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I. INTRODUCTION

Traditional econometric methods for modeling consumer demand rely upon the

specification of an indirect utility function, Roy’s Identity, and the assumption of an

interior solution to the consumer’s utility maximization problem in order to derive an

estimable system of demand equations. There are many applications, however, in which

the assumption of an interior solution is unrealistic and, instead, corner solutions prevail.

For example, in modeling recreation demand, it is typical to find that most households

visit only a small subset of the available sites, setting their demand for the remaining sites

to zero.1 Similar corner solutions emerge in studies of both labor supply (e.g., Ransom

(1987a, b), Lacroix and Fortin (1992), and Fortin and Lacroix (1994)) and food demand

(e.g., Wales and Woodland (1983) and Yen and Roe (1989)).2 In these situations, it is

well known that failure to allow for the possibility of zero expenditure on one or more

goods can lead to inconsistent estimates of consumer preferences.

Two broad strategies have emerged in the literature to deal with corner solutions.

The first strategy, labeled the Amemiya-Tobin model by Wales and Woodland (1983),

proceeds by initially deriving systems of demand equations without regard to non-

negativity restrictions. The model then enforces these restrictions by employing an

extension of Tobin’s (1958) limited dependent variable model for single equations, later

generalized by Amemiya (1974) for systems of equations. In particular, a truncated

distribution for the random disturbances is used to ensure non-negative expenditure

shares, while allowing for a non-trivial proportion of the sample to have zero expenditure

on one or more goods. Applications of the Amemiya-Tobin model have been

implemented for a variety of goods. A sampling includes Wales and Woodland’s (1983)
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analysis of meat demand and Heien and Wessells’ (1990) study of general food

consumption.

This approach has dominated the recreation demand literature. Single demand

models or systems of demands for recreation have been estimated using a variety of

estimators, including the tobit, Heckman, and Cragg models (Bockstael, Strand,

McConnell, and Arsanjani (1990), Ozuna and Gomez (1994), Smith (1988), and Shaw

(1988)), and a variety of count data models (Smith (1988), and Englin and Shonkwiler

(1995)). Morey (1984) estimates a system of share equations that adopts a density

function assuring strictly positive shares. The strand of this literature that has focused on

multiple recreation sites has taken the Amemiya-Tobin model one step further. A two-

stage budgeting argument has been used to separately analyze the total number of trips

and the allocation of those trips among the available recreation sites.3 The first stage site

selection models use a discrete choice random utility framework. Corner solutions are

then explicitly controlled for in the second stage model of the total number of trips using

estimators that correct for censoring alone (Bockstael, Hanemann, and Kling (1989);

Morey, Waldman, Assane, and Shaw (1990); and Morey, Shaw, and Rowe (1991)) or in

combination with count models (Creel and Loomis (1990); Feather, Hellerstein, and

Tomasi (1995); Hausman, Leonard, and McFadden (1995); and Yen and Adamowicz

(1994)). Although representing a range of estimation approaches, these models all share

the Amemiya-Tobin reliance on statistical adjustments to represent corner solutions.

The second strategy for dealing with corner solutions takes a more direct approach

to the problem beginning with the consumer’s maximization problem. Dubbed the Kuhn-

Tucker model by Wales and Woodland (1983), it assumes that individual preferences are
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randomly distributed over the population. The standard Kuhn-Tucker conditions

characterizing individual utility maximization are then also randomly distributed,

providing the basis for probabilistic statements regarding when corner conditions will

occur and for constructing the likelihood function used in estimation. Initially developed

by Wales and Woodland (1983) and Hanemann (1978) starting with the direct utility

function, the approach has subsequently been extended to a dual form starting with the

specification of the indirect utility function (Lee and Pitt (1986a) and Bockstael,

Hanemann, and Strand (1986)).

The appeal of the Kuhn-Tucker strategy lies in the unified and internally

consistent framework it provides for characterizing the occurrence of corner solutions.

Since it begins explicitly with a utility function, all of the restrictions of utility theory are

automatically satisfied. In addition, the behavioral implications of corner solutions are

automatically incorporated.4 However, due to the complexity of the model, there have

been few applications (e.g., Wales and Woodland (1983), Lee and Pitt (1986b),

Srinivasan and Winer (1994), and Ransom (1987a)) and none in the area of recreation

demand.5 Furthermore, little attention has been paid to the problem of welfare analysis

within the Kuhn-Tucker framework. Due to the non-linearity of the model, closed form

solutions for compensating or equivalent variation will typically not be available,

requiring instead the use of Monte Carlo integration techniques.

The purpose of this paper is two-fold. First, we provide an empirical application

of the Kuhn-Tucker model to the problem of recreation demand and site selection,

modeling the demand for fishing in the Wisconsin Great Lakes region. Federal and state

agencies are actively involved in management of the local fish populations and
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environmental conditions in this region. Understanding the demand for the resulting

recreation opportunities will allow regulators to better evaluate existing programs and the

impact of potential policy changes. Second, we develop and apply a methodology for

estimating compensating variation in the context of the Kuhn-Tucker model, relying on

Monte Carlo integration to derive the expected welfare effects of several hypothetical

policy changes in the Great Lakes region.

II. MODEL SPECIFICATION

A. Behavioral Model

The Kuhn-Tucker model begins with the assumption that consumers preferences over

a set of M+1 commodities can be represented by a random utility function, which they

maximize subject to a budget constraint and a set of non-negativity constraints. In particular,

each consumer solves:

Max U z
x

x q
,z

( , , , , )γ ε (1)

s.t.

p x’ + ≤z y (2a)

and

z x j Mj≥ ≥ =0 0 1, , , ,K (2b)

where U ( )⋅  is assumed to be a quasi-concave, increasing, and continuously differentiable

function of x, z1 6 , x = ′( , , )x xM1 K  is a vector of goods to be analyzed, z is the numeraire

good, p = ′( , , )p pM1 K  is a vector of commodity prices, y denotes income, and

ε = ′( , , )ε ε1 K M  is a vector of random disturbances capturing the variation in preferences in

the population. The disturbance vector is assumed to be known to the individual, but
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unobservable by the analyst. The vector q = ′( , , )q qM1 K  represents attributes of the M

commodities.6 The inclusion of commodity attributes is particularly important in recreation

demand studies since policy analysis is often interested in the welfare implications of

changing the environmental quality of a site.

The first-order necessary and sufficient Kuhn-Tucker conditions for the utility

maximization problem are then given by:

U z
U z

x
p x x U z p j Mj

j
j j j j j( , ; , , )

( , ; , , )
, , ( , ; , , ) , , ,x q

x q
x qγ ε γ ε γ ε≡ ≤ ≥ − = =∂

∂
λ λ0 0 1K

(3a)

U z
U z

z
z z U zz z( , ; , , )

( , ; , , )
, , ( , ; , , ) ,x q

x q
x qγ ε γ ε γ ε≡ ≤ ≥ − =∂

∂
λ λ0 0 (3b)

and

p x p x’ , , ( ’ ) ,+ ≤ ≥ − − =z y y zλ λ0 0 (3c)

where λ denotes the marginal utility of income. For simplicity, we assume that the numeraire

good is a necessary good, so that equation (3b) can be replaced by

λ = U zz ( , ; , , ).x q γ ε (3b′)

In addition, since U ( )⋅  is increasing in x and z, the budget constraint will be binding, with

z y= − p x’ . (3c′)

Substituting equations (3b′) and (3c′) into (3a) yields the M first-order conditions associated

with the commodities of interest:

U y p U y x x U U p j Mj j z j j j z j( , ’ ; , , ) ( , ’ ; , , ), , , , .x p x q x p x q− ≤ − ≥ − = =γ ε γ ε 0 0 1K

(3a′)



6

Finally, we assume that U U k jz j kε ∂ ∂ε= = ∀ ≠0 0, , and ∂ ∂εU j Mj j > ∀ =0 1, ,K , so

that7

U y U y j Mj j j( , ’ ; , , )
~

( , ’ ; , , ), , , ,x p x q x p x q− = − =γ ε γ ε 1K (4a)

with ∂ ∂ε~
, ,U j Mj j > ∀ =0 1K  and

U y U yz z( , ’ ; , , )
~

( , ’ ; , ).x p x q x p x q− = −γ ε γ (4b)

Let g g yj j= x p q, , ; ,γ1 6  (j=1,…,M) be implicitly defined as the solution to

~
( , ’ ; , , )

~
( , ’ ; , )U y g U y pj j z jx p x q x p x q− − − =γ γ 0 . (5)

The first-order conditions in equation (3a′) can be then be rewritten as:

ε εj j j j j jg y x x g y j M≤ ≥ − = =( , , ; , ), , ( , , ; , ) , , .x p q x p qγ γ0 0 1K (6)

Equation (6), along with the specification of the joint density function fε ε1 6 for ε ,

provides the necessary information to construct the likelihood function for estimation.

Consider an individual who chooses to consume positive quantities for only the first k

commodities (i.e., x j > 0,  j k= 1, ,K and x j k Mj = = +0 1, , ,K ). The complementary

slackness condition in equation (6) implies that ε j jg y= ( , , ; , )x p q γ  for the consumed

commodities (i.e., j k= 1, ,K ), while for the remaining commodities (i.e., j=k+1,…,M) we

know only that ε j jg y≤ ( , , ; , )x p q γ . Thus, this individual’s contribution to the likelihood

function is given by the probability

K L
−∞ −∞

+ +

+I I
g g

k k M k k M

k M

f g g abs J d d
1

1 1 1ε ε ε ε ε( ,..., , ,..., ) (7)

where Jk  denotes the Jacobian for the transformation from ε  to ( , , , , , )x xk k M1 1K Kε ε+ ′ .

There are 2 M  possible patterns of binding non-negativity constraints for which a probability
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statement such as (7) can be constructed. The likelihood function can then be formed as the

product of the appropriate probabilities and maximum likelihood can be used to recover

estimates of the utility function’s parameters.

B. Conditional Utility Functions and the Computation of Welfare Effects

A common reason for estimating the structure of consumer preferences over a set of

commodities is to provide a basis for welfare analysis. In particular, policymakers may be

interested in the welfare implication of changing the price or quality characteristics of the

existing set of alternatives, or of reducing the number of alternatives available. Formally, let

V yp q, ; , ,γ ε1 6  denote the solution to the utility maximization defined in equations (1) and (2)

above. The compensating variation (C) associated with a change in the price and attribute

vectors from p q0 0,2 7  to p q1 1,2 7  is implicitly defined by

V y V y C y( , ; , , ) ( , ( , , , , ; , ); , , )p q p p q p q q0 0 1 0 0 1 1 1γ ε γ ε γ ε= + . (8)

There are several important attributes of the compensating variation measure that are worthy

of note. First, from the analyst’s perspective, C y( , , , , ; , )p q p q0 0 1 1 γ ε  is a random variable.

Policy makers will typically be interested in the average value of this measure in the

population, C y( , , , , ; ).p q p q0 0 1 1 γ  Second, the non-linearity of the utility maximization

problem will typically preclude a closed form solution for C or its average. As a result,

numerical techniques will be required.8

The process of computing C can be clarified by considering the utility maximization

as a two-stage process, in which the individual maximizes his or her utility conditional on a

set of binding non-negativity constraints and then chooses among the resulting conditional

indirect utility functions.9 Formally, let
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A M M= ∅,{ }, ,{ },{ , },{ , }, ,{ , , , }1 1 2 1 3 1 2K K K; @ (9)

denote the collection of all possible subsets of the index set I M= 1, ,K; @ . A conditional

indirect utility function V yω ωp q, ; , ,γ ε1 6  can then be defined for each ω ∈ A  as the

maximum utility level the consumer can achieve when they are restricted to the commodities

indexed by ω . Formally:

V y MaxU z
z

ω ω( , ; , , ) ( , , , , )
,

p q x q
x

γ ε γ ε= (10)

s.t.

p x z yj j
j

+ ≤
∈
∑

ω
(11a)

and

z x j x jj j≥ = ∉ ≥ ∈0 0 0, , , ,ω ω (11b)

where pω ω= ∈p jj:= B  is the vector of commodity prices that have not been constrained to

zero. Let x p qω ω , ; , ,y γ ε1 6  denote the conditional demand levels solving this utility

maximization problem. Notice that, since the prices associated with those commodities that

have been forced to zero do not enter the budget constraint in (11a), Vω and xω are both

functions of pω  and not p . However, both the conditional indirect utility function and

conditional demand equations will depend on the entire vector of quality attributes, q , and

not simply qω ω= ∈q jj := B , unless the property of weak complementarity is imposed (Maler,

1974).10
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Constraining a subset of the commodities to have zero consumption provides, of

course, no assurance that the optimal consumption levels for the remaining commodities will

be positive. Let

~ ~
( , ; , , ) : ( , ; , , ) ,A A y A x y jj≡ = ∈ > ∀ ∈p q p qγ ε γ εω ωω ω 0= B (12)

denote the collection of ω ’s for which the corresponding conditional utility maximization

problem yields an interior solution. The original consumer utility maximization problem can

then be viewed as a two-stage problem in which conditional indirect utility functions are

computed for each ω ∈ A  and then the consumer chooses the Vω  that maximizes his or her

utility. That is11

V y Max V y Max V y
A A

( , ; , , ) ( , ; , , ) ( , ; , , ) .~p q p q p qγ ε γ ε γ ε= =
∈ ∈ω ω ω ω ω ω; @ ; @ (13)

The computation of the compensating variation in equation (8) then corresponds to implicitly

solving for C y( , , , , ; , )p q p q0 0 1 1 γ ε  in

Max V y Max V y C y
A Aω ω ω ω ω ω∈ ∈

= +~ ~( , ; , , ) ( , ( , , , , ; , ); , , ) .
0 1

0 0 1 0 0 1 1 1p q p p q p q qγ ε γ ε γ ε< A < A (14)

Notice that the index collection 
~
A  may change as a result of the changing price and/or

quality attribute levels.12

There are three difficulties associated with computing C y( , , , , ; )p q p q0 0 1 1 γ  in

practice. First, for any given ε γ and , C y( , , , , ; , )p q p q0 0 1 1 γ ε  is an implicit function for

which no closed form solution typically exists. However, numerical procedures, such as

numerical bisection, can be readily applied to solve this problem.

Second, given C y( , , , , ; , )p q p q0 0 1 1 γ ε  and γ , C y( , , , , ; )p q p q0 0 1 1 γ  does not have a

closed form solution. However, Monte Carlo integration can be used, resampling from the
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underlying distribution of ε , fε ( )ε , and averaging C y( , , , , ; , )p q p q0 0 1 1 γ ε  over the draws of

ε . For many error distribution assumptions it is possible to resample directly from the

underlying probability density function to perform the Monte Carlo integration. 13 As is

discussed below, we assume that the ε ’s are drawn from a Generalized Extreme Value

(GEV) distribution, for which it is not possible to resample directly from the density function.

However, McFadden (1995) has recently developed a Monte Carlo Markov Chain approach

that we will employ in this paper. The Markov Chain Simulator does not draw directly from a

GEV distribution, but rather constructs a sequence of variates that asymptotically exhibit the

properties of a GEV distribution.14

Third, given an algorithm for computing C y( , , , , ; )p q p q0 0 1 1 γ , the analyst does not

typically have available γ , but instead must rely upon an estimator $ ~
$

γ gγ  (e.g., the

maximum likelihood estimator of γ ). Thus, any computation of C  will itself be a random

variable, dependent upon the distribution of $γ . We bootstrap the data to approximate the

statistical properties of $C , our estimate of C . Formally, the above elements are combined

into the following numerical algorithm:

• Resample with replacement (n=1,…,N) observations from the original data set. Re-
estimate the model using this pseudo data and repeat this procedureNγ times to yield

a total ofNγ parameter vectors (i.e., γ ( ) , , ,i i N= 1K γ ).

• For each γ ( )i  and each observation in the sample (n N= 1, ,K ), McFadden’s Monte
Carlo Markov Chain Simulator is implemented to generateNε  vectors of random

disturbance terms (i.e., ε ( ) , , ,ink k N= 1K ε ).

• Substituting γ ( )i  and ε ( )ink  for γ  and ε  in equation (14), numerical bisection can

then be used to solve for C, with the result labeled C ink( ) .
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• Averaging C ink( )  over the Nε  draws from the disturbance distribution and the N

observations in the sample yields $ ( )C i , a Monte Carlo integration evaluation of

E C y i
ε γ ε( , , , , ; , )( )p q p q0 0 1 1 .

• The distribution of $ ( )C i ’s provides the basis for characterizing the distribution of the
mean compensating variation of interest (C ) in light of our uncertainty regarding γ .

The mean value of $ ( )C i  over the Nγ  parameter draws provides a consistent estimate

of C . The distribution of the $ ( )C i ’s can be used to construct standard errors for our
estimate of C .

C. Empirical Specification

In our application below, we employ the empirical specification suggested by

Bockstael, Hanemann, and Strand (1986). In particular, we assume that the consumer’s direct

utility function is a variant of the linear expenditure system, with

U z q x zj j j j
j

M

( , ; , , ) ( , ) ln( ) ln( )x q γ ε = + +
=

∑Ψ Ωε
1

(15)

and

Ψj j j k jk j
k

K

q q j M( , ) exp , ,ε δ ε= +�
��

�
�� =

=
∑

1

1K (16)

where γ δ= ,W1 6  and q jk  denotes the kth quality attribute associated with commodity j. The

Ψj ’s can be thought of as quality indices associated with each good.15

One advantage of the above utility function is that the implicit equations for the ε j ’s

in equation (4) that result from the Kuhn-Tucker conditions can be explicitly solved, yielding

the following equivalent first-order conditions:

ε εj j j j j jg y x x g y j M≤ ≥ − = =( , , ; , ), , ( , , ; , ) ,..., ,x p q x p qγ γ0 0 1 (17)

where
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g y
p x

y p x
q j Mj

j j

j j
j

M k jk
k

K

( , , ; , ) ln
( )

,..., .x p q γ =
+

−

�

!

    

"

$

####
− =

=

=∑
∑

Ω

1

1

1δ (18)

Specifying a joint distribution for the random disturbances (i.e., fε ( )ε ) completes

the empirical model. As mentioned above, we assume that the ε ’s are drawn from a

generalized extreme value (or GEV) distribution. An important feature of this

specification is that it allows for correlation among the alternative sites, while still

yielding closed form equations for the probabilities in the likelihood function. The sites

are grouped into “nests” of alternatives that are assumed to have correlated error terms,

with s j1 6  denoting the nest to which alternative j is assigned and S denoting the total

number of nests.16 Given the specification of a nesting structure, the cdf associated with

ε  is given by:

F J
j

rj
s j r

r

S

r

ε ε
ε

µθω

θ

1
1

, , exp expK1 6
1 6

= −
−�

��
�
��

�

�
��

�

�
��

�

!

   

"

$

###∈
=

=
∑∑ (19)

where µ is a scale parameter determining a common variance for the error terms and the

θk ’s are the dissimilarity coefficients measuring the degree of correlation between the

errors in a given nest.17 The log-likelihood function is then obtained by forming choice

probabilities for each consumption pattern (i.e., each ω ∈ ~
A ), integrating the

corresponding pdf for ε  as indicated by equation (7) above.18
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III. DATA

Our empirical application of the Kuhn-Tucker model focuses on angling in the

Wisconsin Great Lakes region. The data are drawn primarily from two mail surveys of

angling behavior conducted in 1990 by Richard Bishop and Audrey Lyke at the

University of Wisconsin-Madison.19 The surveys provide detailed information on the

1989 angling behavior of Wisconsin fishing license holders, including the number and

destination of fishing trips to the Wisconsin Great Lakes region, the distances to each

destination, the type of angling preferred, and the socio-demographic characteristics of

the survey respondents. A total of 509 completed surveys were available for analysis,

including 266 individuals who had fished the Wisconsin Great Lakes region for lake trout

or salmon and 247 who fished only inland waters of Wisconsin (i.e., non-users from the

perspective of the Great Lakes region). While the surveys provide data on 22 distinct

Great Lake fishing destinations, we have combined these destinations into four aggregate

“sites”:

• Site 1: Lake Superior

• Site 2: South Lake Michigan

• Site 3: North Lake Michigan, and

• Site 4: Green Bay.

This aggregation divides the Wisconsin portion of the Great Lakes into distinct

geographical zones consistent with the Wisconsin Department of Natural Resources’

classification of the lake region.20

The price of a single trip to each of the four fishing sites consists of two

components: the cost of getting to the site (i.e., direct travel cost) and the opportunity cost
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of the travel time. Round trip direct travel costs were computed for each destination and

each individual by multiplying the number of round trip miles for a given individual-

destination combination by the cost per mile for the vehicle class driven, as provided by

the American Automobile Association. The cost of the travel time was constructed using

one-third of the individual’s wage rate as a measure of the hourly opportunity cost of

recreation time and assuming an average travel speed of forty-five miles per hour to

compute travel time.21 The price of visiting a destination pj  is then the sum of the direct

travel cost and the cost of the travel time. Total annual income was collected and used for

the income variable in estimation.

Two types of quality attributes (i.e., q js ’s) are used to characterize the recreation

sites: fishing catch rates and toxin levels. Catch rates are clearly important site

characteristics since the anticipated success of fishing is likely to be a major determinant

in the recreation decision. Furthermore, state and federal agencies currently spend large

amounts of time and money to influence catch rates in the region through stocking

programs and regulations. The inclusion of catch rates as a quality attribute in the model

will allow it to be used to conduct welfare analyses of existing and/or alternative fishery

management programs.

In constructing the catch rate variables, we focus our attention on the catch rates

for the four aggressively managed salmonoid species: lake trout, rainbow (or steelhead)

trout, Coho salmon, and Chinook salmon. Creel surveys by the Wisconsin Department of

Natural Resources provide 1989 catch rates for each of these species at each of the 22

disaggregate destinations used in the angling surveys. Furthermore, these catch rates are

broken down by angling method, including private boat, charter fishing, and pier/shore



15

angling. Data from the Wisconsin angling survey were used to match the mode-specific

catch rates to each individual anglers based upon their most frequent mode of fishing.

We include toxin levels as an additional quality attribute of each site since the

presence of environmental contaminants is likely to influence the recreation decision and

they provide a proxy for the overall level of water quality at the site (De Vault et al.

(1996)). Toxins are found in varying levels in fish, water, and sediments throughout the

Great Lakes and are routinely responsible for health warnings in the regions. De Vault et

al.(1989) provide a study of toxin levels in lake trout during the relevant time period,

with samples taken from locations throughout the Great Lakes. We use the average toxin

levels (ng/kg-fish) from this study, matched on the basis of proximity to our four

aggregate sites, to form a basic toxin measure T jj ( , , )= 1 4K  for each site.22 However,

toxin levels are likely to influence visitation decisions only if the consumer perceives that

the toxins create a safety issue. The Wisconsin angling survey asked respondents if the

toxin levels in fish were of concern to them. We use this information to form an

“effective toxin level” variable E T D jj j= =( , , )1 4K , where D = 1 indicates that the

respondent was concerned about the toxin levels in fish and D = 0 otherwise.

With both catch rates and toxins included as quality variables, the quality index

terms from equation (16) become

Ψj j j lk lk j ch ch j co co j rb rb j E j jR R R R E j( , ) exp , ,..., ,, , , ,q ε = + + + + + + =δ δ δ δ δ δ ε0 1 4 (20)

where Rk j,  denotes the catch rate for species k and site j, with k=lk for lake trout, ch for

Chinook salmon, co for Coho salmon, and rb for rainbow trout.
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Tables 1 and 2 provide summary statistics for the data. Table 1 focuses on the

mean and standard deviation of the usage, price, and quality characteristics for the four

sites used in our analysis. Table 2 characterizes the trip usage patterns (i.e., ω) found in

the Wisconsin angling survey data. Note that, while many (72%) of the visitors to the

Great Lakes sites visit only one of the sites, a substantial percentage (28%) visit more

than one site. Thus, neither an extreme corner solution (Hanemann (1984)) nor an interior

solution model could accurately depict this group of consumers’ choices.

Finally, to implement the model using the GEV distribution (19), we must choose

the nesting structure (implicitly specifying which set of sites exhibit correlated behavior).

There are several plausible possibilities for nesting structures. For example, we may

expect that Green Bay and North Lake Michigan would be correlated, since they are

geographically close. Similarly, it may be reasonable to include North Lake Michigan and

South Lake Michigan in a nest, since they exhibit similar physical characteristics. One

could also include Lake Superior and Green Bay in a nest, since they are the more remote

sites with respect to the population centers in southern Wisconsin. Combinations of these

can be specified using multiple nests. In fact, we estimated the model with many

combinations of nesting patterns and report results for the model that yielded the best fit

of the data (based on the likelihood dominance criteria).23 The final nesting structure used

places North Lake Michigan and Green Bay in one nest and South Lake Michigan and

Green Bay in a second nest. We estimate separate dissimilarity coefficients for each nest

to allow the degree of correlation between the alternatives within a nest to differ.



17

IV. RESULTS

A. Model Estimation

Two Kuhn-Tucker models of Wisconsin Great Lakes angling were estimated

using maximum likelihood, yielding the parameter estimates provided in Table 3.24 In the

first model, the dissimilarity coefficients in the GEV distribution are constrained to equal

one, yielding a simple extreme value distribution and implying independence among the

alternative site choices. All of the parameters have the expected signs and, with the

exception of the coefficient on lake trout catch rates, are statistically different from zero

at a 5% critical level or less. For example, one would expect, and we find, that higher

toxins reduce the perceived quality of a site (i.e.,δ E < 0 ). On the other hand, higher catch

rates should enhance site quality (i.e., δ k > 0 ). This is the case for each of the fish species

considered. Furthermore, the small and statistically insignificant coefficient on lake trout

is not unexpected, since among anglers lake trout are typically considered a less desirable

species. The other salmon species have a “trophy” status not shared by lake trout. In

addition, the eating quality of lake trout is generally considered inferior to that of other

species. Finally, the parameter Ω is estimated to be 1.76 and is significantly different

from 1.00, indicating that weak complementarity (Maler) can be rejected.

The second model reported in Table 3 allows for correlation among the alternative

sites by employing a GEV specification for the distribution of the error terms. Separate

dissimilarity coefficients are estimated for the {North Lake Michigan, Green Bay} nest

(θ N ) and the {South Lake Michigan, Lake Superior} nest (θ S ).25 Indeed, a simple

likelihood ratio test indicates that the GEV model provides a significantly better fit to the

data. However, the resulting coefficient estimates are generally of the same magnitude as
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the estimates from the extreme value model. Again, the parameters are estimated to be of

the expected sign and generally significant except for the parameter of Lake Trout which

is negative, but insignificant.

B. Welfare Analysis

One of the motivations for estimating models of recreation demand is to provide

policy makers with estimates of the welfare implications of changing environmental

quality or site availability. A primary advantage of the Kuhn-Tucker model is that it

permits the construction of these welfare estimates in an internally consistent and utility-

theoretic framework. The model simultaneously predicts changes to the sites visited and

the total number of trips taken, which in turn determines changes in consumer utility. In

this subsection, we use the estimated Kuhn-Tucker models in Table 3, along with the

numerical procedures developed above, to evaluate a series of policy scenarios for the

Wisconsin Great Lakes region.

The Great Lakes region provides many opportunities for policy-relevant welfare

experiments as the lakes are heavily managed. The fishery itself is, in many ways,

artificially created and maintained. Of the major species included in the model, only lake

trout are native to both Lake Superior and Lake Michigan. Rainbow trout were introduced

around the turn of the century, while the salmon species were not present until the 1950’s.

These species now reproduce naturally in the lakes, but are heavily augmented with

stocking programs. The lakes have also been invaded by exotic species, including the sea

lamprey. A parasite accidentally introduced in the 1930’s, the sea lamprey decimated lake

trout populations in the lakes. Efforts to reintroduce naturally reproducing lake trout to

Lake Superior have been successful, while in Lake Michigan the population is completely
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maintained through stocking. Expensive sea lamprey control efforts continue to this day.

Finally, there are ongoing efforts throughout the Great Lakes region to improve the

fisheries by reducing the level of toxins entering the food chain from commercial and

industrial sources. For each of these forms of intervention, the natural policy question

arises as to whether the benefits of these programs are sufficient to offset the

corresponding costs. Our Kuhn-Tucker models can be used to assess program benefits.

As an illustration of this capability, we estimate welfare loss under three policy scenarios:

• Scenario A: Loss of Lake Michigan Lake Trout. Under this first policy scenario,
state and local efforts to artificially stock lake trout in Lake Michigan and Green
Bay would be eliminated. It is assumed that this would drive lake trout catch rates
( Rlk j, ) to zero for sites 2, 3, and 4, since the species is only naturally reproducing

in Lake Superior (site 1).26

• Scenario B: Loss of Lake Michigan Coho Salmon. Under this policy scenario,
state and local efforts to artificially stock Coho salmon in Lake Michigan and
Green Bay would be suspended. Again, it is assumed that the corresponding Coho
catch rates ( Rco j, ) would be driven to zero for sites 2, 3, and 4.

• Scenario C: Reduced Toxin Levels. Under the final policy scenario, we consider
the welfare implications of a twenty percent reduction in toxin levels (i.e.,
E jj , , , ,= 1 2 3 4 ).

 Of particular interest from a policy perspective is Scenario A, given the intense ongoing

efforts to rehabilitate the lake trout population in Lake Michigan. Without these efforts

and the continuing sea lamprey control programs, catch rates for lake trout at the three

sites would be zero, as analyzed in the scenario. Although the elimination of Coho

salmon stocking programs would not reduce the catch rates to zero due to natural

reproduction in the fishery, we nonetheless use this assumption in Scenario B for

comparison purposes. Finally, we include Scenario C to demonstrate the ability of the
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model to measure the benefits of improvements in general environmental quality, given

that toxins in fish flesh can act as a proxy for many other types of pollution.

For each of these scenarios, mean compensating variation (C ) was estimated

using GAUSS and the procedures outlined in Section IIB above. In particular,

• A total of Nγ = 200  parameter vectors (i.e., γ ( ) , , ,i i N= 1K γ ) were generated from

bootstrapping the original data as described above.

• For each γ ( )i  and each observation in the sample (n = 1 509, ,K ), a total of

N ε = 2000  vectors of random disturbance terms (i.e., ε ( ) , , ,ink k N= 1K ε ) were

formed via the Monte Carlo Markov Chain Simulator.27 Specifically, at iteration

ink, a pseudo-random number generator is used to draw 5 independent (0,1)

uniform random variables, ζ j
ink j1 6 1 6= 1 4, ,K andη ink1 6 . Four extreme value

random variates (one for each site) are then formed using the transformation

~ log logε ζj
ink

j
ink1 6 1 64 94 9= − − . Finally, the following Markov chain is used to

construct:
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where f(·) and g(·) denote the GEV and EV probability density functions, respectively.

• Substituting γ ( )i  and ε ( )ink  for γ  and ε  in equation (14), numerical bisection was

then used to solve for C, with the result labeled C ink( ) .

• Averaging C ink( )  over the Nε  draws from the disturbance distribution and the N

observations in the sample yields an estimate ($ ( )C i ) of the mean compensating
variation for the jth draw from the estimated parameter distribution.
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The distribution of the $ ( )C i ’s provides the basis for characterizing the distribution of the

mean compensating variation of interest (C ) in light of our uncertainty regarding the

parameter estimates in Table 3. The mean value of the $ ( )C i  over the 200 parameter draws

provides a consistent estimate of C  and is reported in column two of Table 4 for each

scenario and model, with the corresponding standard deviations reported in parentheses.28

The compensating variations in Table 4 have the expected signs and relative

magnitudes, given the parameter estimates in Table 3.29 As expected, the loss of Coho

salmon (Scenario B) has a greater impact on consumer welfare than the loss of lake trout

(Scenario A). Focusing on the GEV results, an average of $310 per angler per season would

be required to compensate for the loss of Coho salmon in the Lake Michigan and Green Bay

sites, whereas the loss of lake trout would actually yield benefits of about $58 per season. It is

important to note however, that these lake trout values are not statistically different from zero

using any reasonable confidence level. The lake trout results are particularly interesting from

a policy perspective, since so much effort has gone into rehabilitating the lake trout fishery

during the past three decades.

Turning to Scenario C, we find that a twenty-percent reduction in toxin levels would

have a substantial and statistically significant impact on angler welfare. Based on the GEV

model, anglers would be willing to pay, on average, $111 per season for such a reduction.

V. SUMMARY AND CONCLUSIONS

In this study, we have provided an empirical application of the Kuhn-Tucker

model to the problem of recreation demand, estimating the demand for fishing in the

Wisconsin Great Lakes region. We have developed a methodology for estimating
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compensating variation within the context of the model and have applied this

methodology to measure the welfare effects associated with changes in site catch rates

and toxin levels. Although the Kuhn-Tucker model is not new, there have been few

applications due to the computational complexity. We have demonstrated that with the

availability of faster and cheaper computing power, the model can now be applied to

questions of policy interest. This is of particular importance in recreation demand

modeling, since the Kuhn-Tucker model is appealing in that it deals with the abundance

of general corner solutions in recreation data in an internally consistent and utility

theoretic framework. The same model drives both the site selection choice and the total

number of trips taken by recreationists. This feature is particularly important to the task of

assessing welfare changes.

In our application to the Great Lakes region, we estimate the lost value to anglers

of eliminating lake trout from Lake Michigan and Green Bay, the loss of Coho Salmon

from Lake Michigan and Green Bay, and the welfare improvements associated with

reduced toxin levels in the lakes. In addition to providing point estimates of these welfare

measures, we provide information on the reliability of the estimates in the form of

standard errors.

There are two areas where improvements to the model estimated here could be

made. First, it would be desirable to explore alternative functional forms in the

specification of individual utility. The trade-off here, of course, is in identifying forms

that are both flexible and yet yield Kuhn-Tucker conditions that generate closed-form

probabilities for the likelihood function. Second, it would be desirable to experiment with
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error distributions other than the Generalized Extreme Value to investigate the robustness

of the results to the assumed error structure.
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Table 1. − Average Site Characteristics (Standard Deviations in Parentheses)

Lake
Superior

North Lake
Michigan

South Lake
Michigan Green Bay

1989 Fishing Trips ( x j ) 2.75
(13.33)

1.56
(6.32)

2.35
(8.92)

0.65
(3.07)

Price ( pj ) 177.84
(172.59)

123.70
(172.92)

85.88
(139.62)

129.11
(173.54)

Lake Trout Catch Rate
( Rlk j, )

.046
(.059)

.022
(.030)

.029
(.045)

.001
(.002)

Chinook Salmon Catch
Rate ( Rch j, )

.010
(.014)

.048
(.030)

.027
(.024)

.036
(.032)

Coho Salmon Catch Rate
( Rco j, )

.028
(.021)

.005
(.005)

.040
(.053)

.005
(.008)

Rainbow Trout Catch Rate
( Rrb j, )

.001
(.001)

.018
(.026)

.012
(.013)

.001
(.002)

Effective Toxin Level
( E j )

.597
(.491)

2.270
(1.866)

3.464
(2.847)

2.270
(1.866)

Notes: Catch rates are measured in terms of fish per person-hour of effort.
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Table 2. − Distribution of Trips

Sites Visited
Number of

Observations
All four sites, ω={1,2,3,4} 3
Lake Superior, North and South Lake Michigan, ω={1,2,3} 1
Lake Superior, North Lake Michigan, and Green Bay,
ω={1,2,4}

7

Lake Superior, South Lake Michigan, and Green Bay,
ω={1,3,4}

0

North and South Lake Michigan and Green Bay, ω={2,3,4} 13
Lake Superior and North Lake Michigan, ω={1,2} 10
Lake Superior and South Lake Michigan, ω={1,3} 8
Lake Superior and Green Bay, ω={1,4} 2
North and South Lake Michigan, ω={2,3} 13
North Lake Michigan and Green Bay, ω={2,4} 19
South Lake Michigan and Green Bay, ω={3,4} 4
Lake Superior, ω={1} 49
North Lake Michigan, ω={2} 46
South Lake Michigan, ω={3} 85
Green Bay, ω={4} 11
No sites visited, ω=∅ 243
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Table 3. − Parameter Estimates

Extreme Value Generalized Extreme Value

Parameter Estimate P-Value Estimate P-Valuea

δ 0  (Intercept) -8.53 <.001 -8.43 <.001

δ lk  (Lake Trout) 0.10 .953 -0.70 .667

δ ch  (Chinook Salmon) 13.39 <.001 11.11 <.001

δ co  (Coho Salmon) 3.12 .023 3.71 .007

δ rb  (Rainbow Trout) 8.61 .035 13.96 <.001

δ E (Effective Toxin Level) -0.06 .018 -0.07 .007

W 1.76 <.001 1.82 <.001

θ N  (North Lake Michigan
and Green Bay)

1.00
Not

estimated
0.57 <.001

θ S
 (South Lake Michigan
and Lake Superior)

1.00
Not

estimated
0.92 <.001

µ 1.29 <.001  1.31 <.001

Log Likelihood -1935.8 -1890.2

                                                

a The P-values associated with θ N  and θ S  correspond, respectively, to tests of the hypotheses

H N N

0
1:θ =  and H S S

0
1:θ = . If both of these hypotheses are imposed, then the extreme value model results.
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Table 4. − Welfare Estimates (Standard Errors in Parentheses)

Mean Compensating Variation (C )
Policy Scenario EV Model GEV Model

Scenario A: Loss of Lake Trout
Species at Sites 2, 3 and 4

15.97
(269.19)

-37.10
(272.78)

Scenario B: Loss of Coho
Salmon at Sites 2, 3 and 4

274.18
(123.18)

304.82
(192.20)

Scenario C: A 20% Reduction
in Toxins at all Sites

-89.35
(54.37)

-108.13
(51.73)



31

VII. ENDNOTES

                                                

1 See Bockstael, Hanemann, and Strand (1986) and Morey, et al. (1995) for general discussions of

non-participation and corner solution problems in the context of recreation demand.

2Corner solutions can also emerge for producers, both due to non-negativity constraints (e.g., Lee

and Pitt (1987) and to upper bounds externally imposed by quotas (e.g., Fulginiti and Perrin (1993)).

3 See, for example, Bockstael, Hanemann, and Kling (1987), Hausman, Leonard, and McFadden

(1995), Parsons and Kealy (1995), and Feather, Hellerstein, and Tomasi (1995).

4 However, as a reviewer noted, there may be instances when a sequential or dynamic random

utility model may be more suitable such as when exogenous variables change within a season.

5 Morey, Waldman, Assane, and Shaw (1995) describe the Kuhn-Tucker model in the context of

recreation demand, suggesting that it is the preferred approach, Bockstael, Hanemann, and Strand (1986)

provide specifications appropriate for recreation demand, and Kling (1986) employs a form of the model to

generate simulated data. However, none of these authors estimate the model or suggest how such a model

could be used to compute welfare estimates.

6 In general, a vector of attributes may characterize each commodity. However, we have used a

scalar attribute here to simplify notation.

7 Wales and Woodland (1983) accomplish this by assuming that the errors enter the utility function

such that U z U z j Mj j j( , ; , , ) ( , ; , ) , , .x q x qγ ε γ= + =ε 1K  See Bockstael, Hanemann, and Strand

(1986) and Morey et al. (1995) for more general treatments of the error term.

8 This problem is similar to the one encountered in nonlinear site selection models and recently

addressed by McFadden (1995) and Herriges and Kling (1997).

9 Hanemann (1984) originally detailed this argument in the case of extreme corner solutions (i.e.,

when only one of the commodities is consumed). Bockstael, Hanemann, and Strand (1986) extend the

argument for the general case.

10 Imposing weak complementarity implies that there is only “use value” associated with the

commodities. In the absence of weak complementarity, individuals may also assign “non-use” value to a
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commodity (i.e., the individual perceives utility from the availability of a good without actually consuming

it). Here, we adopt Freeman’s (1993) definitions of use, non-use, and existence values and note, as an aside,

that models based on observed behavior cannot elicit information on existence value.

11 The second equality follows from the fact that for all ω ∉ ~
A , the associated conditional utility

maximization problem yields a binding non-negativity constraint for some j ∈ω . The solution is,

therefore, redundant, being equivalent to another utility maximization problem (defined by

~ ~ ~ω ω ω⊂ ∈ with A ) where that good has been constrained to zero a priori.

12 Policy changes may also involve the elimination of initially available sites. Such changes can be

reflected in the make-up of the index collection 
~
A .

13 See Geweke (1996) for a useful review of Monte Carlo integration.

14 Furthermore, McFadden’s (1995) Theorem 3 states that the GEV simulator can be used to

construct a consistent estimator of any real-valued function that is integrable with respect to the distribution

of the ε ’s. See Herriges and Kling (1997) for a recent application.

15 As noted by one reviewer, a limitation of this LES system is that the resulting function is convex

in the quality attributes of the sites. Further research is needed to develop more flexible functional forms

that relax such restrictions while remaining manageable from an estimation perspective.

16 One limitation of the GEV specification is that it requires the analyst to specify the nesting

structure a priori. In our empirical application below, while a variety of nesting structures were investigated,

we only report the results from that nesting structure that best fit the data on basis of a likelihood dominance

criterion.

17 The θ
r
's are required to lie within the unit interval in order to satisfy consistency with

McFadden's (1981) random utility maximization hypotheses. The degree of correlation among alternatives

within nest r increases as θ
r
 diminishes towards zero, whereas the alternatives become independent if

θ
r

= 1 .
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18 Details of the log-likelihood function for the four site model presented in the empirical section

below, along with the associated Jacobian transformations Jω , while not difficult, are algebraically tedious

and relegated to an Appendix available from the authors upon request.

19 Details of the sampling procedures and survey design are provided in Lyke (1993).

20 For papers that consider issues related to aggregation in recreation demand, see Feather (1994),

Parsons and Needelman (1992), and Kaoru, Smith, and Liu (1995).

21 There is an extensive debate on appropriate measure of the opportunity cost of travel time. Since

it is not a purpose of this study to enter into this debate, we have chosen this relatively simple means of

accounting for the travel time cost, drawing on research results of McConnell and Strand (1981).

22 While there are a variety of toxins reported in the De Vault et al.(1989) study, we use the levels

of toxins 2,3,7, 8-TCDD, which are generally responsible for the fish consumption advisories issued by

states in the region.

23 The results for the alternative nesting structures are available from the authors upon request.

24 Since it was not known whether or not the likelihood function is globally concave, numerous

starting values were tried and the maximum likelihood routine always resulted in the reported parameter

estimates.

25 The dissimilarity coefficients (i.e., the θ r ’s) were constrained to lie in the unit interval in order

to insure consistency with McFadden’s (1981) random utility maximization hypothesis.

26 Under this scenario, it is assumed that the catch rate for lake trout in Lake Superior is

unchanged, either because of ongoing stocking programs or the natural replenishment capabilities of the

fishery.

27 The choice of N ε = 2000  was selected on the basis of a Monte Carlo experiment in which the

process of estimating C  for scenario B using N ε  iterations and the maximum likelihood parameters was

repeated 100 times. This exercise was conducted using various choices of N ε . The simulation results

indicated that the standard deviation of C  was reduced to $10 once N ε = 2000 . Thus, the standard
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deviation associated with the GEV simulator is roughly five percent of the standard deviation reported in

Table 4 (192.20).

28 Some caution should be exercised in using the standard deviations to construct confidence

intervals. The $ ( )C i ’s are unlikely to be symmetrically distributed and, hence, two-standard deviation

confidence intervals will be inappropriate. While the construction of asymmetric confidence intervals is

conceptually straightforward, a substantially larger Nγ  would be needed to precisely construct the

necessary tail statistics (See, e.g., Efron and Tibshirani (1993)).

29 Since our estimates of Ω are significantly different from 1.00, consumers value quality changes

even when they do not engage in fishing. Thus, these welfare estimates can be said to encompass both “use”

and “non-use” values. However, these values are quite distinct from “existence” value that cannot be

estimated from revealed preference data.




