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Abstract

This paper studies the effects of partner selection on cooperation in an artificial ecol-
ogy. Agents, represented by finite automata, interact with eéach other through an iterated
prisoner’s dilemma (IPD) game with the added feature that players choose and refuse
potential game partners on the basis of continually updated expected payoffs. Analytical
studies reveal that the subtle interplay between:choice and refusal in N-player IPD games
can result in various long-run player interaction patterns: e.g., mutual cooperation; mixed
mutual cooperation and mutual defection; parasitism; and/or wallflower seclusion. Simu-
lation studies indicate that choice and refusal car accelerate the emergence of coopera.txon
in evolutionary IPD games. -More generally, however, choice and refusal can result in the
emergence and persistence-of multiple payoff bands, reﬂectlng the possible existence of
ecological attractors characterized by play behavior that is not entirely cooperative. The
existence of a spectrum of payoff bands in turn leads to the emergence of new ecologlcal

" behaviors such as band spiking and band tunneling.

Key Wt?rds: Iterated prisoner’s dilemma; choice and refusal of partners; evolution of
cooperation; genetic algorithm; sequential game; artificial ecology; finite automata.
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1. INTRODUCTION

. This paper i‘nvestiga,tes cooperative behavior in an artificial ecology.in which egoistic
agents interact-with each other through a tournament of iterated gamies. The tournament
played is a variant of the Axelrod (1984) iterated prisoner’s dilemma (IPD) game, modified
to permit players to choose and refuse potential game.pa.rtnérs. In each. iteration, players
use expected payoffs-updated on'the basis of past encounters to make prisoner’s dilemma
game offers to a limited number of -preferred players, and to refuse prisoner’s. dilemma
game offers from unacceptable players. .

The introduction of choice and refusal fundamentally modifies the way in which play-
ers interact in the IPD game,-and the characteristics which result in high payeff scores.
Choice allows players to increase their chances of encountering other cooperative players.
Refusal gives players a way to protect themselves from defections without having to defect
themselves. Ostracism of defectors occurs endogenously as an increasing number of play- _
ers individuglly refuse their game offers.  But choice and refusal also permit clever ripoff
players to home in quickly on exploitable players and form parasitic relationships.

Following Miller (1989), player strategies for the IPD game with choice and refusal
(or “IPD/CR game” for short')- are rep:esent?d by means of finite automata.! This repre-
sentation has a number of advantages over the original code-based formulation of Axelrod
(1984). It permits the same modelling of complex strategic behavior,_ but it is simpler
and cleaner to program. Moreover, behavior modiiﬁca,tion in response to endogenously
occurring events can readily be _inc_o';'porated in the form of genetic algo;jithrﬁs.2 Conse-
quently, the basic single-tournament IPD/CR game is easily generalized to an “evolution-
ary” IPD/CR game, i.e., a multiple-tournament IPD/CR game in which the strategies of
the players evolve between tournaments. . . A

The choice/refus_a,l_mechanis'm ié.cha;aqterizqd by six pa.rametersg' initial expected,
payoff; the minimum tolerance (expectéd i)ayoff) level below wh_i__chhga.me dffz_ars will be
refused; tht? maximum number of gmg offers’ wh.lch caﬁ be made in each itefa,tion; the
rejection payoff received when a game ;)ffér is 'reque_d; the wallflower payoff received when
game offers are neither made nor accepted; and a2 memory weight which determines the
relative importance of distant to recent payoffs in the calculation of tip&ate'd_expected

IA “finite automaton?” is a system specified by a finite collection of internal states together
with a state transition function, driven by input, which gives the-next internal state the
system will enter. See section 5, below, for a detailed discussion of the specific finite
automaton representation used in this paper. ’ o

2A “geneti_c algorithm” uses a.Darwinian selection principle'ito optimize a solution to a
problem with respect to various selected problem features., Genetic algorithms are powerful
tools for evolving high-performance strategies from simple representative strategy types;
see Holland (1992). ~ S SRS




payoffs. Anmnalytical parameter sensitivity studies are undertaken for a variety of single-
tournament 2-player IPD/CR games. To simplify and systematize the analysis, we restrict
our attention to six illustrative player types that roughly span the range from uncooperative
to cooperative behavior. For each pair of player types, we determine the precise conditions
under which refusal first occurs, and the average payoff scores which are achieved, as a
function of the choice/refusal parameters.

We then extend the analysis to single-tournament N-player IPD/CR games. The
interplay between choice and refusal can be quite subtle for such games. We illustrate this
with a detailed study of a single-tournament 3-player IPD/CR game in which the ultimate
pattern of player interactions can include the formation of successful long-term parasitic
relationships unless the minimum tolerance level is set suitably high.

We also report on simulation experiments carried out for the evolutionary 30-player
IPD game studied by Miller (1989), modified to allow for choice and refusal of game
partners. The experimental results indicate that, in comparison to Miller’s findings, the

emergence of cooperation is accelerated over much of the choice/refusal parameter space.’

However, high enough values for the minimum tolerance level and the wallflower payoff
can result in a “wallflower trap” ecology consisting primarily of antisocial hermits.

Moreover, for non-extreme settings of the choice/refusal parameters, our simulation
studies reveal an interesting clustering effect presaged by our analysis of single-tournament
N-player IPD/CR games. In Miller’s simulation experiments, most ecologies evolve to a set
of players whose average payoff scores are near the mutual cooperation payoff. The average
payoff scores of players who are not ultimately cooperative end up scattered between the
mutual defection and mutual cooperation payoffs. In contrast, in our studies with choice
and refusal we typically observe the ultimate formation of two or more distinct tight bands
of average payoff scores reflecting the emergence of stable behavioral patterns that are
not entirely cooperative. The existence of this payoff band spectrum in turn leads to the
emergence of new ecological behaviors. For example, we see “band spiking” in which an
ecology abruptly moves from one payoff band te another and then back again, and “band
tunneling” in which an écology that has long resided in one payoff band suddenly traverses
to another payoff band and remains there.

The addition of choice and refusal to the Axelrod/Miller IPD game is motivated by an
interest in human interactions, particularly in the sexual partner selection process which
leads to the spread of AIDS and other sexually transmitted diseases [Hyman and Stanley
(1988)]. Not only do rates of sex and new partner acquisition influence the spread of
this epidemic, but the structure of the contacts determines who becomes infected. Current
models of the spread of AIDS typically assume that behavior is predetermined and responds
in exogenously determined ways to changing circumstances. This makes it difficult to
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understand the impact of intervention strategies, and to predict the conditions under
which particular types of sexual market places will arise.

The choice/refusal ecoloéy studied in this paper is a first step towards a model of AIDS
transmission in the context of an endogenously evc;llving social milieu. This is a long-term
development project in which elements of realism will be introduced one step at a time.
The current model focuses on a key feature essential for the final ecology: the possibility
of choice and refusal in social interactﬁons. _ ,

The relation of this paper to brevi_ous work on cooperation in IPD games is outlined
in section 2. Section .“3lréviews_‘the essential features of the basic IPD game set out in
Axelrod (1984), and extends this i_'ra._niewprkllt‘o include a choice/refusal mechanism. Sec-
tion 4 briefly describes some simulation experiments with an IPD game studied in Miller
(1989) which illustrafe the potential sensitivity of evolutionary IPD game outcomes to
the introduction of choice and refusal. An analytical study of single-tournament IPD/CR
games is undertaken in sections 5 and 6. These results are used in section 7 to provide a
more careful interpretation of various simulation results obtained for evolutionary IPD/CR
games. Conclﬁding comments are given in section 8.

2. RELATION TO PREVIOUS WORK

In a series of pathBreaJ{ing studies, Axelrod (1981,1984,1988) has explored the initial
emergencé a;id viability of cooperative behavior in the absence of either altruism or binding
commitments, using the IPD éame as a paradigm for social interactions. In each iteration,
each player plays one i)risbnér’s dilemma game with each other player in a fixed pool of
N players. The only possible choice for each player.in each two-player game is either to
cooperate or to defect, and both players must. choose simultanecusly.

As discussed by Axelrod (1984, Chapter 3) and by May (1987), the cooperative Tit-for-

Tat strategy is a collectively. stable strategy for the IPD game if the number of iterations

is either uncertain or infinite and the probability, that any two players meeting in a current
iteration will meet again in a future iteration is sufficiently high.? In an-IPD game with
a known ‘ﬁnit'e number of ite'ra.tions,‘howgvg;',‘-,tl:ooperatior_l is hard to sustain. Mutual
defection occurs in the final iteration of the game because no player foresees any future
gains to cooperation, and this typically leads by backwards recursion to mutual defection

3The Tit-for-Tat strategy is defined as follows: cooperate initially, and thereafter do what-
ever the other-player did in his previous move. A single-mutant:strategy introduced into a
pool of id.entica.l native strategies is said to invade the native strategy if the newcomer re-
ceives.a higher payoff from playing against a native strategy than a native strategy receives
from playing against another native strategy. "A.native strategy is said to be collectively
stable if no mutant strategy can invade it..




in every iteration.

A number of modifications have been proposed which permit the viability of coopera- -

tive strategies in IPD games even if the number of iterations is known to be finite. Kreps
et al. (1982) establish that mutual cooperation can be sustained in every iteration up to
some iteration close to the erid of the game if one player assigns positive probability to
the possibility that the strategy followed by the other player i is Tit-for-Tat. Thompson
and Faith (1981) and Hirshleifer (1987), among others, have shown that cooperation can
be sustained if players can credibly commit themselves to use retaliatory strategies in re-
sponse to defections by opposing players. Finally, Hirshleifer and Rasmusen (1989) use the
possibility of group ostracism to sustain mutual cooperation in all but the last iteration.
Empirical support for the cooperation-inducing effects of group ostracism can be found in
a case study by Barner-Barry (1986).

. Although such modifications do enhance the viability of cooperative strategies in IPD
games, a major difficulty remains. As pointed out by Axelrod and Hamilton (1981),
cooperative strategies cannot successfully invade a population of defectors playing the
basic IPD game unless the initial frequency of interactions between cooperative strategies
is sufficiently large. Consequently, it is difficult for cooperation to emerge spontaneously
from noncooperation in the basic IPD framework.

One limitation of many iterated game studies of social interaction which hampers
the emergence of cooperation is the implicit assumption that individual players have no
control over which opponents they play; see, for example, the models reviewed by Maynard
Smith (1982). Players either engage in a round-robin tournament—i.e., each player in each
iteration plays one game with each other player in a pre-determined set of players—or
games occur through random encounters. In actuality, however, social interactions among
organisms are typically characterized by the choice and refusal of partners rather than
by a random or deterministic matching mechanism. How do herds form for foraging and

protection? How do animals choose mates? How'do family and social structures protect -

cooperative players from noncooperative players? And how do humans choose their friends
and sexual partners? The question thus arises whether the long-run viability of cooperation
in the IPD game would be enhanced if players were more realistically allowed to choose
and refuse their potential game partners.

Conjectures along these lines have been explored by a number of previous researchers.
For example, in the context of a Darwinian fitness model, Eshel and Cavalli-Sforza (1982,
p- 1333) show that full cooperativeness is the only evolutionarily stable strategy if en-
counter probabilities are sufficiently biased in favor of meeting an individual using the
same strategy. Feldman and Thomas (1987) investigate conditions under which multiple
IPD strategies can coexist in a stable equilibrium, assuming the probability that a player
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stays in the IPD game depends either.on his own current play or on the current play of
his opponent. Dugatkin and Wilson, (1991) examine the ability of a roving always-defect
player to invade a Tit-for-Tat player popiilation that is partitioned into-“patches” of dif-
ferent externally-specified size and duration. Kitcher (1992) argues that altruistic play
(giving weight to the payoffs of other players) can evolve more readily in contéxts where
game play is optional and the possibility exists for taking'actions whose fitness effects are
independent of the actions of others. :

The present paper complements and extends this work by allowing players to choose
and refuse potential game partners on the basis-of continually updated expected payoffs.
Player encounters are thus determined by antlclpated rewards rather than by an encounter
probability biased towards cooperative behavior per se. Moreover, ostracism {(end of game
play) for noncooperative players occurs epdogengusly as an increasing number of players

. individually refuse their game offers.

3. THE BASIC IPD GAME WITH CHOICE AND REFUSAL

In this section we first review the essential features of the basic single-tournament IPD
game set out in. Axelrod (1984). We then extend. this framework to include a choice and
refusal mechanism. - (P

3.1 The Basic IPD Game

The prisoner’s dilernma (PD) game is.a game with two players. Each player has two
possiBle moves, “cooperate” or “defect,” and each player must. move without knowing
the move of the other player. If both players defect, each receives a payoff D. If both
cooperate, each receives a payoff C which is strictly greater than D. Finally, if one defects

- and the other cooperates, the cooperating, playér receives the lowest possible payoff B and

the defecting player receives the highest possible.payoff S; where B.< D <.C < S. For
reasons clarified below, the payoffs are also restricted to satisfy (S + B)/2 < C.

The dilemma is that, if beth pla.yers defect, both do worse than if both had cooper-
ated; yet there is always an incentive for an individual player to-defect. More precxsely,
the payoffs (C,C) achieved with mutual cooperation are higher than the payoffs (D, D)
achieved with mutual defection. Nevertheless, defection is the best response to any move
an opponent might make. The best response to defection is to defect; because this avoids
the-lowest possible payoff B; and the best response to cooperation is to defect, because
this achieves the highest possible payoff S.

The iterated prisoner’s dilemma (IPD ) game is a tournament consisting of the repeated
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(iterated) play of a round-robin of PD games at discrete time intervals. In each iteration,
each player plays one PD gamé with each other player in a fixed pool of N players. The
only information a player has about another player is the history of payoffs achieved in
previous game plays with that player. The restrictions on payoffs guarantee that the
players cannot escape their dilemma by taking turns exploiting each other. For any two
players, the average (per game) payoffs (C, C) achieved with mutual cooperation over the
course of the IPD game are higher than either the average payoffs (D, D) achieved with
mutual defection or the average payoffs ((S + B)/2,(S + B)/2) achieved with alternating
plays of cooperation against defection and defection against cooperation.

3.2 Introduction of Choice and Refusal

The IPD game with choice and refusal, henceforth abbreviated by IPD/CR, is an [PD
game with the added feature that players can choose and refuse game partners in each
iteration. A fixed pool of N players engages in a tournament consisting of indefinitely
many iterations. Each iteration; in turn, consists of five stages: (1) a chotce stage in which
each player makes PD game offers to a limited number of potential game partners with
high expected payoffs; (2) a refusal stege in which each player refuses PD game offers
with unacceptably low expected payoffs; (3) a play stage in which non-refused PD game
offers are played out as PD games; (4) a cleanup stege in which payoffs are calculated and
recorded for both active and inactive players; and (5) an update stege in which expected
payoffs are updated for active players on the basis of newly received payoff information.

The logical progression of the IPD/CR game will now be more fully described. At the
beginning of the first iteration 1, all players are assumed to assign the same initial ezpected
payoff 7° to each possible play of a game. Then, in each iteration i = 1,2,..., the five
component stages take the following form:

Choice Stage: Each player determines which other players are tolerable game p‘artners.
Given any player n, a player m # n is tolerable for player n in iteration ¢ if

7= (m|n) 2T, (1)

where m'~!(m|n) denotes the the expected payoff to n from playing a PD game with
player m in iteration i, and 7 denotes an exogenously given minimum tolerance level. If
the number of tolerable players for player n is no greater than an exogenously given upper
choice bound K, where 1 < K < N —1, then player n makes a PD game offer to each
tolerable player. If the number of tolerable players exceeds K, player n makes a PD game
offer to the K tolerable players m for whom his expected payoff wi(m|n) is highest. Ties
are settled by a random draw.



Refusal Stage: Each player then examines the PD game offers he has received. Any offer
coming from an intolerable player is refused, and any offer coming from a tolerable player
is accepted. Thus, a player gets to reject odious offers; but he cannot opt out of an offer
received from someone he has judged to be tolerable in the Choice Stage.

Play Stage: All non-refused PD game offers are played out ‘as PD games.. Even if there
are mutual offers between two players, only one PD game is played.,

Clean-up Stage: A player receives a rejection. payoff R for each PD game offer he made
in iteration i which was r.efti-sed, and a PD payoff (depepg;lixfg on the actual ‘-rpla.y of the
game) for each PD game offer he made or received in iteration i which was not refused.
An inactive player—i.e., a player who neither made nor accepted offers in iteration i—is
assigned a wallflower payoff W. Note 'that‘ a player makes no offers if and, c;nlx if he judges
all other players to be iﬁtol_aa_bl_e. o ) '

Update 'Sta,g;e: Consider any two players n and m. If n fieither made nor accepted a PD
game offer from m in the current iteration i} then n's expected payoff #'~1(m|n) for the -

play of a PD game with m in iteration 7 is trivially updated to
. 1 .

7i(mln) = 7' (m|n) ' ’ (2)-

for play in the next iteration 7 1. On the other hand, suppose player n either rx;ade a PD
game offer to m (who subsequently either accepted or réjécted it) or accepted a PD game
offer from m. In the former case, the payoff to n is either a PD payoff or the rejection
payoff R; in the latter case the pﬁ)‘roff to n is a PD payoff. In either case, let this payoff
be denoted by U. Then player n’s updated expected payoff for making a PD game offer
to player m in the next.iteration i 4+ 1'takes the form of a-weighted average over player n's
payoff history with player m,

7i(mln) = w7r'._51~(m|n)+(1-—‘w)U, ci (3)

where the memory weight w controls the relative weighting of distant to recent payoffs.*
Note that an increase in w implies anincrease in the weight put on past payofls relative
to current payofls, which in turn leads to more inertia in the partner selection process.

:‘This, mechanism for updating expected payoffs is a special case of “criterion filtering” —
Le., the direct updating of expected return functions on’ the basis of past return observa-
tions. Cz_‘1te'no§1' filtering is an operationally feasible alternative to'the indirect updating of
criterion functions’via Bayes” rule which, given an appropriate specification for the filter
weights, can yield ‘a strongly consistent estimate for the true expected return function; see
Tesfatsion (1979). ' T
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In summary, the choice and refusal mechanism for the IPD/ CR game is characterized
by the following six parameters:

Initial Expected Payoft: 70
Minimum tolerance level: r
Upper choice bound: K

Rejection payoff: R
Wallflower payoff: 114
Memory weight: w

At the end of the IPD/CR game, the overall success of each player is measured by his
average payoff score, calculated as the total sum of his payoffs divided by the total number
of his payoffs.’ .

It is assumed that players in IPD/CR games do not anticipate future conditions under
which PD game play with a current game partner could end, implying that they play each
PD game with another player as if the total number of PD gazi;es to be played with that
player is indefinite. Since the choice/refusal mechanism itself is exogenously determined,
this implies that players can then be distinguished from one another on the basis of the
rules they use to play an indefinite sequence of PD games with an arbitrary opposing
player, i.e., on the basis of their PD rules. As will be seen in section 5, below, a rich class
of PD rules can be represented as finite automata.

Note that the IPD/CR game reduces to the basic Axelrod IPD game in two cases:
either (i) K =N —-land7=0;0r (ii) K =N —1,w =1, and 7 < 7% In either case,
each player ends up playing one PD game with each other player in each iteration, i.e.,
each iteration reduces to a round-robin among the N players.

4. IPD WITH CHOICIE AND REFUSAL: AN ILLUSTRATION

An intriguing artificial life experiment run with prisoner’s dilemma is reported in
an evolutionary IPD game study by Miller (1989). A population of thirty finite automata
playing an IPD game were allowed to evolve by means of a genetic algorithm that used high
payoff scores as its selection principle. To illustrate the potential sensitivity of evolutionary
outcomes to the introduction of choice and refusal, this section briefly describes some
simulation results obtained for Miller’s evolutionary IPD game after the introduction of a

5In an IPD/CR game, the players have some degree of control over the number of PD
games they play—equivalently, over the number of moves they make—and players not
participating in PD games can still receive wallflower and rejection payoffs. Consequently,
average payoff per payoff made is used as a measure of overall success rather than total

payoff or average payoff per game.



choice/refusal mechanism: A more careful discussion of these results is given'in section 7,
following a preliminary analytical investigation of single-tournament IPD/CR: games.

We fifst implemented ‘our own vérsion of Miller’s experiment, without noise. As in
Miller, fifty successive téurnaments were conducted: Each tournament was separated from
the next by a genetic stép in which only the twenty most successful players among the
thirty automata constituting the ciirrent ‘player set were allowed to reproduce, resulting in
a modified player set of thirty automata for the next tournament. The fifty-tournament
run thus resulted in an “ecology” consisting of an evolved population of ‘thirty automata.

Each tournament in turn-consisted of one hundred and fifty iterations of round robin
PD games among thirty automata. The four possible per-game payoffs were B = 0 (for .
cooperating agdinst“ a defecting player), D =1 (for mutual defection), C' = 3 (for mutual
cooperation), and'S = 5 (for defecting against a.cooperating player). The entire run of fifty
tournaments separated by genetic steps was: repéated forty times to obtain forty distinct
ecologies.

Figure 1 shows, for each of the fifty tournaments, the average payoff score obtained
by the thirty automata over all forty ecologies. These results generally conform'to the
results obtained by Miller. Note the initial “dip” in the average payoff score. This dip
reflects the exploitation of some players by other ‘opportunistic players, until the implacable
forces of evolution eliminate the chumps. The upward progress seen thereafter is the-
result of cooperative but relatively 'unex__plbitable p‘laye'x.-s—-of'which Tit-for-Tat'is a'sterling
example—beating out the opportunists now that the ‘opportunists’ victims have died ott.

—Figure'l About-Here—

. .‘We then incorporated our choice and refusal mechanism into Miller’s experimental set
up. In Figure 2' we see the analogous diagram to Figure 1 for simulations of the resulting
modified Miller IPD game in which, in each iteration: (i) ;players have initially rosy payoff
expectations prior to play (7% = 3); (ii) each player makes a PD game offer to at most one
other preferred player (K = 1); (iii) received offers with expected payoffs greater than or
equal to 7 = 1.6 are played out, and received offers with expected payoffs less than this
value are refused; (iv) a ‘player whose offer is refused receives a rejection payoff R = 1;
(v) a player neither making nér accepting any offers-receives a wallflower payoff W = 1.6;
and (vi) players have reasonable but-not. excellent memories of their past payoff outcomes
(w=10.7). ' ' Co

—Figure 2 About Here—
It is interesting to note in Figure 2 that. the initial dip in average payoff st-:ore, seen
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in Miller’s experimental data has vanished. The Miller dip occurred because various nice
players were fatally exploited by predatory players, which lowered the average payoff score.
In contrast, in an IPD/CR. game it sometimes happens that players, exploitable in the
basic IPD game, can protect themselves via refusal of predatory players rather than dying,
and hence remain in the ecology indefinitely. One type of highly exploitable player is a
player whose PD rule closely approximates “always cooperate.” Such players can attain
high payoff scores when playing one another, and hence can dominate the genetic step
reproduction process when protected from predatory players by a refusal mechanism. As a
result, unlike Miller, an initial dip in average payoff score need not occur in an evolutionary
IPD/CR game.

While replicating Miller's work, we became curious about the behavior of individual
ecology payoffs. To this end, we plotted the average tournament payoffs for each of the
forty ecologies in our replication of Miller’s experiment and obtained Figure 3. As one can
see, nine of the forty Miller ecologies did not end in th(? cluster of essentially cooperative
ecologies, henice the standard deviation of average tournament payoffs across ecologies is
rather large.

—Figure 3 About Here—

Figure 4 gives the average tournament payoffs for each of the forty ecologies in the
choice/refusal experiment depicted in Figure 2. These payoffs display an interesting be-
havior when compared to the noise-like outlier payoffs obtained for Miller’s experiment in
Figure 3. Notice that two distinct payoff bands have now emerged, one close to 3 and the
other just below 2.8. The ecologies corresponding to the payoff band near 3 ultimately con-
sist of a single large group within which essentially random partner selection takes place.
In contrast, the ecologies corresponding to the payoff band just below 2.8 ultimately consist
of several small player groups whose members only choose to play one another.

—Figure 4 About Here—

We then raised both the minimum tolerance level and the wallflower payoff from 1.6
to 2.5. As depicted in Figure 5, this change results in the gain of a third tight payoff band.
The ecologies associated with this band ultimately consist of many players who neither
make not accept game offers, choosing instead to survive on the wallflower payoff.

—Figure 5 About Here—

As these examples indicate, the addition of choice and refusal to Miller’s original IPD

10
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experiment induces the formation of an interesting new ecological feature—the formation
of multiple distinct payoff bands. Somewhat at odds with our initial expectations, choice
and refusal do not merely speed up the emergence of cooperation; they also allow, in
some parameter regimes, the appearance of stable player interaction patterns that are not
entirely cooperative. '

5. SINGLE-TOURNAMENT 2-PLAYER IPD/CR GAMES

The simulation results presented in the previous section for an evolutionary IPD/CR
game are suggestive but preliminary. This section undertakes a n‘_fore careful analysis of the
role of choice and refusal in the simpler context of a single-tournament two-player IPD/CR
game. For such games, the upper choice bound X € {1,...,N — 1} is forced to equal 1
= N — 1. The following section 6 takes up the more general case of a single-tournament
N-player IPD game with K = 1. The results of sections 5 and 6 are then used in section 7
- to provide a more careful interpretation of the simulation resitlts obtained for evolutionary

IPD/CR games.

Since even a single-tournament two-player IPD/CR game can be very complicated to
analyze, we first describe six example player types. We then analyze single-toufnament
two-platyerr IPD games using various combinations of these player types.

5.1 Example Player Types

As discussed in section 3.2, players in IPD/CR games can be'identified with the PD
rules they use in playing an indefinite sequence of PD games with an arbitrary opposing
player. We will study the pairwise interactions of six types of players (PD rules): (1)
Always Defect (AlID); (2) Ripoff-Artist (Rip); (3) Gentle Ripoff (GRip); (4) Tit-for-Tat
(TFT); (5) Tit-for-Two-Tats (TFTT); and (6) Always Cooperate (AlIC).

These six players roughly span the.range from uncooperative to cooperative behavior.
With the exception of GRip, all of these players have previously been used in studies of IPD
games. GRip was invented in order to have a relatively subtle opportunistic- player who
initially appears cooperative, but who repeatedly sneaks in defections.after an opposing
player has built up a rosy payoff expectation.

Finite automaton representations for these six players are depicted in Figure 6, ordered
by their complexity. All six players make an-opening move, either cooperate () or defect
(d), and then enter state 1; this opening move is indicated next to the arrow entering state

1. Thus, GRip, TFT, TFTT, and AlIC initially cooperate, while AlID and Rip initially
defect. Lo TR o ' :
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—Figure 6 About Here—

Once one of the six players, say n, has arrived at a current state, his next move
is conditioned on the previous move of the opposing player. This move sequence then
determines a transition to a new state. A transition to a new state is indicated by an arrow,
and the move sequence(s) which result in this transition are indicated beside the arrow in
a move-slashmark-move format. The previous move of the opposing player appears to the
left of the slashmark and the next move of player n appears to the right of the slashmark;
i.e., moves are time-sequenced from left to right.

In particular, TFT begins by cooperating and then mimics whatever move his opponent
made in the previous PD game. Consequently, once in the initial state 1, two move
sequences are possible for TFT, either ¢|c or d|d, and each move sequence results in a
transition back to state 1; see Figure 6(a). The finite automaton representations for AlIC
and AlID are similarly straightforward; see Figures 6(b) and 6(c).

TFTT begins by cooperating, subsequently defects only if his opponent defects twice in
a row, and quickly reverts back to cooperation as soon as his opponent cooperates. TFTT’s
behavior is depicted in Figure 6(d) by a finite automaton with two states. Initially, TFTT
cooperates and enters state 1; and TFTT continues to cooperate and return to state 1
as long as his opponent cooperates. The first time his opponent defects, if ever, TFTT
cooperates but enters a new state 2. If his opponent then defects again, TFTT defects and
returns to state 2; but if his opponent cooperates, TFTT cooperates and returns to state
1. Thus, TFTT is less provocable than TFT, requiring two successive defections before
retaliating with a defection; but TFTT is equally quick to forgive as soon as the other
player is nice.

Rip is more complex than TFT or TFTT, requiring three states for its finite automaton
representation in Figure 6(e). Rip evolved in an evolutionary IPD game which included
TFT, TFTT, AlIC, and AlID in the initial player pool. Consequently, it is not surprising
that Rip takes advantage of TFT, TFTT, and AlIC, while protecting itself from AllD. More
precisely, Rip first tests the mettle of an opponent with a defection and enters state 1. If the
opponent ever defects, Rip cooperates and enters the “TFT” state 3, resulting in TFT play
for all further moves against this player. Thus, after first defecting and then cooperating,
Rip attains mutual cooperation with TFT, with other Rips, and with GRip, and mutual
defection with AIID. However, against opponents such as AllC and TFTT which never
retaliate after a single defection, Rip alternately cooperates and defects, moving from
state 1 to state 2 and back again. Rip thus takes advantage of the low provocability of
AlIC and TFTT—full advantage in the case of TFTT.

GRip is more complex yet, requiring four states for its finite automaton representation
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in Figure 6(f). GRip initially cooperates, but eventually GRip tries out a defection against
“nice” players. Against. TFTT and AlC, GRip cooperates for his first four moves; but
then GRip enters a 3-move cycle (d, c,c) while TETT and AlIC continue to cooperate.
Thus, like Rip, GRip rips off TFTT and AllC, although not as frequently. Against another
GRip,.each .GRip immediately enters. into a 5-move cycle (¢, c,c,c,d). Against TFT and
Rip, GRip ultimately enters a 5-move cycle (d ¢, ¢, ¢, ¢) against which TFT and Rip play
(¢,dyc,cyc). . ,

5.2 Analytical Results for Two-Player 'IP]I)/'CR games

An analytical study was undertaken of single-tournament two-player IPD/CR games
between-all possible pairs of players described in section 5.1. Table 1 presents the key
results from these studies; and Figures 7 and 8 highlight some of these results.

Reading the columns of Table 1 from left to right, we.have: (1) the player pairs; (2) the
players’ (updated) expeeted payoffs.at the end of iteration ¢; (3) sufficient conditions for PD
game play to.come to a halt in finitely many iterations; (4) the maximum (possibly infinite)
number :* of iterations during which PD games will be played (i.e., the last iteration before
either a refusal of a PD game offer occurs, or no PD game offers are made); (5) the player(s)
who would refuse any PD game offer made by the opposing player in iterations subsequent
to :*, if any; and (6) the average payoff score-of:each player in each iteration through i*.
The quantities in columns two through four and in column six are determined as functions
of the PD game payoffs and ‘the patameters describing the choice/ refusa.l mechanism.

The results in Table 1 are presented in normalized form. More prec:sly, the PD game‘
payoffs {B, D,C, S} and the initial expected payoﬁ' 7% are normalized by subtracting B
and dividing-by I).— B. The resulting normalized values are-indicated below as hatted
quantities: . . . , )

= ~ r C—-B . S§—-B z’ — B
B=0;D=1;C’=D_ S = DHB;W():D-—B' (4)
Thus, after normalization, the lowest possible PD game payoff B becomes 0, the mutual
defection payoff .D becomes 1, and the non-oscillation condition (S + B)/2 < C becomes
S/2 < €. This normahza.tlon decreases the number of parameters by two, and demon—
strates that the signs-of the payoffs are not important for the IPD/CR geme. However
since it _is not possible to normalize ¢ a.nd S any, further,-changing the relatlve distance
between the payoffs can have an effect. For. expositional simplicity, the ha.ts are dropped

from the normalized payoffs and initial. expected payoff in Table 1 and throughout the
remainder of this paper.. :

In obta.1mng the results presented in Table 1, we a.ssumed tha.t the xmtla.l expected
payoff 7° was not unrealistically high; but that it was thh enough to gua.ra.ntee that at
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least one game would always be played. Specifically, we assumed that 7 < 7% < 5. We
also assumed that the minimum tolerance level r was not unrealistically high or low, i.e.,
0 < r < C, and that the memory weight w satisfied 0 < w < 1. Finally, we dropped
the conditional player indexing on expected payoffs, since it is generally obvious who is
playing whom when there are only two players; subscripts are used for clarification when
necessary.

Before we discuss the specific results in Table 1, we demonstrate how they were ob-
tained by describing a couple of the calculations.

AUD versus AllD:

Suppose two AllD players are playing a two-person IPD/CR game. Since 7 < 7° by
assumption, both players make PD game offers to each otheér in the first iteration. In the

. subséquent play of the PD game, both players defect and receive a payoff of D = 1. Their

expected payoffs for the next iteration then take the form 7! =wr® 4+ (1 —w).
Suppose the players play 2 PD game in ¢ successive iterations, ¢ 2 1. They will then
each have an expected payoff of

r=wr 4+ (1 —-w)

: . 5

=w'n? + (1 - w?). (5)

PD game play stops at the end of iteration ¢ if and only if the expected payoff 7! drops
below 1, i.e., if and only if _

wrl+(1-w') < . " (6)

If 7 <-1, this inequality is not satisfied for any ¢, implying that :* = co. Suppose 1 < 7.
Then 1 < 7° must hold as well. Solving the inequality for ¢ then yields -

T—1 1 . )
ln(m)m < i (7N

Letting ¢* denote the smallest integer value of ¢ for which this inequality is true, i* is the
last iteration during which a PD game is played between AlID and AlID. For example, if
r =2, 7° =3, and w < 0.5, then i* = 1, implying that exactly one PD game is played.

If i* < oo, the expected payoff which AIlD associates with another play of a PD game
with AIID remains frozen at 7% < 7 for all i >'i*, and no more PD game offers are made.
Each player then simply receives the wallflower payoff in all subsequent iterations.

Note that an optimistically high initial expected payoff 7% will result in many PD
game plays (large i*) unless the memory weight w is small. That is, the specification of a

high initial expected payoff tends to encourage repeated play.
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Rip versus Rip:

Both Rips defect against each other on the first iteration, which results in an updated
expected payoff 7! = wr®4(1—w) for each player. If 7! < 7, they will stop playing without
rejection. On the other hand, if ! > 7, they will continue playmg forever, because they
will cooperate w1th each other on all PD games except the ﬁrst Thus, play between two
Rip players will stop after a finite number of iterations if and only if the first PD garne
results in an updated expected payoff x! < T, in which case ¢* = 1.

Rip versus AlIC or TFTT:

AllC and TETT always cooperate with. Rip, while Rlp alterna.tely defects and cooper-
ates. Without loss of generality, consider TFTT. TFTT receives C' i in even iterations and
0 in odd 1terat10ns while Rip receives C in even 1terat1ons and S in odd iterations. G1ven
any pa,yoﬁ's E and F', the expected pa.yof'fs when receiving alterna.tmg payoﬁ's of E in even
iterations and F' in odd iterations take the form

7 = wrt T L (1= w)E; 7P = wr? + (1 - w)F. | (8)
Solving these coupled difference equations gives
‘ - . 2 T
% = i 4 11 (B +wF) : (9)
and ' '2 -
, 1—
a2l = L0 T (E +wF) +(1-w)F. . : (10)

I(Cw)/(14+w) > 7, then TFTT and Rip never réfuse each other because their expected
payoffs remain greater than  in each iteration i. Consequently, i* = co. If (Cw}/(1 + w)
<tand 7® < C/(1 + w) the expected payoff of TFTT falls below = a.fter the first PD
game play with Rip: 7! = wr® < (Cw)/(1 +w) <'r. Thus i* =1.

Finally, suppose (C’w)/(l + w) <7 and C/(1'+w) < 7% In this case the expected
payoff of TFTT falls below 7 in the'first odd 1tera.t1on 2¢ + 1 that sa.tlsﬁes

T(1+w) Cw 1
i l (1r°(1+w) C')l (w)

<2+1. - (11)

Using the: d1ﬁ'erence equa.tlon (9)y together .with- the: assumption that ™ '<-C, it can be -
shown that the expected pa.yoﬂ" of TFTT in all previous even iterations is still greater than
7.* Moreover, for all previous. iterations through this. odd iteration, the expected payoff of
Rip exceeds 7, implying that Rip has never refused. TF'TT. Consequently, this odd iteration
gives 1*, the iteration of last PD game play between Rip and TFTT.

a s
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Once TFTT begins to refuse Rip, Rip receives the rejection payoff R. The expected
payoff for Rip is updated according to the equation

7h =w ah +(1—w™)R. (12)

If R > 7, i, never falls below 7, and Rip will receive the rejection payoff in each subsequent
iteration. If R < 7, Rip will stop choosing to play TFTT when 7% declines below 7.
Thereafter, both players will receive the wallflower payoff.

Play Stoppage Conditions:

Examining the third column in Table 1, we see that the minimum tolerance and mem-
ory parameters 7 and w play a crucial role in determining whether or not play eventually
stops for our six player types. Figures 7(a) through 7(c) show the regions of the w —
plane in which play stoppage occurs for AlID, Rip and GRip, respectively, in IPD/CR game
play with other player types. These regions are determined for the particular parameter
specifications 7 =C =3 and § = 5.’

—Figure 7 About Here—

Note that some results are determined by r alone, regardless of all other parameter
and payoff values:

7 > 1: Play stops for all two-player IPD/CR games involving AllD;
T < 1: Play never stops for AllID v, AlID, Rip v. Rip, or GRip v. GRip;
7 > 0: AlIC eventually refuses AlID,

When memory fades quickly, i.e., when w is small, defection can trigger refusal by fairly
tolerant players despite a long history of mutual cooperation or a high initial expected
payoff. For example, as seen in Figure 7(c), Rip eventually refuses GRip for small enough
w (if GRip has not already refused Rip) even for minimum tolerance levels T less than the
mutual defection payoff D = 1. Note that the line demarking when Rip refuses GRip is
independent of =°. _

If defections occur ea.rly'and then stop, play behavior depends critically on simple
relationships among the minimum tolerance level 7, the memory weight w, and the initial
expected payoff #°. A high initial expected payoff 7° tends to decrease a player’s sensitivity
to early defections, whereas a low memory weight w tends to increase his sensitivity to early
defections by downgrading the importance of the initial expected payoff in all subsequent
updated expected payoffs. Thus, for example, a defection on the first iteration will result
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in a refusal in the next iteration by any opposing player who: (i) cooperated in the first
iteration, if (w, ) lies above the line 7 =-wx? in the w — r plane;.or (ii) defected in the first
iteration, if {w, 7) lies above the line 7 = w[x? =1} +1 in the w — 7 plane. Consequently,
the lower the initial expected payoff x°, the larger is the (admissible) region in the w — 7
plane over which Rip, TFT, and GRip will play only one'PD game with any player who
defects in the first iteration.

The fourth column of Table 1 highlights another interesting characteristic of two-player
IPD/CR games: the maximum (possibly infinite) number of iterations during which PD
game play will take place; denoted by i*. Figure 8 depicts regions of the (1 —w) — 7 plane
where the iteration number #* takes on a constant value, conditional on 7% = C = 3 and
S = 5, for various player pairs. In each case, the region where :* takes on its smallest
value is the largest region, and the regions get ever smaller as ¢* increases. In general, the
regions where i* takes on large but finite values are very small indeed; that is, for most
player pairs, intolerance (play stoppage) either occurs after only a few iterations, or it does
not occur at all.

'—Figuré 8 About Here—

Recall that, given )X = N — 1, the IPD/CR game reduces to the IPD garmie if either
7=0orw =1 and 7 < 7% The analytical results of this section indicate that, near these
boundaries in parameter space, the IPD/CR game with K = N —1 will behave much
like the IPD game: either players will play each other forever without refusal, or they will
play many PD games before refusal. However, as T increases and for w decreases, refusal
becomes more likely, and we move away from the IPD game.

Generic Results:

5

Certain parameter regimes can be dlrectly a.ssoc:a.ted with part1cula.r types of play be-
havior. In section 7, below, these parameter regimes will be used to help predlct and explain
the ultimate outcomes in our-evolutionary (multi-tournament) IPD/CR game simulations.
The most important parameter regifne is when any defection against a cooperation results
in future refusal by the cooﬁerating player. The next most important regime is wher any
defectlon results in immediate play stoppage. - | _

If the first defection in a two-player tournament occurs on 1tera.t10n t, with one player
cooperating and the other defecting, ‘the cooperating player ‘will refuse further play if

r>witt el —Wthe (13)
Examining this inequality, we see that if 7 > max{w=?,wC}, then any defection at anir time
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against a cooperation results in immediate refusal to play. For example, in the evolutionary
simulations illustrated in section 4 and detailed in section 7, below, we set #% = C = 3
and w = 0.7; and for these fixed parameter values, defections against cooperatmn are not
tolerated for any minimum tolerance level 7 greater than 2.1.

If instead the first defection is mutual, both players will stop choosing each other if

>’ ol —w N0+ 1 —w. ‘ (14)

Comparing (14) with (13), we see that eny initial defection results in refusal to play if 7 >
(1 —w) + max{wn®,wC}. In particular, for ¥ = C = 3 and w = 0.7, any initial defection
results in immediate play stoppage if 7 > 2.4,

6. SINGLE-TOURNAMENT N-PLAYER IPD/CR GAMES

The analysis in section 5 describes the characteristics of various representative two-
player IPD/CR games with K = 1. This two-player analysis can be extended in a straight-
forward way to analyze any N-player IPD/CR game in which K = N — 1. Given this
specification of K, each player chooses to play a PD game with every tolerable player in
each iteration, implying that the N-player IPD/CR game decomposes into a collection of
N(N —1)/2 two-player IPD/CR games of the type analyzed in section 5. Consequently,
setting K’ = N — 1 trivializes the role of choice in the determination of PD game partners;
it is refusal which is critical.

On the other hand, when the number N of players is greater than 2 and K is less

- than N — 1, players will not necessarily choose to play all tolerable players during each

iteration. Choice then becomes more important, and one would expect to see choice
and refusal working together in a more subtle fashion. In fact, as we shall see, in many
interactions choice is much more important than refusal.

The outcomes of N-player IPD/CR games can be cha.racterlzed ina number of different
ways, including the average payoft scores both for individual players and for the entire
ecology, the fraction of garﬁe plays of each type, and the formation of long-run player
interaction patterns. For example, who ends up playing whom when a steady state is
reached, if ever? To what extent is the ultimate steady state ecology characterized by
a hierarchy of social cliques, ranging from high-status player groups which everyone else
would like to join, all the way down to ostracized individual players whom all other players
avoid?

In order to see how play in a multiple-player tournament proceeds, and how long-run
player networks form, consider an illustrative 5-player IPD/CR game with three TEFTT
players and two Rip players played for infinitely many iterations. As in section 5.2, let
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payoffs be normalized so that B = 0 and D = 1. For simplicity, suppose that each player
can choose at most one potential game partner in each iteration (K = 1), that the initial
expected payoff, common to all players, is 7y = C, that the wallflower payoff W coincides
with the minimum tolerance level 7, and that the rejection payoff R does not exceed 1.
Finally, assume that when a player needs to choose among partners with the same expected
payoff, the choice is made by a random draw. Since the initial expected payoff #° is the
same for all potential partners, this implies in particular that each player chooses each of
the other four players as a potential first partner with probability 1/4.

Recall from section 5 that two TFTTs always cooperate, and that a TFTT receives
a payoff sequence (0,C,0,C,...) in an IPD game with a Rip. Moreover, a Rip receives
a payoff sequence (S5,C,S,C,...) in an IPD game with a TFTT, and a payoff sequence
(1,C,C,....) in an IPD game with another Rip. Observe, also, that #° = C implies
Cw/(l+w) < wr? +(1—w). Consequently, there are three possible parameter regimes for
this 5-player IPD/CR game. If 7 < Cw/(1 + w), all players remain tolerable to all other
players. If Cw/(1 +w) < 7 € wn® + (1 —w), Rips are eventually refused by TFTTs, but
remain tolerable to each other forever. And if 7 > wn® + (1 — w), Rips are refused by
TFTTs after only one PD game, and they also find each other mutually intolerable after
only one PD game. What happens in each of these three parameter regimes will now be
described in more detail.

Case I: 7 < Cw/(1 +w)

In this case no player ever refuses to play another player in repeated PD game plays.
Play eventually stabilizes in one of two possible player interaction patterns. In both cases,
each TFTT chooses randomly in each iteration between the other two TFTTs, and each
Rip chooses to play one TFTT repeatedly. But in one case the two Rips both repeatedly
play the same TFTT player, while in the other case they each repeatedly play different
TFTT players. Which network formis is determined by the particular realizations of the
random draws used to break expected payoff ties in the first few iterations.

We will now look in greater detail at the sequences of plays. First note that the
probability that the two Rips ever play each other is 7/16, the probability that they play
each other in the first iteration. This occurs because both Rips defect if they play each
other in the first iteration, implying that their expected payoffs from playing each other
decrease below C. Since each Rip always has an expected payoff of at least C' from any
TFTT, each Rip then chooses a TFTT in all future iterations. On the other hand, if the
two Rips do not play each other in the first iteration, each Rip plays a PD game with a
TFTT and receives a payoff of S. The expected payoff for playing additional PD games
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with this TFTT-is then larger than C, and the Rip prefers this TF'TT to all other players, |
including the other Rip. In any subsequent PD game with this TFTT, it receives either C
or S, and its expected payoff from this TFTT remains above C. From then on it always
prefers the TFT'T that it played in the first iteration to the other Rip; hence, while it may
eventually learn to prefer a different TFTT to the first one it played, it always chooses a
TFTT. Since neither Rip chooses the other Rip after the first iteration, they never play
each other unless they do so in the first iteration.

The expected payoff that a TFTT has from another TFTT stays at C. The expected
payoff that a TFTT has from a Rip is also C until the TFTT first plays that Rip, after
which it is less than C no matter how many times the TFTT plays that Rip again. A
TFTT therefore chooses randomly among all players until he encounters a Rip (either
because he makes a PD game offer to a Rip or because he receives a PD game offer from a
Rip). If enough games are played, a TFTT eventually plays both Rips at least once. Once
a TFTT plays a Rip, it never chooses that Rip again; but the Rip may choose the TFTT
on future plays. | '

Rips may oscillate among different TFTT game partners for several iterations, but
eventually each Rip settles into playing only one particular TFTT. Which TFTT each Rip
ends up playing is a matter of chance.

For example, suppose that Rip #1 by chance plays TFTT #1 in the first iteration and
gets S. He then chooses TFTT #1 again in iteration 2, and gets C. If TFTT #2 by chance
chooses Rip #1 in iteration 2, Rip #1 gets S from TFTT #2, and so chooses TFTT #2 in
iteration 3. After getting C from TFTT #2 in iteration 3, Rip #1 is indifferent between
TFTT #1 and TFTT #2, but prefers either of these TFTTs to the remaining TFTT #3.
If TETT #3 by chance chooses Rip #1 in iteration 3, Rip #1 then prefers TFTT #3
in iteration 4 and subsequently chooses randomly among all three TFTTs in iteration 5.
Since Rip #1 receives S from the TFTT it choses in iteration 5, and the other TF'I'Ts
never choose Rip #1 again, Rip #1 chooses this iteration 5 TFTT in all future iterations.
This particular sequence of events is depicted in Figure 9.

—Figure 9 About Here—

Note that each Rip in the long-run player interaction pattern has a higher average
payoff than any TFTT. The average payoff of a Rip eventually approaches (S +C)/2 > C,
as a result of the successful long-run parasitic relationship established with a TFTT. On
the other hand, the average payoff for any TFTT who is playing only other TFTTs in the
final network approaches C from below as the number of iterations increases; the average
payoff for TFTTs playing one Rip are lower than this; and TFTTs playing two Rips do
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the worst. .

In summary, in case I the low minimum tolerance level allows each opportunistic Rip
player to find and exploit a nice TFTT player while avoiding the other Rip. Moreover, not
all TFTT players achieve the same average payoff: at least one TFTT player will manage
by chance to -avoid Rip parasites, and at least one will not. Co

Case IL: Cw/(1+4w) < 7 < wn® + (1 — w)

In this case a TFTT eventually refuses a.‘Rip in repeated PD game playé, but Rips
remain tolerable to each other. The players thus eventually break into two groups, one
consisting of the three TFTTs and the other consisting of ‘the two Rips. Average-payoffs
approach the mutual cooperation payoff C for all players.

How'loné; the final network takes. to form depends on the ma;gﬁ.i'tudia of 7. If 7 is close
to the lower bound Cw/(1 -[--fu), then the pattern from case I holds until the payoffs that
TFTTs expect from Rips all drop below 7. Orice this occurs, Rips begin receiving rejection
payoffs R from TFTTs. Eventually the Rips stop choosing the TFTTS arnd settle on each
other. On the other hand, if 7 is large enough (see section 5) TFTTs refuse Rips after only
one PD game and the long-run player interaction pattern gels after only a few iterations.
The reader is referred to Stanley et al. (1992) for further deta.lls ,

Note that the TFTTs primarily use refusal. to protect themselves from Rzps and use
choice to rotate among each other. Rips ar_e.able to take adyantgge of TFTTs only for a
limited number of iterations. Ultimately, if the tournament lasts long enough, each Rip is
refused by all TFTTs, and the Rips end up choosing to play only ,v\lr_i‘th each other. .

Case IIL: wr® + (1 — w) <T

In this case, recalling the analysis of ‘two- player IPD/ CR games in sect1on 5.2: (i) a
Rzp never refuses a TFTT in repea.ted PD game plays; (i) 'a TFTT refuses a Rip after
only one PD game play (since 7! = wr® < 'r), and (iii) ‘a Rip refuses another Rip after
only one PD game play. The final player interaction pattern is the” group of TFTTs and
two ostracized Rip players. Average payoffs approach the mutual cooperation payoff C for
the TFTTs and the wallfiower payoff W for the Rips. Choice plays almost no role, and
refusal works so strongly that Rips never discover that- they could-receive C’ from: repea.ted
pla.ys with each other in all but the ﬁrst PD ga.me play. .

The role of1r : S e

Suppose the initial expectated payoff 70 in.the 5-player IPD/CR game described above
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is less than C. Then, once a TFTT choses to play another TFTT, he never chooses to play
a Rip in any future iteration. Lowering the initial expected payoff thus cools the system
in the sense that exploration is reduced. Rips behave the same as before.

If the initial expected payoff #° is greater than C, the long-run player interaction
patterns are unchanged. However, each TFTT chooses to play each other player at least
once by iteration 5, and plays more PD games with Rip. Morever, the region in the w — 7
plane where Rips refuse each other is smaller than before. Thus, as one would anticipate,

increasing the initial expected payoff results in increased exploration.

7. EVOLUTIONARY IPD/CR GAMES

This section describes the software used to run the evolutionary IPD/CR game sim-
ulations briefly reported on in section 4, and provides a more careful discussion of the
simulation findings.

7.1 Software and Hardware

The software used to replicate the experimental results of Miller (1989), and to modify
Miller's framework to include a choice and refusal mechanism, was developed in Turbo
Pascal 5.5. We used the random number generator included with the Pascal compiler.
The actual runs were done on a number of machines, all 80386-based PC-compatibles with
80387 coprocessors.

Our algorithm is initialized with thirty finite automata of the sort described and illus-
trated in section 5.1. Each automaton possesses sixteen states and a uniformly distributed
random assignment of state transitions, indicated by arrows, together with an initial move
and allowable move sequences appearing as arrow labels. Each automaton has access to
the values for the parameters (7°,, K, R, W,w) characterizing the choice/refusal mecha-
nism, and has a memory comprising: (i) its play history with each other automaton; and
(ii) its current expected payoff for a PD game play with each other automaton.

The thirty automata take part in an evolutionary IPD/CR game consisting of fifty
successive single-tournament IPD/CR games separated by genetic steps. Each single-
tournament IPD/CR game (or “tournament” for short) consists of one hundred and fifty
iterations, where each iteration constitutes one pass through the five-stage choice and
refusal mechanism described in section 3.2. In the genetic step at the end of each tour-
nament, the current population of thirty automata is replaced via reproduction by a new
population of thirty automata. Each run of the evolutionary IPD /CR game thus results
in a distinct “ecology” consisting of an evolved population of thirty automata.
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The genetic step separating successive tournaments ‘pr'oceeds as follows. First, the
automata are sorted by the .average (per payoff) payoff score they achieved during the
previous tournament. Second, as in Millet:(1989), the ten automata scoring the worst are
discarded and-the twenty automata scorirg the bést afe retained. Finally, the ten emptied
slots are-filled by “sexual reproduction” of the best twenty automata, with “mutation” of
the resulting offspring. The resultirg thirty finite automata then constitute the genetically
altered population of players for the nekt tournament. :

~ The “sexual réproduiction™ is-accomplished as follows: First, take the initial move (one
'bit)', 32 arrows (each arrow represerited by-four bits to describe the “next state”), and 32
arrow labels (one bit each) of each automata and turn them into a bit string 161 bits
long.® Second, select two automata to be parents, where each automaton’s probability of
selection is directly proportiéna.l to the average payoff score-it received in the preceding
tournament. Third, gen:eré,te,a. random variable ¢ distributed uniformly over the discrete
range 1,2,...,,161. Fourth, exchange the bits in positions g through 161 of thé‘parenta,l
bit strings to obtain the bit strings for two offspring. Finally, repeat the second and third
stages for five pairs of parents, thus obtaining five pairs of offspring,.

“Mutation” simply consists of flipping the value of each of the bits of each offspring’s
bit string with probability five in one thousand. Once the final bit string for any offspring
is obtained, reverse the bri'ginal conversion process from automaton to bit string to obtain
the finite automaton representation for the offspring. '

7.2 Sirnulzition Results

Based on the analysis in section 5.2, we _degigiga_d to focus on the role of the minimum
tolerance level 7. In all reported experiments, below, we use the following fixed PD game
payoff specifications, - -

B=0; D=1;C=3% S=5, (21)
and we set . -
.1 =3; K=1;, R=1; w=0.7. | © (22)

The wallflower payoff W is always set equal to 7. Forty runs are carried out for each tested
7 value to allow for stochastic variability.

?A:‘bi’t can take on only two values, 0 or 1. A string of four bits can therefore represent
2*=16 different states. The arrow labels reqtiire only one bit, which-encodes the current
move to be made in response to a previous.move of an opponent, because the information
about the previous move of an opponent is.coded by position in the string. The finite
automator and bit string representations used in this paper differ from 'the representations
used in Mijller (1989). ' - .

-
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Figures 10 through 13 display some of the simulation results obtained for a fifty-
tournament evolutionary IPD/CR game as the minimum tolerance level T was set at 0.5,
1.5, 1.6, and 2.4, respectively. More precisely, each figure displays the following information
for the indicated T value: (a) individual ecology payoff trajectories obtained for forty
different runs of the fifty-tournament game; (b) the ecology payoffs obtained for each of
the fifty tournaments, averaged across the forty runs; and (c) the fraction-of various types
of play behavior (mutual cooperation CC, successful defection C D, mutual defection DD,
and rejeétion RJ) exhibited in each of the fifty tournaments, averaged across the forty
runs. Figure 14 highlights characteristics of the ecologies associated with the lowest payoff
band appearing in Figure 13(a).

As will be clarified in the following discussion, Figures 10 through 14 illustrate many
of the interesting results of our simulation study. A more detailéd discussion of these
results can be found in Stanley et al. (1992). A complete data sef, together with the
PC-compatible software needed to view it, is available; please contact the second author
for information.

—TFigure 10 About Here—

Consider, first, the payoff band patterns exhibited by the payoff trajectories for indi-
vidual ecologies in Figures 10(a) through 13(a). Given 7 = 0.5 [Figure 10(a)], we see many
of these trajectories clustered into three payoff bands at heights of roughly 3.0, 2.8, and
2.3, as well as a fairly large number of trajectories in no apparent band. This is typical of
the runs with low 7 values. Band formation seems to be primarily a choice-moderated phe-
nomenon. Payoffs with no apparent band association become more common with decreases
in 7, hence with decreases in rejections; but payoff bands still form even at T = 0 where
all rejections cease. Notice [Figure 10(c)] that the fraction of rejections RJ is effectively
zero for 7 = 0.5. :

As T increases to 1.5 and to 1.6 [Figures 11(a) and 12(a)}, two of the three payoff
bands persist; but the lowest payoff band at level 2.3 is only faintly apparent at best.
Fewer ecology payoffs lie outside of a payoff band, and those that do lie outside appear to
be either on their way into or out of a band. As 7 further increases to 2.4 [Figure 13(2)],
the payoff band at 2.3 disappears altogether, the payoff ‘band at 2.8 becomes extremely
sparse, and a new payoff band arises in the vicinity of 2.1. The ecologies with payofifs lying
in the latter “wallflower isolation” band consist of players that engage in mutual defection
until they are rejected by all other players, and that thereafter collect the wallflower payoff
W = 2.4. [Recall that the wallflower payoff W is always set equal to the mirimum tolerance
level 7.] A moment’s reflection suggests that such play behavior is perfectly reasonable,

24



[

given the high value for the wallflower payoff. Characteristics of these wallflower isolation
ecologies are separately displayed in Figure 14. - . I

Preliminary analysis of the genetic diversity of ecologies in the terminal (fiftieth) tour-
nament has been undertaken in an attempt to obtaifl a better understanding of this payoff
band phenomenon. As noted above, payoff bands occur at levels 2.3 and'2:8 for relatively
low 7 values, and the terminal ecologies associated with &ach of these payoff bands appear
to split’into two genetically distinct.groups. One group has a.relatively low genetic diver-
sity; that is, each ecology in this group is dominated by players with identical or.closely
related finite antomaton structures, leading to. highly synchronized play behavior: The
stable average payoff behavior exhibited by this group is intuitively understandable; for
a synchonized pattern of play can result in fixed fractions of distinct play behaviors, and
hence in a roughly constant average payoff. The other group of ecologies has a relatively
high genetic diversity, and the stable averagé payoff behavior exhibited by this group is
harder to understand. The terminal.ecologies associated with the mutually cooperative
payoff band 3.0 and the wallflower isolation band are not as strongly bimodal as the ecolo-
gies associated with the middle bands 2.3 and 2.8. ]

The payoff trajectories for individual ecologies exhibit other interesting features as
well. For 7 < 2.1, a number of ecologies exhibit an abrupt payoff c¢ollapse, a feature also
present in the Miller replication results.: For example, one of the payoff trajectories depicted
in Figure 10(a) abruptly collapses in generation 15 to a level well below that of all other
trajectories, after which it slowly recovers. Examining in detail the ecology associated with
this particular payoff trajectory, we saw that a spike oécurred in the fraction of successful. -
defections on the downward leg of the collapse, mutual defection became the dominant -
mode of play at the bottom of the collapse, and successful defection again became frequent,
during the subsequent payoff recovery. Note that the payoff of this ecology is roughly
stable over generations 24 to 30 at the level 2.5, the average payoff level obtainé_d by IPD
players engagingin alternating ed and dc-play; but the ecology payoff level subsequently
climbs to the mutually cooperative payoff level 3.0.

It is also possible for ecologies: to collapse to, and remain at, low payoff levels for an
extended period of time. A dramatic éxample. appears in Figure 11(a), where an ecology
suffers a payoff collapse at about generation 22 and remains below the payoff level 2.0 for
the remainder of the simulation.

“Band spiking” is another interesting feature exhibited -by the payoff trajectories for
individual ecologies for-r < 2.1. .An ecology. sometimes exhibits an -abrupt jump from
one payoff band to another, fo@lo’wed by an abrupt jump back to-its original payoff band.
Preliminary. evidence suggests that this spiking might be caused in part by the following
type of population dynamics.” Suppose: the average payoff achieved by a type A player
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is higher than that of a type B player as long as type A players are rare, but that the
average payoff of type A players drops below that of type B players as type A players
become more prevalent in the population due to reproduction or fortuitous crossover. The
ecology payoff might then systematically oscillate between the type A and type B payoff
levels. When an ecology of this type was saved and used to “seed” a set of forty new runs,
the resulting payoff trajectories exhibited a great deal of spiking.

In addition, the payoff trajectories for individual ecologies exhibit “band tunneling,”
particularly for high 7 values. That is, ecologies that have been long-term residents of one
payoff band suddenly exhibit an abrupt change in the gradient of their payoff score, followed
by a rapid and smooth traverse to another payoff band. For example, in Figure 13(a) a
number of ecologies tunnel directly from the wallflower isolation band to the mutually
cooperative payoff band at 3.0; and one ecology tunnels from the wallflower isolation band
to the payoff band at 2.8, remains at this payoff band for fifteen generations, and then
tunnels to the mutually cooperative payoff band. These tunneling events appear to be
correlated with the fraction of rejections. That is, as the fraction of rejections increases for
an individual ecology, the payoff level of the individual ecology increases; and the fraction
of rejections recedes as the ecology merges into a new payoff band. In addition, partial
tunneling events also take place. For example, in Figure 14(a) an ecology rises out of the
wallflower isolation band between generations 15 and 20, but then rapidly recedes back
into it.

The properties displayed by average ecology payoffs are also interesting. Comparing
Figure 10(b) with the replicated Miller results reported in Figure 1, the average ecology
payoffs obtained for the low minimum tolerance level 7 = 0.5 display less of an initial
dip than in the Miller replication, and do not attain as high an ultimate payoff level.
These differences can be traced to the emergence of new payoff bands. As seen in Figure
10(a), these new bands are at low enough levels, and contain enough ecology payoffs, to
decrease markedly the average payoff across ecologies. While a substantial fraction of the
individual ecology payoff trajectories appear to converge—indeed, as many as in the Miller
replication—many of these trajectories do not converge to the mutually cooperative payoff
level. For low 7 values, the evolution of cooperation is in fact retarded as compared to the
Miller replication.

When 7 is increased to 1.5 and to 1.6, the initial dip in average ecology payoffs com-
pletely disappears and the evolution of cooperation is substantially accelerated [Figures
11(b) and 12(b)]. Moreover, the fraction of CC play behavior markedly increases [Figures
11(c) and 12(c)]. The minimum tolerance level 7 is now high enough to give the refusal
mechanism some teeth. As 7 continues to increase, however, the wallflower isolation payoff
band eventually appears. The initial average ecology payoffs begin to flatten out again
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and, by 7 = 2.4, an initial dip has reappeared [Figure 13(b)]. This dip is smaller than for
the Miller replication and has an entirely different cause. Rather than representing the
destruction of chump players by rapacious players, the dip results from the early formation
of wallflower isolation ecologies which drag down the initial average ecology payoffs.

Finally, the fractions of distinct play behavior exhibited under different T values are
also of interest [Figures 10(c)-13(c)]. These fractions appear to undergo a phase change
around 7 = 2.1. For 7 < 2.1, the simulation runs settle to a state where, on average,
three types of PD game play behavior persist. The most common behavior is mutual
cooperation C'C, followed by mutual defection DD, and then by successful defection CD.
For 7 > 2.1, however, successful defection effectively vanishes after the first few generations
of players. This finding is predictable; as noted in section 5.2, for > 2.1, any successful
defection results in the refusal of all future PD game offers. Mutual defection also becomes
less common, appearing primarily in those ecologies constituting the wallflower isolation
payoff band [Figure 14(c)].

8. CONCLUDING REMARKS

The incorporation of a choice/refusal mechanism into the standard IPD framework
has resulted in the emergence of several new ecological features. First, even without
evolution, choice and refusal permit a broader range of interactions between mutually
cooperative players, between potential hosts and would-be parasites, and between like-
minded opportunists: for example, internally generated ostracism, persistent parasitism,
and assortative partner selection. Second, with evolution, choice and refusal can accelerate
the emergence of cooperation. More generally, however, choice and refusal can lead to
the emergence of multiple tight payoff bands, reflecting the possible existence of multiple
ecological attractors. The existence of a spectrum of payoff bands in turn permits the
emergence of interesting new ecological behaviors, such as band spiking and band tunneling.

We hope to obtain a better quantitative understanding of these new ecological features
as we undertake more elaborate studies of our choice and refusal mechanism. For example,
1t now seems clear that the genetic diversity of an ecology should be tracked throughout
each simulation run, and that more detailed records should be maintained concerning which
types of ecologies exhibit band spiking, band tunneling, and payoff collapse. At present, we
have examples of ecologies that belong to the various payoff bands; but only the mutual
cooperation and wallflower isolation payoff bands are well understood. The emergence
of the middle payoff bands remains somewhat mysterious. We are currently conducting
extensive sensitivity studies in order to ascertain the conditions under which these middle

payoff bands form. Preliminary studies suggest that the number of automaton states used
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by players in their interactions with other players is an important factor affecting the
formation and stability of these bands.

In addition, a number of revisions to our model and methods are currently under
consideration. For example, the minimum tolerance level 7 and the initial expected payoff
7%—both currently set as fixed exogenous constants—should instead be allowed to evolve
over time along with the structure of the PD rules. As seen in both the analytical and
simulation studies reported here, higher levels of 7 result in increased resistance to parasitic
relationships; and differing resistance to parasites has been conjectured as one reason
why populations divide into smaller reproductive groups [Rennie (1992)]. Moreover, 7°
turns out to be a critical parameter that affects both the willingness of players to tolerate
defections and the willingness of players to seek out new potential partners.

Also, using a fixed convex combination of past expected payoff and current payoff in
order to obtain an updated expected payoff is too simplistic, even in the present context in
which players know nothing a priori about other player types. For example, surely a player
could learn, through observation, that the current move of an opponent is functionally
dependent on the previous move he made against that opponent. The memory weights
used to obtain updated expected payoffs could reflect this dependence. For example, if
a player’s previous move against a current opponent was ¢, the updated expected payoff
for this opponent could be a weighted average only over all past payoffs obtained under
the same circumstance, i.e., obtained when the previous move against this opponent was
c. Moreover, once a player learns that his current moves affect the later moves of other
players, deliberate attempts to modify these later moves become possible.

Finally, the analysis of individual finite automata is difficult and time consuming. We
are currently attempting to develop automatic methods for detecting unusual or interesting
play behavior. We are also attempting to adapt some of the techniques of systematics
from evolutionary biology in order to develop better descriptive methods for studying our

artificial ecologies.
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FIGURE 3
Individual Ecology Payoffs for the Replicated Miller Game
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FIG. 7(a): A player eventually finds AlID intolerable in an IPD/CR game play
if 7 and w lie in the region above the curve, 1nd1cated for this player s type. [AlID
is always eventually refused by AllC] The parameter 'values: are ‘B=0,D=1,
C=3,5=5, and1r—3 L _ :
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FIG. 7(b): A piayer eventually finds Rip intolerable in an IPD/CR game play if
7 and w lie in the region above the curve indicated for this player’s type. Play
stops between two Rips by mutual assent; but, in the other indicated cases, Rip

is eventually refused, The parameter values are B=0,D=1,C =3, § =5, and
70 = 3. '
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FIG. 7(c): A player eventually finds GRip intolerable in an IPD/CR game play
if 7 and w lie in the region above the curve indicated for this player’s type. . The
parameter values are B=0,D=1,C=3,5=5,and7n°=3. .
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FIG. 8(a): The total number of PD games played in a 2-player IPD/CR game
between ANID and TFTT before play stoppage, as a function of 7 and w. The
number i* gives the last iteration during which a PD game takes place in a region.
The other numbers indicate the maximum number of games played in a region.
Each region includes its upper boundary line but not its lower boundary line.
Except for the top boundary line, all boundary lines cross each other exactly
once, at w = 1/v/3 and 7 = 1. The d/c move sequence in the first two iterations
provokes refusal by TFTT in a large region of this plane.
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FIG. 8(b): The total number of PD games played in a 2-player IPD/CR game
between AIlD and AllC before play stoppage, as a function of T and w. The’
number i* gives the last iteration during which a PD ‘game takes place in a
region. The other numbers mdlcate the maximum number of games played in a

region. Each region includes its upper boundary line but not its lower boundary
line.
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FIG. 8(c): The total number of PD games played in a 2-player IPD/CR game
between Rip and either AlIC or TFTT before play stoppage, as a function of 7
and w. The number i* gives the last iteration during which a PD game takes
* place in a region. The other numbers indicate the maximum number of games
played in a region. Each region includes its upper boundary line but not its

lower boundary line. The boundary lines cross the line 7 = 3w/(1 + w) only at

the axis.
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FIG. 8(d): The total number of PD games played in a 2-player IPD/CR game
between GRip and either AlIC or TFTT before play stoppage, as a function of
7 and w. The number i* gives the last iteration during which a PD game takes
place in a region. The other numbers indicate the maximum number of games
played in a region. Each region includes its upper boundary line but not its lower
boundary line. The boundary liries are tangent to the line dividing eventual play
stoppage (i* < co) from no stoppage (i* = o0), and they meet at each axis.




Rip versus 3 TFTT players

Expected Payoffs

Iteration number

FIG. 9: A schematic of the expected payoffs that a Rip anticipates from three
TFTT (or AlIC) players when K = and 7° = C. In this sample scenario, Rip
plays TFTT #1, TFTT #2, and TFTT #3 for the first time in iterations 1, 2,
and 3, respectively. Before iteration 5, Rip has the same expected payoff for all
three TFTTs and choosés TFTT # 2 at random. It is assumed that i* > 3, i.e.,
that 7 and w are such that at least five PD games are played between Rip and a
TFTT (or AlIC) player before the TFTT (or AlIC) player refuses Rip.
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FIG. 10(a): Individual Ecology Payoffs for the IPD/CR Game with r=0.5
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FIG. 10(b): Average Ec'é)lb_g} Pa;j(loffs‘_fpr the IPD/CR Game with 7=0.5
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FIG. 10(c): Play Behavior Fractions for the IPD/CR Game with-7=0.5"
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FIG. 11(a): Individual Ecology Payoffs for the IPD/CR Game with r=1.5

FIG. 11(b): Average Ecology Payoffs for the IPD/CR Game with r=1.5
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FIG. 11(c): Play Behavior Fractions for the IPD/CR Game with r=1.5
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FIG. 12(a): Individual Ecology Payoffls for the IPD/CBIL‘JGame wit'.ﬁ 7=1.6
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FIG. 12(b): Average Ecolog)-f Payoffs for the IPD/CR Game with 7=1.6
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FIG. 12(c): Play Behavior Fractions for the IPD/CR Game with r=1.6




FIG. 13(a): Individual Ecology Payoffs for the IPD/CR Game with r=2.4
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FIG. 13(b): Average Ecology ]E;'ayoﬁ's for the IPD/CR Game with r=2.4
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FIG. 14(a): Individual Ecology Payoffs for the Wallflower Band, r=2.4

FIG. 14(b): Average Ecology Payoffs for the Wallflower Band, r=2.4
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FIG. 14(c): Play Behavior Fractions for the Wallflower Band, r=2.4




