduce analogues of the class S and some ol its related
classes for a general simply connected and bounded domain Q. Afterwards we state
the main results of this thesis.

Let 2 be a simply connected and bounded domain in C with J€Q analytic. As-
sume that 0 € . Let ¢(z) be the unique, one-to-one, and analytic mapping ol 2
onto A(0, 1) with ¢(0) = 0 and ¢'(0) > 0. We defline classes analogues to the classes

S.P,C, T, and S? for Q as follows:

Definition 1.11 Let S(Q) denote the class of functions (=) analytic and univalent
in § and satisfying F(0) = 0 and ['(0) = 1.

Definition 1.12 A function P(z) analytic in Q is said to be of positive real part if

P(0) = —,:—0—) and Re{P(z)} > 0 for = € Q. We use P(Q) to denole the class of

@

such funetions. (The condition P(0) = ——%0—). instead of P(0) = 1. is imposcd for
@

convenience.)



Definition 1.13 A function I'(z) € S() is called convex if I'(2) is a conver domain

in C. We denote the class of convex functions in Q by C'(f2).

Definition 1.14 Assume that Q) is symmetric aboul the real axis. Then a function
I'(z) € S(Q) is called typically veal if F(z) is real for real values of = € Q and nonreal
Jor nonreal values of = € . We denote the class of typically real functions in Q2 by

T(Q).

Definition 1.15 If 2 is symmelric about origin then we use SCNQ) to denote the
class of odd functions ['(z) € S(1).

Assume that 0 has capacity 1, 9 is analytic, and g(A) = C\ @ for some
g(=) € X. Then by Theorem 1.9 the functions I'(z) in the classes defined above have
Faber expansions IF(z) = i: Ap®, (=) which converge uniformly on compact subsets
of ). "=

Assume that @ is synunetric with respect to both the real axis and origin. Then

we note that if F7(z) is in one ol the classes defined above then F'(2) may be written

as
F(:)z%o((ﬁ)) (1.24)
for some function f(z) in the corresponding class of A(0, 1). Therelore for the Faber
series ol I'(z) we use the notation
o
F(z) = "z_:(,‘"‘rr(.f')q)rr(3) (1.25)

where f(z) is the function characterized by (1.24). Now we pose the following prob-

lem:
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Problem: If a function ['(z), is in one of the classes defined above, has the
Faber expansion given by (1.25), then what can be said about the Faber cocflicients
{An(N)}32,? (Note that the case @ = A(0,1) reduces to the problems discussed in
1.1, in particular, to the Bieberbach Conjecture and related problems.)

To investigate this problem we must deal with hoth exterior and interior map-
pings for Q. This is very difficult for general domains. Therefore we focus on the
elliptical domain [, given in Example 1.0.2, for which exterier and interior mappings
ate known.

The following theorem [16, p.296] gives the required interior mapping.

Theorem 1.10 The function

9 J v
e(z) = \/I\T)sn (—T{L sin~! z; %)

is the one-fo-one, analylic mapping of E onto A(0,1) with (0) = 0 and ©'(0) =
2K ko

T

> 0.

In the next two chapters we investigate bounds for the Faber coellicients of
functions F'(z) in the classes S(E), P(F), C(E), T(E), and S?(E).

For inforimation about Jacobi elliptic [unctions see the Appendix.
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CHAPTER 2. BOUNDS FOR FABER COEFFICIENTS OF
FUNCTIONS UNIVALENT IN AN ELLIPSE

We define S(E) as the class of functions F'(z) which are analytic and univalent
on I7 and normalized by the conditions F(0) = 0 and F'(0) = 1. We define two

subclasses of S(E) as
C(E)={F(z) € S(E): F(E) is convex},

and

SENEY = {F(z) € S(E): F(z) is odd}.

In addition, we let P(F) denote the class of [unctions analytic in I and satisfying the
| 2Kk . 1

— = LV and Re{F(z)} > 0. (The condition F'(0) = —
¢'(0) 7f ¥'(0)

is imposed lor convenience.)

conditions I'(0) =

Note that if I'(z) is in one of the classes defined above then I°(z) may be written
as in (1.24) for some f(z) in the corresponding class of A(0, 1).

Let the Faber expansions ol functions F(z) in the classes indicated above be
given by (1.25), where the relation between F(z) and f(z) is given by (1.21). In this
chapter, we obtain sharp bounds for the Faber coeflicients Ao(f). Ay (f). and Ay(f)

for functions in the classes S(E), C'(E), and P(E). In cach case, equality is atlained
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for functions given by

k(z) = to(z) = TSt (2.1)
"(7)—(’0(3)_&, (2.2)

or
pz) = polz) = 7 (2.3)

For functions in S@( L) a sharp bound for A;([f) is obtained and the corresponding

extremal function in S is shown to be

o(z) = = (2.1)

"~

In addition, sharp bounds for certain linear combinations ol the Faber coelficients
ol functions in the classes given above are obtained in Theorems 2.4, 2.5, and 2.6.
Lixtremal Tunctions in the unit disc are given by (2.1), (2.2), (2.3), and (2.4). as
belore. These theorems lead us to make conjectures for the Faber coefficients A, (f)

ol the functions F(z) in the classes S(F7) , C'(E), P(IZ), and SCN(E).

Main Results

We will work with the following expansion for the Faber coeflicients, {A, }7%,.

ol functions analytic in L.

Lemma 2.1 If F(z) is analylic in I and has the Faber serics given by (1.20) then
the Faber cocfficients { A, )02, ave given by

on hid
Ay == F(cosO)cosnldd, (n=0,1,2-)
r Jo
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Proof: We have from (1.20)
F(cos0) = 3 A, B, (cos 0). (2.5)

n=0

where @, () is the monic Chebyshev polynomial of degree n. Substituting
®,(cos 0) = 27" cos nb

into (2.h) gives
F(cos0) = Z A2 cos nd. (2.6)

n=0

Multiplying (2.6) by cosmf and then integrating from 0 to © completes the proof of

the lemma.

Corollary 2.1 If the functions in the classes S(I), C'(E), SCNLE), and P(L) have
the Faber expansions, given by (1.25), then the Faber cocfficients, {A(f)}y. are
given by

on

2K \/ky

Proof: Corollary 2.1 follows from the Lemma 2.1 and the relation (1.21), since
2K ko
@'(0) = -

m

Auf) = ./UTr T(e(cosf))cosnfdl, (n=0,1,2,--) (2.7)

In the next corollary we show that for functions in SN(E), the even Faber

cocllicients ave 0,
Corollary 2.2 If F'(z) € SO(L) then Ay (f) =0, (n=0,1.2.--+).

Proof: From (2.7) we have

92n

wf2
/ [f(e(cos ) + f(@(—cos )] cos2nfdi. (n=0,1,2,.--).
0

"‘Zn(./‘) = 1\\/7\—'5
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Thus Ay, (f) =0, (n=0,1,2,---), because both [(z) and ¢(z) are odd lunctions.
Auvother representation formula for the Faber coeflicients, {A,( )}y, is given

in the following corollary.

Corollary 2.3 With the same conditions as in the Corollary 2.1.

" 22" ! g d” s 2n ¢ ) Q
An(./) = T \/L_:'E(‘Zn)' / (.f(so(:l‘)))l;v:cos() sin®™ 0 df, (n=20,1,2,--+). 2.8)

Vo da
Proof: Multiplying the identity

b, (r) (—1)r2!-n d" (1 n___]
Vi—a? 13- (2n—1)dan x?

[L, p.785]) by f(¢(x)) and then integrating from —1 to | we obtain

@, () g (__l)nz]—n L gn n__ | N
\/l—l"f (J))d'l—1-3...(2,,_1)/_1d‘,l.,,_[(l 2] [(@lr)) dw. (2.9)

Integrating the right hand side of (2.9) by parts results in

(])”( r ) (-—'l )n—lQl-—n 1 gn-t

\/__ flple)) da = 1-3--(2n —1) J-1 dan—! [(1 - “'2)”_%](-/.("0("'))),d""'

Continuing this process n-times yields

L) B I
m’ ) dw = 1-3---(217—1)./-1 (l:l-"( (et —f )" e (2.10)

The result follows [rom Corollary 2.1 by letting @ = cos# in (2.10).
Theorem 2.1 If k(z), ¢(z), and p(z) ave given by (2.1), (2.2), and (2.3), respee-
lively, then we have
[Ao( )] < Ao(k), [€S (2.11)
|Ao(N)] £ Aolc), [€C (2.12)

| Ao(N)] < Ao(p), [ € P. (2.13)
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Proof: I'rom (2.7) we have

. T
Ao(f) = m/ﬂ Flp(cos 0)) db.

Since (=) is an odd function we may wrile

1 |
Aolf) = m/ [/((cos8)) + f(—p(cos 0))] do. (2.14)

Substitnting (1.1) into (2.14) yiclds

. | T2 2
Ao(f) = IR Im./u Z(zz"go (cos#))do.

n=1

Thus

| Ao( ) do

l('z |%" (cos 0))
\/Z_' = n

since () 2 0 for a € [0, 1]. Hence (2.11) follows from the Bicherbach conjecture as

| Au(f)]

< \/l_/ (Z 2™ (cos 0)) d0 = Ag(k)

In a similar way, the proof of (2.12) follows from the coefficient. estimate (1.7).

Substituting (1.5) into (2.11) gives

Aof) = IR \/—/ [1 + Z by (cos )] dO

n=1
rvl‘llllS
l ‘ (/)l <—- l/l ”/2 [l 3 Ib | 2”( ())] ”} (‘) lr)
s ' |+ E 20| COs [ Zobe
ot .[\’ 'f() 0 n=1 2 )

since () > 0 for x € [0,1]. Using the coefficient estimate (1.6) in (2.15) yields
(2.13) as

|t‘()(/)' S I \/7‘— [l +2 2 Z 992"((0g())] do = /lu(l’)

=1
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Theorem 2.2 Ifk(z), c(z), p(z), and o(z) are given by (2.1), (2.2), (2.3) and (2.4).

respectively, then

A < Ak), fes (2.16)
A< Aule), feC (2.17)
AN < Au(p), feP (2.18)
|A1(/)] < Ai(o), [ e S (2.19)

Proofl: Irom (2.7) we have

_ o/
AN = ; _ z[f(go(('.os 0)) — [(—p(cosB))] cos 0 d8, (2.20)
Kk Jo

since () is an odd function. Substituting (1.1) into (2.20) gives

9 /2

<~

Al(f) = v [p(cos @) + Z Aanp102" ! (cos 0)] cos 0 d).
v n=1
Hence
¥ 2 m/2 - 2n+1
L)) < 1\,\/27/0 [¢(cos ) + Z |t2ngr | (cos @)] cos 0 db,
0 n=1

since @(x) > 0 for @ € [0,1]. As in the prool of Theorem 2.1, inequalities (2.16)
and (2.17) result from applying coefficient estimates (1.8) and (1.7), respectively.
Similarly, if f(=) € P is given by (1.5) then

9

. n/2 > .
|4 ()] < [\.\/7‘.;/0 [¢(cos0) + Z |banta | (cos 0)] cos 0 d6. (2.21)

n=1

since g(a) 2 0 for 2w € [0, 1]. Hence using (1.6) in (2.21) results in (2.18).
For [ € S(3), (2.20) gives

2 wf2

-~

“l(’)z ]\\/RU

[(¢(cos 0)) cos 8 do.



Thus
W) < g [ tipteos 0] cos 0.0 (2.22)
£ : 5 . 2.22
1(f) £ KT do b ¢(cos cos 0 ¢
By the distortion theorem
rz) < o fes® (2.23)

il follows [rom (2.22) that

, (cosf) _
1A (f)] —AJ"/ TT"EJT“WM‘MW)

because 0 < () < 1 for @ € [0,1].
Remark: We can also obtain (2.16), (2.17), and (2.18) by applying (2.8) instead
of (2.7), and noting that ¢'(2)|r=coss = 0, since () is increasing for x € [—1,1].

Using ¢'(cos0) > 0 for 8 € [0, 7] and the distortion theorem,

e < D

N ERA

in (2.8) leads to (2.19).

Theorem 2.3 Ifk(z), c(z), and p(=) arc given by (2.1), (2.2).and (2.3), respeetively,

then
[Aa()] < Aulk), fe S (2.21)
|A2( )] < Aule), feC (2.25)
|A2(N)] < Aa(p), fED (2.26)

Proof: I'rom (2.7) we have

Af) =

2 T
K\/E/U f(e(cosB)) cos 20 db.



Then
) 2 r/2
Ay f) = T b [f(e(cosB)) + f(—p(cos )] cos 20 d0.
Hence
A S { A 4
() ]\\/7__/ {{f(@(cos )+ f(—p(cos )] —=[f(¢(sin 0))+ [{—¢(sin 0))]} cos 20 d0.

(2.27)
Substituting (1.1) into (2.27) gives
4 .
Ay ) = [\——\/E/U [,,Z..: azn(p*™(cos 0) — *™(sin #))] cos 20 db.

Since () 2> 0 and p(x) is increasing for a € [0, 1], we have

]

@M (cosf) — @ (5in0) >0, (n=1,2,3,---) for 0<h < I

Thus
|A()] £ i \/7_/ Z |a2n|(¢?" (cos 0) — p*™(sin 0))] cos 20 d0. (2.28)
! n=1
Using (1.8) in (2.28) gives (2.24). TIn a similar way, (2.25) is obtained [rom the

coefficient estimate (1.7). I f(z) € P is given by (1.5) then (2.26) follows {rom

[ ()] £ I \/7—/ [+ Z |b22 ] (0" (cos 0) — ©*" (sin 0))] cos 20 0

n=1

by using the cocflicient estimate (1.6).

Theorem 2.4 If k(z), c(z), and p(z) are given by (2.1), (2.2). and (2.3). respee-

lively, then forn =0,1,2,---, we have

| Ao(f) £ 272" Agu([)] € Ag(k) £ 272 Ay (k). [ € S, (2.99)



S
[ |

| Ao(f) £ 272 Agu(f)] < Ao(e) £ 272 Agule), [ € C, (2.30)

and

[Ap(f) £ 272" Az ()] < Ao(p) £ 27 Aga(p), f € P (2.31)
Proof: To prove (2.28) let f € S be given by (1.1) and consider
I, = /"_/‘(ga(cosa))(l + cos 2u0)df, (n=0,1,2,---).
0

Then

I, = /O”/z[f(cp(cos 0)) + f(—p(cos 0))](1 % cos 2nl) df

/2 )
— 9 / (3 aame@®™ (cos 0)](1 & cos 2u0) do.
JO

m=]

Thus
o

r/:
1] < 2 / [S |aam|@? (cos 0)](1 % cos 2n0) do. (2.32)
[}

m=|
Hence (2.29) follows from (2.32) by using the coelficient estimate (1.8).
Inegualities (2.30) and (2.31) may be proved in the same way by applying in-
equalities (1.7) and (1.6), respectively. Note that the case n = 0 (with + sign) in

Theorem 2.1 yields Theorem 2.1.

Theorem 2.5 [fk(z), ¢(z), p(z), and o(z) are given by (2.1), (2.2), (2.3), and (2.4).
respectively, then for n = 0,1,2,--+, we have
|AS) £ 27272 Aguga () £ 27 A a(f)] <

Al(/i‘) + 2_2”_21‘12,,4.] (/") + .‘12,,._1(1\'). / € S, (2.33)

AN £ 272 Agun (F) £ 27 Agua ()] <

A £ 27 2 Ayupi(€) £ 27 (), fEC, (2.3)
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|AL(F) £ 27272 Aguga () £ 27 Agua(f)] <
Ay(p) £ 2772 Aguqa(p) £ 272 Aga(p), f€P, (2.35)
lf"'ll(f) + 2_2”_2/4‘2n+1(f) + 2--211/4211—1(./” S
A(0) £ 272 Ay (0) £ 27 Ay _y (0), fe s, (2.36)
where ALy ([) = 0.
Prool: Let f € S be given by (1.1) and consider

Lo = [ J(p(cos 0)) cos 01 & cos 2n0) do.
0

Then

n/2

L, = / [[((cos0)) — f(—(cosh))] cos O(1 £ cos 2nh) dO
0
/2 ad .
= 2/ [p(cos B) + Z Agmp19 " T (cos 0)] cos H(1 & cos 2ud) d0.

v m=1

Hence

r/2 o0 ,
[l <2 / [p(cos @) + Z [agm1|@*"+! (cos 8)] cos O(1 £ cos 2nd) d6. (2.37)

0 m=}
Using (1.8) in (2.37) yiclds (2.33).
In a similar way, (2.34) and (2.35) result from the inequalities (1.7} and (1.6),

respectively.

It € 8™ then
r/2
L, =2 / Flg(cos 0)) cos B(1 £ cos 2n0) df.
JO

Thus

rf2
L] <2 / | f((cos 0))] cos O(1 % cos 2n0) . (2.38)
[}
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So (2.36) follows {rom (2.38), by using the distortion theorem (2.23).

Note that the case n. = 0 (with + sign) in Theorem 2.5 yields Theorem 2.2.

Theorem 2.6 [[k(z), c(z), p(z), and o(z) are given by (2.1), (2.2), (2.3). and (2.4).

respectively, then forn=0,1,2,--, we have

[(2n 4+ 12 A0 (F) £ 2727 Aggd ()] < (20 + 12 A (k) £ 27 Aoy (k). [ €8,
[(2n + D2 A0(N) £ 2727 A ()] < @n+ 12 A4 (e) £ 27 Ayug(e), [ E€C,
[(2n 4 12 ALS) £ 272 A (N S (20 + D2 A4 (p) £ 27 A (p), [ € P,

(20 + D2 A () £ 272 A1 ()] S (20 4 1)245(0) £ 2722 Ay (0), [ € 5B,
Proof: Let
M, = /U,T J(e(cos 0))[(2n 4+ 1)? cos 0 & cos (2n + 1)0] d6.
Then Theorem 2.6 is proved by using the argument of Theorem 2.3 and noting that
(2n 4 1)%cosf £ cos (2n +1)0 >0, 0 € [0,2r).

We note that the case n = 0 (with + sign) in Theorem 2.6 gives Theorem 2.2,
g 8

[3

Theorems 2.1, 2.2, 2.3, 2.4, 2.5, and 2.0 lead us to make the lollowing conjectures:
Conjecture 2.1 |4,(f)| < Au(k), (n=0,1,2,--+), feq.
Conjecture 2.2 |A, (/)] < 4,(¢), (n=0,1,2,--4), fe(.

Conjecture 2.3 |A,(f)| < A.(p), n=0,1,2,--1), feP

~—
»

Conjecture 2.4 |A,(f)| < A (0), (n=0,1,2,--), feS,



28

CHAPTER 3. ON THE FABER COEFFICIENTS OF FUNCTIONS
UNIVALENT IN AN ELLIPSE

In this chapter, we obtain sharp bounds for the Faber cocfficients {A,(f)},
of functions F'(z) in the classes C'(E), T'(E), and P(E). We also show that equality
holds it and only if f(z) = ¢(z), f(z) = k(z), and f(2) = p(z), where e(z), k(2),
and p(z) are given by (2.2), (2.1), and (2.3), respectively. Hence, in all three cases,
extremal functions are unigue unlike the analogues results for the A(0,1). This shows
that the Conjectures 2 and 3 made in Chapter 2 are true. In addition, we restate
Conjectures | and 4 made in Chapter 2 explicitly by evaluating A, (k) and A, (o)

where k(z) is the IKoebe function given by (2.1) and o(z) is given by (2.1).

Main Results

Let F denote one of the sets C', T, and P. Then F is a compact sel. Hence
the closed convex hull of F, @(F), is also compact and since A, ([) is a continuous
lincar functional

M= max |A. (/)]

JECO(F)

exists. In addition, we have

max |A.(f)l= max |A()] 3.1
paxlAu( Al = max 1)) (3.1)



29

Using (3.1) with Theorems 1.3, 1.4, and 1.2, we see that the problem ol maxi-
mizing |A,([)] over the classes (', T', and P reduces to the problem ol maximizing
the values of [A,(cp)] (0 € [0,27)), |A.(ta)] (0 € [0,7]), and | A, (pe)] (0 € [0,27))
over f, respectively.

In the following theorems we evaluate the values of A, (cp), A,(tp), and A, (po).
where 4,(f) is given by (2.7). We need to use different countours for different

quadrants ol 4. So each theorem includes one quadrant of 4.

Theorem 3.1 [f co(z) is given by (L.3) then

7!'2 .—i()((,inrv((?) . 2—‘2”6-1'110(0))

TR R (1 — 2 (1 + K — 2k cos 20)'7°

I

Anles) 0<6<

s (”‘ = 09 la?-'#”')

1y

A\

L

T
where 0 < a(0) < ;)— is given by

TT

diln?2
] .

T

N=c¢ <0<

with =

@lcos (a(f) +

N

. o . . , Tr
Prool: The function cos z maps the rectangle I? with vertices at the points ——,

T — Ell’ 7r+7r—|r, and E-E onto E. Therefore the function ¢(cos z) maps R onto A(0.1)
with
eleos(a(t) + =) =™, 0<i< T (3.2)

where a(1) increases from 0 to % as t increases from 0 to E)

Integrate the function h(z) = co(p(cos z))e™ over the parallelogram ABC'D
with vertices at the points —m, 7, rr. and 77 — 27, respectively. From (3.2) we see
that o(0) + I{- is a pole of h(z) inside ABCD.

Let

IK'=Kr
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. 1 . .
and refer to sn | z; TG as sn z for convenience. Then

a,o(cos(rrr——r))—\/’911<2—::<§—7rr+ ))—\/——sn(z—”—( )),

since sn z is doubly periodic with periods 20" and 4K, Thus

w(cos z) = @(cos(—z)) = p(cos (71 — 2)). (3.3)

It follows from (3.3) that —«(0) + 17—;—7—- is the other pole of h(z) inside ABC'D. So

by the residue theorem

hz)dz = 2ni(Resqgy4 2 + Res_, anr 3.1
]{1500 1(z) ¢ mi(Resqo)rzr + Res_ )4 : ) (3.1)

where Res, denotes the residue of the function 2(z) at the point = = zq.
The contribution of the integrals on BC' and DA cancel each other becanse h(z)

is a periodic function with period 2. Now
/ h(z)dz = hx)dr = 2/' col@(cosa))cos na da (3.5)
AB - 0
and
2T
/ h(z)dz = /r(z+7r7'-—2n')rlz —/ h(x+ 77)da
D Jar ‘

From (3.3) we obtain

2r . T
/ hz)d= = -—/ M) oo (p(cos ) de = 2 - 27 / co(p(cosa)) cosna da.
JD 0 0
(3.6)
Then adding (3.5) and (3.6) results in

AB('D W(z)dz = 2(1 2-"")_/U colp(cos ) cos na di. (3.7)
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To evaluate Resy(g)+zz, expand the function co(VEosu(u + o)) about u = 0,

where

2K (w T " o
iy = 7{'_ <§ - (.\(0) faad —4—) . (-S.b)

The addition formula for snu [8, p.33] yields

= RUASAUR R L (3.9)
1 — k3 sn2ugsn 2u

Vo snwenug dnuy + Vg snugenudnu
kosn (u 4+ up) =

. 1 1 . . .
where en z and dn 2 reler to en { z; 6 and dn [ z; o) respectively. It follows from
) )

(3.2) that

- 4 .
Vikesnuy = e o 0<h< 5 (3.10)
To evaluate cnuy and dnug employ the identities
snlz+en?z =1 [8,p.25 (3.11)
and
kdsn?z +dn?z =1 [8.p.25). (3.12)
To determine whether to use + or — sign lor enug and dnwg check the signs of

Refen(a — %)} and Re{dn (v — '—’3‘—')] respectively. Deduce from the addition for-

mulas lor cnw and dnw [8, p.34]

en (o — '_{L’ L+ ko enw +isnwdna
" 2 ) ko 1+ kg sn 2

N iK' VI + Fo (dna + thgsnaen )
' - 14 kysn2e )

and

Thus Re{en(x — ’—’}‘-')} > 0 and Re{dn(x — 112‘—')} > 0 for @ € [0.K] since ena

decreases from | to 0 and dna decreases from 1 to /1 — k2 for v € [0. N]. Hence



using (3.11) and (3.12) we obtain

cnug =14/1—

and

dnuy = /1 — koe20,

("hoosing the principal branch as —7 < argz < 7 we oblain

0 <arg(enug) < E)
and
™
0 <arg(dnug) < T
Therefore

3
0 < arg(cnugdnug) < T

which imiplies

\//.r_ocn ugdn ug = i€ (1 + k2 — 2y cos 2())]/2. (3.13)
Using
shu=1u— -%T(J + k3 4o [8, p.37], (3.1.1)
cnu=1- i)l-!-uz + - [8, p.37], (3.15)
dnu=1- j—'l.'f,uz + 8, p.37], (3.16)

and (3.13) in (3.9) and doing necessary calculations result in
Vhosn (v + ug) = e 4 ie™0(1 4 k2 = 2y cos20) P 4 -+ (3.17)

Thus

,'(_,—i()

7 +
(I + kg — 2ky cos 2())'/211,

(‘o(\/l.r_usn (v +uy)) =
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or

2K (rm mie i
¢ kg sn (— (7 - :))) =— , +
! (\/7 To\2 2K (L + k2 — 2k cos 20) % (= — a(#) — Z2)
4

llence we oblain

”ie—i():z-—rt eincr(())

2K (1 + kE — 2ky cos 20)"/%

Rf.’sn(o)+.7_r4_t = - (3.18)

- . . ] 3rr .
In a similar way, residue of i(z) at the poinl —a(8) + [ Inay he obtained as

7r?'(_7—-;'0-‘2»3116,—1'110'(())

Ros_ gy, amr = : (3.19)
O+ 7 9K (1 4+ k2 — 2ko cos 20)/°
Substituting (3.18) and (3.19) into (3.1) yields
2 ‘-—iﬂz—n . . .
% /).(.:') ds = : 7(' € 73 enm(ﬂ) - 2—2116—-1110'(0))' (32())
JABCD K(1 4 k% — 2k cos 20)

Comparing (3.7) and (3.20) gives the desired result.
For # in other quadrants, proofs are similar to the proof ol Theorem 3.1. There-
lore we will state the theorems and then in the prools indicate only the integration

countours and poles of /h(z) inside the countours.

Theorem 3.2 [f cy(z) is given by (1.3) then

(_] )n.n.'ze—w(C—incv(zr-—ﬁ) —9-2n (f.irm(rr—())) T

AR /T (1 = 2-4)(1 + k% — 2ko cos 20)"/%" 2

Anl(cp) = <0L<m, (n=0,12,--),

where a(0) is as in Theorem 3.1.

Prool: Integrate the function h(z) = cp(p(cosz))e™ over the parallelogram

ABCD with vertices at the points 0, 27, 37 + 77, # + 77, Inside ABC'D there are

3
two poles of h(z) at the points ¥ — a(x — ) + f% and 4+ o(m — 0) + -—EI
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Theorem 3.3 If ¢g(z) is given by (1.3) then

. 2,.—i0f ina(0~r) _ o—2n ,—inc(6—r)
(=1)y'm2e"(e 27" )

3r
r<0< - (n=0,1.2,--+),

‘4"((‘ )= B
T N T (L= 2-1)(1 + k2 — 2k cos 20) 72 2

where o(0) is as in Theorem 3.1.

Proof: Integrate the function h(z) = cp(¢(cosz))e™ over the parallelogram

ABCD with vertices al the points 0, 27, 37 — w7, and 7 — 7. luside ABCD | there

3
are lwo poles of h(z) at the points # — o(f — 7) — Z-rf- and 7+ a(f —7) — —?.

Theorem 3.4 [f co(z) is given by (1.3) then

7!'26_{0 6-—1’110(‘2#—9) . 2—271€i11(v(‘27r—0) 37
- ( . )1/2, — <0<2r, (n=0,1,2,--
AT (L — 2797) (L 4 kE — 2kg cos 26) 2

1"\11((:0) =
where o(@) are is in Theorem 3.1.

Proof: Integrate the function h(z) = cp(@(cosz))e™ over the parallelogram
ABCD with vertices at the points —m, 7, —7r, and =27 — m7. Two poles of h(z)
Irr

occur at the points oo(27 — ) — 111 and —a(2r — 0) — -/

Theorem 3.5 If pp(z) is given by (1.2) then
An(pe) =2A,(ep), 00 <2, (n=0,1,2,---).

The proof is similar to the proofs of Theorems 3.1-3.1.
Since the function

tol=) = I —2zcos0 + z2°

0<0<r

has a double pole at # = 0 we will treat this case separately. (Note that for § = 0,

19(z) becomes the Koebe [unction.)



Theorem 3.6 If k(z) is given by (2.1) then

T3

T BIRo (L— ho)P(1 — 2-2)

Proof: Integrate the function h(z) = k(p(cos z))e™ over the countour used in

n

An(k) (”‘Z 1.2,)

the prool of Theorem 3.1. Inside the parallelogram ABC D, there are two double

) . T Inr .
poles of h(z) at the points T and - So by the residue theorem

f{ h(z)dz = 27i(Reszz + Resarr). (3.21)
ABCD 1 1
As in Theorem 3.1,
]{ h(z)dz =2(1 - 271 /7r k(@(cosa)) cos na da. (3.22)
ABCD Jo

_ A .
To find Reszz expand k (\/qu sn (u + K — %—)) about u = 0. Doing necessary cal-

culations we obtain

(Vo (55(5-2))) = TIRHI - k::’(s BEILANE —U—.—) Fooee B2

T
Writing
et = 27 M) = 27| i (: - f}) +-] (3.21)
and multiplying (3.23) by (3.24) yields
2
Reszs = 27" in——— (3.25)

n— 5
AR2(1 — hy)

o : \ Irr . :
In a similar way , residue of h(z) at z = T s obtained as

7('2

Resanr = —273%p
1

AR = ho)*
Substituting (3.25) and (3.26) into (3.21) yields

RN o-2n
f hz)de = TP2UA 2T (3.27)
ABCD 2R2(]1 = ky)

Equating (3.22) and (3.27) and solving for A, (k) gives the desired result.
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Theorem 3.7 If1y(z) is given by (1.4) then

72 sin na(0)

AR Ty (1 — 2-2)sin O(1 + kZ — 2k cos 26)'/?

1=

0<o<

An(’(’) » (= 1,2,---)

3

A\

t

where o) is as in Theorem 3.1,

Proof: Integrate the function h(z) = 14(¢(cos 2))e™* over the rectangle PQRS
with vertices at the points —m, 7, — 7 + a7, and —x + 7. The poles of h(z) ocenr

al the points = for which

pleosz) =€, 0<0< < (3.28)
and
pleosz) =, 0<O< T (3.29)

&~

We [ound in Theorem 3.1 that solutions of (3.28) inside PQRS are a(f) + F—IT and
3 .
—a(0)+ —7:1 Similarly, solutions of (3.29) inside PQ RS are found to he —a(0)+ 7r_lr

3 )
and o(0) + %7: So by the residue theorem

fPQnS h(z)dz = 2mi(Resqy(o)+ 2z + Res_, gy g2z + Res_qqo)pzr + Res, g)422z). (3.30)

4

By periodicity ol h(z) integrals over QR and SP cancel each other. We have

/ h(z)dz =2 /7T ta(@(cos ) cos na du (3.31)
Jrq Jo
and

/ns hMz)d: = /mT to(w(cos (2 + w7)))em ) gy, (3.32)

Using (3.3) in (3.32) gives

/' hz)dz: = =2.2™™ / to(p(cos ) cos na d. (3.33)
JRS J0
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Adding (3.31) and (3.33) yields

f h(z)dz = 2(1 — 27 /’r ta(p(cosx)) cos na dar. (3.31)
PQRS v
It follows from (3.17)

1
5 +
2sin H(1 + k2 — 2kg cos 20)1/2

I(,(\/Esu (1 4+ up)) =

where uy is given by (3.8). Hence

Fg—rteinn(())

A1 sin O(1 + k2 — 2kg cos 20)7%

11@504(0)4.1'4_1 = - (3.35)

To find Rcs_n,(g)_,_g%r; expand the function tg( ko sn (v + vg)) about v = 0. where

2K (7 T
w= (5 +e =)

The addition formula for the Jacobi elliptic sine function gives

\/Z;su (v + vo) = Ve (sn v en g ('ln vg + snvgenvdn 'v). (3.36)

L — k2 sn2vysn 2v

We lave

Vkosnrg =€, 0<h<

|

By using addition formulas for ¢nuw and dn v we can easily show that

ot

Re {(‘n (;v - "h,f\ )} >0
R AL

Re {(ln (:v - 31‘5\ >} <0

for N <a <2K. lleuce it follows from (3.11) and (3.12) that

and
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and

dnvg = —y/1 — kye—248,

Therefore (3.13) results in

Vs envgdnvy = —ie™ (1 + 1.73 — 2ky cos 20)1/2.

(3.37)

Using (3.11), (3.15), (3.16), and (3.37) in (3.36) and doing some manipulation gives

\/Z?;Sll (v +vy) = e~ —je~(] + Ie2 — 2y cos 2())]/21» + -

Thus

1
To(\/kosn (v + n)) = — 7,
0 \/—; o)) 2sin O(1 + kg — 2ky cos 20)'/*v

As a result.
kil C—incv(())

Res_gypane = 2
a(f)+% AN sin (1 + k2 — 2k cos ‘2())'/2

Choosing a principal branch we obtain

ky — €20/ — hge?i® = —it‘io(l + k2 — 2k cos ‘.2()):1"/2.
0

Then using the above argument with (3.39) gives

.n.‘)—ne—inc\'((?)

A sin 0(1 + kG — 2kg cos 2())1/2

]Z(ii-S_a,(g).szzr_ =

and
7!'2—3" eirm((l)

AR sinf(1 + k2 — 2y cos 20)'/%
Substituting (3.35), (3.38), (3.40), and 3.11) into (3.30) yields

Res_oppagz = =

7{ (2) ds = w227 (L + 27 sinna(h)
Jrers T T K sin (1 + k2 — 2y cos 20)'

Lquating (3.34) and (3.42) gives the desired result.

(3.39)

(3.10)

(3.11)
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Theorem 3.8 Ifig(z) is given by (2.1) then

(=) ' x2sinnfa(r — 0))

K sin (1 + k2 — 2y cos 20)'/%

An( f()) =
where oo(#) is as in Theorem 3.1.

Proof: Similar to the proof of Theorem 3.7.
In the following three theorems we obtain sharp bounds for the Faber coeflicients
of functions in the classes C'(E), P(F), and T(E). We first neced the following two

lemmas:

Lemma 3.1 If «(0) is given by (3.2) then o'(0) decreases as 0 increases from 0 to
m/2.
Lemma 3.2 [f a(f) is given by (3.2) then

| sin nar(9)] ™
singd T 2K(1L — ko)’

<
IN
IA

]

Prool of Lemma 3.1: We have from (3.2)

2K (m T s =%/ Vko di
——<7——(_\(0)—~——>=su —F= =/ .
T \2 4 Vo v VI—#2 \/1 — k3

Hence we obtain

_—i(? ]
o) = £ , .
Vo 2K -—2if
° \/ L= VT =T
"

Thus it follows rom (3.13) that

T

AK](1 = ko) + Ak sin? 0%

o'(0) =

<
IN
<
IN
[
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Hence
2kym sin 20

«"(0) = — : <
K[(L = ko)? + dho sin? 0]

. T .
since 0 < 0 < —, and Lemma 3.1 follows.

<

N

Proof of Lemma 3.2: Let
g(#) = ’(0)sinf —sina(f), 0<0< -7;

It follows [roin Lemma 1

g'(0) = a’(0) cos 8 — a’(8) cos a(#) > o’ (0)(cos 0 — cos o (0)).

(3.:13)

' . . us . . (s
Since a(f) increases from 0 to 5 as # increases from 0 to 5 and a’(#) decreases as 0

~ -

. . T
increases from 0 to 5 We have

]

af) >0, 0<0<n/2

Thus it follows from (3.43) and (3.44) that ¢'(#) > 0, i.e.

sina(4) , T
<a'(l) = ——.
sinf — a'(0) 2K (1 — ky)
Hence (3.45) yields
|sinna(8)]  |sinna(0)]sina(f) nw
sinf sina(0)  sinf T 2K() — k)

which completes the proof of Lemuma 2.

Theorem 3.9 If ¢(z) = cy(z) = 1—:: and [ € C, then

7.‘.2

- 41\-2\/1\_(;(1 —_ ];0)(1 + 2—211)"

L)) < Ayle)

(n=0,1,2-").

(3.41)

(3.45)
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Proof: Using (3.1) with F = C and Theorem 1.3 it is enough to show that

()252)2(" |/111(60)' = Au(c).

We will give the proof for only § € [0, ;7;] For other values of # proofs may be

given by using either Theorem 3.2 or Theorem 3.3 or Theorem 3.4 depending on the

guadrant of 9. Using Theorem 3.1 it suflices to show

(1 —272)2 4 4. 272 in? pr() <= o-2n)?
(1 = ko)? + dkysin? 0 () = kg)?

or equivalently

sin? na(f) ]‘,‘.022"(1 — 9=2n )2
sin’d — TEYRE

. (= 1,2,00).

It follows [rom Lemma 3.2 that

sin®na(0) m2n?
S0 = LKL — ko)

(n=1,2,--).

Thus the proof is completed if we show

: —2ny2
7‘.2".2 < ,1,,,02217,(1 -9 211)

AR = ho)? = (1 = ko)?

, (n=1,2,..9)

or

n -~
I'he sequence {

(n=1,2,.-")

(13.10)

which completes the proof for n =1,2,.--. We may include n = 0 since (3..16) holds

trivially in this case.
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~

: +i and [ € P, then

Theorem 3.10 If p(z) = po(z) =

[N < Aup) =244(e). (n=0,1,2,---).

Proof: Using (3.1) with F = P and Theorem 1.2 it sullices to show that

UJ<1}a‘< |A,,(179 I = A, (po) = Au(p).

Henee Theorem 3.10 {follows from Theorems 3.5 and 3.9,

Theorem 3.11 If k(=) is the Kocbe function and [ € T', then
mn (n

I/‘u(./.)l S ‘4‘11.(1‘7) I ";\/l_'(l _ l\() 1 - - 2”)

(Nole the proof for n =0 is given in Theorem 2.2,
Proof: Using (3.1) with F = T and Theorem 1.4 it is enough to show that

“lyﬂ\ l l” f() I— A (f()) = ‘n(l\)

We obtain from Theorem 3.7 and Lemima 3.2

|4a(tg)] < al <0< =
TS SRR (1 = ko)(L— 272 ) (1 + k2 — 2k cos 20) 7 T2
m™n
q]\’\/iu_(].—-l\u l—) 2")
Henee

|“‘ln(l0)’ < An(k)* <0<

[N

e . . - . .
Proof lor 5 < 0 < 7 lollows from Theorem 3.8 in the same way.,

4

Note that here we also showed that

}7‘_']& /}\11(/0) = /‘ln(/")-
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Theorems 3.9 and 3.10 show that Conjectures 2 and 3 made in Chapter 2 are
true. Theorem 3.6 implies that Conjecture 1 may be written explicitly as
™n

SI3 kg (L — kg)2(L = 2-2n)’

l“n(ll)l < (” =1,2,- ')v / €N

and

Ao(f) € Ao(k) = 105984, [ € 8.

Prool ol this conjecture for the cases n = 0, 1,2 are given in Theorems 2.1, 2.2, and
2.3, respectively.
To replace Conjecture 4 hy an explicit conjecture we evaluate A, (o) where o(z)

is given by (2.1).

Theorem 3.12 [[ o(z) is given by (2.4), then
2

T
A0 = I e T R 5 2]

{(n=1,2,---).
(Nole we showed in Corollary 2.2 that if f € S® then Ay (f) =0.)

Proof: Integrate the function h(z) = o(@(cos z))e!™ over the parallelogram with

) ) T Tr T T )
vertices at the points = .¥7r——;, 7r+T. and —7r+—5—. Inside the parallelogram,
X - ©.rr T 7T o
there ave four poles of h(z) at the points Rk + T 77 and 2r — T I'he rest

of the prool is similar to the prool of the Theorem 3.7.
We now restate Conjecture 4 as follows:
It /e S then
72

AR 2o (1 = ko)1 + 2-n+2)°

| A ()] < (n=1,2,--+).

Note that the proof of this conjecture for n =1 is given in Theorem 2.2,
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CHAPTER 4. CONCLUSION

Summary

In Chapter 2, we found sharp bounds for the Faber coefficients Ay, A;, and A, of
functions F'(z) in the classes S(E), C(E), and P(L). We also found a sharp bound
for the Faber coeflicient Ay of functions I'(z) in the class SC(E). In addition, we
oblained sharp bounds for certain linear combinations ol the Faber coeflicients of
ltmctions 7(2) in the classes (1), C(F), P(E). and SG(E).

In Chapter 3, we obtained sharp hounds for the Faber coellicients A, (n =
0.1.2,---) of functions F(z) in the classes C(£), P(£), and T'(E). Then we made
conjectures for hounds of the Faber cocfficients A,,, (n = 0,1,2.--) of lunctions ()

in the classes S(E), and SP(E).

Future Work

Two conjectures made in Chapter 3 arve future research problems. We will men-
tion some other future work problems aboutl “Faber transformations.”
Let © be bounded, simply connected domain in C with analytic bonndary and

let {®,(£)}7Z, be the Taber polynomials associated with Q. 10 f(z) = Y a,2" is

n=l)
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analytic in A0, 1), then we define the Faber transformation of f(z) by
0
T(f(=)N(&) =1 = Z an®,(&).
n=0
By Theorem 1.0.9, the Faber transformation of f(z), I'(£), is analytic in Q. It is clear
that il (=) is a polynomial of degree n then so is [(£). Ellacott [9] showed that il
J(=) is a rational function then so is F'(€). So il is natural to ask whether a property
ol f(z) is preserved by the Faber transformation. Johnston [11] showed that if f(z)
is analytically continuable across a subarc of |z] = 1 then so is F'(€) analytically
continuable across a subarc of Q. Now we ask the following three luture work
problems: A
. If f(z) € H"(A(0.1)), (p > 0) (sce [8]) then is there a ¢ > 0 for which
F€) e Q)7 Il so, what is the best value of ¢?
2. 1f f(5) is dilferentiable on A(0, 1) then what can be said about differentiability
ol F'(&) on 17
3. 1 f(=) is univalent in A(0,1) then what can be said abont univalence of £(€)

in Q7
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APPENDIX JACOBI ELLIPTIC FUNCTIONS

In this section we give a summary of some ol the basic properties of the Jacobi
clliptic functions. (See [13, Chapters 1 and 2])

We first need Lo introduce four theta functions:
Theta Functions

Definition The first theta funclion 8,(z|7) for = € C, In{r} > 0 is defined by the
SETICS

0i(z7) = —i Y. (=1)"exp{i[(n + -‘!)-)27r7' + (2n + 1)z]}.

N=-—-Co

Let ¢ be defined by the equation ¢ = ¢'™". Since Im{r} > 0 we have |¢| < 1. The
parameters 7 and ¢ are called the parameter and nome, respectively, of the 8,(z|r).

Dependence of 8,(z|r) on the nome ¢ is shown by

-~

Oi(z.q) = —i 3 (=1)gmtaleinthe, (A1)

nN=—20
The series on the right hand side of (A.1) converges uniformly for Vz € C since
lg] < 1. Using the identity

¢ =cosa +isina

we obtain from (A.1) another representation of #(z, ¢):

Oi(z,q)=2 Z (—J)”q(”'"%)2 sin (2n + 1)=.

n=()
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It is clear that 0,(z) = 0,(z|r) is an odd, entire, and periodic function ol z with
period 2w,

Definition 7he sccond thela function, 0,(3). is defined by

T e 112 ] .
) — - . (n+3)° (2nd1)iz
02(~)—91(~+§) = 3y, ¢"*Ve
N=—xr
o 1y2
= Z ¢z cos (2n + 1)z,
n=(

Henee 0y(2) is an even, entire. and periodic function of = with period 27,
Definition The fourth thela function. 04(z). is defined by

Oy(z) = Z (_l)nqn?czn,':

n=—x

e}
= 142 Z (-1 )”q”2 cos2nz.
n=1

Note that 04(z) is an even, entirve, and periodic function of = with period .
Definition The thivd thela function, 05(2), is defined by veplacing = by =45 in 04(=).
i.r.

T Eal .
03(:) = 0.1(: -+ T)") = Z (1712(_?21”~

N=—=n0

I

s
2
142 Z q" cos2nz

n=1

Note that f4(z) is also an even, entirve, and periodic function of = with period .
. . . 95y —1 . . .
Because of the identity 0y(z 4+ 77) = —(qe?7)” 0,(2), 1 is called a quasi-period
of 0y(z) with periodicity factor —(ge?)™". Writing A = ¢ and 1 = ¢7¢/7 it is casy

o verify the following identities:

Mhiz)==O0(z+m7)=-M{z+7r)=M(z: + 7+ 77). (\.2)

02(2) = =0y(z +7) = My(z +77) = =My(z + 7+ 77),



Os(z)=0s(z+7) =A0s3(=+77) = N3(s + 7w+ 1),

O01(z)=04(z+7m)==Ny(z+77)=~-A0y(z+ 7+ 77),

i . TT . i TT
01(;’) = —(}2(: + ;) = —7[_[04(.: + —‘-)—') = —7[[03(5 + ; + T
T mT s T
Oa(z) = 0iz + 5) = ubylz + ) = plal= + 5 + )

]

TT m TT
)= gz + ) = b (4 5 + ),

4

¢

t

. T . T
04(z) = Os(z + -g) = —iplh(z + —.)I) = —iply(z + E) + =)

).

It follows from 0,(0) = 0 and (A.2) that the zeros ol #,(2) occur at the points

: = mr + nrr where moand n ave integers. The zeros of the other three theta

[inctions can then be obtained from equations (A.1) as follows:
1
03(z) =0 when =z=(m+ 57 +nrr,

[ |
As(z) =0 when 2= (m + ;;) T+ (n+ ;)TFT,

l
04(z) =0 when z=mr+ (n + ;) TT.

Jacobi’s Elliptic Functions

Definition The Jacobi's dliptic functions snu,enu. and dnu are defined in ferms

of the thela functions as [ollows:

U
O:(0)V0, | ——
3(0) 1(03(0 )

0,(0)0, (”’.;('0))

sSnu =




1/
04(0)0, ( _ )
enu = T \G)
u )’
0,(0)04 | —
100 g5
u
Pt (0%((»)
dnu = ' .
u
03(0)0.
3(0) 1(03(0))

"~ Definition The modulus and complementary modulus of the Jacobi clliptic functions
tre given by the formulas | 03(0) md & 03(0) ! lirely
ore qive e jor 1S Ky = — ni N = — , respectinetyy.

qiren 0y Jori \ 05(0) ( 0;§(U) peclively

The following identities can be found in [13]:
1\'5 + k%= L,

sy 4 cnlu =1, (A.8)

du?u + k2sn?u =1, (AY)

dn?u — kg en?u = k2

Definition The constants K and K', are defined by the velations K = 1x03(0) and
N = Kr.
Zeros of snu, cnu, and dnu
u u
Zeros of snu, enu, and d cur at the zeros of O | ———1]. 0, [ ——]. and
eros of snu, enwu, and dnwv occur at the zeros of 0, (()ﬁ(l))) 2 (0:5(”)> e
"

0y (W) respectively. Thus it follows from (A.5). (\\.G), and (\.T) that
3

snu=0 when u=2mhk +2ink’.

cnu =0 when u=2m+ 1)K +2ink’.
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[

dinuw =0 when w=02m+ 1)K +i(2n+ )K"

Poles of snu, cnu, and dnu

The Tunctions snwu, cnu, and dnw are analytic for all complex numbers w, except,

those satislving 0, (

[
03(0)

lunctions snu, enwu, and dnw occur at the points v = 2mh +7(2n 4+ 1)K,

) = (). Hence we deduce from (A.7) that the poles of the

Double Periodicity of the Elliptic Functions

1t follows from the definition of the function snu and the periodicity of the functions

O1(u) and O4(u) that

. u4diN u )
0400 _ 04000 | —— +2
3(0)0 ( 7 (0) ) B 3(0)0, (0%(“) + 7r)

+ I[\ = = Ssnu
U ¢ 1
0,004 | —5— 0:(0)0 | = 2

sn(u+ 1K) =

In addition, nsing (A.2) and (A.3) gives

05(0)0, (b‘zi(l(T) + TI'T>
3

= Ssnu.

u

()2(())04 (W + 71'7')
3

sn(u+2kK'") =

Thus snu has two periods given by 4/ and 21 K.
It may be shown in a similar way that cnw has two periods given by 4/ and

2R+ 21K and duu has also two periads, given by 2K and 1717,

Period Parallelogram
Suppose an elliptic function f(z) has two periods 2wy and 2wy, Let §,,, = 2muwy +
2nmwy where m and nare integers. A parallelogram with vertices at the points §,,.,.

Qi gt and Qo0 is called a period parallelogram. Two points = and w
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with = = w (mod 2wy, 2w,) are called congruent points. Thus for each pair of con-
gruent points = and w we have f(z) = f(w). Hence f(z) is completely determined

by its values inside and on a pair of adjacent sides of a period parallelogran.

Addition Theorems
We state the lollowing addition theorems for snu, cnu, and duw. Proofs of these
identities can be found in [13]:

snuenvdnv +snevenudnu
su{v+ )= P 5 \
L — késn2usn?e

enuenr —snusnrdnudne

enfu4rv) =

1 — k3sn2usn?o

and

dnuwdne —k2snusneenuene
du(u+v)= .

L — kdsn2usn e
Maclaurin Expansions of snu, cnu, and dnu

The following formulas for the derivatives of the functions snw, cnu, dinwu can be
g2 \

found in [13]:

d
—snu=cnudnu, (A.10)
du
o
—ocnu = —snudnu, (A1)
du
d
—dnu = =kisnu enu, (A\12)
du

Repeated applications ol (A.10), (A.LL). and (A.12) and using sn(0) = 0.
en(0)y =1, dn(0) = 1 yield

1 9\ . -
s =u— _;—'(1 + k3’ + ri'(l + LS + kg™ = - - -
B Y



cnu=1-— —l—u2 + l([ +4k§)u" —_

21 41
and
nmu=1- —1-/"21(2 + lA'z("l + k2 .
dnu= Siho ito o) .

Elliptic Functions with Imaginary Argument
The formulas given below can be found in [13]:

csn (u, k) . su (T, hg)

o ,. o _— L 1 1/ = — .
s (iu, ko) =1 en (u, k')’ s (. ) Fen (1u, ky)
TN S oy =
en (i, by) = ) cen(u, k') = S
P dn (e, &) o dn (7w, ky)
dn (iu, ky) = en (w7 du(u, k') = o o)

Inverse Jacobi Elliptic Functions
The restricted function

y=sn(x,hy), 0<a<Hi
is -1, and hence, will have an inverse. Writing
w=sn"t(x, k) implies snw=2a, 0<a <K, 0<a<l.

Henee (AJ0). (A.8), and (A.9) yield

la —
ﬁc—:,—' =cnwdnw = \/(J —a?)(| — kda?).
Thus
a H
sh _l(:l'./..'(,) =w= / ¢ ) <
voVT =3 /1 - k3
In a similar way we obtain
! It
cn N ky) = / ‘ 0<ar <.

v 1= ,2\/;|./2 + /\.3,2'



