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Abstract

This paper studies the effects of partner selection on cooperation in an artificial ecol
ogy. Agents, represented by finite automata, interact with each other through an iterated
prisoner's dilemma (IPD) game with the added feature th-at players choose and refuse
potential game partners on the basis of continually updated expected payoffs. Analytical
studies reveal that the subtle interplay between choice and refusal in iV-player IPD games
can result in various long-run player interaction patterns: e.g., mutual cooperation; mixed
mutual cooperation and mutual defection; parasitism; and/or wallflower seclusion. Simu
lation studies indicate that choice and refusal can accelerate the emergence of cooperation
in evolutionary IPD games. -More generally, however, choice"and refusal can result in the
emergence and persistence-of multiple payoff bands, reflecting the possible existence of
ecological attractors characterized by play behavior that is not entirely cooperative. The
existence of a spectrum of payoff bands in turn leads to the emergence of new ecological
behaviors such as band spiking and band tuimeling.

Key Words: Iterated prisoner's dilemma; choice and refusal of pairtners; evolution" of
cooperation; genetic algorithm; sequential game; artificial ecology; finite automata.
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1. INTRODUCTION

. This paper investigates cooperative behavior in an artificial ecology.in which egoistic
agents interact-with each other through a tournament of iterated games..The tournament
played is a variant of the Axelrod (1984) iterated prisoner's dilemma (IPD) game,modified
to permit players to choose and refuse potential game.partners. In each iteration, players
use expected payoffs updated on'the basis of past encounters to make prisoner's dilemma
gcime offers to a limited number of preferred players, and to refuse prisoner's, dilemma
game offers from unacceptable players. - , '

The introduction of choice and refusal fundamentally modifies the way in which play
ers interact iii the IPD game,-and the characteristics which result in high payoff scores.
Choice allows .players to increase their chances of encountering other cooperative players.
Refusal gives players a way to protect themselves from defections without haying to defect
themselves. Ostracism of defectors occurs endogenously as an increasing number of,play
ers individually refuse their game offers. But choice and refusal also permit clever ripoff
players, to home in quickly on exploitable players and form parasitic relationships.

Following Miller (1989), player strategies for the IPD game with choice and refusal
(or "IPD/CR game" for short) are represented by means of finite automata.^ This repre
sentation has a number of advantages over the original code-based formulation of Axelrod
(1984). It permits the same modelling of complex strategic behavior, but it is simpler
and cleaner to program. Moreover, behavior modification in response to endogenously
occurring events can readily be incoipprated in the form of genetic algorithms.^ Conse
quently, the basic single-tournament IPD/GR. game is easily generalized to an ,"evolution
ary" IPP/CR game, i.e., a multiple-tournament IPD/CRgame in which the strategies of
the players evolve between tournaments.

The choice/refusal mechanism is, characterized by six parameters; initial expected
payoff; the minimum tolerance (expected payoff) level below which game offers will be
refused; the maximum number of game offers which can be made in each iteration; the
rejection payoff received when a game offer is refused; the wallflower payoff received when
game offers are neither made nor accepted; and a memo^* weight which determines the
relative import^ce of distant to recent payoffs in the calculation of updated expected

4- ®'̂ topi3'ton-" is a system specified by afimte collection'of internal states togetherwith a state transition function, driven by input, which gives the- next internal state the
system will enter. See section 5, below, for a detailed discussion of the specific finite
automaton representation used in this paper. " '
^ algorithm' uses a.Darwinian selection principle^to optimize a solution to aproblem with respect tovarious selected problem features., Genetic algorithms are powerful
tools tor evolving high-performance strategies from simple represeritative'strateffv types*
see Holland (1992). • ' y. ,



payoffs. Analytical parameter sensitivity studies are undertaken for a variety of single-
tournament 2-player IPD/CR games. To simplify and systematize the analysis, we restrict
our attention to six illustrative player types that roughly span the range from uncooperative
to cooperative behavior. For each pair of player types, we determine the precise conditions
under which refusal first occurs, and the average payoff scores which are achieved, as a
function of the choice/refusal parameters.

We then extend the analysis to single-toiimament iV-player IPD/CR games. The
interplay between choice and refusal can be quite subtle for such games. We illustrate this
with a detailed study of a single-tournament 5-player IPD/CR game in which the ultimate
pattern of player interactions can include the formation of successful long-term parasitic
relationships unless the minimum tolerance level is set suitably high.

We also report on simulation experiments carried out for the evolutionary 30-player
IPD game studied by Miller (1989), modified to allow for choice and refusal of game
partners. The experimental results indicate that, in comparison to Miller's findings, the
emergence of cooperation is accelerated over much of the choice/refusal parameter space.
However, high enough values for the minimum tolerance level and the wallflower payoff
can result in a "wallflower trap" ecology consisting primarily of antisocial hermits.

Moreover, for non-extreme settings of the choice/refusal parameters, our simulation
studies reveal an interesting clustering effect presaged by our analysis of single-tournament
iV-player IPD/CR games. In Miller's simulation experiments, most ecologies evolve to a set
of players whose average payoffscores are near the mutual cooperation payoff. The average
payoff scores of players who are not ultimately cooperative end up scattered between the
mutual defection and mutual cooperation payoffs. In contrast, in our studies with choice
and refusal we typically observe the ultimate formation of two or more distinct tight bands
of average payoff scores reflecting the emergence of stable behavioral patterns that are
not entirely cooperative. The existence of this payoff band spectnmi in.turn leads to the
emergence of new ecological behaviors. For example, we see "band spiking" in which an
ecology abruptly moves from one payoff band to another and then back again, and "band
tunneling" in which an ecology that has long resided in onepayoff band suddenly traverses
to another payoff band and remains there.

The addition of choice and refusal to the Axelrod/Miller IPD game is motivated by an
interest in human interactions, particularly in the sexual partner selection process which
leads to the spread ofAIDS and other sexually transmitted diseases [Hyman and Stanley
(1988)]. Not only do rates of sex and new partner acquisition influence the spread of
this epidemic, but the structure of the contacts determines who becomes infected. Current
models of the spread of AIDS typically assume that behavior is predetermined and responds
in exogenously determined ways to changing circimistances. This makes it difficult to



understand the impact of intervention strategies, and to predict the conditions .under
which particular types of sexual market places will arise.

The choice/refusal ecology studied in this paper is a first step towards a model of AIDS
transmission in the context of an endogenously evolving social milieu. This is a long-term
development project in which elements of realism will be introduced one step at a time.
The current model focuses on a key feature essential for the final ecology:-,the possibility
of choice and refusal in so'cial interactions.

The relation of this paper to previous work on cooperation in IPD games is ,outlined
in section 2. Section 3 reviews the essential features of the basic IPD game set out in
Axelrod (1984), and extends this framewprk to include a choice/refusal mechanism. Sec
tion 4 briefly describes some simulation experiments with an IPD game studied in Miller
(1989) which illustrate the potential sensitivity of evolutionary IPD game outcomes to
the introduction of choice and refusal. An analyticzil study of single-tournament IPD/CR
games is undertalcen in sections 5 and 6. These results are used in section 7 to provide a
more careful interpretation of various simulation results obtained for evolutionary IPD/CR
games. Concluding comments are given in section 8.

2. RELATION TO PREVIOUS WORK

In a series of pathbrealcing studies, Axelrod (1981,1984,1988) has explored the initial
emergence and viability of cooperative behavior in the absence of either altruism or binding
commitments, using the IPD game as a paradigm for social interactions. In each iteration,
each player plays one prisoner's dilemma game,with each other player in a fixed pool of
N players. The only possible choice for each player,in each two-player game is either to
cooperate or to defect, and both players must-choose simultaneously.

As discussed by.Axelrod (1984,,Chapter 3) and byMay (1987), the cooperative Tit-for-
Tat strategy is a collectively, stable strategy for the IPD game if the ntunber of iterations
is either uncertain or infinite and the probability, that any two players meeting in a current
iteration will meet again in a future iteration is sufficiently high.^ In an-IPD game with
a known fimte number of iterations, however, •.cooperation is hard to sustain. Mutual
defection occurs in .the final iteration of the game because, no player foresees any future
gains to cooperation, and this typically leads by backwards recursion to mutual defection

The Tii-for-Tat strategy is defined as follows: cooperate initially, and thereafter dowhat
ever the other player did'in his previous move. A single mutantsstrategy introduced into a
pool of identical native strategies is said to invade the native strategy if the newcomer re
ceives a higher payoff from playing against a native strategy than a native strategy receives
from playing against another native strategy. A,native strategy is said to be collectively
stable if no mutant strategy can invade it..



in every iteration.

Anumber ofmodifications have been proposed which permit the viability ofcoopera
tive strategies in IPD games even if the number of iterations is known to be finite. Kreps
et al. (1982) establish that mutual cooperation can be sustained in every iteration up to
some iteration close to the end of the game if one player assigns positive probability to
the possibihty that the strategy followed by the other player is Tit-for-Tat. Thompson
and Faith (1981) and Hirshleifer (1987), among others, have shown that cooperation can
be sustained if players can credibly commit themselves to use retaliatory strategies in re
sponse to defections by opposing players. Finally, Hirshleifer and Rasmusen (1989) use the
possibility of group ostracism to sustainmutual cooperation in all but the last iteration.
Empirical support for the cooperation-inducing effects ofgroup ostracism can be found in
a case study by Barner-Barry (1986).
. Although such, modifications do enhance the viability of cooperative strategies in IPD

games, a major difficulty remains. As pointed out by Axelrod and Hamilton (1981),
cooperative strategies cannot successfully invade a population of defectors playing the
basic IPD game unless the initial frequency of interactions between cooperative strategies
is sufficiently large. Consequently, it is difficult for cooperation to emerge spontaneously
from noncooperation in the basic IPD freimework.

One limitation of many iterated game studies of social interaction which hampers
the emergence of cooperation is the implicit assumption that individual players have no
control over which opponents they play; see, for example, the models reviewed by Maynard
Smith (1982). Players either engage ina round-robin tournament—i.e., each player in each
iteration plays one game with each other player in a pre-determined set of players—or
games occur through random encounters. In actuality, however, social interactions among
organisms are typically characterized by the choice and refusal of partners rather than
by a random or deterministic matching mechanism. How do herds form for foraging and
protection? How do animals choose mates? How do family and social structures protect "
cooperative players from noncooperative players? And how do humans choose their friends
andsexual partners? Thequestion thus arises whether the long-run viability ofcooperation
in the IPD game would be enhanced if players were more realistically allowed to choose
and refuse their potential game partners.

Conjectures along these lines have beenexplored by a numberof previous researchers.
For example, in the context of a Darwinian fitness model, Eshel and Cavalli-Sforza (1982,
p. 1333) show that full cooperativeness is the only evolutionarily stable strategy if en
counter probabilities are sufficiently biased in favor of meeting an individual using the
same strategy, Feldman and Thomas (1987) investigate conditions under which multiple
IPD strategies can coexist in a stable equilibrium, assuming the probability that a player



stays in the IPD game depends either on his own current play or on the current play of
his opponent. Dugatkin and Wilson, (1991) examine the ability of a roving always-defect
player to invade a Tit-for-Tat'player population that is partitioned into "patches" of dif
ferent externally-specified size and duration. Kitcher (1992) argues that altruistic play
(giving weight to the payoifs of.other players) can evolve-more readily in contexts where
game play is optional and the possibility exists for taking'actions whose fitness effects are
independent of the actions of others. ' ' '

The present paper complements and extends this work by eillowing players to choose
and refuse potential game partners on the basis.of continually updated expected payoffs.
Player encounters are thus determined by anticipated rewards rather than by an encounter
probability biased toweirds cooperative behavior per se. Moreover, ostracism (end of game
play) for noncooperative players occurs endpgenously as an increasing number of players
individually refuse their game offers.

3. THE BASIC IPD GAME WITH CHOICE AND REFUSAL

In this section we first review the essential features of the basic sihgle-toumament IPD
game set out in Axelrod (1984), We then extend this framework to include a choice and
refusal mechanism. - u •

3.1 The Basic IPD Game

The prisoner's dilemma (PD) game is.a game with two players. Each player has two
possible moves, "cooperate" or "defect,"- and each player must, move without knowing
the move of the other player. If both players .defect, each receivies a payoff D. If both
cooperate, each receives a payoff C which is strictly greater than D. Finally, if one defects
and the other cooperates,,the cooperating.player receives the lowest possible payoff B and
the defecting player receives the highest'possible!.payoff S', where B .< D < C < S. For
reasons clarified below, the payoffs are also restricted to satisfy (5 < C.

The dilemma is that, if both players defect, both do worse than if both had cooper
ated; yet therie is always an incentive for an-.individual player to defect. More precisely,
the payoffs (C, C) achieved with mutual cooperation are. higher than^ the payoffs (D^D)
achieved with mutual defection. Nevertheless^ defection is the best response to any move
an opponent might make. The best response to ^defection iis to defect, because this avoids
the-lowest possible payoff B; and the .best response to cooperation is to defect, because
this achieves the highest' possible payoff 5!.

The iterated prisoner's dilemma (IPD) game is a tournament consisting of the repeated
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(iterated) play of a round-robin of PD games at discrete time intervals. In each iteration,
each player plays one PD game with each other player in a fixed pool of N players. The
only information a player has about another player is the history of payoffs achieved in
previous game plays with that player. The restrictions on payoffs guEirantee that the
players cannot escape their dilemma by taking turns exploiting each other. For any two
players, the average (per game) payoffs (C, C) achieved with mutual cooperation over the
course of the IPD game are higher than either the average payoffs (D^D) achieved with
mutual defection or the average payoffs ((5 + B)/2, {S + •S)/2) achieved with alternating
plays of cooperation against defection and defection against cooperation.

3.2 Introduction of Choice and Refusal

The IPD game with choice and refusal^ henceforth abbreviated by IPD/CR, is an IPD
game with the added feature that players can choose and refuse game partners in each
iteration. A fixed pool of N players engages in a tournament consisting of indefinitely
many iterations. Each iteration, in turn, consists of five stages: (1) a choice stage in which
each player makes PD game offers to a limited number of potenticil game partners with
high expected payoffs; (2) a refusal stage in which each player refuses PD game offers
with unacceptably low expected payoffs; (3) a play stage in which non-refused PD game
offers are played out as PD games; (4) a cleanup stage in which payoffs are calculated and
recorded for both active and inactive players; and (5) a.n update stage in which expected
payoffs cire updated for active players on the basis of newly received payoff information.

The logical progression of the IPD/CR game will now be more fully described. At the
beginning of the first iteration 1, all players are assumed to assign the same initial expected
payoff to each possible play of a game. Then, in each iteration i = 1,2,..., the five
component stages take the following form:

Choice Stage: Each player determines which other players are tolerable game partners.
Given any player n, a player m ^ n is tolerable for player n in iteration i if

7r*"^(m|n) > r, (1)

where 7r*~^(m|n) denotes the the expected payoff to n from playing a PD game with
player m in iteration i, and r denotes an exogenously given minimum tolerance level. If
the number of tolerable players for player n is no greater than an exogenously given upper
choice bound where 1 < K < N —1, then player n makes a PD game offer to each
tolerable player. If the number of tolerable players exceeds JC, player n makes a PD game
offer to the K tolerable players m for whom his expected payoff •K*{m\n) is highest. Ties
zire settled by a random draw.



Refusal Stage: Each player then examines the PD game offers he has received. Any offer
coming froni an intolerable player is refused, and any offer coming from a tolerable player
is accepted. Thus, a player gets to reject odious offers; but he carmo^t opt out of an offer
received from someone he has judged to be tolerable in the Choice Stage.

Play Stage: All non-refused PD game offers cire played out "as PD games.. Even if there
are mutual offers between two players, only one PD ganae is^played.,

Clean-up Stage: A player receives a rejection payoff R for each PD game offer he made
in iteration i which was refused, and a PD payoff (depending on the actual play of the
game) for each PD game offer he made or received in iteration i which was not refused.
An inactive player—i.e., a player who neither made nor accepted offers in iteration i—is
assigned a wallflower payoff W. Note that a player makes no offers if and only if he judges
all other players to be intolerable.

Update Stage: Consider any two players n and m. If n neither made nor accepted a PD
game offer from m in the current iteratioh ij then n's'ej^ected payoff 7r'~^(m|n) for the
play of a PD game with m in iteration i is trivially updated to

1

7r'(m|n) = 7r'~^(m|n) (2)^

for play in the next iteration i +1. On the other hand, suppose player n either made a PD
game offer to m (who subsequently either accepted or rejected it) or accepted a PD. game
offer from m. In the former case, the payoff to n is either a PD payoff or the rejection
payoff R] in the latter case the payoff to n is a PD payoff. In either case, let this payoff
be denoted by U. Then player n's updated expected payoff for maJcing a PD game offer
to player m in the next-iteration i 4-1 takes the form of a weighted average overplayer n's
payoff history with player m,

7r'(m|n) = W7r'~^(m|n) + (1 —w)?7, - (3)

where, the memoTy weight uj controls the relative weighting of distant ,to recent payoffs."*
Note that an increase; in lj implies an:increase in the weight put on p^t payoffs relative
to current payoffs, wluch^in turn leads to more inertia in the partner, selection process.

T̂liis me<^a^sin for updating ejected payoffs is a special case of "criterion filtering"—
I.e., th^mrect; updating of expected return functions on the basis of past return observa
tions. Cnterion filtering is an operationally feasible alternative to'the indirect updating of
cntenon functions via Bayes' rule which, given ^ appropriate specification for the filter
weights, can yield a strongly consistent estimate for the true expected return function: see
Tesfatsion (1979). ' •



Ill summary, the choice and refusal mechanism for the IPD/CR game is characterized
by the following six paxameters:

Initial Expected Payoff: tt^
Minimum tolerance level: ' r
Upper choice bound: K
Rejection payoff: R
Wallflower payoff: W
Memory weight: w

At the end of the IPD/CR game, the overall success of each player is measured by his
average payoff score, calculated as the total sum of his payoffs divided by the total number
of his payoffs.®

It is assumed that players in IPD/CR games do not anticipate future conditions under
which PD game play with a current game partner could end, implying that ,they play each
PD game with another player as if the total number of PD games to be played with that
player is indefinite. Since the choice/refusal mechanism itself is exogenously determined,
this implies that players can then be distinguished from one another on the basis of the
rules they use to play an indefinite sequence of PD games with an arbitrary opposing
player, i.e., on the basis of thdr PD rules. As will be seen in section 5, below, a rich class
of PD rules can be represented as finite automata.

Note that the IPD/CR game reduces to the basic Axelrod IPD game in two cases:
either (i) iiT = iV" —1 and r = 0; or (ii) A" = iV ~ 1, w = 1, and r < tt®. In either case,
each player ends up playing one PD game with each other player in each iteration, i.e.,
each iteration reduces to a round-robin among the N players.

4. IPD WITH CHOICE AND REFUSAL: AN ILLUSTRATION

An intriguing sirtificial life experiment run with prisoner's dilemma is reported in
an evolutionary IPD game study by Miller (1989). A population of thirty finite automata
playing an IPD game were allowed to evolve bymeans ofa genetic algorithm that used high
payoff scores as its selection principle. To illustrate the potential sensitivityofevolutionary
outcomes to the introduction of choice and refusal, this section briefly describes some
simulation results obtained for Miller's evolutionary IPD game after the introduction of a

®In an IPD/CR game, the players have some degree of control over the number of PD
games they play—equivalentiy, over the number of moves they make and playere not
participating in PD games can still receive wallflower and rejection payoffs. Consequently,
average payoff per payoff made is used as a measure of overall success rather than total
payoff or average payoff per game.



choice/refusal mechanism.' A more careful discussion of these results is given'in section 7,
following a preliminary analytical investigation of single-toumamerit IPD/CR games."

We first implemented-our own version" of Miller's experiment, without-noise. As in
Miller, fifty successive tournaments were conducted.' Each'tournament was separated from
the next by a' genetic step in which only the twenty- most successful players among the
thirty automata constituting the current player set were allowed to reproduce, resulting in
a modified player set of thirty automata for the' next tournament. The fifty-touriiament
run thus resulted in an "ecolo^" consis'tiiig of an evolved-population of'thirty automata.

Each tournament in turn-consisted of oiie hundred and fifty iteirations of round robin
PD games among thirty automata. The four possible per-game payoffs were B —0 (for
cooperating against'a defecting player), D = 1 (for mutual defection), C = 3 (for niutual
cooperation), aiid'5 = 5 (for defecting against a.cooperating player). The entire run of fifty
tournaments separated by genetic steps was' repeated forty times to obtain forty distinct
ecologies. . '

Figure 1 shows, for each of the fifty tournaments, the average payoff score obtained
by the thirty automata over all forty ecologies. These results generally conform -to the
results obtained by Miller. Note the initial "dip" in the average payoff score. This dip
reflects the exploitation of some players by other'opportunistic players, until the implacable
forces of evolution eliminate the chumps. The upward progress seen thereafter is the
result of cooperative but relatively unexploitable players—ofwhich Tit-for-Tat'is a 'sterling
example—beating out the opportunists now that" the opportunists' victims have died out.

—Figure-1 About-Here—

. .We then incorporated our choice and refus^ .mechanism into Miller's experimental set
up. In Figure 2 we see the analogous diagram to Figure 1 for simulations of the resulting
modified Miller.JPD ganie in which, in e^h iteration: (i).players_.haye-initially rosy payoff
expectations prior to play (tt® = 3); (ii) each player makes a PD gameoffer to at most one
other preferred player {K = 1); (iii) received offers with expected payoffs greater than or
equal to r = 1.6 are played out, and received offers with expected payoffs less than this
value are refused; (iv) a player whose offer is refused receives a rejection payoff = 1;
(v) a player neither making nor accepting any offers receives a wallflower payoff W= 1.6;
and (vi) players have reasonable but not excellent memories of their past payoff outconies
(w = 0.7). ' ' : - .

—Figure 2 About' Here—

It is interesting to note in Figure 2 that- the initial dip in average payoff score seen
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in Miller's experimental data has vanished. The Miller dip occurred because various nice
players were fatally exploited by predatory players, which lowered the average payoff score.
In contrast, in an IPD/CR game it sometimes happens that players, exploitable in the
basic IPD game, can protect themselves via refusal of predatory players rather than dying,
and hence remain in the ecology indefinitely. One type of highly exploitable player is a
player whose PD rule closely approximates "edways cooperate." Such players can attain
high payoff scores when playing one another, and hence can dominate the genetic step
reproduction process when protected from predatory players by a refusal mechanism. As a
result, imlike Miller, an initial dip in average payoff score need not occur in an evolutionary
IPD/CR game.

While replicating Miller's work, we became curious about the behavior of individual
ecology payoffs. To this end, we plotted the average tournament payoffs for each of the
forty ecologies in our replicationofMiller's experiment and obtained Figure 3. As one can
see, nine of the forty Miller ecologies did not end in the cluster of essentially cooperative
ecologies, hence the standard deviation of average tournament payoffs across ecologies is
rather large.

—Figure 3 About Here—

Figure 4 gives the average tournament payoffs for each of the forty ecologies in the
choice/refusal experiment depicted in Figure 2. These payoffs display an interesting be
havior when compared to the noise-like outlier payoffs obtained for Miller's experiment in
Figure 3. Notice that two distinct payoff bands have now emerged, one close to 3 and the
other just below 2.8. The ecologies corresponding to the payoff bandnear 3ultimately con
sist of a single large group within which essentially random partner selection talces place.
In contrast, the ecologies corresponding to the payoff bandjust below 2.8 ultimatelyconsist
of several small player groups whose members only choose to play one another.

—Figure 4 About Here—

We then raised both the minimum tolerance level and the wallflower payoff from 1.6
to 2.5. As depicted inFigure 5, this change results in the gain of a third tight payoff band.
The ecologies associated with this band ultimately consist of many players who neither
make not accept game offers, choosing instead to survive on the wallflower payoff.

—Figure 5 About Here—

As these examples indicate, the addition of choice and refusal to Miller's original IPD
10



experiment induces the formation of an interesting new ecological feature—the formation
of multiple distinct payoff bands. Somewhat at odds with our initial expectations, choice
and refusal do not merely speed up the emergence of cooperation; they also allow, in
some parameter regimes, the appearance of stable player interaction patterns that are not
entirely cooperative.

5. SINGLE-TOURNAMENT 2-PLAYER IPD/CR GAMES

The simulation results presented in the previous section for an evolutionary IPD/CR
game are suggestive but preliminary. This section undertakes a rnbre careful analysis of the
role of choice and refusal in the simpler context of a single-tournament two-player IPD/CR
game. For such games, the upper choice bound K 6 {1,... ,iV —1} is forced to equal 1
= AT —1. The following section 6 talces up the more general c^e of a single-tournament
JV-player IPD game with K = 1. The results of sections 5 and 6 are then used in section 7
to provide a more careful interpretation of the simulation results obtained for evolutionary
IPD/CR games.

Since even a single-tournament two-player IPD/CR game can be very-complicated'to
analyze, we first describe six example player types. We then cinalyze single-tournament
two-player IPD games using various combinations of these player types.

5.1 Example Player Types

As discussed in section 3.2, players in IPD/CR games can^ be"identified with the PD
rules they use in playing an indefinite sequence of PD gstmes with an arbitrary opposing
player. We will study the pairwise interactions of six types of players (PD rules): (1)
Always Defect (AllD); (2) RipofF-Artist (Rip); (3) Gentle RipofF (GRip); (4) Tit-for-Tat
(TFT); (5) Tit-fpr-Two-Tats (TFTT); and (6) Always Cooperate (AllC).

These six-players roughly span the.range from uncooperative to cooperative behavior.
With the exception of GRip, all of these players have previously been used in studies of IPD
games. GRip was invented in order to have a relatively subtle opportunistic player who
initially appears cooperative, but who repeatedly sneaks in defections.after an opposing
player has built up a rosy payoff expectation.

Finite automaton representationsfor thesesixplayers axe depicted in Figure 6, ordered
by their complexity. All six players inake an opening move, either cooperate (c) or defect
(d), and thenenter state 1; this opening move is indicated next" to the arrow entering state
1. Thus, GRip, TFT, TFTT, and AllC initi^ly cooperate, while AllD and Rip initially
defect. . t
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—Figure 6 About Here-

Once one of the six players, say n, has arrived at a current state, his next move
is conditioned on the previous move of the opposing player. This move sequence then
determines a transition to a new state. A transition to a new state is indicated by an arrow,
and the move sequence(s) which result in this transition are indicated beside the arrow in
a move-slashmark-move format. The previous move of the opposing player appears to the
left of the slashmark and the next move of player n appears to the right of the slashmark;
i.e., moves are time-sequenced from left to right.

In particular, TFT begins by cooperating and then mimics whatever move his opponent
made in the previous PD game. Consequently, once in the initial state 1, two move
sequences are possible for TFT, either c|c or d\d, and each move sequence results in a
transition back to state 1; see Figure 6(a). The finite automaton representations for AIIC
and AllD are similarly straightforward; see Figures 6(b) and 6(c).

TFTT begins by cooperating, subsequently defects only if his opponent defects twice in
a row, and quickly reverts back to cooperation as soon as his opponent cooperates. TFTT's
behavior is depicted in Figure 6(d) by a finite automaton with two states. Initially, TFTT
cooperates and enters state 1; and TFTT continues to cooperate and return to state 1
as long as his opponent cooperates. The first time his opponent defects, if ever, TFTT
cooperates but enters a new state 2. If his opponent then defects again, TFTT defects and
returns to state 2; but if his opponent cooperates, TFTT cooperates and returns to state
1. Thus, TFTT is less provocable than TFT, requiring two successive defections before
retaliating with a defection; but TFTT is equally quick to forgive as soon as the other
player is nice.

Rip is more complex than TFT or TFTT, requiring three states for its finite automaton
representation in Figure 6(e). Rip evolved in axi evolutionary IPD game which included
TFT, TFTT, AllC, and AUD in the initial player pool. Consequently, it is not surprising
that Rip takes advantage ofTFT, TFTT, and AllC, while protecting itselffrom AllD. More
precisely, Rip first tests the mettleofanopponent witha defection and entersstate 1. If the
opponent everdefects, Rip cooperates andenters the "TFT" state 3, resulting in TFT play
for all further moves against this player. Thus, after first defecting and then cooperating,
Rip attains mutual cooperation with TFT, with other Rips, and with GRip, and mutual
defection with AllD. However, against opponents such as AllC and TFTT which never
retaliate after a single defection, Rip alternately cooperates and defects, moving from
state 1 to state 2 and back again. Rip thus takes advantage of the low provocability of
AllC ELnd TFTT-—full advantage in the case of TFTT.

GRip is more complex yet, requiring four states for its finite automaton representation
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in Figure 6(f). GRip initially cooperates^ but eventually GRip tries out a defection against
"nice" players. Against.TFTT and AllC, GIWp cooperates for his first four moves; but
then GRip enters a -3-move cycle .(d,c, c) while TJ'TT and AllC continue to cooperate.
Thus, Hke Rip, GRip rips off TFTT and AllC, although.not as frequently. Against another
GRip, each .GRip immediately enters, intp a 5-moye cycle (c, c,c,.c, cf). Against TFT and
Rip, GRip ultimately enters a 5-move cycle (d, c, c, c, c) against which TFT and Rip play
(c,d,c,c,c). ., • . . •

5.2 Analytical Results for Two-Player IPD/CR games

An analytical study was undertaicen of single-tournament two-player IPD/CR games
between-all possible pziirs of players described in section 5.1. Table 1 presents the key
results from these studies, and Figures 7 and 8 highlight some of these results.

Reading the columns of Table 1 from left to right, we haye: (1) the player pairs; (2) the
players' (updated) expected payoffs.at the end of iteration z; (3) sufficient conditions for PD
game play to.come to a halt in finitely many iterations; (4) the maximimi (possibly infinite)
number i* of iterations during which PD gameswill be played (i.e., the last iteration before
either a refusal of a PD game offeroccurs, or no PD game offers are made); (5) the player(s)
who would refuse any PD game offer made by the opposing player in iterations subsequent
to z*, if any; and (6) the average payoff score-of-each player in each iteration through i*.
The quantities in columns two through four and in column six are determined as functions

. * ' . *>

of the PD gaime payoffs and the parameters describing the choice/refusal mechanism.
The results in Table 1 are presented in normalized form. More precisly, the PD game

payoffs {B, D, C, 5} and the initizil expected palyoff are normalized by subtracting B
and dividing'^by The resiilting norm^ized values are-indicated below as hatted
quantities:

r* _ R c _ n
^0C~B ^ S'B .n ttO-BB= 0; Z) = l; C=~, S=^; (4)

Thus, after normaliza,tion, the lowest possible PD game payoff B becomes 0, the mutual
defection payoff,!? becomes 1, and the non-oscillation condition (5 B)/2.< C becomes
S/2 < C. This normalizaition decre^es the number, of parameters by two, and demon
strates that the signs of the payoffs are not important for the IPD/CR game. However,
since it is not possible to normalize C,and 5",iany further, changing the relative distance
between the payoffs can have £in effect. For. exppsitional simplicity, the hats are dropped
from the normalized payoffs and initial, expected payoff in Table 1 and throughout .the
remainder of-this paper. .

In obtaining, the results presented in Table 1, we assumed that the initial expected
payoff TT was not unrealistically lugh; but that it was high enough to guaranty that at
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least one game would always be played. Specifically, we asstmied that r < 7r° < 5. We
also assumed that the minimum tolerance level r was not unrealistically high or low, i.e.,
0 < r < C, and that the memory weight u; satisfied 0 < a; < 1. Finally, we dropped
the conditional' player indexing on expected payoffs, since it is generally obvious who is
playing whom when there are only two players; subscripts are used for clarification when
necessary.

Before we discuss the specific results in Table 1, we demonstrate how they were ob
tained by describing a couple of the calculations.

AllD versus AlW:

Suppose two AllD players are playing a two-person IPD/CR game. Since r < 7r° by
assumption, both players make PD game offers to each other in the first iteration. In the
subsequent play of the PD game, bothplayers defect and receive a payoff of Z? = 1. Their
expected payoffs for the next iteration then take the form tt^ = + (1 —uj)-

Suppose the players play a PD game in i successive iterations, i > 1. They will then
each have an expected payoff of

Tt' = -h(1 - w)

= uj*-7r°-H (1—w*).

PD game play stops at the end of iteration i if and only if the expected payoff 7rV drops
below r, i.e., if and only if

w'tt" —w') < T. (6)

If r <'1, this inequality is not satisfied for any implying that i* = oo. Suppose 1 < r.
Then 1 < 7r° must hold as well. Solving the inequality for i then yields

tt" —1 ln\u)

Letting i* denote the smallest integer value of i for which this inequality is true, z* is the
last iteration during which a PD game is played between AllD and AllD. For example, if
r = 2, 7r° = 3, and uj < 0.5, then i* = 1, implying that exactly one PD game is played.

If i* < oo, the expected payoff which AllD associates with another play of a PD game
with AllD remains frozen at tt'" < r for all i >i*, and no more PD game offers are made.
Each player then simply receives the wallflower payoff in all subsequent iterations.

Note that an optimistically high initial expected payoff tt® will result mmany PD
game plays (large i*) unless the memory weight wis small. That is, the specification of a
high initial expected payoff tends to encourage repeated play.
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Rip versTis Rip:

Both Rips defect against each other on the first iteration, which results in an updated
expected payoff +(1 —a?) for each player. If < r, they will stop playingwithout
rejection. On the other hand, if > r, they will continue playing forever, because they
will cooperate with each other on all PD games except the first. Thus, play between two
Rip players will stop after a finite number of iterations if and only if the first PD game
results in an updated expected payoff tt^ < r, in which case i* = 1.

Rip versus AUC or TFTT:

AllC and TFTT always cooperate with Rip, while Rip alternately defects and cooper
ates. Without loss of generality, consider TFTT. TFTT receives C in even iterations and
0 in odd iterations, while Rip receives C in even iterations and S in odd iterations. Given
any payoffs E and i^, the expected payoffs when receiving alternating payoffs of E in even
iterations and F in odd iterations take the form

TT '̂ = + (1 —w)-^; + (1 —i^)F. (8)

Solving these coupled difference equations gives

+^ ^ {E-\-ij:F) (9)
and

+ulf^{E.^.wF) +{l-w)F. . (10)
1 + w

If (Cw)/(l+u;) > r, then TFTT andRipnever refuse each other because their expected
payoffs remain greater than r in each iteration i. Consequently, i* = oo. If (Ca;)/(1 + u)
< T and 7r° < C/(l + w), the expected payoff of TFTT falls below r after the first PD
game play with Rip: < (Ca;)/(1 + w) < r. Thus i* = I. '

Finally, suppose (Coj)/{l + w) < r arid C/(l +'a;) < tt®. In this ca^e the expected
payoff of TFTT falls below r in the'first odd iteration that satisfies

, ,r(l 4-w) —Cw. 1
M on _L ^—F?')7-rT < 22 +1- (11)7r°(l + ^)-C /n(w) ^ ^

Using the: difference equation (9),^ together .with the .assumption that r-< C, it can be
shown that the expected payoff.of TFTT in all previous even iterations is still greater than
r.' Moreover, for all previous, iterations through this-odd iteration,, the expected payoff of
Rip exceeds r, implying that Rip has never refused.TFTT. Consequently, this odd.iteration
gives i*, the iteration oflast PD game play between Rip and TFTT. ,

15



Once TFTT begins to refuse Rip, Rip receives the rejection payoff R. The expected
payoff for Rip is updated according to the equation

7rjj = a;»-'"7rj; (12)

If > r, Trj^ never falls below r, and Rip will receive the rejection payoff in each subsequent
iteration. If < r, Rip will stop choosing to play TFTT when declines below r.
Thereafter, both players will receive the wallflower payoff.

Play Stoppage Conditions:

Examining the third column in Table 1, we see that the minimum tolerance and mem
ory parameters r and uj play a cruciEil role in determining whether or not play eventually
stops for our six player types. Figures 7(a) through 7(c) show the regions of the uj —r
plcine in which play stoppage occurs for AllD, Rip and GRip, respectively, in IPD/CRgame
play with other player types. These regions are determined for the particiilar parameter
specifications = C = 3 and 5 = 5.'

—Figure 7 About Here—

Note that some results are determined by r alone, regardless of all other parameter
and payoff values:

7" > 1

r < 1

r > 0

Play stops for all two-player IPD/CR games involving AllD;

Play never stops for AllD v. AllD, Rip v. Rip, or GRip v. GRip;

AllC eventually refuses AllD.

When memory fades quickly, i.e., when u; is small, defection can trigger refusal by fairly
tolerant players despite a long history of mutual cooperation or a high initial expected
payoff. For example, as seen in Figure 7(c), Rip eventually refuses GRip for small enough
UJ (if GRip has not already refused Rip) even for minimum tolerance levels r less than the
mutual defection payoff D = 1. Note that the line demarking when Rip refuses GRip is
independent of tt® .

If defections occur early and then stop, play behavior depends critically on simple
relationships among the minimum tolerance level r, the memory weight a;, and the initial
expected payoff . Ahigh initial expected payoff 7r° tends to decrease a player's sensitivity
to earlydefections, whereas a low memory weight uj tends to increase his sensitivity to early
defections by downgrading the importance of the initial expected payoff in all subsequent
updated expected payoffs. Thus, for example, a defection on the first iteration will result
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in a refusatl in the next iteration by any opposing player who; (i) cooperated in the first
iteration, if (w,t) lies above the line r = W7r° in the cj—r plaiie;-or (ii) defected in the first
iteration, if (a?, r) lies above the line r = 4j[7r® + 1 in the u —r plane. Consequently,
the lower the initial expected payoff tt'̂ , the.larger is the (admissible) region in the u —r
plane over which Rip, TFT, and GRip will playonly one PD game with any player who
defects in the first iteration.

The fourth column of Table 1 highlights another interesting characteristic of two-player
IPD/CR games: the maximum (possibly infinite) number of iterations during which PD
game play will take place, denoted by i*. Figure 8 depicts regions of the (1 —w) —r plane
where the iteration number i* takes on a constant value, conditional on 7r° = C = 3 and
5 = 5, for various player pairs. In eax:h case, the region where z* takes on its smallest
value is the largest region, and the regions get ever smaller as i* increases. In general, the
regions where i* takes on large but finite values are very small indeed; that is, for most
player pairs, intolerzince (play stoppage) either occurs after only a few iterations, or it does
not occur at all.

—Figure 8 About Here—

Recall that, given 7C = iV —1, the IPD/CR game reduces to the IPD game if either
r = 0 or a; = 1 and r < tt®. The analytical results of-this section indicate that, near these
boundaries in parameter space, the IPD/CR game with K = N —1 will behave much
like the IPD game: either players will play each other forever without refusal,' or they will
play many PD games before refusal. However, as r increases and/or uf decreases, refusal
becomes more likely, and we move away from the IPD game.

Generic Results:

Certain parzimeter regimes can be directly associated,with particular types of play be
havior. In section 7, below, these par^eter regimes will be used to help predict and explain
the ultimate outcomes in our-evolutionary (multi-tournament) IPD/CR game simulations.
The most important parameter regime is when any defection against a.cooperation results
in future refusal by the cooperating player. The next most importzint regime is wheri any
defection results in immediate play stoppage.

If the first defection in a two-player tournament occ^s on iteration t, with one player
cooperating and the other defecting, the cooperating player will refuse further play if

r > wV"-i-a;(l —a;*~^)C. (13)

Examining this inequality, we see that if r > max{w7r°,a;C}, then any defection at any time
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against a cooperation results in immediate refusal to play. For example, in the evolutionary
simulations illustrated in section 4 and detailed in section 7, below, we set tt® = C = 3
and uj = 0.7; and for these fixed parameter values, defections against cooperation axe not
tolerated for any minimum tolerance level r greater than 2.1.

If instead the first defection is mutual, both players will stop choosing each other if

r,> + w(l — + 1—w. (14)

Comparing (14) with (13), we see that any initial defection results in refusal to play if r >
(1 —w) + max{a;7r°,u;C}. In particular, for tt® = C = 3 and u) = 0.7, any initial defection
results in immediate play stoppage if r > 2.4.

6. SINGLE-TOURNAMENT N-PLAYER IPD/CR GAMES

The analysis in section 5 describes the characteristics of various representative two-
player IPD/CR games with K = 1. This two-player analysis can be extended in a straight
forward way to analyze einy iV-player IPD/CR game in which K = N —1. Given this
specification of iv, each player chooses to play a PD game with every tolerable player in
each iteration, implying that the iVrplayer IPD/CR game decomposes into a collection of
N{-N —l)/2 two-player IPD/CR games of the type analyzed in section 5. Consequently,
setting K = N —1 trivializes the role of choice in the determination of PD game partners;
it is refusal which is critical.

On the other hand, when the number N of players is greater than 2 and K is less
than iV" —1, players will not necessarily choose to play all tolerable players during each
iteration. Choice then becomes more important, and one would expect to see choice
and refusal working together in a more subtle fashion. In fact, as we shall see, in many
interactions choice is much more important than refusal.

The outcomes of iV-player IPD/CR games can be characterized in a'number of different
ways, including the average payoff scores both for individual players and for the entire
ecology, the fraction of game plays of each type, and the formation of long-run player
interaction patterns. For example, who ends up playing whom when a steady state is
reached, if ever? To what extent is the ultimate steady state ecology characterized by
a hierarchy of social cliques, ranging from high-status player groups which everyone else
would like to join, all the way down to ostracized individual players whom allother players
avoid?

In order to see how play in a multiple-player tournament proceeds, and how long-run
player networks form, consider an illustrative 5-player IPD/CR game with three TFTT
players and two Rip players played for infinitely many iterations. As in section 5.2, let
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payoffs be normalized so that B = 0 and D = 1. For simplicity, suppose that each player
can choose at most one potential game partner in each iteration (A' = 1), that the initial
expected payoff, common to all players, is ttq = C, that the wallflower payoff W coincides
with the minimum tolerance level r, and that the rejection payoff R does not exceed 1.
Finally, assume that when a player needs to choose among partners with the same expected
payoff, the choice is made by a random draw. Since the initial expected payoff 7r° is the
same for all potential partners, this implies in particular that each player chooses each of
the other four players as a potential first partner with probability 1/4.

Recall from section 5 that two TFTTs always cooperate, and that a TFTT receives
a payoff sequence (0,C, 0,C,...) in an IPD game with a Rip. Moreover, a Rip receives
a payoff sequence (S, C, 5, C,...) in 2in IPD geime with a TFTT, and a payoff sequence
(1,C, C,....) in an IPD game with another Rip. Observe, also, that tt® = C implies
Cu;/(1 +w) < LJTT^ (1—w). Consequently, there are three possible parameter regimes for
this 5-player IPD/CR game. If r < Cuj/{1 + uj), all players remain tolerable to all other
players. If Cuj/(1 + w) < r < + (1 — Rips are eventually refused by TFTTs, but
remain tolerable to each other forever. And if r > + (1 —uj), Rips are refused by
TFTTs after only one PD game, and they also find each other mutually intolerable after
only one PD game. What happens in each of these three parameter regimes will now be
described in more detail.

Case I: r < Cuj/(1 +lj)

In this case no player ever refuses to play another player in repeated PD game plays.
Play eventually stabilizes in one of two possible player interaction patterns. In both cases,
each TFTT chooses randomly in each iteration between the other two TFTTs, and each
Rip chooses to play one TFTT repeatedly. But in one case the two Rips both repeatedly
play the same TFTT player, while in the other case they each repeatedly play different
TFTT players. Which network fornis is determined by the particular realizations of the
random draws tised to break expected payoff ties in the first few iterations.

We will now look in greater detciil at the sequences of plays. First note that the
probability that the two Rips ever play each other is 7/16, the probability that they play
each other in the first iteration. This occurs because both Rips defect if they play each
other in the first iteration, implying that their expected payoffs from playing each other
decrease below C. Since each Rip always has an expected payoff of at least C from any
TFTT, each Rip then chooses a TFTT in all future iterations. On the other hand, if the
two Rips do not play each other in the first iteration, each Rip plays a PD game with a
TFTT and receives a payoff of 5. The expected payoff for playing additional PD games

19



with this TFTT-is then larger than C, and the Rip prefers this TFTT to all other players,
including the other Rip. In any subsequent PD game with this TFTT, it receives either C
or 5, and its expected payoif from this TFTT remains above C. From then on it always
prefers the TFTT that it played in the first iteration to the other Rip; hence, while it may
eventuzilly leam to prefer a different TFTT to. the first one it played, it always chooses a
TFTT. Since neither Rip chooses the other Rip after the first iteration, they never play
each other unless they do so in the first iteration.

The expected payoff that a TFTT has from another TFTT stays at C. The expected
payoff that a TFTT has from a Rip is also C until the TFTT first plays that Rip, after
which it is less than C no matter how many times the TFTT plays that Rip again. A
TFTT therefore chooses randomly among all players until he encounters a Rip (either
because he makes a PD game offer to a Rip or because he receives a PD game offer from a
Rip). If enough games are played, a TFTT eventually plays both Rips at least once. Once
a TFTT plays a Rip, it never chooses that Rip again; but the Rip may choose the TFTT
on future plays.

Rips may oscillate among different TFTT game pairtners for several iterations, but
eventually each Rip settles into playing only one pzirticularTFTT. Which TFTT each Rip
ends up playing is a matter of chance.

For example, suppose that Rip #1 by chance playsTFTT in the first iteration and
gets S. He then chooses TFTT again in iteration 2, and gets C. If TFTT #2 by chance
chooses Rip #1 in iteration 2, Rip #1 gets S fromTFTT #2, and so chooses TFTT #2 in
iteration 3. After getting C from TFTT ^2 in iteration 3, Rip ^1 is indifferent between
TFTT #1 and TFTT #2, but prefers either of theseTFTTs to the remaining TFTT #3.
If TFTT #3 by chance chooses Rip #1 in iteration 3, Rip ^I then prefers TFTT #3
in iteration 4 zind subsequently chooses randomly among all three TFTTs in iteration 5.
Since Rip #1 receives S from the TFTT it choses in iteration 5, and the other TFTTs
never choose Rip #1 again, Rip ^1 chooses this iteration 5 TFTT in all future iterations.
This particular sequence of events is depicted in Figure 9.

—Figure 9 About Here—

Note that each Rip in the long-run player interaction pattern has a higher average
payoff than any TFTT. The average payoff of aRip eventually approaches (5+C)/2 > C,
as a result of the successful long-run parasitic relationship established with a TFTT. On
the other hand, the average payoff for any TFTT who is playing only other TFTTs in the
fiiial network approaches C from below as the number of iterations increases; the average
payoff for TFTTs playing one Rip are lower than this; and TFTTs playing two Rips do
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the worst. •

In snmmaxy, in case I the low minimuin tolerance level allows each opportunistic Rip
player to find and exploit a nice TFTT player while avoiding'the other Rip. Moreover, not
all TFTT players a,chieve the same average payoff: at least one TFTT player will manage
by chance to avoid Rip parasites, and at least oiie will not.

Case II: Ca;/(1.+ oj) < r < wtt® + (1 —w)

In this case a TFTT eventually refuses a Rip in repeated PD game plays, but Rips
remain tolerable to each other. The players thus eventually brealc into two groups, one
consisting of the three TFTTs and the other consisting of the two Rips. Average'-payofFs
approach the mutual cooperation payoff C for all players.

How long the final network takes to form depends on the magnitude of r. If r is close
to the lower bound Ca;/(,1 then the pattern from case I holds until the payoffs that
TFTTs expect from Rips all drop below r. Orice this occurs, Rips begin receiving rejection
payoffs R from TFTTs. Eventually the Rips stop choosing the TFTTs .and settle on each
other. On the other hand, if r is large enough (see section 5), TFTTs refuse Rips after only
one Pp game .and the long;-run player interaction pattern gels after only a few iterations.
The reader is referred to Stanley et ol. (1992) for further details. .

Note that the TFTTs primarily use refus^ t.o protect themselves from Rips and use
choice to rotate among each other. lUps are .able to take advantage of .TFTTs only for a
limited number of iterations. Ultimately, if the tournament lasts long enough,, each Rip is
refused by all TFTTs, and the Rips end up choosing to play only,with each other.

Case III: ojir^ + (1—w) < r

In this case, recalling the'analysis of'two-player IPD/CR games in section 5.2: (i) a
Rip never refuses a TFTT in repeated PD game plays; (ii) a TFTT refuses a Rip after
only one PD game play (since = cjtt® < r); and (iii) a Rip refuses another Rip after
only one PD game play. The final player interaction pattern is the"group ofTFTTs and
two ostracized Rip players. Average payoffs approach the mutual cooperation payoff C for
the TFTTs and the wallflower payoff W for the" Rips. Choice plays almost no role, and
refusal works so strongly that Rips never discover that they could receive C from'repeated
plays with each other in all but the first PD' ganie play.'

The role of 7r°..

Suppose the initial expectated payoff in,the 5-player IPD/CR game described above
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is less than C. Then, once a TFTT choses to play another TFTT, he never chooses to play
a Rip in any future iteration. Lowering the initial expected payoff thus cools the system
in the sense that exploration is reduced. Rips behave the same as before.

If the initial expected payoff tt® is greater than C, the long-rim player interaction
patterns are imchanged. However, each TFTT chooses to play each other player at least
once by iteration 5, and plays more PD games with Rip. Morever, the region in the a; —r
plane where Rips refuse each other is smaller than before. Thus, as one would anticipate,
increasing the initial expected payoff results in increased exploration.

7. EVOLUTIONARY IPD/CR GAMES

This section describes the software used to run the evolutionary IPD/CR game sim
ulations briefly reported on in section 4, and provides a more careful discussion of the
simulation findings.

7.1 Software and Hardware

The software used to replicate the experimental results of Miller (1989), and to modify
Miller's framework to include a choice and refusal mechanism, was developed in Turbo
Pascal 5.5. We used the random number generator included with the Pascal compiler.
The actual runs were done on a number of machines, all 80386-based PC-compatibles with
80387 coprocessors.

Our algorithm is initialized with thirty finite automata of the sort described and illus
trated in section 5.1. Each automaton possesses sixteen states stnd a uniformly distributed
random assignment of state transitions, indicated by arrows, together with an initial move
and allowable move sequences appearing as arrow labels. Each automaton has access to
the values for the parameters (7r°,r,characterizing the choice/refusal mecha
nism, and has a memory comprising: (i) its play history with each other automaton; and
(ii) its current expected payofffor a PD game play with each other automaton.

The thirty automata take part in an evolutionary IPD/CR game consisting of fifty
successive single-tournament IPD/CR games separated by genetic steps. Each single-
tournament IPD/CR game (or "tournament" for short) consists ofone himdred and fifty
iterations, where each iteration constitutes one pass through the five-stage choice and
refusal mechanism described in section 3.2. In the genetic step at the end of each tour
nament, the current population of thirty automata is replaced via reproduction by a new
population of thirty automata. Each run of the evolutionary IPD/CR game thus results
in a distinct "ecology" consisting of an evolved population of thirty automata.
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The genetic step separating successive tournaments proceeds as follows. First, the
automata eire sorted by the'average (per payoff) payoff score they achieved during the
previous tournament. Second, as ih 'Miller'(4989), the ten automata scoring the worst are
discardeii and^he twenty automata scoring the best are retained; Finally, the ten emptied
slots ^e-filled by "sexual reproduction" of the best twenty aut6mata,'with "mutation" of
the resulting offspring. The resulting thirty, finite automata: then constitute the genetically
altered pbpxilation of players for the next'tournament.

The "sexual reprodiiction" is accomplished as follows; First, take the initial move (one
bit), 32 brows' (each arrow represeiited by-four bits to describe the "next state"), and 32
arrow labels (one bit each) of each automata and turn them into a bit string 161 bits
lorig.^ Second, select two automata, to be parents, where each automaton's probability of
selection is directly proportional to the average payoff score it received in the preceding
tournament. Third, generate.a rsindom variable q distributed uniformly over the discrete
range. 1, 2, ...,-161. Fourth, exchange the bits in positions 5 through 161 of the parental
bit strings to obtain the bit strings for two offspring. Finally, repeat the second and third
stages for five pairs of parents, thus obtaining five pairs of offspring.

"Mutation" simply consists of flipping the value of each of the bits of each offspring-s
bit string with probability five in one thousand. Once the final bit string for any offspring
is obt^ned, reverse the original conversion process'from-automaton to bit string to obtziin
the finite automaton representation for the offspring.

7.2 Simulation Results

Based on the analysis in section 5.2, we decided to focus on the role of the minimum
tolerance level r. In all reported experiments, below, we use the following fixed PD game
payoff specifications,

B=0; D= l; C=3; 5=5, ' (21)
and we set

. TT^ =^3; K = 1; R= l-, u; = 0.7. • (22)

The wallflower payoffW is always set equal to r. Forty runs, are carried out ,fpr. each tested
T value to allow for stochastic variability. . ,.

bit can take on only two values, 6or 1. Astring of four bits can therefore represent
2^=16 different states. The arrow labels require only one bit, which encodes the current
move to be made in response to a previous.move of an opponent, because the information
about the previous move of an opponent is .coded by position in the string. The finite
automaton and bit string representations used in this paper differ frorri 'therepresentations
used in Miller (1989). . • . -.
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Figures 10 through 13 display some of the simulation results obtained for a fifty-
tournament evolutionary IPD/CR game as the minimum tolerance level r was set at 0.5,
1.5, i.6, and 2.4, respectively. More precisely, each figure displays the following information
for the indicated t value: (a) individual ecology payoff trajectories obtained for forty
different rims of the fifty-toiirnament game; (b) the ecology payoffs obtained for each of
the fifty tournaments, averaged across the forty runs; and (c) the fraction of various types
of play behavior (mutual cooperation CC, successful defection CD, mutual defection DD^
and rejection RJ) exhibited in each of the- fifty tournaments, averaged across the forty
runs. Figure 14 highlights characteristics of the ecologies associated with the lowest payoff
band appearing in Figure 13(a).

As will be clarified in the following discussion. Figures 10 through 14 illustrate many
of the interesting results of. our simulation study. A more detailed discussion of these
results' can be found in Stanley et al. (1992). A complete data set, together with the
PC-compatible software needed to view it, is available; please contact the second author
for information."

—Figure 10 About Here—^

Consider, first, the payoff band patterns exhibited by the payoff trajectories for indi
vidual ecologies in Figures 10(a) through 13(a). Given r = 0.5 [Figure 10(a)], we see many
of these trajectories clustered into three payoff bands at heights of roughly 3.0, 2.8, and
2.3, as well as a fairly large number of trajectories in no apparent band. This is typical of
the runs with low r values. Band formation seems to be primarily a choice-moderated phe
nomenon. Payoffswith no apparent band ^sociation becomemore common with decreases
in r, hence with decreases in rejections; but payoff bands still form even at r = 0 where
all rejections cease. Notice" [Figure 10(c)] that the fraction of rejections RJ is effectively
zero for r = 0.5.

As r increases to 1.5 and to 1.6 [Figures 11(a) and 12(a)], two of the three payoff
bands persist; but the lowest payoff band at level 2.3 is only faintly apparent at best.
Fewer ecology payoffs lie outside of a payoff band, and those that do lie outside appear to
be either on their way into orout of a band. As r further increases to 2.4 [Figure 13(a)],
the payoff band at 2.3 disappears altogether, the payoff band at 2.8 becomes extremely
sparse, and a new payoff band arises in the vicinity of 2.1. The ecologies with payoffs lying
in the latter "wallflower isolation" band consist of players that engage in mutual defection
until they are rejected by all other players, and that thereafter coUect the wallflower payoff
W= 2.4. [Recall that the wallflower payoffWis always set equal to the minimum tolerance
level r.] Amoment's reflection suggests that such play behavior is perfectly reasonable,
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given the high value for the wallflower payoff. Characteristics of these wallflower isolation
ecologies' are separately displayed in Figure 14. • ^ •

Preliminary an^ysis of the genetic diversity of ecologies in the terminal (fiftieth) tour
nament has been undertaken in oxi attempt to obtain a better understanding of this payoff
band phenomenon. As noted" above, payoff bands occur at levels 2.3 and'2.8 for"relatively
low r values, and the terminal ecologies associated with each of-these payoff bands appear
to split'into two genetically-distinct'.groups. One group has a, relatively low genetic diver
sity; that is, each ecology in this group is dominated by players with identical or closely
related finite automaton structures, leading to. highly synchronized play behavior: The
stable average payoff behavior exhibited by this group is intuitively understandable; for
a synchonized pattern of play can result in fixed fractions of distinct play behaviors, and
hence in a roughly constant average payoff. The other group of.ecologies has a relatively
high genetic diversity, and the stable average payoff behavior exhibited by this group is
harder to understand. .The terminal.ecologies associated with the .mutually cooperative
payoff band 3.0 and the wallflower isolation band are not as strongly bimodal, as the ecolo
gies associated with the middle bands 2.3 and 2.8'.

The payoff trajectories for individual ecologies exhibit other interesting features as
well. For r < 2.1, a number of ecologies exhibit etn abrupt payoff collapse, a feature also
present in the Miller replication results.' For example, one of the payoff trajectories depicted
in Figure 10(a) abruptly collapses in generation 15 to a level well below that of all other

/

trajectories, after which.it slowly recovers. Examining in detail the ecology associated with
this particular payoff trajectory, we saw that a spike occurred in the fraction of successful,
defections on the downward leg of the collapse, mutual defection became the dominant
mode of play at. the bottom of the collapse, and successful defection again became frequent
during the subsequent payoff recovery. .Note that the payoff of this ecology is roughly
stable over generations 24 to 30 at the level 2.5, the average payoff level obtained by IPD
players engaging: in alternating ci? and rfc-play; but the ecology payoff.level subsequently
climbs to the mutually cooperative payoff'level 3.0.

It is also possible for ecologies^ to collapse to, and remain at, low payoff levels for an
extended period of time. A dramatic example-appears in Figure H(a), where an ecology
suffers a payoff collapse at about generation 22 and remains below the payoff level 2.0 for
the remainder of the simulation.

"Band spiking" 'is another interesting feature exhibited by the payoff trajectories for
individual ecologies for-r < 2.1. -An ecology, sometimes exhibits an abrupt jump from
one payoff band to another, followed by an abrupt jump back to its original payoff band.
Preliminary, evidence suggests that this spiking might be caused in part by the following
type of population dyna^cs.-^ Suppose-the average payoff achieved by a type Aplayer
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is higher than that of a type B player as long os type A players are rare, but that the
average payofF of type A players drops below that of type B players as type A players
become more prevalent in the population due to reproduction or fortuitous crossover. The
ecology payoff might then systematically oscillate between the type A and type B payoff
levels. When an ecology of this type was saved and used to "seed" a set of forty new runs,
the resulting payoff trajectories exhibited a great deal of spiking.

In addition, the payoff trajectories for individual ecologies exhibit "band tunneling,"
particularly for high r values. That is, ecologies that have been long-term residents of one
payoffband suddenly exhibit an abrupt change in the gradient of their payoffscore, followed
by a rapid and smooth traverse to another payoff band. For example, in Figure 13(a) a
number of ecologies tunnel directly from the wedlflower isolation band to the mutually
cooperative payofF band at 3.0; and one ecology tunnels from the wallflower isolation band
to the payoff band at 2.8, remains at this payoff baind for fifteen generations, and then
tunnels to the mutually cooperative payofF band. These tunneling events appear to be
correlated with the fraction of rejections. That is, as the fraxition of rejections increases for
an individual ecology, the payofF level of the individual ecology increases; and the fraction
of rejections recedes &s the ecology merges into a new payoff band. In addition, partial
tunneling events also take place. For example, in Figure 14(a) an ecology rises out of the
wallflower isolation band between generations 15 and 20, but then rapidly recedes back
into it.

The properties displayed by average ecology payoffs are also interesting. Comparing
Figure 10(b) with the replicated Miller results reported in Figure 1, the average ecology
payofFs obtained for the low minimum tolerance level r = 0.5 display less of an initial
dip than in the Miller replication, and do not attain as high an ultimate payofF level.
These differences can be traced to the emergence of new payoff bands. As seen in Figure
10(a), these new bands are at low enough levels, and contain enough ecology payofFs, to
decrease markedly the average payofF across ecologies. While a substantial fraction of the
individual ecology payoff trajectories appear to converge—indeed, as many as in theMiller
replication—many of these trajectories do not converge to the mutually cooperative payoff
level. For low r values, the evolution ofcooperation is in fact retarded as compared to the
Miller replication.

When r is increased to 1.5 and to 1.6, the initial dip in average ecology payoffs com
pletely disappears and the evolution of cooperation is substantially accelerated Figures
11(b) and 12(b)l. Moreover, the fraction of CC play behavior markedly increases [Figures
11(c) and 12(c)]. The minimum tolerance level r is now high enough to give the refusal
mechanism some teeth. As r continues to increase, however, the wallflower isolation payoff
band eventually appears. The initial average ecology payoffs begin to flatten out again
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and, by T = 2.4, an initial dip has reappeared [Figure 13(b)]. This dip is smaller than for
the Miller replication and has 201 entirely different cause. Rather than representing the
destruction of chump players by rapacious players, the dip results from the early formation
of wallflower isolation ecologies which drag down the initial average ecology payoffs.

Finally, the fractions of distinct play behavior exhibited under different r values are
also of interest [Figures 10(c)-13{c)]. These fractions appear to undergo a phase chajige
around r = 2.1. For r < 2.1, the simulation nms settle to a state where, on average,
three types of PD game play behavior persist. The most common behavior is mutual
cooperation CC, followed by mutual defection DD, and then by successful defection CD.
For r > 2.1, however, successful defection effectively vanishes after the first few generations
of players. This finding is predictable; as noted in section 5.2, for r > 2.1, any successful
defection results in the refusal of ail future PD game offers. Mutual defection also becomes
less common, appearing primarily in those ecologies constituting the wallflower isolation
payoff band [Figure 14(c) .

8. CONCLUDING REMARKS

The incorporation of a choice/refusal mechanism into the standard IPD framework
has resulted in the emergence of several new ecological features. First, even without
evolution, choice and refusal permit a broader range of interactions between mutually
cooperative players, between potential hosts and would-be peirasites, and between like-
minded opportunists: for example, internally generated ostracism, persistent parasitism,
and assortative partner selection. Second, with evolution, choice and refusal can accelerate
the emergence of cooperation. More generally, however, choice and refusal can lead to
the emergence of multiple tight payoffbands, reflecting the possible existence of multiple
ecological attractors. The existence of a spectrum of payoff bands in turn permits the
emergence ofinteresting new ecological behaviors, such asbandspiking andband tunneling.

We hope to obtaina better quantitative understanding of these new ecological features
aswe undertake more elaborate studies ofour choice and refusal mechanism. For example,
it now seems clear that the genetic diversity of an ecology should be tracked throughout
each simulation run, and thatmore detailed records should be maintained concerning which
types of ecologies exhibit band spiking, band tunneling, and payoff collapse. At present, we
have examples of ecologies that belong to the various payoff bands; but only the mutual
cooperation and wallflower isolation payoff bands are well understood. The emergence
of the middle payoff bands remains somewhat mysterious. We are currently conducting
extensive sensitivity studies in order to ascertain the conditions under which these middle
payoff bands form. Preliminary studies suggest that the number ofautomaton states used
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by players in their interactions with other players is an important factor affecting the
formation and stability of these bands.

In addition, a number of revisions to our model and methods are currently under
consideration. For example, the minimum tolerance level r and the initial expected payoff
7r°—both currently set as fixed exogenous constants—should instead be allowed to evolve
over time along with the structure of the PD rules. As seen in both the analytical and
simulation studies reported here^ higher levels of r result in increased resistance to parasitic
relationships; and differing resistance to parasites has been conjectured as one reason
why populations divide into smaller reproductive groups [Rennie (1992)]. Moreover, tt®
turns out to be a critical parameter that affects both the willingness of players to tolerate
defections and the willingness of players to seek out new potential partners.

Also, using a fixed convex combination of past expected payoff and current payoff in
order to obtain an updated expected payoff is too simplistic, even in the present context in
which players knownothing a priori about other player types. For example, surely a player
could learn, through observation, that the current move of an opponent is functionally
dependent on the previous move he made against that opponent. The memory weights
used to obtain updated expected payoffs could reflect this dependence. For example, if
a player's previous move against a current opponent was c, the updated expected payoff
for this opponent could be a weighted average only over all past payoffs obtained under
the same circumstance, i.e., obtained when the previous move against this opponent was
c. Moreover, once a player learns that his current moves affect the later moves of other
players, deliberate attempts to modify these later moves become possible.

Finally, the analysis of individual finite automata is difficult and time consuming. We
are currently attempting to develop automatic methods for detecting unusual or interesting
play behavior. We are also attempting to adapt some of the techniques of systematics
from evolutionary biology in order to develop better descriptive methods for studying our
artificial ecologies.

ACKNOWLEDGMENTS

Partially supported by ISU University Research Grant No. 430-17-03-91-0001. A
preliminary version of this paper was presented at the ALife III Conference sponsored by
the Santa Fe Institute, Santa Fe, New Mexico, June 13-19, 1992. The authors are grateful
to conference participants and to three anonymous referees for helpful comments.

28



REFERENCES

1. Axelrbd, R. "The Emergence of Cooperation Among Egoists." American Political
Science Review 75 (1981): 306-318.

2. Axelrod, R. The Evolution -of Cooperation. New York;Basic Books, 1984.

3. Axelrod, R., ^d W. D. Hamilton. "The Evolution of Cooperation." Science 211
(1981): 1390-1396. - ' - •

4. Axelrod, R., and Douglas Dion. "The Further Evolution of Cooperation." Science 242
(December 1988): 1385-1390.

5. Barner-Berry, C. "Rob: Children's Tacit Use of Peer Ostracism to Control Aggressive
Behavior." Ethology and Sociobiology 7 (1986): 281-293.

6. Dugatkin, L. A., "Rover: A Strategy for Exploiting Cooperators in a Patchy Environ
ment," The American Naturalist 138 (1991), 687-701.

7. Eshel, I. and L. L. Cavalli-Sforza. "Assortment of Encounters and Evolution of Copp-
erativeness." Proceedings of the National Academy of Sciences, U.S.A. 79 (February
1982): 1331-1335.

8. Feldman, M., and E. A. C. Thomas. "Behavior-Dependent Contexts for Repeated Plays
of the Prisoner's Dilemma II: Dyna^cal Aspects of the Evolution of Cooperation."
Journal of Theoretical Biology 128 (1987): 297-315.

9. Hirshleifer, J. "On the Emotions as Guarantors of Threats and Promises." In The Latest
on the Best: Essays on Evolution and Optimality^ edited by J. Dupre, Cambridge:MIT
Press, 1987.

10. Hirshleifer, D., and E. Retsmusen. "Cooperation in a Repeated Prisoners' Dilemma
with Ostracism." Journal of Economic Behavior and Organization 12 (1989): 87-106.

11. Holland, J. Adaptation in Natural and Artificial Systems. Cambridge:The MIT Press,
1992.

12. Hyman, J. M., and E. A. Stanley. "Using Mathematical Models to Understand the
AIDS Epidemic." Mathematical Biosciences 90 (1988): 415-473.

13. Kitcher, Philip, "Evolution ofAltruism in Repeated Optional Games," Working Paper,
Department of Philosophy, University of California at San Diego, July 1992.

14. Kreps, D., Milgrom, P., Roberts, J., and R. Wilson. "Rational Cooperation in the
Finitely Repeated Prisoner's Dilenuna," Journal ofEconomic Theory 27 (1982): 245-
252.

15. May, R. M. "More Evolution of Cooperation." Nature 327 (May 1987): 15-17,

16. Maynard Smith, J. Evolution and the Theory of Games. United Kingdom:Cambridge
University Press, 1982.

29



17. Miller, J. H. "The Coevolution of Automata in the Repeated Prisoner's Dilemma,"
Revised Working Paper No. 8903, Santa Fe Institute, July 1989.

18. Rennie, J. "Trends in Parisitology: Living Together." Scientific American 266 (Jan
uary 1992): 122-133.

19. Stanley, A., Ashlock, D., and L. Tesfatsion, "Iterated Prisoner's Dilemma with Choice
and Refus^," Economic Report No. 30, Iowa State University, July 1992.

20. Tesfatsion, L. "Direct Updating of Intertemporal Criterion Functions for a Class of
Adaptive Control Problems." IEEE Transactions on Systems, Man, and Cybernetics.
SMC-9 (1979): 143-151.

21. Thompson, E., and R. Faith. "A Pure Theory of Strategic Behavior and Social
Institutions." •Amenca/i Economic Review 71 (1981): 366-380.

30



F
IG

U
R
E

1
A
ve
ra
ge

E
co
lo
gy

Pa
yo
ff
s
fo
r
th
e
R
ep
li
ca
te
d
M
il
le
r
G
am

e

3 2
.5

*0
"'

o

o
^

O
q
O

"
o

.
^

o
_

^
2 1
.5
-

1

o
o

n
oo
'^'
^O

O
O
O
O
oO

O
O
O
O
oO

O
O

.oo
oo
oo
oo
oo
oo

5
lO

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0



F
IG

U
R
E

2
A
ve
ra
ge

Ec
ol
og
y
Pa
yo
ff
sf
or

th
e
IP
D
/C
R
G
am

e
w
ith

r=
1.
6

—
00
00
„«
00
00
00
00
00
00
00
00
„

O
o

o

2
.
5

o

o

2
-

1
.5

lo
1
5

2
0

2
5

3
0

3
5

4
0

4
5

SO



F
IG

U
R
E

3
In
di
vi
du
al

Ec
ol
og
y
Pa
yo
ff
s
fo
r
th
e
R
ep
li
ca
te
d
M
ill
er

G
am

e

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0



1
.
5

F
IG

U
R
E

4
In
di
vi
du
al
Ec
ol
og
y
Pa
yo
ff
s
fo
r
th
e
IP
D
/C
R
G
am

e
w
it
h
r=
1.
6

lo
15

2
0

2
5

3
0

3
5

40
4
5

5
0



1
.
5

F
IG

U
R
E

5
In
di
vi
du
al

Ec
ol
og
y
Pa
yo
ff
s
fo
r
th
e
IP
D
/C
R
G
am

e
w
it
h
t=
2.
5

1
0

iS
2
0

2
5

30
3
5

40
45

5
0



dyd d/c

(a) Tit-For-(ac (b> {^luags Cooperate <c) {^Luags Oefecc

d/d

d/c

d/d

<d) TLt-for-tuo-tats

<e) Pipo^f Artist

(f> Gencie Ripaff

FIG. 6: Example Players (a) Tit-for-Tat; (b) Always Cooperate; (c) Always
Defect; (d) Tit-for-Two-Tats; (e) Ripoff-Artist; (f) Gentle RipofF
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FIG. 7(a): -A ,player eyentually finds AIID intolerable.in an IPD/CR game play
if r and lj lie in the region above the curve indicated for this player's type. [AllD
is always eventually refused by AllC]. The p'arameter values are 5 = 0, D = 1,
C = 3, 5 = 5, and = 3.
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FIG. 7(b): A player eventually finds Rip intolerable in an IPD/CR game play if
r and w lie in the region above the curve indicated for this player's type. Play
stops between two Rips by mutual assent; but, in the other indicated cases, Rip
is eventually refused. The parameter values are B = 0, D = 1, C = 3, 5 = 5, and
7r° = 3.
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FIG. 7(c): A player eventually finds GRip intolerable in an IPD/CR g£une play
if r and a; lie in the region above the curve indicated for this player's type. The
parameter values are B = 0, = 1, C = 3, 5 = 5, and = 3.
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FIG. 8(a): The total number of PD games played in a 2-pIayer IPD/CR game
between AllD and TFTT before play stoppage, as a function of r and w. The
number i* gives the last iteration during which a PD game takes place in a region.
The other numbers indicate the maximum number of games played in a region.
Each region includes its upper boundary line but not its lower boundary line.
Except for the top boundary line, all boundary lines cross each other exactly
once, at w = l/y/Z and r = 1. The djc move sequence in the first two iterations
provokes refusal by TFTT in a large region of this plane.
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FIG. 8(b,); The total number of PD games played in a 2-player IPD/CR game
between AllD and AllC before play stoppage, as a function b^r and lj. The
number i' gives the .last iteration during which a PD gzuiie takes place in a
region. The other numbers indicate the maximum number of games played in a
region. Each region includes its upper boundary line but not its lower boundary
line.
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FIG. 8(c): The total number of PD games played in a 2-player IPD/CR game
between Rip and either AllC or TFTT before play stoppage, as a function of r
and w. The number gives the last iteration during which a PD game takes
place in a region. The other numbers indicate the maximum number of games
played in a region. Each region includes its upper boundary line but not its
lower boundary line. The boundary lines cross the line r = 3cj/(1 + w) only at
the axis.
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FIG. 8(d): The total number of PD games played in a 2-player IPD/CR game
between GRip and either AllC or TFTT before play stoppage, as a function of
T and w. The number i' gives the last iteration during which a PD game takes
place in a region. The other numbers indicate the maximum number of games
played in a region. Each region includes its upper boundary line but not its lower
boundary line. The boundary lines are tangent to the line dividing eventual play
stoppage (i* < oo) from no stoppage {i* = oo), and they meet at each axis.



Rip versus 3 TfTT pCayers

2 ; • 3 4 ,5
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FIG. 9: A schematic of the expected payoffs that a Rip anticipates from three
TFTT (or AllC) players when K = and 7r° =' C. In this sample scenario, Rip
plays TFTT ^1, TFTT #2, and TFTT #3 for the first time in iterations 1, 2,
and 3, respectively. Before iteration 5, Rip has the same expected payoff for all
three TFTTs and chooses TFTT # 2 at random. It is assumed that i* > 5, i.e.,
that r and uj are such that at least five PD games are played between Rip and a
TFTT (or AllC) player before the TFTT (or AIIC) player refuses Rip.



FIG. 10(a): Individual Ecology Payoffs for the IPD/CR Game with r—0.5
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FIG. 10(b): Average Ecology Payoffs for the IPD/CR Game with r—0.5
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FIG. 10(c]): Play Behavior Fractiipns for the IPD/CR Game with f=0.5



FIG. 11(a): Individual Ecology Payoffs for the IPD/CR Game with r=1.5
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FIG. 11(b): Average Ecology Payoffs for the IPD/CR Game with r=1.5
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FIG. 11(c): Play,Behavior Fractions for the IPD/CR Game with r=1.5
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FIG. 12(a): Individual Ecology Payoffs for the IPD/CR Game with t=1.6
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FIG. 12(b): Average Ecology Payoffs for the IPD/CRGame with r—1.6
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FIG. 12(c): Play Behavior Fractions for the IPD/CR Game with r=1.6
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FIG. 13(a): Individual Ecology Payoffs for the IPD/CR Game with r=2.4
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FIG. 13(b): Average Ecology Payoffs for the IPD/CR Game with r—2.4
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FIG, 13(c): Play Behavior Fractions for the IPD/CR Game with r=2.4
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FIG. 14(a): Individual Ecology Payoffs for the Wallflower Band, r=2.4
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FIG. 14(b): Average Ecology Payoffs for the Wallflower Band, t=2.4
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FIG. 14(c): Play Behavior Fractions for the Wallflower Band, r=2,4
- -atawr-Mviv-

10X3 20
rr/z/rrassaan

• '; \i -sv


