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INTRODUCTION' AND REVIES'Î OF LITERATURE 

Since I9I4D, the theory of flow of water into tile drains advanced 

rapidly. The theoretical developments involved both the transient flow 

concept (i.e., the water table is not in equilibrium with recharge but 

Kay be rising or falling) and the steady-state flow concept (i.e., water 

table is in equilibrium with recharge). Notable transient flow theories 

are given by Dumm (195U, 196W and by Maasland {19^9) 1961). For a recent 

and comprehensive review of numerous steady-state drainage theories, see 

ICLrkham (1966) and subsequent discussions of his paper by Soliman (I966), 

Hammad, Amer, Youngs, Dagan and Warrick (I966) and a closure of discussion 

by Kiflcham (I567), A characteristic of all the studies reported in the 

above references was that the flow medium was assumed to be a uniform, 

homogeneous and isotropic soil. However, under ordinary field conditions, 

the water flow into tile drains taîces place through layered soils and 

therefore the flow medium, as a wiiole, can no longer be assumed as 

homogeneous and isotropic. 

The research reported in this thesis is about a steady-state drain

age problem in stratified soils. Although this type of drainage problem 

is a more coranon one, it is also a difficult problem to solve and the 

resulting mathematical expressions are more complicated. This is perhaps 

the main reason why there are only a few theories on drainage of 

stratified soils, Hooghoudt's equation (I9lj0) can be written for a two-

layered soil, but it is a highly special case because the interface of 
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the two layers passes through the drain centers, Sirkham (1955-^ 19^W 

was the first to provide rigorous solutions to two drainage problems in 

a two-layered flow system. Kirkham's first paper was based on the 

assuiKption of a ponded water table over -fee soil surface. Kirkham's 

second paper (195U) utilized also the ponded water assunçtion but, in 

addition, he also considered inward seepage of artesian water into 

drains. Later, Swartzendruber (1962) showed how the "epsilon method" of 

Polubarimvar&ochina (1962) can be applied to couples but exact equations 

of Kirkham (1951) to obtain simpler but approximate results. Recently, 

Dagan (19^5) has solved, by an approximate approach, the steady-state 

flow of water into tile drains in a two-layered soil. His solution will 

later be discussed at some length. 

The first purpose of the research reported in this thesis is to give 

an exact and general steady-state theory of water flow into tile drains in 

stratified soils. First, this problem will be solved for a two-layered 

soil. Slow nets for a given flow geometry and for five values, including 

zero and infinity, of the hydraulic conductivity of the lower layer will 

be given. Drain spacing formulas will be obtained and a set of nomographs 

will be presented for drain spacing calculations. Expressions for errors 

in drain spacings resulting from neglecting the effect of the lower layer 

will be developed and discussed. Next, the problem will be solved for a 

three-layered soil. From the two and three-layered solutions one will be 

able to deduce how to solve problems for soils with more than three 

layers. 
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TWO-LÀ7ERED FEOBLE» 

The geometry of the drainage problem to be solved is shown In ilgvtre 

1. A steady, uniform rainfall or irrigation recharge, R, is removed by 

an infinite array of equally spaced tile drains of diameter 2r. The 

drain spacing is 26, The drains are asstaoed to be running half-fuU* 

The removal of the steady recharge by the drains results in a steady, 

arch-shaped water table, with H indicating the maxiimm height of the 

water table at the midpoint of the drains# The flow medium consists of 

two layers of soil. The hydraulic conductivity of the upper layer is 

^ and of the lower layer is Kg. However, each layer is assumed to be 

homogeneous and isotropic itself. The upper layer extends a distance "a" 

below the line connecting the centers of the drains. The lower,layer 

terminates at an in^ermeable layer located at a finite distance of h 

below the drain centers* The flow is assumed to be two dimensional. 

Formulation of Problem 

First, we should observe that, because of symmetry, it is sufficient 

to consider only half of the flow medium between the two tile drains in 

Figure 1. We can then represent the field problem depicted in Figure 1 

by an Idealized geometry, as shown in Figure 2. In Figure 2, and here

after in the text, the subscripts 1 and 2 refer to tqpper soil layer qnd 

lower soil layer, respectively. Next, in order to translate the field 

problem into a iwo dimensional boundary value problem, we shaH make use 

of one assuDÇtion and two plqrslcal artifices. The assumption, which was 

alsà used by fioogfaoudt (19U>} and KLrkham (l?$6) is that the Iqrdraulic head 



Figure 1, Geometry for a steady-state tile drainage system for a two-layered floir medium terminated 

by an impermeable layer at a finite depth h below the drain centers. 
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Figure 2, Idealized geometry of the steady-state drainage problem for a two-layered flow medivim 

terminated by an Impermeable layer at a finite depth h. 
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loss in the arched-region above the drains is negligible compared to the 

head loss for the remainder of the region. This assxonption can be 

physically approximated by replacing the soil in the arched region "with 

coarse gravel of effectively infinite conductivity so that there will be 

no head loss, and simultaneously introducing an infinite number of 

fictitious, rigid, and frictionless membranes, as indicated by the dotted 

lines in ELgure 2* The membranes are needed to keep the curved shape of 

the water table. The membranes also serve as piezometers to measure the 

water pressure at their base which is the datum for hydraulic head. 

Without membranes, a curved water table cannot be maintained in a flow 

medium of infinite conductivity. In such a flow medium the water table 

would be Hat. This "fictitious membranes" artifice was first used by 

Kirkham (19^8). The vertical membranes replace the true streamlines in 

the arched region. Therefore, the rainfall or irrigation recharge will 

be forced to go vertically downt^ard at a uniform rate and, as a result, 

the streamlines will be equally spaced, that is linearly distributed, 

along the line connecting the drain centers. The boundary condition 17, 

as marked in figure 2, is a direct consequence of this assunç>tion. We 

should mention here that, after obtaining expressions for potential 

functions, the gravel in the arched region will again be replaced by soil 

and the head loss which was assumed to be negligible will be taken into 

account as it was done by Kirkham (I56I) . 

We note from îlgure 2 that the circular drain is replaced by a slit 

drain of thickness zero and width 5 which, later, will also be shrunk to 



9 

zero» This "slit drain" artifice was also used by RLrkfaam (19^8). It is 

assumed that the streaiôLines will be equally spaced, that is, linearly 

distributed as they enter into the slit drain» The boundary côndiiâx)n HI, 

as marked in figure 2 is a direct consequence of this assumption. 

It is known that both the stream function and the potential function 

satisfy the Laplace's equation, assuming that the Darcy's linear flow 

equation and the equation of continuity for water flow are valid at all 

points of a flow medium. It should be observed that by combining the 

"fictitious membranes" and the "slit drain" artifices, the arched sh^ed 

portion of the flow medium can be excluded because the distribution of 

flow lines is now known along the line connecting the axes of the drains. 

Hence all the boundary conditions along the perimeter of the idealized 

flow geometry can be expressed in terms of half the drain discharge 

^ " Rs, and because of this, we should attempt to solve our flow problem 

by first finding expressions for the stream functions ^^(x,y) and ^g(x,y) 

rather than potential functions ^(x,y) and ^(x,y). Hereafter, when 

referring to stream and potential functions, they will be written as 

^2' aod that is, the x's and y's of the functional notation 

will be dropped. Note that (2^ and in Slgure 2 refer to hydraulic 

heads not to potential functions. Potential functions are defined as 

and ^ « ^2^2* reference level for hydraulic head is the 

X axis, that is, the hydraulic head is measured tçward from the x axis. 

From the above explanation, it follows that our drainage flow problem 

should be formulated as the following boundary value problem: First, find 
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expressions for ^ and that iwill satisfy Laplace's equation and the 

relevant boundary conditions, as marked in Figure 2. Next, find 

expressions for ^ and that id.ll also satisfy Laplace's equation and 

the relevant boundary conditions, as marked in Figure 2. In mathematical 

terms, our task is to find expressions for and to 

satisfy the following equations, respectively. 

4 + 4 - 0  
ax'^ a/ 

(1) 

(2) 

subject to the following set of boundary conditions: 

I. -̂ 1 ' to at % = s. 0 < y < a 

n. • to at X = 0, 0 < y <: a For medium 

ni. % "̂ 0 
at y = 0, 0 < X Ô 

one 

IV. % at y « 0, 5 < X < s 

Va. \at y = a. 0 < X < s At the 

•Vb. at y •= a. G < X < s interface 

VI. " to at X » s. a < y < h 

For medium 
VII. h - to at y = h. 0 <. X < s 

two 

vin. \ - t o  at X = 0, a < y < h 
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stream and Potential Functions 

Laplace's equation is a second order, partial differential equation 

•with an infinite number of solutions. However, we are after particular 

solutions of Laplaces equation for stream and potential functions that 

will not only satisfy, respectively. Equations 1 .and 2 but also the set of 

boundary conditions. The following type of a general solution of 

Laplace's equation 

» sinh _ X sin _ y 
P(x,y) » A + Bx + Cy + Dxy + 2 E or a (b + or) or (c + or) (3) 

m=l ^ cosh ^ y cos x 

is very useful in building up expressions for stream and potential functions, 

as explained by Kirkham (1$70). However, after Equation $ of Kirkham 

(1958) > we can write, by inspection, the expression for the stream 

function for medium one as: 

(U) 

I 
where A and B are arbitrary constants. Hereafter, the sign 2 will mean 
„ m m 
2 , unless stated otherwise. Observe that Equation i| satisfies 
m=l,2,... 
boundary conditions I and H. ' For boundary conditions III and IV, where 

y = 0, Equa-ld.on U reduces to 

(a 
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In Equation the arbitrary constant can be expressed as a Fourier 

sine series: 

A » "I / f (x) sin dx (6) 
III S ^ s 

0 

•where f (x) will be defined as a function satisfying boundary conditions 

in and IV. 

Boundary condition III, when applied to Equation yields: 

'î'o " 'I'O  ̂ \ sin (0 < X 6̂) 

which reduces to 

- 3 """o " ^ \ (0<.x<5) (7) 

Boundary condition IV, when applied to Equation yields: 

lAich reduces to 

|-5-|>^0"2A^sini^ (6<x<s) (8) 

From Equations 7 and 8, we can define f(x) as: 

- | V  O ^ x f ô  
f(x) - (9) 

Inserting the above expressions of f(x) into Equation 6 gives us: 
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A - - -S)  /  X sin dx + • • - v / (x - s) sin dx] (lO) 
m s  O q  S  s - O g  

Evaluation of the above definite integrals and, afterwards, taking the 

limit of the result as 6-40, that is as the width of the slit drain 

shrinks to zero, yields: 

Therefore, Equation U can now be written as: 

4 . _ iîS Ï {i 3ia HS slnh[mr(a - y)/s] 
1 0 IT m s 8inh(ma/s) 

2̂ 0 
where we have used B •» - - B • 

m ir m 

By inspection of Equation U and boundary conditions VI, VII, and 

VIH we can write the stream function for medium two as: 

where is another arbitrary constant. 

Because the expressions for the stream and potential functions are 

analytic functions, they satisfy the Cauchy-Eiemann conditions. The 
•\ 

Cauchy-Riemann conditions are 
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Therefore, if the expression for the stream function is known, the 

potential function can be found from Equations lU and 1$, either by 

integration or by inspection. Either way it follows that the potential 

functions for mediums one and two are 

(£ . . _2 z#'cos ÎS coshfa'Ca - y)/8] 
•*1 IT m S sinhlmifa/s) 

and 

where B _ and C are also arbitrary constants. om om 

We will now evaluate the arbitrary constants B and C , By m m 
definition, (2^ • and Ç(^ » Using these definitions, boundary 

condition Vb and Equations 16 and 17, we get 

^ <^[5 sli^UaAJ - ®m COS 
mnx 
s , 

- ®om' ' C ®m '=°° V - V 

from which we get, by equating the coefficients of the term cos 2225 and 
8 

dropping the 2 sign, the results 

and 

r... 



Similarly, bovmdary condition Va states that " tg at y » a, which 

results in, after cancelling certain terras, 

2 B sin — - 2 C tanh sin ~ (a) m s m s s 

from which we get, by equating the coefficients of sin and dropping 

the 2 sign, the result 

B - C tanh . (22) SI m s 

Substituting this value of B^ into Equation 19, and after rearranging, 

we get 

G * — ——r——~"T—* ' 1 (O'i) 
m m sinhCmna/s} + tanh linn (h - a)/sj cothCmira/s^ ^ 

and 

m sinhCmira/sj cothlnwth - &)/ai  + coth(mrra/s) 

—' "We shall now evaluate B _ and C • First we write the identilgr: om om 

co8h[m(a - y)/a]^_ -(mriy/s) ^ Q-(®^a/s) ^gg^iCmTfy/s) 
sinhlma/s; ® * siniil'imra/s) 

We use this identity in Equation l6 to obtain 

^  { 1  cos S Q-W/s) + cosh(iMïy/s) 
1 # m 8 sinhCmffa/sj 

(26) 
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Next, we \ise another identiiy 

2 i 003 . . 1 in[2 2 S)] (27) 
m s 00 

So that Equation 26 reduces to 

^ {- "I ln[2 e""(^^)(cogh ̂  - cos ^)] 

. „ rl liiiïx -(nura/s) cosh(i!iîry/s) 
+ 2 [- cos — e sinhSa/s) 

Remember that 9^ » andj remember further "Uiat we had assumed our 

tile drains to be flowing half-fuLl, that is (i^(x=T, y"0) = 0, Çy using 

these two conditions in Equation 28, we obtain 

B " — & ln[2 (l - cos •—)] om 6 s ^ 

• 2 [i oos s ̂2nh(ma/s) " ®b ^ sinhtma/s)^ 

where we observe "Wiat 

- \ ln[2(l - cos H] . _ I in[2 (2) (sin 

- TI ln[2 sin . In 

so that 

:o. -  ̂& sinW2aJ ^ ^ t ^ 

^ sim(wa/s)] 
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where we have iised the identity /s±nih.{jas{a,/s) " -1 + coth(inira/s)• 

Because B is defined by Equation 2L B is now known* Furthermore, 
m om ' 

when B is known, G is also known from Equation 20. Hence we have om ' om 

determined all the coefficients for Vg, and and in turn ^ and 

Flow Nets 

By using Equations 12, 13, l6, 17, 20, 23, 2k,  and 30, flow nets can 

be drawn for any given set of soil and hydrologie parameters» KLgure 3 

shows five flow nets, labeled from a through e. These flow nets were 

prepared for the following set of dimensionless variables : a/2s " 1/2$, 

a/ii = 2/5, a/2r « U, R/K^ " lA^O and » infinity, 5, 1, l/5 and zero, 

for the cases a, b, c, d and e, respectively. However, to facilitate 

quantitative discussion, it was assumed that the <^ains were placed at a 

depth of four feet below the ground surface with a = ii. feet, h = 10 feet, 

2$ " 100 feet, 2r " 1 foot, B = 0.1 inch per day, • 10 inches per day. 

It was also assumed, that the hydraulic conductivity of the lower layer. Kg, 

would vary as follows : zero, 2 inches per day 10 inches per day, $0 inches 

per day and infinity, for the cases a, b, c, d, and e, respectively. As one 

may observe, these flow nets were prepared to show the effect of the 

hydraulic conductivity of the lower soil layer on the flow lines, the 

equal hydraulic head lines (equipotentials), and on the maximum height of 

water table above the drains. Equations 12, 13, 23 and 2U were used to 

compute the streamlines. The streamlines were eiiqtressed as a percentage 

of half the drain discharge, • Ks, that is, as 100()j^/|^) and as 



ïlgure 3* Flow nets for the dimensionless parameters a/2s • l/25, 

aA - 2/^, a/2r - h, - lAoO and » «, 1, lA 

and zero for the cases a through e respectively* Depth and 

distance in feet are shown for purposes of quantitative 

discussion* 
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100(>1'2/Vq) • Equations l6, 17, 20, 23, 2k and 30 were used to compute the 

equipotentialsc The equipotentials were expressed as a percentage of the 

maximum hydraulic head, 9^(s,0), that is as 100[9(j^(x,y)/Ç/^(s,0) ] and as 

100[pl^(x,y)/^(s,0)]. The water table was plotted from i/^(x,0). Because 

of slow convergence of some of the series found in stream and potential 

functions, a digital conçuter was used in confutations • The following is 

a summary of the formulas used for preparing the flow nets for cases a 

through e of Figure 3* 

Case a: ° 10 ^2 " ^ " *" 

The problem reduces to the single layered problem with an iuçermeàble 

layer at a depth a below the drains. Equations 12 and I6 were used, but 

observe that • » results in • 0 and, 

2 sinU/Zs) * ^ I o°B if (-1 ^ <x,th =) (31) 

In view of the above results. Equation 12 reduces to 

and Equation I6 reduces to 

(33) 

Case b: ° 10 - 2 K^/K^ = ^ 

Equations 12, 13, I6, 17, 20, 23, 2U and 30 were used. 

Case c: •» 10 - 1 

The problem again reduces to the single-layered problem, but in 

this case, the impermeable layer is at a depth of h below the drains. 

Observe that implies that a—>h which, because of coth[mTf(hf-h/s] " 
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<», results in " 0, Therefore, Equations 31, 32 and 33 were used after 

replacing the symbol a in these equations with the symbol h. 

'While using Equations 12, 13, l6, 17, 20 and 30, one should insert values 

of and as given by Equations 3U and 3^. 

A comparison between the cases c and d of Figure 3 shows that a 

five-fold increase in the hydraulic conductivity of the lower layer - a 

rather common observation under field conditions - would result in a 

decrease of [(l»8U - 1.06)/L,8U]100-= ij2 percent in maximum height of 

water table. Furthermore, one observes from Figure 3 a through e that as 

Kg increases from zero to infinity, the UO, 60, 80 percent streamlines in 

the upper soil layer start deviating from their somewhat horizontal 

directions toward a vertical direction. These streamlines pass through 

the lower layer somewhat horizontally but they converge rapidly in the 

vicinity of the drain. At •Uie interface of the soil layers, both the 

streamlines and the equipotentials obey to the well known laws of 

refraction. The angles the streamlines in the upper and lower layers 

Cased: » 10 K» " ^0 ° l/S 

Equations 12, 13, l6, 17, 20, 23, 2k and 30 were used. 

Case e: = 10 ° 0 

m m coshCmira/sj (3U) 

m m tanhLmn(h - aj/sj cosh^mna/s} 
1 1 (3$) 
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make with the normal to the interface, that is and respectively, 

can be found from tan a^/tan The angles the equipotentials 

in the içper and lower layers make with the normal to the interface, 

that is Y-j_ and respectively, can be found from cot Y^/cot • 

Drain Spacing Formulas 

Remembering that (2^ • ^ " Rs and the identity 

g(mira/s) ^ and substituting and from the Equations 2h and 30 

into Equation 28, we can rewrite Equation 28 as 

ln[2 ^ - cos 

V 1 inîîx ^-(mna/s) cosh(raîry/s) 
- ̂  s ° sinh{S/s) 

^ ^ g-(mTra/s) ^Cmffa/s) 

m sinh^mira/sj cothLmiT(h-aj/sj + coth(miïa/s) 

cos co3h(mTty/s) 
s sinh(mTra/sj 

2 ^-(mffa/s) ^(ma/s) 

m sinh(mira/s) (K^/Kgi coth[mir(h-a)/sJ + coth(mira/s} 

miïT 1 
s sinh(mTfa/s) 

1 mm» 
* Z Im °°° — slDhWa/s)^ * ^ 2 sia(nr/28) ' 

After using the identity (mma/s)yg(imfa/s) • -1 + cotli(imTa/3), and 

after rearranging Equation 36, we get 
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«<1 - ̂  T^àiî?75i7 ^ I o-^'^''=nco3h 2 - =0» ^)] 

+ 2 — (-1 + coth •22iâ)(cos Siï£ _ COS •SîS cosh ~î ) 
10. 8 s s 8 

g(mTra/s) ^ / \ 
~ sinhCmira/s; (K^A2) coth[mn(hr-a)/s] + coth(iana/s)^^ 

Now, by definition, 9^^(s,0) «H, the maximum height of the water 

table midway between the drains. Inserting y " 0 and x • s and using the 

relation cos ff • -1 and using the identity 

^ 2 sinUr/2s; * 1 ln[2(l - cos ff)] " In gintîïr/Ss; (^8) 

one sees that Equation 37 reduces to 

^ 8in(«r/2s) ^ ~)(co8 cos ma) 

- i (-1 + coth )̂(cos  ̂- cos mir) 

(K^Ag) coth[mjr(h-a)/s] + coth(mffa/s)^^ 

Equation 39 is the general formula relating all relevant design variables 

for a two-layered drainage problem. 

Me can distinguish seven limiting cases of the general formula given 

by Equation 39# The first two cases result from the limiting values of 

the thicknesses of two soil layers and the remaining five cases from the 

limiting values of hydraulic conductivities. 
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Case 1: h — W h i l e  a  =  f i n i t e  a n d  a./h = 0 

Because of coth[inrf(h-a)/s]—^0 as h—Equation 39 reduces to 

" • elnlm-As) + = 5 (-1 * (°os S • eoa ro) 

gUffa/s) 

" (K^/fCg) sinh(rana/s) + cosh(raira/s)^^ 

Observe that in Equation 1^), the parameter h does not appear» 

Case ?•! a—»» While h > a and = finite 

Because of coth(mffa/s) - 1 = 0 as a—Equation 39 reduces to the 

following simple form: 

" " ̂  ̂  6in(nr/2s')' (f°r »-.%-) (U.) 

Observe that in Equation I|1 the parameters a, h, and Kg do not appear. 

Case 3 -  ° 0 While = finite 

Our twro-layered problem would reduce to a single-layered problem and 

the impermeable layer would be at a depth a below the drains» Equation 39 

reduces to 

® ^ [1" sln(itr/23) ^ - cos m)] (W 

To see this, one should observe that Kg = 0 implies K^/Kg • ® which causes 

the following term in Equation 39 

• 1 
(i^/KgJ cothLmjr(h-a>/sJ + coth(mifa/sj 

to be zero. 
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Case U' Kq ° ^ 

Our two-layered problem would again reduce to a single-layered 

problem, but here, the inçermeable layer xTOuld be at a depth h below the 

drains. Equation 39 would again reduce to 

To see "Uiis, one should observe that implies a—^h, and in turn, 

the term coth[mir(h-a)/s]-><» which causes the following term in Equation 

COthLmif(h-a)/sj + coth(mna/s^ 

to be zero. Observe that Equations 1(2 and li3 are identical except that 

the symbol a in Equation 1*2 is replaced by the symbol h in Equation Ij, 

or vice versa. 

Case 5* « «> While ° finite 

This implies that K, » 0 and Equation 39 reduces to 

Observe that in Equation 14j., Kg and h do not appear. 

Case 6: " 0 While K„ • finite 

One may deduce from Equation 39 that H—» ». There would be no flow 

into drains that are placed in an impermeable layer. Therefore, the 

% * b* gin(%r/2s) + 2 I (-1 + coth i!^)(cos ~ - cos mff)] (W 

1 

+ 2 i (-1 + coth (cos ^ - cos mir) [l - (W 
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steady recharge would cause the water table to build up and to reach, 

eventually, a theoretical height of infinity. 

Case 7 : ° While ° finite 

One may deduce from Equation 39 that H—>zero, No hydraulic head 

would be needed for water to flow into drains when the drains are placed 

in an infinitely conducting medium. Therefore, the water table would be 

flat and at the aads of the drains. 

We should now recall an assumption that was made earlier, under the 

subheading "Formulation of Problem", This assumption was: The hydraulic 

head loss in the arched region above the drains is negligible conpared to 

the head loss for the remainder of the region. However, KLrkham (l96l) 

has shown that multiplication of the right hand side of Equation 39 by 

the factor [l - (R/%^) ] ^ will take this neglected head loss into 

account. This results in 

rr 2Rs 1 1 
" 1 - %B/^) Gin(Kr/2s) 

S [i (-1 + coth (cos _ ÇQS mff) 
lu . s s 

1 c n J. mjrax/ mirr ^(mira/s) 
- - (-1 + coth —)(cos — - cos miT) ginh(ma/8) 

(K^/Kg) co-UilmifCh-a)/s j + cothCmira/s)^^ 

Notice that Equation U5 is exactly the same of Equation 39 except for the 

factor [l - which takes into account the neglected head loss in 
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the arched region above the drains. Therefore^ Equation rather than 

Equation 3$ "will hereafter be called "the general formula". In Equation 

the recharge, R, sometimes also called "the drainage coefficient", 

reflects the duration, intensity and frequency of either the rainfall or 

irrigation applications and determined accordingly. The soil parameters 

K^, Kg, a and h are determined through field tests and borings. The 

maximum height of water table over the drains, H,. is mainly a function of 

the rooting habits of crops, among other factors. Normally, all of these 

parameters are "given" quantities. In other words, these parameters can 

be determined, within reasonable margins, based on information collected 

during investigation and planning activities. The designer then selects 

a tile diameter, 2r, and proceeds to compute the drain spacings, 2s -

the quantity he is really interested to know. However, Equation is 

not of too much help to him in achieving his task because, the drain 

spacing, 2s, is not given explicitly by this equation. This difficulty 

can be overcome by using a procedure outlined by Toksoz and Kirkham (1961). 

Let us define three functions, i.e., E(—, •§-) and y 8L CL w* 

& '  Î ' ^  follows 

^'•T' if) " i 1" slnUit/2)(L/a)(a/28)J 

F(~, ^ ^ (-1 + coth ~^)(cos mR — cos mir) (L?) 

and 
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h. 
a ' 2 T* h' ^ sinh(2mTra/2s} 

(K^/Kg)coth 2raiTl(h/a)(a/2s)-(a/2s^ J + coth(2mïïa/2sj 

By using these functions in Equation U5 and. by dividing both sides of it 

by the symbol a, and after rearranging it, we can rewrite the general 

formula as 

%  ( r  - "  f  & )  "  :  & )  

- : h f. . "-9) 

Similarly, Equations 1^0, I4I, Li2, li3, and Ut, which correspond to the first 

five limiting cases, can also be rewritten. Equation IjO, for h—>«• and 

3./Ï1 « 0 becomes 

g(2mJTa/2s) 

" (K^/%2)sinhl2mTfa/28 j + coshC2mffa/2s)^^ 

Equation UL, for a—>«», becomes 

Equation 1(2, for Kg - 0, becomes 

I ' r - i ) - r  .  & )  ^  z  & ) ]  '  ( 5 2 )  

Equation 1(3, for Kg " K^, becomes 
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(S3) 

Equation liU, for • •», becomes 

Br - ]-) "r &) - c^sntzwa/zs)'* 

which, if desired, may be reduced to 

- l) " "1^ - 2 F(~, •^) tanh(2iniïa/2s)] (SJia) 

and, further, be reduced to 

f'r " 

"f [^e &) ^ 

Equations U9 through $k are the drain spacing formulas for a two-

layered drainage problem, covering the general as well as the limiting 

cases. One can see that the left band sides of all of these drain 

spacing formulas are common, consisting of a given set of parameters, 

and also are known by the designer. Therefore, if the right hand sides 

of these drain spacing formulas can be calculated, for a given set of the 

dimensionless parameters a/k, a/2r and 2s/a, then nomographs 

similar to those of Toksoz and Klrkham (I96I) can be prepared, and by 

using such nomographs, the drain spacing, 2s, can be explicitly calculated. 

Nomographs for Drain Spacing Calculations 

First, let us observe, as Wesseling (I96U) pointed out, that Kirkham 

(1961) derived the factor [l - (E/Kj^)]"^ by using the properties of the 
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soil in the arched region only. Hence, we can consider the soil in the 

arched region as a separate soil layer having a hydraulic conductivity 

of Kq, As a result, the factor becomes [l - (RAq) 3 ^ and our two-

layered drainage problem can thus be extended to a special case of a 

three-layered problem. The use of the new factor [1 - (R/Kq)]"^ would 

only change the left hand side of Equations k9 through to (H/a) 

[(K^/k) - ]. Note that, when the soil in the arched region above 

the drains extends to a depth a below the drains, i.e., when Kg • 

then " 1 and (H/a)[(K^/fe) - (K^/Kq)] would reduce to (H/a) 

[(^/^) — l3« 

Next, let us also observe that for our Equations 51 and 53, which 

correspond to our limiting cases 2 and U, the drain spacing nomographs 

have already been given by Toks<?z and Kirkham (1961), as their figures 2 

and 1, respectively. One should note that if the captions in the 

ordinate axis of figures 2 and 1 of Toksoz and KLrkham (1961) are 

replaced by 1.36U[(K^/R) - (K^/kg)] and by (H/k)[(K^/k) - (K^Aq)J, 

respectively, these figures may also be used for a special case of a 

two-layered problem with the interface of the soil layers passing through 

the drain centers, as Wesseling (I96U) pointed out. Notice that in 

preparing these nomographs, TolcsSz and KirMiam (I961) made use of the 

following assumption: ln[l/sin(Tfr/2s) ] •» ln(2s/flr) when s > > r. This 

assunçtion is perfectly valid for most practical purposes. In reality, we 

need only figure 1 of Tokso'z and KLrkham (I96I) because idien the impermea

ble layer is located at a depth greater than half the drain spacing, i.e.. 



when h >' s, the effect of impermeable layer on drain spacing becomes 

negligible, as one may calculate from their figure» Hence our limiting 

case 2, that is h • is purely a theoretical case» "When h is large 

but finite, the problem can still be solved by figure 1 of Toksb'z and 

JflLrkham (I96I). Observe that our Equations 52 and 53 which correspond to 

our limiting cases 3 and U, respectively, are similar. Therefore, figure 

1 of Toksoz and Kirkham (1961) can also be used for our limiting case 3, 

that is for our Equation 52, provided that the symbol h in the figure is 

replaced by the symbol a. Such a figure is given as our Figure U* 

So far we have demonstrated that the drain spacing nomograph shown 

in our Figure U can be used to solve our Equations 52 and 53» correspond

ing to our limiting cases 3 and U« We have also indicated that our 

limiting case 2, corresponding to our Equation 51 is a theoretical case 

and practical problems involving large s, that is, h> s can still be 

solved by our Figure L» RLgures 5 through I8 are the drain spacing 

nomographs for the general case and the limiting case 1, corresponding to 

Equations U9 and 5^, respectively. Figure 19 is the nomogr^h for the 

limiting case 5, corresponding to Equation 5U. Notice that our limitii^ 

case 5, that is Kg " » may be thought to represent a soil layer overlying 

a coarse gravel bed that rests on top of an impermeable barrier such that 

no natural outlet exists for the drainage of gravel layer* 

To prepare "Wiese nomographs, the right hand sides of Equations L9, 

50 and 5U have been calculated by using a digital computer. The calcula

tions have been made in terms of the dimensionless parameters &/h, K, /S^, 
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Rlgure U* Drain spacing nomograph for Kg = 0. This nomograph can also be iised for by 

replacing the symbol a in the nomograph by the symbol h. 

) 
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Figure Drain spacing nomographs for K^/kg = ^ and a./h = 0 and 0.2. 
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Figure 6, Drain spacing nomographs for = $0 and s./h = O.L and 0,8. 
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Figure ?• Drain spacing nomographs for " 10 and a/k = 0 and 0,2. 
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Figure 8. Drain spacing nomographs for » 5 and a/b = 0 and 0.2. 
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Figure 9. Drain spacing nomographs for = 2 and a/k « 0 and 0.2. 
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Figure 10, Drain spacing nomographs for = 2 and aA " O.U and Oo8, 
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Figure 11. Drain spacing nomographs for • l/2 and a/h « 0 and 0,2. 
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Figure 12, Drain spacing nomographs for «• l/2 and a/h = O.U and 0,8. 
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Figure 13» Drain spacing nomographs for « l/5 and a/4i = 0 and 0.2. 
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Figure 1U« Drain spacing nomographs for and a/li = O.U and 0,6. 
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Figure 15. Drain spacing nomographs for = l/lO and a./h = O.U and 0.8. 
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Figure 16, Drain spacing nomographs for = 1/20 and a/ii = 0,U and 0,8, 
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Figure 17# Drain spacing nomograph for - l/$) and a/k = 0 and 0.2. 
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Figïire 18, Drain spring nomograph for » l/^ and 3./h = O.U and 0.8. 
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îlgïire 19, Drain spacing nomograph for Kg 
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Figure 20. Drain spacing nomograph for both surface recharge and 

artesian seepage. The nomograph is for solving Hinesly-

SlrMiam formula. 
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a/2r, and 2s/a. For Equation li9j the values of the dimensionless param

eters were as follows : a./ii = 0.2, 0,U, and 0,8/ • $0, 20, 10, 

2, 1/2, lA, l/LO, 1/20 and l/$Dj a/2r = 1, 8, 61, ^2; 2s/a = 2, U, 8, 

16, 32, 6ii, 128, and 2$5. For Equation $0: a^ = 0 whereas values for 

K^/kg, a/2r, and 2s/a were as for Equation U9« For Equation ^k' a/2s = 

2.5> 10, 20, ip, 80, and l60j values for a/2r were as for Equation h9» 

The computer outputs resulted in values similar to those given by 

Table 3 of Toksoz and Rirkham (I96I) and the drain spacing nomographs 

shown in Figures $ through 1? were also prepared following the same steps 

used by them. For Equations U9 and ^0, we have used four different values 

of a/h, and 10 different values of K^/Kg. To represent the full array of 

these parameters, one would have needed (L)(10) = 1|0 nomographs. Notice 

that we have included only 28 of these UO nomgraphs as our Figures 5 

through 18, The main reason for excluding some of the nomographs was to 

save space while staying within reasonable limits of accuracy. More wiH 

be said about this later, under the subheading Discussion of Results. 

An interesting and useful addition to the above nomographs is shown 

in Figure 20. This figuré provides graphical solutions to drainage 

problems where both downward surface recharge, R, and upward artesian 

seepage, F, must be taken into account. This problem, has already been 

solved by Hinesly and Kirkham (1966). Their equation 1$ can be reduced to . 

the following form 

h^R+F' 
1 cosh{ (miT 
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for which Figure 20 has been prepared. See Appendix A for the required 

steps to reduce equation 15 of Hinesly and KLrkham (1966) to our Equation 

55. 

Discussion of Results 

Let us write Equation L9 as 

2s " H(g- - + 2F - 2FG^ 

where, for brevity, we have dropped the arguments of the functions 

defined by Equations L6, hi and US* Notice that in Equations 1(6 and U7> 

the symbol h does not appear. In vieif of Equations L6, 1*7 and I4.8, one may 

deduce that the term 2FG in Equation 56 reflects the effect of lower soil 

layer on the drain spacing, 2s. We will now consider the two conceivable 

Igrpes of errors that could be made in calculating the drain spacings. 

The first type of error occurs when the hydraulic conductivity of the 

lower layer is assumed to be zero, that is Kg • 0, while it is not zero. 

This jasôumption means • • which yields G • 0. The drain spacings 

calculated on the basis of this assumption will always be smaller than 

the correct spacings, because if G = 0 then the term FG in Equation 56 

would vanish. In reality, however. Eg / 0 and also G / G« 

The percentage error in drain spacings resulting from the assumption 

Kg - 0, will be 

One may observe, in view of Equations li6, 1;7 and 1(8, that such an error 

is not only a function of the soil parameters K./L, as it is comwriLy 
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thought, but also a fxmotion of the geometrical parameters of the flow 

medium, i.e., of a, h, and, 2r. It follows that statements like "when 

the hydraulic conductivity of the upper layer is five to 10 times greater 

than the hydraulic conductivity of the lower layer, then the lower layer 

can be assumed to be inçermeable" may be misleading. Obviously, when the 

hydraulic conductivity of the lower layer is less than that of the içper 

layer, percentage errors in drain spacings resulting from the assumption 

Kg " 0 would be smaller as conpared to errors that would result when the 

hydraulic conductivity of the lower layer is higher than that of the 

içper layer. Furthermore, such errors will decrease as the thickness of 

the upper layer increases. Table 1 is prepared by using E, F and G 

values obtained from coitputer outputs and shows the expected errors for 

some selected values of • a/2s and for a/2r • 8 and a/h "0.2 and 

validates the preceding statements. 

The second type of error results when the lower layer is completely 

ignored, that is when the upper layer is assumed to erbend to a depth h, 

or simply when it is assumed Kg - K^. The drain spacing would be 

computed from Equation rewritten in the form 

2s - H(^ - 1) 2^ i 2Fj^ (58) 

where and F^ are defined by Equations I46 and U7 by replacing the 

synibol a in these equations by the symbol h. The correct drain spacing 

is of course given by Equation $Sm The erroneous drain spacings, re sully

ing from the assumption Kg " K^, would be larger if > Kg and they will 
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Table 1. Percentage errors that would result in drain spacixxgs when 

the hydraulic conductivity of the lower layer is aiîsumed to 

be aero while it is not zero. The errors have been computed 

from Equation Sî for a/2r " 8 and a^ • 0.2, and for selected 

values of 2s/a and as indicated 

il 
a 

Percent Error Percent Error 

2$S 5A W 1/5 93 

256 loA 27 1/2 86 

128 5A lû. 1/5 89 

128 loA 26 1/2 83 

6k 5A 37 1/5 8U 

6U loA 23 1/2 77 

32 5A 31 1/5 ^ 7U 

32 loA 19 1/2 68 

16 5A 20 1/5 57 

16 loA ^ 12 1/2 

8 5A 9 1/5 33 

8 loA 5 1/2 28 
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The absolute value of the percentage error will, 

[1 . E +2? -230] (59) 

Such errors xd.ll decrease as the tliictoioss of the upper layer increases. 

Table 2 shows a set of drain spacings, calculated for the following 

set of data: H = 0.6m, a = 1.2m, 2r = 0.2m, = 1.2 m/day, and. 

R » 0.006 m/day. The parameters h and are assumed to vary, as 

indicated in table 2. Using the above data in the left hand side of our 

drain spacing formulas, that is in 1 = (K/a)[(K^/k) - (K^/ÏC^)], yields 

a constant value of L » 7U»6. This constant value has been used to 

calculate the spacings given in table 2. The arrows shown in Figures U 

through 19 refer to spacing calculations made for table 2, and therefore, 

each arrow indicates a specific exançle. See also Figures U, 19, and 20 

for detailed examples, showing the use of the nomographs. To save space, 

nomographs for the following cases are not included in Figures U through 

19: " 20j a/h O.U and 0,8 for = 10 and a/la » 0 and 0.2 

for • I/LO and 1/20. However, with the given nomographs, drain 

spacings for the above missing cases can be calculated by interpolation. 

To minimize interpolation errors, a series of drain spacings should be 

plotted against the corresponding values of the parameter in question. 

The resulting points should then be connected with a smooth curve and this 

curve should be used to carry out the interpolation. Figure 21 describes. 

be smaller if -C . 

for both cases, be 
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Table 2. Calculated drain spacings in meters for H " 0«6m, a " 1.6m, 

2r = 0,2m, - Eg = 1.2 m/day, and R • 0,6 cm/day. Kg and 

h vary, as indicated 

T f " f " î" E " 0* 

10 

36.8 

M 

h 
5 
increases 

2 Mr 
1  C  i 36.8° 

_> h increases—> > 

36.0 36.5 36.8 36.8 

36.8 38.0 39.0 h2.0 

36.8 10.0 1|2.0 (Wi.O) 16.0 

36.8 U5-0 20.0 $6.0 

1/2 U3.0 29.0 72.0 83.0 

1/2 18.0 7U.0 90.0 (88.0) 101.0 

lAo $6.0 90.0 101.0 112.0 

1/50 83.0 112.0 118.0 122.0 

0^ 123.2 123.2 123.2 123.2 

« 0» 

\ - 0 

•» Kg and a • h 
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K-gure 21, Qu^itative description of the effect of various parameters on drain spacing, 2s* 
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in qualitative terms, the effect of various parameters on drain spacings, 

and should prove to be useful in assessing, at least, the general 

direction of such effects, and in explaining the interactions among 

various design parameters. 

In solving "Uie two-layered problem, we have used two physical 

artifices and thus "linearized" the streaniLines along the line connecting 

the centers of the drains. Dag an (1965) has solved exactly the same 

problem by what he calls "an approximate approach". In his approximate 

approach. Dag an combined a mathematical linearization with the Dupuit>> . 

Forcheimer theory. Along the line connecting the centers of the drains, 

Dagan linearized the streamlines within the segment 0 ^ x ^ 2h. In 

linearizing the streamlines, he did not, however, use any physical 

artifices. Instead, he started from the non-linear equation for the 

free surface, that is 

2 2 jr 

0 + (0) - (K K) = 0 (60) 

For Equation 60, see Dagan (196U). By ignoring the quadratic terms as 

well as the term B(d^dy), Equation 60 is linearized, and becomes 

- E (61) 

Outside the zone of linearization, that is within the segment 2h <x <8, 

Dagan assumed the flow to be essentially horizontal and used the DupuLi>-

Forcheiner theory. Using the linearized theory and the Dupuit-Forcheimer 

theory, he developed two independent expressions for the water table 
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height at a distance x = 2h from the drain. He designates this water 

table height by the symbol h^. The drain spacings from Dagan's formvila 

are found by eliminating h^ between the two expressions. 

For the case > Kg, one would expect a fairly good agreement 

between the drain spacings calculated from Dagan's formula and from our 

Equation U?. This is because, as one can see from Figure 3b, when > 

Eg the flow is somewhat horizontal, as Dagan assumed, and the Dupuit-

Forcheimer theory can be used within the segment 2h <. x < s. On the 

other hand, one would also expect that the drain spacings calculated from 

Dagan's formula would deviate somewhat from the spacings obtained from 

our Equation U9j when < Kg. This is because, as one can see from 

K-gure 3d, when Kg, the streamlines are not anymore horizontal within 

the segment 2h < x < s, as Dagan assumed. One may deduce, from an 

inspection of Figure 3d and e, "Uiat as Kg increases while stays 

constant, that is as E^/Kg decreases, the streamlines tend to approach 

to a vertical direction - a fact that has been reported by Dumm (1966) 

- and the applicability of the Dipuit-Forcheimer theory becomes highly 

questionable. \ 

Let us now return to Table 2. The two spacings given in parenthesis 

in Table 2 have been calculated from Dagan's formula. One sees that the 

agreement between the spacings obtained from his formula and from our 

nomographs agree well not only for the case K^/Kg = $ but, also for the 

case K^/kg " l/5, despite the fact that the sçplicability of the Dupuit-

Forcheimer theory can be disputed on theoretical grounds. This paradox. 



76 

however, can be explained. Prom Figure 3d, one sees that the maximum 

hydraulic head at x " s is H « 1,06 feet. If one calculates further 

9^(2h,0) " 0,93 foot, one sees that, [9^(2h,0)/3]l00 = (0.93/1,06)100 • 

88 percent of the maximum hydraulic head has already been dissipated 

between a distance of x • r and x = 2h. This me&os that the water table 

within the segment 2h <x ^ s is almost flat, as Dagan points out. 

Therefore, Dagan's formula works not because the flow is horizontal but 

because the major portion of the hydraulic head dissipation occurs within 

the segment 2h < x < s where this head dissipation is properly accounted 

for by the linearized theory. It should be pointed out that it is not 

possible to calculate drain spacings from Dagan's formula for, say, 

= either 10 or l/LO, because an essential graph for such calculations 

is available for the range 1/9 ^ < 9 only. It should also be 

pointed out that his method of solution does not permit one to prepare 

flow nets. 

The following approximations are true if s > > h, a, m, and r. 

sinCtrr/2s) ^ nr 

~ - 1 i - 1 cos g 

coth = 1 " coth 
s s mira 

^(mira/s) _ ^ 

einh Hâ - Bïâ 
s s 
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Inserting these approximations into Equation 39 yields 

" " 2 i (1 - cos 

(62) 

2 2 If ve define d • h — a and observe that (1 - cos mn)/m " ix /k, then 

Equation 62 reduces to 

(63) 

As another approximation, we can ignore the term ln(2s/nr) because due 

to its logarithmic nature it is small as compared to the second term. 

This yields 

a result that can be obtained by a formal application of Dtpuit-Forcheimr 

theory. One should keep in mind that the spacings obtained from Equa

tion 61i represent the lowest limit, because the Dupuit-Forcheimer theory 

neglects the head losses resulting from the convergence of stream lines. 

Therefore, one should be very cautious in using drain spacings obtained 

from the Dupuit-Forcheimer theory. 

2 
(6U) 
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THREE-LAYERED PROBLEM 

The geometry of the three-layered drainage problem is similar to the 

two-layered problem that has already been solved in the preceding chapters. 

However, the flow medium consists of not two but three layers of soil, an. 

Tapper, a middle, and a lower layer, as shown in Figure 22. The upper 

layer extends a distance "a" and the middle layer a distance "b" below 

the drain centers. The lower layer terminates at an impermeable layer 

located at a finite distance h below the drains. K^, Kg and refer to 

hydraulic conductivities of the upper, middle, and lower soil layers, 

respectively. 

As in the two-layered problem, the head loss in the arched region 

above the drains is assumed to be negligible. Also, the two physical 

artifices, that is "fictitious membranes" and "slit drain" artifices, 

that were used in formulating the two-layered problem are also used in 

formulating the three-layered problem. Following the same line of reason

ing that was used for the two-layered problem, our three-layered problem 

can be formulated as the boundary value problem shown below: 

ïlnd expressions for tg, and to satisfy the 

Formulation of Problem 

equations 

(6$) 

(66) 

subject to the following set of boundary conditions which are shown in 

Blgure 22: 



Figvire 22. Geometry for a steady-state tile drainage system for a three-layered flow medium. 
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I. t - t 

II. \ " I'D 

HI. 

I»-  ^ -d ' l -o  

Ta. 

Vb. - ig 

VI Vg " ig 

VII . ig -

villa, ffg • (2L 

Vlllb. ^2 - ^3 

at X = s, 

at X " 0, 

at y » 0, 

at y • 0, 

y " a 

y - a 

X = 8 

X » 0 

y = b 

y - b 

0 < y < a 

0 < y < a 

0 < X < 6 

Ô < X < 8 

0 < X <. s 

0 < X < s 

a < y < b 

For the 

upper 

layer 

At the upper 

interface 

a < y <• b For the mid

dle layer 

0 < X < s At the lower 

0 <x c s interface 

n. 
^3 •^0 X « 8 b < y < h For the 

X 
*3 - to  y " h 0 < X < s lower 

n. % X " 0 b < y c h layer 

Stream and Potential Functions 

The stream function for the upper layer ••will be identical to 

Equation 12, which is rewritten here as \ 

2t mnx sinh [liiTt ( a-y) /s ] 

(67) 
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where is an arbitrary constant. Equation 6^ satisfies boundary con

ditions I and II and the terra (-2^QA) is obtained to satisfy boundary 

conditions III and 17, by following the same steps as previously esqplained 

by Equations $ through U. 

The stream function for the middle layer should contain two ' 

arbitrary constants that will be selected to satisfy boundary conditions Vb 

and Vlllb. The first term of should be similar to Equation 13, but 

symbol h in Equation 13 should be replaced by sjiribol b. The second term 

of should be similar to the last term of Equation 6? but the 

denominator should be cosh(mTib/s) rather than sinh(mTfa/s)« The stream 

function for the middle layer thus is 

where and are arbitrary constants. Equation 68 satisfies boundary 

conditions VI and VII. 

The stream function for the lower layer should be identical to 

Equation 13 but symbol a in Equation 13 should now be replaced by symbol 

b. The stream function for the lower layer thus is 

= (69) 

where E^ is an arbitrary constant. Equation 69 satisfies boundary coiw 

ditions DC, Z, and XI. 
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Again in comparison with Equations 16 and 17, we can write down 

expressions for the potential functions. 

(70) 

^2 = - ̂  ̂ COS = 

^ ^ =.m 01) 

J3 - - 2̂ Z cos = .̂ 2 (72) 

where B , C and D are arbitrary constants. Notice that Equations 67 ora' on om ^ 

through 77 satisfy the Cauchy-Biemann conditions. Notice further that we 

have satisfied all boundary conditions except Va, Vb, Villa, and VTHb. 

By using these remaining boundary conditions, we shall now evaluate the 

arbitrary constants B , C , D and E . 
m' m' m m 

By definition, 9^ " and Ç(^ Boundary condition Va 

states that (3^ = 0^ at y = a. It follows that 

^ m sinh(rota/s) " ̂  \ ^ ^ ®om " 
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By equating coefficients of cos and after dropping the 2 signs, wé 

obtain ti^e following relations from Equation 73 

S IC 
C « 2 rl 1 _ g coshWrra/sX 

m ET m sinhCmïïa/sj ~ m sinh(mna/s^ 

(7W 

Boundary condition Vb states that " ^2 at y = a. It follows that 

^ ^ "m taiih[intr(b-a)/s] • oo^fe/e)> ? '^6) 

from which we get, by equating coefficients of sin and after dropping 

the 2 sign, the result 

\ • ®« (77) 

Similarly, from boundary condition Villa, we obtain 

• V - ̂  °om (78) 

K 

\ ^^m coshLB^(b-a)/sJ ~ \ ^79) 

and from boundary condition Vnib, we obtain 

tanh HikÈl , (80) 
m m .  s  

Now, from Equations 7U, 77, 79 and 80 we can solve for the coefficients 

^m' ^m' ^m ^m" ^ make the following substitutions: 
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, •• S 1 
m coshlmn(b-a)/s j 

Y - tar i iSMl  
m s 

6 - tanhHLÇbz^ 
m s 

B sinh(miTa/s) 
w sinh(]TiTtb/s} 

Pm " ̂  coth ^ 

_ cosh(mTTa/s) 
'm sinhCmrtb/s) 

- ^2 1 
m ^ sixihCmTfa/s) 

Then Equations 1h, 77, 79 and. 80 can be written as 

Pm®m * ' "m'm ' î 

-®m " Vm  ̂Vm - ° 

a C - 3 D - E - 0 (83) 
m m *̂ 111 ra m  ̂

(%) 



8U 

The solutions are 

" W 

\ " Vm 

where T is given by 

1 
''m • Ï (1 + * W"* - Pm' 

We shall now evaluate the arbitrary constants B , C and D . If om' on om 

one follows the detailed steps given by Equations 2$ through 30, one 

obtains the expression for B om 

2 slnW2») " " 

where B is given by Equation 86, For C and D , we observe from m om om' 

Equations and 78 that if B is kno^m then C and D are also known. ^ om om om 

Because all arbitrary constants have now been evaluated, the stream 

functions given by Equations 67, 68 and 69, and the potential functions 

given by Equations 70, 71, and 72 are now defined. 

Flow Nets ' 

Dimensionless flow nets for the three-layered drainage problem can 

be prepared by following exactly the same procedures previously explained 



85a 

in detail for the two-layered problem. Equations 67 through 72, 7$, 78, 

and 85 through $0 should be used. Figure 23 shows a flow net that has 

been prepared for the following dimensionless variables : a/2s = l/25, 

a/h - 2/5, b/k - 3/5, a/2r - U, E/K^ = 100, K^/K^ - lAO, K^^/E^ " 1, 

and Kg/S^ - 10. The numerical values of a » U feet, b « 6 feet, h = 10 

feet, 2s = 100 feet and 2r = 1 foot have been used in order to facilitate 

quantitative discussion. One observes from Figure 23 that the existence 

of a two-feet thick and 10 times more permeable middle layer resulted in 

a maximum water table height of 1.12 feet as compared to 1.8U feet of 

Figure 3c which represents a homogeneous soil. Furthermore, one sees 

that only about 10 percent of the flow passes through the lower layer in 

Figure 23, because the stream lines refract sharply when they reach the 

more permeable middle Isyer. 

Drain Spacing Formulas 

By definition (/^(s,0) - H and from Equation 70, we can write the 

expression for H as 

After inserting the expression for from Equation 90 into Equation 91, 

multiplying the right hand side of it by the factor [l - (E/^)]~^ in 

order to account for the head loss in the arched region, and after 

rearranging it, we obtain 

« - -UVAj-lJ ainWas) - ̂  ? 

(cos - COS m)ll  -  m ($6) 



Figure 23. Flow net for the dimensionless parameters a/2s = l/2^, a./h. = 2/5, b/^ = 3/5, a/2r *= U, 

" 100, K^A2 " lAo> and K^/K^ "10, Depth and distances in feet are shoim for 

pxcrposes of quantitative discussion. 
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or, by inserting the expression for from Equation 85, we get 

" • irl(^/r)-lj sin(»/2s) ^ 5 ("1 • «th ^)(cos - cos mit) 

[1  .  T_^6^ -  a(-»/")  %(% * (»)  

Equation 93 is the general formula for the three-layered drainage problem. • 

VJhen = 0, then a^, = 0 and Equation 93 reduces to Equation U5, 

that is, our three-layered problem reduces to two-layered problen^. 

Similarly, when = 0, then = 0 and Equation 93 reduces to Equation lj2, 

that is, our three-layered problem reduces to single-layered problem. 

Therefore, all drain spacing formulas that have been previously obtained 

for the tvfo-layered problem can be deduced from Equation 93 as special 

cases of the three-layered problem. Furthermore, by changing the term 

[(K^/?u)-l] ^ by the term [(KQ/k)-l]'"\ our three-layered drainage problem 

can be transfonaed into a special case of a four-layered problem. 

Discussion of Results 

Let us define, in addition to the functions E and F given by Equa

tions lié and hi, two new functions I and J as follows: 

I » T Ô C9lt) 
m m 

J - Vm'Vm " («) 
\ 

Then, Equation 93 can be rewritten as 

h i 
28 - H (g- - 1) E + 2 Fll - I - JJ 
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vhere functions I and J show, as mentioned previously, the contributions 

of the middle and lower layers, respectively, on the drain spacing 2s. 

For example, if the lower layer is erroneously assumed to be impermeable, 

then J is erroneously assumed to be zero and the percentage error in 

drain spacing would be 

E + 2 F(1 - Ij 

Similarly, if Kg is erroneously assumed to be zero, the resulting error 

in drain spacing, 2s, would be 

2 F(I + J) 
E + 2 F 100 (98) 

Other combination of assumptions that would lead to such errors can 

easily be formulated by using Equation $6. 

Let us observe that iCirkham (19^8) solved the single layered problem 

by using five boundary conditions. Two and three-layered problems 

required nine and 13 boundary conditions, respectively. One can see that 

each additional layer increases the number of the boundary conditions by 

four. Therefore, the n-layered drainage problem can be formulated as a 

mathematical boundary value problem with (Im + l) boundary conditions. 

The steps to be followed in solving such a boundary value problem are 

identical to those explained in this thesis. However, as the number of 

soil layers increases, the expressions for the arbitrary constants become 

more conçlicated. To see this, one need only to insert the values of a^, 

^m' ^ Equation 0$ and compare it with Equation 

2l|. Yet, modern computers make numerical calculations, even with such 
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conçlicated expressions, a relatively easy task, as it has been demon

strated by the flow net given in Figure 23. 

/ 
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SIMI'IARY AND CONCLUSIONS 

The problem of steady drainage of two and three-layered soils has 

been solved by using and extending the methods and procedures developed 

by Eirkham (1958, I961) for the steady drainage of a homogeneous soil. 

Five flow nets for the two-layered problem and one flow net for the 

three-layered problem have been prepared» Thé five flow nets-for the 

two-layered problem show the effect of the variations in hydraulic 

conductivity of the lower layer on the flow lines and équipetentials as 

well as on the maximum height of the water table above the drain tubes. 

The general drain spacing formula for the two-layered problem is 

g(mTta/s) ^ 

^sinhCmna/s^ (K^/ICg) cothlmTf(h-a)/sj + cothCmna/s}^^ 

where a and h are the distances the upper and the lower layers, respec

tively, extend from the centers of the drainsj 2s is the drain spacingj H 

is the maximum water table height above the drain centersj r is the drain 

radius and are the hydraulic conductivities of the upper and 

the lower soil layers, respectively. A set of I6 nomographs have been 

prepared to solve explicitly for 2s, the drain spacing, for the two-

layered problem. An additional nomograph has been prepared for a formula 

of Hinesly and Kirkham (I966) which takes into account both recharge and 

upward artesian seepage in homogeneous soils, The general drain spacing 

formula for the three-layered problem is 
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s - nU^A)-lJ sinU/gs) * ^ S ^)ioo3 = -cs mn) 

[1 - . rA?. ̂ -A"J (i-») 

where the symbols T. 6, Y ,  8, a and n refer to algebraic siibsti-m' m' m' la' m •n 

tutions given in the text. The parameters a, r, H, h, 2s, which 

were defined above as well as the parameters K^, the hydraulic conductivity 

of the third layer, and b, the distance the middle layer extends below the 

drain centers, are involved in these substitutions. The nomographs for the 

three-layered problem have not been prepared for space limitations, but 

"Uiey can be prepared by following the same procedures developed for the 

nomographs of the two-layered problem. 

If one neglects the effect of one of the soil layers, the resulting 

drain spacings would be in error. Expressions for calculating such errors 

have been developed and discussed. A solution of the two-layered problem 

as given by Dagan (196^) has also been discussed at some length. 

It is concluded that: 

1. A steady drainage problem in a stratified soil which consists of n 

layers, can be formulated as a mathematical boundary value problem. 

This problem is to find particular solutions for Laplace's equation 

subject to (hn + l) boundary conditions. The single-layered problem 

has been solved by Kirkham (1958), nomographs for the single-layered 

problem have been given by Toksoz and Kirkham (I961). In this thesis, 

the problems for the two and three layers have been solved and 

extensive nomogrz^hs have been given for the two-layered problem. 
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The steady drainage problems with more than three layers can also be 

solved by following exactly the sane methods and procedures developed 

in this thesis. Therefore, the method developed in this thesis can be 

considered, as a general theory for the steady drainage of stratified 

soils f 

For a two-layered soil, statements like "when tiie hydraulic conductivity 

of the upper layer is five to 10 times greater than that of the lower 

layer, then the lower layer can be assumed to be iit^ermeable" are 

misleading. The drain spacings calculated on the basis of such 

statements will always be smaller than the correct drain spacings. 

For example, for 2s/a = 128, a/2r = 8, a/h = 0.2, the error in drain 

spacings would be UL percent for = $/L and 26 percent for 

• 10/L. If one neglects the effect of the lovrer layer when 

Kg is larger than the errors would, even be larger. Such errors 

would decrease as the thickness of the upper layer increases/ 

In designing a siûssurface drainage system, the second soil layer should, 

always be taken into account because it may have an appreciable effect 

on drain spacings. Spacing calculations for a two-layered soil can 

easily be made by using the drain spacing nomographs given in Figures 

U through 20, For a three-layered soil, drain spacings can be calcit-

lated. from Equation J.0Of 

As the number of soil layers increase, the contribution of the lowest 

layer on drain spacings decreases. However, if ^ Kg > the 

effect of the third layer may be appreciable, depending on the 



geometry of the flow system and on the numerical values of the 

hydraulic conductivitiesj 

For the two-layered problem, the drain spacings calculated from 

Dag an's (196$) formula agree well with those calculated from our 

nomographs. For the case A Kg one would expect such an agreement. 

For the case K^< Kg Dagan's formula still yields good results, but 

not because the flow is horizontal within the segment 2h < x < s, as 

he has assumed, but because the major proportion of the hydraulic 

head loss occurs within the segment 0 < x < 2h (near the drain tube) 

where it has been properly taken care of by his linearized theory. 

It is correct that the water table within the segment 2h < x < s 

(away from the drain) is almost flat, but it does not follow that the 

flow is horizontal in this segment. In fact, as one can see from the 

flow nets of Figure 3d and e, the flow is not at all horizontal but 

approaches to a vertical direction as Kg increases. Dagan's analysis 

does not permit one to find expressions for the flow nets, and does 

not provide the analysis for soils of great depth. 

\ 

/ 

Î 
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APPENDIX A 

We have, from Equaiioa 15 of Hinesly and Kirkham (1966) 

; 1 =5 . ,ias cos ̂  
n^b-a)m-l ,3 , . . .m^ 2h 2h 2h 

00 
Hereafter, the sign 2 -will refer to 2 . 

From Equations I4.5 and I46 of Hinesly and Kirbham (1966), we get 

^ (3inf^.=ini-) . fooa^ (102) 

as (b-a)—^0, By using the last result, we obtain their Equation W as 

w _ li(R+F)s , 1 nnn ^r- coshUff(s-x)/2h] 
tsf ; Z ; âT 2h 5lnh(miis/'2hJ 

+ R(h-y) + KG (103) 

For a drain running half-full, c = 0 and Equation IO3 reduces to 

• - UMk , 1 .03 ̂  . m (lOU 

We evaluate KG by observing that (if(r,0) = 0. 

cc.hbnU-r)/a.]^ _ ^ (105) 

By using Equation I05 in Equation IGli, and by observing that Çl{s,0)  • H, 

we obtain 

TT _ U(R+F)3 ?1-1 + cosh[mn(s-r)/2h] Hr^c\ 
^ -^r- ̂  m sinhtrmrs/ài) 



S6 

To account for the neglected head loss in the arched region, w© multiply 

the right hand side of Equation 106 by the factor [(R/k)-l] \ and 

after rearranging Equation 106, we get 

H /K - R\ _ 2s « 2 -1 + coth[miï(s-r)/2h] 
h <RTF^ 

which we can rewrite it as 

H /K - 5% _ 28 * 2 -1 + cosh{(mffA) C(2s/ii) - (2r/h)]} f-,r\Q\ 
h 'sTf '  r  ̂ s s inhlWii ) (2sA)J . 

which is identical to our Equation 

\ 
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