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Summary. We consider an empirical likelihood inference for parameters

defined by general estimating equations when some components of the random

observations are subject to missingness. As the nature of the estimating equa-

tions is wide ranging, we propose a nonparametric imputation of the missing

values from a kernel estimator of the conditional distribution of the missing

variable given the always observable variable. The empirical likelihood is used

to construct a profile likelihood for the parameter of interest. We demonstrate

that the proposed nonparametric imputation can remove the selection bias in

the missingness and the empirical likelihood leads to more efficient parameter

estimation. The proposed method is further evaluated by simulation and an

empirical study on a genetic dataset on recombinant inbred mice.

Key words: Empirical likelihood; Estimating equations; Kernel estimation;

Missing at random; Nonparametric imputation.

1. Introduction. Missing data are encountered in many statistical ap-

plications. A major undertaking in biological research is to integrate data
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generated by different experiments and technologies. Examples include the

effort by genenetwork.org and other data depositories to combine genetics,

microarray data and phenotypes in the study of recombinant inbred mouse

lines [33]. One problem in using measurements from multiple experiments

is that different research projects choose to perform experiments on different

subsets of mouse strains. As a result, only a portion of the strains have all the

measurements, while other strains have missing measurements. The current

practice of using only those complete measurements is undesirable since the

selection bias in the missingness can cause the parameter estimators to be

inconsistent. Even in the absence of the selection bias (missing completely

at random), the complete measurements based inference is generally not ef-

ficient as it throws away data with missing values. Substantial research has

been done to deal with missing data problems; see [15] for a comprehensive

overview.

Inference based on estimating equations [8, 3] is a general framework for

statistical inference, accommodating a wide range of data structure and pa-

rameters. It has been used extensively for conducting semiparametric infer-

ence in the context of missing values. Robins, Rotnitzky and Zhao [23, 24]

proposed using the parametrically estimated propensity scores to weigh es-

timating equations that define a regression parameter; and Robins and Rot-

nitzky [22] established the semiparametric efficiency bound for parameter es-

timation. The approach based on the general estimating equations has the

advantage of being more robust against model misspecification, although a

correct model for the conditional distribution of the missing variable given

the observed variable is needed to attain the semiparametric efficiency. See
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[30] for a comprehensive review.

In this paper we consider an empirical likelihood based inference for param-

eters defined by general estimating equations in the presence of missing values.

Empirical likelihood introduced by Owen [17, 18] is a computer-intensive sta-

tistical method that facilitates a likelihood-type inference in a nonparametric

or semiparametric setting. It is closely connected to the bootstrap as the em-

pirical likelihood effectively carries out the resampling implicitly. On certain

aspects of inference, empirical likelihood is more attractive than the boot-

strap, for instance its ability of internal studentizing so as to avoid explicit

variance estimation and producing confidence regions with natural shape and

orientation; see [19] for an overview. In an important development, Qin and

Lawless [21] proposed an empirical likelihood for parameter defined by a set

of general estimating equations and established the Wilks theorem for the em-

pirical likelihood ratio. Chen and Cui [5] show that the empirical likelihood

of [21] is Bartlett correctable, indicating that the empirical likelihood has this

delicate second order property of the conventional likelihood under the general

setting of estimating equations. In the context of missing responses, Wang

and Rao [32] studied empirical likelihood for the mean with imputed missing

values from a kernel estimator of the conditional mean, and demonstrated

that some of those attractive features of the empirical likelihood continue to

hold.

When the parameter of interest defined by the general estimating equa-

tions is not directly related to a mean, or a regression model is not assumed as

the model structure, the commonly used conditional mean based imputation

via either a parametric [35] or nonparametric [6] regression estimator may
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results in either biased estimation or reduced efficiency; for instance when

the parameter of interest is a quantile (conditional or unconditional) or some

covariates are subject to missingness. To suit the general nature of parame-

ters defined by general estimating equations and to facilitate a nonparametric

likelihood inference in the presence of missing values, we propose a nonpara-

metric imputation procedure that imputes missing values repeatedly from a

kernel estimator of the conditional distribution of the missing variables given

the fully observable variables. To control the variance of the estimating func-

tions with imputed values, the estimating functions are averaged based on

the multiple imputed values for each missing value. We show that the max-

imum empirical likelihood estimator based on the nonparametric imputation

is consistent and is more efficient than the estimator based on the completely

observed portion of the data only. In particular, when the number of the esti-

mating equations is the same as the dimension of the parameter, the proposed

empirical likelihood estimator attains the semiparametric efficiency bound.

The paper is structured as follows. The proposed nonparametric impu-

tation method is described in Section 2. The formulation of the empirical

likelihood is outlined in Section 3. Section 4 gives theoretical results of the

proposed empirical likelihood estimator. Results from simulation studies are

reported in Section 5. Section 6 analyzes a genetic dataset on recombinant

inbred mice. All technical details are provided in the appendix.

2. Nonparametric imputation. Let Zi = (Xτ
i , Y τ

i )τ , i = 1, · · · , n, be a

set of independent and identically distributed random vectors, where Xi’s are

dx-dimensional and are always observable, and Yi’s are dy-dimensional and are

subject to missingness. In practice, the missing components may vary among
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incomplete observations. For ease of presentation, we assume the missing

components occupy the same components of Zi. Extensions to the general

case can be readily made. Furthermore, our use of Yi for the missing variable

does not prevent it being either a response or covariates in a regression setting.

Let θ be a p-dimensional parameter so that E{g(Zi, θ)} = 0. Here g(Z, θ) =

(g1(Z, θ), . . . , gr(Z, θ))T represents r estimating functions for an integer r ≥ p.

The interest of this paper is in the inference on θ when some Yi’s are missing.

Define δi = 1 if Yi is observed and δi = 0 if Yi is missing. Like in [6],

[32] and others, we assume that δ and Y are conditionally independent given

X, namely the strongly ignorable missing at random proposed by Rosenbaum

and Rubin [25]. As a result,

P (δ = 1 | Y,X) = P (δ = 1 | X) =: p(X)

where p(x) is the propensity score and prescribes a pattern of selection bias

in the missingness.

Let F (y|Xi) be the conditional distribution of Y given X = Xi. A kernel

estimator of F (y|Xi) based on the completely observed portion (no missing

values) of the sample is

(1) F̂ (y|Xi) =
n∑

l=1

δlW (Xl−Xi

h
)I(Yi ≤ y)∑n

j=1 δjW (
Xj−Xi

h
)

.

Here W (·) is a dx-dimensional kernel function, h is a smoothing bandwidth

and I(·) is the dy-dimensional indicator function which is defined as I(Yi ≤
y) = 1 if all components of Yi are less than or equal to the corresponding

components of y respectively, and I(Yi ≤ y) = 0 otherwise. The property of
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the kernel estimator when there are no missing values is well understood in

the literature, for instance in [10]. Its properties in the context of the missing

values can be established in a standard fashion. An important property that

mirrors one for unconditional multivariate distribution estimators given in

[13] is that the efficiency of F̂ (y|Xi) is not influenced by the dimension of

Yi. Here we concentrate on the case that Xi is a continuous random vector.

Extension to discrete random variables can be readily made; see Section 5 for

an implementation with binary random variables.

We propose to impute a missing Yi with a Ỹi which is randomly generated

from the estimated conditional distribution F̂ (y|Xi). Effectively Ỹi has a

discrete distribution where the probability of selecting a Yl with δl = 1 is

W{(Xl −Xi)/h}∑n
j=1 δjW{(Xj −Xi)/h} .

To control the variability of the estimating functions with imputed values, we

make κ independent imputations {Ỹiν}κ
ν=1 from F̂ (y|Xi) and use

(2) g̃(Z̃i, θ) = δig(Zi, θ) + (1− δi)κ
−1

κ∑
ν=1

g(Xi, Ỹiν , θ)

as the estimating function for the i-th observation. Like the conventional

multiple imputation procedure [15], to attain the best efficiency, κ is required

to converge to ∞. Our numerical experience indicates that setting κ = 20

worked quite well in our simulation experiments reported in Section 5.

The way we impute missing values depends critically on the nature of the

parameter and model. A popular imputation method is to impute a missing

Yi by the conditional mean of Y given X = Xi as proposed in [35] under a
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parametric regression model and in [6] and [32] via the kernel estimator for the

conditional mean. However, this mean imputation may not work for a general

parameter and a general model structure other than the regression model;

for instance when the parameter is a correlation coefficient, or a conditional

or unconditional quantile [1] where the estimating equation is based on a

kernel smoothed distribution function. Nor is it generally applicable to missing

covariates in a regression context. In contrast, the proposed nonparametric

imputation is applicable for any parameter defined by estimating equations.

The curse of dimension is an issue with kernel estimators. Indeed, the

estimation accuracy of F̂ (y|Xi) deteriorates as dx increases. However, as

demonstrated in Section 4, as the target of the inference is a finite dimen-

sional θ, the curse of dimension does not pose any leading order effect on the

estimation of θ as long as the bias of the kernel estimator is controlled by let-

ting
√

nh2 → 0 while nhdx →∞ to ensure the consistency of the conditional

distribution estimation. When dx ≥ 4, controlling the bias requires a higher

order, say q− th order kernel, so that
√

nhq → 0 instead of
√

nh2 → 0. Using

a higher order kernel may cause F̂ (y|Xi) not being a proper conditional dis-

tribution and creates a minor problem for the imputation. See [31] for ways

to get around it.

3. Empirical likelihood. The nonparametric imputation produces an

extended sample {Z̃i}n
i=1 where

(3) Z̃i =

{
Zi, if δi = 1;

(Xi, {Ỹiν}κ
ν=1)

τ , if δi = 0.

With the imputed estimating equations, usual estimating equation ap-
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proach can be used to make inference on θ. The variance of the general

estimating equation based estimator for θ can be estimated using a sandwich

estimator and the confidence regions can be obtained by asymptotic normal

approximation. In this article, we would like to carry out a likelihood type

inference using empirical likelihood, encouraged by its attractive performance

for estimating equations without missing values as demonstrated by Qin and

Lawless [21] and the work of Wang and Rao [32] for inference on a mean with

missing responses. An advantage of empirical likelihood is that it has no pre-

determined shape of the confidence region, instead it produces regions that

reflect the features of the data set. Our proposal of using empirical likelihood

in conjunction with nonparametric imputation is especially attractive, since it

requires very few assumptions for both imputation and inference procedures

while also has the flexibility inherent to empirical likelihood and estimating

equations.

Let pi represents the probability weight allocated to Z̃i. The empirical

likelihood for θ is

L(θ) = sup
{ n∏

i=1

pi

∣∣∣pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

g̃(Z̃i, θ) = 0
}

,

where g̃ is the adjustment to the original estimating function given in (2). By

the standard derivation of empirical likelihood [21], the optimal pi is

pi =
1

n

1

1 + tτ (θ)g̃(Z̃i, θ)
,
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where t(θ) is the Lagrange multiplier that satisfies

(4)
1

n

∑
i

g̃(Z̃i, θ)

1 + tτ (θ)g̃(Z̃i, θ)
= 0.

Let `(θ) = − log{L(θ)/n−n} be the log empirical likelihood ratio and θ̂ be the

maximum empirical likelihood estimator that maximizes L(θ).

4. Main results. The efficiency of θ̂ is studied in this section which

also includes a proposal for constructing confidence regions for θ based on the

empirical likelihood ratio.

Let θ0 denote the true parameter value. Write g(Z) =: g(Z, θ0). We define

Γ̃ = E [p(X)Cov{g(Z)|X}+ E{g(Z)|X}E{gτ (Z)|X}] ,

Γ = E
[
p−1(X)Cov{g(Z)|X}+ E{g(Z)|X}E{gτ (Z)|X}]

and V = {E (
∂g
∂θ

)τ
Γ̃−1E

(
∂g
∂θ

)}−1 at θ = θ0.

Theorem 1. Under the conditions given in the Appendix, as n → ∞ and

κ →∞,
√

n(θ̂ − θ0)
L→ N(0, Σ)

with Σ = V E(∂g
∂θ

)τ Γ̃−1ΓΓ̃−1E(∂g
∂θ

)V .

The estimator θ̂ is consistent and asymptotically normal for θ0 and the

potential selection bias in the missingness as measured by the propensity score

p(x) has been filtered out. If there is no missing values, Γ̃ = Γ = E(ggτ ), which

means that

Σ =

{
E(

∂g

∂θ
)τ (Eggτ )−1E(

∂g

∂θ
)

}−1

.

This is the asymptotic variance of the maximum empirical likelihood estimator
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based on full observations given in [21]. Comparing the forms of Σ with and

without missing values shows that the efficiency of the maximum empirical

likelihood estimator based on the proposed imputation will be close to that

based on full observations if either the proportion of missing data is low, that

is when p(X) is close to 1, or if E{p−1(X)Cov(g|X)} is small relative to

E{E(g|X)E(gτ |X)}, namely when X is highly “correlated” with Y .

In the case of θ = EY , Σ = E{σ2(X)/p(X)} + V ar{m(X)}, where

σ2(X) = V ar(Y |X) and m(X) = E(Y |X). Thus in this case, θ̂ is asymptot-

ically equivalent to the estimator proposed by Cheng [6] and Wang and Rao

[32] based on the conditional mean imputation.

When r = p, namely the number of estimating equations is the same as

the dimension of θ,

Σ =

{
E(

∂g

∂θ
)τΓ−1E(

∂g

∂θ
)

}−1

,

which is the semiparametric efficiency bound for the estimation of θ as given

by Chen, Hong and Tarozzi [4].

To appreciate the proposal of letting the number of imputation κ → ∞,

we note that when κ is fixed, the Γ and Γ̃ matrices used to define Σ have

forms:

Γ = E
[{

p−1(X) + κ−1(1− p(X))
}
Cov(g|X) + E(g|X)E(gτ |X)

]
and

Γ̃ = E
[{

p(X) + κ−1(1− p(X))
}
Cov(g|X) + E(g|X)E(gτ |X)

]
.

Hence, a larger κ will reduce the terms in Γ and Γ̃ which are due to a single

nonparametric imputation. Our numerical experience suggests that κ = 20 is

sufficient for most situations.
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Let us now turn our attention to the log empirical likelihood ratio

R(θ0) = 2`(θ0)− 2`(θ̂).

Let Ir be the r-dimensional identity matrix. The next theorem shows that the

log empirical likelihood ratio converges to a linear combination of independent

chi-square distributions.

Theorem 2. Under the conditions given in the Appendix, as n → ∞ and

κ →∞,

R(θ0)
L→ QτΩQ,

where Q ∼ N(0, Ir) and Ω = Γ1/2Γ̃−1E
(

∂g
∂θ

)
V E

(
∂g
∂θ

)τ
Γ̃−1Γ1/2.

When there is no missing values, Γ = Γ̃ = E(ggτ ) and

Ω = E(ggτ )−1/2E

(
∂g

∂θ

)[
E(

∂g

∂θ
)τ{E(ggτ )}−1E(

∂g

∂θ
)

]−1

E

(
∂g

∂θ

)τ

E(ggτ )−1/2,

which is symmetric and idempotent with tr(Ω) = p. This means thatR(θ0)
L→

χ2
p, which is the nonparametric version of Wilks theorem established in [21].

When there are missing values, Wilks Theorem for empirical likelihood is

no longer available due to a mis-match between the variance of n−1/2
∑n

i=1 g̃(Z̃i, θ0)

and the probability limit of n−1
∑n

i=1 g̃(Z̃i, θ0)g̃
τ (Z̃i, θ0). This phenomenon

also appears when a nuisance parameter is replaced by a plugged-in estimator

as revealed by Hjort, McKeague and Van Keilegom [11].

When θ = EY , R(θ0)
L→ {V1(θ0)/V2(θ0)}χ2

1, where

V1(θ0) = E{σ2(X)/p(X)}+ V ar{m(X)}
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and V2(θ0) = E{σ2(X)p(X)}+ V ar{m(X)}. This is the limiting distribution

given in [32].

As confidence regions can be readily transformed to test statistics for test-

ing a hypothesis regarding θ, we shall focus on confidence regions. There are

potentially several methods for the construction of a confidence region for θ.

One is based on an estimation of the covariance matrix Σ and the asymptotic

normality given in Theorem 1. Another method is to estimate the matrix Ω

in Theorem 2 and then use Fourier inversion or a Monte Carlo method to

simulate the distribution of the linear combinations of chi-squares. Despite

the loss of Wilks theorem, confidence regions based on the empirical likelihood

ratio R(θ) still have the attractions of likelihood based confidence regions in

terms of having natural shape and orientation and respecting the range of θ.

We propose the following bootstrap procedure to approximate the distri-

bution of R(θ0). Bootstrap for imputed survey data has been discussed in

[27] in the context of ratio and regression imputations. We use the following

bootstrap procedure in which the bootstrap data set is imputed in the same

way as the original data set was imputed:

1. Draw a simple random sample χ∗
n = {(Z̃∗

i , δ
∗
i ) : i = 1, . . . , n} with

replacement from the extended sample χn = {(Z̃i, δi) : i = 1, . . . , n} defined

in (3).

2. Let χ∗
nc = {(Z∗

i , δ
∗
i ) : δ∗i = 1} be the portion of χ∗

n without imputed

values and χ∗
nm = {(Z̃∗

i , δ
∗
i ) : δ∗i = 0} be the set of vectors in the bootstrap

sample with imputed values. Then replace all the imputed Y values in χ∗
nm

using the proposed imputation method where the estimation of the conditional

distribution is based on χ∗
nc.
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3. Let `∗(θ̂) be the empirical likelihood ratio based on the re-imputed data

set χ∗
n, θ̂∗ be the corresponding maximum empirical likelihood estimator, and

R∗(θ̂) = 2`∗(θ̂)− 2`∗(θ̂∗).

4. Repeat the above steps B-times for a large integer B and obtain B

bootstrap values {R∗
b(θ̂)}B

b=1.

Let q?
α be the 1 − α sample quantile based on {R∗

b(θ̂)}B
b=1. Then, an

empirical likelihood confidence region with nominal coverage level 1 − α is

Iα = {θ | R(θ) ≤ q?
α}. The following theorem justifies that this confidence

region has correct asymptotic coverage.

Theorem 3. Under the conditions given in the Appendix and conditioning

on the original sample χn,

R∗(θ̂) L→ QτΩ∗Q

with Q ∼ N(0, Ir), and Ω∗ → Ω in probability as n →∞ and κ →∞.

5. Simulation results. We report results from two simulation studies

in this section. In each study, the proposed empirical likelihood inference

based on the proposed nonparametric imputation is compared with the em-

pirical likelihood inference based on (1) the complete observations only

by ignoring data with missing values and (2) the full observations since

the missing values are known in a simulation. When there is a selection bias

in the missingness, the complete observations based estimator may not be

consistent. The proposed imputation will remove the selection bias in the

missingness and improve estimation efficiency due to utilizing more data in-

formation. Obtaining the full observations based estimator allows us to gauge
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how far away the proposed imputation based estimator is from the ideal case.

We also compare the proposed method with a version of the inverse prob-

ability weighted generalized method of moments (IPW-GMM) described in

[4]. In particular, it is based on the fact that

E
{

g(Zi, θ0)
P (δi = 1)

p(Xi)

∣∣∣δi = 1
}

= 0.

Based on the usual formulation of the generalized method of moments [GMM,

9], the weighted-GMM estimator for θ0 considered in our simulation is

θ̃ = arg min
θ

{ 1

nc

n∑
i=1

δig(Zi, θ)
1

p̂(Xi)

}τ

AT

{ 1

nc

n∑
i=1

δig(Zi, θ)
1

p̂(Xi)

}
,

where nc is the number of complete observations, AT is a nonnegative def-

inite weighting matrix, and p̂(Xi) is a consistent estimator for p(Xi). The

difference between the weighted-GMM method we use and that of [4] is that

we used a kernel based estimator for p(Xi), instead of the sieve estimator

described in [4]. The bandwidth used to construct p̂(Xi) is obtained by the

cross-validation method. Cross-validation method is also used to choose the

smoothing bandwidth in the kernel estimator F̂ (y|X) given in (1) for the pro-

posed nonparametric imputation. To satisfy the requirement
√

nh2 → 0, we

use half of the bandwidth produced by the cross-validation procedure. The

kernel function W (·) is taken to be the Gaussian or product Gaussian kernel

for the two simulation studies.

5.1 Correlation coefficient. In the first simulation, the parameter θ is the

correlation coefficient between two random variables X and Y where X is

always observed, but Y is subject to missingness. We first generate bivari-
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ate random vector (Xi, Ui)
τ from a skewed bivariate t-distribution [2] with

five degrees of freedom, mean (0, 0)τ , shape parameter (4, 1)τ , and dispersion

matrix

Ω̄ =




1 .955

.955 1


 .

Then we let Yi = Ui−1.2XiI(Xi < 0). The vector (Xi, Yi)
τ has mean (0, 0.304)

and correlation coefficient 0.676.

We consider three missing mechanisms:

(a): p(x) = (0.3 + 0.175|x|)I(|x| < 4) + I(|x| ≥ 4);

(b): p(x) ≡ 0.65 for all x;

(c): p(x) = 0.5I(x > 0) + I(x ≤ 0).

The missing mechanism (b) is missing completely at random; whereas the

other two are missing at random and prescribe selection bias in the missing-

ness.

Let µx and µy be the means, and σ2
x and σ2

y be the variances of X and

Y , respectively. In the construction of the empirical likelihood for θ [18],

(µx, µy, σ
2
x, σ

2
y) are treated as nuisance parameters.

Table 1 contains the bias and standard deviation of the four estimators

considered based on 1000 simulations with the sample size n = 100 and 200 re-

spectively. It also contains the empirical likelihood confidence intervals using

the full observations, complete observations only, and the proposed nonpara-

metric imputation method at a nominal level of 95% . They are all based

on the proposed bootstrap calibration method with B = 1000. When using

the nonparametric imputation method, κ = 20 imputations were made for

each missing Yi. The confidence intervals based on the weighted-GMM are
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calibrated using the asymptotic normal approximation with the covariance

matrix estimated by the kernel method.

The results in Table 1 can be summarized as follows. The proposed em-

pirical likelihood estimator based on the nonparametric imputation method

significantly reduced the bias compared to inference based only on complete

observations when the data were missing at random but not missing com-

pletely at random. The estimator based on the completely observed data

suffered severe bias under missing mechanisms (a) and (c). The proposed es-

timator had smaller standard deviations than the complete observation based

estimator under all three missing mechanisms, including the case of missing

completely at random. The weighted-GMM method also performed better

than the complete observation based estimator. However, it had larger vari-

ance than the proposed estimator. Most strikingly, the standard deviations of

the empirical likelihood estimator based on the proposed imputation method

were all quite close to the full observation based estimator, which confirmed

its good theoretical properties. Confidence intervals based on the complete

observations only and the weighted-GMM method could have severe under-

coverage: the former is due to the selection bias and the latter is due to the

normal approximation. The proposed confidence intervals had satisfactory

coverages which are quite close to the nominal level 0.95.

5.2 Generalized linear models with missing covariates. In the second sim-

ulation study we consider missing covariates in a generalized linear model

(GLM). We also take the opportunity to discuss an extension of the proposed

imputation procedure to binary random variables. Commonly used methods

in dealing with missing data for GLM are reviewed in [12]. Empirical like-
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lihood for GLM’s with no missing data was first studied by Kolaczyk [14].

Application of empirical likelihood method to GLM’s can help overcome dif-

ficulties with parametric likelihood, especially in the aspect of overdispersion.

To demonstrate how to extend the proposed method to discrete compo-

nent in Xi, we consider a logistic regression model with binary response vari-

able X3 and covariates X1, X2 and Y . We choose logit{P (X3i = 1)} =

−1 + X1i + X2i − 1.5Yi, X1i ∼ N(0, 0.52), X2i ∼ N(3, 0.52), and Yi being

binary with logit{P (Yi = 1)} = −1 + X1i + 0.5X2i. Here X1i, X2i, and

X3i are always observable while the binary Yi is subject to missingness with

logit{P (Yi is missing)} = 0.5 + 2X1i + X2i − 3X3i. This model with dx = 3

also allows us to see if there is a presence of the curse of dimension due to the

use of the kernel estimator in the proposed imputation procedure.

When no missing data are involved, the empirical likelihood analysis for

the logistic model simply involves the estimating equations
∑n

i=1 Si{X3i −
π(Sτ

i β)} = 0 with Si = (1, X1i, X2i, Yi)
τ , β being the parameter and π(z) =

exp(z)/{1 + exp(z)}. Although our proposed imputation in Section 2 is for-

mulated directly for continuous random variables, binary response X3i values

can be easily accommodated by splitting the data into two parts according

to the value of X3i (binning), and then applying the proposed imputation

scheme to each part by smoothing on the continuous X1i and X2i. The maxi-

mum empirical likelihood estimator for β uses a modified version of the fitting

procedure described in Chapter 2 of [16].

The results of the simulation study with n = 150 and 250 are shown in

Table 2(a) and 2(b) respectively. Despite that the dimension of Xi is increased

to 3, there was no sign of the curse of dimension as the standard deviations
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of the proposed estimator were still quite close to the full observation based

empirical likelihood estimator. This was very encouraging. For parameters

β0, β1 and β2, the mean squared error of the proposed estimator are several

folds smaller than that based on the complete observations only; the pro-

posed method also leads to a reduction in the mean squared error by as much

as one fold relative to the weighted-GMM. All three methods give similar

mean squared errors for the parameter β3 while the proposed estimator had

the smallest mean squared error. The confidence intervals based on only com-

plete observations or the weighted-GMM tend to show notable undercoverage,

while the proposed confidence intervals have satisfactory coverage levels for

all parameters.

6. Empirical study. Microarray technology provides an powerful tool

in molecular biology by measuring the expression level of thousands of genes

simultaneously. One problem of interest is to test whether the expression level

of genes is related to a traditional trait like body weight, food consumption,

or bone density. This is usually the first step in uncovering roles that a gene

plays in important pathways. The BXD recombinant inbred strains of mouse

were derived from crosses between C57BL/6J (B6 or B) and DBA/2J (D2 or

D) strains [34]. Around one hundred BXD strains have been established by

researchers at University of Tennessee and the Jackson Laboratory. A variety

of phenotype data are accumulated for BXD mouse over the years [20].

The trait that we consider is the fresh eye weight measured on 83 BXD

strains by Zhai, Lu, and Williams (ID 10799, BXD phenotype data base). The

Hamilton Eye Institute Mouse Eye M430v2 RMA Data Set contains measures

of expression in the eye on 39,000 transcripts. It is of interest to test whether
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the fresh eye weight is related to the expression level of certain genes. How-

ever, the microarray data are only available for 45 out of the 83 BXD mouse

strains for which fresh eye weights are all available. The most common prac-

tice is to use only complete observations and ignore missing values in the

statistical inference. As demonstrated in our simulation, this approach can

lead to inconsistent parameter estimators if there is a selection bias in the

missingness. Even in the absence of selection bias, the estimators are not

efficient as only those complete observations are used.

We conduct four separate simple linear regression analysis of the eye weight

on the expression level of four genes respectively. The genes are H3071E5,

Slc26a8, Tex9, and Rps16. Here we have missing covariates in our analy-

sis. The missing gene expression levels are imputed from a kernel estimator

of the conditional distribution of the gene expression level given the fresh

eye weight. The smoothing bandwidths were selected based on the cross-

validation method, which is 1.5 for the first three genes in Table 3 and 1.8 for

gene Rps16.

Table 3 reports empirical likelihood estimates of the intercept and slope

parameters and their 95% confidence intervals based on the proposed non-

parametric imputation and empirical likelihood. It also contains results from

a conventional parametric regression analysis using only the complete obser-

vations, assuming independent and identically normally distributed residuals.

Table 3 shows that these two inference methods can produce quite different

parameter estimates and confidence intervals. The difference in parameter

estimates is as large as 50% for the intercept and 25% for the slope parame-

ter. Table 3 also reports estimates and confidence intervals of the correlation
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coefficients using the proposed method and Fisher’s z transformation. The

latter is based on the complete observations only and is the method used by

genenetwork.org. We observe again differences between the two methods de-

spite not being significant at 5% level. The largest difference of about 30% is

registered at gene H3071E5. As indicated earlier, part of the differences may

be the estimation bias of the complete observations based estimators as they

are unable to filter out selection bias in the missingness.

APPENDIX

Let f(x) be the probability density function of X and mg(x) = E{g(X, Y, θ0)|X =

x}. The following conditions are needed in the proofs of the theorems.

C1: The functions p(x), f(x) and mg(x) all have bounded partial deriva-

tives up to order q with q ≥ 2 and 2q > dx, and infx p(x) ≥ c0 for some

c0 > 0.

C2: The estimating function g(x, y, θ0) has bounded partial derivative with

regard to x up to order q, and E‖g(Z, θ0)‖4 < ∞. In addition, ∂2g(z, θ)/∂θ∂θτ

is continuous in θ in a neighborhood of the true value θ0; ‖∂g(z, θ)/∂θ‖,
‖g(z, θ)‖3, and ‖∂2g(z, θ)/∂θ∂θτ‖ are all bounded by some integrable func-

tions in the neighborhood.

C3: The matrices Γ and Γ̃ are, respectively, positive definite with the

smallest eigenvalue bounded away from zero, and E[∂g(z, θ)/∂θ] has full col-

umn rank p.

C4: The kernel function W is a dx dimensional kernel of order q, namely,
∫

W (s1, . . . , sdx)ds1 . . . dsdx = 1, and for any i = 1, . . . , dx,

∫
sl

iW (s1, . . . , sdx)ds1 . . . dsdx = 0
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for any 1 ≤ l < q, and
∫

sq
i W (s1, . . . , sdx)ds1 . . . dsdx 6= 0.

C5: The smoothing bandwidth h satisfies nhdx → ∞ and
√

nhq → 0 as

n →∞.

Assuming p(x) being bounded away from zero in C1 implies that data can-

not be missing with probability 1 anywhere in the domain of the X variable.

Conditions C2 and C3 are standard assumption for empirical likelihood based

inference with estimating equations. Conditions C4 and C5 are standard in

kernel estimation, and that
√

nhq → 0 is to control the bias induced by the

kernel smoothing. To simplify the exposition, we will only deal with the case

that q = 2 in the proof.

Lemma 1. Assume that conditions C1-C5 are satisfied, then as n →∞ and

κ →∞,

n−1/2

n∑
i=1

g̃(Z̃i, θ0)
L→ N(0, Γ),

where Γ = E {p−1(X)Cov(g|X) + E(g|X)E(gτ |X)}.

Proof of Lemma 1: Let u ∈ Rr and ‖u‖ = 1. Also let gu(Z, θ0) = uτg(Z, θ0)

and g̃u(Z̃, θ0) = uτ g̃(Z̃, θ0). First we need to show that n−1/2
∑n

i=1 g̃u(Z̃i, θ0)
L→

N(0, uτΓu), and then use the Cramér-Wold device to prove Lemma 1. Define

mgu(x) = E(gu(X, Y, θ0)|X = x) and m̂gu(x) =

∑n
i=1 δiW (x−Xi

h
)gu(x, Yi, θ0)∑n

i=1 δiW (x−Xi

h
)

.

Now we have

1

n

n∑
i=1

{
δigu(Xi, Yi, θ0) + (1− δi)κ

−1

κ∑
ν=1

gu(Xi, Ỹiν , θ0)

}

=
1

n

n∑
i=1

δi{gu(Xi, Yi, θ0)−mgu(Xi)}
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+
1

n

n∑
i=1

(1− δi)

{
κ−1

κ∑
ν=1

gu(Xi, Ỹiν , θ0)− m̂gu(Xi)

}

+
1

n

n∑
i=1

(1− δi){m̂gu(Xi)−mgu(Xi)}+
1

n

n∑
i=1

mgu(Xi)

:= Sn + An + Tn + Rn.

Note that Sn and Rn are sums of independent and identically distributed

random variables. Define η(x) = p(x)f(x) and η̂(x) = 1
n

∑n
j=1 δjWh(Xj − x)

as its kernel estimator, where Wh(u) = h−dxW (u/h). Then,

Tn =
1

n

n∑
i=1

(1− δi)
1
n

∑n
j=1 δjWh(Xj −Xi){gu(Xi, Yj, θ0)−mgu(Xj)}

η(Xi)

+
1

n

n∑
i=1

(1− δi){m̂gu(Xi)−mgu(Xi)}η(Xi)− η̂(Xi)

η(Xi)

+
1

n

n∑
i=1

(1− δi)

{ 1
n

∑n
j=1 δjWh(Xj −Xi)(mgu(Xj)−mgu(Xi))

η(Xi)

}

:= Tn1 + Tn2 + Tn3.

Define

Ťn1 =
n∑

j=1

E{Tn1 | (Xj, Yj, δj)} =
n∑

j=1

δjE{Tn1 | (Xj, Yj, δj = 1)}

to be a projection of Tn1. Then write Tn1 = Ťn1 + (Tn1 − Ťn1). As

Tn1 =
1

n

n∑
i=1

(1− δi)
1
n

∑n
j=1 δjWh(Xj −Xi){gu(Xi, Yj, θ0)−mgu(Xj)}

η(Xi)

=
1

n

n∑
j=1

δj{gu(Xi, Yj, θ)−mgu(Xj)}
{

1

n

n∑
i=1

(1− δi)
Wh(Xi −Xj)

η(Xi)

}
,
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Ťn1

=
1

n

n∑
j=1

δjE

[
{gu(Xi, Yj, θ0)−mgu(Xj)}(1− δi)Wh(Xi −Xj)

η(Xi)

∣∣∣∣Xj, Yj

]

=
1

n

n∑
j=1

δj

∫ [
{gu(x, Yj, θ0)−mgu(Xj)}{1− p(x)}Wh(x−Xj)

η(x)

]
f(x)dx

=
1

n

n∑
j=1

δj

∫ [
{gu(x, Yj, θ0)−mgu(Xj)}{1− p(x)}

p(x)
Wh(x−Xj)

]
dx

=
1

n

n∑
j=1

δj

∫ [
{gu(Xj + hs, Yj, θ0)−mgu(Xj)}{1− p(Xj + hs)}

p(Xj + hs)
W (s)

]
ds.

Since both gu and ρ(x) = {1 − p(x)}/p(x) has bounded seconded derivative

on x, and
√

nh2 → 0 as n →∞, a Taylor expansion around Xj leads to

(A1) Ťn1 =
1

n

n∑
j=1

δj{gu(Xj, Yj, θ)−mgu(Xj)}1− p(Xj)

p(Xj)
+ op(n

− 1
2 ).

Now we show Tn1 − Ťn1 = op(n
−1/2). Let

Tn1i = (1− δi)
1
n

∑n
j=1 δjWh(Xj −Xi){gu(Xi, Yj, θ0)−mgu(Xj)}

η(Xi)
and

Ťn1i =
n∑

j=1

E{Tn1i | (Xj, Yj, δj = 1)}.

Then by straight forward computation,

nE(Tn1 − Ťn1)
2(A2)

=
1

n

n∑
i=1

E(Tn1i − Ťn1i)
2 +

2

n

∑

i6=j

E{(Tn1i − Ťn1i)(Tn1j − Ťn1j)}

= E(Tn1i − Ťn1i)
2 = ET 2

n1i − EŤ 2
n1i 6 ET 2

n1i

6 E

{ 1
n

∑n
j=1 δjWh(Xj −Xi){gu(Xi, Yj, θ0)−mgu(Xj)}

η(Xi)

}2

→ 0.
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The last step is obtained by an argument similar to one used in proving the

consistency of Nadaraya-Watson estimators in [29] and [7]. This suggests

that Tn1 = Ťn1 + op(n
−1/2). By standard argument, we can show that Tn2 =

op(n
− 1

2 ). Derivations similar to those for Tn1 can be used to establish Tn3 =

op(n
−1/2). Thus, we have

(A3)
√

nTn
L→ N

[
0, E{(1− p(X))2σ2

gu
(X)/p(X)}],

where σ2
gu

(X) = V ar{gu(X, Y, θ) | X}.
Also note

√
nSn

L→ N [0, E{p(X)σ2
gu

(X)}] and
√

nRn
L→ N [0, V ar{mgu(X)}].

Further, it is straight forward to show that

nCov(Sn, Tn) = E{(1− p(X))σ2
gu

(X)}+ o(1),

nCov(Rn, Sn) = 0 and nCov(Rn, Tn) = o(1). It readily follows that

(A4)
√

n(Sn + Tn + Rn)
L→ N

[
0, E{σ2

gu
(X)/p(X)}+ V ar{mgu(X)}].

Now we consider the asymptotic distribution of

An =
1

n

n∑
i=1

(1− δi)
{

κ−1

κ∑
ν=1

gu(Xi, Ỹiν , θ0)− m̂gu(Xi)
}

.

Given all the original observations, n−1/2(1 − δi)
{
κ−1

∑κ
ν=1 gu(Xi, Ỹiν , θ) −

m̂(Xi)
}
, i = 1, 2, . . . , n, are independent with conditional mean zero and

24



conditional variance (nκ)−1(1− δi){γ̂gu(Xi)− m̂2
gu

(Xi)}. Here

γ̂gu(x) =
n∑

j=1

δjWh(x−Xj)g
2
u(x, Yj, θ0)/η̂(x)

is a kernel estimator of γgu(x) = E{g2
u(X, Y, θ0)|X = x}. By verifying Lya-

pounov’s condition, we can show that conditioning on the original observa-

tions,

(A5)
√

nAn
L→ N

[
0, (nκ)−1

n∑
i=1

(1− δi){γ̂gu(Xi)− m̂2
gu

(Xi)}
]
.

The conditional variance

(A6) (nκ)−1

n∑
i=1

(1− δi){γ̂gu(Xi)− m̂2
gu

(Xi)} p→ κ−1E[{1− p(X)}σ2
gu

(X)].

By Lemma 1 of [26], as n →∞ and κ →∞,
√

n(Sn +Tn +Rn +An) converges

to a normal distribution with mean 0 and variance

V ar{mgu(Z, θ)}+ E{p−1(X)σ2
gu

(X)} = uτΓu.

Then Lemma 1 is proved by using the Cramèr-Wold device.

Lemma 2. Under the conditions C1-C5, as n →∞ and κ →∞,

1

n

n∑
i=1

g̃(Z̃i, θ0)g̃
τ (Z̃i, θ0)

p→ Γ̃,

where Γ̃ = E {p(X)Cov(g|X) + E(g|X)E(gτ |X)}.

Proof: Consider each element of the matrix 1
n

∑n
i=1 g̃(Z̃i, θ0)g̃

τ (Z̃i, θ0), that
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is,

1

n

n∑
i=1

g̃j(Z̃i, θ0)g̃k(Z̃i, θ0), 0 ≤ j, k ≤ r.

Write

1

n

n∑
i=1

g̃j(Z̃i, θ0)g̃k(Z̃i, θ0)

=
1

n

n∑
i=1

δjgj(Zi, θ0)gk(Zi, θ0)

+
1

n

n∑
i=1

(1− δi)

{
κ−1

κ∑
ν=1

gj(Xi, Ỹiν , θ0)

}{
κ−1

κ∑
ν=1

gk(Xi, Ỹiν , θ0)

}

:= Tn1 + Tn2.

Moreover,

Tn1 =
1

n

n∑
i=1

δi{gj(Zi, θ0)−mgj
(Xi)}{gk(Zi, θ0)−mgk

(Xi)}

− 1

n

n∑
i=1

δimgj
(Xi)mgk

(Xi) +
1

n

n∑
i=1

δigj(Zi, θ0)mgk
(Xi)

+
1

n

n∑
i=1

δigk(Zi, θ0)mgj
(Xi)

:= Tn1a + Tn1b + Tn1c + Tn1d.

It is obvious that Tn1a, Tn1b, Tn1c and Tn1d are all sums of independent and

identically distributed random variables. By law of large numbers and the

continuous mapping theorem, we can show that

Tn1
p→ E

[
p(X)Cov{gj(Z, θ0), gk(Z, θ0)|X}+ p(X)mgj

(X)mgk
(X)

]
.
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Note that

Tn2 =
1

n

n∑
i=1

(1− δi){g̃j(Z̃i, θ0)g̃k(Z̃i, θ0)− m̂gj
(Xi)m̂gk

(Xi)}

+
1

n

n∑
i=1

(1− δi){m̂gj
(Xi)m̂gk

(Xi)−mgj
(Xi)mgk

(Xi)}

+
1

n

n∑
i=1

(1− δi)mgj
(Xi)mgk

(Xi)

:= Tn2a + Tn2b + Tn2c.

As gj(Xi, Ỹiν , θ0) has conditional mean m̂gj
(Xi) given the original observations

Xn, it can be shown that Tn2a
p→ 0 as κ →∞. By argument similar to those

used for (A3), Tn2b
p→ 0 as n →∞. Obviously Tn2c is the sum of independent

and identically distributed random variables, which leads to Tn2c
p→ E[{1 −

p(X)}mgj
(Xi)mgk

(Xi)]. Hence we have Tn2
p→ E[{1− p(X)}mgj

(Xi)mgk
(Xi)]

as n →∞ and κ →∞. Therefore,

Tn1 + Tn2
p→ E

[
p(X)Cov{gj(Z, θ0), gk(Z, θ0)|X}+ mgj

(X)mgk
(X)

]
.

This completes the proof of Lemma 2.

Let us define

Q1n(θ, t) =
1

n

∑
i

1

1 + tτ g̃(Z̃i, θ)
g̃(Z̃i, θ),

Q2n(θ, t) =
1

n

∑
i

1

1 + tτ g̃(Z̃i, θ)

{
∂g̃(Z̃i, θ)

∂θ

}τ

t,

where t(θ) is the Lagrange multiplier defined in (4).

Proof of Theorem 1: Using argument similar to that of [21], it can be
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shown that as n →∞ and κ →∞, with probability tending to 1, L(θ) attains

its maximum value at some point θ̂ within the open ball ‖θ − θ0‖ < n−1/3,

and θ̂ and t̂ = t(θ̂) satisfy

Q1n(θ̂, t̂) = 0, Q2n(θ̂, t̂) = 0.

Taking the derivatives with regard to θ and tτ ,

∂Q1n(θ, 0)

∂θ
=

1

n

∑
i

∂g̃(Z̃i, θ)

∂θ
,

∂Q1n(θ, 0)

∂tτ
= − 1

n

∑
i

g̃(Z̃i, θ)g̃
τ (Z̃i, θ),

∂Q2n(θ, 0)

∂θ
= 0,

∂Q2n(θ, 0)

∂tτ
=

1

n

∑
i

{
∂g̃(Z̃i, θ)

∂θ

}τ

.

Expanding Q1n(θ̂, t̂), Q2n(θ̂, t̂) at (θ0, 0), we have

0 = Q1n(θ̂, t̂)

= Q1n(θ0, 0) +
∂Q1n(θ0, 0)

∂θ
(θ̂ − θ0) +

∂Q1n(θ0, 0)

∂tτ
(t̂− 0) + op(ζn),

0 = Q2n(θ̂, t̂)

= Q2n(θ0, 0) +
∂Q2n(θ0, 0)

∂θ
(θ̂ − θ0) +

∂Q2n(θ0, 0)

∂tτ
(t̂− 0) + op(ζn),

where ζn = ‖θ̂ − θ0‖+ ‖t̂‖. Then we can write




t̂

θ̂ − θ0


 = S−1

n



−Q1n(θ0, 0) + op(ζn)

op(ζn)


 ,
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where

Sn =




∂Q1n

∂tτ
∂Q1n

∂θ

∂Q2n

∂tτ
0




(θ0,0)

→




S11 S12

S21 0


 =




−Γ̃ E
(

∂g
∂θ

)

E
(

∂g
∂θ

)τ
0


 .

Note that Q1n(θ0, 0) = 1
n

∑n
i=1 g̃(Z̃i, θ0) = Op(n

−1/2), it follows that ζn =

Op(n
−1/2). After some matrix manipulation, we have

√
n(θ̂ − θ0) = S−1

22.1S21S
−1
11

√
nQ1n(θ0, 0) + op(1),

where V = S−1
22.1 =

{
E(∂g

∂θ
)τ Γ̃−1E(∂g

∂θ
)
}−1

. By Lemma 1,
√

nQ1n(θ0, 0)
L→

N(0, Γ), and the theorem follows.

Proof of Theorem 2: Notice that

R(θ0) = 2

[ ∑
i

log{1 + tτ0 g̃(Z̃i, θ0)} −
∑

i

log{1 + t̂τ g̃(Z̃i, θ̂)}
]

where t0 = t(θ0), and

`(θ̂, t̂) =
∑

i

log{1 + t̂τ g̃(Z̃i, θ̂)} = −n

2
Qτ

1n(θ0, 0)AQ1n(θ0, 0) + op(1)

where A = S−1
11 (I + S12S

−1
22.1S21S

−1
11 ). Under H0,

1

n

∑
i

1

1 + tτ0 g̃(Z̃i, θ0)
g̃(Z̃i, θ0) = 0, t0 = −S−1

11 Q1n(θ0, 0)S−1
11 Q1n(θ0, 0)+op(1),

and
∑

i log{1 + tτ0 g̃(Z̃itable, θ0)} = −n
2
Qτ

1n(θ0, 0)S−1
11 Q1n(θ0, 0) + op(1). Thus
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we have

R(θ0) = nQτ
1n(θ0, 0)(A− S−1

11 )Q1n(θ0, 0) + op(1)

=
√

nQτ
1n(θ0, 0)S−1

11 S12S
−1
22.1S21S

−1
11

√
nQ1n(θ0, 0) + op(1).

Note that

S−1
11 S12S

−1
22.1S21S

−1
11

p→ Γ̃−1E

(
∂g

∂θ

)
V E

(
∂g

∂θ

)τ

Γ̃−1,

and by Lemma 1,
√

nQ1n(θ0, 0)
L→ N(0, Γ), the theorem then follows.

Proof for Theorem 3: The proof for Theorem 3 essentially involves estab-

lishing the bootstrap version of Lemma 1 to Theorem 2. We only outline the

main steps in proving the bootstrap version of Lemma 1 here.

Let X∗
i , Y ∗

i , Ỹ ∗
iν , δ∗i be the counter part to Xi, Yi, Ỹiν , δi in the bootstrap

sample, Sn(θ̂), An(θ̂), Tn(θ̂) and Rn(θ̂) represent the quantities Sn, An, Tn

and Rn with θ0 replaced by θ̂ respectively. Let S∗n(θ̂), A∗
n(θ̂), T ∗

n(θ̂) and R∗
n(θ̂)

be their bootstrap counterpart. First we will show

√
n{S∗n(θ̂) + T ∗

n(θ̂) + R∗
n(θ̂)− Sn(θ̂)− Tn(θ̂)−Rn(θ̂)}(A7)

L→ N
[
0, E∗{σ2

gu
(X, θ̂)/p(X)}+ V ar∗{mgu(X, θ̂)}],

where E∗(·) and V ar∗(·) represent the conditional expectation and variance

given the original data respectively. Define

m̂gu(x, θ̂) =

∑n
i=1 δiW (x−Xi

h
)gu(x, Yi, θ̂)∑n

i=1 δiW (x−Xi

h
)

and
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m̂∗
gu

(x, θ̂) =

∑n
i=1 δ∗i W (

x−X∗
i

h
)gu(x, Y ∗

i , θ̂)
∑n

i=1 δ∗i W (
x−X∗

i

h
)

.

Then

S∗n(θ̂) + T ∗
n(θ̂) + R∗

n(θ̂)− Sn(θ̂)− Tn(θ̂)−Rn(θ̂)

=
1

n

n∑
i=1

[
δ∗i {gu(Z

∗
i , θ̂)−mgu(X

∗
i , θ̂)} − 1

n

n∑
j=1

δj{gu(Zj, θ̂)−mgu(Xj, θ̂)}
]

+
1

n

n∑
i=1

[(1− δ∗i ){m̂∗
gu

(X∗
i )− m̂gu(X∗

i )}]

+
1

n

n∑
i=1

[
(1− δ∗i ){m̂gu(X∗

i , θ̂)−mgu(X∗
i , θ̂)}

− 1

n

n∑
j=1

(1− δj){m̂gu(Xj, θ̂)−mgu(Xj, θ̂)}
]

+
1

n

n∑
i=1

{
mgu(X∗

i , θ̂)− 1

n

n∑
j=1

mgu(Xj, θ̂)
}

:= B1 + B2 + B3 + B4.

For both B1 and B4, we can apply the central limit theorem for bootstrap

samples [e.g. 28] to derive

√
nB1

L→ N
[
0, E∗{p(X)σ2

gu
(X, θ̂)}] and

√
nB4

L→ N
[
0, V ar∗{mgu(X, θ̂)}].

Also it can be shown B2 = op(n
−1/2). Use similar argument to (A1) to show

B3 =
1

n

n∑
i=1

[
δ∗i {gu(Z

∗
i , θ̂)−mgu(X∗

i , θ̂)}1− p(X∗
i )

p(X∗
i )

− 1

n

n∑
j=1

δj{gu(Zj, θ̂)−mgu(Xj, θ̂)}1− p(Xj)

p(Xj)

]
+ op(n

−1/2).

Then follow the proof for Lemma 1 and apply the bootstrap central limit
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theorem to conclude (A7).

For A∗
n(θ̂), given the observations in the bootstrap sample that are not

imputed, we have

√
nA∗

n(θ̂)
L→ N

[
0, (nκ)−1

n∑
i=1

(1− δ∗i ){γ̂∗(X∗
i , θ̂)− m̂∗2(X∗

i , θ̂)}
]
,

in distribution. Similar to the proof of Lemma 1, by employing Lemma 1 of

[26]

1√
n

{ n∑
i=1

gu(Z̃
∗
i , θ̂)− n−1

n∑
j=1

gu(Z̃j, θ̂)
}

L→ N
[
0, E∗{σ2

gu
(X, θ̂)/p(X)}+ V ar∗{mgu(X, θ̂)}].

The bootstrap version of Lemma 1 is justified by noting

E∗{σ2
gu

(X, θ̂)/p(X)} → E{σ2
gu

(X)/p(X)} and

V ar∗{mgu(X, θ̂)} → V ar{mgu(X)}

as n →∞, then employ the Cramèr-Wold device.
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Table 1: Inference for the correlation coefficient with missing values. The four
methods considered are empirical likelihood using full observations, empirical
likelihood using only complete observations (Complete Obs.), inverse prob-
ability weighting based generalized method of moments (Weighted-GMM),
and empirical likelihood using the proposed nonparametric imputation (N.
Imputation). The nominal coverage probability of the confidence interval is
0.95.

n = 100
Methods Bias Std. Dev. MSE Coverage Length of CI

Full Observations -0.0026 0.0895 0.0080 0.936 0.3555
Missing Mechanism (a)

Complete Obs. 0.0562 0.1222 0.0181 0.851 0.4967
Weighted-GMM 0.0108 0.1112 0.0125 0.776 0.2495
N. Imputation -0.0092 0.1041 0.0109 0.945 0.4875

Missing Mechanism (b)
Complete Obs. -0.0080 0.1162 0.0136 0.930 0.4482
Weighted-GMM -0.0150 0.1069 0.0117 0.802 0.2763
N. Imputation -0.0138 0.0999 0.0101 0.932 0.4173

Missing Mechanism (c)
Complete Obs. -0.1085 0.1442 0.0326 0.832 0.5593
Weighted-GMM -0.0266 0.1167 0.0143 0.786 0.2860
N. Imputation -0.0383 0.1053 0.0125 0.928 0.4322

n = 200
Methods Bias Std. Dev. MSE Coverage Length of CI

Full Observations 0.0071 0.0610 0.0038 0.958 0.2484
Missing Mechanism (a)

Complete Obs. 0.0710 0.0776 0.0111 0.824 0.3161
Weighted-GMM 0.0112 0.0734 0.0055 0.799 0.2060
N. Imputation 0.0038 0.0709 0.0050 0.955 0.3180

Missing Mechanism (b)
Complete Obs. -0.0030 0.0799 0.0064 0.937 0.3091
Weighted-GMM -0.0031 0.0719 0.0052 0.832 0.2075
N. Imputation -0.0023 0.0668 0.0045 0.942 0.2797

Missing Mechanism (c)
Complete Obs. -0.0915 0.0979 0.0179 0.788 0.3919
Weighted-GMM -0.0107 0.0745 0.0057 0.820 0.2131
N. Imputation -0.0118 0.0680 0.0048 0.936 0.2860
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Table 2: Inference for parameters in a logistic regression model with missing
values. The four methods considered are empirical likelihood using full ob-
servations (Full Obs.), empirical likelihood using only complete observations
(Complete Obs.), inverse probability weighting based generalized method of
moments (Weighted-GMM), and empirical likelihood using the proposed non-
parametric imputation (N. Imputation). The nominal coverage probability of
the confidence interval is 0.95.

Table 2(a): n = 150
Methods Bias Std. Dev. MSE Coverage Length of CI

β0 = −1
Full Obs. -0.0296 1.292 1.669 0.964 5.477

Complete Obs. -1.715 1.618 5.559 0.920 6.840
Weighted-GMM -0.7835 1.562 3.053 0.891 5.250
N. Imputation 0.0349 1.317 1.736 0.967 5.549

β1 = 1
Full Obs. 0.0519 0.4384 0.1949 0.964 1.820

Complete Obs. 0.7898 0.5603 0.9377 0.796 2.510
Weighted-GMM 0.4302 0.5486 0.4860 0.834 1.811
N. Imputation -0.0605 0.4388 0.1962 0.961 1.851

β2 = 1
Full Obs. 0.0367 0.4500 0.2038 0.972 2.007

Complete Obs. 0.4205 0.5590 0.4892 0.945 2.599
Weighted-GMM 0.2542 0.5484 0.3653 0.896 1.791
N. Imputation -0.0110 0.4576 0.2095 0.966 1.993

β3 = −1.5
Full Obs. -0.0531 0.4979 0.2507 0.976 2.137

Complete Obs. -0.0684 0.5713 0.3310 0.975 2.592
Weighted-GMM -0.0751 0.5843 0.3471 0.838 1.574
N. Imputation 0.0718 0.5521 0.3100 0.966 2.474
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Table 2(b): n = 250
Methods Bias Std. Dev. MSE Coverage Length of CI

β0 = −1
Full Obs. -0.0286 0.9651 0.9321 0.956 3.916

Complete Obs. -1.670 1.212 4.255 0.801 4.790
Weighted-GMM -0.6393 1.150 1.7304 0.862 3.832
N. Imputation 0.0284 0.9801 0.9615 0.962 3.963

β1 = 1
Full Obs. 0.0195 0.3332 0.1114 0.953 1.349

Complete Obs. 0.7270 0.4398 0.7220 0.665 1.789
Weighted-GMM 0.3166 0.4223 0.2786 0.782 1.304
N. Imputation -0.0660 0.3367 0.1177 0.947 1.380

β2 = 1
Full Obs. 0.0305 0.3374 0.1147 0.958 1.400

Complete Obs. 0.3902 0.4134 0.3232 0.867 1.729
Weighted-GMM 0.1966 0.3993 0.1981 0.874 1.297
N. Imputation -0.0173 0.3406 0.1163 0.967 1.384

β3 = −1.5
Full Obs. -0.0611 0.3818 0.1495 0.950 1.529

Complete Obs. -0.0351 0.4445 0.1988 0.963 1.797
Weighted-GMM -0.0419 0.4596 0.2130 0.791 1.165
N. Imputation 0.0762 0.4377 0.1974 0.944 1.759
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Table 3: Parameter estimates and confidence intervals (shown in parenthe-
ses) based on a simple linear regression model using the parametric method
with complete observations only and the empirical likelihood method using
the proposed nonparametric imputation. For the parametric inference, the
confidence intervals for the intercept and slope are obtained using quantiles
of the t-distribution, and the confidence intervals for the correlation coeffi-
cient are obtained by Fisher’s z transformation. The four different genes are
identified by the probe names.

Gene Complete Observations Only Nonparametric Imputation
(parametric) (with empirical likelihood)

Intercept
H3071E5 -21.99 (-40.97, -2.998) -15.69 (-37.02, 5.209)
Slc26a8 73.59 (49.45, 97.73) 67.28 (38.34, 95.87)
Tex9 -23.81 (-46.12, -1.507) -14.66 (-38.57, 8.776)
Rps16 -13.52 (-31.08, 4.041) -8.090 (-26.76, 10.18)

Slope
H3071E5 10.16 (5.720, 14.59) 8.736 (2.688, 14.21)
Slc26a8 -6.352 (-9.294, -3.411) -5.561 (-9.431, -1.471)
Tex9 5.101 (2.588, 7.613) 4.094 (0.8753, 6.979)
Rps16 6.766 (3.371, 10.16) 5.754 (1.948, 9.236)

Correlation Coefficient
H3071E5 0.5757 (0.3395, 0.7436) 0.4426 (0.1321, 0.6977)
Slc26a8 -0.5533 (-0.7285, -0.3102) -0.4319 (-0.6809, -0.0761)
Tex9 0.5296 (0.2996, 0.7124) 0.4024 (0.1013, 0.6846)
Rps16 0.5256 (0.2744, 0.7097) 0.4151 (0.0755, 0.6613)
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