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HIGHLIGHTS  

• Differential gene expression of fabA, fabB or des impacted various membrane metrics.  

• Effect of some microbial inhibitors on membrane metrics and growth was quantified. 

• Membrane metrics to predict growth are recommended for seven combined conditions.  

• Growth at 42 °C with furfural and ethanol corresponds to membrane hydrophobicity. 

• Membrane hydrophobicity correlated to ethanol production in the combined condition.   



3 

 

ABSTRACT 

The cell membrane plays a central role in the fitness and performance of microbial cell 

factories and therefore it is an attractive engineering target. The goal of this work is to develop a 

systematic framework for identifying membrane features for use as engineering targets. The 

metrics that describe the composition of the membrane can be visualized as “knobs” that 

modulate various “outcomes”, such as physical properties of the membrane and metabolic 

activity in the form of growth and productivity, with these relationships varying depending on 

the condition. We generated a set of strains with altered membrane lipid composition via 

expression of des, fabA and fabB and performed a rigorous characterization of these knobs and 

outcomes across several individual inhibitory conditions. Here, the knobs are the relative 

abundance of unsaturated lipids and lipids containing cyclic rings; the average lipid length, and 

the ratio of linear and non-linear lipids (L/nL ratio). The outcomes are membrane permeability, 

hydrophobicity, fluidity, and specific growth rate. This characterization identified significant 

correlations between knobs and outcomes that were specific to individual inhibitors, but also 

were significant across all tested conditions. For example, across all conditions, the L/nL ratio is 

positively correlated with the cell surface hydrophobicity, and the average lipid length is 

positively correlated with specific growth rate. A subsequent analysis of the data with the 

individual inhibitors identified pairs of lipid metrics and membrane properties that were 

predicted to impact cell growth in seven modeled scenarios with two or more inhibitors. The 

L/nL ratio and the membrane hydrophobicity were predicted to impact cell growth with the 

highest frequency. We experimentally validated this prediction in the combined condition of 42 

°C, 2.5 mM furfural and 2% v/v ethanol in minimal media. Membrane hydrophobicity was 

confirmed to be a significant predictor of ethanol production. This work demonstrates that 

membrane physical properties can be used to predict the performance of biocatalysts in single 

and multiple inhibitory conditions, and possibly as an engineering target. In this manner, 

membrane properties can possibly be used as screening or selection metrics for library- or 

evolution-based strain engineering.   

 

Keywords: membrane lipid composition, L/nL ratio, membrane hydrophobicity, correlations, 

combined inhibitory conditions, robustness  
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1. INTRODUCTION 

The microbial production of biorenewable fuels and chemicals requires several features 

to economically compete with fossil fuels (Wu et al., 2018). One such feature is the robustness of 

the microbial cell factory (Gong et al., 2017), where robustness describes the ability of a microbe 

to thrive in the desired condition, enabling bio-production at high titer, rate and yield. For 

example, operation at low pH and high temperature reduces the risk of contamination and 

reduces operating costs, but many microbial species do not tolerate these conditions. Robust 

biocatalysts can also tolerate lignocellulose-derived inhibitors and/or high product 

concentrations, increasing titers and decreasing capital costs (fermenter volume) and decreasing 

the operating cost of product separation. Damage to the cell membrane by these industrially 

appealing conditions can limit biocatalyst performance. The robustness of biocatalysts is 

therefore often a function of the composition and physical properties of the cell membrane.  

Historically, evolution has been the main strategy for increasing tolerance. 

Characterization of evolved strains increases our understanding of how to achieve desired 

phenotypes (Portnoy et al., 2011; Zhang et al., 2009). Such characterization has identified 

changes to the membrane as contributing to the evolved phenotype (Cerisy et al., 2017; Chen et 

al., 2020; Royce et al., 2013), leading to the proposition of the cell membrane as a target for 

rational strain engineering (Jarboe et al., 2018; Jezierska and Van Bogaert, 2017; Liu et al., 2013; 

Qi et al., 2019; Sandoval and Papoutsakis, 2016). Such engineering strategies could be proposed 

from previous data or modeling results (Monje-Galvan, et al., 2019). Perturbation of the 

membrane composition and characterization of the resulting membrane properties within the 

design-build-test-learn cycle can also provide strategies for rational membrane engineering. 

Here, we have used such an approach, focusing on the membrane composition in the form of the 

distribution of the membrane lipids and the membrane properties of membrane permeability, 

membrane fluidity and membrane hydrophobicity. 

Previous membrane engineering strategies have altered the membrane lipid composition 

via fatty acid biosynthesis enzymes, and in some cases have been successful in improving 

microbial growth and/or metabolic productivity. −ketoacyl-ACP synthase I (fabB) modulates 

the abundance of unsaturated fatty acids in the E. coli membrane (Lennen and Pfleger, 2013; 

Xiao et al., 2013). Titration of fabB expression enabled characterization of the impact of 

unsaturated fatty acids on cell physiology (Budin et al., 2018). Overexpression of 
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−hydroxyacyl-ACP dehydratase/isomerase (fabA) and the heterologous expression of fatty acid 

desaturase (des) altered the relative abundance of saturated and unsaturated fatty acids in the E. 

coli membrane and altered ethanol tolerance (Luo et al., 2009). Other heterologous enzymes, 

such as the cis/trans isomerase (Cti) (Tan et al., 2016), and an acyl-ACP thioesterase (Lennen 

and Pfleger, 2013), also altered the E. coli membrane lipid distribution, contributing to a 

decrease in membrane damage and increased production of biorenewables.  

In addition to the possible presence of a double bond in unsaturated membrane lipids, 

lipids can also be non-linear due to the presence of cyclopropane functional groups or branching. 

Cyclopropane fatty acids contribute to membrane stabilization, fluidity and rigidity (Grogan and 

Cronan, 1997; Khakbaz and Klauda, 2015; Poger and Mark, 2015) and methyl-branched fatty 

acids increase membrane fluidity (Poger et al., 2014). The membranes of archaeal organisms 

contain cyclopentane rings, increasing the temperature range over which the membrane 

maintains a liquid crystalline phase (Koga, 2012). This further demonstrates the concept that 

alteration of the distribution of the membrane lipids impacts the membrane physical properties, 

impacting the metabolic activity and growth of the microbial cell factory.  

The membrane lipid composition can be described with various metrics, such as the 

relative abundance of unsaturated fatty acids and cyclic rings, the average length of the acyl 

chains, and the relative abundance of linear (saturated, straight-chain) and non-linear fatty acids 

(unsaturated or those with cyclopropane groups). For example, the metric of relative abundance 

of unsaturated fatty acids has been reported to vary in response to changes in temperature 

(Okuyama et al., 1982), pressure, abundance of ions (Mykytczuk et al., 2007), and exposure to 

alcohols (Luo et al., 2009) and fatty acids (Royce et al., 2013). The relative abundance of cyclic 

rings has been associated with tolerance of acid (Chang and Cronan, 1999; Shabala and Ross, 

2008), heat, and pressure (Chen and Gänzle, 2016). Similarly, the average membrane lipid length 

has been reported to change in the presence of inhibitors such as short- and medium-chain fatty 

acids (Royce et al., 2013; Sherkhanov et al., 2014).  

Given that the lipid composition of the membrane influences the membrane physical 

properties, fatty acid biosynthesis is crucial for membrane homeostasis (Zhang and Rock, 2008). 

The impact of the membrane lipid composition on the bulk cell membrane properties is 

demonstrated in the comparison of two familiar lipid mixtures used in cooking: fats, such as 

butter, and oils, such as olive oil. At ambient conditions, the higher abundance of saturated fatty 
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acids gives butter a relatively solid structure and less fluidity as opposed to the higher abundance 

of non-linear, unsaturated fatty acids and increased fluidity observed for oil.  

The fact that chemical stressors can result in a change to the composition and physical 

properties of the membrane is well-established (Dunlop et al., 2011; Fletcher et al., 2016; Grogan 

and Cronan, 1997; Halverson and Firestone, 2000; Lennen and Pfleger, 2013). Ingram reported a 

decrease in membrane fluidity after ethanol exposure and increased fluidity after exposure to 

longer chain alcohols (Ingram, 1976). Besides their effect on tolerance (Luo et al., 2009; Qi et 

al., 2019; Wilbanks and Trinh, 2017; Zaldivar et al., 2000, 1999; Zaldivar and Ingram, 1999), 

and bio-production (Jiang et al., 2015; Sherkhanov et al., 2014; Tan et al., 2017b, 2016; 

Westbrook et al., 2018; T. Wu et al., 2018), changes to various membrane properties have been 

implicated in the development of other phenotypes of interest, such as biofilm formation (Zhang 

et al., 2007), attachment to agricultural residue (Liao et al., 2017), and antimicrobial resistance 

(Ghai and Ghai, 2018). These findings support the idea that membrane properties are promising 

targets for engineering desired phenotypes. Therefore, engineering strategies that target the 

membrane lipid metrics (which we view here as knobs) in order to predictably adjust the 

membrane physical properties (outcomes) to counteract specific inhibitory conditions could be 

useful for metabolic engineering applications.  

As a sentinel of environmental conditions, the cell membrane both senses changing 

conditions and is subjected to rapid and substantial changes in its composition. These changing 

conditions also influence the relationship between membrane composition and membrane 

properties. Returning to the butter/oil analogy, these two different states of lipid bodies, butter 

(solid) and cooking oil (liquid), will undergo drastic changes in their physical properties within a 

relatively narrow temperature range; butter becomes liquid at 32 C while oil becomes less fluid 

at < 4 C. The relationship between composition and fluidity will be more difficult to detect at 

temperatures outside of the 4-32 C range. Therefore, the modulation of membrane lipid 

composition and characterization of these membranes in a variety of conditions allows 

identification of relationships that can possibly be used to engineer the cell membrane to improve 

performance of biocatalysts (Figure 1). This approach also has the potential to guide 

prioritization of strains for detailed experimental characterization and could also identify cell 

properties that can be used as selectable indicators. 
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In this work, we used the FabA, FabB and Des enzymes with three different strength 

constitutive promoters to generate a set of strains with perturbed membrane lipid composition. 

These three enzymes are primarily known for their role in the biosynthesis of membrane lipids. 

In this framework, the range of values of membrane composition metrics are queried as knobs 

that possibly modulate the outputs of the membrane physical properties and microbial growth. 

These strains were cultured in several inhibitory conditions and a rigorous characterization of the 

different cell membrane response levels was performed. Systematic analysis of these data 

revealed membrane lipid metrics that impact membrane properties in several scenarios and in the 

presence of multiple inhibitors. This analysis also revealed key membrane properties that are 

associated with growth and production of a model biorenewable fuel in inhibitory conditions 

typical of industrial settings. The use of these membrane physical properties as predictors of 

metabolic activity can also contribute to decreasing experimental burden, and the problematic 

variability of strain behavior across operating scales and can serve as selection or screening 

markers. 

 

2. MATERIALS AND METHODS 

A brief overview of experimental procedures is provided here, with full details provided in the 

supplementary information. Gas chromatography-mass spectrometry (GC-MS) for the membrane 

lipid composition analyses, gas chromatography with a Flame Ionization Detector (GC-FID) to 

quantify ethanol production, and microplate reader measurements for the membrane polarization 

assessment were performed at the W. M. Keck Metabolomics Research Laboratory. Flow 

cytometry for the SYTO 9/propidium iodide viability assay was performed at the Flow 

Cytometry Facility at Iowa State University. 

2.1 Strains, plasmids and culture conditions  

E. coli strains (Table 1) were constructed by the FLP/FRT method (Datsenko and 

Wanner, 2000) from E. coli MG1655. The des gene was PCR amplified from Bacillus subtilis, 

which we obtained from Dr. Yandeau-Nelson’s group (ISU). All primer sequences are provided 

in Table S1. Three distinct constitutive promoters were used: M1-12, M1-37, and M1-93, which 

have low, medium, and high expression strength respectively (Lu et al., 2012). Ethanol 

production plasmid pKS13 was previously described (Steen et al., 2010) and was obtained from 

Addgene (plasmid # 24627 http://n2t.net/addgene:24627; RRID: Addgene_24627).  
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For all cultures, single colonies were grown in 2 ml LB media for 4 h at 37 °C with rotary 

shaking at 250 rpm. Sixty µl of these log-phase cultures were centrifuged at 3800 g for 6 min, 

and cell pellets were resuspended in 3 ml MOPS containing 2% w/v dextrose at pH 7.00 

(Neidhardt et al., 1974). These cultures were grown overnight (~19 h) at 37 °C 250 rpm with 

chloramphenicol (35 mg/L). 250-ml baffled flasks containing 25 ml minimal media MOPS 2% 

w/v dextrose were inoculated with overnight seed cultures to an initial OD550 = 0.05 for all 

tolerance experiments. The inhibitory conditions tested were 4% v/v ethanol, 0.6% v/v butanol, 

0.6% v/v isobutanol, 0.1% v/v hexanol, 5 mM furfural, 100 mM acetate adjusted to pH 7.00, and 

the above-mentioned minimal media adjusted to an initial pH of 6.00. All cultures were 

maintained at 200 rpm and except for the cultures grown at 42 ºC, were grown at 37 °C. The cell 

densities (OD550) were recorded every 2 h until the end of the log-phase. Specific growth rates 

were calculated during the log-phase by calculating the slope of the linearized growth rate 

equation ln (OD/OD 0) = µt. Three biological replicates for each experiment generated the 

reported averages and standard deviations.  

2.2 Ethanol production 

Strains harboring pKS13 were grown for 24 h in 250-ml baffled flasks containing 25 ml 

minimal media MOPS 2% w/v dextrose with 5 mM furfural at 42°C with shaking at 250 rpm. 

Isopropyl -D-1-thiogalactopyranoside (IPTG) at 1 mM was added for induction. Ethanol 

quantification was performed with Gas Chromatography with a Flame Ionization Detector (GC-

FID).  

2.3 Membrane characterization  

  Membrane characterization metrics included membrane lipid composition, fluidity, 

integrity, and hydrophobicity. The assessment for each membrane metric was performed in mid-

log phase cultures grown in 250-ml baffled flasks containing 25 ml minimal media MOPS 2% 

w/v dextrose at initial pH of 7.00 (0.02). At the time of cell harvest for the membrane 

characterization techniques, the pH was between 5.5 and 6.0.  

2.3.1 Membrane lipid composition  

Twenty-five milliliters of mid-log phase culture were harvested and subjected to lipid 

extraction via the Bligh and Dyer method (Bligh and Dyer, 1959), with modifications as 

previously described (Chen et al., 2018). Fatty acids were quantified by GC/MS using C11 and 

C15 saturated fatty acids as internal standards, and external standards for C16:1 and C18:1 were 
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assessed separately, but in the same batch of samples for analyses. Twenty micrograms of either 

C16:1 or C18:1 or C11/C15 were utilized for fatty acid quantification. The relative abundance of 

each type of fatty acid was estimated based on the total ion chromatogram peak areas relative to 

internal standards C11 and C15 according to their size. Specifically, C12:0 abundance was 

calculated with C11 internal standard, and the rest of the fatty acid abundances were calculated 

relative to the C15 standard. Alternatively, C16:1 and C18:1 were used as external standards, 

resulting in distribution estimates that were equivalent results to the use of C11 and C15 as 

internal standards. Representative chromatographic data is provided in the supplemental data. 

The relative abundance for the membrane fatty acids is presented on a mass basis.  

For calculation of the L/nL ratio, the saturated fatty acids [lauric (C12), myristic (C14), 

palmitic (C16), and stearic (C18)] were classified as linear, while the unsaturated fatty acids 

palmitoleic (C16:1) and oleic (C18:1), and the cyclopropane fatty acids cycC17 and cycC19 

were classified as non-linear.  

𝐿

𝑛𝐿
=  

C12: 0 + C14: 0 + C16: 0 + C18: 0

C16: 1 + C18: 1 + cycC17 + cycC19
=  

100 − %𝑈 − %𝐶𝑦𝑐

%𝑈 + %𝐶𝑦𝑐
 

The average lipid length was determined as previously described (Royce et al., 2013) and 

indicates the number of carbons in the main chain. For example, C16:0, C16:1 and C17cyc all 

have a length of 16. 

All membrane lipid composition data, containing the abundance of each type of 

membrane fatty acid relative to all extracted fatty acids (%w/w), are available in supplementary 

information.   

2.3.2 Membrane DPH Polarization  

Membrane polarization was assessed utilizing the fluorescent anisotropic probe molecule 

1,6- diphenyl-1,3,5-hexatriene (DPH) dissolved in dimethylformamide (DMF) (Sigma, St. 

Louis). This method was previously reported (Royce et al., 2013; Shinitzky and Barenholz, 

1978). DPH was added to a final concentration of 0.4 M to cells suspended in phosphate 

buffered saline (PBS, pH 7.00 ± 0.02) at a cell density OD550 ~0.1. Fluorescence polarization 

was measured for cells in the presence and absence of the probe molecule. The difference of 

fluorescence values between the treated and untreated samples was attributed to the light emitted 

with a degree of polarization by the excited DPH probe. A grating factor of 1.1  0.1 was 
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estimated and used in the calculation of membrane polarization. The membrane fluidity is 

inversely proportional to the degree of fluorescence polarization within intact cell membranes.  

2.3.3 Membrane integrity 

 Membrane permeability was assessed with normalized fluorescence values as described 

previously (Santoscoy and Jarboe, 2019) and in the supplemental methods. SYTOX Green was 

used at a final concentration of 5 µM. The bulk fluorescence (485/20 nm and 516/20 nm) was 

monitored over the growth period with one plate reader while another plate reader measured cell 

density (OD550) in parallel. Bulk fluorescence values were then normalized by the cell density 

(OD550).  

Cell viability was determined utilizing the LIVE/DEAD BacLight Bacterial Viability Kit 

(Thermo Scientific, Waltham MA) containing SYTO 9 and propidium iodide (PI) fluorescent 

dyes. Dyes were used at a final concentration of 3.34 M and 20 M, respectively in 500 µl of 

PBS containing cells at OD550 0.1. Stained cells were sorted with a BD Biosciences FACSCanto 

flow cytometer. This combination of SYTO 9 and PI dyes assay showed a strong correlation 

(R2=0.96) with the SYTOX Green normalized fluorescence assessment (Figure S1), indicating 

that the membrane permeability assessment with SYTOX Green also provides estimates of cell 

viability.  

2.3.4 Membrane hydrophobicity 

 Membrane hydrophobicity or microbial adhesion to hydrocarbons (MATH) was 

determined by measuring cell partitioning into dodecane (Sigma, St. Louis) as previously 

described (Pembrey et al., 1999; Rosenberg et al., 1980). Cells were suspended in PBS (pH 7.00 

± 0.02) (aqueous) at a known OD550, dodecane was added to 25% v/v, and the two phases were 

mixed thoroughly by vortexing at 2500 rpm for 10 min. Samples were held for 15 min at room 

temperature to allow phase separation. The OD550 in the aqueous phase was re-assessed to 

estimate partitioning of cells into the organic phase. The percentage of cells that partitioned to 

the organic phase is reported as the percentage of microbial adhesion to hydrocarbons, which we 

use as an indicator of membrane surface hydrophobicity.  

2.4 Statistics 

Microsoft Office Excel was utilized for statistical analysis. T-tests were performed, and 

the significance level was 0.05. Data was fit to a straight line using the LINEST function. This 

produced a Pearson correlation coefficient (R2), a slope, and a value for Fstatistic (F-observed). 
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Possible correlations for which the F value was larger than tabulated values associated with  = 

0.05 were considered to be significant. Fisher’s Z values were estimated from Pearson 

correlation coefficients using the TANH function (Alexander, 1990). 

Significance of the differences between the experimental and the predicted normalized 

membrane metrics was assessed by comparison to a random sampling of 100 values ranging 

from 0 to 1. This randomly-generated population was converted to a standard normal 

distribution. The absolute values of the differences between the normalized predicted value and 

the normalized experimental data were converted into Z-score values. These Z-scores were 

interpolated from Z-charts (=) to find the corresponding area under the curve, which was 

then used to calculate p-values from the normal standard distribution.  

2.5 Prediction of correlations in theoretical combined conditions 

Experimentally-derived Pearson correlation coefficients from individual inhibitor 

experiments were used to estimate correlation coefficients for theoretical conditions with 

multiple inhibitors. Experimental correlation coefficients were transformed into Fisher’s Z 

values, enabling the averaging of these values across each of the inhibitors involved in each 

theoretical scenario. Then, the calculated average Z-values were re-transformed into combined 

correlation coefficients (Alexander, 1990). Sixty-two combined inhibitory scenarios were chosen 

considering the potential combinations of: one product (ethanol, butanol, isobutanol or hexanol); 

one or more lignocellulosic-derived inhibitors (furfural and/or acetate); and one or more physical 

inhibitory conditions (42  C and/or pH 6.00). For each scenario, we used the magnitude of the 

combined correlation coefficients to propose the outcome (membrane property or growth) that is 

the most strongly correlated with one of the lipid knobs. We similarly propose for each condition 

the membrane lipid metric (level 2) or membrane property (level 3) that is the most strongly 

correlated to growth (level 4). For each calculated combined correlation coefficient, we also 

calculated a standard deviation.  

The Excel file utilized for the preparation of Table 2 showing this analysis is available in 

supplementary information.  

2.6 Graphics 

 Illustrations were created with Biorender.com and GraphPad Prism 8. 

 

3. RESULTS AND DISCUSSION 
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3.1 Perturbation of membrane lipid composition 

We perturbed the membrane lipid composition by targeting the relative abundance of 

unsaturated fatty acids via the Des, FabB and FabA enzymes. Similar alteration of the membrane 

lipid composition in E. coli has been previously demonstrated by the overexpression of fabA and 

the heterologous expression of the B. subtilis des gene (Luo et al., 2009). In this previous work, 

the +fabA strain had a higher relative abundance of saturated fatty acids and increased ethanol 

tolerance than the control strain. In contrast, expression of des was associated with increased 

abundance of unsaturated fatty acids and increased ethanol sensitivity. Our other engineering 

target, fabB, has previously been reported to change the relative abundance of saturated and 

unsaturated fatty acids (Xiao et al., 2013). Thus, we used these three engineering targets to 

generate a set of E. coli strains with perturbed lipid composition, with the goal of using this set of 

strains to identify correlations between membrane composition, membrane properties, and 

microbial metabolic activity in the form of growth. These strains differed in the identity of the 

target enzyme (FabA, FabB, Des) and the strength of the associated promoter (Table 1). We 

quantified the resulting membrane composition in this set of ten strains in our baseline growth 

condition of MOPS 2% w/v dextrose at 37 C, with an initial pH of 7.00 (0.02). 

We observed both a significant increase and a significant decrease in the percentage of 

unsaturated fatty acids among these strains. The strain with the most moderate promoter (M1-12) 

for fabA (fabA12) had a significant decrease in the relative abundance of unsaturated fatty acids 

compared to the control (Fig. 2A). Likewise, the levels of unsaturated fatty acids increased the 

most when the des gene was expressed with the highest strength promoter. In this way, we were 

able to modulate the percentage of unsaturation from 1.4 ± 0.2 (fabA12) to 20.4 ± 0.3 (des93) in 

the baseline condition. These results are consistent with previous reports for strains expressing 

des and fabA (Luo et al., 2009). FabB was previously found to be crucial for directing the 

metabolic flux of fatty acid biosynthesis towards unsaturated fatty acids rather than saturated 

(Xiao et al., 2013), consistent with our observation of an increase in the percentage of 

unsaturated fatty acids proportional with the strength of the promoter driving fabB expression.  

A previous characterization of deletion mutants of fabA or fabB indicates that E. coli 

requires a minimum of 15% unsaturated fatty acids for growth at 37 C (Cronan et al., 1969) 

(Cronan and Gelmann, 1973), but other reports have described E. coli strains containing less than 

15% unsaturated fatty acids (Budin et al., 2018; Yuk and Marshall, 2005). The relatively low 
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abundance of unsaturated fatty acids in our control strain (5%) appears to be related to our choice 

of baseline condition, as we observed 18% unsaturation in this strain when grown in rich media 

(Figure S2). We did note that within our set of strains, the combined relative abundance of 

unsaturated and cyclopropane fatty acids is always at least 17% across all culture conditions. 

The Des enzyme has been reported to introduce unsaturation at different positions of the 

fatty acid depending on the culture conditions (Bonamore et al., 2006), including production of 

C16:1  (Luo et al., 2009). However, C16:1  and C16:1  were not resolved in the 

analytical methods used here and our analysis does not distinguish between these two isomers.  

While it was expected that our selected engineering targets of FabA, FabB and Des 

would primarily result in perturbation of the abundance of unsaturated fatty acids, changes were 

also observed for the average lipid length, the relative abundance of cyclic rings, and the ratio of 

linear relative to non-linear fatty acids (Figure 2). Our engineered strains showed both a decrease 

and an increase in the average lipid length relative to the control, ranging from 15.78 (fabA12) to 

16.07 (fabB93). Strains engineered for expression of FabB or Des showed an increase in the 

average lipid length relative to the control. Surprisingly, +fabA strains showed both a significant 

decrease (fabA12) and a significant increase (fabA93) in average lipid length. The relative 

abundance of cyclic rings is known to increase when cells enter stationary phase (Wang and 

Cronan, 1994) and thus we restricted our sampling to the mid-log phase. The relative abundance 

of cyclic rings varied from 14% (des93) to 20% (several strains), although none of the strains 

showed a significant increase in cyclic rings relative to the control in the baseline condition.  

Previous reports of expression FabA and Des from plasmids at a single induction level in 

E. coli strain W3110 in rich media described lipid length values of 15.75 - 15.92, and cyclic ring 

abundances of 3.5 - 6.4% (Luo et al., 2009). Thus, we obtained a larger range of values for both 

of these lipid metrics compared to this previous study. The abundance of cyclic rings decreased 

relative to the wild-type strain for most of our engineered strains, similar to Luo’s study. The 

smaller lipid length of fabA12 (15.78) relative to the control (15.92) is also consistent with the 

previous study’s report of the strain engineered for increased fabA expression having a shorter 

average lipid length (15.75) relative to the control strain (15.92). In addition, the previously 

reported lipid length of the fabA-expressing strain was smaller than des-expressing strain (15.89) 

and this was also generally observed for our set of MG1655-derived strains expressing Des and 

FabA.  
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Our final metric is the ratio of linear-chain (saturated) fatty acids relative to the non-

linear (unsaturated or with a cyclic ring). This metric considers the poor stacking that both 

unsaturated and cyclopropane fatty acids have in the cell membrane as a consequence of their 

conformation. Strains with higher L/nL ratio values contain a larger amount of saturated or 3D-

spatially stable fatty acids relative to the more dynamic and bent type of fatty acids. Values of 

this lipid metric ranged from 1.90 (des93) to 4.85 (fabA12) in the baseline condition.  

These results demonstrate significant variation in each of the four lipid composition 

metrics (level 2 knobs) during growth in the baseline condition for this set of strains. For the 

percentage of unsaturated fatty acids, the average lipid length, and the L/nL ratio, values were 

both greater than and lower than the values for the control strain and the observed variation 

corresponded to the strength of the utilized promoter. 

3.2 Modulation of membrane lipid metrics impacts membrane properties and growth  

Having observed significant variation in membrane composition in the set of engineered 

strains, we next quantified changes in membrane physical properties (Figure S4). Membrane 

damage is often quantified in the form of cell membrane permeability, due to the inability of 

some fluorescent probes to cross intact membranes. Membrane fluidity is a function of flexible 

components, such as the unsaturated fatty acids, and this dynamic environment can be assessed 

by the movement of anisotropic fluorescent probe molecules, such as DPH (Royce et al., 2013; 

Shinitzky and Barenholz, 1978). The membrane hydrophobicity quantifies the partitioning of the 

microbe into a hydrocarbon, such as dodecane, relative to an aqueous solution. Similar to the 

membrane fluidity, hydrophobicity is a function of multiple membrane components. Together, 

these properties provide the opportunity to quantify distinct physical alterations of the cell 

membrane. 

The majority of our strains had significantly altered membrane hydrophobicity and 

permeability (Figure S4). The strains fabB37 and fabA37 had significantly increased membrane 

hydrophobicity relative to the control strain while all three strains expressing the des gene had 

lower values of this metric relative to the control strain. This indicates that the different 

membrane lipid composition of these strains impacted the microbial surface hydrophobicity, as 

demonstrated by the partitioning of cells into the organic phase. None of the engineered strains 

showed increased membrane integrity relative to the control, meaning that they did not show 

decreased permeability to the SYTOX nucleic acid dye. Interestingly, the permeability of strains 
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fabB12 and fabB37 increased by two orders of magnitude relative to the control. However, these 

two strains did not show atypical values of the four membrane lipid composition metrics (Figure 

2). The strain des93, with the highest abundance of unsaturated fatty acids, had an unexpected 

decrease in membrane fluidity, as evidenced by an increase in DPH polarization (Figure 2A, 

Figure S4B). This demonstrates that membrane functionality depends on more than one lipid 

metric and demonstrates the need for rigorous characterization across multiple metrics.   

We envision the membrane lipid metrics as different knobs that can be adjusted in order 

to modulate values in the corresponding outcomes of membrane physical properties and, 

ultimately, metabolic activity and growth. Consistent with this model, modulation of membrane 

lipid compositions in our set of engineered strains had different outcomes in terms of membrane 

functionalities and cell growth in the baseline condition, enabling identification of significant 

correlations (Figure 3A).  

For example, the L/nL ratio and the lipid length are significantly correlated (p<0.05), 

such that as L/nL increases, the average lipid length decreases (Figure 3B). Consistently across 

our set of strains, the average length of saturated fatty acids was shorter (15.85  0.05) than the 

average length of unsaturated fatty acids (16.74  0.26) and fatty acids containing cyclic rings 

(16.05 0.04). The percentage of unsaturated fatty acids was the largest for des93 (20.4%  0.3) 

and the lowest for fabA12 (3.7%  0.7), and these two strains had the second largest and the 

smallest lipid length values (16.07  0.00 and 15.78  0.00, respectively) (Figure 2A, 2B). The 

L/nL ratio deviated from -35% (des93) up to +63% (fabA12) of the value for the control strain.  

In the baseline condition, significant correlations were also observed between the 

percentage of unsaturated fatty acids and both the average lipid length and the L/nL ratio. The 

form of the equation for the L/nL ratio imposes an inverse relationship between L/nL and the 

relative abundance of both unsaturated fatty acids and cyclic rings, though the magnitude of this 

connection in the various conditions is not subjected to a fixed mathematical constraint. The 

framework demonstrated here for identifying relationships between membrane metrics in the 

baseline condition indicate that this type of analysis could be performed on a variety of 

inhibitory conditions of interest.  

 

3.3 Engineering of the membrane lipid composition impacts tolerance of some membrane-

damaging conditions 
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It has been widely demonstrated that changes to the membrane composition can impact 

tolerance of membrane-damaging compounds (Chen et al., 2018; Luo et al., 2009; Qi et al., 

2019; Royce et al., 2013; Sherkhanov et al., 2014; Tan et al., 2016; Westbrook et al., 2018; 

Wikström et al., 2009; Wilbanks and Trinh, 2017). Therefore, we tested the tolerance of our set 

of strains in the baseline condition of MOPS 2% w/v dextrose modified to contain either 5 mM 

furfural, 100 mM acetate adjusted to pH 7.00, 4% v/v ethanol, 0.6% v/v butanol, 0.6% v/v 

isobutanol or 0.1% v/v hexanol. These chosen concentrations each caused a 50  10% decrease 

in specific growth rate relative to the baseline condition for the control strain. We also 

characterized growth of these strains when cultured in the baseline condition modified to a 

temperature increase to 42 C or adjusted to pH 6.00. The set of strains showed significant 

changes in the specific growth rate relative to the control strain in all tested inhibitory conditions 

except for isobutanol and hexanol (Figure 4). 

The most considerable changes in tolerance among these strains were observed for 

furfural and for high temperature. The strain fabA37 had a 30% increase in growth rate relative 

to the control strain in both of these conditions. This increase in growth rate was the highest 

compared to other strains and other inhibitory conditions. Several strains had increased tolerance 

for higher temperature or furfural conditions except in a few cases where the weakest promoter 

was utilized. Specifically, the M1-12 promoter in front of des or fabB genes did not increase 

thermotolerance, and when this promoter was used to regulate fabA, there was also no change in 

furfural tolerance. The rest of the engineered strains with the higher strength promoters showed 

increased tolerance to both the increased temperature and furfural culture conditions.  

In contrast to the substantial number of strains with increased tolerance to 42 C or 

furfural challenge, only a few strains showed significant changes in specific growth rate when 

grown in the presence of ethanol or butanol. The three strains expressing the Des enzyme, as 

well as the fabB12 and fabB37 strains, actually showed increased sensitivity to ethanol, as 

evidenced by a specific growth rate significantly lower than the control strain. The fact that no 

strains showed changes in specific growth rate during challenge with isobutanol or hexanol 

implies that the range of membrane lipid compositions sampled here did not benefit the 

organisms during challenge with these alcohols. This in turn suggests that either mechanisms of 

toxicity distinct from membrane damage are responsible for the observed inhibition or that the 

modulation of lipid content in our engineered strains is insufficient to alter growth.  
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It was previously reported that tolerance to ethanol corresponds to increased levels of 

saturated fatty acids while ethanol sensitivity is associated with unsaturated fatty acids (Luo et 

al., 2009). Another study attributed ethanol, butanol and isobutanol toxicity to mechanisms 

besides membrane fluidity and integrity (Huffer et al., 2011). This prior study did not observe 

significant correlations between the shifts of fatty acid composition and membrane fluidity or 

tolerance. The fact that previous investigations were able to link membrane composition and 

tolerance of ethanol but not tolerance of butanol and isobutanol is consistent with different length 

carbon-chain alcohols impacting the cell membrane differently. The toxicity of alcohols is 

known to be directly related to the carbon length (Mukhopadhyay, 2015). Toxicity studies 

towards four- and five-carbon alcohols have reported evidence of membrane alterations and 

membrane related genes for alcohol tolerance regardless of their length (Foo et al., 2014; Minty 

et al., 2011; Reyes et al., 2011; Rutherford et al., 2010). This suggests that further modulation of 

membrane elements might produce tolerance towards diverse alcohols. 

 

3.4 Microbial inhibitors caused different changes in membrane metrics of the control strain 

As expected, the composition and properties of the cell membrane of the control strain 

differed in the various inhibitory conditions (Table S2). The greatest observed change of 

membrane lipid composition metrics in the control strain relative to the baseline condition was a 

6-fold increase in the percentage of unsaturated fatty acids in the presence of hexanol. Other 

changes include a 2.3-fold decrease in the membrane hydrophobicity during growth in the 

presence of butanol and increased membrane permeability during growth at 42 C (3.8-fold) or 

with hexanol (2.27-fold).  

These observed changes in composition and properties of the cell membrane demonstrate 

the diversity of cell membrane responses to various stimuli. The set of engineered strains with 

modulated membrane lipid composition provided us with the opportunity to perform a thorough 

characterization of membrane metrics in various conditions and identify the relationship between 

the different cell membrane response levels for each inhibitory condition.  

 

3.5 Set of engineered strains had inhibitor-dependent range of values of membrane metrics  

Our alteration of the membrane composition is expected to impact the outcomes of 

exposure to different inhibitory conditions. This expectation is supported by the differing 
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outputs, in terms of specific growth rate of the biocatalyst, in the presence of these stressors 

(Figure 4). Characterization of the membrane composition and properties for the set of 

engineered strains in the eight inhibitory conditions provides data for mapping the connections 

between lipid composition and membrane properties (Figure 5, Figure S5). 

The membrane metrics of each strain can be assessed as part of a range of values for the 

entire set of strains. As expected, these strains showed inhibitor-dependent differences in the 

membrane lipid metrics and membrane properties relative to the baseline condition. For example, 

when cells were grown in the presence of acetate, the percent of unsaturated fatty acids ranged 

from 2% (fabA93) to 12% (des93), but in the presence of hexanol the percent of unsaturated 

fatty acids ranged from 29% (fabB12) to 40% (des93). 

Some strains demonstrated consistent trends across conditions. The strain des93 had an 

increase in the relative abundance of unsaturated fatty acids relative to the control strain in all 

conditions (Figure 5A), consistent with the known desaturase activity of Des. This strain had the 

lowest abundance of cyclic rings in the baseline condition and values below the second quartile 

across all microbial inhibitors except for furfural. The use of the weakest promoter (M1-12) with 

fabA resulted in the lowest percentage of unsaturated fatty acids and shortest lipid length in the 

baseline condition. For the other FabA strains, the values of these two metrics were below the 

second quartile across most conditions. In contrast to the fabA strains having a relatively low 

percentage of unsaturated fatty acids and relatively short lipid length, these strains also appeared 

in the upper third quartile of membrane hydrophobicity values for all conditions except for 

butanol and isobutanol. Another trend observed in all conditions is the dramatic increase in 

membrane permeability by fabB12 and fabB37 relative to the control strain (Figure S7-A). In 

general, other than the examples described above, most engineered strains showed both an 

increase and a decrease relative to the control strain for all lipid metrics and membrane 

properties, depending on the inhibitory condition. This demonstrates the need for identifying the 

most tunable membrane metric in a specific condition and designing a membrane engineering 

strategy to reach the desired results. 

The growth conditions with the largest range of the percentage of unsaturated fatty acids 

relative to the baseline condition were furfural and isobutanol (Figure 5A). These large ranges 

demonstrate our ability to sample extreme values of these metrics. The range of values for 

average lipid length also changed in an inhibitor-dependent manner although these ranges were 
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not as large compared to those observed for the percentage of unsaturated fatty acids. 

Surprisingly, there was a general increase of lipid length for all of the inhibitory conditions 

relative to the baseline condition (Figure 5B).  

Similarly, the abundance of cyclic rings varied greatly depending on the growth 

condition. Cultures in the baseline condition that showed an overall abundance of cyclic rings up 

to 20% had a 2-fold increase and decrease in the maximum average abundance of cyclic rings 

when the culture conditions were acetate or hexanol, respectively (Figure 5C). Some stressors 

had a uniform impact on cyclic ring abundance, meaning that for all ten strains the abundance of 

cyclic rings either increased (pH 6) or decreased (ethanol, butanol and hexanol) relative to the 

baseline condition (Figure 5C). Across all strains, the range of cyclic ring abundance during 

growth with furfural ranged from 5 – 29%, the largest range observed among the growth 

conditions. 

Given the observed changes in the relative abundance of unsaturated fatty acids and 

cyclic rings, it is not surprising that the L/nL ratio also displayed substantial variation. Ethanol 

cultures had L/nL ratio values ranging from 2.3 to 8.6 (Figure 5D). Ethanol was previously 

reported to increase the relative abundance of saturated fatty acids (linear) in the cell membrane 

of other bacteria (Grandvalet et al., 2008), and this might occur as a compensation for the 

increase in membrane fluidity (Dombek and Ingram, 1984).  

Among the membrane physical properties, membrane hydrophobicity had the largest 

change across the culture conditions (Figure 5E). This demonstrates that the set of engineered 

strains not only produced a range of values for membrane lipid metrics but also that these 

changes were associated with changes to other measurable bulk membrane features. Cells grown 

at 42 ºC showed the largest range of hydrophobicity values, ranging from 9% to 83%. In 

contrast, in the baseline condition the hydrophobicity values ranged only from 4% to 46%. This 

supports the drastic effect that temperature can have on membrane properties (Shirley et al., 

1987; Szekely et al., 2011). In addition to the variation of membrane hydrophobicity at the 

higher temperature, hexanol had a shorter range of hydrophobicity values relative to the other 

shorter chain alcohols. Notably, the strain fabB12 had a dramatically increased membrane 

hydrophobicity (~ 80%) only when exposed to four-carbon alcohols. Our data and previous 

studies indicate that membrane hydrophobicity is a responsive physical property to various type 

of stimuli. 
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For the membrane polarization values, all inhibitory conditions, except for hexanol and 

pH 6, showed similar range (Figure 5F). Hexanol cultures had a substantial increase in 

membrane fluidity, as evidenced by a decrease in polarization, compared to shorter carbon length 

alcohols, which is consistent with previous reports (Dombek and Ingram, 1984).  

Similar to the observations for membrane hydrophobicity, the values for membrane 

permeability had the largest magnitude and the largest spread during growth in minimal media at 

42 ºC (Figure 5G). In agreement with our data, membrane leakage after furfural exposure was 

reported to not change significantly in E. coli (Mills et al., 2009). In contrast, we observed that 

alcohols increased membrane leakage for all strains. For the shortest alcohol, ethanol, the overall 

membrane permeability values increased, consistent with previous knowledge of ethanol 

exposure and increased membrane leakage (Eaton et al., 1982) and fluidity (Dombek and 

Ingram, 1984). Even though toxicity associated with longer chain alcohols might rely on 

multiple mechanisms besides the effects on the cell membrane, our data, as well as previous 

reports (Foo et al., 2014; Minty et al., 2011; Mukhopadhyay, 2015; Reyes et al., 2011; 

Rutherford et al., 2010), indicate that these alcohols impose various effects on the cell 

membrane. This set of engineered strains with perturbed lipid composition sheds light on the 

effects of diverse stressors on the cell membrane aside from specific growth rate.  

 

3.6 Membrane metrics show stress-specific correlations between response levels 

We performed a systematic statistical analysis of non-random regressions in order to 

assess potential connections between the system knobs (membrane lipid parameters) and their 

outcomes (membrane properties and cell growth). This analysis utilized the data from of all 

tested individual stressors. The significant connections are depicted in a general stress-response 

network (Figure 6-I).  

This lumped analysis shows that across conditions, the L/nL ratio has a significant 

inverse association with each of the other three membrane lipid metrics. The inverse relationship 

between the L/nL ratio and the relative abundance of unsaturated and cyclic lipids was expected 

based on the structure of the L/nL calculation. However, the association of the L/nL ratio and 

average lipid length is not mathematically constrained. Given that design engineering strategies 

likely alter additional membrane metrics, the L/nL ratio appears to be a meaningful knob for 

modifying and evaluating the membrane lipid composition of cells when exposed to stress. The 
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stress-response network for the combined individual inhibitory conditions also suggests that the 

L/nL ratio and average lipid length can be used as knobs for modulating the outcomes of 

membrane hydrophobicity and cell growth, respectively.  

An inhibitor-specific response network was similarly produced utilizing the data from 

each individual inhibitory condition (Figure 6-II, III). A variety of growth inhibitors such as 

acetate, pH 6, ethanol and isobutanol demonstrated a correlation between the L/nL ratio and the 

relative abundance of cyclic rings. The L/nL ratio also was correlated to the three membrane 

physical properties in several distinct conditions. Specifically, the L/nL knob influenced the 

membrane hydrophobicity in the conditions of 42 C, furfural or ethanol. The membrane 

hydrophobicity also showed a connection with growth in the presence of butanol.  

Cultures at higher temperatures are advantageous in industrial fermentations for reducing 

contamination and cooling costs (Caspeta et al., 2014; Curran et al., 1989).Going back to the 

example of butter and olive oil, we observed that the L/nL ratio was significantly related to the 

membrane polarization, with cells grown at 42 C having a decreased L/nL ratio and a 

corresponding decrease in DPH polarization (R2 = 0.64), indicative of increased fluidity (Figure 

6-IIIA). Among the various inhibitory conditions, this relationship was observed only at 42 C, 

demonstrating that manipulation of the L/nL ratio is not a universally effective knob when 

attempting to tune the membrane polarization.  

Furfural and acetate are often present in depolymerized lignocellulosic biomass (Chi et 

al., 2019; Ding et al., 2011; Zhao et al., 2015). We observed that in the presence of furfural, the 

L/nL ratio showed a significant correlation with membrane hydrophobicity (R2 = 0.58). In 

contrast, the modulation of average lipid length showed an inverse relationship with 

hydrophobicity (R2 = -0.16). The observed relationship between average lipid length and growth 

in the presence of furfural (R2 = 0.55) is particularly promising and demonstrates the utility of 

employing other knobs besides the L/nL ratio. 

Growth in the presence of acetate produced the highest number of significant correlations 

between membrane metrics, consistent with the fact that many of the known acetate toxicity 

mechanisms are associated with the cell membrane (Trček et al., 2015). Within our set of strains, 

the relative abundance of cyclic rings during growth in the presence of acetate significantly 

correlated with each of the other three membrane lipid metrics. Specifically, cyclic ring 

abundance correlated with unsaturated fatty acids relative abundance (R2 = -0.76), average lipid 
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length (R2= -0.64), and the L/nL ratio (R2 = -0.92), where the negative relationship here is 

expected due to the structure of the L/nL calculation. Cyclic rings also had influence on the 

membrane physical property of polarization (R2 = -0.59). Also, in the presence of acetate we 

observed correlation between the percentage of unsaturated fatty acids and polarization (R2 = 

0.87), and between the L/nL ratio and membrane permeability (R2 = 0.74), respectively. These 

results show the different levels of cell membrane response caused by acetate and the complexity 

of these effects on the membrane properties.  

When cells were grown in the presence of ethanol, the largest range of L/nL ratios was 

observed and these values significantly correlated with membrane hydrophobicity (R2 = 0.61) 

(Figure 6-IIIE). We also observed a significant relationship between membrane polarization and 

permeability in this condition. 

Butanol and isobutanol are isomers with different membrane effects (Huffer et al., 2011) 

therefore membrane design strategies should consider these differences. In the presence of 

isobutanol, there were no significant correlations observed for membrane properties or growth, 

all significant correlations were between lipid metrics. Contrastingly, for butanol, significant 

correlations were observed between hydrophobicity and: polarization, permeability and growth 

(Figure 6-IIIF,G). This difference suggests that butanol has an effect on non-lipidic elements of 

the cell membrane not quantified here. Such non-lipidic elements could be phospholipid head 

groups, peripheral and transmembrane proteins, and/or the polymeric matrix. These results also 

suggest that membrane engineering strategies that target hydrophobicity could be effective for 

improving the performance of butanol producers, but not isobutanol producers. These differing 

results highlight the need for careful consideration of the condition of interest when designing a 

membrane engineering strategy. 

Membrane hydrophobicity was the outcome that showed the most connections with either 

lipid metrics or with other physical membrane properties, including all tested straight-chain 

alcohols (Figure 6-III). Interestingly, hydrophobicity and polarization were significantly 

correlated in the presence of both butanol and hexanol, but in opposite directions (R2 = - 0.55 

and 0.62, respectively). Together, these data further emphasize that membrane hydrophobicity is 

a critical membrane property, and that the L/nL ratio, and possibly to a lesser degree the average 

lipid length, are knobs that can be adjusted in order to tune this property. This again 
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demonstrates that the design of membrane engineering strategies needs to be carefully tailored to 

the condition of interest. 

  The absence of significant correlations in some conditions can challenge current notions 

about the effect of some stressors on the cell membrane. For example, the L/nL ratio should be 

inversely related to both the relative abundance of unsaturated lipids and cyclic lipids. However, 

this effect was dominated entirely by either cyclic lipids in some conditions or by unsaturated 

lipids in others (Figure 6-III).  

E. coli exposure to acidic media has been associated with increased expression of 

membrane-related genes, such as cyclopropane fatty acid synthase (Chang and Cronan, 1999). 

While acidification of the media (pH 6.00) had the expected impact on cyclic fatty acid content, 

we did not detect any correlations between this altered membrane lipid composition and the 

membrane physical properties (Figure 6-IIIH). This lack of changes indicates either that the 

membrane properties are relatively robust in this condition, or that alternative membrane targets 

besides membrane lipid composition should be used to tune acid tolerance. The fact that the 

global regulator RpoS has been previously implicated in the acid response (Chang and Cronan, 

1999) is consistent with mechanisms of inhibition distinct from the cell membrane.  

The analysis presented here focuses on characterization during mid-log growth. However, 

our method for tracking membrane permeability tracks the entire growth period (Figure S7) and 

membrane permeability has been previously reported to spike during lag phase, as cells adapt to 

the new culture media (Rolfe et al., 2012; Santoscoy and Jarboe, 2019). Acid tolerance is also 

known to depend on the adaptation of the cells to acidic environments during lag phase 

(Šeputienė et al., 2006). Consistent with previous reports, all of our strains in all of the culture 

conditions had higher membrane permeability during lag-phase relative to mid-log growth 

(Figure S7). The magnitude of this difference was notably smaller for the 42 °C condition 

relative to the other conditions.  

Membrane permeability is a classical membrane metric for development of robust 

microbial cell factories, largely due to the ease of measurement, and this property was reported 

to be related to tolerance and production of fatty acids (Santoscoy and Jarboe, 2019; Tan et al., 

2017a). However, membrane integrity did not correlate with growth in any of the inhibitory 

conditions, and we only observed a significant association of membrane lipid composition with 

membrane permeability during growth in the presence of acetate (Figure 6-IIIC). This is 
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consistent with the idea that membrane integrity is a function of additional membrane 

components, not just the lipid distribution. For example, specific lipoproteins were reported as 

essential to maintenance of membrane integrity across organisms (Kaplan et al., 2018; Ryan et 

al., 2010; Xie et al., 2016). 

Together these data demonstrate that perturbation of the fatty acids in the cell membrane 

had a different impact on membrane properties in different conditions. We identified correlations 

in each individual inhibitory condition and found that, in general, the L/nL ratio was the most 

predominant knob, impacting each of the three membrane physical properties, and the membrane 

hydrophobicity was the most frequently impacted outcome. 

 

3.7 Systematic analysis enabled identification of membrane metrics to predict cell growth 

in combined inhibitory conditions  

Our perturbation of membrane lipid metrics enabled identification of connections with 

membrane properties across a spectrum of individual inhibitory conditions, demonstrating the 

specificity of some of these connections to the relevant inhibitor. However, it is not clear how 

these inhibitor-specific connections interact in the presence of multiple inhibitors. It becomes 

increasingly resource-intensive to thoroughly characterize a set of strains across multiple 

combinations of inhibitors. Thus, it is desirable to use the single-condition data to predict the 

potential outcomes in the presence of multiple inhibitors, with the goal of down-selecting strains 

for experimental characterization.  

We used our systematic analysis of individual inhibitory conditions, membrane 

composition, properties, and growth to predict which knob/outcome connections are most active 

and are connected to microbial growth across 62 theoretical scenarios involving combinations of 

the individually characterized inhibitors (Figure 6). This prediction was based on summation of 

the Pearson correlation coefficients (Alexander, 1990). For each scenario, we identified the 

outcome (membrane property or specific growth rate) that is the most strongly correlated with 

one of the lipid knobs. We also identified the membrane lipid metric (level 2) or membrane 

property (level 3) that is the most strongly correlated to growth (level 4).  

This analysis led to the identification of clear design strategies for some conditions, but 

not others (Table S3). We down-selected the model results to those that show a continuity across 

lipid metric, membrane property and growth and based on the confidence interval of the 
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predicted correlation coefficient (Table 2). For five of these seven scenarios, some lipid knob 

(level 2) is predicted to be significantly correlated with a membrane property (level 3) and that 

same membrane property is predicted to be significantly correlated with growth rate (level 4). In 

all of these five cases, the membrane property is hydrophobicity, and it should be noted that each 

of these five scenarios involves elevated temperature as one of the stressors. For the other two 

scenarios, a lipid knob (specifically, average lipid length) is significantly correlated with both a 

membrane property and growth.  

 

3.8 Membrane properties in combined conditions can be predicted from lipid metrics  

For experimental validation of these predictions, we chose the triple scenario with higher 

temperature (42 ºC) in the presence of furfural and ethanol. This theoretical scenario had 

moderately high combined correlation coefficients for the L/nL ratio modulating membrane 

hydrophobicity, with membrane hydrophobicity in turn modulating growth rate (Table 2). We 

also chose to partially characterize the scenario with acetate and hexanol because it had the 

highest combined correlation coefficient (0.70) of lipid metrics, specifically average lipid length, 

modulating a membrane physical property, specifically membrane hydrophobicity, across all 

hypothetical scenarios (Table S3). Note that in this scenario hydrophobicity was not predicted to 

impact growth and thus it is not listed in Table 2. The full results of these experiments are 

provided in supplementary information (Figure S9). We observed that the predicted lipid metrics 

(knobs) were efficacious predictors of the membrane properties (outcomes) for the two selected 

combined scenarios.   

Experimental measurements of the membrane hydrophobicities in these two multi-

stressor conditions were found to more strongly correlate with the values of the corresponding 

lipid knobs than to the membrane hydrophobicities from the single-inhibitor experiments. In the 

triple condition with ethanol, furfural and elevated temperature, the sum of squared errors (SSE) 

when the L/nL ratio was utilized as predictor of the membrane hydrophobicity, was lower than 

the SSE from using the single-condition hydrophobicity values. Similarly, the average lipid 

length was a better predictor of membrane hydrophobicity in the presence of acetate and 

hexanol. Thus, in both of these scenarios, the use of the lipid metric knob to predict the 

hydrophobicity in the multi-stressor condition was better than the use of the hydrophobicity in 

the single inhibitor condition. 
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We also compared the performance of these lipid knobs to a series of sham randomized 

metrics and determined that our use of the individual L/nL values to predict the membrane 

hydrophobicity in the triple scenario had a significantly lower average absolute difference than 

this random population (p = 0.031). For the acetate/hexanol condition, the use of the lipid length 

as the predictor was not significantly better than the random predictions (p = 0.4). 

These results highlight the relevance of using a systematic approach to identify lipid 

metrics that correspond to specific membrane properties. This identification of a knob-outcome 

connection can be utilized in strain design and can guide the prioritization of strains for 

experimental characterization, possibly increasing the efficiency of the build-test-learn 

component of the design-build-test-learn cycle.  

 

3.9 Biocatalyst performance can be predicted from membrane properties  

The results above demonstrate that lipid characteristics (level 2) measured in the presence 

of individual stressors significantly correlate with membrane properties (level 3) in the presence 

of a combination of those stressors. Ultimately, the goal here is to identify membrane metrics 

that can be used as engineering targets to improve microbial robustness in the form of microbial 

growth and/or metabolite production (level 4).  

The systematic framework demonstrated here predicts that hydrophobicity is an 

alternative metric for metabolic activity, in the form of specific growth rate, in the triple 

condition of 42°C, ethanol and furfural (Table 2). We experimentally measured the growth rate in 

the triple inhibitor scenario and verified its significant correlation with the membrane 

hydrophobicity (R2 = 0.47, p<0.05) (Figure 7A). The metabolic activity was also assessed in the 

form of ethanol production in minimal media with furfural at 42 °C. Ethanol titers were observed 

to significantly correlate with membrane hydrophobicity (R2 = 0.43, p<0.05, SSE=0.72) but not 

with specific growth rate (Figure 7C). Other metrics to determine robustness, such as cell 

viability determined by fluorescent dyes did not correlate either to ethanol productivity or to 

membrane hydrophobicity (Figure S10). Thus, screening the library on the basis of growth with 

the goal of down-selecting for ethanol production would not be successful, but screening the 

library on the basis of hydrophobicity would. These results show the success of this experimental 

framework.  

 



27 

 

3.10 Potential Applications 

Implementation of metabolic engineering strategies often involves the construction of a 

strain library, where this library either consists of multiple distinct genetically homogenous 

strains or is a heterogenous mixture, such as genome-scale libraries. Screening of either type of 

library directly for metabolite production can be challenging and resource intensive. Growth is 

often used as a proxy of metabolic activity, particularly in the context of maintenance of redox 

balance or ATP production. For example, a library of 243 strains engineered for isobutanol 

production were down-selected on the basis of colony size (Ghosh et al., 2019). Other strategies 

for reducing the experimental burden in library down-selection include statistically guided sub-

sampling (Young et al., 2018), and use of colorimetric assays, often involving biosensors (Scheel 

and Lütke-Eversloh, 2013). 

Membrane properties may be linked to metabolic activity and could be more readily 

measured or assessed than metabolite productivity. The straightforward nature and accessibility 

of the hydrophobicity and permeability assays are especially appealing, and both of these assays 

could be used as selection methods for a heterogenous population, similar to the enrichment of 

lipid-producing strains based on their propensity for floating (Liu et al., 2015). 

 The calculation of growth rate for multiple strains and conditions is manageable at small 

scale with high-throughput capabilities, but these growth rates often do not correspond to larger 

scales (Wehrs et al., 2019) and estimation of the growth rate and identification of the most robust 

strains at larger scales can be more resource intensive. Thus, the identification of microbial 

properties other than growth that are related to metabolic activity provide an alternative metric 

that may be more robust across conditions, in terms of media composition and working volume. 

Also, some research groups do not have the capacity, either at the level of researcher time/effort 

and/or funding to support comprehensive tracking of metabolite productivity for a large library. 

Identification of alternative metrics associated with metabolite productivity can possibly be 

beneficial in reducing the experimental burden. Assessment of membrane properties, such as 

hydrophobicity, can often be performed with a single sampling of mid-log growth, as opposed to 

the multiple samplings needed for estimates of metabolite productivity or growth rate.  

Together these data highlight the relevance of assessing and identifying impactful membrane 

physical properties to predict metabolic activity and cell performance. We envision that rigorous 

experimental characterization of membrane metrics, and a systematic approach for data analysis 
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can contribute to identification of membrane physical properties that can be used as either 

engineering targets or as markers for selection or screening.   
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4. CONCLUDING REMARKS  

Biocatalysts are exposed to a plethora of stimuli that perturb the cell membrane. The self-

regulating mechanisms that cells use to survive in harsh conditions can be viewed as a response 

network of knobs and outcomes, culminating in the metabolic activity of the organism, 

demonstrated with growth and metabolite production. The network that governs this regulation is 

an attractive tool for incorporation into the design-build-test-learn metabolic engineering cycle, 

but such use of this network requires knowledge of its structure. 

The use of different promoters to drive expression of des, fabA and fabB resulted in a set 

of strains with altered membrane fatty acid compositions. The percentage of unsaturation, 

abundance of cyclic rings, lipid length, and L/nL ratio were used as metrics to quantify the 

membrane lipid composition and these cells were characterized in terms of their membrane 

hydrophobicity, fluidity (DPH polarization) and integrity (permeability).  

Exposure of this set of strains to various inhibitory conditions and the rigorous 

experimental characterization of their membrane metrics produced inhibitor-dependent ranges of 

values for each membrane metric (Figure 5). We employed a systematic approach for mapping 

the response network of knobs and outcomes for individual inhibitors (Figure 6). This analysis 

enabled the prediction of lipid metrics that could be utilized as knobs to modulate specific 

outcomes (i.e., membrane properties and cell growth) in 62 theoretical scenarios with two or 

more stressors (Table S3). 

The experimental validation of this approach in the triple condition of minimal media at 

42 °C, furfural and ethanol showed that the newly defined ratio of linear to non-linear fatty acids 

(L/nL ratio) predicted the experimental membrane hydrophobicity (Figure S9). Likewise, the 

membrane hydrophobicity in this combined condition was demonstrated to be a reliable proxy 

for metabolic activity, in the form of cell growth and ethanol production in the combined 

inhibitory condition (Figure 7). The identification of lipid metric knobs to modulate membrane 

physical properties that impact metabolic activity can enable the prioritization of strains for 

characterization and also provide a possible selectable marker or proxy for metabolic activity. 

This can be useful when labs have limited resources and in the responsible execution of research 

funding. 

The previous titration of fabB with inducible promoters showed the physiological 

relevance of unsaturated fatty acids in the cell membrane (Budin et al., 2018). The use of 
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inducible promoters in this prior study allowed for a carefully controlled set of experimental 

data, but the constitutive and varying strength promoters utilized in the work described here do 

not require the use of inducers, which could be attractive for larger-scale fermentations. Also, 

our goal was to demonstrate the general framework of probing these networks, not the design of 

strains for industrial applications or characterizing the function of specific enzymes. 

This study was restricted to the membrane lipid composition and further analyses of other 

membrane elements that also might respond to stimuli and are important for membrane 

properties (e.g., phospholipid moieties, EPS content, outer membrane proteins, etc.) might enable 

additional layers for the prediction of metabolic activity.  

The assessment of membrane hydrophobicity and membrane integrity are both relatively 

simple. Additionally, the hydrophobicity assay and flow cytometry provide the opportunity to 

sort cells based on their membrane properties, suggesting that a membrane property-based 

selection could be used in library enrichment or adaptive evolution, even allowing the selection 

of cells with low growth rate. These qualities of the physical membrane properties relevant to 

cell growth can offer insight to the challenges experienced by metabolic engineers in terms of the 

observed variability of biocatalysts robustness depending on the scale, mode of operation, and 

the specific composition of the cultures.   

Among the three membrane physical properties used in our analysis, membrane 

hydrophobicity was strikingly impactful relative to membrane fluidity or integrity. This is 

consistent with previous studies (Chen et al., 2020) demonstrating the importance of this 

property, yet relatively few rational strategies for tuning hydrophobicity have been reported. 

Microbial hydrophobicity is also important in other areas such as biofilm formation and 

antimicrobial resistance where microbial adhesion to different surfaces and microbial 

proliferation is of interest.  
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7. FIGURE LEGENDS 

Figure 1. Modulation of membrane lipid composition as a strategy for engineering 

robustness. The wild-type cell membrane (left panel) is often damaged during growth in 

inhibitory conditions (inhibitors). These growth inhibitory conditions also perturb gene 

expression (level 1), which results in modification of the membrane lipid composition, which can 

be quantified and described with metrics such as the relative abundance of unsaturated lipids 

(level 2), and with direct measurements of membrane physical properties (level 3). These 

changes and cell membrane responses occur in a fashion according to the chemistry of each 

compound and together they affect the overall health and metabolic activity of the organism, 

reflected in its growth and productivity (level 4). (Right) The expression tuning of previously 

reported genes for modulating the abundance of lipids with unsaturated acyl chains (fabA, fabB 

and des) is expected to produce a range of membrane compositions in the presence of various 

microbial inhibitors. This perturbation of membrane lipid parameters can be viewed as the 

turning of “knobs” in order to implement a change in “output” signals such as membrane 

properties, with the goal of improving growth and productivity.  

 

Figure 2. Altered expression of des, fabB and fabA impacts membrane lipid composition in 

the baseline condition. Each gene was expressed under the control of three different promoters. 

From the weakest to the strongest, M1-12, M1-37 and M1-93 promoters were used for each of 

the three enzymes, resulting in nine engineered strains. For example, the M1-12-des construct is 

referred to as des12. (A) The relative abundance of unsaturated fatty acids increased compared to 

the control strain in five out of nine engineered strains. (B) Altered expression of des, fabB and 

fabA also impacted the average lipid length and (C) the relative abundance of cyclic fatty acids. 

(D) The ratio of linear chain fatty acids relative to the non-linear chain fatty acids in the cell 

membrane (L/nL ratio) also varied. Membrane physical properties are shown in Figure S4. 

All cells were grown in MOPS 2.0 w/v% dextrose at 37 ºC with shaking at 200 rpm and 

harvested during mid-log growth. All lipid metrics were calculated from the relative abundance 

of membrane fatty acids on a mass basis. All values are the average of three replicates with error 

bars indicating the standard deviation. Significant changes were determined relative to control 

strain (black) and are denoted as follows: *(p<0.05), **(p<0.01), ***(p<0.001).   
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Figure 3. Some lipid composition metrics show significant associations during growth in the 

baseline condition. (A) Correlation matrix showing the relationship between knobs (level 2: 

membrane lipid distribution) and outcomes (level 3: membrane physical properties and level 4: 

cell growth) across the set of ten strains in the baseline condition. The numerical values are the 

correlation coefficients (R2), with red shading indicating positive correlation and blue shading 

indicating negative correlation. Those shown in bold rectangles were found to be not random 

(p<0.05). (B) Significant correlation of the L/nL ratio and the average lipid length.  

All data points and values represent the average of three biological replicates and the percentage 

of the coefficient of variation was less than 10% for all samples. All strains were grown in 

MOPS 2% w/v dextrose at 37 C. 

 

Figure 4. Perturbation of membrane lipid distribution impacts specific growth rate during 

challenge with industrially relevant cell growth inhibitors. The majority of the nine 

engineered strains showed increased tolerance for (A) high temperature (42 °C) and (B) furfural. 

However, only a few strains showed tolerance towards (C) acetate, (D) acidified media (pH 

6.00), (E) ethanol, or (F) butanol. None of the strains showed tolerance or sensitivity to the other 

two tested conditions ((G) isobutanol and (H) hexanol). Concentrations of alcohols are expressed 

as a percentage of the volume of alcohol relative to volume of culture media. 

All values are the average of three replicates with error bars indicating the standard deviation. 

Significant changes relative to control strain (black) are denoted as follows: *(p<0.05), 

**(p<0.01), ***(p<0.001).  

 

Figure 5. Perturbed expression of des, fabA and fabB has an inhibitor-dependent impact on 

the membrane lipid composition and membrane properties. Membrane lipid metrics (knobs, 

top panel) and membrane properties (outcomes, bottom panel) were determined for each strain 

and the range of values is shown as a whisker plot. The control strain is shown as a red bar. 

Knobs: (A) the levels of unsaturation, (B) lipid lengths, (C) abundance of cyclic rings in the cell 

membrane, and (D) ratio of linear and non-linear acyl chains. Outcomes: (E) hydrophobicity, (F) 

membrane DPH polarization, (G) permeability. Depending on the culture condition, different 

ranges for each membrane metric were observed. Symbol (+) in furfural condition indicates that 

strains fabB93 and fabA93 are not shown in this plot for this condition. The data for these strains 
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can be found in Figure S6. Whisker plots were constructed with the average of three biological 

replicates for each strain in each condition, with a percentage coefficient of variation of less than 

10% for all samples. Whiskers indicate the strain with the minimum and the maximum value for 

each condition, and the shaded box depicts the values between the lower (Q2) and the upper (Q3) 

quartiles of the ranges. Only strains with values outside Q2 and Q3 quartiles are color coded, 

using the color scheme established in Figure 2, with blue for des strains, orange for fabB strains, 

green for fabA strains and the intensity of the color increasing with promoter strength from 12 to 

37 to 93.  

 

Figure 6. Systematic characterization of knobs and outcomes enabled generation of overall 

and individual-condition response networks and correlations.  

The modulated knobs (% U: percentage of unsaturated fatty acids, LL: lipid length, %C: 

percentage of cyclic rings, and L/nL: ratio of linear and non-linear fatty acids) and outcomes 

(PL: polarization, HP: hydrophobicity, PM: permeability, and growth) showed different 

correlations for the overall and inhibitor-specific conditions. The numerical values are 

correlation coefficients (R2), with significant correlations shown in a bold black square. Lines are 

shown in color only for significant connections, based on non-random linear regression. Red 

lines indicate positive correlation and blue lines indicate negative correlation. 

(I) A general response network was generated using the data from all of the tested individual 

inhibitory conditions.  

(II) Each inhibitor also had specific responses and correlations between knobs and outcomes. 

The convention for letter coding for each inhibitor was previously introduced in Figure 4. The 

thickness of the lines represents the number of conditions in which the significant correlation 

was observed. 

(III) The correlation coefficients varied across individual inhibitors, with some conditions 

producing stronger or weaker connections between knobs and outcomes.   
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Figure 7. Membrane hydrophobicity is a significant predictor of strain performance 

Membrane hydrophobicity and specific growth rates of the strains were assessed in the combined 

condition of 2.5 mM furfural and 2% v/v ethanol at 42 °C. Ethanol production was determined 

when the set of strains harboring the pKS13 plasmid were cultured for 24 h in the baseline 

condition with 5 mM furfural at 42 °C. 

(A) The experimental membrane hydrophobicity in the triple condition significantly (p<0.05) 

correlated with growth rates in the triple condition. (B) The experimental membrane 

hydrophobicity in the triple inhibitory condition significantly correlated to ethanol productivity 

in combined condition with 5mM furfural at 42 C. (C) Specific growth rates in the triple 

condition did not correspond to ethanol productivity.  

All data points represent the average of three biological replicates, and the error bars indicate the 

standard deviations. Strains are color coded as in Figure 2.   
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Table 1. Strains and plasmids utilized in this study. The numerical designations correspond to 

the promoters used to express the target gene. 

Strains Genotype  Reference  

MG1655 (WT) F- lambda- ilvG- rfb-50 rph-A Jarboe’s Lab 

Control MG1655, ΔldhA::FRT-cat-FRT, Cm+ (Tan et al., 2016) 

FabA: -hydroxyacyl-ACP dehydratase/isomerase  

fabA12 MG1655, ΔldhA::M1-12-fabA-FRT-cat-FRT-bc1, Cm+ This study 

fabA37 MG1655, ΔldhA::M1-37-fabA-FRT-cat-FRT-bc2, Cm+ This study 

fabA93 MG1655, ΔldhA::M1-93-fabA-FRT-cat-FRT-bc3, Cm+ This study 

FabB: -ketoacyl-ACP synthase I 

fabB12 MG1655, ΔldhA::M1-12-fabB-FRT-cat-FRT-bc4, Cm+ This study 

fabB37 MG1655, ΔldhA::M1-37-fabB-FRT-cat-FRT-bc5, Cm+ This study 

fabB93 MG1655, ΔldhA::M1-93-fabB-FRT-cat-FRT-bc6, Cm+ This study 

Des: B. subtilis fatty acid desaturase 

des12 MG1655, ΔldhA::M1-12-des-FRT-cat-FRT-bc7,Cm+ This study 

des37 MG1655, ΔldhA::M1-37-des-FRT-cat-FRT-bc8, Cm+ This study 

des93 MG1655, ΔldhA::M1-93-des-FRT-cat-FRT-bc9, Cm+ This study 

Plasmid pKS13 PBBR vector backbone, pdc, adhB, Tet+    

PDC: Zymomonas mobilis pyruvate decarboxylase (pdc) 

ADH2: Z. mobilis alcohol dehydrogenase (adhB) 

(Steen et al., 2010) 
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Table 2. Theoretical combined correlation coefficients of membrane metrics and cell 

growth rate in selected hypothetical multi-stressor scenarios. Results are shown only for 

scenarios in which there is continuity between membrane metrics predicted to impact cell growth 

and the confidence interval (standard deviation) of the calculated correlation coefficient is fully 

negative or fully positive. Full results of the 62 scenarios are given in Table S3. Color coding 

indicates the sign and the magnitude of the calculated combined correlation coefficients. 

Scenarios are presented in order of the two combined correlation coefficients. Each individual 

inhibitor is represented by a letter as in Figure 6: (A) 42 °C, (B) furfural, (C) acetate, (D) pH 6, 

(E) ethanol, (F) butanol, (G) isobutanol, and (H) hexanol. *Experimentally validated scenario.

Scenario 

Lipid 

metric 

(knob)

Membrane 

property 

(output)

Membrane 

metric to 

modulate 

growth

furfural, acetate               

(B, C)
LL PM 0.53 ± 0.06 LL 0.50 ± 0.06

*42 °C, furfural, ethanol     

(A, B, E)
L/nL 0.61 ± 0.03 HP 0.26 ± 0.05

furfural, acetate, hexanol 

(B, C, H)
LL -0.49 ± 0.26 LL 0.35 ± 0.21

42 °C, furfural                 

(A, B)
L/nL 0.61 ± 0.05 0.22 ± 0.00

42 °C, butanol                 

(A, F)
%U -0.34 ± 0.25 0.41 ± 0.23

42 °C, furfural, butanol     

(A, B, F)
L/nL 0.37 ± 0.34 0.34 ± 0.19

42 °C, acetate, isobutanol 

(A, C, G)
LL -0.44 ± 0.24 0.26 ± 0.24

Knobs Outcomes

%U PL

LL HP

%C PM

L/nL 

Combined 

correlation 

coefficient  

(L3)

Combined 

correlation 

coefficient  

(L4)

HP

HP

Summary of knobs and outcomes that likely modulate 

growth 

3

0

5

# of scenarios

1

3

0

# of scenarios

0
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8. SUPPLEMENTAL INFORMATION, FIGURES, TABLES AND METHODS 

 

Supplemental Information 

 
Experimental validation of selected lipid metrics to predict membrane hydrophobicity in 

multi-stressor conditions 

 In preparation for our experimental validation of the two selected combined conditions, 

we averaged the value of the relevant knob of each of the ten strains measured in each of the 

relevant individual inhibitory conditions. For example, for the 42ºC/furfural/ethanol condition, 

we averaged the individual L/nL values observed in the 42 ºC condition, the furfural condition 

and the ethanol condition. The average value for each strain was then normalized relative to the 

highest value within the strain set. Thus, each strain had a normalized average L/nL ratio for the 

triple condition and a normalized average lipid length for the acetate/hexanol condition, where 

these values were derived from the single-inhibitor experiments. 

 We then experimentally measured the membrane hydrophobicity for each of the ten 

strains in both of the scenarios with multiple stressors. This experimental data was normalized 

based on the highest observed value within the set of strains in that condition. It should be noted 

that the concentrations of furfural and ethanol were decreased by half with the goal of obtaining 

sufficient cell densities for experimental characterization. Thus, for the 42ºC/furfural/ethanol 

condition, each strain has an average normalized L/nL ratio and a normalized hydrophobicity 

that was directly determined by experimental characterization in the combined condition. For the 

acetate/hexanol condition, each strain similarly has an average normalized lipid length and 

normalized experimentally determined hydrophobicity. 

We then evaluated the success of this approach. For the triple condition, if the L/nL ratios 

from the individual conditions still corresponded to the membrane hydrophobicity, then the 

range and distribution of the calculated average normalized L/nL ratios should correspond to the 

experimentally measured normalized hydrophobicity values. The difference between the 

normalized L/nL and the hydrophobicity for each strain can be calculated. For example, a 

normalized L/nL ratio of 1.00 and a normalized hydrophobicity of 0.1 would have an absolute 

difference of 0.9. Strains in the triple scenario had absolute differences that varied from 0.016 to 

0.50, with an average value of 0.21 and sum of squared errors (SSE) of 0.74 when the 

normalized average L/nL ratio was utilized as predictor of the experimental normalized 

membrane hydrophobicity.  
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In the absence of the systematic approach used here, one might expect that the 

hydrophobicities in the individual condition could be used to predict the hydrophobicity in the 

triple condition. Thus, we performed similar calculations as described above, but replaced the 

L/nL ratio in the individual conditions with the hydrophobicity value. With this non-systematic 

approach, the average absolute difference was 0.30 and the SSE was 1.39, both of which are 

greater than the values observed using the L/nL ratio as the predictor (Figure S9 AB). This 

shows that the L/nL ratios from the single inhibitor experiments were better predictors of the 

hydrophobicity in the combined condition than the strain-specific hydrophobicities in the 

individual condition, emphasizing the utility of identifying the L/nL ratio-hydrophobicity 

connection.  

The acetate/hexanol scenario had differences that varied from 0.00 to 0.99, with an 

average of 0.35 and SSE of 1.89 when the lipid length was utilized as the predictor of the 

hydrophobicity (Figure S9 C). The use of the hydrophobicities from the individual conditions to 

predict the hydrophobicities in presence of both acetate and hexanol gave an average absolute 

difference of 0.47 and SSE of 3.08. Thus, in both of these scenarios, the use of the lipid metric 

knob to predict the hydrophobicity in the multi-stressor condition was better than the use of the 

hydrophobicity in the single inhibitor condition, as evidenced by both the average absolute 

difference and the SSE. 

To further validate the significance of these predictions, we performed a simulation in 

which the normalized hydrophobicity values were predicted 100 times based on randomly 

generated values between 0 and 1, with these random values serving as sham normalized metrics. 

For this simulation, the average absolute difference was 0.33, consistent with the known mean 

absolute difference of a continuous uniform distribution. Our use of the individual L/nL values to 

predict the membrane hydrophobicity in the triple scenario had a significantly lower average 

absolute difference than this random population (p = 0.031). This indicates that the L/nL ratios 

from the individual conditions, identified as the candidate knob based on the combined 

correlation coefficient, do correspond to the membrane hydrophobicity in the combined 

condition. For the acetate/hexanol condition, the use of the lipid length as the predictor was not 

significantly better than the random predictions (p = 0.4). 

These results highlight the relevance of using a systematic approach to identify lipid 

metrics from individual-inhibitor conditions that can alter specific membrane properties when 
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cells are cultured in combined inhibitory conditions. This identification of a knob-outcome 

connection can be utilized in strain design. In addition, the identification of the most promising 

lipid metric knob can also guide the prioritization of strains for characterization in a multi-

inhibitor condition, possibly increasing the efficiency of the build-test-learn component of the 

design-build-test-learn cycle.  

 

Supplemental Figures and Tables 

 
 

Figure S1. Viability assay correlated with membrane permeability assessment. These strains 

containing the pKS13 plasmid were cultured in 5 mM furfural at 42 C in MOPS 2% w/v 

dextrose pH 7.00. Higher percentages of live cells correspond to lower membrane permeability 

values. Strains were harvested at 24 h for both assays.  
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Figure S2. Membrane lipid composition of the control strain differs during growth in 

minimal and rich media. The control strain had higher abundance of unsaturated fatty acids, 

especially C18:1, when cultured in rich media relative to the baseline condition.  
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Figure S3. Total ion chromatograms of control, des93 and fabA12 strains. Engineered strain 

des93 (blue) showed a higher percentage of unsaturated fatty acids C16:1 and C18:1 relative to 

control (black) and fabA12 (red) strains when cultured in the baseline condition.  
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Figure S4. Membrane properties in the baseline condition. A) Membrane hydrophobicity was 

changed for the majority of strains. B) Membrane fluidity significantly decreased in the strains 

des93 and des12 despite their higher percentage of unsaturated fatty acids. C) Most strains 

showed altered membrane permeability. Strains fabB12 and fabB37 had orders of magnitude 

higher membrane permeability compared to control strain. Significant changes were relative to 

the control strain are denoted as follows: *(p<0.05), **(p<0.01), ***(p<0.001). 
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Figure S5. Percentage of change of the characterized membrane metrics for each type of 

engineered cell membrane during exposure to individual inhibitors relative to the baseline 

condition.  
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Figure S6. Membrane polarization in all inhibitory conditions. fabB93 and fabA93 showed a 

drastic decrease in membrane fluidity when cultured with 5 mM furfural. These two strains are 

not shown in the main text in order to better appreciate the changes in membrane fluidity caused 

by the other inhibitors. The correlation analyses considered all strains. 
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Figure S7. Membrane leakage shown by the perturbed membrane lipid composition set of 

strains when cultured in individual inhibitory conditions. Consistently, the strains faB12 and 

fabB37 had high membrane permeability values compared to the rest of strains. The correlation 

analysis considered only the mid-log data of all strains. The strains showed high membrane 

permeability during the lag phase across conditions. All strains had a normalized fluorescence 

higher than 104 in the lag phase. The 42 °C condition had the smallest decrease in membrane 

permeability during log phase relative to the lag-phase.  
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Figure S8. Output scores values for growth in combined condition with 2% v/v ethanol, 2.5 

mM furfural in minimal media at 42 °C. This is the same data that is presented in the main 

text, but it is presented in a different format here. 

(A) Specific growth rate values for each strain in each of the three individual conditions were 

averaged and normalized relative to the highest average value. (B) The membrane 

hydrophobicity value was measured for each strain in the combined culture condition and 

normalized. (C) The actual experimental growth rates of the set of E. coli strains cultured in the 

combined condition were normalized to the highest value producing the output scores. Note that 

the slowest-growing strain fabB12 also had the lowest membrane hydrophobicity and that, 

except for the control strain, the cluster of strains engineered with the Des enzyme produced the 

highest experimental output score for both membrane hydrophobicity B) and growth rate C).  
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Figure S9. Membrane lipid metrics from individual conditions can be used to estimate the 

experimental membrane properties in multi-stressor conditions. 

Membrane metrics from individual inhibitory conditions were utilized as predictors of 

experimental membrane hydrophobicity in combined inhibitory conditions based on the 

calculated combined correlation coefficients presented in Table 2.  

(A) The normalized average L/nL ratios from the individual conditions of minimal media at 42 

ºC, ethanol and furfural were utilized to estimate the normalized hydrophobicity measured for 

each strain (color coded dot) in the combined condition, with an average absolute difference 

(%∆̅̅̅̅̅) across the ten strains significantly lower (p = 0.03) than a random population. 
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(B) The use of the normalized average membrane hydrophobicities from the individual condition 

to estimate the normalized measured membrane hydrophobicity in the triple condition did not 

perform significantly better than a random population, with a (%∆̅̅̅̅̅) of 30.1. The sum of squared 

errors (SSE) also suggested that the L/nL ratio from individual conditions was more suitable than 

the membrane hydrophobicity from individual conditions to estimate the experimental membrane 

hydrophobicity in the combined triple condition. 

(C) For the scenario with acetate and hexanol, the use of the normalized average lipid length 

from the individual conditions to predict the normalized hydrophobicity in the combined 

conditions was not significantly better than the random population (%∆̅̅̅̅̅ = 34.8). But, had a lower 

error (SSE=1.89) relative to (D) the use of the average normalized hydrophobicity from the 

individual conditions to predict the experimental membrane hydrophobicity in the combined 

condition (SSE= 3.08).  

Each dot represents one strain, and the color code is the same as utilized in the main text. 
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Figure S10. Cell viability did not correlate with membrane hydrophobicity or ethanol 

production. (A) Set of engineered strains with altered membrane lipid composition harboring 

the pKS13 plasmid showed significant differences in ethanol production. (B) Set of ethanol 

producer strains showed different percentage of cell viability. (C) Cell viability of the producer 

strains did not correspond neither to the experimental membrane hydrophobicity in the combined 

condition nor to (D) ethanol production in presence of 5 mM furfural at 42 C in minimal media 

MOPS 2% w/v dextrose pH 7.00. Significant changes were determined relative to control strain 

(black) and are denoted as follows: *(p<0.05), **(p<0.001), ***(p<0.0001). 
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Table S1. List of primers utilized for constructing set of E. coli strains utilized in this study.  

#  Sequence (5'-3') Note 

1 AAAAAATTAGCGCAAGAAGACAAAAATCACCTTGCGCTAATGCTCTGTTACAGTCAGGCATTCTTCCGCAGCTTC 
M1-12 

promoter  

2 AAATATTTTTAGTAGCTTAAATGTGATTCAACATCACTGGAGAAAGTCTTTTATCTCTGGCGGTGTTGAC 
M1-37 

promoter 

3 AAATATTTTTAGTAGCTTAAATGTGATTCAACATCACTGGAGAAAGTCTTTTATCTCTGGCGGTGTTGAC 
M1-93 

promoter  

4 GATTGCAGCATTACACGTCTTGAGC 

cat gene 

from pKD3 

plasmid    

5 TTGTGCATTCGAAACTTACTCTATGTGCGACTTACAGAGGTATTGACACTTAACGGCTGACATGG 

6 AACGTCGGATGCGACGCTGGCGCGTCTACTCCGACCTACTGCGAATAGATTGCAGCATTACACGTC 

7 GGACCATGGCTAATTCCCATGGATCCGAGGTTTCGCCTTTTGATAC 

8 AAATATTTTTAGTAGCTTAAATGTGATTCAACATCACTGGAGAAAGTCTTTTATCTCTGGCGGTGTTGAC 

9 TCTGATTATAATCAGACAGAGTATCAAAAGGCGAAACCTCCACTTAACGGCTGACATGGG 

10 TATAATCAGACAGAGTATCAAAAGGCGAAACCTCGGATCCATGGGAATTAGCCATGGTCC 

11 ACCCCTAATAGACTTAGTCGAGGGGACCTTACGTCCCCTCGCCGTTCTAgtgtaggctggagctgcttc 

12 TTAGCGCAAGGTGATTTTTGTCTTCTTGCGCTAATTTTTTCACTTAACGGCTGACATGGG 

fabA12  

13 AGTCAGGAATTCTCATCGAATTTACACTAAGTTGTAGTGACCTCTTTCAGAATTTATCTCTGGCGGTGTTGAC 

14 CCCTTTTGGTGCGTCAGTCAGTTTAAACCAGGAAACAGCTATGGTAGATAAACGCGAATC 

15 AGGTCTTCTTTTGTATAGGATTCGCGTTTATCTACCATAGCTGTTTCCTGGTTTAAACTG 

16 CATATGGACCATGGCTAATTCCCATGTCAGCCGTTAAGTGGAGGTTTCGCCTTTTGATAC 

17 AGAGACCTCGTGTGCTACACAATTACCATAAGATTGCAGCATTACACGTC 

18 TATTCCGAAGTTCCTATTCTCTAGAAAGTATAGGAACTTCGAAGCAGCTCCAGCCTACAC 

19 TAAGAATAGAGGATGAAAGGTCATTGGGGATTATCTGAATCAGCTCCCC 

20 AGTCAGGAATTCTCATCG 

21 ACCCCTAATAGACTTAGTCG 

22 TCTCTCTGGAAGGTCTGACC 

23 GGGGATTATCTGAATCAGCTCC 

24 ATGAAACGTGCAGTGATTAC 
fabB gene 

25 AATTTAATCTTTCAGCTTGCGC 

26 CCAGAGGCAAGAAGGTCTTCTTTTGTATAGGATTCGCGTTTATCTACCATAGCTGTTTCCTGGTTTAAAC 

fabA37  
27 CACTGGCTCGTAATTTATTGTTTAAACCAGGAAACAGCTATGGTAGATAAACGCGAATCC 

28 TACGACTCACTATAGGGAGAGTGCAACATTGATAGATGGCAGAGACCTCGTGTGCTACAC 

29 GTGTAGCACACGAGGTCTCTGCCATCTATCAATGTTGCACTCTCCCTATAGTGAGTCGTA 

30 CCAGAGGCAAGAAGGTCTTCTTTTGTATAGGATTCGCGTTTATCTACCATAGCTGTTTCCTGGTTTAAAC 

fabA93  
31 CCGTATTGTTAGCATGTACGTTTAAACCAGGAAACAGCTATGGTAGATAAACGCGAATCC 

32 TACGACTCACTATAGGGAGAAGCGCCGCGTGAGACAATATAGAGACCTCGTGTGCTACAC 

33 GTGTAGCACACGAGGTCTCTATATTGTCTCACGCGGCGCTTCTCCCTATAGTGAGTCGTA 

34 GCTTTGTCAGCTGTTTTTGTTTATGTGCAATGGTTTGTTCAGTCATAGCTGTTTCCTGGTTTAAACTGAC 

des12 
35 CCCTTTTGGTGCGTCAGTCAGTTTAAACCAGGAAACAGCTATGACTGAACAAACCATTGCACATAAAC 

36 TACGACTCACTATAGGGAGAAGCGGTACTGAGGTATCATTAGAGACCTCGTGTGCTACAC 

37 CGAGGTCTCTAATGATACCTCAGTACCGCTTCTCCCTATAGTGAGTCGTA 

38 ACTTGCTTTGTCAGCTGTTTTTGTTTATGTGCAATGGTTTGTTCAGTCATAGCTGTTTCCTGGTTTAAAC des37 
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39 CCACTGGCTCGTAATTTATTGTTTAAACCAGGAAACAGCTATGACTGAACAAACCATTGC 

40 CTACGACTCACTATAGGGAGACTTCACAGGCTGGTGTACGTAGAGACCTCGTGTGCTACA 

41 TGTAGCACACGAGGTCTCTACGTACACCAGCCTGTGAAGTCTCCCTATAGTGAGTCGTAG 

42 CTTGCTTTGTCAGCTGTTTTTGTTTATGTGCAATGGTTTGTTCAGTCATAGCTGTTTCCTGGTTTAAACG 

des93 
43 CCCGTATTGTTAGCATGTACGTTTAAACCAGGAAACAGCTATGACTGAACAAACCATTGC 

44 CTACGACTCACTATAGGGAGATGTGAGCTTGTTACTACGGCAGAGACCTCGTGTGCTACA 

45 TGTAGCACACGAGGTCTCTGCCGTAGTAACAAGCTCACATCTCCCTATAGTGAGTCGTAG 

46 TTACCGATGCTGGAAACAATGCCCAGGCCAGTAATCACTGCACGTTTCATAGCTGTTTCCTGGTTTAAAC 

fabB12 

47 CCCTTTTGGTGCGTCAGTCAGTTTAAACCAGGAAACAGCTATGAAACGTGCAGTGATTACTGGCCTG 

48 CATATGGACCATGGCTAATTCCCATGTCAGCCGTTAAGTGTGCGACGCTGGCGCGTCTAC 

49 TTAATTCGCAGTAGGTCGGAGTAGACGCGCCAGCGTCGCACACTTAACGGCTGACATGGG 

50 TACGACTCACTATAGGGAGACCTATACCTTACAACTGAGGAGAGACCTCGTGTGCTACAC 

51 GTGTAGCACACGAGGTCTCTCCTCAGTTGTAAGGTATAGGTCTCCCTATAGTGAGTCGTA 

52 TTACCGATGCTGGAAACAATGCCCAGGCCAGTAATCACTGCACGTTTCATAGCTGTTTCCTGGTTTAAAC 

fabB37 
53 AGCCACTGGCTCGTAATTTATTGTTTAAACCAGGAAACAGCTATGAAACGTGCAGTGATTACTGG 

54 TACGACTCACTATAGGGAGAAGTTCCGTGAGCGGCAATCAAGAGACCTCGTGTGCTACAC 

55 GTGTAGCACACGAGGTCTCTTGATTGCCGCTCACGGAACTTCTCCCTATAGTGAGTCGTA 

56 TTACCGATGCTGGAAACAATGCCCAGGCCAGTAATCACTGCACGTTTCATAGCTGTTTCCTGGTTTAAAC 

fabB93 
57 AGCCCGTATTGTTAGCATGTACGTTTAAACCAGGAAACAGCTATGAAACGTGCAGTGATTACTGG 

58 TACGACTCACTATAGGGAGAGTCCTATCTTCGGGTCTGGAAGAGACCTCGTGTGCTACAC 

59 GTGTAGCACACGAGGTCTCTTCCAGACCCGAAGATAGGACTCTCCCTATAGTGAGTCGTA 

60 CAATATCGCCATAGCTTTCAATTAAATTTGAAATTTTGTAAAATATTTTTAGTAGCTTAAATGT 

confirm 

ldhA 

replacement 

61 ATTGTGGTTCTCAATTACAGTTTCTGACTCAGGACTATTTTAAGAATAGAGGATGAAAGG 

62 CAACATCACTGGAGAAAGTC 

63 TAAGAATAGAGGATGAAAGGTC 

64 CAGCCTACGACTCACTATAG 
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Table S2. Fold change of each membrane metric for the control strain relative to the 

baseline condition. This is the same data indicated by the red bars in Figure 5 but presented in a 

different form. The exposure of the control strain to (A) 42 C, (B) Furfural, (C) Acetate, (D) pH 

6, (E) Ethanol, (F) Butanol, (G) Isobutanol, or (H) Hexanol caused different fold-changes 

relative to the baseline condition for each membrane metric. Depending on the inhibitory 

condition, different membrane metrics in the control strain were altered. The percentage of 

unsaturated fatty acids was changed from 0 to 6-fold when the control strain was culture with 

either acetate or hexanol, respectively. Overall, the other membrane metrics did not have changes 

greater than 3-fold and in most cases, the inhibitors cause small change on the metrics relative to 

baseline condition.  

 A B C D E F G H 

% Unsaturated FA 3.86 4.53 0.04 -0.58 2.58 4.86 2.91 6.08 

Lipid length 0.03 0.02 0.02 0.00 0.00 0.02 0.02 0.02 

Cyclic rings 0.00 -0.70 0.75 0.26 -0.43 -0.40 -0.12 -0.66 

L/nL ratio -0.58 -0.34 -0.50 -0.11 -0.19 -0.52 -0.44 -0.54 

Hydrophobicity 1.95 0.00 -0.61 1.56 -1.04 -2.32 -1.00 0.64 

Polarization -0.08 0.18 -0.17 0.10 0.04 0.15 0.91 -0.09 

Permeability 3.82 -0.75 0.43 0.52 -0.24 0.40 0.41 2.27 
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Table S3. Selected combined correlation coefficients for modulating membrane properties 

and growth in hypothetical combined scenarios. Each individual condition was assigned to a 

letter as follows: (A) 42 °C, (B) furfural, (C) acetate, (D) pH 6, (E) ethanol, (F) butanol, (G) 

isobutanol, and (H) hexanol. Each membrane lipid metric (LL: Lipid Length, %U: percentage of 

unsaturated fatty acids, %C: percentage of cyclic rings, and L/nL: ratio of linear relative to non-

linear fatty acids) correlated with a membrane property (HP: Hydrophobicity, PL: Fluidity, and 

PM: Permeability) depending on the scenario (Level 3 modulation, L3). Likewise, measurement 

of membrane properties can be suitable to predict growth from several potential combined 

scenarios (Level 4 modulation, L4). Experimentally validated scenarios to predict membrane 

properties (L3*), and growth (L3, L4**) are shown in red boxes. Several scenarios showed 

similar or higher combined correlation coefficients than the experimentally validated combined 

conditions.  

 

Number Scenario  

Lipid 

metric 

(knob) 

Membrane 

property 

(output) 

Likelihood 

index (L3) 

Membrane 

property to 

modulate 

growth 

Likelihood 

index (L4) 

1 A,B L/nL PL 0.61 HP 0.23 

2 A,C LL HP 0.62 HP 0.29 

3 A,D L/nL HP 0.43 HP 0.13 

4 A,E L/nL HP 0.63 HP 0.28 

5 A,F %U HP 0.35 PL 0.43 

6 A,G L/nL  PL 0.51 HP 0.28 

7 A,H %U PL 0.66 HP 0.12 

8 B,C LL PM 0.54 HP 0.38 

9 B,D LL PM 0.43 PL or HP 0.13 

10 B,E L/nL HP 0.59 HP 0.27 

11 B,F LL PM 0.39 PL 0.42 

12 B,G LL PM 0.31 HP 0.39 

13 B,H L/nL HP 0.49 PL 0.13 

14 C,D %U PL 0.43 PL 0.26 

15 C,E L/nL PM 0.47 HP 0.33 

16 C,F %U PL 0.58 PL 0.33 

17 C,G L/nL PM 0.59 PL 0.30 

18* C,H LL HP 0.70 PL 0.26 

19 D,E LL HP 0.47 PM 0.23 
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20 D,F LL HP 0.35 HP 0.31 

21 D,G %C PL 0.26 HP 0.28 

22 D,H %U PL 0.35 HP 0.22 

23 A,B,C LL HP 0.47 PL 0.27 

24 A,B,D L/nL HP 0.48 HP 0.15 

25** A,B,E L/nL HP 0.61 HP 0.26 

26 A,B,F L/nL HP 0.41 PL 0.36 

27 A,B,G L/nL PL 0.41 HP 0.34 

28 A,B,H %U PL 0.55 HP 0.15 

29 A,C,E L/nL HP 0.42 HP 0.24 

30 A,C,F LL HP 0.41 HP 0.30 

31 A,C,G LL HP 0.46 HP 0.28 

32 A,C,H LL HP 0.64 PL 0.19 

33 A,D,E L/nL HP 0.49 HP 0.18 

34 A,D,F L/nL HP 0.29 PL 0.28 

35 A,D,G L/nL PL 0.38 HP 0.26 

36 A,D,H %U PL 0.46 HP 0.15 

37 B,C,D LL PM 0.45 PL 0.25 

38 B,C,E L/nL HP 0.39 HP 0.30 

39 B,C,F LL PM 0.42 HP 0.29 

40 B,C,G %C PM 0.43 HP 0.27 

41 B,C,H LL HP 0.52 PL 0.25 

42 B,D,E L/nL HP 0.46 HP 0.18 

43 B,D,F LL PM 0.35 HP 0.28 

44 B,D,G LL PM 0.30 HP 0.26 

45 B,D,H L/nL HP 0.39 HP 0.15 

46 C,D,E LL HP 0.31 PL 0.22 

47 C,D,F %U PL 0.39 HP 0.22 

48 C,D,G %U PL 0.39 HP 0.20 

49 C,D,H LL HP 0.47 PL 0.17 

50 A,B,C,D L/nL HP 0.36 PL 0.21 

51 A,B,C,E L/nL HP 0.46 PL 0.24 

52 A,B,C,F LL HP 0.35 HP 0.28 

53 A,B,C,G LL HP 0.39 HP 0.26 

54 A,B,C,H LL HP 0.52 PL 0.21 

55 B,C,D,E L/nL HP 0.35 PL 0.23 

56 B,C,D,F LL PM 0.39 HP 0.22 

57 B,C,D,G LL PM 0.35 HP 0.20 

58 B,C,D,H LL HP 0.39 PL 0.19 

59 A,B,C,D,E L/nL HP 0.41 PL 0.19 
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60 A,B,C,D,F LL PM 0.31 HP 0.22 

61 A,B,C,D,G L/nL PL 0.33 HP 0.21 

62 A,B,C,D,H LL HP 0.42 PL 0.16 

 

 

Supplemental Methods 
Furfural concentration measurements  

  Furfural concentration was estimated according to the previously reported 

spectrophotometric method (Martinez et al., 2000).  

 

Ethanol quantification by GC-FID 

One milliliter of fermentation broth was centrifuged 3 min at 15 000g. The supernatant 

was collected and filtered with a syringe filter (0.45µm). Filtered volume was run through an 

Agilent CP8553 column (15 m, 320 µm, 0.5 µm) with a flow rate of 5 mL/min, initial 

temperature of 35C, temperature range of 265 C, and pressure of 10.747 psi. Ethanol retention 

time (5.40 min) was determined with external standards which were run in the same batch as the 

samples and utilized to quantify ethanol for all analyzed samples.  

 

Membrane lipid composition  

Cultures growing at mid-log phase were centrifuged for 10 min at 4000 rpm (TX-1000 

swinging bucket rotor) and 4 °C. Cell pellets were washed twice with 20 ml ice-cold sterile 

nanopure water, 6 ml of methanol were added to each washed pellet, the solution was gently 

mixed using a micropipette, and 1.4 ml of homogenized cells in methanol was transferred to a 

glass tube for each technical replicate of the lipid extraction method. Cells were lysed by 

sonication three times utilizing an FS110H sonicator (Thermo Fisher, Rockford IL). Each 

sonication consisted of a 20 s period of burst and a 20 s period of cooling on ice. Twenty 

microliters of a previously prepared mixture of C11/C15 fatty acids at a concentration of 1µg/µl 

each dissolved in methanol were added to each glass tube and utilized as the internal standard. 

Lysed cells were incubated at 70 °C for 15 min and centrifuged at 4000 rpm (TX-1000 swinging 

bucket rotor) for 5 min. For each tube, the supernatant was transferred to a new glass tube 

containing 1.4 ml of nanopure water. Likewise, the cell pellet was dissolved in 750 µl 

chloroform and incubated at 37 °C for 5 min. Later, the supernatant with water solution was 

added back into the cell pellet solution with chloroform. The resultant solution was vigorously 
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mixed, utilizing a Multi-Tube vortex (Thermo Scientific, Waltham MA) set at 2500 rpm for 2 

min. The fatty acids interacted with aqueous and organic phases and migrated to the chloroform 

phase after homogenization and centrifugation at 3000 rpm (TX-1000 swinging bucket rotor) for 

5 min.  

Next, the extracted membrane fatty acids were derivatized into fatty acid methyl esters. 

For each tube, two milliliters of 1 N HCl in methanol were added to the extracted membrane 

fatty acids and incubated at 80 °C for 30 min. Two additional milliliters of 0.9% w/v NaCl, and 1 

ml hexane were added and vigorously mixed. The solution was centrifuged at 2000g for 2 min, 

and the upper hexane phase was subjected to GC-MS analyses in the ISU Keck Laboratory 

facility. GC-MS was performed with an HP5 MSI (30 m, 0.250 mm, 0.25 µm) column, on a 

780A gas chromatograph with a 5975C Agilent Mass Spectrophotometric Detector. Methanol 

and hexane were used as solvent washes solutions for the column at a flow rate of 300 µl/min. 

The oven of had an initial temperature of 50 °C with a rate of change of 25 °C/min. The 

equilibration time was 0.25 min, and the maximum temperature was 325 °C.  

The total ion chromatogram peak areas were used to determine the abundance for each 

type of derivatized membrane fatty acid relative to the known moles of exogenously added 

internal standard C11/C15. The molar distribution for each type of fatty acid was converted to 

mass distribution and this is the percentage of the membrane lipid composition reported in this 

study. GC/MSD ChemStation software was utilized to analyze chromatograms, and the NIST 

MS Search 2.0 library was employed to identify the fragmentation patterns for each molecule. 

Determination of the different fatty acids, including positional isomers, was assessed by 

comparing their retention times and mass spectra.  

 

Membrane fluidity  

Cell densities of mid-log phase cultures were adjusted to achieve OD550 = 1 in 1 ml. 

Specifically, cells were centrifuged in 1.5 ml Eppendorf microcentrifuge tubes at 3800 g for 6 

min. The cell pellet was washed twice with phosphate buffered saline (PBS) at pH 7.00 and 

resuspended in PBS to reach OD550 ~ 0.1. Each of the three biological replicates was divided into 

two technical replicates. 

The probe 1,6- diphenyl-1,3,5-hexatriene (DPH) dissolved in dimethylformamide (DMF) 

(Sigma, St. Louis) was added to a final concentration of 0.4 M to one of each of the two 
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technical replicates. Samples with and without DPH were incubated at 37 °C for 30 min and 200 

rpm. The temperature of incubation was set to 42 °C instead to 37 °C when testing membrane 

fluidity of cultures grown at the higher temperature. After incubation, all samples were 

centrifuged at 3800 g for 6 min and resuspended in 500 μl of fresh PBS. One hundred microliters 

of cells were then placed into a dark-bottom flat 96-well plate with three technical replicates for 

each sample. We utilized the ISU Keck Laboratory facility for assessing membrane polarization 

utilizing a Synergy 2 multi-Mode microplate reader from BioTeK. The utilized filters were 

360/40 nm and 460/40 nm for excitation and emission wavelengths, respectively. The excitation 

polarized filter was set in a vertical position while the emission polarized filter was set either in 

the vertical (IVV) or horizontal (IVH) position. These two values for IVV and IVH were calculated 

after the subtraction of the fluorescence values of the samples without DPH from the measured 

fluorescence values in samples with DPH. Thus, the fluorescence values as a consequence of 

only the DPH anisotropic probe were utilized for calculating the polarization ratio also known as 

the degree of fluorescence polarization.  

𝑃 =
𝐼𝑉𝑉 − 𝐼𝑉𝐻𝐺

𝐼𝑉𝑉 + 𝐼𝑉𝐻𝐺
 

Grating factor (G) was calculated as specified by BioTeK and was equal to G = 1.1  0.1. 

degree of fluorescence polarization in the intact cell membrane samples is inversely proportional 

to the cell membrane fluidity.  

Membrane integrity 

Seed cultures in MOPS 2% w/v dextrose were prepared as described for tolerance 

experiments. One hundred microliters of seed culture were centrifuged at 3800 g for 6 min, and 

cell pellets were washed once with 1 ml PBS. Cell suspensions were similarly centrifuged to 

form washed pellets. One milliliter of culture media with inhibitor was added to each washed 

pellet and gently mixed utilizing vortex. The volume from one tube was equally split into two 

tubes. One tube from each pair of replicates was treated with SYTOX Green to a final 

concentration of 5 M, and the chemical was gently mixed utilizing vortex. Two hundred 

microliters of cells with SYTOX Green were placed in a well of a dark-bottom flat 96-well plate. 

The plate was incubated inside a SynergyHT BioTek microplate reader for 15 h at 37 ºC and 307 

cpm. Bulk fluorescence measurements were recorded every 20 min utilizing a filter of 485/20 

nm and 516/20 nm for excitation and emission wavelengths, respectively. Fluorescence values 
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were obtained utilizing a gain value equal to 35 and the read height was 4.5 mm according to 

settings of SynergyHT BioTek microplate reader. Similarly, from the second tube of each 

replicate that does not contain SYTOX Green, two hundred microliters were placed in a well 

from a transparent bottom 96-well plate for measuring cell density (550 nm) every 20 min, for 15 

h at 37 ºC and 307 cpm in an Eon Biotek microplate reader. Normalized fluorescence values 

were calculated at the same time (6 h) for all cultures. At this time, all cultures had their 

maximum OD550 while being still at exponential phase. These criteria were also considered for 

the other membrane characterization techniques. Membrane leakage values did not significantly 

change later in the culture for all conditions. 

 

Membrane hydrophobicity 

Twenty-five milliliters of mid-log phase culture were harvested by centrifugation at 4000 

rpm (TX-1000 swinging bucket rotor) for 10 min in 50-ml centrifuge tubes. The cell pellets were 

washed twice with ice-cold PBS, and cell density (OD550) was measured. The OD550 was 

adjusted to 0.6, and 2 ml of culture suspension was transferred to a glass tube containing 0.5 ml 

dodecane. Three experimental replicates were included for each biological sample. The cell 

suspensions with dodecane were vigorously mixed, utilizing a Multi-Tube vortex (Thermo 

Scientific, Waltham MA) at 2500 rpm for 10 min. After this homogenization step, samples were 

held at room temperature for 15 minutes to allow organic phase separation from the aqueous 

phase. Cell density OD550 was measured in the resulting aqueous phase containing the cells that 

did not migrate to the organic phase. The percentage of partition in the organic phase was 

calculated utilizing two OD550 values, before and after the homogenization step. This partitioning 

into the organic phase is the percentage of microbial adhesion to hydrocarbons (MATH). This 

value reports the percentage of cells from a sample that partitioned into the organic phase and it 

was used in this study as a metric of membrane hydrophobicity.  
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