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INTRODUCTION AND REVIEW OF LITERATURE

Since 1940, the theory of flow of t-;rater into tile drains advanced
rapidly. The theoretical developments involved both the transient flow
concept (i.e., the water table is not in equilibrium with recharge but
may be rising or falling) and the steady-state flow cdncept (i.e., water
table is in equilibrium with recharge). Hotable transient flow theories
are given by Dumm (195h, 196L) and by Maasland (1959, 1961l)e For a recent
and comprehensive review of .numerous steady-state drainage theories, see
Kirkham (1966) and subsequent discussions of his paper by Soliman (1966),
Hammad, Amer, Youngs, Dagan and Warrick (1966) and a closure of discussion
by Kirkham (1967)s A characteristic of all the studies reported in the
above references was that the flow medium was assxﬁned to be a uniform,

. homogeneous and isotropic soil. However, under ordinary field conditions,
the water flow into tile drains takes place through layered soils and
therefore the flow medium, as a wholé, can o longer be assumed as
homogeneous and isotropic.

The research reported in this thesis is zbout a steady-state drain-
age problem in stratified soils. Although this type of drainage problem
is a more cormon one, it is also a difficult problem to solve and the
resulting mathematical expressions are more conplicated. This is perhaps
the main reason why there are only a few theories on drainage of
stratified soils, Hooghoudt'!s equation (1940) can be written for a two-

layered soil, but it is a highly special case because the interface of



© the two layers passes through the drain centers. Xirkham (1951, 195k)
was the first to provide rigorous solutions to two drainage problems in
a two-layered flow System. Xirkham!s first paper was based on the
assumption of a ponded water table over the soil surface. Kirkham!s
second paper (195L) utilized also the ponded water assumption but, in
addition, he also considered upward secpage of artesian water into

drains, Later, Swartzendruber (1962) showed how the "epsilon method" of
| Polubarinove~Kochina (1952) can be applied o complex but exact equations
of Kirkham (1951) to obtain simpler but approximate results. Recently, -
Dagan (1%65) has solved, by an approximate approach, the steady-state
flow of water into tile drains in a two-layered soil. His solution will
later be discussed at some length.

The first purpose of the research reported in this thesis is to give
| an exact and general steady-state theory of water flow into tile drainms in
stratified soils, First, this problém will be solved for a two~-layered
soil. ¥low nets for ‘a given flow geometry and for five values, including
zero and infinity, of the hydraulic conductivity of the lower layer will
be given. Drain spacing formulas will be obtained and a set of nomographs
will be presented for drain spaéing calculations. Expressions for errors
in drain spacings resulting fmm-neglecting the effect of the lower layer
will be developed and discussed. Next, the problem will be solved for a
three-layered soil. ¥From the two and three-layered solutions one will be
able to deduce how to solve problems for soils with mofe fhan three

layers.



TWO-LAYERED PROBLEM
The geometry of the drainage problem to be solved is shown in Figure
1. A steady, uniform rainfall or irrigation recharge, R, is removed by
an infimte arrsy of equally spaced tile drains of diameter 2r. The
drain spacing is 28, The drains are assumed t0 be running half-full.
- The removal of the steady recharge by the drains results in a steady,
arch-shaped water table, with H indicating the meximum height of the
~ wWater tsble at the nd.dpo:_!.nf. of the drains, The flow medium consists of
| two layers of soil. The hydraulic conductivity of‘the upper layer is
| | S and of' the lower layer is KZ' However, each layer is assumed to be
5 - homogeneous and isotropic itself. The upper layer extends a distance Ma"
below the line connectiné the centers of the drains, The lower layer
‘ ‘terminates at an ulpermay;e layer located at a finite distance of h
below the drain centers, The flow is assumed to be two dimensional.
Formulation of Problem
S First; we should observe that, because of symmetry, it is sufficient
L to consider only half of the flow medium between the two tile drains in
e Figureil. We can then represent the field problem depicted in Figure 1
: ~ by an idealized geometry, as shown in Figure 2. In Figure 2, and here-
| after in the text, the subscripts 1 and 2 refer to upper soil layer and
~-lower soil layer, respeotivély. Next, in order to translate the field
- ‘problem into a two dimensional boundary value problem, wg" shall make use
:";t'f.:- of one assumption and two physical artifices. The assumption, which was

. alss used by Hooghoudt (1510) and Kirkham (1958) is taat the hydraulic head
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Figure 1. Geometry for a steady-state tile drainage system for a two~layered flow medium terminated

by an impermesble layer at a finite depth h below the drain centers.
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Figure 2. Idealized geometry of the steady-state drainage problem for a two-layered flow medium

terminated by an impermeable layer at a finite depth h.
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loss in the arched-region above the drains is negligible compared to the
head loss for the remainder of the region. This assumption can be
physically approximated by replacihg the soil in the arched region with
coarse gravel of effectively infinite conductivity so that there will be-
no head loss, and simultaneously introducing an infinite number of
fictitious, rigid, and frictionless membranes, as indicated by the dotted
lines in Figure 2. The membranes are needed to keep the curved shape of
the water table. The membranes also serve as piezometers to measure the
water pressure at their base which is the datum for hydraulic head.
Without membranes, a curved water table canmot be maintained in a flow
.medium of infinite conductivity. In such a flow medium the water table
would be flat. This "fictitious membranes® artifice was first used by
Kirkham (1958). The vertical membranes replace the true streamlines in
the arched region. Therefore, the rainfall or irrigation recharge will
be forced to go vertically downward a:t a uniform rate and, as a result,
the streamlines will be equally spaced, that is linearly distributed,
along the line connecting the drain centers. The boundary condition IV,
as marked in Figure 2, is ‘a direct consequence‘oi’ this assumption. We
should mention here that, after obtaining expressions for potential
functions, the gravel in the arched region will again be replaced by soil
and the head loss which was assumed to be negligible will be taken into
account as it was done by Kirkham (1961). | :
We note from Figure 2 that the circular drain is replaced by a slit

drain of thickness zero' and width & which, later, will also be shrunk to



zero. This %slit drain® artifice was also used by Kirkham {1958). It is
assumed that the streanlines will be equally spaced, that is, linearly
distributed as they enter into the slit drain. The boundary cdndition III,
as marked in Figure 2 is a direct consequence of this assumption.

It is known that both the stream function and the potential function
satisfy the Laplace'’s equation, assuming that the Darcy's linear flow
equation and the eqﬁation of continuity for water flow are valid at all
points of a flow medium. It should be observed that by combining the
Ufictitious membranes® and the "slit drain® artifices, the arched shaped
portion of the flow medium can be excluded.because the distribution of
flow lines is now known along the line comnnecting the axes of the drains.
Hence all the boundary conditions along the perimeter of the idealized
flow geometry can be expressed in terms of half the drain discharge
\llo = Rs, and because of this, we should attempt to solve owr flow problem
by first finding expressions for the‘stream functions \I(l(x,y) and \l(z(x,y)
rather than potential functions _Q;(x,y) and &, (x,7)e Hereafter, when
‘referring o stream and potential functions, they will be written as
Y5 Vos j}_ and_(fz, that is, the x's and y's of the functional notation
will be dropped. Note that ¢l and ¢2 in 1;‘igure 2 refer to hydraulic
heads not to potential functions. Potential functions are defined as
jl - K.L¢1 and Qa = K2¢ o The reference level for hydraulic head is the
X axis, that is, the hydra.plic head is msasured wpward from the x axis.

From the above explanation, it follows that our drainage flow problem
should be formulated as the following boundary value problem: First, find
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expressions for \}'1 and \112 that will satisfy Laplace'!s equation and the
relevant boundary conditions, as marked in Figure 2. Next, find
expressions for ﬂi and ,gfz that will also satisfy Laplacet!s equation and
the relevant boundéry conditions, as marked ::1; F:i-.gure 2. In mathematical
terms, our task is to find expressions for ¥;; V,, ji and &, to

satisfy the following equations, respeciively,

2 2 '
a‘!’.,_é_jf,,o (1)
o oy | |

2 2 |
aj-ﬁ-?—gno (2)
o o

subject to the following set of boundary conditions:

I. \l/l='4/o atx=s8, 0<y«a

II. \lflﬂ\}ro atbx=0, O<yc<ca For medium

III. \!lln%-}-:\}fo aby=0, 0<x <5 one

v, \l/1=§-:-_—g\]/0 aty =0, <x<s

Va. ¥ =¥, aty=a, 0<4<x<s At the

To. ¢l = ¢2, aty=a, 0<x<s interface

VI. \.'(2“\lfo atx=si 'a<y<.h

VII. ¥, = ¥, at y"= h, 0<x<s for mediun
| two

VIJI.\I'2=\IIO abx=0, agy<h
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Stream and Potential Functions .

Laplace!s equation is a second order, partial differential equation
with an infinite number of solutions. However, we are after particular
solutions of Laplaces equation for stream and potential functions that
will not only satisfy, respectively, Equations 1l.and 2 but also the set of
boundary conditions. The following type of a general solution of

"Laplace'!s equation

' © sinh _X _sin 7
F(x,y) =A+Bx +Cy+Dxy+ Z E or a(b+or)or (c*or) (3)
m=l cosh y cos b 4

is very useful in building up expressions for stream and potential functions,
as explained by Kirkham (1970). However, after Equation 5 of Xirkham
(1958), we can write, by inspection, the expression for the stream

function for medium one as:

mix sinh[mr(a - y)/s]
s sinh(mwa/s)

V. =¥ .+ Z A sgin
1 0 aqn
@ ]

+ Z B_ sin
m=lm

mnx sinh(mwy/s) (L)
s sinh(mwa/s)

l .
where Am and Bm are arbitrary constants. Hereafter, the sign 2 will mean

)] -, unless stated otherwise. Observe that Equation l satisfies
m=1,2, L N ]

boundary conditions I and II. For boundary conditions III and IV, where
y = 0, Equation L reduces to | ’

/

¥, =¥y +Z A sin 1“-;'-—" (%)
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In Equation 5, the arbitrary constant Am can be expressed as a Fourier

sine series:

-:—f £(x) si.n-r-n-:—-x dx
o

where f(_x) will be defined as a function satisfying boundary conditions .

IIT and IV,

Boundary condition III, when applied to Equation 5, yields:

i%-g-c‘# =Y +2Amsin-x-n§-:, (0< x «8)

which reduces to

X .. MIX
~5V¥ =ZA sin==, (0<x<d)

Boundary condition IV, ‘when applied to Equation 5, yields:

-x—'-"-g\llo"ll +Z A Slnmmc’ (6< x < 8)

which reduces to

X - 8 mnx

o E V=24 sinTZ (6< x < 8)

From Equations 7 and 8, we can define f(x) as:

-%\yo, 0<x<5$6
£(x) =
X =5

3-8 Y% P%<xcs

Inserting the above expressions of £{x) into Equation 6 gives us:

(6)

(7

(8)

(9)
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. |
o5/ -2 s e (o)

'S [¢]
Am--g- [(--é’).gxsin-n%-mdx-*

. Evdluation of the above definite integrals and, afterwards, taking the
limit of the result as 6—r0, that is as the width of the slit drain

shrinks to zero, yieldsi

24, -
A7 - - )

Therefore, Equation L can now be written as:

\yl - q,o - i::? 3 {'% sip DX sinh[mr(a - y) /5]

s sinh{(mra/s)

nnx  sinh(mwy/s) S

, * Bm sin s sinhGrm’a]s)} (12)
A

where we have used B, ® we =B ,
n T m

By inspection of Equation L and boundary conditions VI, VII, and
VIIL we can write the stream function for medium two asé

2y .
Y, =V = o2 3 st B sinhlmi(n - )] )

s coshlmr(h - a)/s)

where Cm is anpther arbitrary constant.
Because the expressions for the stream and potential functions are

analytic funcitions, they satisfy the Cauchy-Riemann conditions. The

\.

%ﬁ -V | Ca)

Cauchy-Riemann conditions are

-2-,2’ - - %’ ! (15)



1k

. Therefore, if the expression for the stream function is known, the

. . potential function can be found from Equations 1k and 15, el ther by

. integration or by inspectd.on. Either way it follows that the potential
o functions for mediums one and two are

d ;__ .2_!'2 Z{I]cos mnx cosh[mn(a - y)/s]
1

-8 sinh(mra/s)

|  mux cosh(mny/s), .-2¥o B
T B, c0s =5 :gxslh(mﬂalgf} 7 Bon , (16)
B 0 mnx cosh[mw(h - y) fely . 570 _ :
g,=- - 2 {c, e 8 coshlmu(h - a)/s_l} ] c (;-7). .

where B n 3 G are also arbitrary constants.
| We will now evalua‘be the arbitrary constants B adC, By
.'-tde'ﬁnition, g - 51 /5 and d, = &,/K,. Using these deﬁ.xﬂ.tiona, boundary
- :f-"vjoondmon Vb and Equations 16 and 17, we get: |

o
,

. q :[Z[l sini ey = B coth(mﬂa/a)? 008 :x |
 _-. Bom} = %— (z C, ms‘-ﬁ? - oom]A : (18)

-

L

'-:"',ﬁf.‘-_-i'from which we get, by equating the coefficients of the term cos -- and

| dropping the 2 sign, the results : e o g .
R T I S mra; oy o
R R e S ) 69

N
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Similarly, boundary condition Va states that ¥, =¥, at y = a, which

results in, after cancelling certain terms,

mnx mi(h = a) _. mix
B sin—==2 C, tanh —_ sin = (21)

from which we get, by equating the coefficients of sin % and dropping
the 2 sign, the result | 4
' - mi(h - a)

B, = G tanh — . (23)

Substituting this value of Bm into Equation 19, and after rearranging,

we getb
c =2 1 ‘ L (23)
~m m sinh(mra/s) (ﬁ /Kz) + tanhi{mn(h - a)/s] coth(mwa/s)

. . .

B =32 ' L ©(2h)
m m sinh(una/s) TWKZ) coth[mn(h - 2} /8] + coth(mna/s)

e ‘We shall now evaluate Bom and com' First we write the identity:

blmi(a = y) /el - ~(2/8) oonuny/e)
b miara) Ll (my/s,) * S TEREe) (m“y/s) (25)

~We use this identity in Equation 16 to obtain

gi. s E:Q—z {2 cog TX 'e-(mny/s) * e—(mn’a/s) cosh(mmy/s)
m 8

sinh(mma/s)

2y
03 (26)

mix cosh(mﬂy/s)} -
T om

8 sinh(mwa/s)

--Bm cos
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Next, we use another identity

z %ﬂ e-(mn'y/s) cos % = -% 1n[2 e-(“y/s) (cosh-';rz - cos _ém_:)] - (21) |

So that Equation 26 reduces to

2y
_gi - ._“.9 {-% in[2 e-("y/s)(cosh ,;_[X - co8 :—25)]

1 nux -(mr:a./s) cosh (mry és)
+Z [ cos =5~ 8 sinh(mwa/s
' mux cosh(muy/s)
= By cos 5~ mgs—)'] om:f : (28)

Remember that ¢1 = fl/K_L and; remember further that we had assumed owr

tile drains to be flowing half-full, that is dl(xar, y=0) = O, By using
these two conditions in Equation 28, we obtain |
B_ ==21n2(1 - cos Z5)]
om 2 .
~(mra/s)
1 mr e utin
*2 [E C08 =5~ Sinmh(mma/s) — °m & sinh(nm’a/s)] (29)

where we observe that

-5 1n[2(1 cos —-] = -3'2- 1n[2 (2) (sin )2]

-k mee 1 '
T2 1n[2 sin 2 ] 1n 2 sin(nr72s)

so that
[1

mir mua
< cos — (=1 + coth -—8-)

B m 1n 2 ain(ﬂr728) +Z

mir 1
8 sinh{mma/s) ] ' (30)

"Bm cos8
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where we have used the identitﬁ' e-(mn'a/ s) /sinh(mra/s) = <1 + coth(mma/s).
Because Bm is defined by Equation 21, Bom is now kmowne Furthermore,
when Bom is known, com is also known from Equation 20, Hence we have
. determined all the coefficients for Vs ¥y, & and §), and in turn @) and
e
. Flow Nets

By using Equations 12, 13, 16, 17, 20, 23, 2L, and 30, flow nets can
be drawn for any given set of soil and hydrologic parameters. Figure 3
shows five flow nets, labeled from a through e. These flow nets were .
prepared for the following set of dimensionless variables: af2s = 1/25,
a/h = 2/5, afor = |, R/K_L = 1/100 and K, /K, = infinity, 5, 1, 1/5 and zero,
for the cases a, b, ¢, d and e, respectively. However, to facilitate
quantitative discussion, it was assumed that the drains were placed at a
depth of four feet below the ground surface with a = L feet, h = 10 feet,
25 = 100 feet, 2r = 1 foot, R = 0.1 inch per day, Kl = 10 inches per day.
It was also assumed that the hydraulic conductivity of the lower layer, K2 ’
would vary as follows? gzero, 2 inches per day 10 inches per day, 50 inches
per day and infinity, for'the cases a, b, ¢, d, and e, respectively. As one
may observe, these flow nets were prepared to show the effect of the
hydraulic conductivity of the lower soil laygr on the flow lines, the
equal hydraulic head lines (equipotentials), and on the maximum height ef
water table above the drains. Equations 12, 13, 23 and 2} were used to
compute the streamlines. The streamlines were expressed as a percentage
of half the drain discharge, ¥, = Bs, that is, as 100(1/1/\lf0) and as



- Figure 3. Flow nets for the dimensionless parameters a/2s = 1/25,
ath =2/5, afer = L, R/xil = 1/100 and K_L/Kz =a 5 1,1/5
and zero for the cases a through e respectively. Depth and

distance in feet are shown for purposes of quantitative

discussion.
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100(1'2/\'/0). Equations 16, 17, 20, 23, 2l and 30 were used to compute the
equipotentials. The equipotentials were expressed as a percentage of the
maximun hydraulic head, ¢1(s,o), that is as 1oo[¢1(x,y)/d1(s,o)] and as
100[¢2(x,y) /¢1(§,O)]. The water table was plotted from dl(x,o). Because
of slow convergence of some of the series found in stream and potential
functions, a digital computer was used in computations. The following is
a swmary‘of the formulas used for prepa.riné the flow nets for cases a
through e of Figure 3.
Case a: K _=10 K, =20 K-L/K2=w

The problem reduces to the single 1ay§red problem with an impermeable

layer at a depth a below the drains. Equations 12 and 16 were used, but

observe that K_‘./Ifi2 = « results in B =0 and,

- 1 1 mz mua |
Bom 1n m + Z = cos ~—== (=1 + coth '—8-') : (31)
In view of the above results, Equation 12 reduces to
2¥

u 0.1 . mx sinh[mw(a ~ y)/s] . |
Wl \I’O - ip i sinh(mra/s) (32)

- and Equation 16 reduces to

2¥5 1 mwx coshmr(a - v)/s] 2¥,
¢l "= Ky 2 f'i'n €08 =g~ T sinn(mwa/s) } *— Bon (33)

Case b: K =10 K =2 K /K, =5

b & (4

Equations 12, 13, 16, 17, 20, 23, 2k and 30 were used.
Case ¢t K _= K, =10 'KI/Kz-l '

o

The problem again reduces to the single-layered problem, but in
this case, the impermeable layer is at a depth of h below the drains.
Observe that l& = K, implies that a—rh which, because of coth[mw(h=h/s] =
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) "-, results in }3m = 0, Therefore, Equations 31, 32 and 33 were used after
replacing the symbol a in these equations with the symbol h.
Case d: K =10 K, =50 &_L/K2=1/5 ‘
Equations 12, 13, 16, 17, 20, 23, 2L and 30 were used.
Case et K =10 K == K/ =0
Observe that K]./K2 = 0 results in

1 1
B "2 cosh{mma/s) (3L)

1 1
Gm " & Tahwi(h - &) /5] cosh{mia/s) (35)

' While using Equations 12, 13, 16, 17, 20 and 30, one should insert values
of Bm and Cm as given by Equations 34 and 35.

A comparison between the cases ¢ and d of Figure 3 shows that a
ﬁ.\.re-fold increass in the hydraulic conductivity of the lower layer = a
rather common observaiion under field conditions ~ would result in a
~decrease of [(1.8) ~ 1.06)/1.841100 = 42 percent in maximum height of
‘water table. Furthermore, one observes from Figure 3 a through e that as
K2 increases from zero to 'infinity, the LO, 60, 80 percent streamlines in
the wpper soil layer start deviating from their somewhat horizontal
directions toward a vertical direction. These streanmlines pass through
the lower layer somewhat horizontally but they converge rapidly in the
vicinity of the drain. At the interface of the soil layers, both the
streamlines and the equipotentials obey to the well known laws of

refraction. The angles the streamlines in the upper and lower layers
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make with the normal to the interface, that is @ and a@,, respectively,
can be found from tan al/tan a Kl/K o The angles the equipotentials
in the upper and lower layers make with the normal 'l‘o the interface,
that is v, and ¥,, respectively, can be found from cot Yl/cot Ty ™
/5
Drain Spacing Formulas

Remeubering that ¢ = 9"'1/&_'_, ¥, = Rs and the identity o (mna/s)

elmma/s) 1, and substituting B_ and B from the Equations 2l and 30

into Equation 28, we can rewrite Equation 28 as

¢1 Rs Ll e'("y/s)(cosh -2-2 - cos -g—x]] :

wK_L 2
1 -(xmra/s) cosh(mmy/s)
2 pord °°8 s:.nh{mna]s)

1 1 o-(mmia/s) _(mwa/s)
*ig m sinh(mwa/s) (Kfoz) cothlmﬂ(h-a) /sT + coth(mna/s)

mnx cosh(mny/s)

€08 =5~ Bimh (mma/s)

1 1 e—(mn'a/s) e(m:ra/s)
-2 T sinh(mwa/s) (K_L7K2) coth{mmw(h~a)/s] + coth(mna/s)

nrr 1
8 sinh(mwa/s)

Cos

~(mra/s)
1 mhYr e 1 :
+ 2 [ 08 = Trntmess)) 03 sin(xrrfa?ﬂ} (36)

After using the identity e~ - (unia/s) [einh(nwa/s) = <1 + coth(mrra./s) R

after rearranging Equation 36, we get —
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ZRS L )
¢l i E tin 3 sin(ir/2s) 2 1af2 e (cosh gl - cos _)]

+ 3k mia mar nx Jony
+Z-ﬁ(-l+coth 8)(cos . cos —= cosh 8)

mn'a/s)

[1- sinh(mna/s) (I&/K ) cothImu(h—a)/sT'l- ooth(mna/sfn

(37)

Now, by definition, dl(s,o) = H, the maximum height of the water
table midway between the drains. Inserting y = O and x = 8 and using the

relation cos ¥ = =1 and using the identity

1 | 1
1n 5 31n(ﬂr/2s) 1n[2(1 cos m)] = 1n sin(nr/2s) (38)

one sees that Equation 37 reduces to

2Rs . 1 1 mya mry
H --ﬂ-Kl— {hm + 2 [E (-l + coth ——s—)(cos
olmma/s)

1L mn’a
-E(-l+ )(os-—-cosmnm

(39)

1 :
(K_L/Kz) coth[mn(h-a)/s] + cot.h(mﬁa/s)]}

Equation 39 is the general formula relating all relevant design variables
for a two-iayered drainage problem.

We can distinguish seven limiting cases of the gener‘al formula given
by Equation 39. The first two cases result from the limiting values of
~the thicknesses of two soil layers and the remaining five cases from the
limiting values of hydraulic conductivities.
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Case 1: h—2e While a = finite and a/h = 0

Because of coth[mn(h~a)/s]—0 as h—) =, Equation 39 reduces to

- N8 1 1 pLLL ¥
H H{lnm z (l+coth )( 08 =2 - cos mm)

o (mma/s)
(KlfK ) smh(nma/s) + cosh(mna/s)]}

1- (L0)

Observe that in Equation 10, the parameter h does not appear.

Case 2¢ a—>« While h > a and K. = finite '
Because of coth(mma/s) - 1 = 0 as a—r=, Equation 39 reduces to the
following simple form: |

2Rs 1
H uKl 1n sin(nr/2s)?

(for a=3=) (k1)

Observe that in Equation l1 the parameters a, h, and K2 do not appears.
Case 3¢ K, = 0 Uhile K.L = finite

Our two~layered problem would reduce to a single-layered problem and
the impermeable layer would be at a depth a below the drains. Equation 39

reduces to

H._q[l m Z-(-1+coth-——-)(co —-cos mr)]  (L2)

To see this, one should observe that K2 = 0 implies KJ./KZ = = ywhich causes
the following term in Equation 39 . |

1
(IS./KZ) coth[mn(h-a)/s] *+ coth{mma/s)

to be zero.
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Case h? §_2 = K.I.
Ouwr two-layered problem would again reduce to a single-layered

problem, but here, the impermeable layer would be at a depth h below the

drains. Equation 39 wpuld again reduce to

. _ 2Rs 1 1 mrh nr
H= nK; [1n SGID) + 2 = (=1 + coth -—B—)(cos — - cos mr)] (13) .

' To see this, one should observe that K, = K implies a—h, and in turn,
the term coth[mm(h~a)/s]—>= which causes the following term in Equation

39

1
(K.L/I-{2) coth[mu(h-a)/s] + coth(mwa/s)

0 be zero. Observe that Equations 12 and U3 are identical except that
the symbol a in Equation L2 is replaced by the symbol h in Equation 13,
or vice versa.

Case 5¢ K, =« While K.L = Pinite

This implies that ILJ-/‘K2 = 0 and Equation 39 reduces to

H= Rs {111 1
'1@ sin(ur/2s)

(mrra/s)
+ Z% (=1 + coth mga’)(cos m:r - cos mw)[1 - ?s-m]} (Ll

Observe that in Equation kb, K2 and h do not appear.
Case 65 K =0 While K, = finite

One may deduce from Equation 39 that H—> =, There would be no flow

into drains that are placed in an impermeable layer. Therefore, the
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steady recharge would cause the water table to build wp and to reach,
eventually, a theoretical height of infinity. '

Gase 7: K == Jhile K, = finite

One may deduce from Equation 39 that H—»gzero. No hydraulic head
would be needed for water to flow into drains when the drains are placed
in an infinitely conducting medium. Therefore, the water table would be
flat and at the axis of the drains.

We should now recall an assumption that was made earlier, under the
subbeading "Formulation of Problem™. This assumption was: The hydraulic
head loss in the arched region above the drains is negligible compared to
the head loss for the remainder of the region. However, Kirkham (1961)
has shown that multiplication of the right hand side of Equation 39 by
the factor [1 = (R/K_L) T will take this neglected head loss into
accounte This results in

H = 228 1 -{ln 1
?i’q-l—-—(m sin(nr/2s)

+ 3 [-I-]r; (=1 + coth lg—z—})(aos .1225 - CO8 W)

(cos L cos mw) e(mﬂa/s)

8 sinh{mna/s

1 mra.
- (=1 + coth s )

(L5)

1 _
(K 7K,) cothlan (=) /o] + cothlaiase) )

Notice that Equation L5 is exactly the same of Equation 39 except for the

factor [1 - (R/Kl) ].1 which takes into account the neglected head loss in
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the arched region above the drains. Therefore, Equation L5 rather than
EZquation 39 will hereafter be called “the general formula®". In Equation
L5, the recharge, R, sometimes also called “the drainage coefficient",
reflects the duration, intensity and frequency of either the rainfall or
irrigation applications and determined accordingly. The soil parameters
Kl’ K2 » & and h are determined through field tests and borings. The
maxcimum height of water table over the drains, H, is mainly a function of
the rooting habits of crops, among other factors. Normally, all of these
parameters are "given" quantities. In other words, these parameters can
- be determined, within reasonable margins, based on information collected
during investigation and planning activities. The designer then selects
a tile diameter, 2r, and proceeds to compute the drain spacings, 2s =
the quantity he is really interested to know. However, Equation L5 is
not of too much help to him in achieving his task because, the drain
spacing, 2s, is not given explicitly 'by this equation. This difficulty

can be overcome by using a procedure outlined by ToksSz and Kirkham (1961).

. . 28 a 28 a
Let us define three functions, i.e., E( s 2r) (o 21.) and
2s a a
G(a s 5o T -K-z-) as follows
l 1

BE, &) = 1 b e T (18)
28 a4y . _ mn’a. _g___a_ - : )
P, 53) - (=1 + coth )(cos = cos ;) (L)

i
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G(-2-§ a s K.L ) e(2mn'a/2s)
a?2r n? K; sinh(2mwa/2s)

1
(Kl/KTcoth 2nr| (a/a)(a/25)=(a/2s)] + coth(2mwa/2s) ().@) _
By using these functions in Equation LS and by dividing both sides of it
by the symbol a, and after rearranging it, we can rewrite the general

fornmula as

! 28 rp(2 2
SE-V-2EBSE K G R

a? 2r
-2 F &, e, &, 2, %)J | (49)

Similarly, Equations 1O, L1, L2, 13, and Lly, which correspond to the first
five limiting cases, can also be rewritten. Equation L0, for h—>= and

a/h = O becomes

H 2 2 2
E(ﬁ--l) S{E(Sa) ZF(sa)

o (2mna/2s)
(- ’(qﬁpsm(zmna/zs) Tossn(zmaszs) )} (50)
BEquation 11, for a—¥=, be‘oome.s
St -1 =2 g gr) | (51)
Equation 12, for K, = 0, becones
Bedo1) -2 @ 2+ 30, gr)l (52)

Equation 13, for K l&, becomes
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! 28 g2, b 25 h
&= =1) = g [E(hs, =) * I FE, 53] (53)
Equation Ll, for K, = =, becomes
1,5 2 s, 2 o(ammafes)
2R " 1= BT 70 + 2 F(a.s’ gr) Q- cosh(2nma/2s) 3o ()
which, if desired, may be reduced to
%(R“ -1) = -EE [E(%f 2)-z F(?'S £) tanh(2ura/2s)] (5lia)

and, further, be reduced to

h(lmra/2s) + 1 :
Py : 2r) +2 (<1)" 1n coshﬁxsmaks)a -scos(Zr/a)(a/Z—ST] (5tb)

Equations L9 through 5l are the drain spacing formulas for a two-
layered drainage problem, covering the general as well as the limiting
cases. One can see. that the left hand sides of all of these drain
spacing formulas are common, consisting of a given set of parameters,
and also are known by the.designer. Therefore, if the right hand sides
of these drain spacing formulas can be calculated for a given set of the
dimensionless parameters a/h, K.L/KZ’ a/2r and 2s/a, then nomographs
similar to those of Toksoz and Kirkham (1961) can be prepared, and by
using such nomographs, the drain spacing, 2s, can be expli’citly calculated.'

Nomographs for Drain Spacing Calculations |

First, let us observe, as Wesseling (196L) pointed out, that Kirkham

(1961) derived the facter (1 = (R/K)I™ by using the properties of the
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soil in the arched region only. Hence, we can consider the soil in the
arched region as a separate soil layer having a hydraulic con&uctivity
of Ko. As a result, the factor becomes [1 - (R/Ko) ]""l and our two-
layered drainage problem can thus be extended to a special case of a
three~layered problem. The use of the new factor {1 - (R/KO)]"]' would
only change the left hand side of Equations L9 through 5k to (H/a)

: [(K]_/h) - (K]./KO)]' Note that, when the soil in the arched region above
the drains extends to a depth a below the drains, i.e., when Ko = S,
then Ii_L/K0 = ] and (H/a)[(K_L/R) - (Kl/Ko)] would reduce to (H/a)

(& A) -1,

Next, let us also observe that for our Equations 51 and 53, which
correspond to our limiting cases 2 and L, the drain spacing nomographs
have already been given by ToksOz and Kirkham (1961), as their figures 2
and 1, respectively. One should note that if the captions in the
ordinate axis of figures 2 and 1 of 'I"oks'c')z and Kirkham (1961) are
replaced by 1-36h[(Kl/R) - (S/Ko)] and by (H/h)[(Kl/R) - (K]_/Ko)],
respectively, thess figuwres may also be used for a special case of a
two=layered problem with the interface of the soil layers passing through
the drain centers, as Wesseling (196L) pointed out. Notice that in
preparing these nomographs, Toksdz and Kirkham (1961) made use of the
following assumption: 1n[l/sin(wr/28)] = 1n(2s/wr) when 8>>r. This
assumption is perfectly valid for most practical purposes. In reality, we
need only figure 1 of Tokstz and Kirkham (1961) because when the impermea~
ble layer is located at a depth greater than half the drain spacing, i.e.,
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when h » s, the effect of impermeable layer on drain spacing becomes
negligible, as one may calculate from their figure. Hence owr limiting
case 2, that is h = =, is purely a theoretical case. When h is large
but finite, the problem can still be solved by figure 1 of Toksoz and
Kirkham (1961). Observe that owr BEquations 52 and 53 which correspond to
our limiting cases 3 and kL, respectively, are similar. Therefore, figure
1 of ToksSz and Kirkham (1961) can also be used for our limiting case 3,
that is for owr Equation 52, provided that the symbol h in the figure is
replaced by the symbol a. Such a figure is given as our Figure k.

So far we have demonstrated that the drain spacing nomograph showm
in our Figure L can be used to solve our Equations 52 and 53, correspond=
ing to our limiting cases 3 and L. We have also indicated that owr
- limiting case 2, corresponding to our Eguation 51 is a theoretical case
and practical problems involving large s, that is, h s can still be
solved by our Figure L., Figures 5 tfxrough 18 are the drain spacing
nomographs for the general case and the limiting case 1, corresponding o
Equations 49 and 50, respectively. Figwre 19 is the nomograph for the
limiting case 5, corresponding to Equation 5h. Notice that our limiting
case 5, that :i.s'K2 = » may be thought to represent a soil layer overlying
a coarse gravel bed that rests on top of an impermeable barrier such that
no natural outlet exists for the drainage of gravel layer..

To prepare these momographs, the right hand sides of :Equations L9,
50 and Sk have been calculated by using a digital computer. The calcula~

tions have been made in terms of the dimensionless parameters a/h, K /,,



Figure Y. Drain spacing némograph for K2 = 0. This nomograph can also be used for K2 = Kl by

i;eplacing the symbol a in the nomograph by the symbol h.
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Figure 5. Drain spacing nomographs for K]./K2 = 50 and a/h = O and 0.2,
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Figure 6. Drain spacing nomographs for Kl/K2 = 50 and a/h = 0, and 0.8,
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Figure 7. Drain spacing nomographs for K.I./K2 = 10 and a/h = 0 and 0.2,
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Figure 8. Drain spacing nomographs for K.'./K2 = 5 and a/h = 0 and 0.2,
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Figure 9. Drain spacing nomographs for K]./KZ = 2 and a/h = 0 and 0.2.
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Figure 10, Drain 'spacing nomographs for IL_L/'K2 = 2 and a/h = 0, and 0.8,



15

D/S2 /S
00l 0% (o] S 2 00! 06 o] S 2
—:____ i L _:_-_ 1 1 _ _:_d__ i 1 ___ﬁd_ T 1 _

B b “ _
. 80 =uy/o L v0 = ;_\o -
- 2 =9o)/1y 4F 2 =%/ .
= 1E :
- U B —

[reeept

1

TTIIT_IT

IR

6! ONV b°'S914 NI -

SIdNVYX3 335

RN

L bygan by 1

LR

1

[TTTT 7

61 NV ¢ 'SOI4 NI T

S3T1dWVX3 33S 3

1|.Im Nslm.m.\ﬂ&_ L

2y y i

;N.mn |
r

angme

-4

'» jo |
OM{H
b4 4 4EL 4 4

SN I TR N B I

o

o
N

o
n

001

00¢

00S

000l

[(O/") -4/ (o7H) =1



-

Figure 11. Drain spacing nomographs for K_L/K2 = 1/2 and a/h = 0 and 0.2.
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Figure 12, Drain spacing nomographs for K_L/Kz =1/2 and a/h = 0.}, and 0.8,
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Figure 13. Drain spacing nomographs for %_/K2 =1/5 and a/h = 0 and 0.2,
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Figure lli. Drain spacing nomographs for 15'1/‘&2 =1/5 and a/h = 0.} and 0.8.
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Figure %S.’ Drain spacing nomographs for K.\./K2 = 1/10 and a/h = 0.} and 0.8,
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Figure 16. Drain spacing nomographs for IC-L/'K2 = 1/20 and a/h = 0.} and 0.8,
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Figure 17. Drain spacing nomograph for Ii_‘./K2 = 1/50 and a/h = 0 and 0.2,
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Figure 18, Drain spacing nomograph for !&/‘52 = 1/50 and a/h = 0.l and 0.8.
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Figure 19, Drain spacing nomograph for K, = a,
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L= (H/a)[(K,/R) - (K,/Kq)]
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Figure 20, Draln spacing nomograph for both surface recharge and
artesian seepage. The nomograph is for solving Hinesly=-
Kirkham formila.
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L = (H/n [(K-R)/ (R+F) ]
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a/2r, and 2s/a. For Equation L9, the values of the dimensionless param
eters were as follows: a/h = 0,2, 0.l, and 0.8; lL_L/K?_ = 50, 20, 10, 5,
2, 1/2, 1/5, 1/10, 1/20 and l/SO;va/2r =1, 8, 6L, 5125 2s/a =2, L, 8,
16, 32, 6L, 128, and 256. For Equation 50: a/h = O whereas values for
K.L/KZ’ a/2r, and 2s/a were as for Equation L9. For Equation 54 a/f2s =
2.5, 5, 10, 20, 10, 80, and 160; values for a/2r were as for Equation L9.
The computer outputs resulted in values similar to those given by |
Table 3 of Toksdz and Kirkham (1961) and the drain spacing nomographs
shown in Figures 5 through 19 were also prepared following the same steps
used by them. For BEquations 49 and 50, we have used four different values
of a/h, and 10 different values of K_L/Kz. To represent the full array of
these parameters, one would have needed (L)(10) = LO nomographs. Notice
that we have included only 28 of these LO nomographs as our Figures 5
through 18. The m;in reason for excluding some c;f the nomographs was to
save space while staying within reasc;nable limits of accuracy. More will
be said about this later, under the subheading Discussion of Results.

An interesting and useful addition to the above momographs is shown
in Figure 20, This figure provides graphical solutions to drainage
ﬁroblems where both downward surface recharge, R, and upward artesian
seepage, F, must be taken into account. This problem has already been
solved by Hinesly and Kirkham (1966). Their equation 15 c.an be reduced to
the following form |

KR >
HKR) 282 5

h{(mw /L) [{28/h)-(2r/h)1} - 1
E‘RT}? coSs mﬁ/h S/h I‘/h>} . (55),

1
m sinh| (mn/L)(2s/h) ]
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for which Figure 20 has been prepared. See Appendix A for the required
steps to reduce equation 15 of Hinesly and Kirkham (1966) to our Equation
55 |

Discussion of Results

Let us write Equation L9 as

2 = H(I;ﬁ - 1) (E—.,.'lm) (56)

vwhere, for brevity, we have dropped the arguments of the functdons

defined by Equations L6, L7 and L8, Notice that in Equations L6 and L7,
the symbol h does not asppear. In view of Equations L6, L7 and L8, one may
deduce that the term ZFG in Equation 56 reflects the effect of lower soil
layer on the drain spacing, 2s. We will now consider the two conceivable
types of errors that could be made in calculating the drain spacings.

The first type of error occurs when the hydraulic conductivity of the
lower layer is assumed to be zero, ’oﬁat is K2 = 0, while it is ot zero.
This assumption means KI/KZ = » yhich yields G = O. The draln spacings
. calculated on the basis of this assumption will always be smaller than
the correct spacings, because if G = O then the term FG in Equation %
would vanish. In reality, however, K, ¥ 0 and also G ¥ O.

The percentage error in drain spacings resulting from the assumption

K, = 0, will be

2 1
[1/(E + IF = ZFG)] - [1/(E + ZF PG/
- A/E+ oF = 2 ZFG)J/( =201 100 - T 5F 190 (57)

One may observe, in view of Equations 46, L7 and L8, that such an error
is not only a function of the soil parameters KI/K?.’ as it is commonly
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thought, but also a function of the geometrical parameters of the flow
medium, i.e., of a8, h, and 2r. It follows that statements like "“when
the hydraulic conductivity of the upper layer is five to 10 times greater

than the hydraulic conductivity of the lower layer, then the lower layer

~can be assumed to be impermeable" may be misleading. Obviously, when the

hydraulic conductivity of the lower layer is less than that of the upper
layer, percentage errors in drain spacings resulting from the assumption
K2 = 0 would be smaller as compared to errors that would result when the
hydraulic conductivity of the lower layer is higher than that of the ‘
upper layer. Furthermore, such errors will decrease as the thickness of
the wpper layer increases. Table 1 is prepared by using E, F and G‘
values obtained from computer outputs and shows the expected errors for
some selected values of IC.L/K2 = a/2g and for a/2r = 8 and a/h = 0.2 and
validates the preceding statements.

| The second type of error resul’oé when the lower layer is completely

ignored, that is when the upper layer is assumed to extend to a depth h,

-or simply when it is assumed K2 = K.L' The drain spacing would be

computed from Equation 53, rewritten in the form

2g = H(; -1) ’Eﬁ?‘z‘f'; (58)

where Eh and Fh are defined by Equations L6 and L7 by replacing the
symbol a in these équations by the symbol h. The correct drain spacing
is of course given by Equation 5. The erronsous drain spacings, resulte
ing from the sgsumption K, = K, would be larger ii'vl& > K, and they will
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Table 1. Percentage errors that would result in drain spacings when

the hydraulic conductivity of the lower layer is assumed to

be zero while it is not zero. The errors have been computed

from Equation 57 for a/2r = 8 and a/h = 0.2, and for selected

values of 2s/a and K.L/Kz’ as indicated

28 K'L Percent Mr -IE‘L- Percent Error
a 'Ké K,
256 5/1 13 1/5 93
256 - 10/ 27 1/2 86
128 SA i 1/5 89
128 10/1 26 1/2 83
6k 5L 37 1/5 8l
N 10/1 23 1/2 17
32 5/1 3 15 7h
32 104 19 1/2 68
16 sA 20 1/5 57
16 101 V12 1/2 51
8 5/1 1/5 33
10/1 5 S 1/2 28
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~ be smaller if K.L< K2. The absolute value of the percentage error will,

for both cases, be

[1-EX2F = 207 449 (59)

Eh + ZFh

Such errors will decrease as the tlﬁchucés of the upper layer increases.
Table 2 shows a set of drain spacings, calculated for the following
set of data: H = 0.6m, a = 1.2m, 2r = 0.2my K| = K, = 1.2 m/day, and
R = 0,006 m/day. The parameters h and K, are assumed to vary, as
indicated in table 2. Using the above data in the left hand side of our
drain spacing formulas, that is in L = (H/a)[(Kl/R) - (Kl/'KO)], yields
a constant value of L = 74,6, This constant value has been used to
calculate the spacings given in table 2. The arrows shown in ﬁgwes L
through 19 refer to spacing calculations made for table 2, and therefore,
each arrow indicates a specific example. See also Figuwres L, 19, and 20
for detailed examples, showing the use of the nomographs. To save space,
- nomographs for the following cases are not included in Figures L through
198 1&/&{2 = 20; a/h = o.l\; and 0.8 for :«:l/xcz =10 and S5 a/h = O and 0.2
for IQ-L/I(2 = 1/10 and 1/20, However, with the given nomographs, drain
spacings for the above missing cases can be calculated by interpolation.
To minimize interpolation errors, a series of draln spacings should be
plotted against the corresponding v;lues of the parameter\in question'.
The resulting points should then be connected with a sz{noﬁh cuwrve and this

curve should be used to carry out the interpolation. Figure 21 describes,
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Table 2. Calculated drain spacings in meters for H = 0.6m, a = 1.6m,

2r = 0.2m, K =K, = 1.2 m/day, and R = 0,6 cm/day.

h vary, as indicated

K, and

% 2= 1.0 2 =0.8 2= 0. 3 = 0.2 2« o?
————>— h increases——>—

w° 36.8
50 3640 36.5 36.8 36.8
10 X, 36.8 38.0 39.0 k2.0
Sincreases 36.8 10.0 2.0 (hh.Q) L6.0
2 36.8 45,0 50.0 56,0
1° i 36.8°
1/2 L3.0 59.0 72.0 83.0
1/5 18.0 The0 90.0 (88.0) 101.0
1/10 56.0 90,0 101.0 112,0
1/50 83.0 112.0 118.0 122,0
o4 123.2 123.2 123.2 123.2

8 m o

sz =0 »

°&l =K, and a = h

% aaw



Figure 2l. Qualitative description of the effect of various parameters on drain spacing, 2s.
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in qualitative terms, the effect of various parameters on drain spacings,
and should prove to bg useful in assessing, at least, the general
direction of such effects, and in explaining the interactions among
various design parameters.

In solving the two-layered problem, we have used two physical
- artdfices and thus Mlinearized" the streamlines along the line connecting
the centers of the drains. Dagan (1965) has solved exactly the same
problem by what he calls "an approximate approach". In his approximate
approach, Dagan combined a mathematical linearization with the Dupuite .
Fércheimer theory. Along the line connecting the centers of the drains,
Dagan linsarized the sireamlines within the segment 0 £ x < 2h. In
linearizing the streamlinss, he did not, however, use any physical
artifices. Instead, he started from the non-linear equation for the

free surface, that is

2 2 \
(%g) +%§)-(R+K)§g+m=o ' (60)

For Equation 60, see Dagan (196L). By ignoring the quadratic terms as
well as the term B(3¢/3y), Equation 60 is linearized, and becomes

.g = R (61)

Outside the zone of linearization, that is within the segment 2h < x <,
Dagan assumed the flow to be essentially horizontal and used the Dupul te
Forcheimer theory. Using the linearized theory and the Dupuit~Forcheimer

theory, he developed two independent expressions for the water table
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height at a distance x = 2h from the drain. He designates this water
table height by the symbol hl. The drain spacings from Dagan's formula
are found by eliminating hl between the two expressions.

For the case Kl > K2, one would expect a fairly good agreement
between the drain spacings calculated from Dagan's formula and from owr
Equation L9, This is because, as one can see from Figure 3b, when K.L>
K2 the flow is somewhat horizontal, as Dagan assumed, and the Dupuit~
Forcheimer theory can be used within the segment 2h < x & s. On the
other hand, one would also expect that the drain spacings calculated from
Dagan's formula would deviate somewhat from the spacings obtained ﬁ‘om‘
our Equation L9, when K.l. < Kz. This is because, as one can see from
Figure 3d, when Kl< K2, the streamlines are not anymore horizontal within
the segment 2h < x < 8, as Dagan assumed. One may deduce, from an
inspection of Figure 3d and e, that as K2 increases while I& stays
constant, that is as K.l./K2 decreases; the streamlines tend to approach
to a vertical direction - a fact that has been reported by Dumm (1966)

-~ and the applicability of the Dupuit~Forcheimer theory becomes highly
questionable. \

Let us now return to Table 2. The two spacings given in parenthesis
in Table 2 have been calculated from Dagan's formula. One sees ihat the
agreement between the spacings obtained from'his formula and from owr
nomographs agree well not only for the case K.L/KZ =5 but also for the
case K /K, = 1/5, despite the fact that the applicability of the Dupwdt-

Forcheimer theory can be disputed on theoretical grounds. This paradox,
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however, can be explained. From Figure 3d, one sees that the maximum
hydraulic head at x = 5 18 H = 1.06 feet. If one calculates further
¢ (2h,0) = 0.93 foot, one sees that, [¢] (2n,0)/H]200 = (0.93/1.06)100 =
88 percent of the maximum hydraulic head has already been dissipated
between a distance of x = r a.nd x = 2h, This means that the water table
within the segment 2h < x < s is almost flat, as Dagan points out.
Therefore, Dagan's formula works not because the flow is horizontal but
because the major portion of the hydraulic head dissipation occurs within
the segment 2h < x <& s where this head dissipation is properly accounted
for by the linearized.theory. It should be pointed out that it is not
possible to calculate drain spacings from Dagan's formula for, say,
K‘L/K2 = either 10 or 1/10, because an essential graph for such calculations
is available for the range 1/9 < ILL/K2 < 9 only. It should also be
pointed out that his method of solution does mot permit one to prepare
flow nsts. ' |

The following approximations are true if s »>h, a, m, and r.

1n 1 1n
sin( m'72s) wr

\

El_“_a'-l,‘ e(ma/s)-l

cos —
nra nna S .
— = fulibbhuogiy — e .
coth P 1l = coth 5 e \
(rra/s)
a/s :
o VI -1
: mra _ mna

sinh —
8 8



7

mu(h-a) __ s

coth =5 i (5oa)

Inserting these approximations into Equation 39 yields

H= ZRS {in --+Z—(l cosmu)(-—-—)

s 1
O - s W/ /] + /) (62)
If we define d = h - a and observe that (1 = cos mﬂ)/m2 = n'z/h, then
Equation 62 reduces to
H = .%R;E 28 1TS [1 - (63)

ol (&ﬁ“ OER

As another approximation, we can ignore the term ln(2s/mr) because dus
to its logarithmic nature it is small as compared to the second term.

This yields

2
Rs 1
B = Xa T (/K Ja7a) (6L)

a result that can be obtained by a formal application of Dupuit~-Forcheimer
theory. One should keep in mind that the spacings obtained from Equa-
tion 6L represent the lowest limit, because the Dupud t~-Forcheimer theory
neglects the head losses resulting from the c.cmvergence of stream lines.
Therefore, one should be very cautious in using drain spacings obtained
from the Dupult~Forcheimer theory.
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THREE~LAYERED PROBLEM
The geometry of the three-layered drainage problem is similar to the
two-layered problem that has already been solved in the preceding chapters.
However, the flow medium consists of not two but three layers of soil, an
upper, a middle, and a lower layer, as shown in Figure 22. The upper
layer extends a distance Ma' and the middle layer a distance "b" below
the drain centers. The lower layer terminates at an impermeable layer
located at a finite distance h below the drains. K.L’. K, and K3 refer to
hydraulic conductivities of the upper, middle, and lower soil layers,
respectively.
Formulation of Problem
As in the two-layered problem, the head loss in the arched region
above the drains is assumed to be negligible. Also, the two physical
artifices, that is "fictitious membranes" and "slit drain" artifices,
that were used in formulating the tm:;-layered problém are also used in
formilating the three-~layered problem. Following the same line of reason-
ing that was used for the two-layered problem, ouwr three~layered problem
can be formulated as the boundary value problem shown below: _
Find expressions for Y, \1’2, V.s jfl, _Qé a.ndﬂg to saticfy the |

equations
2 2
2y +2f =0 (63)
:-,;2 dy
2 2
g .3 g‘_ 0 (66)
o

subject to the following soat of boundary conditions which are shown in
Figure 22:



Figure 22. Geometry for a steady-state tile drainage system for a three-layered flow medium.
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I. Y =Y, at x = s, O<y<a
For the
I. ¥ =V, at x = 0, 0<y«<a
1 . upper
- 2% = 2 x <8
III. Vl 5 \Vo at y 0 y 0 < layer
x=0 |
We V=53 aty=o, b<«<x<s
Va. ¢1-¢2 y=a 0<x <s .Attheupper
BALTIE L A% y=a Ocxces interface
VI \112-\}'0 X=g a<y<hb For the mid=-
VII.. \l’z - “Io x=0 ady«< b de layer
VIIIa. ¢, -¢3 y=b 0cx <s At the lower
VIIIb,. #’2“?3 y=b Dex <8 interface
IX. \PB-\IIO xX=g . b<y<h For the
X \l’s"‘!’o y=h 0<x<s lower
XI. ‘PB-WO x=0 b<y<h layer

Stream and Potential Functions
The stream function for the upper layer .will be identical to

Equation 12, which is rewritten here as S

t
]
/

I}

Vg =¥, - '2_:!:2 z {%1 gin X sinhlni(a~y)/s] &

8 sinh(mwa/s)

mmx sinh(mmy/s)
5 :inhGrma./zT} (67)

+ B s8in
m
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where Bm is an arbitrary constant. Equation 67 satisfies boundary con=
ditions I and II and the ternm (-2\!/0/11) is obtained to satisfy boundary
conditions III and IV, by following the same steps as previously explained
by Equations 5 through 11.

The stream functlon for the middle layer should contain two'
arbitrary constants that will be selected to ~sa.i:a'.si‘y boundary conditions Vb
and VIITb, The first term of V, should be similar to Equation 13, but
symbol h in Equation 13 should be replaced by symbol b. The second term
of \}'2 should be similar to the last term of Equation 67 but the .
denominator should be cosh(mwb/s) rather than sinh(mwa/s). The stream

function for the middle layer thus is

2y .
- ¥ 0 mix sinh[mn(b=y)/s]
WZ Yo =5 2 t[cm sin ~ coshimu(b=a}/s]

mix sinh(mn'y/s)} (68)

+ .
Dm sih =g .sinh{mwb/s)

~ where Cm and Dm are arbitrary constants. Equation 68 satisfies boundary
conditions VI and VII.

The stream function for the lower layer should be identical o
Equation 13 but symbol a in Equation 13 should now be replaced by symbol

be The stream function for the lower layer thus is

2y . .
- 0 mix sinh{mw(h-y)/s]"
‘{’3 -\[/o = B sn T e m(h=b) /5], (69)

where Em is an arbitrary constant. Equation 69 satisfies boundary con~
ditions IX, X, and XI.
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Again in comparison with Equations 16 and 17, we can write down
expressions for the potential functions,.

= _f_\y_O_ 2 {l cos X coshlmu(a—y) /5]
1

s sinh(mwa/s)

)
mrrx cosh(mmy/s) 2,
8 slnh(mﬂa/sj} n' 1?'orn (70)

- B cos
m

2y

-gé e w03 {0 cos MX cosh[mn (b~y) /5]
- 7 n

8 coshlmn(b~a)/s]

mmx cosh(mmy/s) 2v,
= D, co8 =5 sinh(mﬁb/s)} 7 Com (72)

_gé = -T pX {Em cos

mix cosh{mn(h=y) /s] \l’O
s zgsh {mu (h=b) /s]} Dom (72)

where Bom’ com and Dom are arbitrary constants. Notice that Equations 67
through 77 satisfy the Cauchy-Riemann conditions. Notice further that we
have satisfied all boundary conditions except Va, Vb, VIIIa, and VIIIb.
By using these remaining boundary conditions, we shall now evaluate the
arbitrary constants Bm’ Cm, Dm and Em'
By definition, ¢1 -gi/Kl and ¢2 szsz. Boundary condition Va

states that dl = ¢2 at y = a. It follows that
1zl 1 B cosh(mma/s)

KJ: Za sinh(mna/s) 2B, sinh(xmra.ﬁs)] cos =g~ = K; Bom =

1 cosh(mra/s) mnx 1 |
K, [0~ 2 n Seanarey) s BE - -0 (73)

LM
o
B
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By equating coefficients of cos _m_g_x, and after dropping the 2 cigns, we
obtain the following relations from Equation 73

K2 [1 cosh (mrra s)]

C = - 1 - B
) KL m sinh(mna/s) m sinh(mwa/s
cosh(mwa/s)
¥ Dm sinh(mib/s (7L _

K
C_ =-2B (75)

Boundary condition Vb states that \'/1 = \llz at y = a. It follows that

2B sin XX = {3 C_ tanh[mm(b-a)/s] + D_ %%Eﬁ—““%/g) sin 1‘%2 (76)

from which we get, by equating coefficients of sin _n%r__x and after dropping
the 2 sign, the result

B_ = C_ tanh[mn(b-a)/s] +D_ -%%—} (77)

Similarly, from boundary condition VIIIa, we obtain

5
" B ” 'K'z' Com (78)
E = K3 {c 1 D coth E2 :}. (79)
m " X, ‘“n Genlmio-a)/a] ~ 'm P 19

\
Ay

and from boundary condition VIIIb, we obtain
D =E tanh nt (h=b) (80)
m m s '

Now, from Equations 7L, 77, 79 and 80 we can solve for the coefficients

Bm’ C., Dm and Em‘ Lot us make the following substitutions:
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K3 1
O " T{; coshlmn(b=a) /s]

‘K
-3 Tt
3m fz- coth S

Y_ = tanh

mnw (h~b)
m s

5 = tann 1(b=2)
m S

o Sinh(mwa/s)
I}m sinh(mnb/s)

K

o2 ooty TR
pm q coth P

. cosh(mmwa/s)
Fn © Sioh(mo/s)

N
°n q sinh(uwa/s)

Then Equations Tk, 77, 79 and 80 can be written as

\

' €
.mem * Cm - anm m
- + + o

Bm Sme qum .O

aC ~BD ~E =0

mm mmn m

=Dy = 0

(81)

(82)

(83)

(8L)
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The solutions are

B = T8, * 7, (6B * an )l _ (85)
c =T (+py) ' (86)
D, = e . (87)
E, =T¢ ‘ (88)
where Tm is given by
T w3 n o (89)

n°m ‘1 * 5mp m) @+ 5mYm) * amYm(pmqm - P;)

om? Cop 204 Do'm. If

one follows the detailed steps given by Equations 25 through 30, one

We shall now evaluate the arbitrary constants B

obtains the expression for Bom

s ]y 1 .]_' - EEE’
Bom 1n 2 sin(nr/2s) *2 [m-( L+ coth ) _)

con 22 - 5, SEErmlE) ()
" where Bm is given by Equation 86. For com and Dbm’ we observe from
Equations 75 and 78 that if B is known then C__ and D are also kuown.
Because all arbitrary constants have now been evaluated, the stream
functions given by Equations 67, 68 and 69, and the potential functions
given by Equat.ions' 70, 71, and 72 are now defined.
| - Flow Nets T
Dirensionless flow nets for the three-layered drainage problem can

be prepared by following exactly the same procedures previously explained
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in detail for the two-layered problem. Equations 67 through 72, 75, 78,
and 85 through 90 should be used. Figure 23 shows a flow net that has
been prepared for the following dimensionless variables: a/2s = 1/25,
a/n = 2/5, v/h = 3/5, afer = L, R/K =100, K /K, = 1A10, K /K,

and K2/K3 = 10, The numerical values of a = |; feet, b = 6 feet, h = 10

feet, 2s = 100 feet and 2r = 1 foot have been used in order to facilitate

quantitative discussion. One observes from Figure 23 that the existence
of a two-feet thick and 10 times more permeable middle layer resulted in
a maximum water table height of 1.12 feet as compared to 1.8L feet of
Figure 3c which represents a homogeneous soil. Furthermore, one sees
that only about 1O percent of the flow passes through the lower layer in
Figure 23, because the stream lines refract sharply when they reach th?
more permeable middle layer.
Drain Spacing Formulas
By definition ¢l(s,0) = H and from Equation 70, we can write the

expression for H as

2Rs cos mn
H= —q {B -2 ["" cos mi CO'bh - Bm m (91)
After inserting the expression for Bom from Equation 90 into Equation 91,
multiplying the right hand side of it by the -factor [1 - (B./I&)]-l
order to account for the head loss in the arched region, and after
rearranging it, we obtain

1

o)

Ha=

2s 1 —
[ (& /RJ-1] 2 < (<L + coth ==)

B e (wnia/a) 1 (92)

(cos p%_t - cos mw){1l = m



Figure 23. Flow net for the dimensionless parameters a/2s = 1/25, a/h = 2/5, b/h = 3/5, afer = |,
R/, =100, K /K, = 1/10, and Kz/k3 = 10, Depth and distances in feet are shown for

purpéses of quantitative discussion.
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or, by inserting the expression for Bm from Equation 85, we get

H nm?ﬁsj'_):ﬂ {lnm +3%1 (=1 '*'CO'bh}%')(cosE-;E- cos my)
- e(mn’a/ s) T8, - e(m"'a‘/ 5) TmYm(amBm + Gmllm)]} (93)

Equation 93 is the general formula for the three-layered dralnage problem. -

When K3 = 0, then o Bm = 0 and Equation 93 reduces to Equation L5,

that is, owr three~layered problem reduces to two-layered problem.

2
that is, owr three-layered problem reduces to single-layered problem.

Similerly, when X, = 0, then T = O and Equation 93 reduces to Equation L2,

Therefore, all drain spacing formulas that have been previously obtained
for the two=-layered problem can be deduced from Equation 93 as special
cases of the three~layered problem. Furthermore, by changing the term
[(I&/P..)-l]"l by the term [(KO/R)-l]-l, our three-layered drainage problem
can be transformed into a special case of a four-layered problem.
Discussion of Results
Let us define, in addition to the functions E and F given by Equa-

tions L6 and L7, two new functions I and J as follows:

o o (mwa/s)
I=e /S g5 (9h)

7 = o(mma/s) Ty (68 %an) (95)

m

Then, Equation 93 can be rewritten as

Kl .
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where functions I and J show, as mentioned previously, the contributions
of the middle and lower layers, respectively, on the drain spacing 2s.
For example, if the lower layer is erroneously assumed to be impermeable,
then J is erroneously assumed to be zero and the percentage error in

drain spacing would be

3P |
] S B (57)

Similarly, if K2 is erroneously assumed to be zero, the resulting error
in drain spacing, 2s, would be

2RI+ J)

Trryo 100 (58)

Other combination of assumptions that would lead to such errors can
easily be formulated by using Equation 96.

Let us observe that firkham (1958) solved the single layered problem
by using five boundary conditions. Two and three-~layered problems
required nine and 13 boundary conditions; respectively. One can see that
each additional layer increases the number of the boundary conditions by
four. Therefore, the n-layered drainage problem can be formulated as a
mathematical boundary value problem with (ln + 1) boundary conditions.
The steps to be followed in solving such a boundary value problem are
identical to those explained in this thesis.- However, as the number of
soil layers increases, the expressions for the arbitrary constants become
more complicated. To see this, one need only to insert the values of a s
By 5 &3 Yo B bm and p into Equation 85 and compare it with Equation

m’
2L, Yet, modern computers make numerical calculations, even with such
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complicated expressions, a relatively easy task, as it has been demon=-

strated by the fiow net given in Figure 23.
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SUMMARY AND CONCLUSIONS

The problem of steady drainage of two and three-layered soils has
been solved by using and extending the methods and procedures developed
by Kirkham (1958, 1961) for the steady drainage of a homogeneous soil.
Five flow nets for the two-layered problem and one flow net for the
three-layered problem have been prepared. The five flow nets-for the
two=layered problem show the effect of the variations in hydraulic
conductivity of the lower layer on the flow lines and equipotentials as
well as on the maximum height of the water table above the drain tubes.

The general drain spacing formula for the two-layered problem is

2 1
i = ul (KljR)-ﬂ {in sin(nr/2s) 53 (-l * coth —)( 0s ZX ~ cos mn')

(mra/s) 1
[sn.nh(mrra/s) (K]_/K ) cothimw(h~-a)/s] + coth(mn’aﬁs)]} (99)

where a and h are the distances the upper and the lower layers, respec-—
tively, extend from the centers of the drainsj 2s is the drain spacingj H
is the maximum water table height above the drain centersj r is the drain
radius and IL_L/K2 are the l;xydraulic conductivities of the upper and

the lower soil layers, respectively. A set of 16 nomographs have been
prepared to solve explicitly for 2s, the drain spacing, for the two=-
layered problem. An aﬁditional nomograph has been prepared for a formula
of Hinesly and Kirkham (1966) which takes into account both recharge and
upward artesian seepage in homogeneous soils. The general drain spacing

formula for the three-~layered problem is
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2s 1 1 mia nir
H mﬂ {lnm *I (=1 + coth -é-)(cos —— - cos i)

1- e(mn’a./ 5) Tm(ﬁm + Ym(.smsm + amrgm)] } (100)

where the symbols Tm’ ém, Yy Bm, @ and B refer to algebraic substi-

tutions given in the text. The parameters a, r, H, h, 2s, K.l.’ K2 which

were defined above as well as the parameters K3 s the hydraulic conductiw‘.ty-
of the third layer, and b, the distance the middle layer extends below the
drain centers, are involved in these substitutions. The nomograpﬂs for the
three-layered problem have not been prepared for space limitations, but
they can be‘ prepared by following the same procedures developed for the
nomographs of the two-layered problem.

If one neglects the effect of one of the soil layers, the resulting
drain spacings would be in error. Expressions for calculating such errors
have been developed and discussed. A éolution of the two-layered problem
as given by Dagan (1965) has *also been discussed at.some lengthn.

It is concluded that:

l. A steady drainage problem in a stratified soil which consists of n
layers, can be formulated as a mathematical boundary value problem,
This problem is to find particular solutions for Laplace's equation
subject to (ln + 1) boundary conditions. - The éingle-layered problem
has been solved by Kirkham (1958), momographs for the single-layered
problem have been given by Toksoz and Kirkham (1961). In this thesis,
the problems for the two and three layers have been solved and.

extensive nomographs have been given for the two-layered problem.
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The steady drainage problems with more than three layers can also be
solved by following exactly the same methods and procedures developed

in this thesis. Therefore, the method developed in this thesis can be

- considered as a general theory for the steady drainage of stratified

soilsj

For a two-layered soil, statements like "when the hydraulic conductivity
of the upper layer is five to 10 times greater than that of the lower
layer, then the lower layer can be assumed to be impermeable" are
misleading., The drain spacings calculated on the basis of such
statenents will always be smaller than the correct drain spacings..

For example, for 2s/a = 128, a/2r = §, a/h = 0.2, the error in drain
spacings would be l1 percent for Klfsiz = 5/1 and 26 percent for

1&/&2 = 10/1, If one neglects the effect of the lower layer when

K2 is larger than K.L the errors would even be larger. Such errors
would decrease as the thickness 'of the upper layer increasesg

In designing a subsurface drainage system, the second soil layer should
always be takt;n into account because it may have an appreciable effect
on drain spacings. Spacing calculations for a two-layered soil can
easily be made by using the drain spacing nomecgraphs given in Figures

i through 20, For a three-layered soil, draln spacings can be calcu~
lated from Equation 100;

As the number of soil layers increase, the contribution of the lowest
layer on drain spacings decreases. However, if K3 o7 K, > K, the

effect of the third layer may be appreciable, depending on the
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geometry of the flow system and on the numerical values of the
hydraulic conductivities;

For the two-layered problem, the drain spacings calculated from
Dagan's (1965) formula agree well with those calculated from our

nomographs. For the case K_L > K, one would expect such an agreement.

~ For the case IL_L< K, Dagan's formula still yields good results, but

not because the flow is horizontal within the segment 2h < x <8, as
he has assumed, but because the major p‘roportion of the hydraulic
head loss occx;x's within the segment O < x < 2h (near the drain tube)
where it has been properly taken care of by his linearized theory.

It is correct that the water table within the segment 2h € x < s
(away from the drain) is almost flat, but it does mot follow that the
flow is horizontal in this segment. In fact, as one can see from the
flow nets of Figure 3d and e, the flow is not at all horizontal but
approaches to a vertical direction as K2 increa:ses. Dagan's analysis
does not permit one to' find expressiohs for the flow nets, and does

mt'provide the analysis for soils of great depth.

\
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APPENDIX A

We have, from Equation 15 of Hinesly and Kirkham (1966)

Hf = - Eh(R+F) z -1—2- (sin _x_nz_g_‘g - sin 3;—-;3) cos _én_rrﬂrz
7 (b=2) m = 1,3,00e m
coshmu(s-x)/2h] , +
sin(mns/2h) R(by) + KG (].'01)- :
Hereafter, the sign Z will refer to 2 .
m"l, 3, 5, eve

From Equations L5 and L6 of Hinesly and Kirkham (1966), we get

h ... mub . Tmay _m mrc
Ty (GlRgp sl gp) "z % (02)

as (b-a)=>0. By using the last result, we obtain their Equation LS as

wof o _ LERF)S o1 mric my cosh[mn(s-x) /2n]
K = - =5 Z 3 008 Z= €08 m o Fams/2h)

+ R(h=y) + KG (103)

For a drain running half-full, ¢ = 0 and Equation 103 reduces to

- - M) 3 oy sl ) o

We evaluate XG by observing that ¢(r,0) = 0.

. L(R+F) 1 cosh[mn(s—r)/2h]. '
KG _17__§ L m _cozingfmzsrsz/.2hl } - ® : (205)

By using Equation 105 in Equation 10l, and by observing that ¢(s,0) = H,

we obtain

- L(R+F)s o 1 =1 + cosh[mu(s=r)/2h]
B= = %3~ sioh(ums/n) (105)
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To account for the neglected head loss in the arched region, we multiply
the right hand side of Equation 106 by the factor [(R/K)-1]%, and

after rearranging Equation 106, we get

;2 =L+ cothlm(s=r) /2
LEFD =2 Zﬁﬁ&ﬁ‘é"}éif’” (107)

which we can rewrite it as

2s

2 =1 + cosh{(mn/L)((2s/h) = (2r/h)]} v(lOB)

T EFR e sinnl (/L) (25/5) ]

which is identical to owr Equation 55.
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