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CHAPTER 1. INTRODUCTION 

Robotic arc welding is one of the fastest growing applications of industrial robots. 

Robotic arc welding operations provide flexibility for accomodating a family of prod­

ucts and are capable of providing consistent quality welds [Lane 1987]. The use of 

arc welding robots in small volume production is limited due to the time-consuming 

preparation of the welding process: programming the robot motions, specifying 

the process parameters for the weld schedule, and fixturing/positioning the work-

piece. This research presents a solution to these problems by means of an integrated 

"computer-aided engineering environment" (CAEE) that will automatically generate 

robot arc welding programs. 

Since the late 1970's, arc welding robots have been used primarily in the high 

volume industries such as automobile and farm equipment manufacturer. The ma­

jority of robotic welding installations fabricate relatively large batches of selected 

workpieces that are classified as "primarily robot-attractive." It is obvious that the 

principal reason for using arc welding robots is not their flexibility but the short­

ened cycle times compared to manual welding [Zimmerman 1990]. This seemingly 

contradicts the initial purpose and the advantages expected of industrial robots -

flexibility. However, serious practical limitations exist pertaining to the fixturing of 

the workpiece and the programming of the robots for use in small volume production. 



The robot industry has matured over the years and steady improvements are being 

made towards increasing the flexibility of application. 

The common methods of robot programming have been: (1) by teaching, (2) 

by means of a high level textual language, (3) by means of a graphical off-line pro­

gramming system. Robotic arc welding systems have been programmed primarily 

by on-line teaching. Although it is relatively easy to learn "teach pendant program­

ming", as problems become more complicated (as in typical arc welding workcells), 

the programming time increases dramatically [Charny 1984]. The robot is occupied 

during teaching and the selection of proper parameters, both geometrical and tech­

nological, requires qualified personnel. This problem led to the development of high 

level textual languages such as VAL, RAIL, AML, and MCL [Gruver et al. 1984]. 

Although program logic can be developed without the use of robots, or prototype 

parts, the spécification of the coordinates for the movement of the robot is typi­

cally attempted by teaching. Furthermore, there are no means of explicit selection 

of welding process parameters and there is no way of debugging the program with­

out executing the program on-line. In response to these concerns, graphical off-line 

programming systems are being developed to generate simulation methods, graphical 

debugging procedures and layout techniques for robot workcells. However, programs 

generated by off-line programming systems are not used directly in arc welding work-

cells due to the inaccuracies of wire impingement on the workpiece relative to the 

robot tool center point. 

Furthermore, contemporary CAD systems do not produce a complete product 

definition. The lack of complete data in the computer-aided design (CAD) database 

does not permit the necessary reasoning and automatic generation of process param­
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eters for the welding schedule. Rather, the information is provided in the form of 

low level geometric primitives from which higher level abstractions cannot be easily 

inferred and does not also include specifications of welding features. As a result, even 

though various systems have addressed parts of the problem, robot programming for 

arc welding is still primarily undertaken by lead-through teaching methods. 

Research Goals 

Few attempts have been made to provide systems for automatic programming of 

arc welding robots. Also no attempt seems to have been made to provide complete 

definition of the weld features in a CAD database, or to use the geometric modeling 

system as the core for the automatic programming system for robotic arc welding. 

Furthermore, a mapping shell to generate welding procedures based on a CAD repre­

sentation has not been attempted. Continuous path planning of an integrated welding 

robot and positioner has received very little attention. The overall objective of this 

research therefore is to build a computer-aided engineering environment that will 

generate robot arc welding programs automatically based on the geometry, process, 

and kinematic constraints. This sytem will eventually assist in the utilization of arc 

welding robots in small series production. The specific goals of this study are: 

1. To develop methodologies and data abstractions by which all weld feature in­

formation will be encapsulated and incorporated in a solid modeling system 

based on constructive solid geometry; 

2. To develop a methodology for the acquisition and representation of gas metal 

arc welding (GMAW) process knowledge and a mapping shell for the auto­
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matic selection of the welding schedule based on the geometric and kinematic 

constraints; 

3. To develop a method for planning continuously the trajectory of an integrated 

5-axis robot/2-axis positioner; 

4. To implement a prototype system based on the methodologies developed and 

to validate the system response with those of robotic welding experts. 

Dissertation Organization 

The second chapter of the thesis presents a literature review. The review fo­

cuses on three areas: contemporary efforts in modeling systems to incorporate high 

level geometric information, expert systems for welding, and trajectory planning and 

kinematics for automatic robot programming systems. 

Details of the data abstractions and the representation of weld features and att­

ributes in a solid modeling system are provided in Chapter 3. Chapter 4 explains 

the weld process knowledge mapping system, along with the methods of knowledge 

acquisition and representation. The implementation of the integrated welding repre­

sentation structure and the weld process knowledge is described in Chapter 5. The 

method of planning the trajectory for an integrated robot/positioner using the novel 

modified continuation approach is discussed in Chapter 6. The conclusions and scope 

for future work are summarized in Chapter 7. Appendices provide additional details 

of the system development. 
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CHAPTER 2. LITERATURE REVIEW 

The research accomplished in this dissertation can be broadly categorized into 

three areas: representation of weld feature information in a solid modeling system, 

development of a novel mapping system for weld process knowledge to obtain pro­

cess schedules, and the continuous path planning of an integrated robot/positioner 

system. This chapter provides a summary of literature in these three areas. The 

first Section reviews efforts in geometric modeling and research related to the addi­

tion of process information in geometric models. The second Section is a review of 

knowledge-based systems in welding, including a discussion of means for acquiring 

and representing weld process knowledge. The final Section describes the status of 

off-line programming of industrial robots and gives a description of the various meth­

ods for obtaining the kinematics of an integrated robot and positioner system used 

typically in arc welding workcells. 

Geometric Modeling For Automated Manufacturing 

Computer-aided modeling systems have evolved over the past four decades, with 

early research propelled by advances in CAM. Figure 2.1 traces the evolution of 

this technology. A discussion of modeling methods is provided in two survey papers 

[Requicha 1980, Requicha and Voelcker 1982]. 
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Figure 2.1; Evolution of geometric modeling technology 



Until the advent of solid modeling systems wireframe modeling systems sup­

plied the base for all commercial CAD/CAM systems. Wireframe was then replaced 

by solid modeling as the most unambiguous method of representing solids. Bound­

ary representation (B-Rep) and constructive solid geometry (CSG) are the two most 

widely used, techniques in current modeling systems. In a B-Rep model, a solid is 

represented by segmenting its boundary into a finite number of faces and representing 

each face by its bounding edges and vertices. The representation is a directed graph 

containing object, face, edge, and vertex nodes. The principal advantage of this 

method is the availability of information, which can be used for subsequent down­

stream applications. CSG relates to a family of schemes for representing solids as 

a boolean construction or a combination of solid components. The representation 

structure is a binary tree where nonterminal nodes represent operators, which may 

be either rigid motions or regularized union, intersection, or difference operations and 

terminal nodes, which are primitive leaves or transformation leaves that contain the 

defining arguments. CSG trees are less efficient than B-Rep, but are highly useful 

for automation from the rough machining perspective since volumes of material to 

be removed are implicitly represented by a CSG modeling system. 

A shortcoming of B-Rep and CSG is that they do not provide means to model 

the effects of a process in the design stage that can also be used in the automatic plan­

ning of machine operations [Devgun and Padmanabhan 1990]. The manufacturing 

information that needs to be incorporated is wide ranging, from materials specifica­

tions to representation of tolerances, surface finish, and weld information which can 

be termed secondary feature information or variational information. Traditionally 

none of this data are held in the CAD database. This gap results in the inability to 
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support automatic querying and retrieval schemes, which in turn inhibit the develop­

ment of automatic planning/programming in the machining, welding, and assembly 

disciplines of manufacturing. 

This deficiency has led to two streams of research effort. The first concerned 

with the extraction of imphcit information from a CAD database, and the second 

concerned with representing explicitly manufacturing information on a solid model. 

However, both efforts lack total automatic planning and programming systems in the 

manufacturing domain. Further details concerning feature extraction are given in the 

paper by Devgun and Padmanabhan [1990]. Representation of explicit information 

is often termed feature-based design and the next Section presents a literature review 

on this topic. 

Feature-based modeling systems 

The prime elements of a feature-based modeling system, so called features, are 

high-order abstract forms or entitites that are used in a reasoning system and are 

related to the topology and geometry of designed artifacts during various design and 

manufacturing activities [Cunningham and Dixon 1988]. The primary purpose of a 

feature is to represent the specific geometric entities of a product. 

Features themselves have been primarily researched in the area of form features: 

those fixed geometries which can be produced by machining operations. Features for 

other areas of application are limited. Pratt and Wilson [1985] laid the fundamentals 

for the functional requirements of a form feature modeler in a solid modeling context. 

Representation in a solid model (both CSG and B-REP) was considered along with 

the conceptual facilities required for manipulating these features. This research set 
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the tone for much of the other related efforts in form feature modeling. At the same 

time, J. R. Dixon and his group at Amherst [Vaghul et al. 1985, Dixon et al. 1987] 

created sets of feature-based design systems (FBDS) for varied applications. Miner 

[1985] developed a prototype solid modeling system to support form features. 

Hummel and Brooks [1986] used an object-oriented programming approach to 

represent features in a hierarchical format. They utilized the features to represent the 

volume of material that must be removed to form the final product from the rough 

stock. A conceptual hierarchical structure for the representation of form features in 

a database was introduced by Gindy [1989]. Shah and his group at Arizona State 

University [1988] extended Pratt and Wilson's [1985] scheme further to implement an 

FBDS for form features. Representational and interpretation issues were considered, 

and a prototype system was implemented for a solid modeling system. Other ap­

plications that have been implemented by this group include tolerancing [Shah and 

Miller 1989], group technology [Shah and Bhatnagar 1989], and manufacturability 

evaluation [Shah et al. 1990]. 

The new generation of feature-based design systems promises to close the gap 

between design and manufacturing. It represents the logical next step from existing 

solid modelers and captures the manufacturers' intent at the design stage. However, 

these systems have certain limitations including the difficulty involved in determining 

a closed set of features. Furthermore, agreement concerning which sets or classes of 

features can represent a modeling system requires compromise. Feature recognition 

and feature-based design systems have been used primarily for form features with 

minor exceptions for casting and extrusion. A considerable number of manufacturing 

disciplines are totally neglected. The scope of the CAD/CAM link should include 
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other manufacturing technologies such as metal forming, unconventional metal re­

moval processes, metal joining processes, and others to enable horizontal integration 

in the overall context [Srinivasan and Liu 1987]. 

Secondary feature representation 

Since CAD models are incomplete, when human manufacturing experts interpret 

geometry, they apply a great deal of ancillary information, analyze the intentions of 

the designers, and so on. This is particularly important when interpreting drawings 

that include tolerances, weld features, and other surface feature information which 

we term as secondary feature or variational information. In order to ensure that 

designs are interpreted unambiguously, standard methodologies have been set up to 

represent information that requires human visualization [Welding Handbook 1984, 

ANSI Y14.5M 1982]. The need for representing this information in CAD models has 

been recognized only recently. There has been active work in representing tolerancing 

information in geometric models [Requicha and Chan 1986, Shah and Miller 1989]. 

However, we are unaware of any research reports concentrating on the representation 

of welding information in solid models. One of the aims of the research presented in 

this thesis is to provide a structure for representing weld feature information. Since 

tolerancing is primarily variational attribute information that is added to geometric 

features, an analogy can be drawn between tolerance information and weld feature 

information. In order to understand the methods for representing secondary feature 

information, the following paragraphs describe the methods used to represent toler­

ance information in CAD models. These will be used to draw conclusions regarding 

the development of a welding representation scheme for solid modelers. 
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Tolerances represented on a drawing include size, form, orientation, position, 

and material conditions. Methods proposed to support tolerances either assume that 

features exist in the model (so that information can be attached to these features), or 

provide mechanisms for constructing features from a solid geometry model to which 

property information may be attached. Shah and Miller [1989] provide a useful sum­

mary classifying these approaches as non-parametric, parametric, evaluated entity 

structures, and hybrid CSG - B-Rep structures. The interest here lies in the non-

parametric and evaluated entity approaches. The non-parametric approach which 

does not assume form features to exist apriori in the model [Requicha and Chan 

1986], is based on a CSG modeler, while the evaluated entity approach used by Shah 

and Miller [1989] assumes that there exists a form feature modeler and attaches 

information to the features so that the meaning of the tolerance can be encapsulated. 

The specification of tolerances by the non-parametric approach refers to eval­

uated geometric entities since the scheme is implemented in PADL-2 [Brown 1982] 

(a modeling system based on CSG). The basic structure proposed for representing 

features and attributes is called a variational graph (VGRAPH) and the structure is 

straightforward. The variational information associated with a solid is represented 

by a graph whose node types are: (1) VFACE: User defined portions of the object 

boundary (2) SFEATS: Surface feature which are group of VFACES (3) VEDGES: 

User defined subsets of an object (4) CFEATS: Curve features such as SFEATS 

(5) ATTRIBUTES: That associated with CFEATS and SFEATS (6) DATASYS: To 

determine datum systems. 

To refer to the faces of a solid and to attach property information, these authors 

have used the 2-D intersection operator to intersect with a virtual object. Tolerance 
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attributes are attached to the VFACES or SFEAT nodes. These nodes provide the 

ability to add six classes of tolerances: Intrinsic, extrinsic surface and curve attributes, 

and measured entity attributes. Each provides a name, data fields, and pointers to the 

respective tolerance classes. In designing the system on PADL-2, means are provided 

for naming .primitive instances and to incrementally create a VGRAPH by path 

names and a bottom-up inheritance mechanism. By using default values, checking 

consistency of centerplanes, axes, and centers of features with nominal geometry, 

and checking the validity of datum systems, the overall validity of the VGRAPH 

representation is assured. Requicha and Chan [1986] provide an excellent solution for 

the tolerancing problem that was not addressed previously. Although many research 

problems in tolerancing still remain, this work provides a good base to modify the 

existing structures of geometric models. 

Another approach of interest is the evaluated entity method which assumes that 

the feature exists in a geometric model. The research of Shah and Miller [1989] 

presents a structure by which the meaning of each tolerance class is encapsulated. 

The tolerance modeler is part of the larger interactive design system that includes a 

feature modeler, solid modeler, and a wireframe modeler. Users access the tolerance 

modeler, choose features and instance the desired tolerance class. The template of 

each tolerance class is a dynamically linked list which provides a list of properties used 

by the class. It refers to the tolerance properties needed, the necessary rules to check 

validity and the means whereby the information is connected for evaluation. Each 

instance class stores the properties of the tolerance class corresponding to the feature-

id (geometric entity). Datum systems are created by referring to the geometric entity 

(feature-id) and the material condition. Although the structure is simple, it captures 
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most of the requirements of a tolerance modeler. However the assumption is made 

that the entire geometry is created by features. For complicated shapes, it is not 

always possible to use features. The non-parametric approach provided earlier is 

better suited for general solid modelers. Nevertheless the structure developed allowed 

certain broad conclusions to be drawn concerning the direction of the work described 

in this thesis. 

Based on published research in describing the representation of manufacturing 

information in a geometric model we conclude that: 

1. Features are primarily created for elements that can be manufactured by ma­

chining (with certain exceptions for castings). 

2. Tolerances are the only secondary feature representation that has been incor­

porated in a geometric model. 

3. Incorporation of weld features and attributes in a solid model has not yet been 

attempted. 

Knowledge-Based Systems For Arc Welding 

Gas metal arc welding (GMAW) is a process wherein coalescence is produced by 

heating with an arc between a continuous consumable filler metal electrode and the 

workpiece. Shielding from oxidation or contamination by surrounding atmosphere is 

provided by a gas mixture [Welding Handbook 1984]. Arc welding operations can 

be manual or automatic. Automatic arc welding can either be hard automated or 

carried out by robots. One important aspect of arc welding is the specification of 
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Table 2.1: Parameters affecting gas metal arc welding 

Product parameters Process Parameters 

Material Type Current 
Material Thickness Voltage 
Position of weld Wire feed rate 
Geometry Travel speed 
Type of joint Electrode type 

Electrode size 
Arc length 
Gas mixture 
Gas flow rate 
Robot tool angle 
Number of passes 
Weave pattern 
Polarity 
Offset for multi-pass welds 

process schedules for a given weld. The parameters that need to be considered in 

GMAW are given in Table 2.1. 

The product parameters are decided by the design engineer and are functional 

in nature. However, the process parameters are obtained typically based on rule-of-

thumb knowledge , data from empirical relationships and experience, and experimen­

tal data. Various methods have been proposed to specify weld schedules and most of 

them depend on empirical data [Tonkay and Knott 1989]. 

In robotic arc welding also, the programming of robots requires considerable 

knowledge of the process. The difficulties in programming arise due to lack of: 

• definition of proper welding information 
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• definition of the orientation of the weld gun relative to the weld joint 

• definition of the orientation of the workpiece when welding a particular joint 

• definition of the proper sequence of welds for complicated shapes 

It is crucial that the details of the weld process knowledge is consistently repre­

sented to automate these steps. However traditional algorithmic approaches are not 

always successful in characterizing the problem and providing solutions. A system 

that can simulate the human reasoning process and be consistent in its solutions will 

be an adequate model. To automate this decision making process, researchers have 

found the most valuable tool to be knowledge-based expert systems (KBES), the best 

developed subset of artificial intelligence (AI). 

The Al-based approach is designed to make decisions or recommendations con­

cerning industrial operations at a level of performance comparable to that of experi­

enced humans [Hayes-Roth et al. 1983]. The field of KBES has been well established 

in the past few years and the basic structure is now clearly understood. Expert 

systems form a significant tool in automating human expertise, and successful stand­

alone systems have been created in many areas of manufacturing [Kumara et al. 

1985]. Manufacturing process control expert systems have been developed in the 

area of welding. The welding expert systems deal mainly with the control of process 

parameters for welding, the control of the nature of the weld, and the maintenance 

of the weld quality. 

Figure 2.2 is a representation of the basic KBES used in welding. The prototypes 

developed are typically structured in two levels of hierarchy; the first level provides 

the supervisory program that serves as the user-interface for receiving the necessary 
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Figure 2.2: Overall structure of a welding expert system 

information, and the second level performs the actual search for the correct solution 

space for the given problem. The module which specifies the process schedule receives 

the user-supplied information concerning the geometry of the weld. On the basis of 

this information, the module searches its knowledge base to provide the solution. 

Acquisition of the knowledge required for building the expert system is the first 

step. Knowledge in any specialty is usually of two sorts; public and private. Public 

knowledge includes the published definitions, facts, and theories from textbooks and 

reference texts. But expertise normally involves more than this public knowledge. 
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Humans generally possess private knowledge that consists largely of rules-of-thumb 

and heuristics that have evolved from experience. In effect, the knowledge acquisition 

is the transfer and transformation of problem solving expertise from some knowledge 

source to a program. The various stages involved in the knowledge acquisition process 

are: (1) identification (2) conceptualization (3) formalization (4) implementation 

(5) testing. The knowledge acquired is then represented by a combination of data 

structure and interpretive procedures. This involves the design of several classes of 

data structure for storing information as well as the development of procedures for 

intelligent manipulation. During the consultation, the knowledge base provides the 

library of logical considerations (facts and rules) that govern the problem domain and 

the inference engine decides on the course of action. The knowledge base is normally 

controlled by the backward chaining mechanism that has the following characteristics: 

(1) goal driven (2) seeks only data needed for the solution (3) instantiates subframes 

on its path to the goal. Forward chaining strategy is normally used to override 

certain conditions and Are priority rules. Expert systems are normally written using 

AI languages such as LISP, or Prolog or by using expert system shells. 

The various expert systems for welding which are commercially available or de­

veloped as prototype systems in universities are given in Table 2.2 [Barborak et 

al. [1991], Cary [1991], and Lucas [1987]]. The common problems solved by these 

expert systems are those of welding procedure generation, diagnostics-realtime and 

off-line, and cost analysis. Procedure generation programs prompt the user for rel­

evant information including joint design, welding process and design characteristics. 

The program then recommends a weld procedure and weld parameters. Diagnos­

tic expert systems obtain information concerning welding process variables and list 
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conclusions concerning probable causes of defects. On-line systems analyze pre-weld 

conditions based on joint design, weld process selection, material selection and others 

while weld phase analysis uses sensors to monitor the process, determining whether 

process conditions need to be modified and changes welding procedures accordingly. 

These systems can at best be as good as the engineer whose knowledge is captured. 

It is based on basic concepts in expert systems and many of these can be classified 

as small-to-medium sized expert systems. Expert systems are useful as a starting 

point for automation but good acquisition and representation techniques are the key 

to simulation of human reasoning. Frequently the reasoning process may not justify 

an expert system. 

Tonkay and Knott [1989] developed a systematic methodology to select the wel­

ding parameters for the GMAW process. The method was incorporated in an expert 

system. The information was gathered from a series of experts in the field of arc 

welding and combined into a single model using statistical techniques. Several imple­

mentation criteria were examined to determine the structure of the expert system. 

The system was validated by comparing specimens welded by using the expert wel­

ding engineer specification and those welded by using the expert system. Encouraging 

results were reported. The strength of the paper lies in providing a systematic and 

detailed methodology of knowledge acquisition procedures and not in the implementa­

tion methods. To date no work in developing arc welding expert systems has detailed 

the means of coordinating knowledge from multiple sources into a single model and 

this topic deserves attention. However, the results of the analysis do not indicate a 

clear need for an expert system. Many of the values needed for arc welding are based 

on certain straightforward considerations and hence the justification for an expert 
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Table 2.2: Summary of KBES application research in welding 

COMMERCIAL AND PROTOTYPE SYSTEMS 

NAME SOURCE 

PROCEDURE GENERATION 

Weld Process Schedule Expert 
System 

Weld Assist 
Steam Pipe Expert System 
Weld Procedure Selection 
Program 

Weldex 
SAW Expert System 
Weld Sctieduler Expert System 
Expert Robot Welding System 

Hathaway and Finn [1986] 

Kuhne, Cory, Prinz [1987] 
Alberry, Taylor, Yapp[l 987] 
Ribeiro, Turner, and 
Farrar [1987] 

Dorn and Maiumder[ 1988] 
Taylor [1989] 
Larson [1985] 
Sicard and Levine [1988] 

DIAGNOSTICS 

Weld Defect Diagnostic Expert 
System 

Miller Expert Program 
CAMTECH 1000 and 
ADAPTITECH 1000 

NEWCS 

Hathaway and Finn [1986] 

Miller Electric Company 
Kerth and Kerth [1984] 

Reeves et al. [1988] 

COST ANALYSIS 

Welding Estimating Expert 
System 

Weld Costing System 

Hathaway and Finn [1986] 

James and Baker [ 1987] 
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system needs further thought. 

From the research described it may be concluded that: 

1. Welding process knowledge is claimed to be complicated and not to fit tradi­

tional algorithmic approaches required for the development of process schedules. 

2. With one exception, no published research details any standard methodology 

of knowledge acquisition and representation for arc welding. 

3. Expert systems have been created in specific domains of arc welding to provide 

schedules, without any direct coupling to the CAD system that designed the 

weld. 

It is therefore desirable to develop a systematic understanding of the process of 

specifying welding schedules and to check whether there are any significant differences 

between robotic arc welding process specifications and manual arc welding process 

specifications. Further the need for such an approach is also to be critically examined. 

Integrated Robot And Positioner Systems 

Off-line programming of industrial robots 

The premise on which off-line programming systems have evolved is that they 

are easy to use and that workcells can be created with minimum training [Chan et 

al. 1988]. However, very little information is available comparing conventional robot 

programming languages and off-line programming systems. A number of simulators 

are commercially available including GRASP, McDonnel Douglas Robot Software, 

RoboTeach, ROBCAD, and AutoPASS [Yong et al. 1985]. These provide sets of 
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modeling and simulation tools to model a robot and its associated equipment, to 

simulate the manufacturing task and to postprocess the sequence of motions to robot 

instructions. The methods adopted in the motion specification are very similar to 

those involved in teach pendant programming - the user specifies the desired positions 

of the tool center point of the robot along the path - and joint angle information is cal­

culated. Subsequently a time-based simulator is executed to compute the movement 

and also to check for collisions. These systems are essentially kinematic in nature 

and limitations include: (1) calibration and feedback data from sensory inputs cannot 

be used (2) integration to already existing CAD models and process planning soft­

ware is not possible (3) it is difficult to apply these systems as the workcell becomes 

complicated. 

Trajectory planning of integrated robots and positioners 

Robot programming for arc welding is primarily attempted by on-line lead-

through teaching methods. Motion sequences and process parameters are specified 

and stored using a programming unit to be played back later. The welding torch in 

arc welding robots is typically programmed to move along a pre-defined path with a 

controlled orientation dictated by the welding process. This movement is normally 

defined in a frame that is fixed relative to the robot wrist. The demands set forth 

by the process often require additional movements in the orientation and position 

of the weld torch relative to the weld joint. This is accomplished by using a posi­

tioner in conjunction with the robot. Figure 2.3 provides the schematic of a typical 

integrated robot and positioner system used in industry. The advantages of having 

a positioner in a robotic workcell include: (1) the work space can be extended, (2) 



proper orientations between the weld joint and the torch can be obtained without 

any interferences. 

Trajectory planning is the task of designing a path to move the manipulator from 

an initial position to some desired final position as determined by the weld seam in 

the part that needs to be welded. This motion involves a change in orientation 

and position of the tool relative to the positioner station. Normally, the motion 

is specified by assigning a sequence of points, termed the knot points, between the 

initial and final points. Each of these knot points is a frame which specifies both the 

position and the orientation of the tool relative to the station. Between these points 

the motion of the manipulator is defined to be a smooth function. To guarantee this, 

constraints on the spatial and temporal qualities of the path are specified between 

the knot points. Joint space schemes achieve the desired position and orientation at 

the knot points. Between the knot points the shape of the path is simple in joint 

space but complex when described in Cartesian paths [Craig 1986]. 

Traditionally, the problem of path tracking and kinematics for a robot is con­

verted from the Cartesian space to the joint space for ease of calculation. Taylor 

[1979], Goldenberg and Lawrence [1986], Hornick and Ravani [1986], Wang [1988], 

and Chand and Doty [1985] obtained the inverse kinematic solutions for a finite 

number of knot points on the trajectory and interpolated between knot points in 

the joint space to achieve the desired trajectory. Iterative schemes have been devel­

oped to evaluate the kinematic solutions simultaneously along trajectories by using 

Predictor-Corrector, and Modified Jacobian-Based Newton Raphson numerical meth­

ods [Gupta and Kazerounian 1985, Singh and Gupta 1989]. Angeles [1986] used a 

continuation method to obtain the inverse kinematics at the start point of the path 
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and then used a least squares approximation to determine the joint angles and veloc­

ity histories along the trajectory. Implementing such numerical techniques for on-line 

systems is difficult due to the computation time involved. To save time inverse kine­

matic solutions can only be obtained at specific intermediate points to save time. In 

typical manipulator systems, the path update rate lies between 20 and 200 Hz. A 

method that would plan the trajectory and provide inverse kinematic solutions along 

the trajectory would be very useful. 

In an attempt to solve this problem, a continuation method approach was pro­

posed by Subbian et al. [1991a] to plan continuously the trajectory of a robot by 

reducing the path generating problem to that of solving a system of first order ordi­

nary differential equations for the joint angles with respect to a path variable. This 

was the first work which provided position and velocity information for all available 

points in a path. In establishing a continuation formulation for the problem the path 

parameter rather than time was used as the independent variable. This method was 

applied to solve the path planning of a circular trajectory for a 3-re volute and a 

six degree of freedom PUMA robot. The continuation method was adopted in the 

present work to solve our trajectory planning problem. The method is explained in 

Chapter 6. 

All the above mentioned methods are used primarily to solve the problem of 

path planning for robots alone. However, as shown in Figure 2.3, a robot along with 

a two or three axis positioner is typical of arc welding workcells. Trajectory planning 

of the integrated system becomes quite involved. In current commercial robotic arc 

welding systems, the robot controller is used to control and move both the robot 

and the positioner during welding. The common method of planning a path for a 



weld is to orient the positioner first to provide the best possible welding conditions 

and then teach the robot to reach that position and orientation. However, a large 

number of points need to be taught to obtain a coordinated motion of the robot 

and the positioner. This technique results in increase in the programming time at 

the robot station. Also, in an off-line programming system, this method results in 

defining local frames so that the object can be defined at all locations of the path. 

A planning system that could automatically synthesize the coordinated motions for 

a robot and positioner would be quite valuable [Craig 1987]. 

Very few research efforts have concentrated on reducing the programming time 

by means of an integrated kinematic description of the robot and positioner for a 

welding system [Bolmsjo 1989, Buchal et al. 1989 Craig 1987]. Yet another work 

[Thompson et al. 1988] deals with the trajectory planning of a robot and positioner 

problem without considering them as an integrated unit. All previous efforts obtain 

kinematic solutions only at intermediate knot points and in between knot points the 

shape of the path is interpolated in joint space as usually attempted in commercial 

systems. However the method of obtaining a coordinated motion of the robot and 

positioner using an integrated kinematic description in these efforts is described in 

detail to highlight the concept. 

Thompson et al. [1988] present a prototype development of a hierarchically 

structured knowledge-based system for coordinated control of a welding robot and 

a positioning table. The system developed is modular and divided into four major 

areas: (1) weld planning (2) movement planning (3) robot control and (4) positioner 

control. The movement planner which is of interest in the present context, makes use 

of a combination of rules and algorithms to obtain the feasible orientations for the 
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positioning table. Certain process-related constraints are used to select the appropri­

ate path for the robot. The kinematics and trajectory are calculated for a desk top 

robot (microbot) and a generic two axis positioner. Although these authors claim the 

system to be coordinated, problems considered are in a single plane and continuous 

motion of the robot and positioner is not attempted. The positioner is first oriented 

to pre-specified angles provided by the user in order to obtain a down-hand position 

of the weld gun and the robot joint orientations are then calculated. The technique 

follows the traditional method of providing solutions at intermediate points followed 

by linear interpolation in joint space between knot points. 

Bolmsjo [1989] arrived at the forward kinematics of the robot and positioner in 

three steps: ( 1 ) obtain the homogeneous transformation from the base to the ith frame 

of the positioner, (2) obtain the homogeneous transformation from the robot base to 

the ith frame of the positioner, and (3) obtain the homogeneous transformation from 

the weld seam to the torch tip. The synchronization of the movements between the 

robot and the positioner is carried out by using the positioner as a leader and the 

robot as a follower. 

In this work [Bolmsjo 1989], the ESAB 500 2-axis positioner is used to demon­

strate the procedure for the inverse kinematic solution. The postioner does not have 

a closed form solution due to its mechanical structure. Also, in many cases in wel­

ding it is not possible to obtain the desired solution or the optimal orientation of the 

joint due to the physical limitations of the robot and the process specifications. This 

results in having allowable tolerances for a solution, and an optimization procedure 

is used to search for the most acceptable solution in the joint space. An approximate 

solution to the orientation of the given joint is obtained in the horizontal plane such 
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that a weld gun oriented normal to the joint is in a vertical line. An initial guess was 

assumed and using it as a start value and adopting a binary search in two dimensions 

yields the closest possible orientation for the positioner is found. Having found the 

orientation for the positioner, the robotic orientation for the corresponding position 

is searched using the closed form kinematic solution of the robot. The author alludes 

in the final part of his paper to the importance of having a CAD database to provide 

the geometric input and process details and predicts that a significant contribution 

could be made to off-line programming of welding robots if the information were 

complete and available. 

Buchal et al. [1989] obtained the kinematics history of the robot and positioner 

for a PUMA 560 robot and a generic three-axis positioner. The forward kinematics 

was obtained as a product of intermediate transformations: 

^RG = HRT^TB^BC^CG 

where H^Q corresponds to the homogeneous transformation from the Frame 

to the Frame FQ. The homogeneous coordinate frames defined were: 

fjg = The robot base frame 

Frp = The positioning table frame 

fg = The workpiece frame 

F^i = The weld seam frame 

FQ = The tool frame 

Once the intermediate transformations were determined, the location and orien­

tation of the tool relative to the robot base were calculated. Details regarding the 

inverse kinematics were not provided excepting that a closed form solution based 

on the matrix method of Paul [1981] was used. A simple strategy was adopted to 
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find the interference free trajectory of the robot required to follow the weld path. 

The kinematically feasible solution was found for each point on the seam. When an 

obstacle was found, the torch was rotated in increasing arcs in both directions until 

an alternate path was found. Since the objective of this research was interference de­

tection, the traditional method of finding inverse kinematic solutions at knot points 

was used and in between the points the shape of the path was interpolated in joint 

space. However, none of the process conditions was taken into account to orient the 

workpiece or the welding torch. The research was more a system to demonstrate the 

application of interference detection than to continuously plan the trajectory for weld 

seams. 

From prior research in off-line programming and trajectory planning, the follow­

ing may be concluded: 

1. A robot and positioner are normally used together in robotic arc welding work-

cells. So far only limited research has been attempted to provide an integrated 

kinematic description of a robot and positioner. 

2. Trajectory planning research is normally restricted to robots alone. Inverse 

kinematic solutions are obtained only at specific knot points and interpolated 

between the points. Continuous trajectory planning of weld seams for an int­

egrated robot and positioner system has not been attempted. 

Based on these observations and work (to be described later) in providing a 

complete definition of weld paths in a CAD system. Chapter 6 proposes a novel 

approach using continuation methods to solve the trajectory planning problem of an 

integrated GE P50 process robot and a two-axis positioner. 
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Need For The Research 

Although several parts of the problem of automatic programming of arc welding 

robots have been attempted, there is no single environment that has attempted to 

provide a solution in an integrated manner. At the beginning of this research, the 

need for such a computer-aided engineering environment was identified. During the 

development of such a system based on a CAD representation, a more fundamental 

understanding of the process of programming a robot was obtained and this under­

standing prompted a reexamination of the concepts currently in use. Overall the 

present research has emphasized the need for developing robot programming systems 

on the basis of modeling systems with application systems being structured to suit 

the overall representation structure. The problem to be solved in this dissertation is 

defined as: 

• "Given a complete description of a part to be welded, design appro­

priate techniques and representations to incorporate, retrieve, and 

reason geometry, and process information which will automatically 

yield an acceptable strategy and generate code in a language under­

standable to the welding robot" 

The previous Sections have clearly identified the need for the present work and 

solutions are provided in the following chapters. 
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CHAPTER 3. REPRESENTATION OF WELD FEATURES AND 

ATTRIBUTES IN SOLID MODELERS BASED ON CSG 

Systems for planning automatically the welding of mechanical parts by robots 

require computer representation of the geometry of the parts, the robot workcell en­

vironment and appropriate welding process information. Tolerances, surface finish 

information and other variations from the nominal geometry of the parts are collec­

tively called variational data [Requicha and Chan 1986]. By this research, information 

such as weld attributes, heat treatment data and others are also classified as varia­

tional or secondary feature information. This data reflects an intended function in a 

mechanical part and should be specified by designers and are normally subjected to 

reasoning by human visualization as fully automatic systems do not exist to synthesize 

the ideal geometry information and variational information. Although existing solid 

modelers provide unambiguous means for representing nominal geometry, they have 

no means to support the representation of weld feature information for subsequent 

down stream automation. 

This chapter explains the effort to provide solid modelers with such information 

to help in the automatic programming of arc welding robots. The basic structure 

for representing weld feature information in a solid modeler is called the welding 

attribute graph (WAGRAPH) and the mechanism of incorporating this structure in 
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a solid modeler is discussed. The first Section provides existing representation of 

welds in drawings and lists the broad functional requirements of the system that 

will support weld features. The overall methodology of the weld feature information 

provision mechanism is explained in the next Section. The third Section briefly 

explains the hybrid solid modeling system to explain the complexity involved in the 

implementation. The representational issues involved are explained in Section 4 while 

the final Section summarizes this chapter. The implementation of the integrated CAD 

structure along with the welding knowledge mapping is explained in Chapter 5. 

Theory of representation of welds 

Engineering drawings have traditionally been used to document design and to 

communicate between design and other disciplines of manufacturing. In order to 

ensure that welded joints are interpreted unambiguously a standard methodology 

has been set-up to represent any weld, its type and properties [Welding Handbook 

1984]. This Section will briefly introduce the required terminologies and for further 

details, the Welding Handbook [1984] can be referred to. The existing representation 

structure is shown in Figure 3.1. Figure 3.2 provides an example of a sample drawing 

that has a welded feature and its corresponding representation. There are two aspects 

to weld feature representation, one being for display purposes and the other for 

providing an ability to reason the geometry. 

From a display standpoint, the standard provides the means of placing complete 

welding information on drawings. In this system, the joint is the basis for reference. 

The tail of the symbol is used for designating weld specifications, procedures or 

other supplementary information to be used in making of the weld. The notation 
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Figure 3.2: Sample drawing with weld feature 

placed in the tail of the symbol indicates the process, the identification of the filler 

material that is to be used, whether peening or root chipping is required and others 

requirements to be established are left to the user. The assembled welding symbol 

consist of eight elements that convey the weld to a human eye. They include: (1) 

reference line (2) arrow (3) basic weld symbol (4) dimensions and other data (5) 

supplementary symbols (6) finish symbols (7) tail and (8) specifications, process or 

other references. However, this information must be provided as attributes of the 

corresponding feature in order for it to be used subsequently for welding procedure 

generation and reasoning. 

The basic geometric entities are faces and edges and attributes can be added 

to these features. From the perspective of welding, the weld features happen to 

be those that lie on an object's boundary which typically is linear, or curvilinear 

in shape. The welding feature is the intersection of two surfaces that are created 
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by a modeling system. Representation schemes should therefore provide means for 

accommodating both simple and curved aggregate features. To be acquainted with 

the types of geometry that are encountered in welding, joint types and allowable welds 

need to be studied. The basic joints for arc welding include: (1) Butt (2) Corner 

(3) Tee (4) Lap and (5) Edge. The applicable welds and the corresponding joints 

are shown in Figure 3.3. The information that is relevant for a robot application is 

the location and orientation information that will be used by the kinematic module. 

A three plane coordinate system needs to be constructed with topological entities of 

the welding feature. 

A need is seen for representing information (that was hitherto left to human 

visualization) via a systematic representation scheme to obtain geometry and datum 

surface information. To incorporate these, certain broad functional requirements can 

be listed: 

1. Capture Welding Semantics: The methods employed to develop the datas-

tructure must do more than just store welding data; the meaning of the weld 

must be formulated in a data structure that is essential for process parameter 

reasoning, orientation of gripper reasoning, sequence planning and others 

2. Support Standards: The description rationale should be able to support all 

classes of standards as prescribed by the American Welding Society 

3. Adaptable: The methodology should allow individual users to specify their 

own references and specifications 

4. Network With Geometric Entities: It should be possible to interact with 

geometric entities that would allow for proper interpretation of geometry and 
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orientation 

5. Validity Checking of Welds With Geometric Entities: The methodology 

should be able to interrogate and determine the validity of the weld with respect 

to the feature. No ambiguity should be allowed 

6. Legality Checking And Default Setting: Rules of the Welding society 

standard should not be violated and should be explained to the user. Also if 

default settings need to be provided by the user, provision should be made 

7. Display weld Symbols: The system should be able to display all weld symbols 

graphically as the current standards do and should be an exact replica of current 

engineering practice 

Overall Methodology 

The problem that is to be solved as part of the overall research is to identify weld 

features in a geometric model created by a solid modeling system and to attach weld 

property information to the identified node. Pure identification of the weld features 

from a CSG model is not directly available as it is not supported in a modeling system 

to start with. Further the non-uniqueness of a CSG model compounds the problem. 

A designer unless limited by a specially confined user interface can arbitrarily create 

two or more CSG trees to represent an identical object. Consider Figure 3.4 for 

example: It is a simple Tee joint with a fillet weld all across the length. It can be 

created in different ways. In the first case the weld is just the union of two blocks while 

in the second case it is the creation of two blocks A and B and then the regularized 

subtraction of C. 
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C 

WELD FACE 

Figure 3.4: A simple Tee joint 

To identify the weld automatically would be difficult as interacting volumes 

might occur in widely separated regions of the tree and a weld may have been cre­

ated by an union or an intersection or a difference operation. If these weld features 

are identified then means can be devised to add attribute information and define 

coordinate systems. Therefore the solution to the problem should adopt one of the 

following means: 

1. Explicitly define the welding feature when objects are created and attach prop­

erty information or 

2. From any given CSG tree, devise algorithms to isolate all the welds, unify the 

features and attach property information to those nodes as appropriate 

The second approach is very difficult if not impossible and may not always 

guarantee correct results. Instead a more practical and viable approach would be 
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option 1. This general approach has been adopted and the following Sections will 

explain the details. As explained in Chapter 2, welding attributes have a lot in 

common with tolerance attributes, and since welding features have never before been 

represented in solid modeling systems, ideas have been drawn from the representation 

of tolerance attributes in solid modelers. The representation structure is applicable 

for any solid modeling system that uses CSG as the prime representation structure 

with other forms like B-Rep being provided as evaluated structures. IDEAS is used 

as the example solid modeling system. 

In order to arrive at a scheme for providing information the type of information 

that is likely to be extracted at a later stage needs to be known. This will help in 

identifying types of parameters that are to be used. For a robot to weld a part, three 

types of information are needed which are classified as (1) know what (2) know why 

and (3) know how. These may be defined as follows: 

• KNOW WHAT specifies the important geometric and feature information that 

needs to be contained in a computerized product model such that it can be 

used by the robot to know what is to be welded 

• KNOW WHY models the process knowledge such that welding procedure so­

lutions will be provided for the given problem and also a rationale behind the 

choice. This captures the knowledge that is traditionally applied by engineers. 

• KNOW HOW specifies the means by which the robot can get to the weld 

and this know-how is obtained by modeling the kinematics and planning the 

trajectory of the welding robot and positioner. This is akin to the conventional 

algorithmic approach wherein numerical routines are written to perform a task. 
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Figure 3.5: Sample welds showing complexity 

Figure 3.5 gives a sample of the two classes of objects that can be encountered 

in arc welding and the need for the provision of the corresponding representation. 

The first case is a simple Tee joint and the interaction is between a block and a 

cylinder. The weld can be either fully circumferential or it can be a part of the 

circular trajectory. The other example is a weld between two free form surfaces (butt 

weld). The intersection of the two surfaces give the curve that needs to be welded 

and the feature information needs to be attached to the corresponding parent node. 

The specific information that will be used by the application modules viz: knowl­

edge processing and trajectory planning module can be identified as: 

Type 1: Explicit feature information 

Type 2: Implicit feature and attribute information 
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Type 3: Networked feature information 

• TYPE 1 information: That which is available explicitly from the geometry 

database and which is that information which is independent of other geometric 

entities and can be obtained directly from answers to simple questions such as: 

"What are the two features in the weld, what is the joint type, what is the 

thickness of the weld?" 

• TYPE 2 information: That which is not available explicitly in the feature defi­

nition but can be obtained either by computation or by accessing the additional 

structure of the feature for such information such as the weld size, the throat 

depth, the weld finish information. 

• TYPE 3 information: That which is obtained in connection with more complex 

structures or with a combination of two or more features. The relationships 

provide typically the coordinate system information, or the reference work frame 

information. These are dependent on the type of model created. 

The main research initiative here is therefore to design and implement a welding 

attribute graph (WAGRAPH) that can be associated with a CSG tree. The overall 

methodology is to provide a system that will help users to add the type of welding 

attribute information explained above to the leaves and nodes of a CSG tree and 

be subsequently used for the generation of welding process parameters and robot 

angles such that automatic programming of arc welding robots can be attempted. 

The following are the steps in providing such a representation structure: 

1. Create the geometric primitives using a CSG-based modeling system 
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2. As primitives are created, identify the faces on which weld features occur. Check 

for consistency and attach weld feature information on those faces of the primi­

tives. Provide a numbering and naming sequence for the faces of the primitives 

so that information retrieval is possible 

3. Obtain the regularized intersection of the two faces to find the participating 

curves of the weld 

4. If there are multiple weld edges participating in the same weld face, obtain the 

set union and arrange the attribute information in an order. Attach the weld 

attribute information (weld joint and type details) to the parent node of the 

two participating solids. Obtain also the measured entity information which 

defines the geometry 

5. Define the work reference frame and the weld orientation at the start of the 

weld using pointers to the appropriate faces and edges 

6. Devise schemes for easy access of the tree and retrieval of weld information. As 

the tree grows, provide a mechanism to acquire and pass information 

7. Check for overall validity and consistency of the WAGRAPH 

8. Implement a system and test sample drawings 

Welding Attribute Graph (WAGRAPH) 

The information asssociated with a welding graph can be categorized as primitive 

feature information, surface information, coordinate system information and edge 

information. In order to represent this a very simple mechanism has been devised 
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to incorporate the welding attributes in a CSG model. Although the structure is 

simple and straightforward it becomes complex due to implementation details. Figure 

3.6 gives the semantic structure of the WAGRAPH. A pyramid like structure is 

provided with the actual entity of interest - the weld edge at the top of the pyramid 

structure and the general primitives where this topological entity belong (like a block) 

at the bottom of the pyramid. Such a structure could be uniformly applied to all 

secondary feature information such as heat treatment data, surface finish information 

and others. The main entities of this pyramid structure from bottom-up is given by 

the following: 

Generic Primitives (GP) 

Honest Primitives (HP) 

Primitive Face (PFACE) 

Weld Faces (WFACE) 

Union of Weld Face (UWFACE) 

Weld Edge (WEDGE) 

Union of Weld Edge (UWEDGE) 

Reference System (WFRAME) 

: User defined primitives such as 

a square tube 

: As provided by the system such as 

cylinder, block 

: The nominal faces of each solid 

: User defined faces of an object where 

the weld occurs 

: Groups of weld faces 

: The participating edge of the weld face 

for all types of weld other than butt weld 

: Groups of participating weld edges 

: To denote reference coordinate systems 

and weld coordinate systems 

(To be used by the kinematics module) 
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Two important questions involved in attaching welding attribute information 

are those involving the selection of the two interacting faces and the participating 

edges. The overall strategy is to attach the face information as pointers to the two 

participating primitives or solids or sub-solids (the leaves) and the edge information 

(geometric measured entities) along with weld attributes to the parent node of the 

two interacting solids. By this, the welds and their corresponding information in a 

CSG tree can be identified. This is explained by an example as in Figure 3.7. In 

this example, the two participating primitives (it could as well have been generics or 

sub-solids) are A and B. If there exists a weld in this tree, then the following is true: 

(1) it should be on one of the faces of A and (2) the other face that interacts with the 

face on A should be on B. The regularized intersection of these two faces will provide 

information about the weld face. This face then has participating edges that could 

have welds (exception - butt welds) and attributes needed for the weld edge can be 

associated with the parent node - C which is the union of A and B in this case. 

The bottom level on the pyramid structure is the generic primitive (GP) - those 

combinations of honest primitives. A specific case that is commonly used in welding 

is a square tube (see Figure 3.2). This can be created by the difference (cut) of two 

blocks and can be specified by the length, outside square dimension and the thickness 

of the tube. In today's modelers this is provided as a 'Features' provision (IDEAS 

support this kind of primitives). The next entity is the honest primitive (HP). These 

are the primitives as provided by any solid modeling system such as block, cylinder, 

cone, torus and others. These together with 2-d profiles form the building block of 

any solid geometry modeling system. 
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WELD FACE 

Figure 3.7: Attribute attachment in a small CSG tree 

Next are the primitive face (PFACE) nodes corresponding to the nominal faces 

of an object. The weld can be in any one of these faces of the regular object. The 

particular face and the path in the overall CSG tree need to be identified for retrieval. 

Weld face (WFACE) nodes are the next in the hierarchy of the structure. Such a 

node represents the two faces that interact to produce the weld edge. This invariably 

will be a portion of one of the PFACES of a solid (or primitive) and a whole face of 

the other interacting solid. In some cases it is the interaction of two whole PFACES 

(as in butt weld). So a WFACE points to 4 entities: (1) an object-id of a primitive or 

sub-solid (2) a weld face (3) an operator to denote if it is a partial face or the whole 

face and (4) a node to denote the type of the weld which determines if the attribute 

list in node 4 needs to be null or not. The meaning of this structure can be better 

explained by a simple example. Consider again Figure 3.7. The face that needs to 

be welded is hatched. The participating WFACE is a partial PFACE on primitive A 
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and a whole PFACE in primitive B. So WFACEl will have a pointer to object-id Cl 

- a block; to PFACES of primitive Cl, it is necessary to declare it to be a partial face 

as far as that face is concerned, and the type of weld is determined from the user to 

be Tee joint. Since it is a Tee joint, node 4 of this structure is set to null. The other 

participating WFACE2 will have its nodes pointing to PFACE6 of solid B, full. Tee 

joint, and null. In general, the portion of the PFACE on any primitive that interacts 

with another whole PFACE results in a weld face. 

UWFACE nodes are combinations of WFACE nodes. This node takes care of 

the possibility of having two welding faces on the same PFACE. The structure has 

three nodes: the first pointing to one of the WFACE, the second pointing to another 

WFACE, and the third to an attribute list. 

The next node (WFRAME) conveys the robot tool orientation. This essentially 

represents the direction vector of three adjacent edges or the definition of one edge 

and a face (whose surface normal results in the Z direction vector). Two types of 

coordinate systems, one for the work reference frame and the other for the weld start 

frame are typically needed for the robot to calculate the inverse kinematics. The 

reference system is represented by pointing to either WFACES or WEDGES. The 

WFRAME structure when formed with edges has three elements as nodes. The first 

points to the compound object-id, the second node points to the first edge and the 

third node points to the other adjacent edge. The third direction vector is obtained by 

the cross product of the two. For the weld frame, the X direction is chosen along the 

direction of the weld, the Z direction being the surface normal of the participating 

PFACE and the Y direction completing the right handed convention by obtaining 

the cross product of Z and X. If the WFRAME structure is formed based on face 
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information, then the weld edge act as the X direction vector, and the participating 

face has a pointer to it. Subsequently, the surface normal of this face is calculated to 

obtain the direction vector in the Z direction. The Y direction vector is obtained by-

using the right hand convention. 

The top node of the pyramid structure contains the edge information and is 

denoted by the WAGRAPH node. Semantically it denotes the intersection of two 

VVFACES and contains the weld attribute information. The intersection can result 

in one or more participating edges and one or many of these edges can be a weld. 

The overall structure has base class information (details provided in Chapter 5) that 

provides the weld edge information and it points to the WFACE, WFRAME struc­

tures and a pointer to WTYPE - the welding attribute node. Other than pointers 

to other classes, the information stored in the WAGRAPH node are: (1) weld edge 

type - full or intermittent or none (2) weld curve type - the intersection information 

like a straight line weld, circular weld or as a NURBS curve (3) measured entity has 

4 elements each of which points to a structure that contains the X, Y, Z location of 

(a) the start coordinate (b) the end coordinate of the weld (c) the direction vector 

of the X and (d) the direction vector of the Z axis. 

The weld type node contains all information about the weld depending on the 

type of the joint. The structure of the various types of joint types and the weld 

themselves are explained in Figures 3.8 and 3.9. In the implementation Chapter are 

outlined the semantics and other pertinent details of the weld. 



Welding Attribute Information 

Fillet Plug Slot Seam 

Continous Intermittent Combination 

Length 
Pitcli(center 

-to-
center 

distance) 

Weld oil 
around 

Single Equal Unequal Unequal 
tillet double double leg 

(illel fillet I 

Groove 

Backing weld 

Yes, Ihen TOP 

Flange 

Radius 
Height 
Size 

Size 
Length 

Size 
Length 

Size .Size 
Length Length 

Length 
of two 

Size 
Angle of 

Counter-sunk 
Depth of filling 
Pitch 
Surface contour 
Finish , 

IT 
C G 

TM 
M R H 

Depth 
Length 
Width 
Spacing 
Included angle 
Orientation 
Location of 

slot 
Surface contour 

Size 
Strength 
Length 

Square 
Root 

opening 
Root 

Penetration 
Contour-
Finish 

Flare—V Flare 
Bevel 

Chipping 
Grinding 
Machining 

Rolling 
Hammering 

Flush 
Concave 
Convex 

Size 
Depth of chamfer 
Angle 
Root opening 
Root penetration 
Contour 
Finish | 

Chipping 
Grinding 
Machining 
Rolling 
Hammering 

Flush 
Concave 
Convex 

4-
CO 

Figure 3.8: Attribute list of various weld types 



Overall welding attribute structure 

Display Process 

Reference 
line 

Dimensions & 
Other dato 

Basic weld 
types 

I I 
Near Awoy 
side 
of ModT 

Near 
side 

Other 
Side 

Supplementary 
symbols 

I 

Field Weld 
weld oil 

oround 

Met! 
thru 

Size 
or 

Strength 

Angle Oeplh Length 

filling 

Pitch Finish Contour 

BUTT 

Squore groove 
V-groo«e 
Bevel groove 
j-groove 
ftore-V-groove 
Flore-bevei 
Edge ftonge 

G MAW 

Type 
of joint 

CORNER TEE 

APPLICABLE WELDS 

LAP EDGE 

Fillet 

Squore-groove 
V-groov# 
Biwal-gioove 
U-groowe 
J-groove 
Flore-V-groove 
Flare-bevel-groove 
Eoge flange 

Fillet 
Plug 
Slol 
Squor# gr 

Flara-baval 

nilel Plug 
Plug Slot 
Slol Saom 
Seom Square groove 
Bevel gr Bevel groove 
J-gr U-groove 
Flare-bevel V-groove 

J-groove 
Edge flonge 
Comer flange 

Angte Countersunk Chipping Grinding Machining Rolling Hammering 

Figure 3.9: Overall welding attribute structure 



50 

Hybrid Solid Modeler 

To represent the welding attribute information, an hybrid solid modeler (IDEAS) 

was chosen. The reasons for using such a solid modeler are: 

1. It represents that set of multiple representation modelers where the primary 

representation structure is a constructive solid geometry model and also con­

tains boundary information for archival purposes 

2. A B-Rep model by itself would contain all information that is needed and any 

variational information can be simply attached to the faces and edges [Re-

quicha and Chan 1986]. However, this implies that B-Rep information should 

be archived along with CSG representation and it is bulky. Further, the infor­

mation that needs to be incorporated for welding is typically limited to a few 

faces and is not often needed. Therefore a primarily CSG-based system can 

allow the user either to use or discard information as and when necessary. The 

system thereby derives benefit from both modeling capabilities 

3. The current trend towards feature-based design essentially is captured in CSG 

modelers where, at the outset the objects that can be used to create a model 

are implicit and combinations can result in any type of form feature required. 

These then act as generic features and for welding, apart from the regular 

features available, only a few more features (such as square tube) need to be 

created and this is relatively easy to attempt in a CSG-based system 

4. It was the modeling system readily available for research 
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The solid modeling system IDEAS can be used in three different modes: (1) 

using primitives to position at particular locations and combining them by boolean 

operations; (2) using 2D constructors and profiles to create objects and (3) using 

generic features as created by the user which are combinations of primitives in the 

overall creation of the object. The collection of any or all of these solids and the 

corresponding information is called the current context. 

The primary representation is a CSG tree. Although the exact implementation 

internals of the modeler is not known, from the creation and storage of information 

the storage is assumed to be a binary tree. For the example shown in Figure 3.10, 

the CSG tree will correspond to that shown by the side of it. 

/ 
B 

/ 

D C 

JL k 
B TR 

A 

Figure 3.10: Primitives of a Tee weld and its associated graph 

The figure explains the three modes of creating the solid. Invoking a primi­

tive as in A; moving the primitive or sub-solid as in B and creating a user defined 

feature (form feature - hole) as in leaf C. However, in general the objects created 
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are more complex and this results in difficulties in the association of welding feature 

information. Typically IDEAS stores the object with the minimum information -

the facet approximation, the objects shape and a set of untrimmed Non-Uniformed 

Rational B-Splines (NURBS) surfaces. However, it can also store information about 

the object in its database (PEARL) as a complete boundary representation. This 

forms the topological entities that describe the structure of the object. These in­

clude the entities: bodies, faces, loops, edges, and vertices. This briefly explains an 

environment in which many solids and sub-solids coexist and may potentially have 

associated welding information. 

Representational Issues 

The two main representational issues that need to be considered for incorporating 

weld feature information are: (1) Incremental construction of the WAGRAPH and 

(2) Validity and consistency of the WAGRAPH. 

Incremental construction of the WAGRAPH 

A weld feature can occur only when two solids or sub-solids interact. It may 

be necessary to attach weld feature information to the node of the two participating 

leaves. A WAGRAPH needs to be constructed only if there is a participating weld 

in that node and hence incremental construction is highly desirable. As objects are 

created, WAGRAPHS are added. Consider again the simple example of the two 

blocks in Figure 3.6. Figure 3.11 shows the construction of the WAGRAPH for this 

example. The primitives bl and b2 are initially created as in any modeling system. At 

this point, the system does not know that these two objects may form a weld. These 
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two primitives are then combined to produce a compound object ccl. At this stage, 

the user indicates there exists a weld and the weld is in the combination of primitive 

bl and primitive b2. Now the WAGRAPH structure is invoked. Two WFACE 

structures are defined by pointing to the appropriate object-id, the face numbers 

and an attribute to indicate whether the participating weld is a whole or partial 

face. By this method, the two participating faces are known and the intersection 

provides the weld curve and their corresponding edges. The other elements of the 

WAGRAPH - the WFRAME, WEDGE are also provided at this point. The user 

then proceeds to define other primitives and combinations. As the tree grows, the 

path from the current context (top of the tree) to the leaves are noted. The compound 

object structure is so arranged that it points to its two child objects. If the child 

is a primitive, it contains an ordered list of faces and since the exact participating 

face that contributes to the weld is already pointed to by the WFACE structure, the 

geometry of the weld can be obtained. If the current solid is a compound object, and 

the two participating solids are compound object themselves, then the corresponding 

path in the tree to reach the primitive face is noted for subsequent retrieval. 

To obtain the actual weld intersection curve, an intersection of the participating 

two faces is required. It is known that faces of a new solid are the subset of the faces 

of each of the combining solids. Consider Figure 3.12. The shape consists of a union 

of a cylinder with another cylinder, a situation dealing with three-d objects with 

welds. Let us denote the cylinder 1 as TT]^ and tube 2as%^. The cylinder is internally 

defined as the concatenation of three surfaces whose mutual curves of intersection 

delimit the face regions. The union of these face regions defines the boundary surface 

of the cylinder and the curves bound the active regions on the surfaces. 
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Figure 3.11: Stages in the definition of WAGRAPH 
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Figure 3.12: Three-dimensional curve information 

The intersection of and b7r2 is a closed space curve, and appears twice in the 

parametric space representation: one for TT2 and another for the surface on Trg. This 

spaced curve is a three-dimensional boundary representation and a portion or whole 

curve can have a weld. The attributes that have been described as the WAGRAPH 

structure can be associated with this node. Therefore the space curves resulting from 

the object combinations essentially represent the geometry information of the weld. 

3.5.2 Validity and consistency checking 

Any WAGRAPH that has been created needs to be a valid graph. Also, the 

editing of objects should result in the appropriate WAGRAPHS being removed from 

the overall CSG tree. To ensure the validity of a WAGRAPH representation the 
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folowing conditions need to be satisfied: 

1. Any weld type that is created should be a valid weld for the two geometries 

involved. Example: A butt weld cannot be created when a compound object is 

created by the union of a cylinder placed on top of a block. 

2. All the WFRAMES created of non-null objects should be valid (in that they 

must correspond to well defined edges or surfaces to form proper coordinate 

systems). This condition is not easy to check algorithmically. 

3. Whenever objects are edited the corresponding face, edge, and frame informa­

tion needs to be made invalid. Whenever the geometric meaning of one object 

that participates in the compound object is lost, then all interactions due to 

this object in the overall CSG tree need to be made invalid. Similarly provi­

sions for changes to reference frame information should also be provided and 

their validity checked. All validity checking for weld features should be based 

on the compound object, since only a combination of two sub-solids or solids 

can produce a weld. Attaching and detaching a WAGRAPH to a compound 

object is the key validity check that needs to be attempted. 

It should be noted that the actual implementation of these hybrid modelers 

may not be a binary tree and may be a graph, as in PADL-2 [Brown 1982]. It 

may be that the same primitive can be used as two instances: one as a geometric 

instance located at the origin and the other transformed to a different location. The 

translated instance will have the pointer to the same object with the translational 

operator alone. This results in certain issues that need to be considered with paths 

to the corresponding primitives and their faces since the child-parent relationship is 
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different. The same child can have two different parent nodes and the path name 

should be unambiguous in those instances. However, for our implementation the 

structure has been assumed to be a standard binary tree. 

Another case that needs to be considered occurs when the same weld type is 

created and, copied to be placed at different locations in the same solid. Consider 

the example of a block with four identical cylinders placed on one of the faces of the 

solid. It seems very reasonable for the weld information to be given once and for 

other cases to be copied automatically. If the WAGRAPH information needs to be 

copied, most of the structure information will be the same, but the weld coordinate 

information will need to be changed, and the participating faces for each of the weld 

will change so that the object combination curve information can be obtained from 

the intersection of the two appropriate faces. To attempt this automatically would 

be computationally complicated. To identify all the common weld features and to 

transfer them to the new instance and make only those changes needed for the new 

instance may not be the best option. Instead, at the current level of implementation 

it was decided to allow the user to be prompted with default weld values using the 

benefit of object-oriented programming and modify the problem for each case and 

then assign the information to the respective nodes. 

Summary 

This Chapter provides for the first time a representation structure for welds in 

geometry models based primarily on CSG with provisions for an evaluated model. 

The semantics of the structure has been explained and representational issues out­

lined. The implementation of this structure with the necessary validation along with 
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the knowledge mapping system and an outstanding application of welding procedure 

generation will be outlined in Chapter 5. It is shown that secondary feature infor­

mation such as weld attributes, and surface finish can be added to a CSG tree and 

that this can be used in applications such as those which are likely to occur in the 

automatic programming of welding robots. 
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CHAPTER 4. KNOWLEDGE MAPPING SYSTEM FOR WELDING 

PROCEDURE GENERATION 

The methods for acquiring and representing welding process knowledge is de­

tailed in this chapter. The literature survey related to expert systems in welding 

suggests that welding procedure generation requires the use of an expert system 

methodology and that successful results can be obtained. The goal of this portion 

of the research was to consider seriously the problem once again, question the need 

for (and determine whether) systematic methodologies of knowledge acquisition may 

provide knowledge (both public and private) in solving an engineering problem and to 

develop a mapping system that would directly use the CAD description of weld fea­

tures described in the previous chapter and generate weld process schedules. Certain 

surprising and important conclusions are drawn and their impact on the building of 

the system is outlined. The first Section provides a background review of the welding 

problem domain. The second Section outlines the overall methodology in developing 

a mapping system. The systematic procedure of knowledge acquisition from many 

experts is discussed in the third Section. The results of the survey/questionnaire 

and the welding knowledge acquired is categorized and explained in the same Sec­

tion. The fourth Section provides a suitable methodology (based on the results of 

the previous Section) for representing the weld process knowledge. The implemen­
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tation details in creating the welding process schedule system based on an expert 

system shell are outlined in this Section while the details of the integrated structure 

is explained in Chapter 5. Consistency checking in expert system shells, a necessary 

feature for knowledge base development/addition is also outlined in the Section five. 

The final Section summarizes the chapter. 

Background 

Having defined the product model and determined how weld information can 

be represented (in Chapter 3), the application modules can interact, extract, or 

infer data, or consult their knowledge-base and provide solutions. A tight coupling 

is required between the product and process models since parallel interactions are 

necessary. To understand the nature of the importance of process information in robot 

programming, consider a fillet joint from edge to edge of a plate. The appropriate 

procedure would be to: 

• Cold weld with prescribed data 

• Build up a weld at the edges without melting 

• Fill the joint between the edges with a weaving motion 

If this procedure is not adopted, it is more than likely that a melt-through will 

occur. It is very essential to study the process and build sets of rules and procedures 

from which welding data can be obtained and the weld process procedure generated. 

To understand the process and to collect knowledge a systematic methodology is 

required. The five stages in building a knowledge based system are (1) identification 
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(2) conceptualization (3) formulation (4) implementation and (5) verification. The 

characteristics of the given problem have already been outlined in Chapter 2. Steps 

4, and 5 will be explained in Chapter 5. Conceptualization is the methodology of 

finding concepts to represent the problem-solving knowledge - in our case the Gas 

Metal Arc Welding procedure generation knowledge. 

Any engineering problem is typically solved by managing cooperative knowledge 

sources. The multiple sources for welding come from different resources which are 

in all cases dependent on data and knowledge. Based on prior work carried out by 

other researchers in building expert systems for welding and in other manufacturing 

domains, the following preliminary conclusions were made: 

1. Data comes from diverse sources 

2. The traditional approach of selecting a pre-determined decision structure can­

not be imposed 

3. Sub tasks cannot be carried out sequentially 

4. Results cannot be interfaced based on the decision structure 

The problem solving paradigm that would be ideal to suit the above mentioned 

requirements should therefore be concurrent in collecting data and using the data 

for action. The three main elements that would accomplish this are: (1) the central 

repository (2) knowledge sources and (3) the operations that can be performed on 

them. The key here is the central repository. As the product representation of welds 

is developed, the data is recorded for use by all existing knowledge sources. When 

a particular source has sufficient information it can manipulate the representation 
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based on the operations that are possible. Action is then concurrent and cooperation 

is possible. To accomplish this the key challenges are: (1) how to build an envi­

ronment that can support different knowledge sources and (2) how to develop the 

different knowledge sources. These are the two problems that are to be solved for 

any engineering problem requiring knowledge processing. To achieve this an integ­

rated approach is required wherein data communication is not only performed, but 

exchange of knowledge is also attempted. To support this exchange, problem solving 

information needs to be represented explicitly and properly for each task. 

The task of acquiring data and knowledge from experts was therefore under­

taken (in addition to the traditional handbook knowledge). It was decided that since 

knowledge could come from various sources, different welding engineers should be 

able to provide varying and useful data. Since the goal was to obtain knowledge that 

can be used for robotic arc welding, it was decided as part of this task to explore 

possible differences between conventional gas metal arc welding and robotic welding. 

In addition the actual data for weld procedure generation was also sought. The "data 

search" was therefore approached in a systematic manner. The results obtained were 

very different from our initial understanding of the specific problem. Nevertheless the 

findings helped in the easier creation of the system and implementation subsequently 

became more algorithmic that heuristic. 

Overall Methodology 

The steps involved in this research in developing a knowledge mapping system 

for welding procedure generation were to: 
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1. Devise standard means to study (i) the differences between robotic gas metal 

arc welding and normal gas metal arc welding (ii) the order of welding procedure 

specification (iii) the expert opinion on the relationship between product and 

process variables (iv) the difference between the specification of the process 

parameters by academicians and practicing welding engineers 

2. Use results of step 1 to arrive at meaningful conclusions, question if standard 

methodologies of knowledge acquisition can capture private (heuristic) knowl­

edge and acquire welding process knowledge that needs to be mapped 

3. Select a methodology based on results of step 1 and 2, use an appropriate 

shell/language and build the knowledge mapping system 

4. Validate the results, outline shortcomings and provide steps to improve the 

mapping system 

Knowledge Acquisition 

Knowledge acquisition is the transfer and transformation of problem solving 

expertise from some knowledge source to a program. The objective was to tap both 

public and private knowledge involved in the specification of weld process parameters. 

To accomplish activities described in the first step of the overall methodology, a survey 

was designed using the standard design of experimental techniques. The survey was 

sent to nine welding engineers at plants of John Deere & Co., - manufacturers of 

farm equipment and users of robots for arc welding. To check the difference in 

the specification of process parameters for welding between practicing engineers and 

academicians the survey was answered by two professors who teach manufacturing 
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processes at the undergraduate level. Based on the results of the survey, the whole 

process of building a knowledge-based expert system for G M AW has been questioned. 

Structure of Questionnaire/Survey 

The objective of the questionnaire was not to obtain raw data but to obtain 

general guidelines and trends. These would in turn help in the specification of the 

problem domain. The answers to the questionnaire were solved using statistical meth­

ods but the replies were incomplete. The incompleteness came from the non-return of 

the questionnaire by the experts and non-answers to many important questions. This 

further led us to only abstract qualitative information. The details however assisted 

in the better understanding of the knowledge acquisition process in an engineering 

problem domain. The survey details sent to the experts is provided in Appendix C. 

The words expert, welding engineer, respondent are all interchangeably used. 

Differences between manual GMAW and robotic GMAW To indicate 

the differences in robotic welding and manual arc welding, a set of questions was 

designed. Since it was decided that multiple experts would be used to provide knowl­

edge, questions ranged from obtaining their level of expertise to listing the potential 

areas of heuristic information. In all, 29 questions were asked to elucidate informa­

tion on the nature of the problem domain. The expertise of the interviewed welding 

engineers ranged from one year to sixteen years. The products that were welded 

using robots in all their plants were classified to be high volume - in that a robot was 

dedicated to weld a particular component. Flexibility of the product was not found 

as the interviewers belonged to companies that produced parts in large numbers and 
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this is representative of robot users. This confirmed our initial belief that robots are 

still used in high volume production and not for small-batch production. Research 

such as this will help in the robot's use in jobshops eventually. 

The respondent's answers to questions concerning high level languages such as 

VAL II, RAIL varied from "just-heard-of" to "used-extensively". All the welding 

engineers had heard about graphical off-line programming systems but none of them 

had used one. They all agreed on the fact that even though higher level programming 

systems existed, a welding engineer is required to specify process parameters and plan 

the trajectory of the robot. The respondents uniformly felt that only 0-15% of the 

output from a higher level programming could be used and they attributed this to 

the differences between wire impingement point and the tool center point. 

The significant result of this portion of the survey came from answers to the 

questions 8 through 10 (listed in Appendix C). The answers were divided in opin­

ion about the differences in robotic GMAW and hard automated GMAW. However, 

they agreed that the specification of welding process parameters for robotic GMAW 

differed from manual GMAW. The difference however was perceived to be marginal. 

This is important from the standpoint of building a KBES. If the difference is indeed 

marginal, and if data are available in the form of a look-up table, then are the claims 

of researchers [Barborak et al. 1991] that KBES technology can be successfully em­

ployed for welding justifiable. Further, if the differences in welding process parameter 

specification are marginal and the optimal solution can be obtained by acquiring the 

private knowledge which compensates for the differences, then is it worth the effort 

in obtaining that "private knowledge"? The survey respondents felt that a KBES 

system would be a good start point and refinements to the model should be made by 
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the welding engineer. This leads to the creation of provisions in the KBES for such 

mechanisms that would help modify the existing rule base by the experts themselves 

and check for validity and consistency. 

The subsequent questions of this part of the survey sought to determine whether 

a need for an expert system exists. It was uniformly agreed by the experts that 

knowledge constituted both public and private data. Public data for welding pro­

cess specification came from the following sources: (1) American Welding Society 

(AWS)'s Welding handbooks (2) American Society of Metals (ASM)'s Handbook on 

welding and (3) Tables and charts of manufacturers such as HOBART, LINCOLN, 

L-TEC. The welding engineers felt that 10-30% of welding knowledge is heuristic in 

nature. The major contribution of a welding engineers' heuristics in the specifica­

tion of welding process parameters is primarily in the areas of (1) torch angle vs. 

weld appearance (2) fine tuning of welding process parameters - current, voltage, 

and travel speed (3) the effect of process parameters on penetration required. Direct 

formulae are also used typically to calculate the weld bead volume, weld area, and 

for calculating the travel speed from these values. Yet another common and welcome 

answer in this part of the survey was that there are not many interacting parameters 

in the specification of welding process parameters. Finally it was agreed that facts 

and rules would adequately model the welding process specification problem and that 

the problem domain should break down into simple sub-tasks. These answers helped 

in visualizing the problem in a different perspective than that perceived originally. 

The structure of the system that needed to be built became simple due to the nature 

of the answers. 
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Product, process variables and their order In order to arrive at the list 

of product and process variables, an unordered list was provided to the experts as the 

second part of the questionnaire (see appendix C). The list of the product variables 

was found to be adequate but for one variable. The surface appearance (was not 

included in .the original list), which the experts believed to help in the selection of 

process variables. The surface appearance was further classified into no rust, light 

to moderate rust, and rusty. The product variables that are needed in the selection 

of the process parameters are (1) material type (2) joint thickness (3) joint type (4) 

strength requirements (5) position of weld and (6) surface appearance. All these 

variables are fixed for a particular problem and obtained from the CAD database 

(provided there exist a structure for representing the weld feature). In this research, 

(as explained in the previous Chapter) since means have been provided to obtain 

these welding parameters there exists a direct input for the selection of the process 

parameters. 

The results of the order of the process variables were not suitable for any sta­

tistical analysis. As suggested by Tonkay and Knott [1989] a method such as rank 

correlation would have been useful in an ideal case. However of the nine surveys 

sent to welding engineers, only five were returned. For this problem the experts were 

asked to order the parameters by assigning a number in ascending order and if there 

were to be a tie, provide the same number for all tied values. Two of the respondents 

had only two numbers (1 and 2) for the entire list. The remaining three classified this 

list into three sub-cases and this helped in the understanding of the problem better. 

This classification by the experts suggested the futility of any ordering scheme. The 

list is as follows: 
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Fixed parameters for a given machinery 

• Electrode type 

• Electrode size 

• Gas mixture 

• Gas flow rate 

• Polarity - DCRP for GMAW 

Operating Conditions (Process variables) 

• Current 

• Wirefeed rate 

• Voltage 

• Travel speed 

• Robot-tool-to-material-gap (or electrode stickout or arc length) 

Fixed parameters for the particular problem 

• Torch angle 

• Weave pattern 

• Number of passes 

Other parameters 

• Dwell time 
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• Displacement from the joint for multi-pass welds 

The welding engineers preferred this classification primarily due to the nature 

of parts they are normally used to in their plants. In high volume production, the 

first category of parameters are normally fixed for each robotic arc welding workcell 

since these act as dedicated machines. However, in a small volume production, de­

pending on the nature of the job these parameters need to change. Hence during the 

construction of the knowledge-based system this order was adopted and rules were 

created that would be used in the selection of the first set of four process parameters 

also. The third category had very few rules governing the selection of the process 

parameters as will be described in the later stages. This order segmented the problem 

domain into clearly defined zones. The professors who were given the same questions 

ordered in more or less the same way without the four classification schemes. The 

results were satisfactory since the goal was to classify the problem rather than to find 

an exact solution. 

Interaction of product and process variables To study the effects of the 

product variables on the process variables and the interaction of process variables, a 

carefully designed survey was developed. Since the number of respondents were to 

be only 9 and it would be time consuming for the welding engineer if the number 

of test cases were large it was decided to keep the number of questions to a mini­

mum. This raises the question of the design of experiments. A good experimental 

design furnishes the required information with the minimum of experimental effort. 

A correct choice of method also needs to be chosen. The next important function 

is to provide a rational basis for providing the number of observation to be made. 
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Table 4.1: Factors and levels of experiment 

Factors Level I Level II 

Material Type (A) 
Thickness (B) 
Position of weld (C) 
Geometry (D) 

1020 Steel 
0.25 in 
Flat 
Plate to plate 

6061 A1 
1.0 in 
Vertical 
Cylinder to tube 

It was assumed that in problems such as welding, there would be different factors 

and the individual/combined effects would need to observed. This results in either 

constructing a factorial design or an incomplete factorial design. The number of fac­

tors chosen were the four product variables at two levels. The term factor is used to 

denote any feature of the experimental condition which may be deliberately varied 

from trial to trial. Once this is chosen, it is possible to determine not only the effect 

of each individual factor but also the way in which each effect depends on other fac­

tors (i.e. interactions). Inorder to avoid any bias, the trials are typically randomized. 

To increase the reliability of the experiment, replications are necessary. This was 

attempted in a manner similar to that described in the work of Tonkay and Knott 

[1989]. The idea here was to observe if the information provided would in any way 

help the construction of the expert system. The factors and levels are given in Table 

4.1. 

At four factors, and two levels there are 16 treatments. For reliability, 2 repli­

cations are usually made. This results in a total of 16 treatments repeated twice. In 

order to randomize the treatment, partial confounding called "Incomplete Random-
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Table 4.2: Confounding factors 

No. Independent Independent General 

I. ABC ABD CD 
II. ABD BCD AC 
III. ACD BCD AB 
IV. ACD ABC BD 

ized Block Design" has been attempted. For 2^ factorial treatments, two blocks per 

replication is normally reasonable. However since there are four factors, more blocks 

per replication are preferred. The number of blocks per replication is of the order 

of 2^. So the number of blocks chosen for this experiment is 2^ i.e. 4 blocks. For 

a four block replication, 2^-1 i.e. 3 interactions are confounded, of which two are 

independent and one is generalized. By partial confounding, the effect of the factor 

confounded is lost, but the main effect and other interactions can be studied with 

more precision. Further, the confounding interactions can be recovered from those 

replications in which they are not confounded. 

The possible three factor interactions and their corresponding independent and 

general confounding are given in Table 4.2: 

The general confounding is obtained by multiplying the letters of the independent 

interactions and omitting even powers. For example ABC X ABD = A^B^CD. 

Omitting and B^, CD general confounding is obtained. Since two replications are 

being attempted, and partial confounding takes place, the effects of the confounded 

interaction can be recovered for one replication from the other replicate. 



REPLICATE I 

Confounded Interactions 

• Independent: ABD BCD 

• General: AC 

REPLICATE II 

Confounded Interactions 

• Independent: ACD ABC 

• General: BD 

By this choice, the effects confounded in one on the other are obtained. The two 

replications are given in Figure 4.1. 

Based on this and after blocking, the trials were assigned to the nine welding 

experts of John Deere & Co. Two of these were also provided to the professors to 

answer. At this point it was believed that a sound experiment was designed and that 

a good statistical analysis could be attempted from the results. Of the nine surveys 

sent, 5 replies were returned with answers to the welding parameter question. Of the 

five replies from the engineers due to the randomized design two questionnaires indi­

cated cases corresponding to aluminum welding. Since the engineers were not used to 

any Aluminum welding, the questionnaire was returned empty. Of the three replies 

left, two questionnaires had vertical/overhead welding and since these engineers were 

not experienced in that area they opted not to answer. The remaining answers were 

insufficient even to attempt an analysis of experiments based on missing data. 
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R e p l i c a t i o n  R e p l i c a t i o n  

ABD, BCD, AC 

Key Block 
X1+X2+X4=0 
X2+X3+X4=0 

Block I I  

B lock I I I  
X I+X2+X4=0 
X2+X3+X4=1 

Block IV 

0 0 0 0 
1 0 1 1 
0 1 0 1 
0 1 0 1 

X1+X2+X4=1 1 1  0  1 
X2+X3+X4=0 1 0  0  0  

1 1  0  1 
0  0  1 1  

1 0 0 1 
0 1 1 1 
0 0 1 0 
1 1 0 0 

X1+X2+X4=1 0  0 0  1 
X2+X3+X4=1 0  1 0  0  

1 0  1 0  
1 1  1 1  

ACD ABC BD 

Key Block 
XI+X3+X4=0 
X1+X2+X3=0 

Block I I  
X I  +X3 +  X4=1 
XI  +X2+X3=0 

Block I I I  
X1+X3+X4=0 
X1+X2+X3=1 

Block IV 
X1+X3+X4=1 
X1+X2+X3=1 

0 0 0 0 
10 10 
1 1 0  1  
0  1 1 1  

0 
0 

0 0 
1 1 

1 0 
1 1 

1 
0 

1 1 
0 0 

0  1 0  0  
1 1 1 0  
0  0  1 1  
1 0  0  1  

0  0  1 0  
0  1 0  1  
1 0  0  0  
1 1 1 1  

Figure 4.1: Details of replication for the design of experiment 
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This went further to prove that knowledge acquisition is a complex process and 

that experts have a very narrow knowledge domain and standard methods prove at 

best to be good starting points. Also knowledge acquisition should begin with very 

specific problems. Nevertheless from the results obtained, a distinct match of the 

values specified by the experts with the welding handbooks could be seen (Refer 

Table 4.3 for the experts' answers and the handbook answer). The cases provided 

to experts were simplistic enough that a direct solution from the handbook could 

solve the problem. Even if a production part had been provided, the experts felt 

that they would still have provided answers comparable to those given in the welding 

handbook, since the fine tuning of the parameters comes into effect only with the 

fixtures and positioners in place. Also the surroundings in the arc welding workcell 

often dictated the exact value and answers provided initially were only an estimate 

and could be used merely as a start point. Further from a qualitative observation 

of the result, it could be seen that experts differ in the specification of the welding 

process parameters. Also, a bias appeared in the specification of process parameters, 

and this bias stemmed from the use of a particular manufacturer's product and these 

continue to specify the same sets of values for many years. 

It is concluded that the design of experiments is suitable only for the understand­

ing of the problem by the non-expert (the researcher or the knowledge engineer). It is 

not a suitable means for acquiring private knowledge. Although from the standpoint 

of statistical analysis the exercise was a failure, a valuable lesson was learned that 

could be applied to other engineering problems. It was agreed by experts that a highly 

specific problem domain where the expert is confident should be the basis of such an 

exercise and that means be provided by which subsequent knowledge representation 
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Table 4.3: Comparison of handbook specification and expert's specification 

Parameter Handbook Expert 

Electrode type E70S-3 E70S-3 
Electrode size 0.035 in 0.045 in 
Gas mixture C'C>2 or C25 C25 
Gas flow rate 40-50 cfh 35-40 cfh 
Wire feed speed 375-400 ipm 440 ipm 
Voltage 26-27 25-27 
Travel speed 30-35 ipm 15-20 ipm 
Arc length 0.75 in 0.75-1.0 in 
Tool angle 10 degree push 10 - 15 degree push 
Number of passes 1 1 
Weave pattern none none 

should be attempted by the expert. Nevertheless the ordering of the process param­

eters helped greatly to simplify the construction of the knowledge-based system and 

the answers helped in a better understanding of the whole problem of "knowledge for 

welding". 

The next issue of concern was the dependence of the process variables and the 

interrelationship of process variables. Since the number of variables was too many, a 

factorial design was ruled out. Hence it was decided to obtain a qualitative observa­

tion on the interaction. The figures are given in Appendix C. From the five replies 

obtained general observations were arrived at. The experts varied widely in their 

choice of interactions. This can be attributed to; (1) the experts did not have the 

time to seriously look at the problem and (2) from the time they received the question­

naire to the time they returned it, there was no discussion. Therefore, dependencies 
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alone were picked and this formed a good basis for building the knowledge-based sys­

tem. The point to be noted here is that these dependencies could very well have been 

obtained from the welding handbooks. The conclusions on the interactions include: 

• Electrode type, electrode size, gas mixture, gas type primarily depend on the 

product parameters 

• Current and voltage depended upon the process variables, electrode size and 

arc length. Current and wirefeed speed were dependent. Since electrode size 

was related to the product variables, current, and voltage in turn depended on 

them 

• The other parameters were specified once for the given problem depending on 

the product variables and the other process parameter values 

These automatically set the construction of the KBES to be in a particular order. 

(1) determine the variables that were classified as fixed parameters for the given 

machinery (2) obtain the set of operating conditions (called the process variables) 

based on the previous set of answers (3) finally determine the other parameters based 

on 1 and 2. 

In all, the survey confirmed that process variables primarily depend on the prod­

uct variables, and preliminary specification is based on simple considerations. The 

next step was to compile the actual welding knowledge (from the handbooks and the 

engineers) for the KBES. This is explained in the next Section. 
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GMAW knowledge for robotic welding 

The procedure to acquire specific knowledge was divided into the same categories 

as explained in the previous Section. Knowledge primarily from the welding hand­

book and manufacturer's handbooks were compiled to form IF-THEN rules. The 

knowledge which went into the creation of the system is outlined below. The author 

has the program and the list of rules for those interested. Knowledge related to mild 

steel alone was encoded as it constitutes 90% of all welded fabrication [Welding Hand­

book 1984]. Salient details of the knowledge obtained from handbooks and welding 

engineers is described. 

Knowledge for machinery specific parameters The machinery specific 

parameters are: (1) electrode type and size (2) gas mixture and flow rate. 

Electrode Type and Size One of the important factors to consider in GMAW is 

the correct filler wire selection. The selection of this parameter decides the values 

of other parameters such as current, wire feed speed, travel speed. The proper se­

lection of the electrode wire and the shielding gas also determines the physical and 

mechanical properties of the weld. The important criteria for selecting the choice of 

the filler wire are: (1) base metal composition (2) required mechanical properties (3) 

application specification requirements (4) weld joint design. The primary function of 

the filler metal is to control the deoxidation of the weld puddle and help determine 

the mechanical properties of the weld. The chief additions as deoxidizers are Silicon 

(0.4 to 1.0%), Manganese (1 to 2%), Aluminum, Titanium, and Zirconium (< 0.2%). 

To improve the structural, mechanical, and/or corrosion properties Carbon, Nickel, 

Chromium, Molybdenum, are added. The most common electrodes used for mild 
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steel welding as per the American Welding Society Specification A 5.18 [1979] are: 

E70S-2, E70S-3, E70S-4, E70S-5, E70S-6, E70S-1B, and E70S7-S. 

The rules that have been formed to select one of these elect roes were based on 

the material type (killed, semi-killed, rimmed), surface appearance (rust condition) 

application domain (automobiles, farm equipment, home appliances, structural ap­

plication), performance requirements, and position of the weld (flat, horizontal, or 

out-of-position). 

The electrode size depends on the joint type and position, and the thickness of 

the base metal. Since the mode of metal transfer depends on the thickness and the 

voltage, this factor is also taken into account. Once a given electrode diameter is 

chosen, it limits the current carrying capacity of the electrode. A small electrode 

wire will produce deeper penetration than a large diameter wire at the same current 

settings. Hence the selection is dependent on the objective function (maximize pro­

duction, maximize penetration and others). Larger diameter electrodes are normally 

used on thicker material to assure the presence of sufficient heat to melt the base 

metal and gain proper fusion. The large sizes are also selected to give the highest 

possible welding speed which relates to the objective function of maximizing produc­

tion rate. The electrode diameter range varies from 0.023 in to 0.0781 in. 

Shielding Gas Mixture and Flow Rate In order to prevent contamination of the 

molten weld puddle, the air in the weld zone has to be displaced. This is effected 

by a shielding gas. The contamination of the weld causes reduction in ductility and 

impact strength. It also causes porosity, inclusions, and underbead cracking in the 

weld metal. To avoid these problems, the gases that are used include argon, helium, 

CO2, and very small amounts of 02» -^2' •^2- Argon, Helium, and CO2 can 
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be used alone or in proper combinations as binary, ternary, or quarternary mixtures. 

The properties of shielding gases that affect the performance of the welding process 

include: (1) thermal properties (such as conductivity) at elevated temperatures (2) 

reaction of gases with the base metal (3) effect of the gas on the metal transfer mode. 

The thermal conductivity of the gas determines the voltage and the heat input to the 

weld. The base metal reaction determines arc stability and good fusion between the 

weld and the base metal. The shielding gas also determines the metal transfer mode 

and the depth the workpiece can be melted. Spray transfer is not obtained when 

using CO2 is used. Also spatter tends to increase when mixtures are rich in CO2. 

The performance criteria, the metal transfer modes, the cost factor, availability of 

gases, material thickness, position of weld, are checked before the KBES arrives at 

the choice of the shielding gas. For GMAW the most commonly used shielding gases 

are CO21 75% Argon-25% CO2 (called C25), and Argon - 0-10%C'02 - l-3%02 

(called STARGON - tradename Union Carbide). 

Although CO2 is not an inert gas, sound welds can be consistently achieved 

free from porosity and defects. Its popularity is due to the common availability, 

quality weld performance, low cost, and easy installation. However, the drawbacks 

are: (1) it will not spray transfer (2) high weld spatter levels. C25 shielding gas is 

known universally to be the gas for GMAW with short circuiting transfer on mild 

steel. The gas operates well in high current application, achieving good arc stability, 

puddle control, and good bead appearance. STARGON is used due to its versatility 

in welding carbon steel, low alloy steel, and stainless steel utilizing any metal transfer 

mode. 

Since the main function of the shielding gas is to mechanically displace the 
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atmosphere to prevent contamination of the weld metal as it moves from the electrode, 

the flow of gas must be adjusted to ensure adequate protection and so as not to cause 

turbulence. Only a rough guide is provided in the literature and the number varies 

between 20 and 40 cubic feet per hour. The experts tend to specify the same gas 

flow rate regardless of the type of the weld. They concur that it is acceptable if it is 

within the specified range. 

Knowledge for operating conditions After having chosen the electrode 

type and gas mixture, the operating conditions need to be chosen. The four important 

parameters are the welding current, voltage, arc length, and travel speed. These 

parameters affect the weld characteristics to a great extent. 

Current In GMAW, when all other process variables are kept constant the welding 

current varies directly with the wire feed speed or melting rate in a non-linear relation. 

Further, when the wire diameter is increased at any wirefeed rate, the welding current 

increases. The burn-of curve has a linear increase in melt ofi' as current increases and 

at higher currents with small diameter wires the burn-off curve becomes non-linear. 

Penetration also increases with increasing current for a particular wire diameter. 

Based on the thickness of the metal to be welded, the objective function, and 

the position of the weld, a factor (ranging from 0.1 to 0.85 of the lower limit) is 

chosen and added to the lower range of the current specified in the handbooks. The 

current setting is related to the electrode choice since once a particular diameter wire 

is chosen, the current carrying capacity is limited. 

Voltage The power supplies used for GMAW are typically Direct Current Constant 

Potential. The voltage indicated by power sources is considered the arc voltage 
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which in turn is a measure of the arc length considering the drops in the circuit. 

As the voltage is increased, the arc length increases which results in a spread of the 

heat energy input resulting in less penetration. Also, excessively increased voltage 

results in spatter, porosity and undercuts. Excessively low voltages cause porosity 

and overlap. The factors that decide the voltage are (1) metal thickness (2) type 

of joint (3) position of weld (4) electrode size and (5) gas composition. Since all 

the parameters listed are determined previously, voltage selection becomes straight 

forward. A range is typically specified and experts feel that normally trial welds are 

required to adjust the value to obtain the most favorable metal transfer and weld 

appearance. The values specified by the KBES provide a good starting point. 

Travel Speed For a fixed value of current and voltage, there is normally a single 

travel speed that will result in a particular weld shape. Significant changes in travel 

speed require changes in current and voltage. The three criteria used for proper travel 

speeds are: 

1. As the material thickness increases, the travel speed must be lowered 

2. For a given material thickness and joint design, as the welding current is in­

creases, travel speed is also increased. The converse is also true 

3. Higher travel speeds can be attained using forehand welding techniques and 

longer arc length 

The travel speed is calculated from the formula: 

Wt ^0 .8 *  N*  WFR *  WBa/WBv  
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where W'L is the welding travel speed, N is the number of passes, WFR is the wire 

feed rate, WBy is the weld bead volume and WBQ is the weld bead area. 

Arc Length As arc length increases, the voltage increases resulting in smaller pen­

etration. Arc length is primarily dependent on the material thickness and the choice 

of current and voltage, and ranges from 0.25 to 0.5 inches for short circuit transfer 

and from 0.5 to 1.0 inches for globular transfer. 

Fixed parameters for the given weld The four operating parameters hav­

ing been chosen, the other significant parameters are the torch angle and the number 

of passes. The torch angle helps in the adjustment of the travel speed. The typical 

angles are 45 degrees in the cross sectional plane for TEE weld and 5 to 10 degrees 

in the direction of travel. For butt welds the torch angle is held perpendicular in the 

cross sectional plane and 5 to 10 degrees leading in the longitudinal direction. By 

positioning the weld axis at 15 degrees to the horizontal and welding down hill, a 

weld reinforcement can be flattened and travel speeds increased upto 50%. 

The number of passes is primarily dependent on the material thickness, the torch 

speed, current and voltage. A greater number of passes may result in distortion but 

also an increase in the impact strength. An attempt is always made to minimize the 

number of passes, maximize heat input and reduce distortions. 

Overall Conclusions on Survey/Questionnaire on Robotic GMAW 

The conclusions have been classified as general and specific and they are outlined 

based on the results of the questionnaire and the knowledge acquired. The conclu­

sions were sent to the welding engineers as part of the validation process. Most of 
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the conclusions were accepted with minor modifications (see Appendix D for actual 

answers). The modified list is presented here. Validation of the system is explained 

as part of Chapter 5. 

General Conclusions 

1. Robotic Gas Metal Arc Welding is not significantly different from manual arc 

welding in the specification of welding process parameters. 

2. The variations in the process schedule specification affect robotic arc welding 

more than manual arc welding. This is attributed to the adaptive on-line vi­

sual feedback control of the human hand that corrects for imperfections in the 

process specifications. 

3. To solve a welding process specification problem, "experts"(welding engineers) 

tend to solve in different ways. Multiple experts do not help in providing a 

consistent set of data. Instead the data obtained is skewed and knowledge ac­

quisition becomes complex. A single, reliable and knowledgeable expert would 

be useful for knowledge acquisition while a group of experts would help in 

preliminary discussions. 

4. Expert knowledge is extensive for a particular problem domain but is limited 

for similar but slightly different problem domains (A case in point: An engineer 

used to specifying weld process schedules for mild steel knows very little about 

aluminum welding). 

5. Experts agree on the nature of welding process knowledge viz., public and 

private (heuristic) knowledge together contribute most to overall welding infor­
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mation and 

• Public knowledge is primarily from handbooks (AWS, ASM, and manu­

facturers handbooks HOBART, L-TEC and others). 

• Private knowledge derives primarily from experience in areas of (1) fine 

tuning of specified process parameters (2) welding torch angle vs appear­

ance and (3) travel speed, current, voltage adjustments. 

Specific Conclusions 

1. Welding process parameters depend primarily (but not completely) on the prod­

uct variables (material type, thickness, joint type, strengths, surface appear­

ance). 

2. Interrelationship between process variables (those described in Table 2.1) does 

not exist to a great extent. Even if it does exist, it is often not quantifiable by 

the experts and hence process optimization is achieved by instinct. This results 

in a simple construction for the knowledge-based system. 

3. A systematic knowledge acquisition procedure was developed hoping that it 

would help in the acquisition of public and private knowledge. 

4. The advantages acquired using this standard scheme were: 

• To arrive at all product and process variables 

• To find the order of process parameter selection 

• To find the interaction of product and process variables and obtain general 

trends 
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5. However, systematic standard knowledge acquisition methodologies did not pro­

vide expected results for the following reasons: 

• The answers were invariably incomplete due to: (1) experts being busy all 

the time and not having the time to reply (2) lack of knowledge in areas 

other than the experts problem domain (which is very narrow) 

• A complete statistical analysis of the results was not possible due to the 

lack of reply from respondents of the survey. This questions the need for 

an elaborate scheme using statistical design of experiment techniques for 

building the questonnaire 

• The knowledge that is transferred from a welding engineer by way of these 

acquisition procedures only provides the public knowledge (i.e) data from 

handbooks and not "so-called" private knowledge. This is again attributed 

to the type of questions asked. Specific instances alone elucidate answers 

from experts that use private knowledge. Arriving at the number of cases 

that should be provided for welding engineers is (a) difficult (b) does not 

ensure that all private knowledge can be encoded as certain specific cases 

may not have been encountered before by the experts and they may have 

to conduct experiments to obtain answers and this results in "answer-not-

known" situation (c) the experts have their own time frame and may not 

be willing to spend too much time. 

• The previous point was further exemplified by the results of the survey. 

The same questionnaire was provided to two professors who teach welding 

at the undergraduate level. The response from them was similar to that 
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from experts and the professors used standard handbooks to arrive at the 

results. The results were very close to those given by the practicing ex­

perts. However, the welding experts performed better for specific instances 

of process specification. This is attributed to the fact that professors are 

not used to specifying process parameters on a day-to-day basis and further 

refrained from answering those questions. This highlights a very critical 

need for experts themselves to construct the expert system and build it 

over a period of time. These standard methodologies for knowledge acqui­

sition will at best provide estimates of the problem domain. 

6. Existing so called "knowledge-based systems" for welding (that are available 

commercially and as part of research prototypes) are primarily based on data 

and charts. However, the information is in a IF (clause) THEN (action) format. 

Hence it is suitable for the use of expert system shells rather than the use of 

traditional procedural languages. 

7. The standard methodologies developed for the acquisition of welding process 

knowledge are inadequate in capturing private knowledge. But they help in 

providing general guidelines and may help in other problem domains as in 

diagnosis or planning problems. 

Based on all the above mentioned conclusions and the knowledge obtained to 

map the weld process knowledge, a mapping system was developed to generate weld 

process schedules. This was implemented in two ways (1) using an existing knowledge-

based system (PCPLUS) and (2) hard coding the knowledge in C+4- language and 

coupling with the CAD structure (which was also written in C-f-f ) that was provided 
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for incorporating weld feature information in a solid model so that direct access to 

the design knowledge was possible (this implementation is explained in Chapter 5). 

The shell-based implementation is explained in the next Section. 

Implementation Of The KBES Using A Shell 

The intent of this Section is to demonstrate the ease of representing the weld 

process knowledge (once properly acquired) using an expert system shell. The de­

tails will be briefly outlined as conceptually there is nothing new, and is merely an 

application system written using PCPLUS [1987], a rule-based expert system shell. 

However, at the end of this Section, the requirements that are essential for future 

modifications of the rule base by a welding engineer (such that heuristic knowledge) 

can be updated (This is outlined since the conclusion in the previous Section pointed 

to such a need). PCPLUS was chosen as the shell for the following reasons: (1) 

the knowledge base can be continuously updated and a maximum of 1000 rules can 

be created (2) the inference mechanism uses a backward chaining approach that is 

typically needed for such a consultative system (3) the software runs on PC's so that 

the welding engineers can use them at the plant (4) graphics, external routines can 

be called (5) a trace facility is provided to determine how a consultation was arrived. 

The knowledge that was acquired and described in the previous Section is to be 

represented. The fundamental building blocks that determine the mode of knowledge 

representation are the parameters, rules, and frames. PCPLUS stores attributes as 

parameters and the characteristics of the parameter are described by the semantics 

of the language, namely TYPE, PROMPT, TRANSLATION, and EXPECT values 

provided in the expert system. The representation scheme then characterizes this 
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information in the form of IF-THEN rules to produce the correct recommendation. 

The representation of the knowledge is a combination of data structures for storing 

information as well as the development of procedures for intelligent manipulation. 

The representation scheme that PCPLUS allows is by frames. A frame is a collection 

of information. The information of the problem domain is defined in the form of 

parameters and rules. Some information defines the structure and operation of the 

knowledge, and the data identifies the frame goal, initial data, and other essential 

components of the structure. Figure 4.2 explains the multi-frame concept adopted in 

developing this rule-based system. 

The reason for using the multi-frame concept are: (1) the knowledge base can 

be segmented properly (2) addition of knowledge is easy (3) since there appears a se­

quence in the specification of the parameters, the successive chaining of frames is ideal 

and (4) consistency checking (if provided) is easy. The two concepts that are involved 

in the creation of the frames are the inheritance and instantiation. Inheritance is the 

order imposed in a parent and child frame. The value attributed to any parent frame 

can be accessed by a child frame and not vice versa. If another subframe is added 

then this frame has access to the root frame and the parent frame. However neither 

the root frame nor the parent frame has access to the new sub-frame's parameters. 

The other concept is that of instantiation. This refers to the process by which an 

expert system software activates or enters a frame during consultation. Instantiation 

is performed in a dynamic manner. In our problem the root frame consisted of the 

goal properties and the order in which each frame need to be instantiated. 

The purpose of any KBES is to arrive at a conclusion. The conclusion in our case 

is the selection of all welding process parameters for the given problem. The frames. 
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rules, and parameters work together to provide a conclusion for the consultation. 

The knowledge base is controlled by the backward chaining mechanism that has the 

following categories: (a) is goal driven (b) seeks only the data needed for the solution 

(c) instantiates subframes on its path to the goal. 

The root frame contains the goal parameter which starts the consultation. The 

goal parameter RECOMMENDED is to be satisfied and the search for the goal drives 

the consultation. When PCPLUS finds a THEN part of the rule to match it instan­

tiates the goal variable and the consultation ends. Before the first rule in the root 

frame is consulted to begin the backward chaining mechanism, the initial data of 

the root frame is invoked. This contains the various parameters that obtain the 

product data which include: (1) material type (2) material thickness (3) joint type 

(4) strength requirements (5) surface appearance (6) application specification. This 

information is provided by the user, since this shell-based system was developed as a 

stand alone KBES and does not have any interaction with the design module. How­

ever, the next Chapter will discuss the integrated environment. At this point, after 

the initial data has been obtained, all parameters are in the root frame. No sub-frame 

needs to be instantiated. The first rule has all the welding process parameters that 

need to be satisfied as part of the antecedent clause. This results in the knowledge 

base searching to find these parameters in the THEN part of other rules. Since each 

welding parameter value is obtained from each sub-frame the first sub-frame that is 

instantiated is the GET.ELECTRODE frame. The goal that has to be satisfied in 

this frame is the E_TYPE_RECOMMENDED. There are 16 rules in this sub-frame. 

Three rules are provided as a sample to understand the creation and execution of the 

program. 
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RULE 001 

SUBJECT 

IF 

THEN 

Electrode.type_rule 

(( Material = Killed OR Semi_killed) AND 

Metal-transfer = Short-circuit AND Out_of_position AND 

Imp act .strength <= 20 AND Tensile-strength <= 72000 AND 

Yield-Strength <= 60000) 

(E-type_recommended AND 

Print "The electrode grade is E70S-2") 

RULE 002 

SUBJECT 

IF 

THEN 

Electrode-type-rule 

(! E-type-recommended) 

(E_type_recommended AND SHOW Get-electrode-grade 

"The chosen electrode grade by the user is " ) 

RULE 003 

SUBJECT :: Electrode_type-rule 

IF :: (Position = vertical OR Position = overhead) 

THEN :: (Out.of-position) 

In order for the goal parameter to be satisfied, the parameters in the IF part 

need to be satisfied. Most of the IF part parameter value have already been obtained 

by the initial data portion of the root frame. The two parameters that need to be 

obtained are the Metal transfer and the weld position. For the weld position to be 

solved, the inference engine checks for the rule that has this parameter in the THEN 
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Table 4.4: Product data for sample weld 

Material 
Material Type 
Material thickness 
Application requirement 
Strength requirement 

Farm implements 
Tensile: Not a criterion 
Impact: Not known 

Mild steel 
Semi-kiUed 
0.25 inches 

Objective 
Surface appearance 

Not known 
Not Known 
Tee Joint Type 

Weld type Fillet 

portion. This results in Rule 3 being fired. This in turn checks if the welding position 

is vertical or overhead and arrives at a conclusion and returns the value to the first 

rule. If all the parameters of the IF portion of the first rule are satisfied, the action 

clause is executed and the goal parameter of this sub-frame is satisfied. If it fails, 

it goes to satisfy the other rules in the frame. If all rules fail. Rule 2 is satisfied. 

The THEN clause of this rule is executed to obtain the user specified electrode type. 

This briefly shows how the knowledge base works on the basis of backward chaining. 

Once this sub-frame goal is returned true, the next sub-frame (using the CONSIDER-

FRAME property in PCPLUS) Electrode_size is attempted. This continues till all 

the parameters are obtained. The total number of rules in the knowledge base is 

137. The knowledge provides reasonably good weld schedules. A sample session for 

a problem is provided in Table 4.4 and 4.5. 

This is the same problem presented in Table 4.2 where a comparison between the 

handbook and the expert was highlighted. The values depicted in these tables match 

very well excepting the travel speed. The reason for the value being different was that 



93 

Table 4.5: Expert process schedule for sample problem 

Electrode type 
Electrode size 
Gas mixture 
Gas flow rate 
Wire feed speed 
Voltage 
Travel speed 
Arc length 
Tool angle 45 degrees in the cross sectional plane 

10 degrees push angle 

35 cfh 
400 ipm 
27 
31.0 ipm 
0.75 in 

E70S-3 
0.035 or 0.045 in 
C25 

Number of passes : 1 

the non-specification of the fillet size to the welding engineer and the engineer had 

made the remark that travel speed should be specified in accordance with the weld 

size. Validation of a knowledge-based system is very important and is approached in a 

different perspective and is outlined along with the implementation of the integrated 

system in the next Chapter. However, in order to attempt the goals set forth (together 

with - that of acquiring the private knowledge), certain additions need to be provided 

for shells such as PCPLUS which do not have any means of consistency checking. The 

types of consistency and validity checking that need to be provided (and a method 

proposed for implementation) are outlined in the next Section. 

In a typical robot workcell environment, welding engineers constantly learn new 

aspects of welding and programming and update their mental database. If the same 

knowledge is to be captured, the welding engineer should be able to encode that 

Consistency Checking In PCPLUS 
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information in the knowledge base. When this is attempted certain checks should 

be provided such that the welding engineer does not enter rules that could be of 

one of the following type: (a) redundant rules (b) conflicting rules (c) circular rule 

chains and (d) subsumed rules. Currently PCPLUS does not provide any facility for 

validity checking and this is a necessity for knowledge building. The definitions of 

these conditions are provided below: 

Redundant rules Two rules are redundant if the IF parts of the two rules are 

equivalent and one or more conclusions are equivalent. The IF parts are equivalent 

if the IF parts have the same number of conditions and each condition in one rule is 

equivalent to a condition in another rule. An example of a redundant rule would be: 

RULE 001 

SUBJECT :: Electrode_size_rule 

IF :: MateriaLthickness <= 0.025 in AND 

Metal-transfer = short .circuit 

THEN :: Electrodesize = 0.030 in 

RULE 002 

SUBJECT :: Electrode_size_rule 

IF :: Metal-transfer = short .circuit AND 

MateriaLthickness <= 0.025 

THEN :: Electrodesize = 0.030 in 

Conflicting rules Two rules are conflicting if they succeed in the same situation 

with different conclusions. An example of a conflicting rule would be: 
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RULE 001 

SUBJECT :: Get.data 

IF Position = vertical or Position = overhead 

THEN Weld — Out-of-position 

RULE 002 

SUBJECT :: Get.data 

IF Position = vertical or Position = overhead 

Weld != Out-of-position THEN 

Circular rule chains A set of rules is circular if the chaining in the set forms a 

cycle. Example: rule 1: IF A THEN B; and rule 2: IF B THEN A form a cyclic rule. 

Subsumed rules Two rules or rule chains are in subsumption if they have the same 

action clause but one contains additional constraints in the antecedent part. 

If a welding engineer needs to add new knowledge without the help of a knowl­

edge engineer then means should be provided in PCPLUS to ensure validity. Since 

the internals of PCPLUS are not accessible and only access to the LISP version of 

the existing knowledge base is available, the following is proposed as a solution for 

consistency checking based on Nguyen [1987]. Once the rules are created (initial 

knowledge base) the file can be saved in different formats. The source format stores 

them as LISP lists that contain all information about the frames, rules, and parame­

ters. This format is the most convenient to read and store in a manner that is needed 

so that consistency checking can be attempted. If a new rule is to be added to the 

system, then the program or interface between the user and PCPLUS should do the 



96 

following: 

1. The already existing rule base should be converted into appropriate tables for 

comparison purposes 

2. As the new rule is added, it should be parsed by the program and the contents 

- the IF and THEN portions should be separated 

3. This should then be checked based on various algorithms with the tables created 

in step 1 to verify the consistency. 

To accomplish this in PCPLUS, three entities need to be built: (1) a parser 

to read the LISP version; (2) tables of comparisons and (3) algorithms to check 

validity. This is not a trivial task and draws heavily on the fundamentals of compiler 

techniques and implementation is not trivial (and nor the goal). However the steps 

involved would be: 

1. Convert the compound IF clauses into a disjunctive normal form such that the 

compound conditions are separated into simple conditions. 

2. Check if two simple conditions are equal by the unification algorithm. 

3. Create three two-dimensional tables where the row and column indices represent 

rules. The tables to be created are based on the comparisons of: (a) IF portions, 

called the IF-IF table; (b) THEN portions called the THEN-THEN table, and 

(c) IF and THEN portions called the THEN-IF table. 

4. These can then be used by the various algorithms as described by Nguyen 

[1987] for checking circular rule chains, conflicting rules, subsumed rules, and 

redundant rules. 
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Summary 

The important contribution of this Chapter is not in the implementation of 

knowledge using an expert system shell as this has been accomplished by other re­

searchers and is reported by Barborak et al. [1991]. The initial belief was that existing 

KBES captures public data alone and private heuristic data can be captured by me­

thodical means. With this a survey was designed that would elicit knowledge. The 

attempt was a failure in terms of capturing the private knowledge and a subsequent 

statistical analysis, but highlighted that private knowledge acquisition is complex. 

The best solution would be to create a system based on available public data that 

would be a good starting point and subsequent addition should be done by experts 

themselves. In order for this to happen the shell needs to be endowed with validity 

checking means. The problems that need to be solved by the consistency checker are 

outlined and a method is proposed. This will hopefully be a part of future shells 

and lead to an easier and better development environment. However, based on the 

work in this Chapter, classification of public knowledge was achieved. Also this work 

indicates that in order for intelligent reasoning to take place, a richer representation 

scheme of the geometry of the workpiece and surroundings is essential. The next 

Chapter will outline the implementation of an integrated representation scheme and 

provide data extraction for the generation of weld process schedules and input to the 

trajectory planning module. 
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CHAPTER 5. IMPLEMENTATION OF THE INTEGRATED 

WELDING REPRESENTATION AND PROCESS MAPPING SYSTEM 

Implementation details of the integrated system based on the representation 

structure of welding features and attributes and the knowledge mapping system pre­

sented in Chapters 3 and 4 are described in this Chapter. The overall methodology 

with system architecture details is provided in Section 1. Section 2 outlines the 

object-oriented programming paradigm and its application to this research. WA-

GRAPH attachment and implementation in a CSG tree along with details of cre­

ation and retrieval of information are explained in the third Section. The extraction 

of explicit and implicit information from the CAD-based representation for use by 

the welding procedure generation module is described in the fourth Section. Section 

five provides a sample session. Section six describes the validation process and the 

final Section summarizes and ties together the entire system. 

Overall System Architecture 

Considerable work has been performed in various fields of robotic system devel­

opment in areas such as tact, vision, sensors, simulation, motion planners [Steiger-

Garcao and Camarinha-Matos 1987]. At the same time parallel growth has taken 

place in the area of CAD systems and the ability to abstract information from a 
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higher level representation. The necessity for a convergence of these concepts is felt 

clearly and the integration of these results is important. Keeping this in mind, a 

subset of robotics, that of arc welding performed by robots, was chosen as the re­

search topic in order to create a system based on the building blocks which have been 

described earlier. The key element identified was the specification of structural and 

functional information and their interconnection to arrive at a synergestic system. 

This system cooperates with and acts in conjunction with various other modules as 

explained in Figure 5.1. This may not be the ideal model and future redefinition 

may occur, but for the present the interaction of various physical elements has been 

identified and solutions have been proposed to overcome them. There are two aspects 

to robot programming: (1) off-line planning and (2) on-line feedback. It is under­

stood that the real world is not always as predicted in off-line programming systems 

(anything can happen in off-line) and sensorial on-line data collection will be the key 

to closing the loop. However it was considered that even the first stage - that of 

off-line programming of welding has not been completed and that this attempt would 

therefore be justified. 

The system architecture is shown in Figure 5.2. At any instant the user interface 

provides the user a menu of logical operations for the current mode. Menus appear 

showing default parameters with methods for specifying the geometry and weld att­

ributes. The system is developed in an object-oriented modeling environment, with 

the solid modeling system IDEAS running as a child process. The software is struc­

tured in three modules: (1) the modeling mode (2) the process mode and (3) the 

robot kinematics/trajectory planning mode. The outcome of the interaction results 

in (a) CAD database with complete weld information, (b) welding schedules for the 
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geometry described and, (c) robot and positioner orientation angles that may be used 

by the robot and positioner. 

Object-Oriented Programming Paradigm 

Object-oriented programming (OOP) is a technique - a paradigm for writing 

"good" programs for a set of problems and support object-oriented design [Stroustrup 

1988]. The term object-oriented programming language means any language that has 

mechanisms to support the object-oriented style of programming very well. is 

one such object-oriented programming language and is a superset of C. 

Object-oriented design focuses on finding relevant abstractions and specifying 

them in such a way as to allow one to (a) solve the problem in hand (b) allow 

for future extensions (c) reuse the abstractions in solving similar problems. Hence 

object-oriented programming is the process of implementing such designs, which will 

make heavy use of the techniques of data abstraction and message passing. Such 

programming is most congenial in a programming language that allows: 

• Encapsulation - all the functions that can access an object are in one place 

• Data abstraction - hide the data structures and algorithms to implement the 

abstraction 

• Inheritance - implement a data abstraction by stating the differences from other 

existing implementation 

• Type Polymorphism - directly express the dynamic binding of message names 

to procedures 
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C++ has all of these characteristics. Encapsulation means that all the functions 

that can access an object are in one place. C++ supports this by the class data 

type, which allows declaration of the functions that can access data within the body 

of its declaration. A class in C++ is similar to the structure in C and is the basis 

for much of the support of C++ for OOP. C++ allows to hide the representation 

of data in storage as well as restrict access to data. The class type allows data 

types that can be used without the knowledge of their representation in storage 

to be defined. All that is needed to be known are the appropriate user interfaces 

(functions) that interact and the corresponding argument types. C++ allows a class 

to be derived from another class. Inheritance allows the source code for a base 

class to be written and then the base class may be used to derive new classes with 

additional data or functions. Type polymorphism means that a pointer to an object 

can point to a variety of different types and an appropriate function can be selected 

at run time based on the type of object actually referenced. C++ implements this 

concept using dynamic binding, inheritance and type checking. These properties help 

in: (a) language extension (b) common interface (c) shorter development cycle (d) 

software reuse (e) easier software development and maintenance (f) cost effective and 

higher design/software productivity. Typical applications of OOP are in graphics, 

simulation, and large system development projects. The initial goals set forth during 

the start of the implementation were: 

• Since access to the internals of the modeling system is not available, an inter­

face between the user and the modeling system is needed. This translates to 

providing some of the facilities the modeler provides (such as creating, delet­

ing, displaying simple and compound objects). This can use sharing of data 
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using classes and derived classes (facilities of inheritance), calling common func­

tions for each primitive (example: a function display can be used to display a 

cylinder's property as well as a block's properties) - this requires features of 

polymorphism and each such class can have its own methods and data -this 

needs the property of encapsulation. 

• There exists different types of weld and joint types. The weld information can 

be created once during the set up mode and any new weld types can be created 

and added to the system. This requires properties of data abstraction, software 

reuse and inheritance (implementing the difference alone for the new methods 

- example: between a butt and edge weld). 

• The knowledge mapping system was initially decided to be created as a shell, 

so as to accomodate different knowledge bases (such as gas metal arc welding, 

submerged arc welding, tungsten inert gas welding and others), Object-oriented 

programming can provide the facilities for adding rules, deleting rules, display­

ing rules, or the consistency checking of rules. Each of these facilities can be 

a class in itself to perform a distinct operation and the system can be created 

and added in a modular manner. The user need not know the internals as long 

the interface is known. This relates to the concept of data abstraction and 

encapsulation. 

C++ provides facilities for implementing all these requirements. It was chosen 

as the language of choice. 
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Welding Feature Representation Implementation 

The representation structure is composed of generic objects and their associated 

methods as well as customizable objects and their methods. The customized objects 

are those that contain the process specific information while the generic methods 

hold the modeling object classes and their methods. Once these modeling objects are 

created, they are to be mapped with the application features - the welding procedure 

information. Using this information and an inbuilt inferring strategy, the system 

drives to output the process schedules in a data-driven approach. 

The four main representation structures are: (1) simple object - for creation 

of the leaves of the CSG tree; (2) compound object - for creation of the nodes of 

the CSG tree; (3) WAGRAPH structure to associate welding information and (4) 

WTYPE structure to associate weld joint information. The first two are classified as 

generic objects while the last two are classified as customized objects. 

Generic object 

The main intention of this part of the implementation is the creation of the 

leaves and nodes of the CSG tree such that (a) the WAGRAPH can be attached (b) 

the information can be retrieved for application and (3) the necessary program for 

running IDEAS can be written. 

Figure 5.3 explains the scheme of the class object. This class has sub-classes of 

simple.object and compound-object. The concept of inheritance is used extensively 

as there is much common data that needs to be created for the instance of a simple 

object or a compound object. This common data are the protected members of the 

base class object. By this arrangement, the sub-classes are allowed to access the 
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parent class data members while other classes cannot access these members and help 

in data hiding. The protected members for this base class are: 

1. a pointer to the parent object 

2. the rotation and translation of the object is of the class type three_d_coord. 

This provides the X,Y,Z float values which represent angles and distances re­

spectively 

3. the number of faces in the particular primitive or object so that numbering of 

primitive faces (for WFACE and PFACE data structures) can be attempted 

4. an object-id. This object-id is useful for the associative array mapping. In the 

mapping the object-id is used as the key member and the contents of the object 

are used for later extraction 

An instance of the object can be created using the constructor operation provided 

in the class. This initializes and allocates the memory for the object. The destructor 

allows memory to be compacted and reclaimed. Other public member functions that 

are created allow the derived classes to call these function and answer questions such 

as (a) what is the parent feature? (b) what are the child features? (c) what is the 

adjacent feature (d) what is the object-id. Other available functions allow extraction 

of information and output of required member data. The virtual operator allows the 

use of functions by the sub-classes and calls appropriate functions of the same name 

in different instances. 

Simple objects: The simple objects that are created are the primitives that a mod­

eling system supports. For the prototype the three primitives that were implemented 
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are the block, cylinder, and the tube. The idea of stating the difference for future 

creation of the objects allows easy software building and when needed any number of 

additional features can be added. These honest primitives require the input of specific 

information. For example, the block requires the dimensions of length, width, and 

height. These are provided as input by the user. This input translates to being the 

private member of that class with the other public values being the protected data 

members of the simple object's parent - the object class. Like the class object, these 

simple objects have their own constructors and other appropriate member functions 

for display, delete and others. The simple object has the classes cylinder, block, tube 

as sub-classes. The common data member of the simple object are the number of 

faces and the object-id. The class has other functions to check and extract simple 

objects, and to check if the values entered are valid. Validity checking and consis­

tency checking are carried out in the base class and specific functions are taken care 

of in the sub classes. 

Compound Object: Compound objects are basically the combination of two simple 

primitives or the combination of two compound objects. They are the boolean (join, 

intersect, difference) of any two objects and this has to be essentially captured in a 

structure. The protected members are 

• an operation type that is either a join, or an intersection, or a difference 

• a pointer to the first child 

• a pointer to the second child 

• a pointer to the WAGRAPH class. 
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The WAGRAPH is set to null if there are no welds in the object combination and 

is set to the various attributes if a weld exists. When a compound object is deleted, 

then the meaning of the corresponding WAGRAPH (if any) is lost and hence it will 

also be deleted. This is part of the destructor function of the compound object. 

Other member functions are routine functions to check and verify various conditions. 

Customizable objects 

These classes are created in such a manner that to customize the program for a 

new process or weld type, the programmer must primarily concentrate on the process 

specific methods alone. The two main classes involved are WAGRAPH and WTYPE. 

The weld type has a sub-class called the joint_type. If a new joint type is to be added 

(since all the weld joint types were not implemented), then very few methods such 

as input, output, and process method need to be changed. Once the structure is 

known it is not very difficult to add the various types. These methods define the 

exact information that needs to be attached to the node such that it can be used for 

both display purposes and the generation of the process schedule when used by the 

knowledge mapping system. 

WAGRAPH class: The WAGRAPH class is used primarily for the purpose of 

extracting the geometry information that is required for the trajectory planning of 

the weld, creates instances of them, and attaches them at nodes wherever there is a 

weld. Figure 5.4 provides the overall structure for the welding feature and attribute 

graph. Each WAGRAPH class has, as its private members, the evaluated entities: 

welding edge type, welding curve type, the measured entities (consisting of the start, 

end coordinate of the weld, the direction vector of the X and Z frame of the weld), the 
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WFRAME structure, the WFACE structure, and a pointer to WTYPE (refer Chapter 

3). The pointer is to the sub-class WTYPE which has the sub-class joint type. A 

constructor allows the creation of this class and other functions (such as deleting, 

displaying), and is used for the various operations that need to be carried out on this 

graph. The next Section describes the details of how extraction of parameters take 

place. 

WTYPE class: This class defines the various available types of weld joints. In order 

to ensure the validity of a weld, checks are carried out and only the appropriate joint 

type is instanced. This class is responsible for the creation of the joint type and this 

class is pointed to in the WAGRAPH structure. This along with the WAGRAPH 

class is associated with the node element so that retrieval is attempted during the 

knowledge mapping. For example when there is a Tee weld, and after the validity 

of the geometry is checked, the user selects the fillet.joint_type. This results in the 

creation of an instance of the class fillet.joint.type. This enquires from the user the 

fillet type, size, length, height, and pitch of the weld to store it as private members 

of the sub-class, joint type. It also inherits the weld type from its parent - the class 

WTYPE. Limited validity is performed to check the values provided. New classes of 

various joint types can be added depending on the usage. The facility of inheritance 

and modularity help in additional code being written. The prototype provides facility 

for Tee and butt weld with fillet joint and groove joint being programmed. 

Knowledge Mapping System Implementation 

During the initial stages of drawing up the functional requirements of the knowl­

edge mapping system, it was thought that a need existed for an interpretive Ian-
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guage or a compiled addition to the object-oriented programming environment to aid 

knowledge-based reasoning. Further, it was thought that there would be complex 

interactions between process parameters, that representation techniques may need to 

be provided as standard procedural techniques may not help. However, based on the 

previous findings (Chapter 4), it was learned that knowledge acquisition helped only 

to obtain public data. This data basically comprises sets of IF-THEN clauses. The 

reason why KBES shells are useful for representing this acquired welding knowledge 

is the easy interface the shell provides the user for editing and the inbuilt inferencing. 

The conclusion that the existing knowledge base is fixed and only future additions by 

welding engineers will lead to modifications in the knowledge base led to the build­

ing of the structure inside C+4- although this does not explicitly support rule-based 

programming. 

Framework 

The ideal situation would be to combine AI programming and object program­

ming so that logic/knowledge-based programming capabilities are added into the 

object-oriented framework [Su 1991]. The interpretive or the compiled language 

facility should allow the definition of variables, evaluation of expressions and con­

dition, create the rules in the traditional rule-based language style (IF antecedent 

THEN action format) and be able to call appropriate functions to extract data, and 

input/output. Such a system could start with an object-oriented framework as pro­

vided by C-t-+ and be able to add rules. The developed compiler can take an input 

of a C+4- program containing the rules in a pre-defined format (as functions of a 

class with a special keyword say RULES, to indicate that it is followed by IF-THEN 
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clause). This input could be compiled to produce an equivalent C++ code that could 

be compiled by the standard C++ compiler to executable code. The rule information 

could be added in the pre-defined format and is essentially converted into functions in 

C++. The function name could be the name of the corresponding goal to be satisfied. 

The main function is the goal predicate. The sub-goals solutions are sought until the 

overall goal is unified. The key is to write a compiler (or a pre-processor) which can 

take an appropriate input in IF-THEN format (similar to PCPLUS or 0PS5) and 

convert it to functions of C++. Since the goal of this research is not the writing 

of compilers (and is not also trivial), the easy approach was adopted - creating the 

functions directly and specifying control. Each rule is declared as a function. The 

overall goal is the main function. This in turn calls all subgoal functions and the 

solving of the goal results in the solving of sub-goals and this continues until the 

goal is resolved. This approach primarily uses the language features of C rather than 

C++ but was created as a C++ program (as it is after all a superset of C). 

The important concept is that this program simulates PCPLUS to a very large 

extent. PCPLUS as it is provides primarily (1) a backward chaining inferencing 

mechanism (2) calling of appropriate sub-goals to satisfy the main goal (3) satisfy­

ing of parameters only once. The other facilities provided include (a) a convenient 

user-interface (b) multi-frame knowledge building (c) forward chaining (d) variable, 

expression evaluation (e) interface to external programs (f) tracing and explanations. 

It does not however provide any consistency and validity checking and is primitive in 

terms of error checking. 

In a manner similar to that of the multi-frame concept provided in PCPLUS, 

rules for each one of the welding process parameters (such as electrode type, shielding 
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gas) are stored in a separate file and addition of knowledge for that particular param­

eter needs to be concerned with only that file - that is it is modularized. Figure .5.5 

explains schematically the design of the program for each of the welding parameters. 

Since it is modular, and repeatable, the program is very similar for each of the wel­

ding process parameter with the knowledge being different in each case. Each rule 

is termed as an independent object and can be called by any other rule any number 

of times. A collection of all these rules essentially provides the solution tree for that 

particular parameter. The link for the tree is the call to another rule. In our case 

all rules are functions. The node, or rule, or object (all names interchangeably used) 

involves evaluation of relational conditions, expressions, calls to other rules (i.e. func­

tions), extraction of information from the modeling classes (eg: material thickness), 

and formatting the information to the screen or to the file using the facilities pro­

vided by the programming system. Depending on the rule and the conditions to be 

satisfied, one rule might lead to the calling of another rule, which in turn to another, 

or the rule might fail. This then directs the pattern to search the next rule and upon 

resolving the goal or sub-goal the appropriate output concerning the welding process 

parameter is provided. 

This search can be classified as performing three tasks: (1) invoking a function 

(2) filling values for variables and evaluating expressions (3) return action. The first 

step is just to invoke a call for one of the sub-goals to be satisfied. The second step 

consists of either extracting information from the geometry modeling binary tree 

with associated welding attribute information or asking the user to provide data. 

The return action takes place after the conditions are evaluated and takes it to the 

immediate higher level so that the search can continue. If the call is successful, a 
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return value is returned. If all rules are tried and there are no more rules to be 

verified, the system will not be able to come to any conclusion and no data will be 

returned to the next level. At this instant the user is asked for information and this 

request is taken as the action of the rule. By implementing in this manner, the control 

logic is kept to a minimum and adding rules by the engineer is not a problem if the 

syntax is known. This system does not provide facilities for explanation (or how the 

system reached a particular conclusion). If a shell were to be developed using the 

OOP environment, then the explanation facility would be an essential feature. The 

structure of the rule is in such a format that to make modifications, the user needs 

to understand the meaning of C++ functions and the syntax. 

Geometry parameter extraction 

The overall objective is to satisfy the function gmaw.process(). This determines 

the welding schedules needed for the design already created. The binary tree that 

is available with the geometry and weld information is traversed from the top node 

to determine whether a weld exists. This is effected by a member function in the 

class compound called is_there_weld(). If there is no weld, the traversal of the tree 

is continued further and at each node the function to check whether there exist a 

weld is called. An affirmative on the return value of the function results in calling 

the main function which has all the welding parameters that need to be called as 

function routines. These rules are stored in separate files and the various files include: 

electrode.type, electrode.size, gas_mixture_type_fiow, metaLtransfer_mode, current, 

voltage, arcJength travel_speed, tooLangle. The results are provided as output to a 

file that can be processed for actual transfer to the robot. 
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The type of information that is typically extracted for the welding procedure 

generation is either Type 1, or Type 2 parameter (defined in Chapter 3). Type 1 

parameters are already available as data members of the classes (the geometry or 

the welding attribute graphs). The extraction of these parameters are simple calls to 

data member functions of that particular instance. Type 2 parameters are evaluated 

entities based on the class data member values. These are calculated as soon as the 

geometry and the weld attribute values are assigned. When the parameter is required, 

it is retrieved for use. All values that are obtained are one of the following types: 

(a) structures (b) data members of class (c) functions. The analogy of slots within 

a frame (typical of frame-based representation) is obtained in the object-oriented 

programming environment by means of the private data members of the class and 

the constructor provides for default values. By this the property values of various 

weld types can be retrieved. 

Typel Parameters: The type 1 parameters that need to be extracted for the weld 

process module are: (1) material thickness (2) position (3) material type (4) joint 

type (5) weld type. The other type 1 parameters used in the kinematics module are: 

(1) start coordinate (2) end coordinate (3) participating features - the child leaves 

and the parent nodes. 

To obtain the information, the product data needs to be organized and in a data 

structure most suitable for consultation. At run time, consulting the information 

that is available and resident in the memory, and access to it, is carried out through 

the member function of the appropriate classes. Consider the following as an example 

to determine the parent of a feature. The mapping program statements are: 

pix j = oid_map.seek(objidl); 
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pix k = oid-niap.seek(obj jd2); 

c — oid-map.contents(j); 
d = oid_map.coiiteiits(k); 

if ((c -> parent_who() != null) || (d -> parent_who() != null) 
{ 

} 

and in the definition of the class object, there exists a function called parent.who. 

The partial code explaining this is given by; 

class object 
{ 

protected: 
object* par 
other data members 

public: 
object* parent_who() { return par }; 

other member functions 

} 

By this program fragment a few important concepts are highlighted and the 

usefulness of C++ can be seen. An associative array has very common use in pro­

gramming just as a list, or stack is useful. A container class has already been written 

and is part of the library. What it allows are associative array operations (insertion, 

deletion, and membership of records based on an associated key). This requires the 
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specification of two types, the key type and the contents type. These are imple­

mented in many ways but the map here has been implemented via a threaded AVL 

tree. However, the user does not need to know the implementation. The interface 

alone is important. The important concept of software reuse is clearly seen where 

a library that has been already created is being used. In this work a map is used 

with a string and the corresponding contents for that string's information. The string 

that was mapped was the object-id and the contents of the object-id are the data 

members of the object which is already created by the constructor function of the 

object. The data member of the object-id has a pointer to the parent object (see 

object* par in the program). The function that obtains the information is public 

to that class and returns the pointer to the parent object-id and this happens to be 

the parent of the current object. Without knowing the internals of the program the 

calling program has obtained the required data concerning who the parent of the 

current object is, and extraction of the value has been effected. As in the example of 

parent _who( ), all other type 1 parameters - first .child, second.child, start.coordinate 

and end.coordinate of the weld, material-thickness and others are obtained. Each 

such member function is primarily a data member of the appropriate class. Any 

further data can be accessed whenever needed. 

Type 2 parameters: Type 2 parameters required for the trajectory planning mod­

ule are; (1) adjacent features (to detect access problems) (2) adjacent faces (to obtain 

the weld frame information) (3) normal of faces (again for weld frame information) 

and (4) weld curve information (to know the actual trajectory in a parametrized 

form). The various parameters that need to be extracted are primarily the geometry 

information needed for the weld trajectory planning module. This is attempted as 
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soon as the objects are created and the corresponding welding attribute graph cre­

ated. The system evaluates all the type 2 entities and stores them in the appropriate 

class as a data member. This is essentially attached to the node of the binary tree 

corresponding to the particular object-id. Once this evaluated information has been 

stored, the traversal of the tree is the same as mentioned before. This avoids the need 

for parsing a text file if information were to be stored as a text file and later read 

during consultation. Consider for example the evaluation of information concerning 

the weld curve type by the function call weld.curve.type( ). This is accomplished by 

a series of steps with interaction to the solid modeling system, since there is no direct 

way of knowing the internal data structures of IDEAS. The steps include: 

1. Based on the binary tree created by the interface, write the program file for 

IDEAS. Call up IDEAS to create the object. 

2. Knowing that the two leaves and the compound object have been created based 

on the program input, the PEARL database is instructed to write the B-rep 

file. 

3. This contains the topology and the dimension data. The information concerning 

the object combination surface is obtained. 

4. Since IDEAS represent curves as a generalized NURBS curve (see appendix B), 

the latter is represented parametrically. 

5. From the NURBS representation, the curve is identified. 

Consider Figure 3.5 again. Assume the weld curve type needs to be found. The 

overall object is a simple block with a cylinder and has a weld edge on it. The steps 



121 

outlined previously result in the following: 

1. This object is created using the welding representation/knowledge mapping 

program. When the appropriate menu (Write Program File for IDEAS), is 

selected it results in the binary tree information to be written as a program 

file. The program file consist of each of the command that IDEAS requires to 

create the drawing. 

2. Since welds can be created only when object combinations occur, we are pri­

marily interested in all those surfaces that have object combination. The union 

of the block and the cylinder resulted in 8 surfaces. The sixth surface has an 

object combination that can be a weld. The next step is to write the PEARL 

data file - which contains all the topology and dimension information. This file 

contains the needed information, which can be extracted. 

3. IDEAS stores object combination surfaces with an id of zero. The file is searched 

for the surface-id with zero. The corresponding curve-id for this surface is 

obtained (in this case 26). This curve-id has a NURBS representation, as 

IDEAS stores them in that format. This curve information is accessed. The 

curve form has numbers ranging from 0 to 11, which provide if they are standard 

curves. In this example, the curve-form is given to be 2 which is a circle. This is 

the information we are interested in. The corresponding knot vectors, weights 

are obtained so that it can be transformed into a polynomial that can be used 

for the trajectory planning of the robot and positioner. 

4. Now the next step is to convert this NURBS representation into a polynomial 

form. To accomplish this there exist different algorithms such as Boehm's 
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[1980] algorithm. These provide a method for evaluating a NURBS curve and 

producing a cubic polynomial without computing the basis functions. This 

allows the exact polynomial curve which can be differentiated and used in the 

trajectory planning problem. 

Similar methods are provided for evaluated entities (type 2 and type 3 parame­

ters) including: (1) surface normals (2) weld edge data (3) direction vector of X axis 

on the weld frame (4) direction vector of the Z axis on the weld frame and (5) face 

information details. Having extracted the various parameters that are needed for the 

knowledge base reasoning and trajectory planning module, an example is provided 

in the next sub-section to highlight the method. 

Storage, retrieval, and traversal 

Storage: Assuming that the WAGRAPH attachment has been already attempted, 

then there exists information concerning the weld and the geometry. This can be 

saved as a text file. However, retrieving this information for modifications, further 

building, and traversal will be difficult. Hence, it is stored in a dynamic data structure 

such that a binary tree data traversal can be performed to indicate the number of 

welds and its associated properties. The data structures for storage, retrieval and 

traversal is shown in Figures 5.6 and 5.7. This contains all object instances and the 

associated details of the weld attribute. 

For the storage of information, the objects should first be resident in the memory. 

In this implementation, it is being stored as a map of type objectptr. This associa­

tive array has two types, the key type being a string which contains the object-id, 

and the contents type being a pointer to the corresponding object. As objects are 
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created, they get stored in the container class in a particular order determined by 

the map implementation. When type 1 parameters are extracted, this container class 

is accessed and corresponding to an object-id, the contents are retrieved. This map 

contains all the objects created - those connected to the binary tree of the current 

solid and those that were created but not used as a leaf or node. For example, at 

the middle of a session or when a session is completed, the user indicates that the 

information need to be stored for subsequent use. This data are stored in a binary 

format. All the records used in the files have been implemented as structs in C-I-4-. 

The lower half of Figure 5.6 describes how a simple object and a compound 

object information is stored. The simple object contains the object-id as a string, 

the parent, the actual object name (such as a cylinder) and the corresponding infor­

mation for the simple object. The idea of type polymorphism is again used here, by 

which whenever a store function is called, it invokes the appropriate function (sim-

ple.cylinder.store or simple.tube.store) and writes the exact amount of bytes in the 

file. The information that needs to be written on to the file is obtained from the 

map of the object-id and the corresponding pointer to its contents. For a compound 

object the comp.object.store writes the object-id, the first and second child object-id, 

and if a WAGRAPH exists, then the entire information is written as a structure. In 

addition to all this information, a password is set up at the top of the file to make 

sure the correct file is read. Now the file contains the necessary information that can 

be used for retrieval. It should be noted here, that neither in the associative map nor 

in the file storage, the CSG tree is explicitly stored as a binary tree. However, the 

binary tree is implicit, since the information concerning parent and child is stored 

and a parent can have only two children. 
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Retrieval: When a user needs to continue on an old session, or inquires about a 

weld, then the stored data need to be retrieved. When it is retrieved, it should 

also create the associative map as that allows data extraction of type 1 and type 2 

parameters. In order for this to happen, the problem of whether the parent or the 

child should be created first needs to be resolved. It is typical to create the leaves 

first and then go on to create the nodes. However, we have a pointer to the children 

in a compound object, and the children point to its parent. This results in a cyclic 

structure. To circumvent this, another map of the same type objectptr is created 

with the name comp.objJd. This contains the key as a string which is nothing but 

the two child object-id's separated by a special character (or space) and the other is 

a pointer to the corresponing compound object. The retrieval and loading on to run 

time memory is attempted in two phases. In the first pass, the objects are created 

without any contents along with the associative map for the compound object. In 

the second pass, corresponding to the compound object pointer the two child nodes 

based on the object-id of the compound.obj Jd map is filled and corresponding parent 

information is also filled. By this the both the objects - simple and compound are 

created in the memory. 

Traversal: Once the tree is created, the user may want to know if there exists a 

weld or extract some weld attribute values. To accomplish this, few validity checks 

need to be performed. There can be cases where simple objects, are created but do 

not participate in the overall object creation. In such a case, we need not extract 

details of them. Also, once it is included in the current context (the CSG tree) 

the corresponding details should be available for extraction. This is accomplished 

by having two structures: (1) a creation of an unordered set which contains all 



127 

the pointers of objects created called ObjectPtrSet; (2) another pointer called the 

CurrentPtr, which points always to the current solid. When a tree is created, it is 

immediately included in the ObjectPtrSet. Once these objects are associated with 

the overall CSG tree, the ObjectPtr is removed from the set and the CurrentPtr 

points to the current solid. When a tree traversal is to take place, the current solid 

is recursively searched to obtain the weld and other significant details. 

Example rules 

The equivalent code for the three example rules provided in Chapter 4 is out­

lined in C+4- format to highlight the mechanism of obtaining the welding process 

parameters. 

main( ) 
{ 

// declare variables 
// read data 

if (electrode.grade()) 
cout << "The electrode grade has been selected \n 

else 
cout << "I was not able to come to any conclusion \n 

} 

electrode_grade( ) 
{ 

if ((mat-type == killed || mat .type == semiJcilled) && 
(mat == mild_steel) && (weld-position())) && (impact.strength <= 20) 
&& (tensile.strength < 65000) && (metaLtransfer())) 

{ cout << "The electrode grade is E70S-3 \n 
return(true);} 

else 
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electrode-grade2( ); 

metaLtransferO 
{ 

if ((material.thickness < 0.125) && (weld.position())) 
return(short.circuit); 

else return(O); } 

weld.positioii( ) 
{ 

if (weld_pos.state -- -- unknown) { weld.pos.state == known 
if ((posl == vertical || (posl == overhead)) 

wpd — out-of.position; } 
else 

wpd = in.position; 
} return wpd; 

In this example, the goal rule that needs to be resolved is the type of electrode 

grade. In the main routine if the return value for the function electrode.grade( ) is 

true, the electrode grade is selected. In order for this to be satisfied, there are a series 

of conditions that have to be evaluated. Some are explicit type 1 information and 

some conditions call other rules. For example, the type of material is obtained based 

on the earlier CAD representation which contains this information as part of the class 

object's data member. Whether it is a type 1 parameter or type 2 parameter, each is 

obtained by a function call. The function call in turn returns the information that is 

needed. In this rule there is a function call called weld.position(). This function when 

called the first time has the state of the global variable (weld_pos_state) unknown 

since its slot has not yet been filled. It executes the necessary conditions in the 

function and returns the variable wpd. This contains the position of the weld (to be 
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either in position (flat or horizontal) or out of position (vertical or overhead). There 

exists another condition in the same rule that calls the function metal.transfer( ). 

This in turn again calls weld-position( ) to determine the position of the variable. 

But it is wasteful to run the function again. This is taken care of by the variable 

weld.pos-State. Every time a function is run it is first checked with its own variable 

value. If it has already been determined the function is not run and returns its original 

value. If the function had not been evaluated, then the conditions are satisfied and 

the appropriate result is sent back to the next level. After all these calls have been 

successfully returned the control returns to one higher level, where it satisfies the 

overall goal and the system goes to the next parameter and establishes that goal. 

However, in the event the if portion of the first rule electrode_grade( ) failed, the else 

portion calls the next rule (not shown here) which is the function electrode_grade2(). 

This continues until all the rule base has been searched in that frame, and if it 

still does not resolve the goal rule, then input from the user is obtained to provide 

the electrode type. This is stored in a global variable for future use. This program 

simulates the main actions of PCPLUS. Although the system is primitive, it captures 

the intent of all that was sought at the start of the implementation stage. 

A Sample Session 

The system was created using GNU C++ [Tiemann 1990] on a DEC workstation 

with the IDEAS solid modeling system running as a child process. Although it is not 

a full fledged system working inside IDEAS (as it was not possible to work based on 

the internals of IDEAS), it does not limit the usefulness interms of attaching weld 

attributes to a CSG tree and extraction of the same. Further, the work exemplifies the 
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need for such a representation scheme and shows how mapping can be accomplished 

for an application purpose. 

The WAGRAPH attachment involves the creation and location of geometry ele­

ments followed by the interactive attachment of the weld property values. The overall 

system is structured as a menu driven system and structured in levels of hierarchy 

(refer Figures 5.8 and 5.9). Creating the nominal geometry is the first step in the 

overall process. Once in the individual feature menu, the designer may create, delete, 

modify, or list the properties of the nominal feature. The system allows the access to 

the menu structure in any order as long as it makes valid sense. For example, a com­

pound object cannot be created when there are no primitives (leaves) in the object 

collection or a cylinder cannot be on top of a cone for the purposes of welding. As 

the creation progresses, the variational information, or the WAGRAPH information 

can be added by invoking that part of the main menu. The WAGRAPH structure is 

invoked and the user specifies one of the solid nodes on the CSG tree as the current 

solid where the attribute information is to be added based on the display of the object 

list. The validity of the node is checked before attempting to attach the WAGRAPH. 

The following are to be assigned: (a) the participating weld faces (b) the appro­

priate weld edges (c) the start of the weld (d) the end of the weld (e) the welding 

frames. The ray casting technique available in the solid modeler can be used. Cast-

ray allows one to cast a ray along a given vector from an origin identified by the 

user. The program then reports back the surfaces that it intersects, and the XYZ 

coordinate point on the surface it intersects. Then from the provided list (if there are 

multiple surfaces) the appropriate surface can be picked. Likewise, the cursor is used 

to select entities and coordinates so that the information concerning the dimension 
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MAIN MENU 

1. Create Primitive Object 
2. Construct Compound Object 

and WAGRAPH 
3. Display Tree 
4. Write Program File FOr IDEAS 
5. Ouit The Program 

MENU FOR 1 AND 2 

1. Create 
2. Delete 
3. Display 
4. Return To Main Menu 

MENU FOR 1 

1. Create Cylinder 
2. Create Block 
3. Create Tube 
4. Return To Previous 

Menu 

MENU FOR 2 

1. Join 
2. Intersection 
2. Difference 
4. Addition of 

WAGRAPH 
5. Return To 

Previous Menu 

Figure 5.8: Menu structure for the system - Part 1 
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WAGRAPH MENU 

1. Identify Weld Faces 

2. Define Weld Frames 

3. Attach Weld Edge Info 

4. Attach Weld Type Info 

5. Create WAGRAPH 

6. Return To Main Menu 

WELD TYPE MENU 

1. BUTT 

2. CORNER 

3. EDGE 

4. TEE 

5. LAP 

6. RETURN 
TO 
MENU 

JOINT TYPES 

1. FILLET _ 
2. PLUG 
3. SLOT 
4. SEAM 
5. GROOVE 
6. RETURN 

TO MAIN 
MENU 

FILLET 
TYPE 

SIZE 
LENGTH 
HEIGHT 
PITCH 
FINISH 
OTHERS 

IF ANY 

Figure 5.9: Menu structure for the system - Part 2 
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and topology can be obtained and necessary type 2 parameters evaluated. Since the 

goal was not the writing of a full-fledged graphics package, the user was made to 

interactively input the details (a drawback of the system). After selecting the appro­

priate face, edge, and frame information, the user through menu-based interaction 

assigns attributes of the weld to the parent node based on the WAGRAPH, WTYPE, 

WJOINT class structures explained in Section 3. As this has been created, the user 

is allowed to delete, modify, or display any of the values created. 

When a feature is deleted, or attributes of the WAGRAPH are deleted, all cor­

responding pointers are removed. This means that if a child leaf needs to be deleted, 

then the compound object is deleted which in turn deletes the WAGRAPH that is 

attached. Also if the weld edge does not any longer exist the entire set of point­

ers to the WFACES and WFRAMES are deleted and made invalid. Deleting just a 

WAGRAPH results in that structure alone being termed invalid. The tree is then 

archived in a data structure format (as explained before). At any point, the user 

can continue to create objects and expand the tree. The addition of all this does 

not automatically invoke the WAGRAPH but does so only when the user replies to 

the question "Does a weld exist in the compound object just created". If the answer 

is YES, the user is allowed to enter values (with default values always provided to 

start with). Complicated editing that is possible is not taken care of. Sophisticated 

consistency and validity checkers need to be developed if this system is to be incor­

porated in a commercial system. The structure is saved as a binary tree with the 

WAGRAPH class instance being attached to the nodes. A text language type storing 

and a parser to back translate would be ideal. 
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Validation Of The System 

Any system that is created has to be evaluated. The validation of typical 

knowledge-based systems is achieved by means of consultation of the expert system 

and comparing the results with the experts answers. The match between the two is 

seen as the indicator of good performance. The system is also given to the welding 

engineer, so that various test cases can be tried. The importance of such a validation 

is to make sure the knowledge engineer obtained the data properly and to report any 

bugs in the system created. This is similar to field tests of software. However, it was 

clear at the end of the industrial survey that only public knowledge was acquired and 

this was is based on tables, and handbooks. This resulted in the creation of a system 

based on available knowledge that fitted the IF-THEN rule format. The answers the 

system provided were therefore satisfactory. However, the intention in the present 

work was to validate the conclusions arrived at based on the experience in building 

the system. Hence at the end of this research, a set of recommendations were sent to 

the welding engineers who had cooperated in providing the data initially. The actual 

answers of the experts are provided in Appendix D. The recommendations sent to 

them were: 

1. To have an on-line feedback based on a vision system to check the weld for 

spatter, porosity, lack of penetration, lack of fusion, undercutting, cracking, 

burnthrough etc. and correct the rule database as each experimentation is 

carried out. This has already been attempted by researchers independently but 

changing of rules in the knowledge base and subsequent correction is the central 

problem. Issues: Can this feedback be used for generalizations? 



135 

2. Conduct an extensive study on the "Effects of geometric shapes on welding pro­

cess parameters" with the help of a welding engineer (full time), an integrated 

welding robot and positioner system; assigning weld parameters based on an 

existing knowledge-based system and monitor what the welding engineer does, 

to abstract private information. Issues: (a) will it provide results significantly 

different to warrant such an action? (b) will it be considered scientific? (c) 

what will it achieve in terms of generalization (d) when and where will it end? 

3. Develop analytical models for each of the welding processes. Issues: Are we 

anywhere near developing welding process specification as a science-based tool 

The experts agreed that something should be done to make the process spec­

ification process more science-based rather than experience-based. However, there 

was no consensus concerning the best direction of progress (Refer Appendix D for 

their answers). Many of the welding engineers were skeptical about the outcome of 

any of the three methods outlined but agreed on the need for a start at some point. 

This conclusion further indicates, that a greater effort is needed to study the entire 

problem of process specification of welding process parameters although theoretical 

work (this research) will doubtless help to solve some of the problems. 

Summary 

This Chapter has outlined the implementation of the integrated structure for 

welding feature and attribute representation and extraction. The novel use of an 

object-oriented programming paradigm for this application was highlighted and the 

system was developed using C+-t-. The total number of lines of C4-4- code developed 
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for the system is around 4000. In addition, the knowledge-based system was also 

developed as a shell using PCPLUS. The representation of the weld attributes at 

the design stage allowed the automatic generation of robot weld process schedules. 

A sample session to highlight the steps and discuss shortcomings was described. It 

is believed that this system is a good starting point for the representation of sec­

ondary feature information in solid models. A richer and higher level representation 

(abstraction) of the elements involved in a robot workcell environment is required to 

attempt task level programming of robots. But this research presents itself as a good 

intermediate step between manual robot programming and totally automated task 

level robotic arc welding programming systems. 
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CHAPTER 6. TRAJECTORY PLANNING OF THE INTEGRATED 

ROBOT AND POSITIONER 

Given a desired weld seam trajectory from the CAD database and the appro­

priate process knowledge, a systematic set of inverse solutions must be provided to 

instruct the robot to weld the trajectory. Although the robot is the principal member 

in a robotic workcell, other members need to be represented and used in the decision­

making process. The major phases in any off-line robot programming system are: 

1. Kinematic solver/trajectory planner 

2. Interference detection/Collision avoidance 

3. Real world feedback to correct for inaccuracies by sensor agents such as vision, 

seam tracking 

4. Detect anamolies and correct the high order process plans 

Different aspects of these problems are being attempted by various researchers. 

The first issue alone is addressed and a new approach is provided in this Chapter. It 

is stressed again that this dissertation conceives only the off-line development phase 

wherein a plan will be produced based on apriori information available with the aid 

of the consistent representation scheme. It is understood that the on-line phase is 
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an important factor in the total automation of robot programming but providing 

solutions for that phase of the research was not the intent of this work. 

The need for an integrated welding robot and positioner in an arc welding work-

cell and methods currently adopted were highlighted in Chapter 2. The novel "fixed 

path modified continuation method" adopted to obtain the joint displacement and 

velocity histories continuously along the weld path is outlined in this Chapter. The 

methodology is implemented for a five axis GE P50 robot and a two axis positioner 

(similar to ESAB350). This Chapter is divided into six main Sections. The first 

Section describes the overall methodology. The modified continuation method is de­

scribed in Section 2. The equations for the GE P50 robot and the positioner that 

describe the forward and inverse kinematics are outlined in Section 3. Section 4 pro­

vides the equations involved in the trajectory planning of the robot and the method 

whereby how the first order non-linear differential equations may be obtained. The 

fifth Section describes three examples that highlight the method developed and the 

final Section summarizes the Chapter. 

Overall Methodology 

A robot with five degrees of freedom and a two-axis positioner needs to be 

controlled simultaneously in real time. In commercial systems the robot controller 

controls both the robot and positioner. However, the tool center point is normally 

not related to the movement of the robot. This results in the necessity for teaching 

a number of intermediate points even for a simple straight line (see Figure 6.1) to 

obtain a coordinated motion of the robot and positioner. 

This problem of coordinating the robot and the positioner by using the positioner 
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as a leader and the robot as a follower is now addressed. The traditional method 

of obtaining inverse kinematic solution at intermediate points and interpolating in 

between knot points is not attempted. The positioner is first oriented such that a 

weld gun oriented normal to the weld joint will be in a vertical line. Subsequently the 

robot trajectory is planned. The solution all along the trajectory is obtained knowing 

the start solution and the target system. The steps involved in determining the joint 

angles, velocities, and acceleration of the robot and positioner along the weld joint 

are: 

1. Derive the kinematic equations for the positioner and the robot 

2. Solve for the joint angles of the positioner such that the normal of the weld is 

in the global z direction using the continuation method. Obtain the position 

and orientation of all points on the weld in terms of the path parameter p, with 

respect to the base of the positioner 

3. Transform this position and orientation to obtain the orientation of the weld 

joint with respect to the base frame of the robot 

4. Obtain the inverse kinematic solution of the robot at the start point using the 

closed form solution derived in step 1 

5. Knowing the target system as a function of the path parameter p (at p=l), 

track the path (from 0 to 1) using the continuation method to obtain joint 

angles, velocity, and acceleration 

6. Verify the correctness of the solution by simulating the robot and positioner 

motion using a solid modeling system and a simulation software 
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End 
point 

Start 
point 

Figure 6.1: Example showing coordinated motion 

The general problem of producing mechanical parts divides into two, according 

to whether a curve or surface is to be produced. Curves normally require operations 

such as flame cutting and continuous welding while surfaces are involved in machining. 

Since the primary goal is to use a robot to weld, the curve that represents the weld 

and its corresponding coordinates should be obtained. Three examples - a straight 

line weld, a circular weld, and a quarter circle in the XZ plane - are provided to 

highlight the method. These examples are considered to show one time movement 

of the positioner for the straight line and circular weld and a continuous, integrated 

movement of the robot and positioner for the quarter circle weld. 
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Fixed Path Modified Continuation Method 

Continuation methods in the last few years have received considerable attention 

in applications to kinematic analysis and synthesis problems [Subbian and Flugrad 

1991b]. Jo and Haug [1988] carried out the work space analysis of two degree-of-

freedom robot arms and slider-crank mechanisms utilizing continuation methods. 

Tsai and Morgan [1985] and Wampler and Morgan [1989] succeeded in determining 

the inverse kinematic solutions for five and six degree-of-freedom manipulators using 

this technique. In this thesis, application of a modified continuation method to solve 

the trajectory planning problem of an integrated robot and positioner is proposed. 

Continuation methods can be used to solve a system of n equations in either n 

or (ti + I) unknowns. To solve a system of n equations in n unknowns, say f(z) = 0, a 

simple system is assumed to be a start system, say g(z) = 0. This start system must 

be of the same degree as the original system and easy to solve. Homotopy functions 

can then be written by combining the two systems of equations as follows 

h(z,() = f(z)f + g(z)(l -0 = 0 

where t is the homotopy parameter and h the homotopy function. Depending on the 

choice of g(z) and the manner in which it is combined with f(z), the homotopy can be 

described as a coefficient homotopy, a parameter homotopy, or a secant homotopy. 

When t = Q, the homotopy function reduces to the start system; when i = 1 it 

becomes the original system of equations to be solved. Therefore, by increasing t 

from 0 to 1 and simultaneously tracking the values of the z variables, the original 

system f(z) = 0 is solved. The z variables are tracked by integrating a set of first 

order ordinary differential equations with respect to the homotopy parameter t. The 
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solutions for the start system are used as initial conditions for the integration. 

When solving a system of n equations in (n + 1) unknowns, solution curves are 

obtained, rather than a finite solution set. The procedure involved is a two step 

process. First, at least one point on each of the solution curves is determined. Let 

e(.-c) = 0 be .the system of n equations in (n + 1) unknowns. The procedure described 

by Morgan [1981] utihzes an extended Jacobian matrix of e(z) = 0 to determine an 

(n 4- l)th equation. Hence, a set of (n + 1) equations in (n + 1) unknowns is solved 

using continuation to find the finite solution set of interest. Obtaining the (n + l)th 

equation analytically, can be difficult for a complicated system of equations; therefore 

an alternative approach is used here. 

The system of equations under consideration has a trajectory path variable as 

the (n + l)th variable, which is 0 at the initial point and 1 at the terminal point. The 

path traversed by the robot between these two points is specified. The remaining 

n variables are the joint angles, whose values are to track the prescribed path. By 

setting = 0 then, the inverse kinematic solutions for the robot at the initial 

point can be determined. These inverse kinematic solutions can either be calculated 

by closed-form solutions, or by using a continuation method [Tsai and Morgan, 1985, 

Wampler and Morgan, 1989]. 

The finite solutions obtained by the above procedures give points on the solution 

curves. The second step would be to trace the solution curves from the initial points, 

obtained above, by integrating a set of n first order ordinary differential equations of 

the n variables with respect to The differential equations are obtained from 

the extended Jacobian matrix of the given system of equations (e(z) = 0). A detailed 

description of the procedures outlined here is provided by Morgan [1981, 1987]. 



143 

Traditionally, the continuation method is used to solve a system of polynomial 

equations. The solutions represent the path taken by the system of equations where 

the start solution is assumed and the target system is known. This path can be 

tracked using various methods falling under the general umbrella of path-tracking 

numerical methods. However, in our case it is proposed that a different approach be 

used in which the path to be tracked is known, the start solution is known (beginning 

of path), and the target system is also known (end of path). The solution to the 

variables provide the joint displacements of the robot as it tracks the given path. 

Although we force the path upfront, we still have the problem of solving for a given 

set of variables knowing (1) a set of polynomial equations in cosines and sines of 

the joint angles, (2) the known inverse kinematic solution as the start solution and 

(3) the target system. The solution is required continuously along the path. In the 

strict sense of the continuation method the path cannot be fixed. Nevertheless, in 

the present case, the solution along the path is needed continuously and is obtained 

by this approach. Hence this method may be termed as the "Fixed Path Modified 

Continuation Method" 

Development Of Equations 

Process robots are usually revolute joint robots and typically have five degrees 

of freedom i.e., five moving links. The welding torch is attached to the wrist and link 

6 is at the tip of the torch. A positioner in a welding workcell is typically two axis in 

nature providing the tilt and rotation of the worktable. Every two neighboring links 

are connected by a joint. Figure 6.2 is a generalized link (i — 1) paired at a joint i  

with another link, link i. Every joint is associated with a coordinate frame. The link 



Axis i 
Link i - 1  

Axis t-1 

Link i 

i - 1  

- a 
i - 1  

/ 

Figure 6.2: Definition of link parameters 

parameters following Craig's [1986] convention are: 

Oj-: the distance from Zj to measured along 

Qj-: the angle between Zj and Z^^^ measured about 

df. the distance from to X( measured along Z{ and 

O^: the angle between X^_i and X^ measured about Zj 

The homogeneous transformation matrix relating frames i  and i-1 is given by: 

Cdi -SOi 0 

SeiSai_i CeiSai_i Cai_i 

0 0 0 1 
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where the notations C and S indicate cos and sin, respectively. Figure 6.3 provides 

the link parameters of the robot and the positioner. 

Consider the nature of the subspace of the GE P50 robot. It is found that the 

subspace can be described by giving a constraint that the direction of the tool Zy 

must lie in the plane of the arm. This is the plane containing axis 1 and the point 

where axes 4 and 5 intersect [Craig 1987]. This shows that all goal orientations are 

not possible with a five degree of freedom robot. However, in general this does not 

pose any problem. 

The GEP50 robot 

The kinematics of the manipulator can be evaluated by using equation 6.1 for 

each link, progressing from frame 0 to frame 5. Using the following transformation 

matrix from frame 5 to frame 6 

and by combining the results with Eq. 6.2 it is found that gT = ^T^T'^T^T^T^T. 

This then describes any position in the final frame with respect to the robot's base. 

In the present case the final frame is the welding tip which is at a specified distance 

from the weld joint to account for the arc length as specified by the GMAW process. 

This position is given by: 

l/\/2 0 l|^/2 0 

0  1 0  0  

-l/\/2 0 l/\/2 16.0 

0 0 0 1 

(6.2) 

Px = 16.OC70]^5^234 "t" 23.5C0]^C02 + 
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4 z. 

O 

GE P50 ROBOT 

I cti-i «i-i dj tf j 

1 0 0 0 6>1 
2 -90'' 0 0 ^2 
3 0 L2 0 é», 
4 0 L3 0 <^4 
5 90" 0 0 ^5 

ESAB 350 POSITIONER 

* 

1 90* 24.0 - <9, 
2 -90" 0 0 

Figure 6.3: Configuration and link parameters 
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Py = 16.05015^234 + 23.55^1 C'g? + 33..550iC'023 

Pz = 16.OC'0234 ~ 23.55^2 ~ 33.55^23 (6.3) 

Inverse kinematics is the process of solving the problem of finding the required 

joint angles to place the tool frame (the welding torch tip) relative to the base frame 

given the position and orientation of the weld. The problem of solving the kinematic 

equations for any robot is non-linear in nature. However, closed form solutions exist 

for the GE P50 robot due to the nature of construction and the various joint angles 

are given by: 

*1 

% 

*234 

h 

where, C'd^ 

h 

^4 

Atan2{Py,Px) 

Atan2{lyC9i — lxS6i,myC0i —vixSOi) 

Atan2{nxC6i + nySOi,nz) 

= Atan2{\Jl — C'^g) 

— ~Atan2{Px,y Px + Py ) "  /l(aM2(Zg5^g, ̂ 2 ^3^'^3) 

= ^234 - ̂2 - ̂3 (6.4) 

For the GEP50 manipulator a second solution would violate joint limits and so 

is not considered. In this case, let 

0 T = 

Ix Px 

ly my ny Py 

Iz mz riz Pz 

0 0 0 1 

which is typically given by knowing the location and orientation of the weld. 

(6.5) 
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Two axis positioner 

In general, a positioner used in an arc welding workcell is either two-axis or t hree-

axis in nature. The main requirement of this positioner is to orient the weld joints in 

the object in any given direction. Given the position of the weld, it can be oriented in 

any given direction if there are three intersecting axis. But often it is not possible to 

orient in arbitrary directions, due to the interferences in the workpiece environment, 

obstacles, or other constraints dictated by the process. This will then normally lead 

to the use of some sort of search for an acceptable solution. The traditional Roll-

Pitch-Yaw angle formulation ican be used to solve for the inverse kinematic problem 

- that of finding the angles for a given orientation. If the positioner is not of this 

type, the transformation for the 3-revolute case can be obtained by using equation 

1. The overall transformation matrix is given by gT = ^T^T^T. Since the final Z 

vector is required to be in the global Z direction, the third column of the overall 

transformation matrix is made equal to [0,0,1]^. This results in the following three 

equations: 

TZz = —fi2i—C0iS02 — S9iCd2^l) + S0ifi iX2 

+ X 2 { - C 6 i X Q f i i  - ^ o ^ l )  

+ C'^lC'^2/^0'^1 + (^'^2^0/^1 ) 

+A2(—C^l/fOMl + •^O'^l) (6.6) 

where /zj = Sina^ and = Cosa^. Further, nx,ny,nz are 0, 0, 1 respectively. 

These three equations have three unknowns and can be solved using CONSOL or o 
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0 T = (6.7) 

ther continuation routines as outlined in Tsai and Morgan [1985]. In the present case 

a two-intersecting axes positioner is used and the solution can be applied to other 

similar positioners also. 

The positioner has two intersecting axes which provide tilt and rotation. The 

direct kinematic case-that of solving for the orientation and the position of the end 

frame on the positioner, given the position of the axis is given by: 

ceice2 -ceise2 -sei 24.0 

392 CB2 0 0 

seice2 -so\se2 coi 37.0 

0  0 0 1  

The third frame is on the weld such that the Z axis points in the normal direction 

from the joint, the X axis along the weld joint and the Y axis completes the right 

hand rule and thus points in the weaving direction of the weld movement. Assuming 

the description of the goal frame is known i.e., the weld relative to the station frame, 

and is of the form: 

Ixp T^xp Pxp 

lyp rnyp nyp Pyp 

Izp TTlzp Uzp Pzp 

0 0 0 1 

then, in order to solve for the condition such that the Z axis of the weld frame is in 

the global Z direction, the following has to be satisfied: 

C 6-^C 62'n,xp — C9'^S02n'yp — SO'^nzp — 0 

S92nxp C62nyp = 0 

92^xp — S9-^S92'f^yp C9-^nzp — 1 

T = (6.8) 

(6.9) 
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The values of the angles required to obtain a particular orientation of the weld 

joint can therefore be calculated and this will be used in the trajectory planning. 

Trajectory Planning Of The Integrated Robot And Positioner 

Trajectory planning is the task of designing a path to move the manipulator from 

an initial position to some desired final position as determined by the weld seam in 

the part that needs to be welded. This motion involves a change in the orientation 

and position of the tool relative to the positioner station. Normally the motion is 

specified by assigning a sequence of points between the initial and final points which 

are termed knot points. Each of these knot points is a frame which specifies both 

the position and orientation of the tool relative to the station. Between the points 

the motion of the manipulator is defined to be a smooth function. To guarantee this, 

constraints on the spatial and temporal qualities of the path are specified between 

the knot points. Joint space schemes achieve the desired position and orientation at 

the knot points. In between the knot points the shape of the path is simple in joint 

space but complex when described in Cartesian paths [Craig 1986]. 

The trajectory planning outlined in this thesis is accomplished using the con­

tinuation method to solve a system of n equations in (n + 1) unknowns. For such 

a system, the solution set will be a family of curves. The objective is to include a 

variable associated with the trajectory of the robot in Cartesian space in solving for 

the inverse kinematics. A normalized path variable, p, (where p = 0 at the start of 

the trajectory, and p = 1 at the end) was used. 

In order to arrive at these sets of equations it is necessary to obtain the weld 

position information as a function of the path variable after the desired positioner 
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orientation has been achieved. Depending on the weld position and to ensure best 

possible welding conditions, the positioner has to be either oriented once, or rotated 

continuously. For this, the inverse solution of obtaining joint angles given the fi­

nal location of the weld with respect to the center of the positioner table is to be 

attempted. 

Using equation 6.9 the angles of the positioner can be obtained such that the 

normal of the weld is in the global Z direction. This gives: 

$2 = Atan2{—nyp,nxp) 

or = Atan2{nyp, —nxp) 

6-^ = Atan2(X,Y) 

where,X = {C9<2nxp — S62'nyp)l{{C02nxp — S92nyp) -t- nrp) 

Y = nzp/{C62nxp — Sd2'^yp){{CS2^xp ~ S92''^yp)^ ' '^'zp) (6.10) 

Having found the joint angles, these values can be substituted in the forward 

transformation to obtain the position as a function of the path parameter, p and is 

given by: 

IPx = CeiC62Px'p{v)-CeiS62Pyp{v)-SeiPzp[p) + 24..Q (6.11) 

^Py = S62Pxp{p) + C62Pyp{p) (6.12) 

gPr — S6yC92PXP(,P) ~ S9-^S62Pyp{p)-\'CO-^Pzp{p)(6.13) 

This position is then transformed to the robot's base coordinate frame. It is 

necessary to arrive at the set of five non-linear equations that will be solved for 

planning the trajectory. For a flve-revolute-joint manipulator, only the position of 

an axis in the hand can be freely specified. The axis of interest is the ZQ axis. If the 
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sixth frame is located at the tip of the torch and the unit vector attached to the Zg 

axis then by definition: 

^6 = and UQ = (6.14) 

and since the position and orientation of the hand is already specified by Aeq it 

follows that 

PQ = AEQPQ 

UQ = AeqPQ 

The transformation of coordinates from PQ to PQ is given by: 

Po = 

I'o = ITITITITITITUS 

Premultiplying both sides of equation 6.16 by , 

= iTll iTlTUg 

. Ixl lfTlTU^ 

(6.15) 

(6 .16)  

(6.17) 

This will result in two 3x1 matrix and equating the left hand side and the right 

hand side of the matrices the following six equations are obtained, 

ceice2Px + sôice2Py -  S92PZ = 1^09^394^ + 1^86^064^ 

+09^1^ +12 (6.18) 
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-ceiSd2Px - seise2Py - ce2Pz = ^45^35^4 - + 5^/3 (6.19) 

-seiPx + ceiPy = 0.0 (6.20) 

C6iC02nx + SdiC62ny — + SO^SO^CO^)/\/2 

+(ce^se^ + S9zce^)/V2 (6.21) 

—C9iS02nx — 50]^502^2/ ~ C^2^z = {S9^C9/^C'0^ + Cd^SO^Cd^)!\/2 

+(5%5^4-C03C'04)/N/2 (6.22) 

—SOiUx + C6iny = S9^/\/2 (6.23) 

However, only two of the last three equations are independent, since they are 

related by the equation: 

equation{21)^ + equation{22)^ + equation{2Z)^ = 1 (6.24) 

Therefore there are five independent equations in five unknowns (^^ - 0^). As 

stated earlier the solution can be obtained by continuation to obtain the inverse kine­

matic solution at the start point and this may be used to track the path. However, 

the closed form solution is used at the start point and then tracked using the modi­

fied continuation method to obtain joint angles all along the path. The trajectory is 

expressed as functions Pxip), Py{p) and Pz{p) where, (fa;(0), A/(0), Pz(0)) corre­

spond to the starting point, and (fa;(l), Pyi^), fz(l)) correspond to the end point 

of the trajectory. 

To solve this system of five equations, the extended Jacobian matrix, DE, is 

formulated by evaluation of the partial derivatives of the functions with respect to 

the variables 6^, 62, %, ^4, % and p. The resulting Jacobian is a 5 x 6 matrix and 

has the form: 
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ôEi dEi dEi dEi dEi ôEi 
Mi Ml ~Uf 

dEi dEo dE<2 dE  ̂ dE  ̂ dEo 
06^ 002 06^ dd^ dp 

ÔE^ dE^ dE4 dE^ ÔE^ ÔE^ 
ddi M2 M^ M4 c'6'5 dp 
dEci dEti dEc:. dEt^ dEn dE^ 
Ml M^ M^ Mt M^ ^ 

This extended Jacobian matrix is used to determine the five first order differential 

equations of the the joint space variables with respect to the cartesian path variable. 

Thus, 

dOi/dp = (-lY+'^det{DE^^)/Den (6.26) 

where, i  = 1,2,3,4,5, is the Jacobian with the zth column deleted, and Den 

is the negative determinant of the Jacobian with the sixth column deleted. Cramer's 

rule is used to obtain the first order differential equations to show the concept. Other 

numerical routines can be used to speed calculation time. The first order differential 

equations thus obtained are integrated with the known solution at the starting point 

of the trajectory providing the initial conditions. The integration provides 62, 

^3, O4, and ^5 values as a function of the path variable p. The joint velocity histories 

are also obtained if the velocity of the manipulator tip along its trajectory, dp/dt, is 

specified. The formula dO^fdt = {d0^ldp){dpldt) is used to determine the velocities 

of the joint variables. 
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Examples 

Examples are provided to explain the method and how it works in the different 

modes that are normally encountered in robot-positioner arc welding workcells. Here 

it is assumed that the shape of the curve that needs to be welded is obtained from 

the CAD module which is explained elsewhere (Chapter 4). Also conditions required 

for welding are obtained from the knowledge-based module. These two modules 

provide the curve information and the welding tip velocity information. Based on 

this the kinematics module decide on the nature of the positioner movement and 

the subsequent orientation of the robot to reach the points. Typically a one time 

movement of the positioner or a continuous movement of the positioner is required 

in arc welding workcells. To illustrate these, three examples are provided. A straight 

line and a circular weld to show one time movement, and a quarter of a circle weld 

to show continuous and coordinated movement of the robot and positioner. 

Example 1: A straight line weld 

Trajectory planning was attempted for a straight line weld to highlight the 

method. The straight line weld under consideration was assumed to be in the XZ 

plane of the second coordinate frame of the positioner. As stated earlier, the third 

frame was placed at the start of the weld with the X axis being along the weld, the 

Z axis normal to the weld and the Y axis completing the right hand convention. 

The weld starts at (2,0,2) and ends at (2,0,4). In terms of the path parameter p, 

the Px,Py,Pz are 2, 0, 2 -t- 2p respectively. The gT matrix is also obtained which 

describes the position and orientation of the weld with respect to the center of the 

positioner. This matrix is given by: 
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\T = (6.27: 

0  1 0  2  

0 0 1 0 

1 0 G 2 + 2p 

0 0 0 1 

For this problem, the positioner has to be oriented only once and using equation 6.10 

and $2 are obtained for the positioner such that the normal of the weld is in the 

global direction (—90° and +90" respectively). Using equations 6.11, 6.12 and 6.13 

^Pxi^Py^^Pz become 26.0+2p, 2.0, 37.0 respectively where P ranges from 0 to 1. 

The overall transformation matrix describing the position and orientation of the 

weld with respect to the positioner's base is given by: 

0 T = (6.28) 

1 0 0 26.0 + 2p 

0  1 0  2 . 0  

0 0 1 37.5 

0 0 0 1 

Knowing that Zg should point down, and that XQ should be in the direction 

of weld, and YQ to complete the right hand convention the sixth frame orientation 

becomes: 

Framed = 

-1 0 0 49.0 - 2p 

0 1 0 —2.0 

0 0 -1 7.5 

0 0 0 1 

(6.29) 
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In general any position not in the original plane of the arm can be reached only 

by turning the robot's base by an angle equal to Atan2(Py, Px). This results in the 

defining an intermediate frame which is obtained by rotating about ZQ by the same 

amount so that the given point is in the plane of the robot arm. After making the 

substitutions, gT for the robot becomes: 

O/TI 
6-' 

where is the angle by which the tool's pointing direction and the global Z varies 

and Oj: is the angle given by Atan2{Py, Px). Since the tool frame needs to be in the 

global -Z direction, 6^ is 180 degrees. 

The initial solution at p=0 was calculated using the closed form inverse kinematic 

solution given by equation 6.4. Using this and the functions Px(p)i Py{p) and Pzip) 

for the specified trajectory, the extended Jacobian was evaluated as outlined in the 

previous Section. A computer program was developed to generate the first order 

differential equations. This was then numerically integrated using the Adam-Moulton 

method and the GEAR method to determine the joint angles, velocities all along the 

trajectory. 

Plots of the resultant joint angles and velocities all along the path parameter 

are given in Figures 6.4 and 6.5. The joint angle information of 0^ is zero all along 

the path and hence has not been plotted. The joint velocities plotted were obtained 

assuming that the manipulator followed its trajectory at a constant unit velocity, 

ceiSOf SOi Px 

-sef 0 Py 

-se^cdj: C6i Pz 

0 0 0 1 
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i.e., dp/dt = 1. In the actual situation, the knowledge-based system will specify the 

velocity of the welding tip and the actual velocities would be a scalar multiple of 

these values. On driving the servomotors attached to the joints using the calculated 

results the robot would trace a circular path with a constant velocity. The trajectory 

was checked by carrying out the forward kinematic analysis of the robot and using a 

simulation model. 

Example 2: A circular weld 

The circular weld was assumed to be inclined by 45 degrees to the horizontal 

plane of the positioner worktable. This would result in a one-time movement of the 

positioner to bring the weld trajectory to the horizontal plane. The circular trajectory 

had its center at 0,0,5 with respect to the table center and a radius of 5 units. The 

parametric representation of the curve is given by: 

X = 5Coa(27rp)/\/2 -  5/^2 

Y = 55m(27rp) 

Z = 5Co5(27rp)/\/2 

where p ranges from 0 to 1 indicating the start and finish of the circle. The third 

frame is placed at the start of the weld with the Z direction being the normal to the 

weld, the X axis being the tangent to the weld and the Y axis completing the right 

hand convention. The transformation matrix that describes the weld with respect to 

the center of the positioner is given by: 
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Figure 6.4: Example 1: Joint 1, 2 displacement and velocity history of robot 
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Figure 6.5: Example 1: Joint 3, 4 displacement and velocity history of robot 
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T = (6.31) 

C/o5(27rp)/\/2 -5m(27rp)/\/2 -1/^2 5C'og(2;rp)/\/2-5/^2 

Sin(2Trp) Cos(2'!rp) 0 hSin{2iTp) 

C os[2'Kp) I  \/2 —Sin{2Trp)/\/2 l/\/2 5C'o5(27rp)/\/2 + 5/>/2 

0 0 0 1 

In order for the normal to be in the global Z direction, the positioner has to be 

rotated only once. Using equation 6.10 9^ becomes -4.5 and 62 becomes 0 degrees. 

Substituting this result in equations 6.11 through 6.13 the position of the weld with 

respect to the positioners base frame is obtained. After proper transformations the 

orientation and position of the weld with respect to the robots base is given by: 

0 T = (6.32) 

—Cos[2-Kp) —Sin{2'Kp) 0 75 — [BCOS{2TTP) 4- 24) 

— Sin{2ivp) Cos{2Trp) 0 —5Sin{2Trp) 

0  0 - 1  1 2 . 5  

0 0 0 1 

This matrix is used to obtain the start solution using the closed form inverse 

solutions as given by equation 6.4. These are then used by the continuation method 

program to obtain inverse kinematic solution all along the path. The joint displace­

ment and velocity histories are shown in Figures 6.6 and 6.7. 

Example 3: A quarter circle in the XZ plane 

This example is used to highlight the coordinated movement of the robot and 

positioner. A quarter of a circle is used as the generating curve for the weld. Since 

the weld is assumed to be in the XZ plane, the normal of the curve as the weld torch 
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Figure 6.6: Example 2: Joint 1, 2 displacement and velocity history of robot 
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Figure 6.7: Example 2: Joint 3, 4 displacement and velocity history of robot 
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travels varies from a horizontal position at p=0, to a vertical position at p=l. This 

results in a need to orient the weld as the position changes. By traditional means, 

an exceedingly large number of points need to be taught to coordinate movement of 

the robot and positioner. By this method a continuous trajectory is obtained having 

a known start solution. 

The quarter circle weld's parametric representation is given by: 

X = 5Cos{Trp/2) 

Y = -5 

Z = 5 — 5Sin{7rp/2) 

where p ranges from 0 to 1. Positioning the third frame on the weld, 

T = 

— Sin{iTpl2) 0 —Cos{Trp/2) 5C'oa(7rp/2) 

0 - 1 0  - 5  

—Cos{7rpf2) 0 Sin{Trpf2) 5 — 55m(7rp/2) 

0 0 0 1 

(6.33) 

Again using equation 6.10, 62 becomes 0 while 5"^ = —Cos{Trp/2) Cj = 

Sin{'Kpl2) giving 61 = Atan2{Si,C\). 

It follows that after performing the necessary transformations the position and 

orientation of the weld with respect to the robot's base is given by: 
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r = 

-{-CiC2Se + SiC6) C1S2 

—S2S0 -C'2 

- { -S iC2se  -C iCe )  -S1S2  

0 0 

-(-C'IC'2C'^-5I5^) PX 

y 

-{-SiC2ce + CiSe) p-

0 1 

where 6 = (n^/2) and 

(6.34) 

Px = 75.0 + (SC^CgCg + 5C'i52 - 5i(5 - 534) + 24.0) 

Py = -{bS2Ce-bC2) 

fz = 7.5 + ̂ SiC2C0 + 55I52 + ci(5 - 550) 

As before this matrix is used to obtain the start solution and the inverse kine­

matic solution all along the path. Figure 6.8 provides the displacement and velocity 

information of the positioner while Figures 6.9 and 6.10 give the joint displacement 

and velocities for all points. 

Summary 

These examples have shown the use of the novel continuation method for con­

tinuous trajectory planning. A need was established for an integrated positioner 

and robot environment for an arc welding workcell. The method based on the con­

tinuation method was outlined and implemented for a GE P50 robot and a 2-axis 

positioner. A traditional continuation method was used to obtain the inverse kine­

matics of a three revolute manipulator that is typical of arc welding positioners. A 

special case of a two-axis positioner was however used to position the weld such that 
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Figure 6.8: Example 3: Joint 1 displacement and velocity history of positioner 
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Figure 6.9: Example 3: Joint 1, 2 displacement and velocity history of robot 
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Figure 6.10: Example 3: Joint 3, 4 displacement and velocity history of robot 
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the normal was in the global Z direction. A different approach called the "Fixed 

Path Modified Continuation Method" was used to obtain the joint displacement and 

velocity histories of the GE P.50 robot for the weld path. It was assumed however 

that the paths are collision free and that the workcell always allow the weld normal 

to be vertical. In the event this is not possible (which is often the case in fact), 

an optimization procedure can be developed to search the limited joint space using 

continuation methods. This method also holds promise for collision free trajectory 

planning. This robust mathematical technique has great potential for application in 

future off-line programming systems. 
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CHAPTER 7. CONCLUSIONS 

The objectives of this research were to develop an integrated environment for 

the automatic programming of arc welding robots by means of a consistent represen­

tation structure for weld geometry features and weld process knowledge and generate 

robot and positioner joint angles, velocity histories, and process conditions for paths 

normally encountered in robotic arc welding. The purpose of this Chapter is to sum­

marize the conclusions drawn from the development of such a system and propose 

recommendations for future research. 

Summary 

Automatic programming of arc welding robots is complete when there exists 

a system for off-line planning and simulation, and an on-line feedback system to 

adaptively control the welding process. This work concentrated on the first part -

that of generating programs for a welding robot off-line based on a CAD description. 

Hence, in the strict sense the system developed is not a true automatic programming 

system. However, this research provides a framework on which other systems can 

be built to close the feedback loop and make it completely automatic. Important 

contributions by way of this research can be summarized as: 
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1. Current generation solid modelers do not support the automatic planning and 

generation of welding process parameters and robot programming because they 

do not contain secondary feature or variational information such as welding 

features and attributes. This research for the first time, has proposed a struc­

ture for capturing welding information by means of a welding attribute graph 

(WAGRAPH) that can be attached to the tree of a CSG-based modeler. 

2. The welding feature information is implemented in such a manner that ex­

traction of explicit and implicit information has been made possible. Geometry 

information is extracted for use by the trajectory planning module while geome­

try and attribute information are used for weld process selection. An integrated 

system has been developed that uses the geometry information and the mapped 

welding knowledge to automatically generate the process schedules required for 

gas metal arc welding robots. 

3. The WAGRAPH implementation has utilized the benefits of object-oriented 

programming (prototype implemented in C4-+) and supports incremental con­

struction of the graph along with appropriate editing, validity checking facilities. 

4. To map weld process knowledge, a systematic methodology of knowledge acqui­

sition using statistical techniques was designed. The intention was to capture 

the public and private knowledge of welding engineers. The procedures devel­

oped were insufficient to acquire the heuristic (private) information from the 

experts and seriously questioned the need of a knowledge-based system. How­

ever, general dependencies, order of the knowledge-based system development, 

and trends were captured by the knowledge acquisition procedures. This helped 
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in the easier construction of the system. 

5. It was concluded that robotic arc welding is not significantly diff'erent from 

manual arc welding but more sensitive to the specification of weld process pa­

rameters as there does not exist an on-line feedback like that of a human hand or 

eyes in manual arc welding. Experts use heuristic information for "fine-tuning" 

weld process parameters and handbook data to provide the range. This results 

in the need for the creation of a primitive knowledge mapping system based on 

handbook knowledge and subsequent addition of private knowledge by the wel­

ding experts themselves. Such an addition would enrich the knowledge-based 

system to a great extent. 

6. If welding engineers need to add knowledge, provisions should be made for 

validity and consistency checking of the additional information. A methodology 

was proposed by this research to check the validity and consistency of knowledge 

addition using an expert system shell. In addition, the knowledge mapping 

was performed in an integrated manner using the object-oriented programming 

paradigm. 

7. A novel method was proposed and implemented to continuously plan the tra­

jectory of welding profiles in an integrated robot and positioner environment. 

8. The "fixed-path modified continuation method" is a robust mathematical tech­

nique to obtain joint angles, and velocity histories all along the path given the 

start point and the target system. Various paths normally encountered in arc 

welding - those which require one time movement or a continuous movement of 

a two-axis positioner were tested to verify the method's ease and power. The 
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method has great potential for application in off-line programming systems and 

on-line controllers. 

9. It is recommended that for total automatic programming systems the following 

need to be developed: (a) the development of on-line feedback systems using 

vision, seam tracking and other methods; (b) further research on the develop­

ment of welding as a science-based system rather than as an art and (c) a study 

of the effects of geometry on the specification of process in arc welding robots. 

Recommendations For Future Work 

Various aspects of the research that can be explored based on this work are 

suggested in this Section. These are based on the experience gained during the 

development of the integrated system. These additions to the system will help in the 

creation of a truly automatic programming system for robotic gas metal arc welding. 

This will eventually help in the use of robots where flexibility is very important as in 

jobshops or custom fabrication units. 

Richer representation scheme 

This research proposed a basic methodology to add welding features and att­

ributes to a solid modeler. However, to support robotic arc welding programming 

and planning, a higher level representation scheme in addition to the existing struc­

ture should be developed to model the robot, positioner, and surroundings. The 

representation scheme should be able to specify the features of the work cell in such 

a manner that collision free paths and optimization of the weld trajectory in ac­

cordance with the process specifications can be attempted. This will help further 
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research in task level programming of robots. 

Knowledge mapping shell 

It is uniformly seen that representation of information in a CAD-based system 

is currently used only to drive an application system or help in the planning and 

programming of elements in the manufacturing domain. To attempt this, a great 

amount of knowledge needs to be mapped. Current modeling systems do not provide 

a means to model the process. Various systems have been created to use the facilities 

of a modeling system for application purposes and they exist as stand alone systems. 

Instead, if provision is created in CAD systems in the form of a shell such that it 

accomodates different knowledge representation schemes, then automatic planning 

and programming in different domains of manufacturing can be created easily. This 

requires extensive work by engineering researchers in the specification of functional 

requirements of application domains in the design and manufacture of mechanical 

parts and by computer science researchers in providing the representational frame­

work. 

Weld process specification improvement 

Specification of welding process parameters depends heavily on experimentation 

and is based on trial and error. A better understanding of the arc welding process 

and the effects of parameters such as magnetic blow, current, travel speed and others 

on penetration and similar parameters that affect welding need further study. The 

effects of geometry on the specification of process parameters can be investigated 

further. A vision-based system that can identify and characterize the weld needs to 
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be integrated with the CAD-knowledge mapping system developed in this research. 

This will complete the loop in the automatic programming of arc welding robots. 

This should be able to adaptively correct the welding process parameters and change 

rules of the knowledge-based system accordingly. 

Collision free planning of welding trajectories 

The work on trajectory planning provided a method to obtain continuous in­

formation about the welding paths. It assumed simple workpiece geometry and no 

limitations other than robot physical limits in terms of reach and access. However, 

in the real world it is not always possible to reach the weld due to interferences 

and access problems. Further, due to the constraints of the process, the condition 

of the normal of the weld to be in the global Z direction may not also be possible. 

The formulation of the continuation method as an optimization problem and for the 

planning of collision free trajectories can be successfully attempted. 

Visualization 

The method of trajectory planning of an integrated system resulted in the his­

tories of joint angles and velocity all along the welding path. This method can be 

successfully integrated with a visualization scheme in the off-line programming of 

arc welding robots. The joint angle and velocity information generated by the con­

tinuation formulation can be used in conjunction with a solid modeling system and 

simulation software to visualize the interference free trajectory of a coordinated robot 

and positioner system. 
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APPENDIX A. GLOSSARY OF TERMS 

Abbreviations; 

AI Artificial Intelligence 

B-Rep : Boundary Representation 

CAD : Computer-Aided Design 

CAEE : Computer-Aided Engineering Environment 

CAM : Computer-Aided Manufacturing 

CSG : Constructive Solid Geometry 

DCRP : Direct Current Reverse Polarity 

GMAW : Gas Metal Arc Welding 

KBES : Knowledge-Based Expert System 

OOP : Object-Oriented Programming 

WAGRAPH : Welding Attribute GRAPH 

Terms: 

Artificial Intelligence: It is the study of methods for solving tasks that require 

"human-like" intelligence. The goal of artificial intelligence is to develop computer 

systems that in some way think or solve problems in a way that would be considered 

intelligent if done by humans. 
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Cartesian Space: Generally a two or three-dimensional rectangular space defined 

by mutually perpendicular Cartesian axes, normally denoted as x and y, or x, y, and 

z. In robotics, a Cartesian space vector may also include appropriate orientation 

information. 

Confounding: The device of reducing the block size by making one or more inter­

action contrasts identical with block contrasts, is known as confounding. 

Constructive Solid Geometry (CSG): CSG representations of objects are or­

dered binary trees whose leaf or terminal nodes are either primitives or transfor­

mation data for rigid body motions. The nonterminal nodes are either regularized 

Boolean operators (union, difference, intersect) or rigid-body motions (translation 

and/or rotation) that operate on their two subnodes (or subsolids). 

Expert Systems: An expert system is a program which has high quality specific 

knowledge for solving domain-specific problems. Expert systems handle real world 

problems using computers to reach the same results, as would a human expert, if 

faced with a comparable problem. 

Factorial Design: A factorial design involves simulataneously more than one factor 

at two or more levels. 

Forward and Backward Chaining: Forward chaining methods start with a set of 

initial conditions and reach the desired goal in a manner similar to the bottom-up 

strategy and hence are used for synthesis. Backward chaining methods start with a 

goal situation, decompose this goal to sub-goals and continue this process until all 

the sub-goals are solvable. This approach is similar to the top-down strategy and is 

often used for analysis. 
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Forward and Inverse Kinematics: Kinematics is the science of motion which 

treats motion without regard to the forces that cause it. The method of computing 

the position and orientation of the manipulator's end effector relative to the base of 

the manipulator as a function of the joint variables is called forward kinematics. The 

method of finding the required joint angles given the desired position and orientation 

of the tool relative to the station. 

GMAW: Gas metal-arc welding also known as MIG welding is an arc-welding process 

wherein coalescence is produced by heating with an arc between a continuous filler 

metal (consumable) electrode and the work. Shielding is obtained entirely from an 

externally supplied gas or gas mixture. 

Heuristic Rules: Techniques used by human experts for solving problems based on 

their experience and knowledge rather than results based on analytical or algorithmic 

procedures. 

Inference engine: Inference engine is a part of an expert system with problem 

solving paradigms. It uses the forward chaining and/or backward chaining methods 

for problem solving. 

Knowledge Base: It is a collection of data specific to the domain. In most of the 

literature, the set of rules for interpreting the data are also included in the knowledge 

base. 

Learning: The ability of an artificial intelligence method to make changes to the 

knowledge base and some part of the inference engine (based on experience) such 

that the changes have a long-term effect on the performance of the method. 

Link Space: An n-dimensional space defined by the various displacements of an 

n-link manipulator. 
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Object-Oriented Programming: Object-oriented programming rejects the tra­

ditional dichotomy between data and procedures and substitutes the concepts of 

objects and messages. Objects contain both data and procedures. It shifts the em­

phasis from algorithms, or how things get done to object declarations, or what needs 

to be manipulated. , 

Shell: Shells are special environments for the use of expert systems with a built in 

inference engine. 

Trajectory: A spatial position/time curve that usually represents a desired ma­

nipulator motion in either link or Cartesian space. A path along with appropriate 

velocity and/or acceleration information. 

Trajectory Planner: A program that produces a time varying signal representing 

the desired path or trajectory that a robot is to follow in either Cartesian or link 

space. 
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APPENDIX B. CSG, FEATURES, AND NURBS 

The following is an abbreviated explanation of Constructive Solid Geometry 

representation scheme in modelers adapted from Mortenson [1985]. The definitions of 

features is from IDEAS solid modeler reference manual [IDEAS 1990]. The definition 

of NURBS is from Piegl's survey [1991]. 

CSG: Constructive Solid Geometry (CSG) is a term for modeling methods that define 

complex solids as composition of simpler solids (primitives). Boolean operators are 

used to execute the composition. 

CSG representations of objects are ordered binary trees whose leaf or terminal 

nodes are either primitives or transformation data for rigid body motions. The non 

terminal nodes are either regularized Boolean operators (union difference and inter­

sect) or rigid-body motions (translation and/or rotation) that operate on their two 

subnodes (or subsolids). Each subtree of a node (not a transformation leaf) repre­

sents a solid resulting from the combination and transformation operations indicated 

below it. The root represents the final object. Figure 10.1 provides a simple example 

of the CSG representation. 

If the primitive elements of a modeling system are valid bounded solids defined 

by the system and the combining operators are regularized, then the resulting solid 

models are valid and bounded. The most common approach is to offer a finite set 
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of concise, compact primitives whose size, shape, position, and orientation are deter­

mined by a small set of user-specified parameters. For a block type primitive, the 

user specifies the length, width, height, and initial position and the modeling system 

checks the validity of the parameters. Other common parameters are the cylinder, 

sphere, cone, and torus. The primitives themselves are usually represented by the 

intersection of a set of curved or planar half-spaces. The primitive cylinder for ex­

ample is represented by the intersection of a cylindrical half-space and two planar 

half-spaces. 

Most hybrid modelers generate two representations of a solid. The first is a con­

structive representation exemplified by a binary tree data structure linking primitives 

and successive subsolids by using combining operators and transformations. The sec­

ond is the boundary representation, which describes the faces, edges, and vertices of 

the boundary of the solid. This description contains both the topological represen­

tation of the connectivity of the boundary elements and numerical data describing 

the shape geometry and position of these elements. The boundary representation 

is computed from the constructive representation by a set of algorithms called the 

boundary evaluator. The boundary evaluator determines where component faces are 

truncated and new edges and vertices are created or deleted. Where boundary ele­

ments overlap or coincide, the evaluator merges them into a single element and thus 

maintains a consistent, non-redundant data structure representing a solid's bound­

ary. The constructive form is often called the procedural or unevaluated model, and 

the boundary form is often called an evaluated model. 

FEATURES: The feature definition task as provided in solid modeling systems 

allows one to create and manage user-defined features from objects. The use of 
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user-defined features is the development of an object in which the object has some 

variable dimensions, while other dimensions always relate to the variable dimensions. 

An example is a counter-sunk hole. User-defined features are also extremely helpful 

in post-testing modifications. By changing the dimensions that are variable, the 

dependent dimensions are automatically adjusted. The initial geometry of a user-

defined feature is defined by any object created in the object modeling task. 

The feature definition task is intended to be used to create features and load 

them from a feature library. An important application of feature definition is the 

sharing of the feature library with other users. By creating and using form features, 

improvements in desing and modeling productivity can be achieved, design modifi­

cation is made easier and the design intent can be captured for others' use in the 

product development process. Typical manufacturing features created include: slot, 

hole, counter-sunk hole, bolt hole circle, tapped hole flanges, fillets. 

NURBS: The two major ingredients of a Non-Uniform Rational B-Splines are ratio­

nal and B-splines. A NURBS curve is a vector-valued piecewise rational poly nomial 

function of the form [Peigl 1991]: 

= M 

z=0 

(B.l) 

where the are the so-called weights, the are the control points (just as 

in the case of nonrational curves), and N^^p{u) are the normalized B-spline basis 

functions of degree p defined recursively as 
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where are the so-called knots forming a knot vector. The degree, number of 

knots, and number of control points are related by the formula m — n + p + 1. 

(B.3) 

A NURBS surface is the rational generalization of the tensor product nonrational 

B-spline surface and is defined as follows: 

n m 

i=0 j=0 

(B.4) 

where j are the weights, P^ j form a control net, and N^^p{u) and Nj^q{v) are the 

normalized B-splines of degree p and q in the u and v directions, respectively, defined 

over the knot vectors 
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U — [0,0, 0, Uy.—p—2,1,1, , l] 

V = [0,0,...., 0, 1,1, , 1] 

(B.5) 

where the end knots are repeated with multiplicities p+1, and q+1, respectively, 

and r = n + p + 1 and s = m + q + 1. Although the surface was obtained by 

generalizating the tensor-product surface form, a NURBS surface is, in general, not 

a tensor-product surface. 



193 

APPENDIX C. KNOWLEDGE ACQUISITION SURVEY 

The survey was designed in two main parts. The purpose of the first part of the 

survey (the enclosed part) was to direct the means for knowledge acquisition and 

prioritize the welding parameters involved. This part would also try to identify the 

problems in current robotic arc welding systems. The purpose of the second part of 

the survey was to conduct detailed interviews with a group of respondents to 

discuss the results of the first part and to further provide weld process knowledge 

needed for the automatic robot programming system. The overall goal of this 

survey was to study the following: 

1. Problems in programming arc welding robots and the deficiencies in 

teach/high level languages and graphical off-line programming systems for arc 

welding robots 

2. Understand the process of specifying a welding schedule 

3. Order of welding process parameter selection and its classification 

4. Relationships between product variables and process variables for robotic arc 

welding 

5. Effect of the robot and the positioner on the welding process parameters 
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Questionnaire 

Please place a cross mark on the sub-division you choose. If answers need to be 

provided, please write them in the space provided. If the space provided is not 

enough, please feel free to write on the back of the sheet. If you feel more than one 

answer is suitable, please place a cross mark on all of the answers you choose, and 

write any comments you feel to be necessary. 
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1. How long have you been a welding engineer (A) 1-3 years (B) 3-6 years (c) 

6-10 years (D) over 10 years 

2. How do you classify the parts welded in your plant and provide a number by 

the side of the chosen sub-division (A) large volume (B) medium volume (C) 

small batch production 

3. What form of programming are you used to? Encircle the languages and 

systems used (A) Teach (B) High level textual languages (VAL II, RAIL, 

AML, AL, MCL, others) (C) High-level graphical programming systems 

(ROBOGRAPHIX, ROBOCAM, McAuto, ROBOTEACH, ROBOT-SIM, 

others) 

4. In these high level programming languages do you still have to specify the 

following 

(a) Specification of weld coordinates by teach pendant (YES / NO) 

(b) Specification of weld process parameters (YES / NO) 

(c) Others, if any please mention 

5. In these graphical off-line programming systems, do you have to specify the 

following 

(a) Specification of weld paths by lead-thru simulation 

(b) Specification of welding process parameters 

(c) Others, if any please mention 
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6. What percentage of the output program from a high level/graphical off-line 

programming system can be used directly? (A) 0-15% (B) 15-40% (C) 40-70% 

(D) 70-95% (E) 100% 

7. What reasons do you attribute to the answer in question 6? 

8. Do you see significant differences between hard automated GMAW and 

robotic arc GMAW (A) Yes (B) No 

9. Due to the flexibility of the robot and the positioner does the process 

parameter specification change in robotic welding in comparison to manual 

GMAW (A) Yes (B) No 

10. How would you classify the change in the values of the process parameters as 

(A) Drastic (B) Significant (C) Marginal 

11. What is the source of your process specification knowledge. Place a crosss 

mark on all that you think and indicate the sources 

(a) Handbooks 

(b) Tables and charts 

(c) Private heuristic knowledge 

12. What is the percentage of private heuristic knowledge that is used in the 

welding process parameter specification (A) less than 10% (B) 10-20% (C) 

30-50% (D) Greater 
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13. Are there typical areas that you employ private knowledge. If so, please 

specify the areas: 

14. Are there direct formulae that you apply to obtain welding process 

parameters (A) yes (B) no 

1.5. If answer to 14 is YES, please indicate the source(s) 

16. Is there a need for a logical reasoning in the selection of proper welding 

parameters (A) Yes (B) No 

17. Is there a need for a knowledge-based system in the selection of proper 

welding parameters (A) Yes (B) No 

18. If answer to question is No, then why not 

19. if answer to 17 is YES, is the knowledge in a form that can be expressed as 

facts and relationships among these facts (A) Yes (B) No 

20. If answer to question 19 is YES, can the relationships be described by 

IF-THEN rules (A) Yes (B) No 

21. Do you feel that there are too many interacting features that play in the 

selection of welding process aprameters (A) Yes (B) No 

22. Facts, constraints, rules: Would these adequately classify all the knowledge 

involved (A) Yes (B) No 
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23. If answer to question 22 is no, mention any other representation schemes you 

feel relevant 

Welding Process Parameter Classification 

1. Do you agree on the following classification of welding process parameters? 

Indicate any others you feel that has been omitted? 

Product Variables 

• Material Type 

• Joint thickness 

• Type of joint 

• Position of joint 

• Geometry of workpiece 

Process Variables 

• Current 

• Voltage 

• Wirefeed 

• Travel speed 

• Electrode type 

• Electrode size 

• Arc length 

• Gas mixture 

• Gas flow rate 

• Robot tool angle 

• Number of passes 

• Weave pattern 

• Polarity 
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• Displacement from the joint for multipass welds 

• Dwell time at the start and end of weld 

2. Please list the order of the process parameters selection to the right of the 

parameters listed above. If you feel there is a tie, provide the same number for 

all tied values. The first parameter selected would have a number 1. 
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Tha labia below is to study the relotionstiip between product and 
process variables. Listed below are ttie categories of dependency. 
If you feel ttiere is any dependency of any of the coriobies 
indicate by a letter grade. The possible responses are: 

A: Complete dependency 
B: Strong dependency 
C: Little dependency 
D: No dependency 
E: Not known 

Material Thickness 
Geometry 

[Joint type 
assumed) 

Welding 
position 

Currant 

Voilage 

Travel 
Speed 

Electrode 
Type and 
Size 

Arc 
Lenglh 

Cos 
mUture 

Got flow 
rote 

Robot 
tool 

Robot 
tool-to— 
mil. gap 

Slope of 
workpleee 
loint 

Dwell 
time 

Number 
of 
passes 

If 

ure C.l: Effect of product variables on process variables 



The table below is to sludy the relationship between dependent process parameters. Listed below are the categories 
of dependency. If you feel there is a dependency of any of the variables indicate by a letter. The possible 
responses are: A: Complete dependency B: Strong dependency C: Little dependency D: No dependency E: Not known 

Com 
Robot 
tool mel«rtal piM* 

Wnl 

II 

of 

Vollog# 

Troval 
SpMd 

CUciro4« 

*rf 

lM9th 

Cos 
mUlur* 

» 
roU 

Robot 
tool 

Robot 
lool-to-
mtl. ooD 

Slop# of 
workpitc* 
|olnt 

Dwalt 
tim# 

Number 
of 

Figure V.'2: Intordependeiicy of procfss variables 
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APPENDIX D. EXPERTS' COMMENTS ON SURVEY RESULTS 

The following are the actual comments from five different experts (welding en­

gineers) on the conclusions sent to them as part of the validation process. Most of 

them have answered them point by point. Refer to Chapter 4 for the conclusions 

sent. 

EXPERT 1 

General Conclusions 

1. OK. 

2. Insert the word "visual" before adaptive. Human "adaptive controls" not only 

correct in imperfections in process specifications but also in the area of work-

piece variability (i.e. fitup). Fitup variations (caused by component part vari­

ation and perhaps marginal fixturing) is a major problem with GMAW in the 

manufacturing or construction machinery and agricultural machinery. 

3. Maybe. Not totally clear. 

4. Not necessarily. I have changed my opinion in this area. Some of us involved 

in the welding of mild steel tend to become skilled at optimizing within a 

narrow range of materials. Other weld engineers might typically work in a firm 

which welds many types of materials such as nickel alloys, aluminum alloys, 
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copper alloys, stainless steels, titanium alloys. They would know how to set 

process specifications to weld many types of materials. They probably would 

not have the time to optimize for absolute maximum productivity however. 

Certain governing codes may not allow them much opportunity to optimize. 

Such engineers would normally be employed by a firm which does work in the 

aerospace, aircraft, defense, food processing and similar industries. I would 

guess that your survey did not include many of these engineers. 

5. OK - may include other parameters as dictated by the situation. 

Specific Conclusions 

1. Specification of material type generally dictates strength (i.e. ASTM A572 

Grade 50 HRS indicates a 50 ksi yield hot rolled steel plate). Does "surface 

appearance" mean surface preparation? For example, in the case of hot rolled 

steel does surface preparation mean cold rolled, hot rolled, hot rolled pickled 

and oiled, etc.? 

2. Interrelationships of process variables do exist. In general, welding engineers 

have a gut feel of these relationships. Quantification of the relationships is a 

subject of some research at this point in time. 

3. OK. 

4. OK. 

5. OK. It is disappointing you did not get responses from some engineers. 

6. OK. 
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7. OK. 

8. OK. 

Recommendations 

1. OK. It will be difficult to do much generalization without an enormous amount 

of research. 

2. Not sure. 

3. The general approach has not been very scientific. Those employed in welding 

mild steel tend to "wing it" and hope. Those involved with welding more 

exotic alloys normally have to take a more scientific approach to setting process 

parameters. 
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EXPERT 2 

General Conclusions 

1. I strongly agree Interrelationships do exist with process variables. 

2. R&D is very important for process improvements but does not get to do it. 

Recommendations 

1. It has to be cost effective, proven and still there would be doubts among experts 

that it works as it is after all a computer. 

2. I agree but it may not be possible 
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EXPERT 3 

General Conclusions 

1. True. 

2. Robotic arc welding requires and takes advantage of a wider range of weld pro­

cess variations compared to that of manual arc welding during a given weld 

cycle. Manual arc welding depends solely upon an operator experience in coor­

dinating hand/eye motion. 

3. True. 

4. True 

5. True. 

Specific Conclusions 

1. Not completely. 

2. Not clear. 

3. True 

4. True 

5. True 

6. True 

7. True 
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Recommendations 

1. How can a vision system possibly check for all of the listed weld conditions. 

By the time the algorithm for all this was developed and integrated in some 

form of component, it would be more cost effective to use other methods. This 

statement is unjustified and impractical. 

2. True. May never end and produce satisfactory results. 

3. Welding is as much of an art as a science. Scientists are continually trying 

to provide definition to that which has previously considered abstract. Sci­

entist create definition by either gathering information through long hours of 

empirical study or try to audit opinions from so called experts to gain some 

consensus. Each so called "expert" has empirically determined that there are 

too many total process variables to try to monitor and control. They have 

empirically determined what process variables are important and thus need to 

be used as trigger variables to control the majority of the effects of the experts' 

specific welding application. Each weld application varies from one another. 

Each experts approach varies from one another for a given application and so 

consensus development is extremely difficult. 
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EXPERT 4 

Welding as well as all natural phenomenon obey laws. Therefore if we are clever 

enough we can find out what they are and produce a science based system to specify 

welding processes. However, there is a commonly held belief that welding is not a 

science, that it is an art to the exclusion of being a science. There are several reasons 

for this belief: 

1. Welding parameters are inter-related. For example weld penetration is affected 

by the interaction of: wire feed speed, voltage, gun angle, gun to workpiece 

distance, wire diameter, travel speed, and shield gas mixture. 

2. Little understood or difficult to visualize physical laws sometimes dramatically 

affect welding. An example of this is magnetic arc blow. 

3. Some parameters have the opposite effect than expected. This is because the 

effects of an unexpected law is greater than the effect of the expected rule. An 

example is the effect voltage has on penetration. Many welders expect to see 

an increase in penetration because increasing voltage increases energy input. 

However, increased voltage results in increased arc length which spreads the 

heat energy over an increased area resulting in less penetration. 

4. Weld equipment may not be repeatable enough.Robotic equipment is getting 

better all the time but welding power supplies for the most part use relatively 

old SCR technology. I suspect that SCR power supplies are not repeatable 

enough in some welding situations. This then appears to give a non repeatable 

weld. The new inverter style power supplies may improve on this situation. 
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5. An electric arc is violent and not necessarily steady state. Most models used to 

describe welding assume steady state conditions. I am not sure, but I suspect 

that the transients found in the arc may at times be significant. 

6. The welding environment is hostile to feedback transducers which make it dif­

ficult to gather and validate data. 

7. Feedback as to weld penetration pattern is difficult to obtain apart from actually 

cutting up the weldment. This is often prohibitively expensive so experimen­

tation for the sake of knowledge is not done. 

8. Welding robots are designed to be programmed by trial and error. As a result 

weld paths are programmed by guessing. This results in a robot weld often 

looking worse than a hand welders weld. The hand welder of course is constantly 

receiving feedback, and constantly changing weld gun angle and wire stickout. 

A 1 degree change in gun angle can be the difference between a good weld and 

a bad weld. 

Even though the above mentioned problems make the goal of a science-based 

welding difficult, I do believe progress can be made and the benefit of such a system 

would be great. A relatively simple thing such as a robot with a weld path and gun 

angle that could be geometrically described and programmed would be of tremendous 

value. 
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APPENDIX E. WELDING CONDITIONS FOR MILD STEEL 

The following are tables of process conditions for welding mild steel. These have 

been adapted from the Welding handbook and manufacturer's handbook. 



Table E.l: Mild Steel and low alloy steel wires: Chemical composition requirements 

(Percent - balance iron 

AWS 

CLASS. 

L-TEC 
DESIG­
NATION CARBON MANG. SILICON SULFUR PHOS. MOLYB. OTHER 

E70S 1 - 0.07-0.19 0.90-1.40 0.30-0.50 0.035 0.025 - -

E70S2 65 0.06 0.90 1.40 0.40 0.70 0.035 0.025 0.05 0.15 TITAN. 

0.02 0.12 ZIRC. 

0.0S0.15 ALUM. 

E70S 3 82 0.06-0.15 0.90-1.40 0.45-0.70 0.035 0.025 - -

E70S4 85 0.07-0.15 0.90-1.40 0.65-0.85 0.035 0.025 - — 

E70S-5 • - 0.07-0.19 0.90.1.40 0.3^0.60 0.035 0.025 - 0.50-0.90 ALUM 

E70S6 86 • 0.07^).15 1.40 1.85 0.80-1.15 0.035 0.025 - -

E70S-1B 83 0.07 0.12 1.6^2.10 0.500.80 0.035 0.025 0.40-0.60 -

E70SG 8SA NO CHEMICAL REQUIREMENTS 



Table E.2. Mild Steel and low alloy steel wires: Mechanical properly requirements 

AWS 

CLASS 

L-TEC 
DESIG­
NATION 

SHIELDING 

GAS 

CURRENT & 

POLARITY 

TENSILE 

STRENGTH 

min. PSI 

(kg 

YIELD STRENGTH 

eo2% 

offset min. PSI 

(kg mm^) 

ELONG. 

IN 2 IN. 

MIN. % 

MINIMUM 

"V " NOTCH 

IMPACT 

E70S 1 — Ar 1 5X02^ DCRP 72.000 

(50.6) 

60.000 

(42.2) 
22 NOT SPEC. 

E70S2 65 Ar 1.5% Oj' 

COj 

DCRP 72.000 

(50.6) 
60.000 
(42.2) 

22 20 FT LB @ -20° F 

(2.8 KG M) (-17.8° C) 

E70S3 82 Ar 1-5% O,' 

COg 

DCRP 72.000 

(50.6) 
60.000 
(42.2) 

22 20 FT LB @ 0° F 

(2.8 KG M) (-17 8° C) 

E70S4 85 COgI DCRP 72.000 
(50.6) 

60.000 
(42.2) 

22 NOT SPEC. 

E70S5 - COjl DCRP 72.000 
(50.6) 

60.000 
(42.2) 

22 NOT SPEC. 

E70S6 86 COgI DCRP 72.000 
(50.6) 

60.000 
(42.2) 

22 20 FT LB@ -20° F 

(2 8 KG M) (-28.9° C) 

E70S IB 83 COgI DCRP 72.000 

(50.6) 

60.000 

(42.2) 

17 20 FT LB@ -20° F 

(2.8 KG M) (-28.9° C) 

E70SG 85A NOT SPEC. NOT SPEC. 72.000 
(50.6) 

60.000 
(42.2) 

22 NOT SPEC. 

'Ar COj CAN BE USED FOR ALL WIRES. 

•AWSA5.18 69 



Table E.3: Welding conditions for mild steel short-circuit arc and ETOS-!} wire 

^1-R 

0 

vr 

J 
© © 

(RI (NI FILLER 
PLATE JOINT ROOT NOSE METAL WIRE FEED 
THICK. W£LO OE OPENING THICK OIA. SPEED (4) AMPS TRAVEL SPEED NO 0 

IN. mm POSITION SIGN IN. mm IN mm IN mm IPM mm/MC VOLTAGE DCRP IPM mm/s«c PASS 

025 64 F.H.V^.O 1 &4 0 030 ( 761 110 120 4751 13 14 4550 20 25 8 11 

037 94 P.H.V^O 1 & 4 0 030 ( 76) 125 135 5357 13 14 55 60 20 25 8 11 

F.H.vfo t & 4 0 035 (69) 110 120 4/51 15 16 /O /5 30 35 13 (5 

F I 1/32 < 791 035 (69) 180190 76 80 16 1/ 110115 25 30 II 13 

H 1 1/32 1 79) 035 1 89) 170180 72 76 16 1/ 105 110 25 30 11 13 

0625 1 6 4 035 (89) 180 190 76 80 16 17 110 115 23 28 10 12 

V^.O 1 1/32 1 /9» 035 (89) 140 150 59 63 15 16 85 90 13 18 58 

4 035 (89) 145 155 61 66 15 16 90 95 2328 10 12 

F 1 1/32 1 79) 035 (89) 265 275 112 116 1820 150 155 14 (9 68 

1 1/32 ( 791 045 (I II 150 160 63 68 IB )9 160 165 1520 68 

H 1 1/32 (79) 035 189) 220 230 9397 17 18 130 135 13 (8 58 

125 32 4 035 (89) 270 280 114 118 18 20 155 160 23 28 10 12 

4 045 (1 11 175 185 74 78 18 20 175 185 25 30 11 13 1 

y^.o 1/32 1 79) 035 IBS) 220 230 9397 17 18 130 135 13 18 t.B { , 

4 035 (89) 220230 9397 17 19 130 135 18 2) 8 10 1 

F 3/16 (4 8) 045 11 1) 220 230 93 9/ 19 20 210215 15 20 6 10 1 

2 3/32 (2 4) 1/16 (16) 04b (} If 220 230 93 9/ 1920 2102)5 13 18 5 10 ; 1 

H 4 045 il 1) 210 225 89 95 1921 210215 15 70 bB I 1 

IB/b 48 3/16 14 8) 045 (1 1) 180 190 /6 80 1820 1/5 IBS 12 I / S / 1 

2 3 32 (2 41 116 (16) 045 (1 1» 180 190 /6 BU 18 20 1/5 185 IS.HI b M j 1 

V^.O 2 3/32 12 4) 1/16 (16) 035 (89) 2U0 210 85 89 1/ 18 (20125 : 10 IS 4  1 . '  

' 4 035 ( 89) 240 250 107 106 1/ [<J (40 (4S H IB SB I , 

lO 
CO 



Table E.4: Welding conditions for mild steel short-circuit arc and E70S-3 wire 
continued 

PLATE 

THICK. WELD 

JOINT 

DE 

(R) 

ROOT 

OPENING 

IN) 

NOSE 

THICK. 

FILLER 

METAL 
DIA 

WIRE FEED 
SPEED (41 AMPS TRAVEL SPEED NO OF 

JN mm POSITION SIGN IN mm IN. mm IN mm IPM mm/stc. VOLTAGE DCRP IPM mm/MC. PASSES 

F 2 3/32 (2 4) 1/16 (16) 045 (1 1) 235 245 99 104 20 21 220225 12 17 5 7 2 

H 2 3/32 1241 1/16 (161 045 (1 1) 180 190 76 80 1820 175 185 8 13 35 2 

250 64 4 045 (1 11 235 245 99 104 2021 220 225 8 13 35 1 

v.o 2 3/32 (241 1/16 (16) 035 (89) 200210 85 89 17 18 120 125 68 23 2 

4 035 (39) 240250 102 106 J 18 19 140 145 1! 16 5 7 ? 

V 4 035 (89) 220 230 93 97 17 19 130 135 46 2 3 1 

H 2 3/32 12 41 1/16 (1 6) 045 (11) ISO 190 76 80 18 20 175 185 12 17 5 7 4 

4 045 11 1) 235 245 99 104 2021 220 225 8 13 35 2 

375 95 V 2 3/32 (2 41 1/16 (1 6) 035 (89) 270 280 114 118 19 20 150 155 13 18 

5 / 
58 
23 

2 
1 

4 035 (89) 270 280 114 118 19 20 150 155 46 23 2 

0 4 & 2 3/32 (241 1/16 1161 035 (89) 290 300 123 127 1921 165 175 9 14 46 3 

H 3 3/32 (2 41 1.'16 (1 6) 045 (1 1) 180 190 76 80 1820 175 185 8 13 35 4 

4 045 (1 1) 235 245 99 104 2021 220 225 11 16 5 7 4 

500 12 7 V 3 3/32 (241 1/16 116* 035 (89) 270 280 114 118 19 20 150 155 8 10 34 4 

4 035 189) 270 280 114 118 19 20 150 155 11 16 

46 

5 7 

2 3 

2 

2 

0 4&2 3/32 (241 1/16 (16) 035 (89) 290300 123 12/ 1921 165 175 8 13 35 5 

Note 1 Incluifed «inqle (lependrni on toich dcces&thiliiy ID tool Nole 6 Shietdiiiq Gds Fluw 3S40Lfh(99} 1133 l/hr) 

Noie 2 Fut Up weUlv. iitcivdv H>ee(l 10% Note 1 A 45^ 60^ 

Note 3 Vfiiicdl ltdvel 

Noir 4 Aic vi)lidq<f i>et«vefit the lee<l toiiv jimI wotkpiece 

Note 5 Thi* alwve cotuMioiu die aho dppliCdhle loi wetdmi] sidnt 

le%\ Sleet with dlUiwatire Ini hiyhei voiidgev due i(i the 

helium iMsed A 1025 and loi the incredied viscuvity ul 

the weld 



Table E.5: Welding conditions for mild steel spray arc and E70S-;{ wire 

© 5 
3 

© 
m» (N) FILLER 

PLATE JOINT ROOT NOSE METAL WIRE FEED 
THICK. DE OPENING THICK. DIA. SPEED (3) AMPS TRAVEL SPEED NO OF 

IN. mm SIGN IN. IN. mm IN mm 1PM VOLT DCRP 1PM mm/»«c PASSES 

125 32 1 1/16 (16) 035 (89) 3503/5 148 159 26 27 190 200 20 25 B 11 1 

4 035 (69) 3/5 400 159 169 26 27 200 210 30 35 13 15 1 

1 3/16 14 81 1/16 11 6) 185 195 78 82 26 27 310 320 8 13 35 1 

2 3/32 12 41 1/16 (16) 1)0 180 72 76 25 26 290 300 12 1/ b / / 

250 64 2 3/32 12 4» 045 (1 1) 400 425 169 180 2931 320 330 1722 7 9 2 

4 1/16 (16) 235 245 99 104 27 28 360 3/0 15 20 68 1 

4 045 (1 1) 425 450 180 190 30 32 330 340 14 111 68 1 

2 3/32 1241 1/16 (1 6) 215225 91 95 26 27 340 3bO 11 16 5 7 

3 1/16 (16) 3/32 (2 41 045 11 11 365 385 154 163 29 30 300310 II 16 b 7 J 

3/5 95 3 1/16 (1 61 3/32 (2 4) 1/16^ (1 61 i;0 180 72 /6 25 26 290 300 10 lb 4 6 2 

4 1/16 (1 Gf 205215 8791 26 2/ 300 340 10 15 4 b 2 

2 1/16 (1 6) 195 210 82 89 26 27 320 330 1/22 / 9 4 

500 12 / 3 1/16 (16) 3/32 (2 4) 1/16 (I6f 165 195 76 62 26 2/ 310 320 1/22 / y 4 

4 1/16 (16) 235 245 99 104 27 28 360 370 15 20 68 3 

635 15 9 3 1/16 (161 3/32 (2 41 1/16 116) 195210 82 89 2627 320 330 13 18 58 4 

4 1/16 (1 6) 215225 91 95 2/ 28 340 350 13 18 by 4 

750 19 1 3 1/16 (1 61 3/32 (2 4) 1/16 11 61 195210 82 89 26 27 320 330 11 16 b 7 4 

4 1/16 116) 235245 99 104 27 28 36U37U 10 15 4 b 6 

Noie 1 Included jngle dependent on toich ^cce^siliiliiy lu tuui 
Noie 2 Foi l4p weldi. incie4Se %peed 10^ 
Noie 3 Aie voilage mea&uied beiween ihe leetl lullv «ml wuikp>eir 
Noie 4 The above coiwlitiiMiv aie al vu «pplicabir lot MrcUlMiy virrt «vait 

AR 1% ihickJittg yj» iitiaïuif 

Ndir b ShieUling lijv ^ low 4U bU i tli 1113J 14 lb Ui'i) 
N.ilp 6 A ib" BU" 
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APPENDIX F. KINEMATICS OF GE P50 ROBOT 

The forward and inverse kinematics of the GE P50 robot is explained in this 

appendix. 

Forward Kinematics 

Based on the definitions in Chapter 6, the overall transformation matrix that 

describes the tool with respect to the base of the robot is given by: 

MX TLX Px 

h my ny Py 

Iz ruz riz Pz 

0 0 0 1 

where 

Zz = (CgiCg234Cg5-ggigg5-Cgigg234)/\/(2) 

Zy = (SgiCg234C^5 + C^l'^^5-'^^l^%4)/\/(2) 

IZ - (-5^234^'*^5 ~ ^'^234)/\/(2) 

(F.2) 

MX = (7^234*^^5 ~ 
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my = — 5^]^C'0234'^% 4- Cd-^Cd^ 

TUZ = 362^^30^ 

(F.3) 

NX = (C'0iC'^234^^5 ~ S6IS9^ + (''^1-^^234)/ 

ny - {S0iC62^4,C6^ + CÔISE^ + S9iSÔ22i)/\FI2) 

HZ = {-S922IC'6^ +€'02^4)1 \F{2) 

( F A )  

Px — 16.OC'0]^50234 ")• 23.5C'0]^C'02 "I" 

Py — 16.O50]^50234 "I" 23.55^2C'02 + 

Pz = 16.0C'%4 - 23.55^2 - 33.55% (F.5) 

This effectively describes the position and orientation of the tool frame from the 

joint vector. 

Inverse Kinematics 

The following is the method of obtaining the joint angles of the GE P50 robot 

given the position and orientation. Since the transformation matrix between the 

wrist frame and the tool frame is a constant, it is not considered in the calculation 

of the inverse kinematics. 

(F.6) 
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If we let 

^11 ^12 ^13 Pz 

^21 ^22 ^23 PY 

^31 ^32 ^33 P~ 

0 0 0 1 

and premulitply both sides by gT \ we have 

where the left hand side is 

CiT-ii + 5ir2i CIRI2 + ̂ ir22 ^ri3 + '^'1^23 

-SIRII + CIR2I -SIRI2 + CIR22 + C'ir23 

-^31 -7-32 -^33 

0 0 0 

and the right hand side is given by 

* * •S'234 * 

* -^234 * 

gg Cs 0 0 

0 0 01 

Equating the (3,4) elements, we get 

C'LPX + SIPY 

-SIPX + C'LPY 

-pz 

1 

(F.7] 

(F.8) 

(F.9) 

(F.IO) 

~S\PX + CYPY — 0 

(F.ll) 
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which gives us 

$1  -  Atan2{py ,px)  

Equating the (3,1) and (3,2) elements we get 

55 = + C'lrgi 

C's = -'^1^12 + CT22 

from which we calculate 6^ as 

^5 = ^^an2(r2iCi-7-ii5I,7-22CI-ri25'i) 

Equating the (2,3) and (1,2) elements we get 

C'234 = ^33 

-^234 = ^1^13 + •S'1^23 

which leads to 

^234 = ^^a?^2(7-i3C'i+7-2351, r33) 

(F.12) 

(F.13) 

(F.14) 

(F.15) 

(F.16) 

To solve for the individual angles 62, %, and 6^, we will take a geometric 

approach. Figure 14.1 shows the plane of the arm with point A at joint axis 2, point 

B at joint axis 3, and point C at joint axis 4. 
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Plane of the arm 

Figure F.l; The plane of the GE P50 robot 

From the law of cosines applied to triangle ABC we have 

CO$6^ 
P Ï + P Y + P I - 1 2 ~  ̂ 3 

2/2^3 

Then we have 

63 = /l(on2(\/(l-C2g3),Cg3) 

From the figure we see that 

^2 =  -Atan2{Px , \ jp 'x -^-Py)  -  A. tan2{ l^S6'^J2' '^h^H)  

^4 = <^234 -  H - H  

(F.17) 

(F.18) 

(F.19) 


