FITMTMG A STATIC SUFPLY AND DEMAND FUNCTION FOR LABCR
by

Ernest James Mosbaek

A Dissertation submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY

Major Subject: Economics

Approved:

Signature was redacted for privacy.

In Charge of Major Work

Signature was redacted for privacy.
Head of Najor Department

Signature was redacted for privacy.
Deanioficraanate College

TABLE OF CONTEATS

Page
INTRODUCTION 1
General Neture of the Problem 1
Present Status of Wage Theory 3
Econometric Methodology 6
Application oi Econometrics in Wage Theory 7
EXPRESSING THE PROBLEN IN SUITABLE EORM FOR ECONOMETRIC ANALYSIS 10
Investigating a Specific Problem. 11
Linear, Single Equation, Static Yodel 14
Heture of Economic Variables. 17
STATISTICAL METHODS USED 23
Classical Least Squares 24
Test for Linear Relation 26
weignted Regression 28
EMPIRICAL RESULTS 34
Estimates by Ordinary Regression. 43
Tests for Homogeneity 44
Estimates by Weighted Regression. 47
Tests for Homogeneity 51
INTERFETATIONS AND COHCLUSIONS 52
Homogeneity anả Elasticity oi Supply and Demand 54
Importance of the Regults 56
SUGGESTIONS FOR FURTHER STUDY. 60
Arelysis of Labor Supply. 60
Need ior More Pertinent Data. 72
Tetioãology 74
LITERATVE CITED 78
ACKHOTLEDGEHENTS 83
APPEHDECES 84

INTRODUCTION

General Nature of the Problem

Fage theories have been put forth for as long a time as economics has been a pield of study. The objectives of the various theoriea have varied considerably. Currently, the nature of the supply of and demand for labor is receiving mach attention. Primary interest has centered around the general level of wages (real and monetary), wage determination, and the fectors influencing supply of and demand for labor.

An important question of labor supply and demand has been with us ever since Keynes' great work appeared showing that it is possible to have general market equilibrium without full employment. Keynes (23) held that the demand for labor depended upon the real wage, but that the supply of labor depended on the money wage. The crucial question is, "Are the supply of and demand for labor a function of the real or money wage? "

There is little doubt that the demand depends on the real wage, but various reasons neve been sugges ted $2 s$ to why the supply might depenc on tine money wage. Included are money illusion, past contracts, and non-rational behavior.

If tine supply and demand are a function of the real wage (i-E., tine money wage aeflated by the price index), we say that the functions are wowoeneous of degree zero nith respect
to the prices and wages. It is possible to test empirically derived functions for homoseneity properties. The question as to whether the supply and cemand functions for labor are homogeneous in the prices is important to both economic theory and policy; yet, it has received surprisingly little attention. Iintner (43) has written a theoretical article on homogeneity of the supply of and demand for factors of production, but no empirical work has been aone on this aspect in this country. Knowledge of the aspect of homogeneity in supply end aemand functions is vitel for builaing good theory and necessary for sound economic policy. This is especially true with respect to labor. The work in this thesis is an attempt to gain more insight into this ambiguous aspect by giving at least a partial and tentative answer to the questions: Are the demand and supply functions of labor homogeneous of degree zero in prices and wages? Do they depend upon real wages rather than money wages?

These questions will be investigeted by a time series analysis of the total labor supply in the United Stetes and the labor demand of the bituminous coal industries for the period 1900-1955. The functions are derived by ordinery multiple regression and weighted regression. Because of the important and difficult problems in such an analysis, the work shoula also be valuable as a study in methodology.

Present Status of Mage Theory

The area of wage theory is conspicuous because of the large number of arm-chair theories thet have been put forth. In spite of this large amount of theorizing our knowledge and command of this area ere comparatively slignt (41). Recently several economists have become higiny critical of the present status of wage theory and the proceaure and progress being māe. Morthy suggestions have been given by Ross (38), Reynolas (37), Myers (30), Kerr (22), and Pierson (34). They agree that we should formulate more realistic models and theories through a greater amount of empirical work.

The major reason that so many of the theories are retained is that little evidence is presented to support or refute any of them. The question to ce investigated in this thesis is an example of a definite iact of empirical eviaence. It is evident that we are a long way froif the point of diminishing returns as far as empirical worir in this area is concerned.

A theory of wages must icentipy the question or questions it seeks to answe. It is not historionliy correct to speak of wage theory as progressing from inaccurste to more accurate. Etieory developed in one period taf not be applicable in a later period because of a change in tine structure of the economy or a change in the questions that ere relevant. Interestire accounts of the history ena role of wage theory have
been written by Dunlop (14), Woytinsky (53), and Rothschild (40). These men point out the changing role and influence of past theories.

The treories can be grouped into three broad categories: the wage fund theory or the classical period; marginal productivity theories up to the crest Depression; the contemporary period not characterized by any one type of theory. During the ciassical period, interest centered mainly on the distribution of national product between the social classes and the general level of wages. During the time of Adam Smith, the subsistence level theory was first applied. Wages were expected to tend towards that level which was necessary to support a worker and his family. This theory has been aptly described as the iron law of wages. If the wage tended to rise above the subsistence level, the population would increase and the wage would fall. If the wage fell below the stipulated level, starvation would result, and wages would eventually rise.

The foregoing theories tended to explain the wage level entirely from the supply siae. At the beginning of the nineteenth century, the wage fund theory evolved. Under this theory, the wage level is detemined by the magnitude of the laboring class and a certais portion of a nation's capital. It was stipulateū that a certain fixed amount of capital was relegated to the payment of labor, and the level would thus be
aetermined by the number of laborers amone which this fund had to $\overline{\text { e }}$ diviaed．The theory broke dom on the assumption of a rizee wage fund．

The marginal productivity theories dealt with the fol－ lowiag questions：＂How is the product distributed among tine Iactors that proãuce it？＂＂What is tie marginal productivity Of IEcor？＂＂How is the rising productivity of industry dis－ ちrさこひことã＂

The forces operating in these theories include the em－ ployer striving to maximize his profits and the laborer trying to maximize his utility（2I）．The demand schedule was a fairly logieel and simple deduction，but explenation of the supply achedule remained inadequate．Explanation was attempted in terms of the pain or disutility of mory in relation to the wage，but the concepts were for the most part non－operational． Explenation of labor supply still remains inadequate．

Contemporary theories starta＠with the impetus from the greas works of Keynes（23）and Douglas（12）．Douglas sought an ezplenation of occupational ana geographical wage differ－ erfinis and the elasticities of supply and demand for labor． Kevines was interested in the homogeneity property of supply Es $=$ essential element in his proof of general equilibrium at needea to aetermine whether Keynes＇hycothesis is valid．It is Ex＝ficult to give a concise description or even a list or
the relevant questions that exist in the area of iage theory. İ 15 certain that the questions are too diverse to be answerec by any one theory.

It is interesting to note that Douglas had only two major cuestions in mina when he set out to derive empirical functions. The results of his work were encouraging and illuニ̈nating, yet very Iittle similar work has been cone since tien.

The use of intuition and pure deductive reason is not Eaequate. It is necessary to supplement these methods with extensive empirical work. Wage theory is an area where a criage between theory and the real world is greatly needed. Econometric tools may prove helpful in this respect.

Econometric Metnodology

Econometrics, mathematical economics, and statistical economics are particular approaches in the general field of economic science. They are being developed because of a felt Eeē for concrete formulations and measurement and for more intensive empirical work. For purposes of definition we can Leet statistical economics as the collection and summerizing EI Economic data and methematical economics as the formula-士̇oz and expressing of economic theory in mathematical form. Econometrics as described by Tintner (47) is a combinaFios $0 \underset{\text { in }}{ }$ these two methods in an attemot to rina numericei
values for postulated economic laws and regularities.
In the theoretical stage many economists employ mathematics for $\mathcal{C e r i v i n g ~ e c o n o m i c ~ r e l a t i o n s h i p s ~ s t a r t i n g ~ f r o m ~ a ~}$ priori assumptions and idees about maximization (46). The use of the above methods does not in any way minimize the importance of economic theory. Good theory formulated in a way which peraits measurement is a prerequisite for application of econometrics.

Econometrics does not insure against contradictory assumptions, mistakes made by the econometrician, or poor judgment. Usea in a proper fashion and under an awareness of limitations, it does lead toward the more precise formulation and measurement needed for the discipline of economics. To those who clatm that human action cannot be reduced to mathematical formala, we have no answer as yet. The value of econometrics must be judged by results from its employment.

Applicetion of Econometrics in Wage Theory

In wage theory there is first, a need for more concrete formulation of questions, and second, e need for more precise measurement of relationships (elesticities of supply and demand, produetivity, etc.). With the exception of the worl of Douglas tinere has been very little applicetion of econometrics in this area. Undoubtediy, one of the mejor reasons土玉 the extreas comilexity of this area 0 econozics.

Another reason might be due to the skepticism shown by Keynes toward econometrics. Keynes did not employ matnematics in the formulation of his theory, nor dia he apply statistical tools in empiricel analysis. Since nis time verious other men have expressed and extended his theories in mathematical verms but they heve not attemptea to verify them (27).

Keynes (24) stated that he preferred the mazes of logic to the mazes of aritimetic. Fie used the phrase, "mazes of arithmetic", as a name for Tincergen's econometric and statistical anelysis in economics. Keynes was skeptical of the possibility of ever adapting statistical techniques to the conditions in economic research.

It is unfortunate that only a few results exist in this country for judging the application of econometrics in wage theory. Douglas (II), who is responsible for the most extensive econometric analysis in this area, believes that it is possible to derive empirical relationships in economics vitis econometric analysis.

It is necessary to be aware of the large number of psychological and other difficult to observe factors thet will be presert in any question in this ares. To labor continueliy over the complexity of the problems is of no avall, however. Until more actuel investigations are made, we will not know the true extent of the difilculties, nor will we be able to develop means of handing them.

We hold no particules clsim that econometricians or ever any economist will have tae sackground and training to answer best the questions that 三rise. The most important aspects may be in non economic sectors (38). For interesting eccounts of the scope and philosopay of economics the reader is better referred to articles by $\mathrm{Z}=\mathrm{E} \mathrm{E} \in(25)$ and Collingwood (8). Many of the interes̃ミz questions can be expressea in a form or moael in which it ts possible to test them against appropriate data. Also, There are several statistical tools for analyzing data that here proved reasonably successful. As to further discussion oz the applicability of econometrics, it is better to do so in reietion to a specific question.

ENPRESSING THE PROELEN TH SUITAELE FORU FOR ECONOMETRIC ANALYSIS

The optimum working errangement in research evolves from the Antegration of knowledge in three areas: knowledge of theory, knowledge of the capabilities and limitations of various techniques of analysis, and the greatest possible knowledge of the subject area. There is no one method of analysis that will be applicable to all questions, nor does it follow that there is always some econometric tool that will ce adequate.

Some questions do not lend themselves to expression in quantitative terms. The political aspects of unions raisea by Ross (38) do not readily adapt to econometric analysis; however, with further improvement in the application of game theory (33) there is real possibility of adequately handing
 as poliftical and institutional factors will always defy quantitative expression. We hope that the measurement of more objective characteristics cen give a fairly good measure of more subjective qualities. On the other hana, it shoula not ce contended that our knowledge is nil if quantitative terms are lacking. Interesting suggestions were presented at the University of Chicago symoosium (26) on the topic of "Quervification: the quest for precision". The conclusion \#as reachea tnat quantification auas much to knowledge but it
does not insure complete knowledge.
The man criticism of past work in wage theory is that most economists have not formulated hypotineses and questions in e Erm permitting measurement and testing. Consequently, there nave been few attempts to verify or reject the numerous theories. This chapter is devoted to suggestions on this relevant aspect.

Investigating a Specific Probiem

There is little hope of developing a wage theory that will make it possible to deduce answers to all pertinent questions. The present literature demonstrates the complexity and diversity of problem areas. There are many questions to be answered; the questions are often complex and pertain to a wide variety of conditions. There is also a decided lack of empinical knowledge, plus a lack of methodology, adequate to cope $\begin{gathered}\text { itith } \\ \text { tine problems that arise in empirical investigations. }\end{gathered}$ For tinese reasons it is best to work on a specific problem, designing enc modifying models to suit best the specific instance at hena.

In the ciassical period it was more realistic to speak in terms of one theory because economists Fere easontially interesteć in only one question - what relative share of nationai proauct was going to labor? Now, there are a great numicer of inpisations in the labor marizet that are of primery
interest to both economic policy and theoretical economics. We will, naturally, strive for as unified a theory as possible; but to completely disregard the availability and limitations of methods and data would je unwise. The abstractions necessary for relatively simple models must be understood and adequately discussed in each study. Yany guestions are important enough to warrant separate investigetion, and any reasonable results will be worth the expense.

In an empirical science such as economics the terms used and the hypothesis put forth shoula be capable of empirical interpretation. This is not easily done because the large number of relationships that exist requires a certain degree of abstraction to make the procedures operational. The basic idea of operationalism is the demand that the concepts used in the description of experience be framed in terms of operations wincn can be unequivocally periormea. Qaution must be exercised in the use of operational pillosophy for it is possible to put too much emphasis on operationalism at the expense of adequate theoretical import. It cannot be said that there is no knowledge unless there is operationalism, but the present status of wage theory certainily indicetes a great need for such in the form of testing ana Ferifying theories. Intensive empirical investigations Ere neeãed. Hempel (20) enc Eenjamin (2) have emphasized the eñantages and Iimitations of operationelism in various subject ereas.

In the social sciences it is usually not possible to isoIate the specific relationship in wich we are interested from other relationships. There is small opportunity for experimentation as in the natural sciences. This leaves only the possibility of conceptual isolation of a particular relationship (7). Consequently, it is necessary to estimate tine effects of other relationships. This is an importent aspect in evaluating the results of empirical studies. The aegree to which it is best to isolate a particular relation should be discussed in the methodology of each subject area. finen working on a specific problem it is, therefore, necessary to be aware of the limited interpretation of the results imposed by the conceptual isolation in the procedure.

In this thesis the operations consist first of deriving. the supply and demend functions and second, the testing for homogenelty. The moàl and variables ajef simpie interpretation, so a separate section is devoted to their explenation. Fortunately, $1 \frac{1}{t}$ possible to express the hypothesis that the supply and demand depend on the real wage - in numerical form in terms of the properties of homogeneous functions. Tintner (44, D. 89) hes shown that there are methoas arailable for testing for homogeneity in the aerived functions. The derived functions will also provide another meesure of the wage eiasticity of supply enả āemand. These elasticitíes ana the sien of the siope of tine labor gupply function are giestions
of long stancing.

> Liresr, Single Equation, Static Mocel

Considerajle attention has been given recently to building more realistic models. The most familiar attempts are simultaneous equations ana dynamic models. Very little success has been achieved in developing models in which the parameters do not enter in linear fashion.

If we car assume that the parameters in tine structural relation enter in a linear fashion, we have hopes of using relatively simple regression analysis to derive empirical functions. The observations (X_{i}) need not enter in linear form, however. In some cases we may wish to substitute $\log X_{i}$ or sin X_{i} etc., for X_{i}.

The economic relationships probably become somewhat more complex when tinere is a large amount of aggresation. This aggregation is often necessary because of the nature of the
 is one of the few who has studied the effect of aggregation. Even in cases of considerable aggregation, it seems that a function inst is linear in the parameters should give a reasonaily gooe int.

The gresence of unemployment throughout the entire period inãさeetes that we do not heve to assume equilibrium on tne Iejor marixet. The supply and cemanc eouations cen
therefore be estimated separately. If we assume equilibrium on the labor market, ze are faced with the problem of iaentiIication and would more appropriately use the simulteneous equations approach.

Some economists might contend that the unemployment in some years was very 10% and that it could be attributea entirely to Prictional uremployment. However, it seems that labor supply could nesrly always be increased by measures to increase overtime work, reduce irictional unemployment, and mane use of part-time morkers. If the results from the single equation approach are not plausible, the identification problem can be discussea again later on.

Dynamic models appear frequently in theoretical articles. There have also been attempts to fit dynamic models, notably the econometric moaels of the United States by Klein, Goldberger, and Tinberger. However, the great bulk of analysis and empirical work is comparative statics (4).

In comparative statics we postulate an equilibrium system consisting of one or more simultaneous equations with some sort of a solution. The equations contain parameters which are regarded as aeterminants of the system ane variables which are regaraea as aetermined by the parameters. In the single equation approeci, as used in this study, the system consists of a set of perameters (to be determineà), a set of determining variaíes fexogenous and preaetermined periebles
assumed to be known), and the unknom or predicted varisele.
A dynamic moael consists of a set of difference equetions or differential equations having a set of perameters assumed to be constant, a set of variables with one or are "sequence veriables", and a "solution". The solution in this case is a function of time, and it gives the value or each variable at each point of time. A aynamic model, in our cese, would assume that the supply (demand) of labor depenas upon past wages and prices as well as upon contemporary wages ena prices.

Time is usually incjuded as a variable in a static model. This does reduce the rigidity of the model to a certain extent. We hope thet the time variable that is includea aoes, to a large extent, represent tinose factors which are not otherwise included. If the changes are relatively smooth through time, the method is probably quite adequate.

A gooả dynamic model is undouitedly more realistic, but before a dynamic model can be derived, we must have appropriate tools and must have good fundemental theory. Stuases such as this wice use a static model are attempts to impzove fundamental theory.

To individuais who looi to preaiction as the supreme test oi success, such a study as this may be disappointing.枋th present knowlège it does not seem likely that a rorz-

Dynemic models are $e a=y$ to make, but are too rigik once they are made.

The equations to be used have been derived from the assumptions of free competition. However, the elasticities of demand and supply will enter into the equations in a similar way uncer the verious forms of imperfect competition. Tintner (45) has showa that we can expect homogeneity in the aemana and supply of zactors of production with respect to the prices under the following types of market orgenizations: Iree competition, monopoly, monopsony, monopolistic ana monopsonistic competition, selling cost, price discrimination, product differentiation, and spatial competition.

Nature of Economic Variables

Deffnition and afecussion of the variables to be included in the model are an important part of methodology. Economic variables are of suci peculiar nature that a general aiscussion is also advisable.

Economic magnituaes can be conveniently groupea into two classes: those reieting to intensity of satisiaction, emotion, or other suicjict state and those relating to the more ójective phenozeze such as prices, productivity, and consumption. There i三 znãoubtealy some relationship between the supply of labor ant the values of a laborer. ine car measume this relationsixp only if it can be expressea as a
function of zeasurable quantities, such as hours and dollars.
We speai of the supply and demand of labor as being a function of the wage, price index, end time; but we must realize that re are actually expressing some subjective quantities as a Iunction of the objective quantities of vage, price, arca tize. This complex problem of identifying and measuring suojective quantities makes our problem aifficult.

Waen tine results of a statistically-fitted function are evaluatea, jine relation between the subjective and objective quantities must be considered. It is here that the intuitive or deauctive reasoning plays an important role. With the proper bienc of the deductive and intuitive, the most satisPactory resuits will be achieved.

In afaition to the complexity of economic veriables, there is a laci of data on the objective magnitudes. To obtain continuous series, it is often necessary to splice different series, to interpolate between census years, and to use àta tínet involves a high level of aggregation. Much of the àta is collectea by the government and other agencies that are not concerned with theoretical analysis. The data are, therefore, not collected with the questions of economic theory in mine. Consequently, the use of abta in economic researci is reelly a cy-product. However, it is of no avail to bemoan tae iack of appropriate data. he must work with what $i \equiv$ Exajizile if we plan to make progress in this impor-
tant area.
There is current interest in jeveloping statisticel techniques for $\dot{\text { a }}$ Ejing with errors in the variables. In most stuales the assumption is made that there are only errors in the equation. These errors are assumed to arise because variables which ezert an influence on the dependent veriable are not joludea in the equation or because the dependent variable is a random $\overline{\mathrm{i}}$ ariable (subject to error). If all the variables are subject to error, we cannot make the assumption that there are only errors in the equation.

The metnoa of weighted regression described by Tintner (43) is designed to deal with the situation winere all variables are subject to error. Unfortunately, there is no method available for ureating both errors in the equation and errors in the varianies at the same time. The methods of both ordinary regression ana weighted regression are used in fitting the supply ans aemand equation in this investigation. The results will proviae another opportunity for comparing the two approacies.

There Exe two possible sources of deta-cross-section and time series. The choice of the most appropriate source is governea sy the nature of the subject. The objective is to use a ata of a perticular population thet will de most appropriate for mising inferences about the topic of interest. In the 0 Ise of lebor supply the time series is preferred
over cross-section iata. It is not meeningful to speak of Iabor supply to a certain geograpincel area or particular incustry within a country. The movement between areas and occupations and the heterogeneity of different sections is too Ereat. Unemployment cannot be essily attributed to any particular segment.

A country is the smallest meaningiul unit for our interest as E labor supply. Immigration between countries is relativeiy small compared to movement within countries. However, the structure of the labor market is believed to vary consiāerajly among various countries (39). For this reason it is adpisable to use time series data for a particular nation ratter than a cross-section study of different nations. We realize that the market stmucture probably changes to \equiv certain extent Irom year to year. A static model imposes certain artificial restrictions in this case. It is best to maire estimates for periods of relatively short lengtin so teat a changing market structure will not impose too much of a problem.

On the demand side the appropriste unit for study is a particular industry. It is better to compere the demand for laboz by a particular inaustry $\overrightarrow{10}$ verious years rather than compere the demand of aifierent incustries. Little apta is avaizable on ināivicual inaustries for any consiaerable time span. The most complete aata are on manuiacturing inaustries,
coal minine, and, of course, the totel demand for ali industries (íe., totai employed). The bituminous coal industry Is most aporopriate ion this study because labor is such a high percentage of the total costs (38, p. 87). The effect or wage changes would be the greatest in these inaustries in which labor is a sienificant pert o the cost of operations. A preliminary study of the total labor demand and the demand by manufacturing inaustries was made, but the results from the empirical fits were not meaningful.

The next step is the selection of veriables to incluad in the model. It is not possible to include all variables that might have an influence on the particular phenomenon of interest. We must also decide what measure of each variable is best and what level of aggregation is most desirable. In some cases the available data does not allow any choice.

The supply function as set up incluaes a measure of the supply of labor, Consumers' Price Index (CPI), wage rete, time, and a dummy veriable for war years. The demand function includes a measure of the demana for labor, wholesale price index, wage rete, time, end a dummy variable for war years. Under this conaition we assume that aefiating the wage by the CFI will gipe the real wage to the workezs, and derlating the wage by the tholesale price inaex will gite a measure of the real wage to the employer.

To take into consideration a changing poputation, the
supply was expressea in percentage terms,
$\mathrm{S}=$

Since we are usine national figures for supply, we heve no choice but to use the average rage for all employed and the CPI as it is calculated by the bureau of labor statistics. The demand for labor by the intuminous coal industries was expressed in totel hours:

$$
D=\text { (no. employed) } x \text { (av. nrs. rorked per week) }
$$

The demand equation was also iztted with the demand expressed as:

$$
D=\frac{\text { (no. employed) } \times(2 \nabla \text {. hrs. worked per week })}{(\text { pop. } 15-64) \times(\leqslant 0 \text { hrs per week })}
$$

The multiple correlation coefiscient for the regression equation using the latter as a measire of demand was very low. A much better fit was obtainec when aemana was measured in total hours.

All variables and a description of the calculations performed appear in Appenaices \equiv and 0 .

STATISTICAL METHODS USED

Regression analysis is used extensively in econometrics. In many economic applicetions it seems to be the most promising of statistical tecnniques. Orainary multiple regression can be used to estimate the relationship between a dependent veriable Y and a set of independent variables to give the best estimate of Y (íe., unbiased and smallest variance). If we are interested in estimating the structural relationship existing in the population rather than merely predicting the dependent variable, the method of orinary regression is quite likely to break down. If we make the plausible assumption of errors of observation in all variables, we cannot use ordinary regression. Weighted regression as outlinea by Tintner (43) is designed to deal with situations where it is assumed that all veriables are subject to error of observation. This method was applied in this investigetion to obtain an estimate of the structural relationship in the supply and demano functions for labor.

Both orainary multipie regression ana weighted regression were usea to ottain estimates of the suppiy and demand equations. To test the hypothesis that the supply and demand depend on the real wage, a linear restriction zas imposed on the regression coeficients for the log wage an log price index. This is equivalent to forcing the equation into the form winere the supply and demand Ere a function of the real
wage. Tests were made to determine if there was a significant difference between the two fits.

Classical Least Squares

The functions to be fitted are:

$$
\begin{aligned}
& S=b_{0}+b_{1} W+b_{2} I+b_{3} T+b_{4} P w \\
& D=a_{0}+a_{1} W+a_{2} I+a_{3} T+a_{4} P v
\end{aligned}
$$

where S is log of lacor supply, W is tine log wage rate, I is the log Consumer Price Index, T is time, $P w$ is a aummy variable designating war and non-war years, D is the log of demand for labor, and I^{\prime} is the wholesale price index.

In the method of classical least squares we minimize the sum of squares of deviations:

$$
\sum_{i=1}^{N}\left(s_{1}-b_{0}-b_{1} W_{i}-b_{2} I_{i}-b_{3} T_{i}-b_{4} P w_{i}\right)=\sum e_{i}^{2}
$$

Differentiating the left hand side with respect to the b_{1} the set of five normal ecuations is obtained. The regression coefficients and constant are computed from the normel equation. To predict supply and demand, we need only to assume that the e_{i} are noncorrelated and have the same veriance. If tests of significance ana confidence limits for tie D_{i} are desired, we must assume that the e_{i} are normaily ancindependently distributed. Orainary regression is appopriete under the above assumptions.

Ominary regression mill yiela the best estimates of the
constant and regression coefficients when the ei arise because of one of tro special ceses: (I) only the depencent Variable is a random variable (subject to error), and the inaepenaent veriables ere fixed values (not subject to error); (2) there are other variables which exert an infiuence on the cependent variable but minci are not incluaea in the regression equation and produce the error term.

The proceaure above holas only in the case of a single equetion. Because of existing unemployment in all perioan we assume that equilibrium does not exist on the Iabor market, and, therefore, tre problem of identification does not arise. The veriables, S, D, W, and I, are expressed in log form so that the elasticities of supply and demand with respect to wages and prices car be obtained directly from the regression coefficients. The third regression coefficient gives the effect of exponential time trend, and the 4 tin coefficient is a measure of the effect of war.

The observetions need not enter as Linear functions in oraer to epply the herkoff theorem (least scueres methoa).
 estimates must ce linear; in this case the resression coeiticients (parameters to be estimated) must enter in a Iinear iesinon. Tne Innear estimates are unizesea in the sense that the metnematical expectations of tiae estimetes are equat to the nopulation values. The regnession coeviュー
cients are tie vest Ineer estimates in the sense that the leesi squares estimates have the smallest varience amone all linear untiesta estimates.

Test for Linear Relation

To test tie hypothesis that supply and demand are homogeneous witt respect to the wage and price index, we impose a lineer restriction on the regression coefficients:

$$
b_{1}^{\prime}+b_{2}^{\prime}=0
$$

We denote the new regression coefficients which are to be fitted under tie linear restriction as $b_{1}^{\prime}, b_{2}^{\prime}, b_{3}^{\prime}$, and b_{4}^{\prime}. Under this restriction the supply and demend are regressed on the ratio of the wage to the price index, $\underline{i} \cdot \underline{e}$., the supply and demand are expressed as a function of the real vage.

The quanti三ty to be minimized now becomes:

$$
\sum_{i=1}^{i N} S_{i}-b_{0}^{i}-b_{1}^{1} W_{i}-b_{2}^{1} I_{i}-b_{3}^{1} T_{i}-b_{4}^{1} P_{i}+\lambda\left(b_{i}^{1} \div b_{2}^{i}\right)
$$

where λ is a constant, the so-called Lagrange multiplier. The nomal ectetions to determine the weigitea regression coefficiente and λ are now:

$$
\begin{aligned}
& b_{1}^{1} s_{22}-b_{2}^{\prime} S_{23}+b_{3}^{\prime} S_{24}+b_{4}^{1} S_{25}+\lambda=s_{12} \\
& b_{1}^{1} E_{52} \div D_{2}^{1} S_{33}+D_{3}^{1} 5_{34}+b_{4}^{1} S_{35}+\lambda=S_{13} \\
& b_{1}^{1} s_{5 E}-b_{2}^{1} S_{43}+b_{3}^{1} S_{44}+b_{4}^{1} S_{45}+0=S_{14} \\
& \mathrm{~b}_{2}^{\prime} 5_{5 z}-b_{2}^{\prime} s_{53}+b_{3}^{1} s_{54}+b_{4}^{\prime} s_{55} \div 0=s_{15} \\
& b_{1}^{2}-b_{2}^{1}+0+0 \div 0=0
\end{aligned}
$$

where $S_{i j}$ is the sums of squares of deviations from the means. This set of equations is very similer to the normel equations in orainary multiple regression and cen be solved by similar methods. The sum of squares of the residuals becomes:

$$
Q_{2}=s_{11}-b_{0}^{\prime}-b_{1}^{\prime} s_{12}-b_{2}^{\prime} s_{13}-b_{3}^{\prime} s_{14}-b_{4}^{\prime} s_{15}-(0) \lambda
$$

The last term, of course, arops out because of the zero coefficient. The residual sum of squeres for the regression equation iftted without the restriction is:

$$
a_{1}=s_{11}-b_{0}-b_{1} s_{12}-b_{2} S_{13}-b_{3} S_{14}-b_{4} S_{15}
$$

QI is distributed like χ^{2} with Ni - a agrees of freedom. is aistributed like χ^{2} with $N-p+1$ degrees of freedom.

He want to test the hypothesis that in the population $Q_{1}=Q_{2}$. In other works, the hypothesis is that in the population there is actually a linear relationship between the regression coefficients such that the sum of the coefficients for log wage and log price is equal to zero.

The test function becomes:

$$
F=\frac{\left(Q_{2}-Q_{I}\right)(N-D)}{Q_{I}}
$$

This is distributed as Sneaecor's P witill and $N-p$ degrees of freedom ($\leq 4, p$. 91). p is the totsl number of variables in our equation. The level of signiricance is, of course, arbitrary, but for the purposes of this paper we will reject the hypotnesis that labor supply and cemand are a function of the real hage it the test value is significert, at the 5 or per-
cent level. If the test value is not significent, we conclude that it is quite likely that labor supply and cemand Ere a function of the real wage.

Weightea Fegression

Estimates of the structural reiationships are needed to answer the problem posed in this work. The assumptions necessary to obtain the best estimete of supply and demand from the given set of independent variables by oriinary regression might hola, but it is unlikely that the assumptions necessary for obtaining the best estimates of the structural parameters are fulfilled.

It is reasonable to assume that the measurement of economic veriables is subject to a great amount or error. The variables that we observe ($X_{i t}$) are made up of the true or systematic part ($M_{i t}$) plus an error $\left(Z_{i t}\right)$. Oskar Morgenstern (20) presents substantial evidence for the belief that the errors of observation in such variables as wage rate, price inãex, supply, and demand might well be as high as 30 percent.

Under certain assumptions about the errors, $Z_{i t}$, fe can ootain estimates of the structural relationship existing EEtheen this set of veriainies. Ne neglect the errors in the equations (e_{i}). We aiso assume that the errors of observation ($Z_{i t}$) are inaepenaent and normeily distributed.

For the metinod of wightea regression we must tnow the

Abstract

error variance-covariance natrix. The error variances vere estimated by the variate difference method (48). The computations ana estimates appear in Appendix A. The error covariances nere assumed to be zero.

Tae probebilities for the standari error ratio R_{k} are computed uncer the assumption of a nomal districution with mean zero ara variance one. The assumption is valid in the case of lerge samples, so we might be skeptical of the results In this ease because of the shoriness of the period. Error variances were obtained for two periods, 1900-1928 and 19291955, ieeceuse of the large difference in method of collecting data prior to 1929.

The choice of significant level for R_{k} is arbitrary. The proceaure of selecting K_{0} is as follows: He finc a K_{0} such that $E_{\mathrm{E}_{\mathrm{O}}+1}$ is significant, but $\mathrm{R}_{\mathrm{K}_{\mathrm{O}}}$ is not. The systematic pert of our empirical series is then assumed to be eliminstea in the k_{0} th difference series. The variance of the k_{0} th finite difference series $V_{K_{0}}$ is used as an estimate of the error veriance. If the errors, $Z_{i t}$, follow a linear scheme of autoregression, the variate aifference method is not applicasie for determining the error variances. Much Woriz remaits to be done in this srea.

The variance of the 6 th finite aifference was used as a meesure of the error variance for the supply for 1900-1928.

measure of the error variance for the wage rate. The other finite differences that were used are indicated in the table. Following the procedure given by Tintner (43), we adjust tne variance-coveriance matrix of the veriacles as follows:
$\left|\begin{array}{lllll}a_{11}-\lambda v_{1} & a_{12} & a_{13} & a_{14} & a_{15} \\ a_{21} & a_{22}-\lambda v_{2} & a_{23} & a_{24} & a_{25} \\ a_{31} & a_{32} & a_{33}-\lambda v_{3} & a_{34} & a_{35} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\ a_{51} & a_{52} & a_{53} & a_{54} & a_{55}\end{array}\right|=0$

The aj are the variances and covariances of the original data, and the V_{i} are the error variances. The 4 th and 5th variables (time, war years) are assumed to ce measured without error, so V_{5} and V_{6} are zero.

The aeterminantal equation aoove ($A_{i j}-\lambda V_{i}=0$) is solveá (44, Appenaix A. 2.4) to determine tne values of λ. The λ are called the characteristic or latent roots; we will denote the smallest root by λ_{1}, the next smellest by λ_{2}, ana the Iargest by λ_{3}.

The above determinantal equetion is also used for a test for multicolinearity (i.e., to determine the number of inde-
 the population which corresponds to our sempie). The results appear in Tacle 3. The test function is:

$$
\Lambda_{r}=(N-I) \sum_{i=1}^{r} \lambda_{i}
$$

Unaer certain corcitions Λ_{r} is aistributed Iike χ^{2} yith ($\mathrm{A}-1-\mathrm{D}+\mathrm{r}) \times$ aegrees of freedom. If Λ is not Eignificant but A2 is significart, te concluce thet there is one inecr independent relation sefueen the systematic parts of theae variables in the population from winch the sample kas teken. If Λ_{z} is not significent, there are two or more lineer independent relations, ana we are then confronted with the problem of multicollifearity.

The following system of equations is solvea to obtain tine weighted regression coefticients:

$$
\begin{array}{lll}
b_{1}^{\prime}\left(a_{22}-\lambda_{1} V_{2}\right) & +b_{2}^{\prime} a_{23} & +b_{3}^{\prime} a_{24}+b_{4}^{\prime} a_{25}=a_{21} \\
b_{1}^{\prime} a_{32} & +b_{2}^{\prime}\left(a_{33}-\lambda_{1} v_{3}\right) & +b_{3}^{\prime} a_{34}+b_{4}^{\prime} a_{35}=a_{31} \\
b_{1}^{\prime} a_{42} & -b_{2}^{\prime} a_{43} & +b_{4}^{\prime} a_{44}+b_{5}^{\prime} a_{45}=a_{41} \\
b_{1}^{\prime} a_{52} & & +b_{2}^{\prime} a_{53}
\end{array}
$$

The square of the stendard error ratio of k_{i} is:

$$
s_{i}^{2}=\frac{\lambda_{1} c_{i i} \sum_{n=1}^{3} \sum_{r=1}^{3} k_{n} k_{r} V_{n r}}{N-p}
$$

where $k_{1}=-1$ and p is the number of variables, cit is the diagonai element of the inverse matrix (A^{-1}) usea to compute the bi. (Ine inverse of a matrix A is aenoted by A^{-1}, and $A^{-1} \cdot A=I$ where I is the unit matrix.) Tae ratio k_{i} / s_{i} is apozoximately distributed lize stuaert:s to with Nop degrees oz freedom. This ratio is usea to estebIish confiaence linets and to test the nuel hypotiesis thet the coefficient i£ is not significently differeat zroz zero.

In this study we ere particularly interested in the null hypothesis that the coefficient for wage is zero (i.e., the supply of labor does not depend on the wage rate).

When the restriction that tine sum of the coefficients ror the wage rate and price index must ce zero is imposed, the adjustment of the variance-covariance matrix becomes:
$\left|\begin{array}{cccccc}a_{11}-\lambda^{*} V_{1} & a_{12} & a_{13} & a_{14} & a_{15} & 0 \\ a_{21} & a_{22}- & \lambda^{*} V_{2} & a_{23} & & a_{24} \\ a_{31} & a_{25} & 1 \\ a_{41} & a_{32} & a_{33}- & \lambda^{*} V_{3} & a_{34} & a_{35} \\ 1 \\ a_{51} & a_{42} & a_{43} & & a_{44} & a_{45} \\ 0 & a_{52} & a_{53} & 0 \\ 0 & 1 & 1 & a_{54} & a_{55} & 0 \\ & & 0 & 0 & 0\end{array}\right|=0$

Tre λ_{i}^{*} and Λ_{i}^{*} are computed in the same manner as λ_{i} and Λ_{i} above.

We now determine if the difference between the sums of squares fitted with the restriction Λ_{1}^{*} and the sums of squares fitted without the restriction Λ_{I} is signirieent. The test function is that aescribed by Tintner (44, 巳. 131):

$$
F=\frac{\left(\Lambda_{1}^{+}-\Lambda_{1}\right)(N-p)}{\Lambda_{1}}
$$

where F is districuted as Snedecor's F with I and $N-p$ degrees of freedom. If the F is significent at the chosen level, the null hypothesis that the dipference ($\Lambda_{1}^{*}-\Lambda_{1}$) has eriser by cnence must be rejectea. If the \vec{F} is not significart, ae conclude that it is quite probable the supply and detera fere
a function oi the real wage.
The weighted regression coerficients under the restriction that $b_{1}=-b_{2}$ are computed from the following set of equaこions:
$b_{1}^{*}\left(a_{2} z-\lambda_{1}^{*} V_{2}\right)+b_{2}^{i} a_{23}+b_{3}^{*} a_{24}+b_{4}^{*} a_{25}+u=a_{21}$
$b_{1}^{*} a_{32}+b_{2}^{*}\left(a_{33}-\lambda_{1}^{*} \eta_{3}\right)+b_{3}^{*} a_{34}+b_{4}^{*} a_{35}+u=a_{31}$
$b_{1}^{*} \varepsilon_{42}+b_{2}^{*} a_{43}+b_{3}^{*} a_{44}+b_{4}^{*} a_{45}+0=a_{41}$
$b_{1}^{*} \varepsilon_{52}+b_{2}^{*} a_{53}+b_{3}^{*} e_{54}+b_{4}^{*} a_{55}+0=a_{51}$
$b^{*}+b^{*}+0+0+0=0$
where u is the Lagrange muitiplier.
The D_{1}^{*} is the real wage elasticity, while the b_{1} and b_{2} in the previous set of equations ere the elasticity of the monetsry wage and price index, respectively. The results of all regression analysis appear in Table 1.

EMPIEICAI RESULTS

The supply and demand ecuations were fitted by the methods of weighted and ordinary regression for each of the four separate periods: 1900-1918, $1919-1928,1929-1940,1941-1955$. The conditions varied enough cetween 1900 and 1955 that it was advisable to derive equations for separate sub-periods. Since the data for the years prior to 1929 were much less complete, the results for tins period may not be as velid.

The frequent splicing of different series, interpolation between census years, ana possibly large errors in measurement make one skeptical of the information prior to 1929. It is aiso conceivable, of course, that conditions in the incustries changed to such an extent during this time that our model is not adequate. It is difficuit to analyze conditions for a period so far back and under \equiv situation so different from the prosent.

Since 1929, methods of collecting data have been more relieble and the data muen more complete. Data have been collected on a lorger numicer of factors, and they are collecteả ennuelly or oftener so that interpolation is usuaily not necessary. Not only was there a large amount of sntefonation prior to 1929, but tice Estimates were often made sereral years later. Much of the $\dot{\text { y }}$. 5 for $1900-1929$ was calculeted in 1947. Sampling technioues are now being used exiensiveiy maining it possiole to coliect zuci more data at an equa on
less cost. Fe expect that more emphasis can be placea on the results from the analysis for the periods after 1929 because of the better azta.

The supply equations were iftted botin with and without time included es an explanatory variacle. This iactor seemed to have a consiâerable effect on the magnitude of the coefficients ror wage and price index. The fairly constant rise in the wage and, to a lesser extent, the price index throughout the entire interval appesred to be the cause.

Sensible results were obtained for all fits of the supply equation. The coefficients varied between the periods but not beyond what can be expected. But on the other hand, the results from the study of demand were not meaningful for the two periode prior to 1929. Demand equations were fitted for bituminous coal industries, manufacturing industries, and all induetries combined. In ail cases the fits for periods prior to 1929 were very poor.

The results for all fits appeer in Table l. Estimetes of the wage elasticity, price elasticity, exponential effect of time, end effect of war with the accompenying tests of significance and confidence limits are given for botn methods off fitting.

Tacle I．Estimates，tests oi sigrallance，confidence limits

Meereaszon coeネ゙ニ゙さくさもの	Estimete	マestofsig－ nitence（t）	95 percent conflaence Itmits

1900－191e

Supply vith tiae trend，orekary resression

Wage elasticity	1.0646	$\equiv .028^{\text {E }}$	1．5191	． 6101
Price elasticity	－1．0884	3.710^{2}	－2．7175	－． 859.3
Time trens	－．0041	3.086^{2}	－． 0070	． 0012
Tar efrect	． 0288	二． 384	.0657	－． 0079

Yoso：ereous suoply with time trent，orainery regression
Real wase elasticity $1.0663 \quad 1.6113$ ． 19213

Time trend	-.0043	$\Xi .120^{2}$	-.0054	-.0032
Mar efiect	.0263	5.487^{2}	.0425	.0101

Supply with time trend，weignted regression

Wage elasticity	5.5954	1.720	12.3376	-1.1468
Price elasticity	-6.0929	-.740	-1.3 .5670	1.3812
Time trend	-.0062	.849	-.0219	.0095
Har Eifect	.1239	1.127	. .3506	-.1118

Hogoseneous supply with time trenk，meighted reareasion

Real rege elesticity	6.6828	1.625	15.5014	-2.1357
Time trenc	-.0119	-.055	-.0250	.0012
Man effect	.0798	-.302	.2055	-.0459

1918－1928

Supoly with time trena，oräzery resression

Wege EzEsuicioy	－．6852	二． 297	－I． 5691	． 1987
Price ELastioity	． 3816	2.974	T． 2510	－． 0978
Time trer＊	． 0036		． 0132	－． 0060

[^0]Gebse I. (Continucu)

Begroseion coenticient	こstimoto	$\begin{aligned} & \text { Tast or ete } \\ & \text { niticnace } \end{aligned}$	$\begin{gathered} e 0 \text { pecent } \\ \text { conidence } \\ \text { Itato } \end{gathered}$

somogeneous suogy rith time urene, ondinery negression

Real wege elesticity	-. 5118	1. 365	-2.0893	. 4080
Tize urend	. 0086	. 509	. 0140	. 009

Supoly vith time trend, neishted peression

ace elasticity	-2. 2126	. 943	-8.4000	4.1150
Price elasticity	2.0400	. 821	E.126.3	- 4.0451
Time trena	. 0278	. 803	.0882	-. 0446

Homozeneous suppiy with time trend, weiginted rearession

Real wage elasticity	2.0022	1.065	6.6006	-2.5962
Time trena	-.0242	1.223	-.0711	.0228

Supply without time trend, orinary rearession

Wage elasticity	.3387	3.263°	-.5927	-.0947
Price elasticity	.0887	.595	.4537	-.2773

Fomogeneous supply without time trend, ordinemy rearession
Reai mage eiasticity -.2908 $\quad 2.510^{b} \quad-.5743-.0063$

$1929-19 \leq 0$

Supoly uith time trend, oninery regression

Wage elasticity	-1.2280	2.712^{5}	-2.8738	-.1836
Price elasticity	1.7186	3.400°	2.0541	.5711
Time trena	.0141	2.205	.0288	-.0006

Homogeneous supgly with time trena, orainem reanession
Rear wage elasticity -.7216 -918 -2.05Es l.0022
The trena .00 4 . 407 .0EE1 -.0803

$$
\begin{aligned}
& \text { asighinicent et the I pereent Level } \\
& \text { csigniricent st tas a gonoent level }
\end{aligned}
$$

```
Tocie I. (Contimuea)
```

Recression coeniticient	Estimete	$\begin{aligned} & \text { Teet of sig- } \\ & \text { niticnee } \end{aligned}$	$\begin{gathered} 3 \text { gencent } \\ \text { ooninence } \\ \text { inmits } \end{gathered}$

Supoly with tiwe thens, reisinted rearesesen

Toce elacticsty	-1.7727	6.674 ${ }^{\circ}$	-2.35E2	-I. 1802
Price elasticity	E.3962	$5.704{ }^{2}$	3.3371	1. 3733
Tine trend	. 0817	5.800^{2}	. 0220	. 0205

Homozeneous supuy nith time trena, veigntea reeression

Real wage elasticity	-1.2389	2.491 b	-2.3320	-.1436
Time trend	.0113	2.410^{b}	.0221	.0005

Supply without time trend, ordinamy rearesaion

Wage elasticity	-.2459	2.300°	-.0877	-.0041
Price elesticity	.3407	5.762^{2}	.8022	.3002

Homogencous supply without time trend, orinamy regression
Real wage elasticity $-.4053 \quad 4.018^{2}-.6339-.1768$

1941-1955

Suoply with time trend. oreinery regrespaot

Vege elasticity	.6218	1.92	-.6736	-.1100
Frice elesticity	-.2390	1.33	-.630	.1611
Time trena	-.0149	2.12	-.0306	.0008
Var effect	.0558	10.22	.0572	.0432

eci mage elesticity	-.0771	. 562	-. 508 E	. 2646
Time trena	. 0007	. 529	. 00.30	-.0023
	. OEE7	8.125°	-681	. 0382

[^1]Eabje i．（Smonnua）

$\begin{aligned} & \text { Regrescior } \\ & \text { coetionex } \end{aligned}$	Estimate	Test af ais－ nificence	$\begin{gathered} \text { Qb gencent } \\ \text { compaenoe } \\ 1+\ldots t s \end{gathered}$

Wage eleszejog	． 7376	． 466	$\leq .2625$	－2．7869
Price eiseticity	－2．0951	e．532	－3．9418	－． 2444
Time urers	.0367	3.655^{2}	． 0581	． 0143
Wer efrect	－． 3301	12.076^{2}	－． 2008	－． 1376

Homozerevue supply with time trend，veizet三E reeression

Feal wage ei三sticity	-.2322	2.236^{6}	-.5632	.0010
Tine trent	-.0132	12.573^{2}	-.0155	-.0109
War effect	-.1982	17.240^{2}	-.2238	-.1726

Suetin without time trend，ardinary rearession

Wage elasticity	-.0574	.749	-.2261	.1113
price elestioity	.0886	.848	.3186	-.1414
War effect	.0533	$8.717 a$.0668	.0398

Homogetsous supply without time trend，oreirery regression
neal Wage EiEsticity
$-.0118$
． 804
－． 1391
.1155 Mer effect
.0518
3．554
.0651
.0335
1900－1955

Eucon：with time trend，orinery resesssion

	－．1874	1.085	－． 8540	． 1.508
Frice elssこuctuy	． 2671	1.987	． 5770	－． 0028
Time trere	－． 0024	1．323	－． 0060	． 0012
W⿵冂 ¢ffeご	． 0044	3．320 ${ }^{\text {a }}$	． 0709	． 0179

[^2]Sacle I. (Contimed)

Fegression cerifecont	Estimete	$\begin{aligned} & \text { Teot of } \\ & \text { niter } \\ & \text { Cnce } \end{aligned}$	05 percent conitaence 1imits

3eal vace easotioity	-. 3782	2.717°	-. 6576	-. 0028
-ime trenu	. 0001	. 088	. 0024	-. 0022
airefefect	. 0355	$2.976{ }^{\circ}$. 0662	. 0188

Supply without time trend, orinery regression

Wage elasticity	-.4089	2.841^{2}	-.6977	.1799
Grice elasticity	.4502	1.841	.0414	-.0410
War effect	.0380	.965	.1169	-.0409

Eomogeneous supply vithout time trena, oränary regression

Wege elasticity	-.3662	4.283^{2}	-.5381	-.1943
Ker eifect	.0398	1.011	.1169	-.0409
	$1929-19 \leq 0$			

Demand with time trenc, ordinary recression

Tage elasticity	. 0234	. 03	1.742e	-1.6960
Frice elesticity	. 853 z	. 94	2.9511	-1.2439
Eıwe trenó	-.0211	3.010	-.0372	-.0050

Bomogencous aemana with time trend, ordinery recression

REI mage elasticity	. 74.30	. 248	7.3176	-6.3518
Time trend	-. 0190	1.958	-. 0414	.0032

Demend with tite trenc, ajented remession

ge elasuicity	-I.25.5	. 776	- $5.986 \leq$	2.6768
zrice elasticity	2.4157	i. 238	6.9235	-2.0218
Eime trena	-.0132	I. 37%	-.0301	.018?

$$
\begin{aligned}
& \text { Esignizicent at the I percent level } \\
& \text { bsigninicent ot the o peroent Ievel }
\end{aligned}
$$

Table i. (0mtimec)

$\begin{aligned} & \text { E=eression } \\ & \text { ocesicient } \end{aligned}$	Estimate	$\begin{aligned} & \text { Testof si } \\ & \text { sitcones (t) } \end{aligned}$	$\begin{gathered} \text { Oz pereent } \\ \text { conitenee } \\ 2 i m i t e \end{gathered}$

Gomogeneous aemend with time trend, weightea remression

Eeal rege elesticity	- 5.5425	2.185	$-13.31 .34$	4.2884
-ime trena	-. 0500	1.551	-. 1243	.0243
1941-1955				

Demend with time trend, ordinery rearession

Wage elesticity	-1.7488	2.04	-3.0563	.1587
Erice elasticity	1.7269	5.40^{2}	2.4405	1.0133
Time trend	-.0154	.80	-.0584	.0276
War eifect	-.0514	.95	-.1720	.0692

Homogeneous demana with time trend, ordinery regression

Beal vage elesticity	-1.7221	6.038^{a}	-2.3576	-1.0868
Time trena	-.0160	3.308^{a}	-.0268	-.0052
Har effect	-.0501	4.27^{a}	-.0765	-.0237

Demand with time trend, weighted regression

Fage elasticity	$-5.880 ¢$	1.996	-12.0080	2.4317
Erice elasticity	2.9036	$3.151{ }^{2}$	$\leqslant .8203$. 9869
Titue trena	. 0742	1.144	. 2092	-. 0608
Ver effect	-. 1873	1.405	- . 084	. 1098

Bomoseneous demand with time trena, veichtea rearession

Eez wege elasticity	-2.0176	$6.260{ }^{2}$	-2.6879	-2.6589
Thme trenc	-. 0125	2.356°	-.0233	-.0015
	-.0288	. 717	-. 1122	. 0548

```
Esignificent at the I peroert level
Ogientracent at tae b peroert zevel
```


Fegression cocziteient	Estuncte	$\begin{aligned} & \text { Gest on cié } \\ & \text { ninannee (t) } \end{aligned}$	$\begin{gathered} \text { of gencent } \\ \text { coninerce } \\ \text { linits } \end{gathered}$

1929-1055
 Demond wita time trenc, onanery rearession

Wege elesticity	-. 9336	E.255	$-1.97 \leq 3$	-.0785
z-Lee elasticity	1. 2654	$23.408^{\text {a }}$	1.3352	2. 3356
-1-u trend	-. 0208	$3.080^{\text {a }}$	-. 0345	-.006
$\cdots \equiv$ Exさect	.2177	$39.107^{\text {a }}$. 1250	. 1114

zezoseneous àmenā with time tmenc, orāinary rearession

Eesi wage elasticity	-1.8301	53.828^{a}	-1.9008	-1.7594
Fine trend	.0005	.026	.0411	-.0401
War effect	.0796	31.076	.0349	.0742

Demand with time trend, weighted regression

Wase elasticity	-2.6450	3.097^{2}	-4.4213	-.8687
Frice elasticity	2.8694	4.712^{2}	4.1361	1.6027
mat trend	-.0029	.251	-.0258	.0210
Wer effect	.0821	1.926	.1716	-.0066

Fonogeneous demend utin time trenc, weightea regression

Eet wege elesticity	-3.3597	$\leq .763{ }^{\text {a }}$	-4.8011	-1. 2783
Ṫエe trenã	. 0046	1. 527	. 0107	-.0022
Vereffect	. 0672	1.436	. 0165	-. 0.302

> Esigninicont at the I percent level
> bsigniniosnt at the E percen level

Estimetes by Orainery Regression

The multiola correlation coeficicients for tine supply relationships were significant et the 1 percent level for all periods excezt 1919-1928. The same was trie for the fitted equations inere time was omitted as an exolenatory variable. The teste of significance show that the coefficient for time was only significent for the period 1900-1918.

The results snow a negative elasticity of supply for the second, thira, ara overall periods; and a positive elasticity for the first and fourth periods. However, the coefficients for the wage and cost-of-living index in the fourth period were not significant at the 5 percent level. The supply equation without time trend shows a negative elasticity of supply.

Most econozists agree that we should expect a negative elasticity of supply in the more recent periods. It is, however, not unliaejy that the shape of the supply curve could change aependire upon the wage level, composition of the labor force, ant the presence of war. The results obtained by Douglas fros zoth cross-section anc time series analysis inaicatea a negenipe supply curve for lebor.

It is conceivable that there was a zero rage elasticity for some of the periocs. The regression coefijcient for wage rate was signizieenntly different from zero for the periods 1900-1918 Ent 2e29-1940 only. In the other periods the wage
alasticity was procabiy zero or close to zero.
The coefficient ressuring the effect of war was highly significant in the fourta and overall periods. The same coefficient for the perioc 1900-1918 fas not significant.

On the demand sice significant fits were obtained for the periods 1929-1950, 1941-1955, and 1929-1955. In the first period the only significent regression coefficient was for the time trend. The reauits show a positive wage elasticity, but little emphasis can peplacea on the coefficient because the confidence limits range irom -1.69 to 1.74 . A positive wage elasticity is, of course, unrealistic because it indicates the minimizing rather tian the maximizing of profits by the employers (54).

The coefficient for wage is only significant where the equation was fitted for ine overall period. The coeficient for price index was significant in the second and overall period. The war effect and time trend in the first period were highly significant.

Teste for Homogeneity

The homogeneous functions are the equations fitted under the restriction that the sum of the coefficients for wage ana price index must be zezr. In this form the functions are homogeneous of aegree zezo with respect to the wage rate and price index. The co-z=2 coefficient 15 expresea es the reel
wage elasticity (i.e., the coefficient for the retio of the wage to the consumer price incex).

The test for homogeneity is applied to the ratio of the "resiaual sum of squares for the equations fistea with the restriction" to the "residual sum of squeres for the eourtion fitted $\because 1$ thout the restriction". If the difference between these sums of squares is so large that it is not likely that it could have arisen by chance, we must reject the hypothesis that there is no difference between the fits. The results of the analysis variance tests are given in Table 2.

The tests values are not significant for the first, secona, and overall period. The test value is significant at the 5 percent level for 1941-1955 and significant at the 1 percent level for 1929-1940. For the equetions fitted without a time trend the values are non-significant in $a 11$ periods except 1929-1940. Incluaing time as an explanatory variable appears to change the wage and price index coefficients enough to effect the test for homogeneity.

On the aemand siae the F value uas not significant in the second period, but it was significent at the 5 percent level in the first period and at the i pereent level in the overall perioc.

In those instances where the test value is sienificant, the null hypoteesis must be rejected. mis jnEiestes thet on the besis of tais anclysis we cannot sssume tiat tine function

Resiauei sums of squeres

$$
a_{n}=\frac{\left(\Lambda_{1}^{*}-\Lambda_{1}\right)(\because-2)}{\Lambda_{1}}=n \in=\frac{\left(a_{2}-\hat{a}_{1}\right)(N-p)}{\theta_{1}}=n e
$$

Eistributea as Snedecor' degrees of Éreedom.

$$
\begin{aligned}
& \text { csignificent at the z Eereent Level } \\
& \text { csigninicent at tine E zencent Levej }
\end{aligned}
$$

Toble Z （Continuco）

Heiented sums of sourres

Deniend ritu time trend	195こ－1940	11．160	14．441	2.320
Demend with tire trenc	ここ $5-2955$	5.180	7.130	3.760
Demand with time treno	1823－1955	29.060	32.980	2.870

Residucl sums of squares

Demand with time trend	1929－1940	18．280	35.390	$7 . \leq 57^{2}$
Demand with time trena	1941－1955	． 771	． 772	． 025
Demand with time trend	1920－1955	67.730	$100 \cdot 270$	10.570°

Dignificent at the 1 percent ievei
cSignificent at the 5 percent level
is homogeneous with respect to wages and prices．
Results can be better interpreted after the equations from the weighted regression method are analyzed．

Estimates by Tezented Regression

The first interesting resuits in the procedure of weignted regression occur it the test for multicolline （Table 3）．The number of innese relationships existing ita the population has an important beering in determining tis

Table 3. Test for multicollinearitya

	Feriod	$\operatorname{sentan}\left(\lambda_{1}\right)$	Chi-square velue
Supply with time trend	1900-1918	$\begin{aligned} & 1=2.290 \\ & 2=2 \cdot 290 \end{aligned}$	$\begin{gathered} 5 \cdot 220 \\ 43.800^{b} \end{gathered}$
Supply with time trend	1919-1928	$\begin{aligned} & 1=.413 \\ & 2=2.330 \end{aligned}$	$\begin{gathered} 3.720 \\ 24.680^{c} \end{gathered}$
Supply with time trend	1929-1940	$\begin{aligned} & 1=.370 \\ & 2=2.434 \end{aligned}$	$\begin{gathered} 4.360 \\ 31.340^{b} \end{gathered}$
Supply with time trend	1941-1955	$\begin{aligned} & 1=.252 \\ & \frac{1}{2}=1.256 \\ & 3=19.293 \end{aligned}$	$\begin{gathered} 3.528 \\ 26.670 \\ 212.223^{c} \end{gathered}$
Supply witi time trend	1900-1955	$1=5.427$	$261.800^{\text {c }}$
Demana witin time trend	1929-1940	$\begin{aligned} & 1=1.016 \\ & 2=1.925 \end{aligned}$	$\frac{11}{32.376}$
Demand with time trend	1941-1955	$\begin{aligned} & 1=.370 \\ & 2=1.990 \\ & 3=17.930 \end{aligned}$	$\begin{gathered} 5.180 \\ 33.040 \\ 284.058 \end{gathered}$
Demsna witin time trend	1929-1955	$\begin{aligned} & 1=1.816 \\ & 2=5.594 \end{aligned}$	$\begin{array}{r} 29.056 \\ 118.560^{c} \end{array}$

${ }^{a} \Lambda_{r}=(N-1) \sum_{i=1}^{r} \lambda_{i}$ is distributed as chi-squere with (N-I-p+r)r degrees of freedom.
bsignificont at the 5 percent levei.
csignificant at the 1 percent level.
proper method of analysis (42, pp. 33, 127). It is also important from the theoretical stendpoint. The test velue (χ^{2}) for estimating tie number oi linear reletionships is computed Erom the latent roots.

Except for 1941-1955 the teste indicete that there is not more than ore linear indepenaent relation between the set of variables inciuded in the suppiy reletion and the demand relation. In inese cases the test value computed on the basis of the first ene second latent root was significant at the 5 percent level. For 1941-1955 the first two test values computed from the supply relation are not significant, but the third test vaiue is significent. This indicetes two linear independent reietions.

The test $₹=a l u e s$ computed from the demand relation are more difficult to interpret. The second test value is actually not significant at the 5 percent level, but it is very close to the tabulated value (33.0: 33.9). The test value does indicete the possibility of two independent linear relations.

The result in the period 1941-1955 may have been caused by the small awount of unemployment, (indicating equilibrium), or it may have been caused by the nearly constant rise in the wage and price fraex throughout this period. If the result were caused by tae former, we would expect it less likely on the demand sice. The test values tend to confirm this. The total demand for iasor might equel total supply, but it is Less likely that the demand for lacor by an inaivioual industry would be eguel to the potential supply to thet industry. For the oferail period in the supply reietion all test
values are significant. Tnis sugeests that there is no linear relation that holds throughout the entire period. If Λ_{1} is significant it indicetes thet there are zero incepencent Iinear relations. This further indicetes thet the supply reletion should be analyzed for short periods.

The magnitude of the weigitea regression coefficients for ine latter periods agree feirly closely with the coefficients derived by ordinary regression. In all ceses they are a iittie higiner, however.

For the supply relation the results show a negative wage elasticity for 1919-1928, 1929-1940 and a positive elasticity for the periods 1900-1918, 1941-1955. This was the same as in orainary regression. However, in the case of neighted regression, the coefficient for the wage was not significent in the latter two instances. This indicates that the supply may not depend on the wage rate at 911 (zero elasticity). A wage elasticity of 5.6 ena -2.4 for the first two perioas seem higher than we woula normally expect. Little significance can be attached to these coefficients since the stanäara errors are high and consequently, the fiáucial limits very mide.

On the demand side the wage elasticity is negative for ail three periods. The real wage elasticity varies between -2.0 Por 1941-1955 ana -4.5 for 1929-1940. It is only in the secona and overall period thet the teste incicate the nege
coeificient significantly aifferent from zero.

Tests for Homogeneity

In the weignted regression methoc the dirference between the fits in both the supply and demand equations were not significant at the 5 percent level in any of the periods. The weignted sums of squares and variance ratios (F) are given in facle 2.

Tne F values computed from the supply equations are highest for 1919-1928 and 1929-1940, but even in these periods the ∇ alues are well below the tabulated values for the 5 percent level. In the ordinary regression the test value was highly significant for the period 1929-1940.

In neither the supply nor the demana relations is it necessary to reject the hypothesis that the equations are homogeneous with respect to wages ana prices. It is quite likely trat both the supply and demand depend on real wage (i.e., they depend on the ratio of the wage to the price inafil.

INTERPRETATIONS AND CONCLUSIONS

Drawing inferences in an empirical science will always involve a certain risk. The pure deductive or intuitive methoc is not adequate because it does not rely on empirical verification or testing. No confiadence level or relative frequency can be attached to statements. On the other hand, the inductive method is also risky because we cannot be sure that the sample aata are representative of the population for winlch we would like to make inferences. There is also the problem of a complex maze of relationships in any set of sample data.

Considerable time was spent in criticizing the present predominantly deductive approach to wage theory. The interpretation of results from this empirical investigation will end with a critical evaluation of the confidenoe that can be placed in the results of the inductive approach. This seems to ieave no alternative. However, if progress is to be made it is necessary to draw some conclusions and to work on improving methodology. The conclusions are the bestinferences that can de drawn from the resulis of the empirical study. The proceaure is useful as a stuay in methodology.

Tae choice of procedure and data was oriented toward answering one main question: Does tine supply of and demand for lebor depend on the real or money zage? Because of this oritentetion and the complex nature of this area of economics,
caution must be used in drawing conclusions from these results about other aspects of wage theory. It is hoped that some inIormation cen be obtained irom the derived equetion about the elasticities of supply and aemend.

To answer the question of homogeneity, it is necessary to stuay the structure of the supply and aemena relation. There were no empiricolly derived functions available for this enalysis. The most important empirical results for this country were obtained by Douglas in his voluminous labor study in the 1980's. In addition to its being aated, his work was oriented towara determining the marginal productivity of labor and the relative share of national income going to labor. The derived functions in this study are among the very few that are available (5, pp. 350-351).

If there are errors in all veriables, the simpler methoās of statistical enelysis will not yiela the structural parameters. The speciai technique of weighted regression was usea in an attempt to obtain better estimates of the structural relations.

It is not unlikely that there ere both errors in the variacie and errors in the equetion in the models and data. used in economics. There in no method availeble at the presert time for deeling with coth types of errors. The methous of weighted and ordinary regression nere both used, therevy furnisaine more information for eveluating the two
approeches.
Homogeneity and Elesticity of Supply and Demend

The statistical tests do not indicete that we must reject the null hypothesis that there is no significent difference between the equations iltted with and without the restriction. The aifference between the fits was such that it could easily nave arisen by chance. It is very probable that both the supply anc demand functions for lebor are homogeneous of degree zero with respect to wages anc prices. Both supply and demand appear to depend on the real wage.

Tinis conclusion is in agreement with classicel theory, but is contrary to the view held by Keynes and many of his followers. Keynes held thet such things as money illusion and irrational behavior were reasons for believing that the supply of labor dependea on the money wage. Modigliani (27) has shown that the necessary conaition for the Keynesian position, namely, that it is possible to have equilibrium without full employment, is that one of the equations is not homogeneous witin respect to wages and prices.

There inas been Iftle doubt tist the demand for labor àpenäea on the real wage, but, as statea earlier, there are reasons for assuming that the supgly of lacor might depend on tae money wage. The resuits of tais investigation suggest that both the supply and aerand for iedor aepend on the real
wage.
The form of competition in the labor market is a topic of current interest. We are quite certain that there is con-
 petition. Some form of monopoly and monopsony is more lizely because of the size of inaustry and the uniting of labor into Iarge collective bargaining units. Tintner (45) has shown that we c an expect the supply of and demand for factors of production to be homogeneous of aegree zero in these forms of competition as well as in the case of perfect competition.

Conclusions concerning supply and demand responses to changes in the real wage are difficult. The assumptions under which the model was set up are likely to be only partially fulfilled. Conaitions in the future periods for which we would like to maze inferences are also likely to vary considerebly from the conditions thet existed during the period studied. The results indicate that the supply anc äemana equations variea considerably for the perioa between 1900 and 1955.

It seems more liaely that the supply of lebor decreeses rather than increases in response to an increase in real rages. Caution must be used in zating such a statement because we have been dealing with a static model. It is conceiveble that the response pattern chenges fith different levels of incoue, at aifierent points of tize, and for different groups of
individuals. These points are discussed in the next chepter under suggestions for further study.

It is not inconceivable that the supply is unresconsive to changes in the real wage (zero elasticity). The empirical results suggest that the elasticity is zero or close to zero. Douelas (13) in 1985, using a cross-section study, celculated the E_{g} to be between -.24 and -.33. He did not give fiāucial limits for his estimates. With an increase of 1 percent in the real wage, the demand for labor in an industry such as bituminous coal can be expected to decrease between 2 and 4 percent. This seems rather high, but there is evidence to support such a large ifigure. Douglas (13, p. 152) estimated the Ea to be between -3.0 and -4.0. The coal industry is peculiar in that labor is a high percentage of total cost (estimated to be about 60 percent) and, of course, a considerably higher percentage of the variable costs. The Ed for a factor is expected to be greater when the cost of this Iactor is a large portion of the total cost.

Importance of the Results

Knowledge of tre homogeneity and elasticity properties of the supoly and cemand for labor is crucial for sound economic policy and economic theory. Effort to maintein high and stable levels ozemployment must begin by obtaining as reiiabie estimates on these two aspects as possible ($9, p$.
342). The best estimates can probably be obtained by stuaying the past. Eut ne must realize thet economic conditions vary consiaeradiy, and the future, therefore, may de quite different from the past. Consequentiy, the valiaity of inferences arawn from the study of a past period is unknown.

It woula be desirable if probability statements could be related to confirmation of hycotheses rather than based on relative frequencies. Conclusions from an empirical investigation are based on analysis of āata from some past period and consequently are only relevant to a period with conditions similer to the period studied. The degree to which future periocs will be similer is, of course, uncertain. It is hopea that the conclusions will hold at least approximately for the present and immediate future. Extreme caution must be used in applying the conclusions in the more aistent future.

The method of weighted regression was used in an attempt to oftain better estimates of the structural relationships. There seems to be reason to expect errors of observation in all $\overline{\text { Feriables, }}$ ana, in this case tine simpler method of ordinary regression breaks down. The estimates and probabilities using tie method of weighted regression ere valia only under the foliowing assumptions:
(2) The theoretical frameworz must be valid. Nore specifically, there must exist a stetic supply and aemand function in the uncrown aypothetical infinite
population winch are at least approximetely linear in the logerithms.
(2) There must be no errors in the equations.
(3) The errors in the variables must have constant variance over time.
(6) The individual items of each error series must be independent, and the errors in one series must be independent of the errors in other series.
5) The errors in the variables must be normally distributed.
(5) The error variance must be known.
(7) The sample must be large.

These conditions are only partially fulfilled. We do not frow the extent that actual conditions deviate from the assumptions, nor do we know the subsequent effect on the conclusions.

EE should not place too much confidence in our results. In metrodology, a great deal is yet to be learned concerning both errors of observation and errors in the equation. Our factual knowledge is deficient about new factors in the labor marisy (10). The labor union undoubtedly considers a much wicer range of factors in wage bargaining than does an inaiviaut (13). The role and importance of political and institution finctors in the union are uncertain. These factors are $\dot{\text { anficicult to observe and, undoubtealy, vary considerebly }}$
tarougn time ana from union to union. A great amount has been Written on these aspects, but it is far from conclusive. More research needs to be done in this area so that we can be more certain that our models are representing the real world labor meriet.

Complete reliance on deductive reasoning is unlikely to lead to much further progress. On the other hand, undue confiaerce in any one set of emplrical findings is also unwerranted. It is important that we derive new ideas from both the aeductive and inauctive (empirical) approach. However, these new ideas should not be emphasized to such an extent that we are unappreciative of earlier work or the results from a different approach. A blend of the empirical and intuitive approaches should produce the best results, each method serving as sort of a check on the validity of the other. When the results of the two approaches are in close agreement, we can have considerable confidence in the results; but when the conclusions differ both sets of conclusions should be re-examined. In sucn a complex area the testing ena checking is just as important as the formulating of hypotineses.

SUGGESTIONS FOR RURTEER STUDY

The remaras in this chapter are meant to be useful in further attompts to derive supply functions for labor. They are not necessarily pertinent to the question of homogeneity. The suggestions evolved, for the most part, from the difficuities and results of empirical work for this thesis.

The discussion in the first section pertains to the possiole variation in the supply curve depending upon the number of hours worked per week, the level of income, and the composition of the labor force. Since data are not available for these aspects, the discussion will proceed by breaking the supply curve into more funamental units. It is hoped that the conclusions will be useful as guides in collecting more pertinent data and useful for enelyzing available aata.

The second section is a discussion of wage and employment aata. The lack of good data is one of the biggest obstacles at the present time. The last section is an overall appraisai of methoãology.

Analysis of Lebor Supply

It has frequently been sugeested that the labor supply curve changes irom positive to negative slope as the vage rate increases. Certain conaīzons unaer which this will be true have been cited, but litile effort has been spent to aetermine winen and if these cezain conaitions are present.

Somewhat more attention hes been given to the possible veriance in the supply curves cetween aifferent types of individual (4, p. 352). Both of these Espects are worthy of further investigation. In this chapter attention will be focused on the sign of the slope and on the numerical value of the elasticity or lacor supply. He will break the labor supply function into more fundemental components and carry on the discussion in these terms (5).

Figure 1 gives a graphic presentation of the component parts assuming the wage rate is constant (W_{0}). uu is the marginel utility of hourly income; il the marginal utility of ieisure; and da is the curve of airect marginal disutility resulting from the work itself. $d d i d$, the sum of $l i$ and $d d$, shows the total marginal disutility of labor.

The hours worked per week are measured along the horizontal axis, and marginal utility is designated by the left nand orainate. The right hand oraznete is the left hand ordiaate inverted. It permits easier interpretation of $l l$ and de. Botn of these quantities can be just as effectively measured Elong the left hend ordinate, however.

The intersection of iala anc un designates the number of Lours that the ināividuai will aesire to work at wage Wo. F̄igure I represents a situetion winere en inaividual desires to work 40 nours anu have 50 hours of leisure, while figure Srepresenis the situstion finere er fndiviaual does not desire
 HOURS WORKED PER WEEK Figure 1. Kales, head of nousehold; individuals desiring to work 40 hours and have 50 hours of leisure

Figure 3. Nesbers of a family unit but not head of household; incivicuals desiring to work 30 hours ger week

HOURS WORKED PER WEEK
Figure 2. Individuals desiring not to work at wage rate Wo

Figure \leq. Single persons not memicere of a family unit; indivicuejs desiring to work 45 hours per week
to work at all for a wege Ho. At the intersection of uu end ldad the classical argument states thet the utility to be gained from working one adaitional hour is just equal to the aisutility of woringe this eaditional hour. As the wage rate changes the u and $i \ell$ curves will shift. The new intersection points of $2 \mathrm{~d} \ell \mathrm{a}$ and uu will trace out the supply curve (Figure 5).

The marginal disutility of work (da) would not be expectec to change as a result of changes in the wage rate; it is a function of the hours worke $[\overline{d d}=d(H)]$. A 1 percent change in the wage rate will cause a certain percent increase or decrease in supply depenāing upon the shifts in $X \ell$ ana uu.

With the wage rate constant the horizontal axis is a measure of total incone, ana un is the familiar marginal utility of income. A wage change will have two effects on uu: (1) an equal percentage change in the same direction aue to the change in hourly income, (2) a shift in the opoosite airection because of the change in marginal utility of income.

For convenience in leter use the percent chenge in menginal utility (uu) ior a i percent change in income wili re callea $E_{\text {u }}$.

$$
E_{i u}=-\frac{\bar{a} u}{\bar{d} I} \frac{T}{\bar{u}}
$$

It is reasonable to assume that the marginal utility of income decreases as income rises; hence, it is more convenient to express the elasticity of utioity with respect to inco=e

as minus one times the derivative of utility with respect to income. The net shitit in un for a 1 percent change in wages is trien equal to 1 - Eu.

Unfortunately, we have no numerical measure of E_{u}. The uu curve is drawn so it is convex to the origin over most of the range. Even this is assumine some knowledge about the thira derivative of utility as a function of income. It is interesting to note that in two commonly expressed functionel forms for utility $\left(U=\log I, U=I^{\alpha}\right.$ with $\alpha<1$) the thim derivative of $u t i l i t y$ with respect to income is positive making the curve concave from above as is shown.

The il curve is drawn upward sloping to the right and concave from above. This curve is composed of two functional relationships: (I) leisure as a function of income $[\mathbb{Z}=$ $\left.I\left(\bar{W}_{0} H\right)\right]$, (2) leisure as a function of totel hours of leisure $[\ell=g(h)]$. The shaĩea portion (Figure I) represents the functional relationship of Ieisure on income. The lower line represents leisure as a function of the number of hours of Ieisure.

We need to define two properties of the lded curve:
(I) the cinange in $\ell \mathbb{A}$ as the nours of wori increase ana (2) the shift in ldZX as the wase rate changes. la can be ezpressed as $F(H)$ where:

$$
F=\bar{\alpha}(\dot{a})+\hat{I}\left(W_{O} G\right)+g(H)
$$

Fue first property will be aefined in terms of the percent
change in $\ell \bar{a}$ for e I percent change in hours and designatod as $E_{l a}$.

$$
E_{l a}=\frac{d F(H)}{d(\tilde{H})} \frac{H}{l \tilde{a}}
$$

The second property is aefinea es the percent shift in lald for a 1 percent chenge in the wage rate; it will be designated as ℓa^{*}.

$$
l a^{*}=\frac{1}{2 F(x)}
$$

The shift in $9 \operatorname{lig}_{\mathrm{i}}$ is equal to the diference in utility from the charge in income (1 percent) when used with n hours of leisure and when used with $n-1$ hours of leisure. Tnis quantity would be expected to be quite small in most cases. The slope of the supply curve is determined by the relative magnitudes of the shifts in the un and lala curves. Figure 5 shows a nypothetical situation given a 1 percent increase in the wage rate. In this case $1-E_{u}>\ell \bar{a}^{*}$, and a positive supply curve results. The supply curve will have a positive slope if $E_{u}+l d^{*}<1$, a negative slope if $E_{u}+\ell a^{*}>1$ and will be completely inelastic if $\mathrm{E}_{\mathrm{u}}+\mathrm{lo}^{*}=1$.

The elasticity of supply can be expressed in terms of the quantities that have been defined. If the shifts in uu and lala are not Ierge, the elasticity of supply (E_{S}) can be approximatea quite simply. The symicols to be used in deriving the formula Ere shown in Figure 6 .

$$
E_{S}=\frac{m n}{0 m}
$$

dr is the shift in the uu curve and ds is the shift in lded; coth result from a 1 percent change in the wage rate. For siupilcity the two curves are expressed as:

$$
\begin{aligned}
& u u=y=u(x) \\
& \ell d \ell d=y^{\prime}=\ell(x)
\end{aligned}
$$

At tne initial equilibrium:

$$
\begin{aligned}
& u(x)=\ell(x) \\
& \mathbf{r u}(x)=s \ell(x)
\end{aligned}
$$

where $r=s=1$. mith a wage change the curves shift by the amounts ar and as. Differentiating both siaes we get in terms of first approximations:

$$
u \cdot d r+r \cdot u^{\prime} \cdot d x=\ell \cdot d s+s \cdot \ell^{\prime} \cdot d x
$$

u is equal to ℓ at all intersection points so we can divide the left side by u and the right side by ℓ. r and s drop out because they are equal to 1 .

$$
\begin{aligned}
& a r+\frac{u^{\prime}}{u} d x=d s+\frac{l^{\prime}}{\ell} d x \\
& d r-a_{s}=\frac{\ell^{\prime}}{\ell} d x-\frac{u^{\prime}}{u} d x
\end{aligned}
$$

By multiplying the right aide by x / x the solution cen be given in terms of the elasticities.

$$
\begin{aligned}
& \overline{d r}-\bar{d}=\ell^{\prime} \frac{x}{d} \frac{d x}{x}-u^{\prime} \frac{x}{u} \frac{\bar{u} x}{x} \\
& \bar{a} r-\bar{d} s=\left(E_{l \dot{d}}+E_{u}\right) \frac{\bar{d} x}{x}
\end{aligned}
$$

where $\bar{E}_{u}=-\frac{\hat{Q} u}{\overline{d x}} \frac{x}{u}$.

$$
\frac{\hat{a} x}{x}=\frac{d r-d s}{E_{Q d}+E_{u}}
$$

Substituting the teras appropriate for a I percent wage change we rínc:

$$
\text { elasticity of supply }=\frac{\bar{\alpha} x}{x}=\frac{1-E_{u}-\ell d^{*}}{E_{\ell d}+E_{u}}
$$

There are three interesting properties of this formula.
(I) $E_{6}>-1$
(2) The sign of the slope is determined by the reiation: $E_{u}+\ell \mathbb{a}^{*}: I$
(3) The numerical value of the slope is determined by the two quantities: $E_{u}+E_{\ell d}$ and $E_{u}+\ell d^{*}$

The first two properties are, more or less, intuitively obvious. If the wage rate increased 1 percent, we would not expect the lecor supply to decrease more than 1 percent. In the second case, using a wage increase as example, if there was a large crange in the marginal utility of leisure and a large change in the marginal utility of income, we would be led to expect a cecrease in supply and conseouently a negative supply curve. The thira property in more subtle in that we woulo be more apt to think in terms of the ratio of tice values. A close analysis of the graph wizi also revesl that it is the sum that is important, however.

It is quite possiole that $l d^{*}$ is so smail tinat it can be neglectea. In other words, a wage change will have Iittle effect on the total disutility of work. This is most ept to
be true if there is a consiaerable amount oi leisure (45 hour work week or less). The elasticity of supoly in this case becomes $\frac{l-E_{u}}{E_{u}+E_{d}}$. In this situation E negative supply curve can only result if the marginal utility of money falls more tana 1 percent for a 1 percent rise in income. The slopes of the leisure and airect disutility of nori curves are important in aftermining the numerical value or Ξ_{S}, but do not determine tae sign of the slope.

With our present knovledge we canct attach numerical Values to these elasticities. However, $1 t$ is possible to gain more insight into the two questions posed at the beginning of this section with the aid of the Evove formulas.

Finis author can see no logical reason for believing that the supply curve changes from positive to negative slope as the wage increases. It is possible that the supply curve is
 apt to be negative at any particular point. To make a statement about the change in slope aue to a wage change requires a knowledge of the thira derivative of tine utility function. The standard error of an estimete on tifis euantity is unđouttecly large.

The secona question dealt with the aypothesis that the suppiy curve varies considerably qepercines on the type of inaitiaual. This aspect will now be izrestigeted by ana17zing the supply similariy for the tollowing groups:
men who are head of ε household, (2) members oin a ímily unłt not head of a nousenola, (3) single persons not members $0 \mathcal{O}$ iamily unit. A iamily unit is a situation where each femper usualy contributes his wages to the benefit of the whole family. This is most eviaent in the case where the zife works to supplement the femily income.

Figures 1,2 and 3 represent the three different groups. Figure 4 is representerive of an individual who does not aesire to woriz at the wage w_{0}. The l ald curve lies above uu at all points. If tinere is a restriction on the minimum nours per week, the diagram can be extended to consider this situation by arawing a vertical line as shown at 20. The lacor force status will then depend on the relation between the area under the uu curve and the ares under the ℓ ald curve between zero and the minimum hours per week.

The first group comprises the lergest portion of the Iacor force. It will ce useful to consiaer Figure 1 as a standard or norm. The uu curve for the second group bears an interesting relationenip to the uu curve in Figure 1 . The curve in Figure \mathcal{Z} Fill be the portion of the u curve in Figure 1 thet lies to the right of z. This is because the income of these inciviàuais is a supplement to tre income of the head of the housenold.
 ent from those show in group one. Nembers of this Eroup
have otner activities such as household chores and child care. The le curve will include the value of time for these activities and will therefore, likely be hieher then that shown in Figure 1 . The annoyance of work will also aiffer because of the difference in physical stamina of the two groups. The most obvious difference between the two groups is that tne situation shown in Figure 4 is more apt to hold true for The groups represented by Figure 2 than for the groups represented by Figure 1.

In the third group (Figure 3) the un represents the marginal utility of money to the worker himself, while in the first group it represented the marginal utility of income to a family unit. The marginal utility of leisure may also be quite different. As it shows, the marginal utility for a large amount of leisure is probably higher in the case of single persone. School and organizationel ectivities would also give a high value to leisure hours.

No definite statements can be made acout the variation in supply functions for these various groups. The above analysis dici show that the component perts ere likely to vary considerebly between tie groups. Consequentiy, there is no reason to assume that the supply Funcions are similar. No particular merit is claimea for this tareemiola grouping. The purpose was only to show that the supgly functions for Verious inaiviauais are likely to be consiámedy different.

This theoretical analysis further inlustrates the need ior empirical research. Hypotheses can be made, but no confiouence or reliacility can ice attached kithout analyzing actuel data.

From the analysis it seems that the two hypotheses considered in this chapter are worthy of furtner discussion and investigation. The analysis pointed out that there is really no reason to assume that the supply function shoula be the same for different groups of individuals. It, therefore, seems best to obtain cata $0 y$ sex and age so that we can investigate this aspect furtier rather than continuing to aerive functions from aggregete data.

Very little can be saīa concerning the possible change in the supply function es the wage increases. There is considerable emphasis on this aspect at the present, and only empirical investigation can settle the issue.

Need for More Pertinent Data

Lack of pertinent data is a major obstacle in wage theory. Information is incomplete, subject to considerable error in measurement, and in many cases, only availabie for ミshort span of years. A tize sertes study is hindered by the lack of consistent series on zost espects.

Effort should be directea along three lines: Te sioulá strive to find out whet data sania be gathered; àte shoula

Abstract

be collected in a manner that wlll produce a consistent series for many years; and much effort shoula E e spent improving accuracy and efiniency of collection. The latter two are to a certain extent incompatible in that en improvement may be such tinat the improved series may not be comparable to the eerlier series. This makes $1 t$ zost important to use the best possible procedure at the beginning of a series.

A sample survey makes it possible to obtain àta on designated areas, either geographical or populetion. Current data in the population report series is quite successfully being collected through sampling. Data shoula se collected on the casis of age, sex, and family status in an effort to determine if the supply functions vary between ¥arious groups.

Fringe benefits are becoming an incressingiy important element in costs and benefits. Methods for meesuring the extent of these benefits must be developed so tret some measure of the efiect they exert on the incipianeis concerned cen be teien into consideration.

The perticular aeta to be collectea shoule Eepend on the nature os the subject, questions to be ansonera, techniques of analysie to ce usea, and of course, economy fr collecting. It is not feasibie to thinix in terms of "aiz-purpose" data. The purposes for which the data are to be usea exe too diverge and the methona of collecting are inategneve (I).

There is a large amount of data being collected that coes not readily lend itself to theoretical analysis (49). A partial explanetion might well be that there is no close connection cetween those engaged in gathering wage information and those who have occasion to use it (35). It is especially important that government agencies receive more guidance Srom analysts as to the type of data to be collected (28).

Information on employment and unemployment is some of the most dipficult data to coilect (31). Many problems will arise in collecting the type of data tiat the theorists need. Tne definition and specificetion or àata series may differ depending upon the need and questions of the research worker (16). Obtazaing data for special purposes will increase the quantity oi cata several fold. However, it is unreasonable to hope for substantial improvement in theory if theoretical enelysis continues to be a by-proauct in the use or economic statistics.

Methodology

Tre results irom attempts in empirical work, such as those presertea in this paper and those by Paul Dougles, are guite encouraging. It appears to tie writer that it is Detter to critert future work towari empricism ratner than to contribute tore untested theories. All researon points to
the fact that this aspect of economios is extremely complex. In such a situation it is very easy for theories and knowledge to become vegue and conrused. To alleviate this condition we must orient our work in terms of significant and testable hypotineses.

There are so many factors that are lizely to have influence on labor supply that it seems nearly impossible that we can develop a theory incorporating all of them. Our first efforts in the neti approach shoula be to determine which of these possible factors are most important and then enaeavor to obtain a quentitative measure of their importance. It is elways possible that the information obtainea from an analysis of specific questions can afterwards be integreted into a more general theory.

It woula be desirable to establish some sort of hierarchy of questions or factors to investigate. This hierarchy should be basea on the importance of the questions and the availability of metinods adequate for answering them. We must disregard professionai prejudices and esteblish this Inst in the light of supporting evicience. We know that the economic aspect is important, but it may well be that noneconomic aspects are more important in some instances. At lesst for the present we shouid continue to build economic models end treat important roneconomic izactors as special cases. If further empirical research inaioetes that economic fectors ere not the
most important then $w \in$ shoula consider abandoning the economic model as the basic model for wage theory. Institutional Iactors are alreacy receiving conslderable attention (36).

Data at the presert time is very poor in quality and quantity. Part of tine reason for such poor data is that it has not been collectea for research purposes. Wuch of the aata has been coliectea by government agencies as sort of an "all purpose" data. in meny cases it seems that very little use is made of the massive amount of ata collected by the various government oureaus. This indicates that aeta should be collected for more specific purposes.

Some factors can only be studied in time series analysis. In these cases it is essential that we start collecting data as soon $a s$ possible so that data for successive years are available. The methoa of collecting should be such that it will be applicable for several years, thereby eliminating the obstacles of a discontinuous series so prevalent in the present aata series. At the seme time we should experiment to determine best methods of collecting and to determine which deta are valuable. This long range collecting program and shori range experimenting riti neve to be integretea.

Research effort secuic be guiaed by three factors: the question to be anstierea, the data aveilable, and the techniques of analysis tiet are applicacle. Disregara for any one of these mili sexisusiy limit progress at tines. We may
nave to be satisfied with mediocre results; this is to be prezerred to absence oi effort excused by adverse odas. We cannot expect that on answer to a specific question will nold true for all time. Tne same questions will likely hase to be reanswerec as time brings new changes. Even the Cesi method of answering these questions will change. There is no one "scientific" method that is best for all questions, nor one that is best for answering one specific question at all Eimes. This being the case, all studies are also valuable as studies in methodology. Methods cannot be tested ana improved unless they are applied many times.

Fo briage the gap between theoretical concepts and the real world, it is necessary to have a procedure of identificaEion. Different branches of applied economics should provide suck procedures. Just as important is a procedure of verification (testing). This is a complex aspect because theoreticsi economics are never borne out exactly by empirical obseryetion. Nore difficulty is encountered in this step because the assumptions unaerlying the statistical methoas are not Entirely fulfilled. Rules for juaging which hypotheses to aceept as empirically verified or to reject as empirically unveritied are, as yet, aroitrary. Econometrics is a branch 0 economics that $\bar{a} e a l s$ with the proceaures of verification. It $\pm=$ hoped that this work is a worthy application of this metnozology.

LITEPATURE CITED

I. Bancroft, G. and F. Welch. Recent experience with probLems of labor force measurements. American Statistical Association J. 41: 303-312. 1946.
2. Eenjāin, A. C. Operationism. Springileld, Iminois, Charles C. Thomas. 2955.
3. Situminous Coal Institute. Eituminous Coal Annual 1953. iashington, D. C., The Institute. 1953.
4. Eoulatne, K. In defense of statics. Quarterly J. of三conomics. 69: 485-502. 1955.
5. Breã, G. F. Income taxes, wage rates, ana the incenilve to supply labor services. National Tax J. 6: 333-352. 1953.
6. Clari, C. Estimates of average hours worked per week. Review of Economic Progress. 3: 78-84. 1951.
7. Conen, 1 . G. Generalization in the social sciences. In Wirtin, L., ed. Eleven twenty-six. Chicago, Ellinois, The Univ. of Chicago Press. 1940.
8. Collingmood, A. G. Economics as a philosophical science. International J. of Ethics. 36: 152-135. 1926.
9. Davey, E. Contemporary collective bargaining. New York, New York, Prentice-Hall, Inc. 1951.
10. Douelas, P. American wage determination: the trend and its significence. Washington, D. C., U. S. Gamber or Commerce. 1947.
11.

Are there laws of production? American EcoEOEic Feview. 38: 1-41. 1948.
12.

Feal wages in the United States. Cambridge, MEssachusetts, Houghton Wiffin ©o. 1930.
23.

Theory of wages, New Yors, New York, Vac프늘 Co. 1934.
14. Duniop, J. T. The task oi contemporary wage theory. In Tayior, G. W. and F. C. Pierson, eas. New concepte in wage determination. Dp. 217-139. New zatz, Ne\% York, McGraw-Hill Eoot co., Inc. 1957. Yori, Hew Korik, Kacmilian Co. 1944.
16. Economic Stetistios Bureau of Wasington, D. C. Hanōbook of basic economic statistics. Washington, D. ©., The Bureau. Jan. 1957.
17. Federal Reaerve Bank of 领w York. Composite index of wages anu salaries. New Yori, New York, Federal Reserve Eank of New York. Aug. 1955. (Mimeo. report.)
12. \qquad Tndex of sstimated composite wages in U. S. New York, Now Yoris, Federal Reserve Bank of New Yoric. 2938 revision. (Mimeo. report.)
19.

Inaex of wages. New Yori, New York, Federal Reserve Bark of New Yori. 1939 revision. (Mimeo. report.)
20. Fempel, C. G. Fundamentals of concept formation in empiricai science. Internetional Encyclopedia of Unified Science. 2, no. 7: 39-50. 1952.
21. Hicks, J. R. The theory of wages. London, Macmillan and Co., Limited. 1932.
22. Kers, C. Labor markets: their cheracter and consequences. Industrial Relations Associations Proc. 1949, part l: 69-90. 1949.
23. Keynes, J. M. The general theory of employment interest and money. New York, New Yort, Harcourt, Brace and ©. 1935.
24.
40. Professor Tinbergen's metiod. Economic J. 49: 558-566. 1939.
25. Lange, 0. The scope and metinod of economics. In Feigl, F. anc M. Broübeck, eds. Reaäings in the philosophy oi science. pp. 744-754. New York, New York, Appleton-Century-Crofts, Inc. 1953.
26. Nills, F. C., F. H. Knigit, O. Lange, J. Marschak, J. Mayer, S. Rice, J. Viner, ana T. O. Yntema. Quantification: the quest for precision. In fiirth, I., ed. Eleven twenty-six. $\underset{\sim}{2}$. 153-193. Cnicago, illinois, The Univ. of Cnicago Press. 1940.
27. Noaigliani, F. Liquidity preference, interest and money. Econometrica. 12: 45-88. 1944.
28. Hore, G. Accurecy of government statistics. Harvarā Business Rev. 25: 306-317. 1947.
25. Morgensterr, O. On the ascuracy of economic ooservations. Princeton, I. J., Princeton Univ. Press. 1950.
30. Myers, C. A. Empirical reserreh on wages. Inaustrial Relations Research Association Proc. 1949, part E: 234-240. 1849.
31. National Bureau of Economic Research. The measuremert and Eehavion of unemployment. Princeton, N. J., Princeton Univ. Press. 1957.
32. National Industrial Conference Board. The economic almanac. New York, New York, Thomas Y. Croweli Co. 1956.
33. Neumann, J. von end 0. Morgenstern. Theory of games and economic benavior. 2nd ed. Princeton, N. J., Princeton Univ. Press. 1947.
34. Pierson, F.C. An Evaluation of wage theory. In Taylor, G. W. and F. C. Pierson, eds. New concepts in wage determination. pp. 3-31. New York, New York, MeGraw-Hill Book co., Inc. 1957.
35. Raimon, R. L. Sources of wage data. Industrial Relations Research Froc. 1953, part 8: 241-251. 1953.
36. Reynolds, L. G. and 0 . Taft. The evolution of wage structure. Ne\# Heven, Conn., Yale Univ. Press. 1956.
37.

The state op nage theory. Inaustrial Reletions Research Froc. 1953, part 8: 252-265. 1953.
38. Ross, A. K. Trace union wage policy. Berieley, Qelif., Univ. of Gaite. Fress. 1948.
39. Rothbaum, N. Metional wage-structure comprisons. In Taylor, G. in Wage determinetion. New York, New York, IEGranH111 BOOZ Co., Inc. 1957.
40. Rothschile, K. W. The theory of wages. Ne: York, New York, Macmilian Co. 1954.
41. Slichter, S. $\mathrm{H} ., \mathrm{Notes}$ of the structure of wages. Review of Economics Ena Stetistics. 28: 80-91. 1950.
42. Theil, H. Linear aggreg $=$ Eion of economic relations. In Tincergen, J., F.J. Yerdoorm, and J. S. Witteveen, eds. Contributions to Economic Analysis. no. 7. Amsterdam, Hollana, Yorth-Holland Puclishing Co. 1954.
43. Tintner, G. An applicetion of the variate difference metrod to multiple resression. Econometrica. 12: 97-113. 1944.

4 슨.
Econometrics. Eiew Vork, New York, John iniley and Sons. 1952.
45.
46.
47.
48.
49. Tolles, N. A. end R. L. Seimon. Sources of wage information: employer associations. Ithace, New York, Cornell Univ. Press. 1952.
50. U. S. Dept. of Comerce. Eureau of the Census. Current population reports. Series P-25, nos. 73, 78, 146; Series P-50, no. 63; Series P-57, no. 150. washington, D. C., U. S. Government Printing Office. 1956.
51.

Bistozicel statistics of the U. S. Fashington, D. C., U. S. Government Printing Office. 1949.
52.

Homogeneous systems in mathematical economics. Econometrica. 16: 273-294. 1948.

Mathematics ane statistics for economists. New York, New York, Binehart and Co., Inc: 1948.

The use of methematical methods in econometrics and economic statistics. International Social Science Bulletin. 6, no. 4: 1-12. 1954.

The variate difierence method. Bloomington, Inđ̃iana, Principia Eress, Inc. 1940.

Statistical Abstract of tine U. S. for 1956, 1057, 1959. Zashington, D. C., U. S. Government Printing Office. 2955, 1957, 1958.
50. Woytinsky, H. S., T. G. Fichandler, Y. C. Eishop, and M. E. Gannett. Employment anc wages in the United States. Baltimore, Maryland, The Lori Eeltimore press. 195.
54. Yoder, D. Demanas for labor: opporuntites for research. Social Science Research Council. no. 7: 1-40. 1948.

ACKNOHLEDGENENTS

Sincere appreciation is expressed to Professor Gerhard Tintner whose advice and intellectual stimulation hes been so important in the author's academic training. Tanks are due Professor Harola Davey for inis encouragement anã valuable suggestions and the entire committee for their stimulation.

The author is indebted to his wife, Margi, for assistance and encouragement in the preparation of this thesis.

APPENDICES

APPENDIX A

Tecie A. Difference enalysis ${ }^{\varepsilon}$

Orajer					$\operatorname{stan} \tilde{d}-$ arca	
0			Variance		error	
difier-	Sum of		of differ-		ratio	Probs-
Ence k	squares	$\mathrm{A}_{\mathrm{n}, \mathrm{i}^{\text {b }}}$	ence $V_{k}{ }^{c}$	$i_{n}, k^{\text {d }}$	$\mathrm{R}_{K}{ }^{\text {e }}$	bility

Sup ply 1900-1928, $n=19$

0	.04179		.001490	5.197	1.577	.1140
1	.00572	.018149	.0001038	10.007	3.344	.0008
2	.01100	.006283	.00006911	12.882	2.017	.0434
3	.02971	.001961	.00005829	14.779	1.605	.1074
4	.08893	.000584 .3	.00005196	15.833	1.639	.1010
5	.27467	.0001696	.00004658	16.464	1.152	.2502
64	.89810	.00004823	.00004332	16.742	-.054	.9600
7	3.17940	.00001367	.00004345			

Wage rate 1900-1928

0	.94111		.033610	5.197	5.116	.00003
1	.02877	.018149	.0005221	10.007	7.468	.00002
2	.02123	.006283	.0001334	12.882	3.546	.00004
3	.04930	.001961	.00009668	14.779	1.680	.0930
$\frac{4}{4} f$.14666	.0005843	.00008569	15.833	.296	.7642
5	.49534	.0001696	.00008409	16.464	-.188	.8492
6	1.76349	.00004823	.00008505			

Aāapted from Tintner ($48, \mathrm{pp} \cdot 22-72$).
ETEia., pp. 43 II.
$c_{V_{\underline{K}}}=S S_{\underline{L}} A_{\mathrm{n}, \mathrm{K}}$

$e_{Z_{k}}=\frac{\left(V_{k}-\nabla_{k}+1\right) H_{k x}}{V_{k}}$
frae variance for this aifference was teken as e تe=sure oさ tie error virimice.

Table 4. (continued)

Consumer price index 1900-1928

0	.58938		.021050	5.197	5.083	.00003
1	.02497	.018149	.0004532	10.007	6.317	.00002
2	.02659	.000283	.0001671	12.882	1.488	.1362
3	.07539	.001951	.0001478	14.779	6.020	.00002
4	.14990	.0005843	.00008759	15.833	2.377	.0192
5	.43323	.0001696	.00007348	16.464	1.653	.0990
6	1.37049	.00004823	.00006610	16.742	1.099	.3074
7	4.51813	.00001367	.00006176	16.833	.868	.3842
8	15.36160	.000003824	.00005874	16.659	.428	.6670
9	53.58036	.000001068	.00005723	16.286	.148	.8008
10^{f}	190.29117	.000000298	.00005671			

Supply 1929-1955, $n=16$

0	.015265	.000611	4.884	2.950	.0032	
1	.011580	.020872	.000242	9.300	3.534	.0004
2	.020620	.007275	.000150	11.845	.213	.8336
31	.057620	.0022886	.000132	13.390	0.000	1.0000
4	.192050	.0006870	.000132	14.277	-.756	.4472
5	.690380	.00008020	.000139			

| 0 | .23064 | | .009230 | 4.884 | 2.446 | .0142 |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | .022100 | .060872 | .000461 | 0.300 | 7.180 | .00002 |
| 2 | .014460 | .007275 | .000105 | 11.845 | 3.648 | .0002 |
| 3 | .031770 | .002888 | .0000726 | 13.390 | 2.999 | .0028 |
| 4 | .081961 | .0005870 | .0000563 | 14.277 | 3.212 | .0014 |
| 5 | .216980 | .0002010 | .0000436 | 14.714 | 3.237 | .0012 |
| 6 | .568120 | .0000580 | .0000340 | 14.835 | 2.522 | .01 .58 |
| 7 | 1.710910 | .0000165 | .0000282 | 14.730 | .930 | .3524 |
| 8 | 5.201120 | .000004706 | .0000245 | | | |

[^3]Table 4. (Continuea)

Order oi			Veriance		$\begin{aligned} & \operatorname{stan} \dot{-} \\ & \operatorname{ard} \end{aligned}$			
			error					
difler-	Sum or				of differ-		ratio	Proba-
ence	squares	$A_{n, k}$	ence V_{x}	$\mathrm{H}_{\mathrm{n}, \mathrm{k}}$	R_{B}	bllity		

Gonsumer price index 1929-1955

0	.122299		.004892	4.884	4.557	.00004
1	.015621	.020872	.000326	9.300	7.421	.00002
2	.009040	.007875	.0000658	11.845	5.088	.00003
3	.017840	.002289	.0000403	13.390	3.983	.00006
4	.042790	.0006870	.0000294	14.277	5.054	.00003
5	.094460	.0002010	.0000190	14.714	2.781	.0056
6	.265160	.0000580	.0000154	14.835	1.445	.1470
7	.844090	.0000165	.00001391	14.730	.212	.8336
81	2.900750	.000004706	.0000137			

Demana for labor, bitumincus cosl 1929-1955, $n=17$

0	.167797		.0104873	4.9884	4.909	.00003
1	.083450	.019964	.001666	9.5358	5.020	.00003
2	.113590	.006944	$=0007888$	12.1906	1.762	.0786
3	.309670	.002179	.0006748	13.8297	1.535	.1235
4	.918870	.006529	.0005999	14.7956	.937	.3472
5	2.944870	.0001908	.005619	15.2971	.539	.5892
6	9.899390	.00005476	.0005421	15.4709	.271	.7872
7	34.118120	.00001561	.0005326	15.4080	-.043	.9680

Wage rate, it tuminous coal 1929-1955

0	. 799581		. 0499738	4.9884	4.887	. 00003
1	. 050900	.019564	. 0010162	9.5358	5.940	. 00002
2	. 055190	. 00694	. 000.3832	12.1906	3.079	. 0020
3	. 131450	. 002179	. 0002886	13.8297	1.954	. 0512
4	. 376710	. 0065 ES	. 0002460	14.7956	1.810	. 0702
5	1.131450	. 0001908	. 0002150	15.2971	1.459	. 18 ± 2
6	3.536800	. $00005 \leqslant 46$. 0001953	15.4709	- $\frac{1}{2} 75$. 6312
7	12.127870	. 00001561	. 0001893	15.4080	. 25 E	. 8026
8^{5}	42.012780	. 000004432	. 0001862	15.2729	. $82 \hat{}$. 4128
9	140.965790	. 000001256	. 0001766			

[^4]Tacle 4. (Continuea)

Wholesele price inaex, bituminous coal 1929-1955

0	.685250	.0428281	4.9884	4.618	.00003	
1	.049730	.019964	.0009928	9.5358	5.940	.00002
2	.053920	.006944	.0003744	12.19053 .455	.0006	
3	.123130	.002179	.0002683	13.8297	2.866	.0040
4	.325760	.0006529	.0002127	14.79562 .678	.0074	
5	.912811	.0001908	.0001742	15.2971	2.529	.0132
6	2.654790	.00005476	.0001454	15.4709	1.747	.0802
7	8.266790	.00001551	.0001290	15.4080	1.373	.1706
8	26.510360	.000004432	.0001175	15.1729	2.027	.0424
9	81.7703420	.000001246	.0001018	14.811661 .481	.1388	
10^{f}	237.791030	.000000352	.0000837			

fre variance ior this difference was taken as a measure of the error variance.

APPENDIX B
Iablo 5. Data analyzed for labor supply

Year	Employed $(1,000)^{a}$	Unemployed (1,000)	$\begin{aligned} & \text { Popula- } \\ & \text { tion } \\ & (15-64)^{c} \end{aligned}$	Supply	Av. hours worked per weeke	Index of average hourly errnings (1939 $=$ 100) f	$\begin{gathered} \text { Consumes } \\ \text { pr1ce } \\ \text { 1ndex } \\ (1935- \\ 1939= \\ 100) \mathrm{E} \end{gathered}$	$\begin{aligned} & \text { Retadil } \\ & \text { pricesh } \end{aligned}$	$\operatorname{War}_{y \in s^{1}}$
1900	27,378	1,779	46,780	91.0	58.4	28.3	54.696		0
01	28,238	1,331.	47, 830	89.2	57.7	29.1	55.728		0
02	30,405	1,300	48,969	92.4	57.1	30.3	57.276		0
03	30,319	1,329	50,052	89.5	56.6	31.6	59.856		0
04	31,175	2,025	51,187	91.0	56.1.	31.9	59.340		0
05	33,032	1,412	52, 417	91.7	55.8	32.4	69.340		0
06	34,790	.1,299	53,622	92.9	55.2	33.7	6.1 .404		0
07	34,875	1,629	54,796	91.0	54.8	34.8	65.016		0
08	34, 284	3,767	56,064	92.0	54.2	34.6	62.436		0
19	36,735	2,097	[67, 355	91.1	53.8	35.0	63.436		0

ngeo Rex. (9, p. 65), (62, 1947, p. 220), (51, p. 227), (52, 1956, p. 197). Tne figures represent total employed minus the number in active military service. For a desoription of the revision of the data series ofter 1952 see Ref. (50, Series P-57).
bsee Ref. (2, p. 460) (51, p. 65) , (51, p. 197). Estimates for the years 1900-1926 were multiplied by the factor . 606 to make them comprable to the estimates by Leo Wolman (51, 0. 427) for the years 1920-1926. Estimates for 1927 and 1928 were made by linear interpolation between 1926 and 1929.
cSee Rer. (51, p. 26), (52, 1947, p. 220), (50, Series P-25, nos. 73, 78), (50, Series $\mathrm{P}-25$, no. 146), (52, 1956, p. 235). The figures represent total population betweer 15 and 64 yearg of age minus the number in active military service.
(footnotes continued on next page)

Table 5. (Continued)

Year	$\begin{aligned} & \text { Employed } \\ & (1,000) \end{aligned}$	Unemployed (1,000)	$\begin{aligned} & \text { Popule.- } \\ & \text { tion } \\ & (15-64) \end{aligned}$	$\operatorname{Supp}_{(\%)}$	Av. hours worked per week ${ }^{e}$	Index of average hourly earnings $(1939=$ 100) f	$\begin{gathered} \text { Consumer } \\ \text { price } \\ \text { index } \\ (1935- \\ 1939= \\ 100) \mathrm{g} \end{gathered}$	Retail Nar pricesh years
191.0	37,680	1,730	58,721	89.2	53.3	35.7	66.048	O
1.1	37, 097	2,242	59,702	87.0	52.8	36.3	68.1 .12	0
1.2	38,160	1,073	60,653	8.5 .9	52.3	37.4	88.628	0
13	30,482	2,026	61, 869	84.6	61.7	38.8	70.7	0
1.4	37,675	4,129	63,0.57	84.2	50.9	39.2	71.8	0
1.5	37,728	3,914	63,936	82.7	50.8	39.6	72.5	0
16	40,127	1,585	64,802	81.3	$50 \cdot 5$	43.2	77.9	0
17	42,686	1,594	65, 554	84.6	50.1	48.9	91.5	1
18	44,187	1,508	64,144	88.0	49.4	59.8	107.5	1
19	42,029	1,843	65,957	80.8	48.6	70.3	123.8	0

[^5]Table 6. (Continued)

Year	$\begin{aligned} & \text { Employed } \\ & (1,000) \end{aligned}$	Unemployed (1,000)	$\begin{aligned} & \text { Popula- } \\ & \text { tion } \\ & (15-64) \end{aligned}$	Supply (\%)	Av. hours worked per week	$\begin{gathered} \text { Index of } \\ \text { avergge } \\ \text { hourly } \\ \text { earnings } \\ (1939= \\ 100) \end{gathered}$	$\begin{gathered} \text { Consumer } \\ \text { price } \\ \text { 1ndex } \\ (1935- \\ 1939= \\ 100) \end{gathered}$	Retail prices	$\begin{aligned} & \text { War } \\ & \text { yearsi } \end{aligned}$
1920	41,339	1,903	67,546	75.5	47.2	85.2	143.3		0
21.	3r,691	5,136	68,841	71.9	45.2	78.6	127.7		0
22	40,049	5,000	69,858	$7{ }^{7} 9$	47.8	75.6	119.7		0
23	43,011	2,169	71,197	75.7	47.7	81.4	121.9		0
24	42,615	3,547	72,737	72.8	46.0	84.1	122.2		0
25	44,192	2,523	73,865	74.2	46.9	84.6	125.4		0
26	4.5,498	2,144	75,093	74.1	46.7	86.0	126.4		0
27	45,319	2,893	76,395	73.2	46.4	87.4	124.0		0
Q	46,06?	2,940	7r, 658	73.3	46.5	88.1	122.6		0
29	47,630	1,550	78,835	73.0	46.8	90.0	122.5		0

[^6]Table 5. (Continued)

Year	Employed (1,000)	Unemployed $(1,000)$	$\begin{aligned} & \text { Popula- } \\ & \text { tion } \\ & (15-64) \end{aligned}$	Supply (\%)	Av. hours worked per week	$\begin{gathered} \text { Index of } \\ \text { average } \\ \text { hourly } \\ \text { earnings } \\ (1939= \\ 100) \end{gathered}$	$\begin{gathered} \text { Consumer } \\ \text { pr1ce } \\ \text { index } \\ (1935- \\ 1939= \\ 100) \end{gathered}$	Retail prices	$\begin{aligned} & \text { War } \\ & \text { y ears } \end{aligned}$
1930	45,480	4,340	80,112	72.8	44.8	89.8	119.4		0
31	42,400	8,020	81,050	67.8	43.6	86.9	108.7		0
32	38,940	12,060	81,932	63.5	40.8	77.2	97.6		0
33	38,760	12,830	82,829	64.9	41.7	75.1	92.4		0
34	40,890	11,340	83, 811	62.9	40.5	83.6	95.7		0
35	42,260	10,610	84,812	64.8	41.6	86.0	98.1		0
36	44,410	9,030	85,749	67.1	43.1	87.7	98.1		0
37	46,300	7,700	86,683	65.4	42.0	97.0	102.7		0
38	44,220	10,390	87,672	59.2	38.0	100.0	100.8		0
39	45,750	9,480	88,662	62.9	40.4	100.0	99.4		0
1940	47,520	8,120	89,747	63.5	41.0	J. 02.0	100.2		0
41	60,350	5,560	89,368	66.6	42.6	107.0	105.2	108.3	0
42	63,750	2,660	88,235	70.3	44.0	122.0	116.6	124.9	0
43	54, 470	1,070	83,917	80.3	48.5	133.0	123.7	134.0	1
44	53,960	670	82,466	77.2	46.6	136.0	12.5 .7	139.5	1
45	52,820	1,040	82,502	75.2	46.1	145.0	128.6	1.41 .4	1
46	55,250	2,270	92,469	68.9	44.3	162.0	139.5	155.2	0
47	58,027	2,141	94,717	69.1	43.5	178.0	159.6	180.1	0
48	69,378	2,064	95,623	68.8	42.8	191.0	171.9	192.7	0
49	68,710	3,395	96,281	67.9	42.1	202.0	170.2	187.7	0

Table 5. (Continued)

Year	Employed $(1,000)$	Unemployed (1,000)	$\begin{aligned} & \text { Popula- } \\ & \text { tion } \\ & (15-64) \end{aligned}$	Supply (\%)	Av. hours worlsed per week	Index of average hourly earnings $(1939=$ 100)	$\begin{gathered} \text { Consumer } \\ \text { price } \\ \text { 1ndex } \\ (1935- \\ 1939= \\ 100) \end{gathered}$	Retail prices	$\begin{aligned} & \text { War } \\ & \text { years } \end{aligned}$
1060	60,967	3,14:	97,070	69.1	42.6	21.10	171.2	189.0	0
6.	(1), 00)	1,879	96,075	69.7	42.6	231.0	186.6	206.3	0
6	61, 293	1.,703	96,491	69.34	42.5	244.0	189.8	210.4	0
6.5	61, 838	1,602	9r, 268	68.65	42.1	256.0	$192 \cdot 7$	208.5	0
64	60,863	3,230	98,308	67.80	41.6	264.0	193.3	209.1	0
65	62,859	2,654	99,438	69.01	11.9	272.0	192.8	208.6	0

APPENDIX C

Table 6 . Data anelyzed For labor demand in bituminous coal industry

Table 6. (Continued)
$\left.\begin{array}{ccccccc}\hline & & & & & \text { Wholesale } \\ \text { price }\end{array}\right]$

Table E. (continued)

Year	No. employed	Av. ins. woriea per $W \mathrm{E}$.	$\begin{gathered} \text { Demena } \\ \text { (million } \\ \text { hrs.) } \end{gathered}$	Av. hourly eernings	```Vaolesale price inaex (1926 = IO0)```	$\begin{aligned} & \text { Yar } \\ & \text { years } \end{aligned}$
1950	415,502	35.0	14.55	2.010	193.7	0
51	372, 597	35.8	13.13	2.210	195.2	0
52	335, 217	34.1	11.43	2.290	296.7	0
53	295,500	34.4	10.17	2.480	204.2	0
54	231,900	32.5	7.56	2.480	192.4	0
55	219, 5E2	30.7	7.17	2.560	139.7	0

[^0]:

[^1]: agigniticent et -as z pencent jevel

[^2]:
 cangazacert eu tue 5 percert hevel

[^3]: fthe variance for this aifference was teken as a measure oi the error ∇ ariance.

[^4]: fThe variance for this difierence was taken os \equiv \#eesure of the erros variance.

[^5]: alabor supply $^{\text {Lis expressed as a percentage and was obtained by the following }}$ calculation: $S=\frac{\text { (no. employed }+ \text { no. unemployed) } x \text { (av. hrs. worked per week) }}{(\text { pop. } 15-64) \times(40 \mathrm{hrs} \text {. per week) }}$ The denominator is a measure of the potential labor supply with the 40 being an arbitrary figure.

 Ogeo Rex. (6, pp. 78-84), (50, Seriee P-50).
 ISee Ref. (52, 1956, p. 295), (18), (19), (17). The nverage hourly eorninge fuchudes wage aupplements.

 Gsee Rex. (61, p. 233), (52, 1956, p. 234).
 $H_{\text {See }} R e f .(32, p .75)$. Data for years prior to 1941 are not available.

[^6]: ${ }^{1}$ A dunmy variable was included which was given a value of one for war yeers and a value of zero in all other years. The war years were first designated on the basis of the size of the armed forces and tine change from the previous year. In 1917 the armed forces increased considerably from the previous year and remained high through 191.8. In 1941 there was again a considerable increase over the previous year and the number in the active forces remained high through 1945. In 1946 there was a considerable decrease. No war period was designoted for the Korean episode because universal milittary training kept the armed forces about the same aize for eeveral yeara. The influences of the police action extended guite uniformly ovor aeveral years. Upon further analyels of the data 1 t was found thet La the yourd $1.44-1946$ the war aeemed to have a much groator orfeot than in the y ours 1942-1943. For atudyine the aupply of labor it seomed boat to designate the war yonre as 2917-1918 and 1943-1945.

