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ABSTRACT 

It is estimated that polycystic ovary syndrome (PCOS) affects one in ten women, making 

it the most common endocrine disorder among reproductive-aged women. PCOS displays 

diverse clinical manifestations, such as anovulation, infertility, and hyperandrogenism. 

Moreover, patients diagnosed with PCOS are at risk of developing comorbidities like obesity, 

cardiovascular disease, and type 2 diabetes. Due to the wide array of metabolic consequences, 

PCOS remains one of the most challenging conditions to diagnose and treat. Recently, evidence 

has suggested that individuals with PCOS exhibit nutritional deficits in serum folate and vitamin 

B12 concentrations. Emerging evidence also indicates that PCOS, similar to other metabolic 

conditions, leads to the imbalance of methyl groups. These nutritional deficiencies may lead to 

compensatory hyperhomocysteinemia, a medical condition that has been deemed significant in 

patients with PCOS. Methyl group metabolism is an essential biological system, whereby three 

interrelated pathways work in concert to maintain homocysteine concentrations and methyl 

group supply. The comprehensive system utilizes substrates and cofactors, such as choline, 

methionine, folate, B12, B6, and B2, to support homocysteine homeostasis. The etiology of PCOS 

remains inconclusive, but evidence supports the idea of perturbed methyl group metabolism. The 

objective of the studies described in the central part of this dissertation is to characterize methyl 

group metabolism as a function of the progression of polycystic ovary syndrome in 1) letrozole-

induced PCOS Sprague Dawley rats and 2) genetic mouse model of PCOS. 

The first study described in this dissertation examined the impact of letrozole, a chemical 

aromatase inhibitor, treatment on the development of PCOS-related downstream effects of 

ovarian methyl group metabolism outcomes. Female Sprague Dawley rats (n = 36) were 

randomly assigned to letrozole or vehicle carboxymethylcellulose via a surgically implanted 
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subcutaneous slow-release bead every 30 days. All animals were randomized to be euthanized at 

the time of proestrus at either 8, 16, or 24 wk of age. Letrozole-induced rats exhibited elevated 

body weight gain immediately upon letrozole exposure and throughout the study (P<0.0001). 

Moreover, letrozole exposure perturbed estrous cyclicity, with decreased time spent in proestrus 

(P<0.0001) accompanied by elevated serum testosterone concentrations. Interestingly, inhibition 

of aromatase led to diminished ovarian cystathionine β-synthase (Cbs) transcript abundance by 

59% at 16 wk of age (P<0.05) and 77% by 24 wk of age (P<0.01). Additionally, CBS protein 

abundance was 32% lower in the ovary of letrozole-induced rats at 8 wk of age (P = 0.02). When 

testing as a function of age, betaine-homocysteine S-methyltransferase (Bhmt) transcript 

abundance increased exclusively in letrozole-induced rats (P = 0.03). These data support the idea 

that the transsulfuration pathway, involving CBS enzymatic activity in the ovary, is perturbed as 

a function of time in a chemically-induced model of PCOS.  

The second study's objective was to determine the effects of a metabolically 

compromised mouse model of PCOS, using the agouti lethal yellow mouse. Canonically, agouti 

mice display early adult-onset of obesity, type 2 diabetes, and infertility. Five wk old female 

lethal yellow agouti mice (KK.CG-Ay/J; agouti; n = 18), and their wild type (WT) controls (a/a; 

n = 18), were aged out to 8, 16, or 24 wk, then euthanized at the time of proestrus. All acyclic 

mice (24 wk old agouti mice) were euthanized in the diestrus stage. PCOS was confirmed by 

elevated serum testosterone concentrations, which were significantly higher at 16 and 24 wk of 

age (P<0.05). A 4.6-fold increase in ovarian Bhmt transcript abundance was observed in 8 wk 

old agouti mice; whereas, a 27% decrease in hepatic Bhmt transcript abundance. No differences 

in Bhmt was observed at any other experimental time point. There was a trend for decreased 

hepatic BHMT protein abundance in 8 wk old agouti mice. By 16 wk of age, we observed a 44% 
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reduction in ovarian glycine N-methyltransferase (Gnmt) transcript abundance, along with a 33% 

reduction in hepatic Gnmt at 24 wk old agouti mice was detected. This was not a supported 

finding at any other stage of PCOS.  

Collectively, the studies described in this dissertation demonstrate that potential 

mechanisms involved in the pathogenesis of PCOS may be due to the transient response in 

BHMT and CBS-mediated methyl group metabolism pathways. Furthermore, decreased 

expression of these two enzymes indicates increased demand for methyl groups in the ovary, 

potentially revealing shifts in methyl group/one-carbon metabolism contributing to the 

pathogenesis of PCOS. Future nutrition intervention studies are being employed to determine 

whether dietary methyl groups support the aberrations in methyl group metabolism observed in 

the early onset of PCOS in both the chemically-induced and genetic rodent PCOS models.
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CHAPTER 1.    GENERAL INTRODUCTION  

Introduction 

Polycystic ovary syndrome (PCOS) is an endocrine disorder that commonly occurs 

among women of childbearing age (1). The name stems from the presence of small cysts around 

the ovary, but the complexity of this disorder is far more comprehensive than the exclusive 

appearance of ovarian cysts. The metabolic anomalies of PCOS are vast, including 

hyperandrogenism, anovulation, infertility, abnormal hair growth, insulin resistance, and 

compensatory hyperinsulinemia (2). Long-term consequences of PCOS include the significant 

risk for developing cardiovascular disease, type 2 diabetes, and metabolic syndrome. Patients 

with PCOS often seek reproductive assistance; however, there are subsequent risks involved 

during gestation that may impair fetal outcomes, such as gestational diabetes and pre-eclampsia 

(3,4). It is challenging to diagnose the early onset of PCOS, as the diagnostic criteria for PCOS is 

variable due to the complexity of this disorder (5). However, it is well established that the 

pathophysiology of PCOS includes the dysfunction of the hypothalamus-pituitary-ovarian (HPO) 

axis – a central regulator of reproductive processes (1). Although the etiology of PCOS is 

unknown, research has postulated that PCOS is a combination of genetic, epigenetic, and 

environmental factors that play a role in the dysfunction of the HPO axis, ultimately leading to 

impaired ovarian androgen production and the aforementioned complications (6). 

Methyl group metabolism is a biological system that regulates the provision of methyl 

groups for the regulation of gene expression by the methylation of DNA and histone proteins (7). 

This methylation process is considered an epigenetic regulatory process, whereby methylation of 

CpG sites on DNA and histone proteins generally represses gene transcription. An inadequate 

supply of methyl groups may compromise the regulatory mechanisms of critical HPO axis-
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related genes involved in the progression of PCOS (8). Moreover, methyl group metabolism 

governs the methyl group supply, but it is also critical for homocysteine homeostasis (9). This is 

important to note because homocysteine concentrations are positively associated with various 

diseases, including PCOS (10). Given the associations between epigenetics in conjunction with 

homocysteine-associated risk factors of PCOS, the imbalance of methyl group metabolism may 

underlie the mechanisms involved in the etiology and progression of PCOS.  

  The central research's overall objectives in this dissertation are to characterize methyl 

group metabolism in both the liver and ovary in PCOS as a function of disease onset and 

progression. More specifically, the studies were employed to examine two distinct rodent models 

of PCOS 1) the chemical aromatase-inhibitor model of PCOS and 2) a genetic model of PCOS. 

Findings from this research will be used to identify dietary intervention strategies to support the 

imbalances observed in the methyl group cycle during PCOS progression. 

Dissertation Organization 

 This dissertation consists of five chapters with a general introduction (Chapter 1), 

literature review (Chapter 2), two research manuscripts (Chapter 3 and 4), an overall conclusion 

(Chapter 5), and appendices containing four first-author manuscripts (Appendix A, B, C, and D). 

The first manuscript, "Letrozole-induced polycystic ovary syndrome reduces cystathionine-β 

synthase mRNA and protein abundance in the ovaries of female Sprague Dawley rats," has been 

submitted to the Journal of Nutrition. This manuscript characterized ovarian one-carbon 

metabolism under the conditions of a chemically-induced polycystic ovary syndrome rat model. 

This study aimed to characterize the one-carbon/methyl group metabolism as a result of 

aromatase inhibition on both the ovary and liver, in addition to examining the phenotypic 

outcomes that coincide with this model at three different developmental stages. The experiments 

and data presented in the second manuscript in chapter 4 of this dissertation titled, “Polycystic 
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ovary syndrome modulates betaine homocysteine S-methyltransferase in 8 week old female 

lethal yellow agouti mice,” has been prepared for submission to the Journal of Nutrition. The 

final main chapter of this dissertation includes an overall discussion of the results and future 

directions for the next research phase. All literature cited throughout this dissertation is based on 

the format of Journal of Nutrition and listed at the end of each respective chapter.  

References 

1.  Goodarzi MO, Dumesic DA, Chazenbalk G, Azziz R. Polycystic ovary syndrome: 
Etiology, pathogenesis and diagnosis. Nature Reviews Endocrinology. Nature Publishing 

Group. 2011. p. 219–31.  
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3.  Lo JC, Feigenbaum SL, Escobar GJ, Yang J, Crites YM, Ferrara A. Increased prevalence 
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Darendeliler F, Elbarbary NS, Gambineri A, et al. An International Consortium Update: 
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Adolescence. Horm Res Paediatr. 2017. p. 371–95.  
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CHAPTER 2.    LITERATURE REVIEW 

 

Polycystic Ovary Syndrome  

Polycystic ovary syndrome (PCOS) is estimated to affect up to 10% of reproductive-aged 

women in the United States, depending on the diagnostic criteria used (1). A vast array of 

symptoms commonly occur during PCOS, such as ovarian cysts, anovulation, infertility, and 

hyperandrogenism (2). Moreover, an imbalance of androgen production imposes a significant 

risk of developing morbidities like type 2 diabetes, metabolic syndrome, and cardiovascular 

disease (CVD) later in life (3). PCOS remains one of the most challenging conditions to diagnose 

and treat, especially amongst adolescent females, in part because PCOS is not limited to adult 

reproductive years (4). There is a high degree of variability in metabolic and phenotypic 

characteristics, making a PCOS diagnosis challenging. Due to this variability, many women may 

be living with undiagnosed PCOS or receive a delayed diagnosis because of this disorder's 

multifactorial characteristics. In order to understand both the metabolic and reproductive 

consequences of PCOS, it is important to understand the intersection between the endocrine 

system and metabolism. The purpose of this literature review is to describe the main 

dysfunctional characteristics, while postulating new ideas from the current research in the field. 

Hypothalamic Pituitary Ovarian Axis 

The hypothalamic-pituitary-ovarian axis (HPO), otherwise referred to as the 

hypothalamic-pituitary-gonadal (HPG) axis, is dependent upon the synchrony and feedback 

mechanisms among these three organs: hypothalamus, anterior pituitary, and the ovaries (Figure 

2-1) (5). The hormonal cascade begins with the hypothalamic pulse of the master hormonal 

regulator, gonadotropin-releasing hormone (GnRH), whereby it travels to the anterior pituitary to 

stimulate the release of gonadotropins, follicle-stimulating hormone (FSH) and luteinizing 
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hormone (LH) (6). These two hormones work in concert to govern folliculogenesis and 

ovulation.  

Figure 2-1. Hypothalamic-pituitary-gonadal (HPG) axis. Adapted from Kong et al (5). 
Abbreviations: FSH, follicle stimulating hormone; GnRH, gonadotropin releasing hormone; 

HPG, hypothalamic pituitary gonadal axis; and LH, luteinizing hormone.  

The ovaries contain follicles that, through their maturation, consist of both the theca and 

granulosa cells (GCs). Both cell types are required for estrogen production in what is referred to 

as the “two-cell theory” (7). Theca cells exclusively respond to a rise in LH to increase 

circulating cholesterol absorption into theca cells via the rate-limiting enzyme, steroidogenic 

acute regulatory (StAR) protein. Cholesterol is then synthesized into androstenedione by several 

critical cytochrome p450 enzymes (Cyp) presented in Figure 2-2 (8). Androstenedione can then 

be converted into testosterone via the catalytic action of 17-β-hydroxyl steroid dehydrogenase or 

diffuse across the basement membrane into the adjacent GCs (9). FSH acts on the GCs to convert 

thecal androstenedione into estradiol (E2) via aromatization.  
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Figure 2-2. Two-cell theory of theca and granulosa cell production of androgen and estradiol 
under healthy conditions. Adapted from Rosenfield et al (8) Abbreviations: LH, luteinizing 
hormone; FSH, follicle-stimulating hormone; StAR, steroidogenic acute regulatory protein; Cyp, 
cytochrome p450; and HSD, hydroxyl steroid dehydrogenase. 

Therefore, the ablation of aromatase prevents the GCs from synthesizing E2. This 

coordination between the ovaries, anterior pituitary, and hypothalamus is orchestrated via the 

canonical feedback inhibition pathway, whereby E2 production partakes in both positive and 

negative feedback inhibition (9). During the follicular phase, E2 functions as a negative feedback 

signal and switches to a positive inducer during the luteal phase. This positive feedback then 

exerts its action on the anterior pituitary gland to stimulate LH and FSH production, resulting in 

the classic LH surge responsible for inducing ovulation (9).  

Disruption of this HPO axis, such as in PCOS, derails the negative feedback loop, 

resulting in abnormal GnRH pulsatility and hyperandrogenism (6). Under healthy conditions, LH 

and FSH fluctuate intermittently during various phases of the menstrual cycle. For instance, the 

ratio of LH to FSH favors FSH during the early follicular and luteal phases, whereas during the 
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late events of folliculogenesis and ovulation, LH is favored (6). Under PCOS conditions, this 

oscillation between LH and FSH is disrupted, resulting in the chronic elevation of LH and 

compensatory hyperandrogenism (10). Ultimately, the consequences of elevated LH and 

testosterone concentrations impair menstrual cyclicity, ovulation, and reproduction (8).  

Pathogenesis 

Despite the large prevalence of PCOS, the underlying etiology remains elusive. The 

developmental origins of PCOS are thought to be a complex interaction of both genetic and 

epigenetic factors. Increasing evidence suggests a genetic basis for the pathogenesis of PCOS, 

although studies have not identified one specific gene target (8). Reports from a twin-study point 

to PCOS as an X-linked polygenic disorder, highlighting the complicated gene networks 

involved in its progression (11). Candidate genes potentially implicated in the pathophysiology 

of PCOS are involved in steroidogenesis, folliculogenesis, androgen transport, and signaling, as 

well as insulin signaling (12). The primary perturbations that contribute to the pathogenesis of 

PCOS are 1) hyperandrogenism and 2) insulin resistance. Hypothalamic GnRH pulsatility and 

amplitude play a central role in the mechanisms that stimulate androgen production (13). 

Persistent marked elevation of GnRH and LH concentrations underlie the reproductive 

complications in women with PCOS, in part, due to the compensatory suppression of FSH-

mediated folliculogenesis (14). Defective folliculogenesis leads to anovulation, and ultimately, 

infertility - the main symptom in PCOS patients (15). 

There are several animal studies that explain a potential heritable basis for PCOS. In 

prenatally androgenized (PNA) mice, an increase in neuronal GnRH pulsatility is observed, but 

interestingly the inverse was reported in prepubescent female PNA mice (16). Association-based 

studies have reported implications of the decreased sensitivity of GnRH receptors in adolescents, 

and research suggests that this desensitization delays the onset of menarche, manifesting in 
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adolescent PCOS (17). Another developmental hypothesis for PCOS is in utero neuroendocrine 

dysfunction from exposure to maternal hyperandrogenism (18). Consequences of fetal exposure 

to high testosterone concentrations during gestation have demonstrated fetal outcomes such as 

low birth weight and peripubertal metabolic characteristics that reflect PCOS (19). For instance, 

the female offspring of dams with chemical-hyperandrogenism encountered delayed puberty, 

elevated serum FSH, and impaired estrous cyclicity (20). Similarly, rhesus monkeys exposed to 

maternal hyperandrogenism exhibited an increase in unbound circulating testosterone and serum 

LH concentrations in the prepubescent years (21). Therefore, maternal exposures may play a 

more vital role in the pathogenesis of PCOS, partially explaining the clustering of familial PCOS 

that is predominantly reported (12).  

Insulin resistance (IR) is clinically present in approximately 70% of the PCOS population 

(22), and it is widely reported that IR is closely associated with PCOS due to the consequences 

of concomitant hyperinsulinemia on androgen biosynthesis (23,24). Insulin is classically 

recognized for its function in glucose regulation and uptake in the liver, muscle, and adipose 

tissue (25); however, several lines of evidence report the critical role of insulin as a driver of 

ovarian function and oocyte quality (26–28). Ovaries contain insulin receptors, whereby insulin 

exerts its action through two insulin receptor substrate (IRS)-mediated signal transduction 

pathways, 1) phosphatidylinositol 3-kinase (PI3K)/Akt pathway and 2) the mitogen-activated 

protein kinase (MAPK) pathway. The former is conventionally involved in glucose transport, 

and the latter is mechanistically coupled with the PI3K pathway to regulate cellular proliferation 

and differentiation (29). When examining mouse oocytes, the in vivo loss of the subunit 

responsible for PI3K/Akt activation resulted in follicular atresia and even infertility (30). Similar 

findings were also found in a high-fat diet-induced obesity model (31). Results from this study 



10 

observed reduced mRNA and protein levels of the IRS-1, further explained by the induction of 

the PI3K pathway, which has been previously reported as a critical signaling pathway for 

primordial follicle activation (32,33).  

Hyperinsulinemia is also disruptive to the HPO axis. Numerous research studies have 

determined a high correlation between insulin and sex hormone-binding globulin (SHBG), which 

functions to acquire and transport unbound circulating hormones, such as testosterone (24,34). 

The inverse association between hyperinsulinemia-mediated PCOS and SHBG is prominent (35). 

Moreover, this inverse association has also been reported in type 2 diabetes and metabolic 

syndrome, demonstrating its close relationship with IR (36,37). Furthermore, seminal work by 

Nestler et al., demonstrated that PCOS patients treated with an insulin inhibitory drug, diazoxide, 

exhibited decreased fasting insulin levels and markedly reduced free testosterone concentrations 

(38,39). The direct mechanistic role of insulin in attenuating SHBG production is unknown, but 

SHBG is clinically used as a biomarker for diagnostic purposes of PCOS, suggesting 

hyperinsulinemia as a basis for the derangements in androgen synthesis and signaling (40). 

Diagnostic Criteria 

Due to the heterogeneity of PCOS, there is no globally adopted set of criteria. Diagnostic 

criteria are a combination of gynecologic, dermatologic, and metabolic symptoms (2,41,42). 

More robust descriptions of these general fields are presented below. Diagnosis of PCOS is not 

limited to one specialty and requires a thorough medical history with an investigation on a per-

patient basis. The Rotterdam diagnostic criteria (10) is commonly used in the United States and 

requires the presence of at least two of the following: 1) biochemical hyperandrogenism 

evidenced by a total testosterone concentration >70 ng/dL; androstenedione >245 ng/dL, and 

dehydroepiandrosterone >248 µg/dL; 2) ovulatory dysfunction assessed by oligomenorrhea (>35 



11 

d menstrual cycle) or anovulation (< 9 menses/year); 3) polycystic ovaries determined by ≥ 12 

follicles (2-9 mm diameter) in each ovary (43).  

Although PCOS is predominantly detected among adult women, it has been estimated 

that roughly every 1 in 200 adolescent females has PCOS (4). Detecting PCOS among 

individuals in the pediatric population is less common; however, there are slightly different 

guidelines for adolescents given the regular presence of acne and menstrual irregularities in the 

peripubertal stages. The diagnostic criteria for adolescents are similar to that of adults, with the 

additional specification of oligo- or amenorrhea two years post-menarche and hyperinsulinemia 

accompanied by abdominal obesity, nigricans, and glucose intolerance (44). Despite these 

guidelines, definitive diagnosis is not mandatory before initiating the treatment strategies that are 

discussed in the next section. 

Lifestyle Modifications and Therapeutic Treatments 

The therapeutic management of PCOS utilizes both pharmacologic and 

nonpharmacologic strategies, depending on the patient's primary symptom of concern. First-line 

therapy for women with PCOS includes lifestyle modifications, primarily directed towards 

weight loss through dietary or physical activity regimens. Several studies have demonstrated the 

effects of weight loss on the metabolic anomalies of PCOS (45–47), and most dietary 

intervention strategies mimic those recommended for type 2 diabetes and metabolic syndrome 

(48,49).  

Research implementing a restricted low-carbohydrate diet coupled with a minimum of 90 

min of physical activity assessed primary outcomes of body weight, fertility, and abundance of 

critical endometrial genes and proteins in PCOS women classified as obese (50). Findings from 

Ujvari et al., reported that following the 3-month intervention, 80% of the patients that achieved 

just a 5% reduction in weight was significant enough to restore ovulation in 35% of the cohort, in 
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addition to demonstrating improvements in endometrial IRS-1 mRNA and protein abundance 

(50). Most dietary approaches are directed towards the metabolic derangements of PCOS, with 

primary indicators of IR, fasting blood glucose, and testosterone concentrations. In a meta-

analysis of eight randomized controlled trials examining the effects of low carbohydrate diets on 

PCOS, reported a marked reduction in body mass index and homeostatic model assessment of IR 

(HOMA-IR) (51). Positive correction of SHBG and testosterone levels was only observed in the 

randomized control trials employing interventions longer than one-month; however, no diet 

outcomes on fertility and reproductive management were reported. A prospective study 

compared the long-term effects (two-year) of a hypocaloric diet vs. treatment with the insulin-

sensitizing drug, metformin, on clinical and reproductive outcomes (52). Following the two-year 

intervention, obese women with PCOS demonstrated a significant reduction in LH and androgen 

concentrations, alongside improvements in body mass index irrespective of the treatment group. 

The efficacy of exclusive long-term lifestyle modifications on the amelioration of PCOS 

outcomes has not been determined; therefore, lifestyle modifications, alone, may not be suitable 

to reverse the effects of PCOS. 

The complexity of PCOS makes lifestyle approaches towards treating the disorder 

challenging, especially in the prepubescent years. Depending on the patient's needs, various 

treatments will be recommended to address 1) anovulation/infertility, 2) insulin resistance and 

obesity, or 3) hirsutism through the pharmacological approaches, as indicated in Figure 2-3. In 

general, the pharmaceuticals that mechanistically target glucose metabolism, androgen 

production, or ovulation are commonly prescribed (10).   

The mode of action for metformin is to decrease intestinal glucose absorption and 

mobilize glucose uptake into the cells (53). It has been long used as a second-line treatment for 
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PCOS, as it functions to address IR, obesity, anovulation, and may reduce hirsutism, owing to 

normalized testosterone concentrations (54). Thiazolidinediones (TZDs) are sometimes used in 

place of metformin. TZDs are agonists of the peroxisome proliferator-activated receptor-gamma 

(PPARϒ) that function by increasing the transcription of critical energy-sensing transporters 

involved in glucose uptake, such as adipocyte and muscular glucose transporter type-4 (55).  

Figure 2-3. Therapeutic strategies for PCOS management. Adapted from Williams et al (10). 

Both metformin and TZDs have demonstrated their efficacy in inducing ovulation and promoting 

fertility (56,57). Like many pharmacologic compounds, there are associated risks with their use. 

Nutrition deficits, such as serum vitamin B12 and folate deficiency, are commonly reported in 

women using metformin long-term, increasing the risk for hyperhomocysteinemia (HHcy), an 

associated risk factor for cardiovascular disease (58,59). Furthermore, TZDs are considered 

potentially teratogenic and impose serious risks to fetal outcomes and hence, are not suitable 

therapies during the conception, gestation, and breastfeeding periods (60). Therefore, both 

therapeutic strategies are only used in combination if their perceived benefits outweigh the risks.  

Anovulation/

Infertility

Femara
(letrozole)

metformin

Hormonal 
contraception

Insulin Resistance/

Obesity

metformin

Lifestyle 
modification

Hirsutism

Hormonal 
contraception

Spironolactone 
(anti-

androgen)

metformin



14 

Oral contraceptives are typically used in women with PCOS that are not seeking 

pregnancy as a means to treat concurrent symptoms of acne, menstrual irregularity, and hirsutism 

(61). There are conflicting results in whether birth control can address dyslipidemia, IR, and 

hyperinsulinemia; therefore, alternative therapies are recommended for PCOS's joint metabolic 

aberrations (62). Spironolactone is a mild antagonist of the androgen receptor, which blocks 

testosterone and dihydrotestosterone's signaling power, reducing excessive hair growth and acne 

(63). A combinatorial approach of prescribing both spironolactone and metformin has been used 

for over two decades and shows to be efficacious in addressing the physical anomalies of PCOS 

(64). The American Association of Clinical Endocrinologists (AACE) submitted recent 

guidelines for the effective use of letrozole (Femara®), a competitive inhibitor of granulosa cell 

aromatase, and climophene citrate, an FSH and LH-inducer, both of which are considered as 

ovulatory stimulants (15). Taken together, there is currently no one-size-fits-all approach, and 

due to the inconclusive pathogenesis of PCOS, often times several intervention strategies are 

prescribed throughout the lifetime of a woman with PCOS.  

 Animal Models of PCOS 

Animal models, particularly the use of rodents, are used in laboratory settings to explore 

the mechanisms involved in the pathogenesis of PCOS. Rodent models of PCOS are beneficial 

due to the ability to investigate tissue-specific alterations that cannot be routinely conducted 

using human populations. Their high reproductive capacity, small size, and shorter lifespan make 

rodent models a suitable candidate in better understanding the pathophysiology of PCOS. 

Careful considerations are to be made when employing animal models, as there is a spectrum of 

phenotypic and metabolic outcomes between the chemically-induced and genetic animal models 

employed in studies. The various models of PCOS are discussed in further detail in the following 

sections. 
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Chemically-induced 

Chemical induction of PCOS can be achieved through multiple modalities to recapitulate 

specific characteristics of this disorder. Conventional approaches include androgen- and 

estrogen-induction, PNA, and enzymatic aromatase inhibition (65). Chemically-induced models 

help identify the transient effects of acute PCOS, as restoration of estrous cyclicity occurs upon 

chemical cessation. Dehydroepiandrosterone (DHEA) is an androgenic hormone, with negligible 

biological effects (66). Rather, DHEA is a substrate for androstenedione, whereby it is 

metabolized into the potent androgens, testosterone, and dihydrotestosterone (DHT), via 3-β-

HSD and 17-β-HSD enzymes. Chemical induction of PCOS with DHEA in an emulsion of 

sesame oil is often used in rat and mouse models for 20-30 days in the prepubertal period (67–

69). Li et al., reported that following daily subcutaneous injections of DHEA for 20 days, mice 

exhibited immature follicles, anovulatory infertility, and a significant reduction in zygote 

quantity (68). These observations have also been corroborated in a rat model, whereby atretic, 

cystic follicles were detected following DHEA-induction (69). The effects of DHEA also led to 

diminished GC and thickened thecal layers, providing evidence for perturbed folliculogenesis. 

DHEA-induction augments concentrations of FSH, LH, testosterone, E2, and the LH/FSH ratio. 

One major differentiator between the DHEA model and human PCOS is the elevation in 

circulating E2 and FSH, as the inverse is characteristic of women with PCOS (70).  

Depending on the primary outcome of interest, other chemically-induced rodent models 

may be considered to recapitulate PCOS. Alternative hormonal agents to DHEA include DHT 

and letrozole. Mechanistically DHT is similar to that of DHEA, except that DHT is a non-

aromatazible androgen that has potent effects on phenotypic features exhibited in women with 

PCOS, such as impaired glucose tolerance, adipocyte hypertrophy, and anovulation (71). 

Research studies employing DHT can either acutely induce impaired folliculogenesis and 
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metabolic dysfunction or continuously administer DHT for 3 months to achieve aberrations in 

ovarian morphology (72,73). The downsides of this model is that acute and long-term 

administration of DHT manifests in lower serum testosterone and 4-fold higher E2 

concentrations, which does not commonly occur in women with PCOS (73,74). One of the main 

differences between DHEA and DHT is that the former results in hypertrophy of the ovary, 

whereas long-term DHT exposure will result in ovarian atrophy (75). 

Aromatase is an enzyme that catalytically converts androstenedione to E2 via 

aromatization. It is primarily localized in the ovarian theca cells, although its abundance can also 

be found in extragonadal tissues, such as adipose and bone (76). Letrozole-induced PCOS is an 

exceptional model to utilize when characterizing the pathophysiology of PCOS that is 

independent of metabolic alterations is of interest. A study by Caldwell et al., compared the three 

chemicals, DHEA, DHT, and letrozole, for 90 consecutive days via subcutaneous implantation in 

female Wistar rats (74). Aromatase inhibition was the only treatment that closely recapitulated 

the hallmarks of PCOS, such as acyclicity, increased body weight, oligo-ovulation, elevated LH, 

and testosterone with concomitantly suppressed E2. Letrozole is not a strong model for 

metabolic anomalies commonly reported in PCOS, as letrozole treatment results in unchanged 

body fat, total cholesterol, insulin and blood glucose concentrations (77). In comparison, 

treatment with DHT more closely reflects the metabolic perturbations common in humans, such 

as increased body fat coupled with hypercholesterolemia and hyperinsulinemia (74). On the 

contrary, DHT does not significantly alter circulating testosterone or LH concentrations, limiting 

its scope on some of the morphological alterations classically observed in PCOS. 

Lastly, PNA is another frequently used PCOS model, allowing researchers to examine the 

transgenerational effects of high in utero androgen exposure on offspring outcomes. Studies 
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determining the influence of maternal hyperandrogenism on fetal birth and developmental 

outcomes were discussed earlier in this chapter (16,17,19); however, a more recent study 

reported the effects of female DHEA exposure on two generations of offspring (78). Findings 

from Zhang et al., indicated that DHEA exposure in first generation dams led to reproductive and 

metabolic characteristics similar to that of PCOS, such as disrupted cyclicity, decreased glucose 

tolerance, and elevated serum testosterone concentrations in offspring for two generations 

following (78). This basic study exploring the implications of maternal hyperandrogenism 

revealed its significant transgenerational effects. Taken together, there are several chemical 

models that may be deemed appropriate when exploring the pathogenesis of PCOS; however, it 

is critical to identify the primary outcome of interest prior to selecting a chemical to induce 

PCOS in rodent models. 

Genetic Models 

In general, the genetic strains that reflect PCOS or lead to the development of polycystic 

ovaries and irregular estrous cycles are those that exhibit dysregulated metabolic characteristics, 

such as obesity, dyslipidemia, and insulin resistance (79). In addition to hyperinsulinemia, many 

women with PCOS present leptin resistance with concomitant hyperleptinemia (80). Leptin 

receptor (LEPR) deficient animal models, in theory, may be a suitable representation of PCOS 

due to leptin’s indirect effects on GnRH neurons and its functional role in the metabolic 

outcomes. The melanocortin system contains crucial neuronal circuitry that functions in 

governing body weight and appetite control, but it is also recognized for its vital off-target 

effects on reproduction (81). Two melanocortins regulate appetite, the alpha-melanocyte-

stimulating hormone (α–MSH) secreted by the proopiomelanocortin (POMC) suppressing 

appetite, and the agouti-related protein (AgRP) released from the AgRP neuron, stimulating 

appetite (82). The hormone leptin functions by activating the POMC and inhibiting the AgRP 
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neurons. Therefore, LEPR deficient rodents, such as the Zucker Diabetic Fatty (ZDF) rats, 

become hyperphagic and exhibit progressive obesity and impaired glucose tolerance by 14 wk of 

age (83,84). Leptin resistance or LEPR deficiency reduces the POMC-activated α–MSH 

production, perturbing reproductive processes, as α–MSH stimulates GnRH neuronal firing (85). 

Concerning the LEPR deficient female ZDF rats that harbor the (LEPR(fa)) mutation 

(86), the parameters of androgen production are lesser-known. However, few studies have 

reported follicular atresia, perturbed ovarian morphology, and infertility in ZDF rats, resulting 

from inadequate stimulation of the GnRH neurons (79,87). Deghestani et al., demonstrated the 

positive association between polymorphisms in the human LEPR gene and incidence of PCOS-

mediated infertility (88). Moreover, an in vitro model culturing porcine follicles in high leptin 

media observed elevated testosterone production accompanied by the induced expression of 

Cyp11A1 and 17-β-HSD (89). Other models of altered leptin metabolism, examining the 

outcomes of ovarian folliculogenesis and infertility are more comprehensively characterized, 

such as the ob/ob (90,91), db/db (92), and IR/LEPRPOMC (93) models.  

Another well-established genetic model for PCOS is the agouti lethal yellow mouse 

(KK.Cg-Ay/J) with a mutation in the agouti (Ay) locus, resulting in overexpression of the agouti 

gene. The Ay mutation is pleiotropic, leading to ectopic agouti protein expression that manifests 

in phaeomelanin (hair yellowing), obesity, IR, infertility, and a propensity for reproductive 

failure (94–96). Interestingly, the degree of methylation inversely correlates with AgRP (97); 

therefore, hypomethylation leads to overexpression and production of AgRP, an antagonist of the 

melanocortin-3 and -4 receptors (MC3R and MC4R) (98). With respect to Ay and reproduction, 

a study in MC4R-deficient mice identified reduced reproductive capacity, owing to anovulation 

(99); hence, mice homozygous for the Ay mutation leads to complete infertility due to AgRP-
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inhibition of the MC3R/MC4R. Research by Nteeba et al., determined the impact of progressive 

obesity on ovarian folliculogenesis using the agouti mouse model (94). Their findings indicated 

that decreased primary follicles accompanied by elevated NF-kappaB-mediated inflammatory 

pathways were observed beginning at 12 wk of age when high fasting blood glucose and obesity 

were apparent in the agouti mice (94). 

Methyl Group Metabolism 

Methyl group metabolism is comprised of both homocysteine (Hcy) and folate 

metabolism, and is central for the transfer of one-carbon units to aid in cellular function, purine 

and thymidine synthesis, DNA methylation, and the remethylation of Hcy (100). It is also a key 

biochemical process for the provision of methyl groups, which mediate environmental 

influencers on gene expression, in a field known as epigenetics (101). Methionine is an essential 

amino acid that is derived from dietary sources, and serves as a substrate for the synthesis of 

cysteine, taurine, SAM, and glutathione. In the central step of methyl group metabolism, 

methionine adenosyltransferase catalyzes the formation of S-adenosylmethionine (SAM) from 

methionine as shown in Figure 2-4 (100,102). SAM is a ubiquitous compound that acts as a 

methyl donor in transmethylation reactions, and is converted to S-adenosylhomocysteine (SAH). 

Both SAM and SAH serve as intermediates between methionine and Hcy by the catalytic activity 

of SAH hydrolase. To complete the active methionine pathway, Hcy is enzymatically converted 

to methionine, generating tetrahydrofolate (THF). Under conditions of sufficient methionine and 

THF supply, Hcy is subsequently irreversibly catabolized into cysteine via the transsulfuration 

pathway (Figure 2-4). In the folate-dependent remethylation of Hcy, 5-methyltetrahydrofolate 

donates a methyl group to Hcy via B12-dependent methionine-synthase (MS).  
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Figure 2-4. Methyl group and homocysteine metabolism pathway.Adapted from Williams et al 
(102). BHMT, betaine homocysteine S-methyltransferase; CBS, cystathinine B-synthase; DMG, 
dimethylglycine; MS, methionine synthase; MTHFR, methylenetetrahydrofolate reductase; SAH, 
S-adenosylhomocysteine; SAM, S-adenosylmethionine; THF, tetrahydrofolate; 5-CH3-THF, 5-
methyltetrahydrofolate; and X, methyl group acceptor.  

The folate-independent remethylation of Hcy requires dietary choline, an essential 

nutrient that is oxidized to betaine and is acted on by betaine-homocysteine S-methyltransferase 

(BHMT) to regenerate methionine from Hcy, and produce the by-product, dimethylglycine. 

Alternatively, Hcy enters the transsulfuration pathway. In this pathway, Hcy is irreversibly 

catabolized to cysteine through the intermediate, cystathionine, via the pyridoxal phosphate (B6)-

dependent cystathionine β-synthase (CBS). Other sulfur metabolites, such as glutathione and 

hydrogen sulfide, are key downstream products of the transsulfuration pathway. Moreover, 

taurine is an amino acid that is also a product of the transsulfuration pathway, whereby it is 

critical for bile salt production through conjugation. Importantly, DNA methylatransferases 

(DNMTs) are a conserved family of enzymes that are critical for epigenetic mechanisms, as they 

are responsible for the covalent transfer of methyl groups from SAM for methylation of the 
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carbon-5 (C5) position of cytosine (5-methylcytosine; 5mC), in the promoter region of genes, 

resulting in downregulation of gene expression (103). Although this completes a large portion of 

methyl group metabolism, the key components of this regulatory process are the cofactors and 

substrates required for efficient enzymatic activity.   

Nutrients and Methyl Group Metabolism 

Several indispensable nutrients function as coenzymes and methyl donors within the 

methyl group metabolism pathways aforementioned. Folate is a nutrient derived from dietary 

sources that are essential for DNA and RNA production. Folate is enzymatically reduced into 

dihydrofolate (DHF) or further into tetrahydrofolate (THF) via the enzyme dihydrofolate 

reductase. Dietary folate deficiency is of concern, especially during the periconceptional years, 

as deficiency increases the risk for neural tube defects (NTDs) (104). Due to this severe birth 

defect, folic acid fortification was deemed mandatory in the United States by the Food and Drug 

Administration in 1998 as a means for preventing NTDs (105). The recommended daily amount 

of folate consumption is 400 mcg for adults and 800 mcg for pregnant women. Folic acid is the 

precursor to THF, which is acted on via serine hydroxymethyltransferase (SHMT), whereby 

serine is converted into glycine (106). This enzymatic conversion requires the cofactor, vitamin 

B6. Another critical step in the folate metabolism pathway is recycling THF back into DHF 

carried out by dihyrdofolate reductase, whereby the enzyme thymidylate synthase converts 

dUMP to dTMP, a precursor for DNA synthesis, and requires the cofactor, FADH2 – a metabolic 

product of riboflavin (B2). Numerous cancer-targeting therapeutics, such as methotrexate, block 

the activity of dihydrofolate reductase to prevent the synthesis of thymidine triphosphate,  and 

subsequent tumor progression (107,108).  

 Additional vitamins and minerals that are necessary for methyl group metabolism include 

B12, B6, and zinc. Methylenetetrahydrofolate reductase (MTHFR) requires the cofactor vitamin 
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B2 to generate 5-CH3-THF from the intermediate, 5,10-methylenetetrahydrofolate. 

Polymorphisms in the MTHFR gene or vitamin B2 deficiency could lead to an insufficient supply 

of 5-CH3-THF, compromising the remethylation of Hcy to methionine. Vitamin B12 is 

exclusively present in animal sources and requires the carrier protein, intrinsic factor when its 

free circulating form allows for its absorption and activity. It is also a cofactor for MS; therefore, 

B12 deficiency impairs the remethylation from Hcy to methionine, resulting in a "methyl trap" as 

5-CH3-THF. Susceptibility to B12 deficiency exists in two significant populations: vegans and 

those greater than 65 years of age (109,110). Intrinsic factor-mediated B12 absorption is related to 

age, as its production declines with age (100). Moreover, patients with neurological 

complications are at the highest risk of vitamin B12 deficiency, a condition explaining 90% of the 

B12 deficient population (110,111). Pyridoxal 5’-phosphate (B6)-dependent enzymes include 

CBS and SHMT. While B6 deficiencies are rare, their implications on methyl group metabolism 

can have deleterious effects. Vitamin B6 is critically essential in the irreversible catabolism, not 

only for Hcy balance. B6-dependent CBS activity contributes to approximately 50% of the 

required cysteine for glutathione production (112). Adequate B6 supply is critical for regulating 

inflammation due to cytokine and antibody production, lymphocyte maturation, and natural killer 

cell activity (112–114).  

 Homeostasis of the methyl group metabolism pathway not only relies on a sufficient 

supply of folic acid, b-vitamins and choline, but zinc is critically important for the provision of 

methyl groups, as MS and BHMT are zinc metalloenzymes. Several studies have examined the 

implications of zinc-deficiency on methyl group metabolism. Wallwork et al., determined the 

rate of metabolic turnover of methyl groups, as assessed by the SAM concentrations, is 

drastically lower in a zinc-deficient rat model than normal controls (115), resulting in diminished 
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SAM production downstream methylation of DNA and histone proteins. Zinc is also required for 

the activity of BHMT (116); therefore, zinc deficiency leads to an increase in Hcy 

concentrations, a decrease in SAM, and consequently an increase in the potent methyltransferase 

inhibitor, SAH. Since all of the enzymes required for SAM biosynthesis are present in oocytes 

(117), there is evidence in the literature reporting the adverse effects of zinc-deficiency on 

reproductive outcomes, particularly in examination of oocyte quality (118). Furthermore, the 

ratio of SAM/SAH, and in turn, follicular Hcy concentrations, may be robust biomarkers for 

infertility and oocyte quality for those seeking assisted reproduction (117–119).  

Estrogen and Methyl Group Metabolism 

In addition to nutritional aspects, hormonal factors like estrogen may diminish or enhance 

methyl group metabolism. For instance, researchers examined women with and without 

hypertension and identified a significant inverse association between circulating Hcy 

concentrations and E2 (120). This association was corroborated by the work of Shah et al., who 

observed that postmenopausal women given hormonal replacement therapies exhibited a 

reduction in circulating Hcy concentrations (121). The exact mechanisms underlying the 

association between estradiol and Hcy are unknown. However, one study using human umbilical 

endothelial cells reported a possible mediating effect of estrogen on hydrogen sulfide production 

(120). After subjecting the endothelial cells to high E2 concentrations, CBS expression was 

induced with a concomitant reduction in intracellular Hcy.   

One of the most well-known links between estrogen and methyl group metabolism is the 

estrogenic effect of hepatic phosphatidylethanolamine N-methyltransferase (PEMT), which is 

required for de novo synthesis of phosphatidylcholine (122). Pregnancy and lactation are periods 

of increased demand for choline in order to support fetal cognitive development. A study 

examining PEMT knockout dams identified that all pups were aborted in utero; whereas, dams 
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administered exogenous choline restored their pregnancies, despite the PEMT mutation (123). 

While the association between PEMT mutations and PCOS has not been studied, there may be a 

mediating link between the observed aberrations in PCOS and global methylation status as a 

result of choline deficiency. For instance, middle-aged women consuming dietary choline below 

the recommended amounts exhibited leukocyte DNA hypomethylation (124,125). Conversely, a 

study comparing the methylation status of males vs. females reported lower methylation levels 

due to increased estrogen concentrations (126). This is also reported in a mouse study, whereby 

they injected mice with estrogen and examined the uterine methylation status of DNA cytosine 

bases; they observed a dose-dependent effect of estrogen on attenuated 5mC (127). Whether the 

functional roles of estrogen on methylation status are mediated via the canonical methyl group 

metabolism pathway through the provision of de novo choline biosynthesis is yet to be 

examined. However, numerous studies have reported perturbed methylation patterns across 

various tissues during the progression of PCOS (128–131).  

PCOS and Methyl Group Metabolism 

Methyl group metabolism is critical for the provision of methyl groups from dietary 

components like choline, B-vitamins, and folate (132). Dietary derived methyl donors are critical 

for DNA methylation, and epigenetic modifications. Epigenetics is a field that studies heritable 

and, environmental factors that influence gene expression but do not alter the underlying DNA 

sequence (101,133). Rather, epigenetic modifications comprise 2 mechanisms: 1) DNA 

methylation and 2) posttranslational modification of histones. DNA methylation has been long 

studied in reproductive science, as DNA methylation is a critical epigenetic modifier functioning 

in ovary development, maturation, and overall reproduction (134,135). DNA methylation (5mC) 

generally functions by methylating the cytosine in the CpG dinucleotide region, thereby 

inhibiting gene expression (136). Interestingly, several genome-wide association studies have 



25 

identified the potential role of DNA methylation in the pathogenesis of PCOS (130,131,137). 

Limited studies have examined how PCOS disrupts methyl group metabolism and/or how 

deprivation of critical methyl group suppliers (i.e., folate, B12, B6, and B2) impact ovarian methyl 

group metabolism (138–140). Several studies exemplify certain aspects of methyl group or one-

carbon metabolism, such as primary outcomes of methylation status, Hcy concentrations, and 

mRNA or protein abundance of critical enzymes (141–147). Animal models are frequently 

studied to assess the epigenetic and methylation drivers of oogenesis (148,149), whereas human 

studies have explored some of the metabolic perturbations in nutrient and methylation status in 

patients with PCOS (Table 2-1). By piecing together some of these related events, we may 

ascertain new knowledge between methyl group metabolism and its potential role in the 

pathogenesis of PCOS. Several in vivo, in vitro, and human studies have reported alterations in 

methyl group related enzymes either through a robust model of PCOS or through androgen 

excess models. These studies are represented in Table 2-1.  

Hyperhomocysteinemia 

  Homocysteine is a sulfur-containing non-essential amino acid that is the by-product of 

the metabolism of methionine in the broader process of methyl group metabolism, as 

aforementioned. The concentrations of Hcy are tightly regulated by two pathways 1) 

remethylation and 2) transsulfuration (Figure 2-4). Augmented synthesis of intracellular Hcy 

concentrations may be attributed to acquired dietary deficiencies (155), genetic factors 

(156,157), and several underlying health conditions that will be discussed in more detail. In 

humans, the normal levels of serum Hcy are classified in a range of 5 – 15 µmol/L (158). 

Therefore, HHcy is subclassified into three categories, mild/moderate (15-30 µmol/L), 

intermediate (30-100 µmol/L), and severe (> 100 µmol/L) (159,160). Since humans contain both 

the reduced and oxidized forms of Hcy, the diagnosis must account for these variants.
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Table 2-1. Key studies linking aspects of polycystic ovary syndrome with methyl group metabolism. 
 
Model Reference Model 

Description 

Intervention Methyl group metabolism 

indicators 

Other key outcomes 

In vitro      

 Jia et al., 2019 
(141) 

Primary culturing 
of gilt oocytes, 
artificial in vitro 

maturation 

Control, 
cumulus-
oocyte 
complexes and 
HHcy exposed 
oocytes (200 
µM). 

- ↑ DNMT1, BHMT, and 
GNMT mRNA abundance 

- ↑ BHMT, and GNMT 

protein abundance 
 

- ↓ oocyte survival 
and polar body 
extrusion rates 

- ↓ oocyte 
differentiation 

 Bhattacharyya 
et al., 2013 
(143) 

Female athymic 
nude mice  

Primary 
epithelial 
ovarian cancer 
cells 

- ↑ CBS mRNA and protein 
expression 

 

- N/A 

In vivo      

 Jia et al., 2016 
(142) 

Prepubertal gilt, 
normal and 
polycystic ovaries  

In vitro oocyte 
maturation 

- ↑ DNMT1, BHMT, and 
GNMT mRNA and protein 
abundance 

- ↑ methylation of mtDNA;  
- ↑ follicular Hcy. 

- ↓ cellular blastocysts 
 

 Lei et al., 
2017 (150) 

Female, ICR/HaJ 
mice  

PNA with 350 
µg of DHT in 
70 µL sesame 
oil 

- ↓ granulosa cell MTR 
mRNA expression in PNA 
mice  

- ↓ ovarian MTR protein at 
3 wk and 3 mo of age 

- ↓ serum SAM  

- Absence of proestrus 
- ↑ ovarian weight 
- ↑ antral follicles 
- ↓ primordial follicles 
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Table 2-1. Continued 

 

Model Reference Model Description Intervention Methyl group metabolism 

indicators 

Other key outcomes 

In vivo      

 Tian and 
Diaz, 2013 
(118) 

Female, CD1 mice Acute dietary 
zinc deficiency 

- ↓ global DNA methylation 
- ↓ histone methylation 

- ↓ mature eggs 
following IVF 

- ↓ blastocysts 
- ↓ oocytes 

 Cui et al., 
2018 (146) 

Female wistar rats Diet-induced 
obesity (DIO), 
5α-
dihydrotestost
erone-induced 
PCOS 

- ↑ 5-methylated cytosine 
DNA in PCOS and DIO 
models  

- ↓ 5-hydroxymethyl 
cytosine DNA in PCOS 
and DIO models  

- ↑ Dnmt3a mRNA 
expression in PCOS 

- ↑ Dnmt3b mRNA 
expression in PCOS 

- Ovarian atrophy 
- ↑ diestrus stages 
- DIO did not alter 

ovarian morphology 
or estrous cyclicity 

- ↑ body weight 
- ↑ glucose 

intolerance 

 Li et al., 
2018 (151) 

Female rats DHEA-
induced PCOS 
or DHEA + 
HFD-induced 
PCOS 

- ↑ serum homocysteine 
- ↓ hepatic Bhmt and Cbs  
- ↓ methylation of the 

promoter regions of 
hepatic Bhmt and Cbs 

N/A 

Human      
 Sinclair et 

al., 2007 
(152) 

Ewes, 5-6 yr old 
Scottish Blackface 

Specialty diet 
to meet caloric 
need; control 
group 
(standard diet); 
vs. B12-
deficient group  

- ↓ methylation of CpG 
regions of the offspring 
(male and female) from B-
12 deficient ewes  

- ↑ Hcy 
- ↓ methionine, folate 
- ↓ granulosa cell SAM 

- ↑ body weight in 22 
mo old male sheep 
from B12-deficient 
ewes 

- ↑ glucose 
intolerance in male  
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Table 2-1. Continued 

 

Model Reference Model Description Intervention Methyl group metabolism 

indicators 

Other key outcomes 

Human      
 Sinclair et al., 

2007 (152) 
Ewes, 5-6 yr old 
Scottish Blackface 

administered 
elemental 
cobalt and 
sulfur to 
reduce 
microbial B12 
synthesis. 

- ↓ granulosa cell 
SAM:SAH ratio  
↑ granulosa cell Hcy  

- sheep from B12-
deficient ewes 

 
 

 Lei et al., 
2017 (150) 

Hyperandrogenic 
PCOS patients and 
controls undergoing 
IVF. 

GnRH 
injections at 
midluteal 
phase, human 
chorionic 
gonadotropin 
(hCG) 
injection at 
follicle, 16 mm 
prior to oocyte 
retrieval. 

- ↓ granulosa cell MTR 
mRNA and protein 
expression 

- ↓ serum SAM 

- ↑ BMI 
- ↑ Mean arterial 

pressure 
- ↑ Ovarian volume 
- ↑ Serum LH, 

testosterone, and 
LH/FSH 

 Bhattacharyya 
et al., 2013 
(143) 

210 tissue 
microarrays  

Ovarian cancer 
cell lines 

- ↑ CBS mRNA and 
protein expression 

N/A 

 Pan et al., 
2018 (128) 

110 PCOS, 119 
healthy women 
undergoing IVF 

RNA-
sequencing of 
critical genes 
in granulosa 
cells 

- ↓ 25% DNA methylation 
- ↓ methylation of gene 

promoters involved in 
steroidogenesis 

- ↑ HOMA-IR  
- ↑ LH/FSH ratio 
- ↑ testosterone  
- ↓ SHBG and oocyte 

quantity  
 

 



 
29 

Table 2-1. Continued 

 

Model Reference Model Description Intervention Methyl group metabolism 

indicators 

Other key outcomes 

Human      
 Sagvekar et 

al. 2019 (129) 
20 healthy women 
and 20 women with 
PCOS undergoing 
IVF 

DNA extracted 
from cumulus 
granulose 
cells. RNA-seq 
and bisulfite-
seq 

- ↓ methylation in 
pathways w/ 
inflammation, chemokine, 
and cytokine 

- ↑ methylation in androgen 
production, leading to 
androgen excess 

- N/A 

 Jiao et al., 
2019 (153) 

PCOS women with 
and without regular 
menstruation 

DNA 
methylation, 
and RT-PCR  

- ↓ DNA methylation in 
PCOS + irregular 
menstruation 

- ↑ in cancer-related genes 
in PCOS + irregular 
menstruation 

- N/A  

 Sang et al., 
2014 (154) 

PCOS patients (n = 
81) and health 
controls (n = 99) with 
anovulation; 
biochemical 
hyperandrogenism; 
and polycystic 
ovaries 

Fasting blood 
samples for 
genomic DNA 
and mass-array 
methylation 
analysis. 

- ↓ methylation of EPHX1 

(steroidogenesis) in CpG 
clusters: 13-14, 15-16, 
19-24, 55-57 in women 
with PCOS 

- ↑ LH 
- ↑ E2 
- ↓ FSH 
- ↑ testosterone 

 Xu et al., 
2016 (139) 

PCOS patients (n = 
40) and healthy 
controls (n = 40); 25-
35 years of age; and 
on GnRH agonists 

Oocyte 
retrieval and 
follicular fluid 
obtained, 
granulosa cells 
DNA bisulfite 
seq. 

- ↑ DNA methylation in 
PCOS vs. control 

- ↑ DNA methylation in 
PCOS-obesity vs. control 

- ↑ granulosa cell global 
hypermethylation in 
PCOS vs. control 

- ↑ LH 
- ↑ testosterone 
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Table 2-1. Continued 

 

Model Reference Model Description Intervention Methyl group metabolism 

indicators 

Other key outcomes 

Human      
 Yu et al., 

2015 (137) 
Case-control, 
matched for age and 
BMI. PCOS women 
(n = 10) and healthy 
(n = 10). 

Ovarian 
drilling-
induced 
ovulation for 
oocyte 
extraction. 
Genome-wide 
DNA 
methylation 
assessment. 

- ↑ DNA methylation in 
PCOS vs. control in CpG 
island shores (outside of 
promoter regions) 

- ↓ methylation in gene 
bodies of PCOS women 
vs controls.  

- N/A 

 
BHMT, betaine homocysteine S-methyltransferase; BMI, body mass index; CBS, cystationine B-synthase; DHT, dihydrotestosterone; 
DIO, diet-induced obesity; DNMT1, DNA methyltransferase-1; E2, estradiol; FSH, follicular stimulating hormone; GNMT, glycine 
N-methyltransferase; HOMA-IR homeostatic model assessment of insulin resistance; HHcy, hyperhomocystienemia; IVF, in vitro 

fertilization; LH, luteinizing hormone; MTR, methionine synthase; PCOS, polycystic ovary syndrome; PNA, prenatally androgenized; 
SAM, S-adenosylhomocysteine; and SHBG, sex hormone binding globulin. 
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Four forms constitute the total plasma Hcy concentrations (161). For instance, the 

reduced, sulfhydryl form (Hcy) and oxidized, disulfide forms make up 1% and 5-10%, 

respectively. Mixed disulfides include the albumin-bound Hcy, which accounts for 80-90% of 

the total Hcy in circulation; and lastly, the other 5-10% of remaining Hcy is in the cysteine-Hcy 

form. Upwards of 99% of the total circulating Hcy concentrations are in the oxidized, "free," and 

albumin-bound forms, whereby healthy individuals have a total Hcy concentration of around 2-3 

µmol/L (161). Kidneys can only filter out trace amounts of Hcy (162); therefore, HHcy is a 

cause of concern for multiple diseases, hence, why it is frequently used as a biomarker or 

indicator of disease risk.  

Pathogenesis of Hyperhomocysteinemia  

It is well established that HHcy is an independent risk factor for cardiovascular disease – 

an association first proposed by McCully in 1969 (163). This association's origins were 

identified from the observation of an inborn error in metabolism, termed homocystinuria, which 

is a condition that results in elevated Hcy in the urine. Homocystinuria is a heritable condition 

that manifests from the inability to regulate Hcy metabolism, owing to a genetic defect in CBS 

and/or ϒ-cystathionase (164). This reduced enzymatic activity impairs the ability to metabolize 

Hcy into cysteine via the transsulfuration pathway. A second inborn error in metabolism leading 

to HHcy is a polymorphism in the gene encoding MTHFR, such as the C677T mutation, which 

substitutes thymine for a cytosine nucleotide 677 (165). Moreover, MS can also be subjected to 

single nucleotide polymorphisms (MTR, A2756G), whereby the base substitution of glycine for 

aspartic acid (166) interferes with MS enzymatic activity, manifesting in a ‘methyl folate trap,’ 

and ultimately, HHcy (167).  

Apart from genetic and nutritional anomalies, the pathogenesis of HHcy is also 

implicated in numerous chronic diseases. Hyperhomocysteinemia is reported in up to 85% of 
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patients with renal failure (168), as research suggests that microalbuminuria (protein-bound Hcy) 

impedes renal glomerular filtration rate (169). Subsequent disease states that alter Hcy 

metabolism, leading to HHcy include hypothyroidism, hypertension, liver disease, among others 

(102,158). Collectively, these diseases either directly affect the methyl group metabolism or 

result in deficiencies of nutritional cofactors (i.e., vitamins and zinc) that aid in the remethylation 

and transsulfuration of Hcy. 

Association with PCOS 

Several research studies have examined the implications of concomitant 

hyperandrogenism, hyperinsulinemia, and obesity on the increased prevalence of cardiovascular 

disease indicators. Early research by Talbott et al., reported that women with PCOS exhibited 

significantly higher total cholesterol, fasting low-density lipoprotein (LDL) levels, insulin, and 

BMI, combined with decreased total high-density lipoprotein (HDL) (170). While the cause-and-

effect between HHcy and cardiovascular disease has not been elucidated (171), it is widely 

respected for its robustness as a risk factor for cardiovascular disease (172,173). Given the 

comorbidities in patients with PCOS, foundational research by Talbott and others (170) has led 

to the emergence of association-based clinical studies examining the link between PCOS and 

HHcy (174–177).  

Upwards of 80% of women with PCOS present clinical hyperinsulinemia (178), and it is 

not exclusive to patients with obesity (179). Given this high prevalence of hyperinsulinemia, 

several research studies have reported increased risk of HHcy (179–181). These results have 

been corroborated by Sen et al., wherein they determined IR was a strong predictor of elevated 

homocysteine concentrations in adolescents with PCOS (182). Similar findings have been 

reported on numerous occasions among varying demographics (175,176). Interestingly, these 

results may be a consequence of the multifactorial conditions of PCOS, rather than 
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hyperandrogenism alone. A study examining the relationship between HHcy and disease, 

assessed patients with PCOS and women with congenital adrenal hyperplasia (183). Results from 

this observational study reported elevated Hcy concentrations in PCOS patients, but not in 

patients with congenital adrenal hyperplasia; additionally, this association with HHcy was 

positively explained by the presence of IR in 70% of the PCOS cohort (183). Chakraborty et al., 

did a study examining the hypothesis of HHcy and IR-mediated frequent pregnancy loss. Their 

retrospective study examining 126 women with PCOS, determined that the frequency of 

miscarriages was markedly higher among the HHcy-PCOS study population (71%) than those 

with normal Hcy levels (29%) (184). Additional studies have corroborated these findings, as a 

study examining the Hcy concentrations in follicular fluid of 52 women with PCOS seeking 

reproductive assistance, determined a negative correlation between both follicular Hcy and B12 

concentrations with rate of successful fertilization (185).  

In contrast to these studies presenting the positive correlation between IR and HHcy in 

cases of PCOS, a more recent meta-analysis collating results from 34 studies determined no 

significant effect between HHcy and IR (175). This unmarked relationship was also reported in a 

study enrolling young women with and without PCOS, whereby multiple regression analysis 

concluded that IR was not a predictor of Hcy concentrations (186). These conflicting results may 

be indication of the duration of diagnosis, or population-specific responses to IR and 

concomitant hyperinsulinemia. Regardless, mechanistic studies suggest that insulin directly 

mediates CBS enzymatic activity, thereby inhibiting the transsulfuration of Hcy, which may, in 

part, explain the link between IR and HHcy in PCOS (187–189). In a study exposing hepatocytes 

to high extracellular insulin concentrations, a 50% reduction in CBS enzymatic activity was 

reported (188). Research by Ratnam et al., examined the effects of an insulin-dependent animal 
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model of type 1 diabetes mellitus (T1DM) on primary outcomes of CBS activity and Hcy 

concentrations (187,190). Results from their study demonstrated that T1DM directly elevated 

hepatic CBS activity and subsequent, hypomethylation. Upon insulin administration in their 

T1DM model, these effects were reversed. It is possible that in women with PCOS, the metabolic 

consequences of hyperinsulinemia (independent of diabetes) results in this diminished CBS 

activity, manifesting in HHcy. To date, no mechanistic studies have reported a molecular basis 

for HHcy in lean and obese women with PCOS. 

Nutrition, Homocysteine, and PCOS 

The literature employing nutrition-based strategies to support methyl group metabolism 

in PCOS are scant, but observational studies examining the impact of nutrient supplementation 

or deprivation on HHcy in PCOS do exist in the literature. The compilation of these studies are 

important to take note of when proposing nutrient interventions based on the PCOS animal 

models described in Table 2-1. Most studies that yielded positive correction of serum total Hcy 

concentrations, were studies implementing a high dose of folic acid (1-5 mg/d) for greater than 8 

consecutive weeks (191–193). This is even exemplified when patients are co-treated with 

subsequent medications. For instance, a randomized double-blind trial in PCOS patients on 

metformin treatment, were either supplemented with (n = 25) or without (n = 25) folic acid for 6 

months (194). Findings from Palomba et al., reported a significant improvement in Hcy 

concentrations as a result from folic acid supplementation when compared to the placebo group 

(194). Albeit few, there are studies examining the effects of micronutrients that support methyl 

group metabolism in clinical populations of middle-aged women with PCOS.  Moreover, it is 

evident from this literature search that nutrition-based strategies to address PCOS, particular in 

the United States, are limited. The main studies employed include supplementation with folic 

acid. Results from these trials in women with PCOS are presented in Table 2-2.  
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Table 2-2. Human studies identifying the clinical implications of polycystic ovary syndrome on circulating homocysteine 
concentrations and the role of diet and supplementation of methyl group-donors on clinical outcomes.  
 
Reference Population  Study Design Dose Impact of PCOS on 

methyl group 

metabolism 

Subsequent Major 

Outcomes 

Kazerooni et 
al., 2008 (Iran) 
(191) 

Women w/ 
PCOS (n = 
210); PCOS + 
HHcy (n = 
70); and 
PCOS + 
HHcy + IR (n 
= 32).  

PCOS + HHcy +IR (n 
= 32); PCOS + HHcy 
(n = 38).  
Parallel design for 3 
months. Baseline Hcy 
and insulin measured 

1 mg folic acid / 
day 

- ↓ 11% in Hcy in 
PCOS + HHcy + 
IR 

- ↓ 37% in Hcy in 
PCOS + HHcy 

- N/A 

Asemi et al., 
2014 (Iran) 
(192) and  
Bahmani et 
al., 2014 (Iran) 
(193) 

Women w/ 
PCOS (18-40 
yr of age; n = 
81). 

RCT, double-blind 
placebo controlled; 
low folate (n = 27); 
high folate (n = 27); 
placebo (n = 27). 8 wk 
intervention. 

Low folic acid 
(1 mg/day); 
high folic acid 
(5 mg/day); and 
placebo. 

- High folic acid vs. 
low folic acid and 
placebo = ↓ plasma 
Hcy 

- High folic acid vs. 
low folic acid and 
placebo = ↓ 
HOMA-IR, ↓ total 
cholesterol,↓ CRP, 
↓ MDA, and ↑ 
GSH.  

Gaskins et al., 
2012 (United 
States) (195) 

Women (n = 
259) 18-44 
years of age; 
PCOS 

Cross-sectional 
observational study to 
examine folate intake 
on PCOS-related 
anomalies 

N/A - High folate intake 
associated with ↑ 
progesterone, ↓ 
anovulation.  

- N/A 

Schiuma et al., 
2020 (Italy) 
(196) 

PCOS women 
18+ years of 
age 

Parallel, open label 
control vs. treatment 
group.  

Treatment = 2:1 
ratio of 
treatment with 
micronutrient 
supplementation 
(Impryl) 

- ↓ AMH 
- ↓ SHBG 
- ↑ Testosterone 
- ↑ Hcy 

- N/A 



 
36 

 

Table 2-2. Continued. 
 
Reference Population  Study Design Dose Impact of PCOS on 

methyl group metabolism 

Subsequent Major 

Outcomes 

Esmaeilzadeh 
et al., 2017 
(Iran) (197) 

PCOS 
women (n = 
18).  

Intervention study, 
with metformin 
treatment 2x daily, 6 
months.  

Metformin (500 
mg, 2x/day).  

- ↓ serum vitamin 
B12 

- - no change in 
serum folic acid  

- ↑ Hcy in PCOS + 
IR, obesity group 

- N/A 

Guler et al., 
2014 (Turkey) 
(198) 

Women with 
PCOS (n = 
53); healthy 
controls (n = 
33) 

Cross-sectional 
study; evaluating 
markers of zinc and 
Hcy status 

No treatment - ↓ serum zinc in 
PCOS 

- Zinc significant 
predictor of PCOS 

- ↑ BMI in PCOS 
- ↑ TG/HDL-

cholesterol in 
PCOS 

- ↑ Hcy 
Stracquadanio 
et al., 2017 
(Italy) (199) 

Women with 
PCOS (n = 
100); age 20-
35; and 6 
month 
parallel 
intervention. 

PCOS + myo-
inositol, gymnemic 
acid and l-
methylfolate (n = 
50); or PCOS + myo-
insositol + folic acid 
(n = 50) 

Myo-inositol (2 g); 
gymnemic acid (75 
mg); and folic acid 
(400 µg).  

- ↓ Hcy - ↓ BMI  
- ↑ cyclicity 
- ↓ testosterone  
- ↑ SHBG 
- ↓ total 

cholesterol 
- ↑ HDL 
- ↓ basal insulin 

Carlsen et al., 
2007 
(Norway) 
(200) 

Women with 
PCOS; 
PCOS + 
infertile (n = 
63); and 
PCOS + 
pregnant (n = 
38).  

RCT with 
intervention for 16 
wk. High or medium 
dose metformin or 
placebo control  

PCOS + infertile = 
metformin (1,000 
mg); PCOS + 
pregnant (850 mg). 
All women had 
multivitamin folic 
acid and vitamin 
B12 
supplementation 

- ↓ serum vitamin 
B12 with 
metformin, both 
groups 

- ↓ serum folate with 
metformin, both 
groups 

- ↑ Hcy, in infertile 
women 

- N/A 
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Table 2-2. Continued. 
 
Reference Population  Study Design Dose Impact of PCOS on 

methyl group metabolism 

Subsequent Major 

Outcomes 

Palomba et al., 
2010 (Italy) 
(194) 

Women with 
PCOS (n = 
50), absent 
of metabolic 
or 
cardiovascul
ar disease. 

Prospective, 
nonrandomized, double-
blind study. Metformin + 
folic acid (n = 25) or 
metformin + placebo (n 
= 25). 

Metformin (1,700 
mg); folic acid 
(400 µg) 
consumed daily for 
6 months. 

- ↑ Hcy, in 
metformin + 
placebo group 

- ↓ Hcy, in folic acid 
treatment group 
 

- ↓ LDL 
cholesterol, 
both groups 

- ↓ testosterone, 
both groups 

- ↑ SHBG, both 
groups 

- ↓ fasting 
insulin, both 
groups 

Kilicdag et al., 
2005 (Turkey) 
(201) 

PCOS 
patients (n = 
60). 

RCT with 3 treatment 
groups: 1) metformin 2x 
daily; 2) metformin + B-
vitamins 2x daily; and 3) 
metformin + folic acid 

Metformin (850 
mg), B-vitamins 
(thiamin, 250 mg; 
B6, 250 mg; and 
B12, 1 mg), and 
folic acid (174 
µg).  

- ↑ 27% Hcy, in 
metformin only 

- ↓ 21% Hcy, 
metformin + B-
vitamins 

- ↓ 8% Hcy, 
metformin + folic 
acid 

↑ 2-fold serum B12, 
in metformin + B-
vitamins 

AMH, ; BMI, body mass index; CRP, c-reactive protein; GSH, glutathione; IR, insulin resistance; Hcy, homocysteine; HDL, high 
density lipoprotein; HOMA-IR, homeostatic model assessment of insulin resistance; HHcy, hyperhomocysteinemia; MDA, 
malondialdehyde; PCOS, polycystic ovary syndrome; RCT, randomized control trial; SHBG, sex hormone binding globulin; and TG, 
triglycerides. 
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Summary 

Polycystic ovary syndrome is a complex condition with many underlying complications 

that affect both metabolic and reproductive outcomes. Many researchers mark PCOS as the 

metabolic syndrome of reproductive-aged women, but this review highlights the lines of 

evidence that propose a wide array of alternative complications and exposures. Despite the 

hallmarks of PCOS, (i.e., hyperandrogenism, hirsutism, infertility), this review provides insight 

into some of the observed associations that may be critical for elucidating the mechanisms 

involved in the pathogenesis of disease. Several animal models of PCOS exist, however research 

is scant in examining the outcomes of methyl group metabolism during progressive PCOS. 

Therefore, the premise of the studies described in the central chapters of my dissertation aim to 

discern these methyl group metabolism anomalies in a non-metabolically perturbed model of 

PCOS, and a more classic PCOS model accompanied by obesity and IR. Our studies were 

hypothesized on the basis of this gap in research identifying the relationship between 

dysfunctional methyl group metabolism and PCOS. These findings have not been reported 

elsewhere, and they lay the foundation for extensive research employing nutrition-based 

strategies that address the potential methyl group imbalance. This literature review exposes the 

lack of knowledge identifying the impact of methyl group-related micronutrients on 

reproductive, metabolic, or a combination of these outcomes in prepubescent and middle-aged 

models of PCOS.  
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Abstract 

Background: Polycystic ovary syndrome (PCOS) is an endocrine disorder that affects 10% of 

reproductive-aged women and leads to hyperandrogenism, polycystic ovaries, and infertility. 

Moreover, PCOS has been associated with elevated serum homocysteine; however, 

characterization of one-carbon metabolism (OCM) in PCOS remains incomplete.  

Objective: The aim of our research was to characterize OCM in a letrozole-induced Sprague 

Dawley (SD) rat model of PCOS. 

Methods: Five wk old female SD rats (n = 36) were acclimated for one wk and then were 

randomly assigned to letrozole (1g/kg body weight; BW) treatment or vehicle 

(carboxymethylcellulose) control that were administered via a subcutaneously implanted slow-

release pellets every 30-d. For both treatment groups, 12 rats were randomly assigned to be 

euthanized during proestrus at one of the following timepoints: 8, 16 or 24 wk of age. Daily BW 

was measured and estrous cyclicity was monitored during the last 30-d of the experimental 

period. Ovaries were collected to assess gene expression and protein abundance of OCM 

enzymes. These data were analyzed using a t-test and linear mixed model for repeated measures 

at a significance level of P < 0.05.  

Results: Letrozole-induced rats had increased cumulative BW gain compared to control rats 

across all age groups (P < 0.0001). Letrozole reduced the time spent at the proestrus and estrus 
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stages (P = 0.0001 and P = 0.006, respectively) of the estrous cycle. Cystathionine β-synthase 

(Cbs) mRNA abundance was reduced in the letrozole vs. control rats at 16 (59%; P < 0.05) and 

24 (77%; P < 0.01) wk of age. Additionally, CBS protein abundance was 32% lower in the 

letrozole-induced rats at 8 wk of age (P = 0.02). Interestingly, betaine-homocysteine S-

methyltransferase (Bhmt) mRNA abundance increased as a function of age in letrozole-induced 

rats (P = 0.03).  

Conclusion: These data demonstrate that letrozole-induced PCOS temporally decreases the 

ovarian abundance of Cbs mRNA and protein in the early stages of PCOS. 

Introduction 

Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in 

reproductive-aged women, affecting one in ten females (1). Clinical manifestations include 

anovulation, infertility, and hyperandrogenism. A hallmark of PCOS is the rapid hypothalamic 

pulsatility of gonadotropin release hormone (GnRH) (2), which stimulates the anterior pituitary 

hormones luteinizing hormone (LH) and follicle stimulating hormone (FSH). Hypersecretion of 

LH is the central pathophysiological driver of PCOS, which in turn, leads to elevated circulating 

testosterone concentrations. Together, these imbalances lead to follicular arrest, amenorrhea, and 

infertility. Furthermore, a large concern for women with PCOS is the diminution in oocytes (3), 

as well as alterations to folliculogenesis (4).  

A persistent imbalance of androgen production and the duration of PCOS diagnosis 

increases the risk for developing co-morbidities, such as diabetes and cardiovascular disease (5). 

Aberrant methyl group metabolism and concomitant hyperhomocysteinemia is an independent 

risk factor for cardiovascular disease, as well as other chronic conditions (6). It is well 

established that women with PCOS have elevated blood and follicular homocysteine 

concentrations (7,8), but the exact reason and its implications on ovarian function remain elusive. 
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Furthermore, diabetic conditions compromise methyl group and homocysteine metabolism 

(9,10). Given the common comorbidity of PCOS and diabetes (11), it is important to characterize 

ovarian one carbon metabolism (OCM) and determine its relationship in the pathogenesis of 

PCOS.  

One carbon metabolism is a ubiquitous system, comprised of several essential nutrients 

functioning as coenzymes and methyl donors (12). Physiological processes, such as maintaining 

serine and glycine homeostasis, DNA synthesis, and providing sufficient methyl groups for S-

adenoyslmethioine (SAM)-dependent transmethylation reaction, including gene expression, are 

reliant on a tightly regulated OCM system. Three central pathways are involved in the 

metabolism and balance of methyl groups and homocysteine: 1) folate-dependent remethylation 

of homocysteine to methionine; 2) folate-independent remethylation of homocysteine to 

methionine; and 3) irreversible catabolism of homocysteine via transsulfuration (Figure 3-1). 

The consequences of both hypo- and hypermethylation results in impaired gene expression, 

which has been closely linked to a myriad of metabolic diseases (13). The deleterious effects of 

hypermethylation on oocyte quality have been previously reported (14). Jia et al. identified 

compromised mitochondrial DNA copy numbers and elevated follicular homocysteine 

concentrations in progressive polycystic gilt ovaries. Nevertheless, characterization of the key 

enzymes in the OCM pathway has not been examined. Therefore, the main objective of the 

present study was to induce the PCOS phenotype and characterize the OCM cycle as a function 

of disease progression. To achieve this objective, animals were maintained on a chemical 

treatment until either 8, 16, or 24 wk of age and differential mRNA, protein abundance, and 

enzyme activity between the letrozole-induced or placebo control rats was measured.  
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Materials and Methods 

Rats and Diets. All animal studies were approved by the Institutional Animal Care and 

Use Committee at Iowa State University (IACUC # 18-294) and were performed according to 

the Iowa State University Laboratory Animal Resources Guidelines. Female Sprague Dawley 

(SD) rats (n = 36) were purchased at 5 wk of age (Envigo, Madison, WI) and were dually housed 

according to treatment group in a temperature-controlled room with a 12-h light-dark cycle. All 

rats were acclimated on a modified semi-purified diet (AIN-93G) for one wk. Following 

acclimation, rats were randomly assigned to cage, experimental treatment, and age (8, 16, or 24 

wk of age) of sacrifice. At the beginning of the experimental period, animals were divided into 

two groups: placebo (n = 18; n = 6/age) and letrozole (n = 18; n = 6/age) and subcutaneously 

implanted with a 30-d continuous, slow-release pellet (Innovative Research of American, 

Sarasota, FL) containing a 1 mg/kg body weight (BW) dose of letrozole (Sigma-Aldrich; no. 

112809-51-5) or a 1 mg/kg BW dose of the vehicle control, carboxymethylcellulose. Each 30-d 

dose was pre-determined based on the average predicted change in BW as a function of age to 

maintain a dosage of 1mg/1kg BW. Rats were fed ad libitum a modified standard AIN93G diet 

containing 50.4% carbohydrate; 17.3% protein, and 32.3% fat from kcals. For the last 30 d of the 

experimental period, vaginal cytology was monitored to determine the stage of the estrous cycle, 

as previously described (15). Additionally, daily BW was recorded throughout the entire study. 

Animals were randomly assigned to be euthanized at proestrus in 1 of 3 groups (n = 12): 8, 16, 

and 24 wk of age.  Letrozole-induced rats were euthanized in diestrus, because they failed to 

cycle into proestrus. Rats were anesthetized via a single intraperitoneal injection of 

ketamine:xylazine (90:10 mg/kg BW) and whole blood was collected via cardiac puncture for 

serum separation. Euthanasia was carried out via vital tissue harvest, whereby the epididymal fat 

pad, liver, kidneys, and ovaries were removed and weighed. Confirmation of euthanasia was 
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performed by bilateral thoracotomy. One ovary was stored in RNAlater solution. Liver, kidney 

and adipose samples were either snap frozen in liquid nitrogen or stored in RNAlater. All tissues 

were stored at -80°C until subsequent analysis.  

 

Intraperitoneal glucose tolerance test. One wk before euthanasia, rats underwent an 

intraperitoneal glucose tolerance test (IPGTT). Following a 14 h overnight fast with ab libitum 

water, animals were injected with a 1g/kg BW dose of D-glucose in sterile 1X PBS after 

obtaining baseline blood glucose measurements via the lateral tail vein. Subsequent blood 

glucose measurements were obtained at 30, 60, 90, and 120 min post-injection using a standard 

glucometer (Bayer Healthcare). Data are reported as a change in blood glucose from baseline 

values.  

 

Assessment of estrous cyclicity. During the last 30 d of the experimental period, vaginal smears 

were obtained daily from all rats between 8-9 am. Smears were collected via a vaginal lavage of 

15 µL using sterile PBS solution. Samples were mounted and stained with methylene blue, as 

previously described (16,17). The stage of the estrous cycle (i.e. proestrus, estrus, metestrus, and 

diestrus) was determined and classified by the relative proportion of leukocytes, epithelial, and 

cornified cells by light microscopy, as detailed previously (18). 

 

Testosterone. Serum testosterone concentrations were determined using a commercially 

available enzyme linked-immunosorbent assay (Crystal Chem; Elk Grove Village, IL). 
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Quantitative real-time polymerase chain reaction. Total ovarian RNA was extracted from half 

of one ovary using a Qiagen RNAeasy Mini kit (no. 74134; Germantown, MD). RNA quantity 

and the λ= 260:280 nm absorption for determination of quality was measured via 

spectrophotometry using a Nanodrop 2000 (Thermo Fisher Scientific). Using the Agilent High 

Capacity cDNA kit (Thermo-Fisher Scientific), mRNA was converted to complementary DNA 

and 1.9 µg/20 µL reaction was used. Primers (Table 3-1) were designed and obtained from 

Integrated DNA Technologies (Coralville, IA). Reverse transcription PCR reactions were 

performed on each sample in triplicate and inter variation was controlled by analyzing all of the 

genes of a given animal on the same 96-well reaction plate using LightCycler FastStart Master 

SYBR Green 1 (no. 03003230001; Roche) on a LightCyler 96-well Real-time PCR System 

(Roche) according to manufacturer’s instructions. CT values were normalized to 18S ribosomal 

mRNA and presented as relative-fold change. Amplification efficiencies of target and reference 

gene assays were verified and data were analyzed using the Livak, delta delta CT method for 

relative mRNA expression (19). 

 

Western blotting. One ovary (5 mg) was homogenized in 200 µL lysis buffer [Tris-HCl (50 mM, 

pH 7.4), EDTA (1 mM), EGTA (1 mM), DTT (1 mM), glycerol (10%, w/v), and Triton-X (1%, 

w/v)] with halt protease inhibitor cocktail (Thermo Fisher Scientific, no. 78439). Protein 

concentrations were determined using a Pierce Coomassie Bradford assay (ThermoFisher 

Scientific, no. 23236) according to the manufacturer’s instructions. Ovarian lysates were diluted 

to 1.7 μg/μL in Laemmli loading buffer and a total of 40 μg protein was loaded onto a 15% 

sodium dodecyl sulfate polyacrylamide gel for separation of proteins via electrophoresis (80 min; 

200V) in 1X Tris-Glycine SDS buffer. After separation, proteins were transferred to a 
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nitrocellulose membrane via a fully-wet transfer in 25 mM Tris, 192 mM glycine, 20% v/v 

methanol, pH 8.3 buffer via electrophoresis (120 min; 100V). All membranes were stained with 

Ponceau S to verify equal loading and transfer efficiency. Membranes were washed with PBS 

and incubated with CBS (1:750 dilution) and α-tubulin (1:400 dilution) primary antibodies (CBS, 

cat. no MA517273; α-tubulin, cat. no sc-5286; ThermoFisher Scientific) in 5% non-fat dry milk 

in PBS-tween buffer, overnight at 4◦C. After 3 washes with PBS, membranes were incubated 

with a secondary antibody (IRDye 800CW Goat anti-Mouse cat no. 926-32210 and 600CW Goat 

anti-rabbit cat. no 926-68021) at a dilution of 1:5,000 for 1 h at room temperature. Membranes 

were washed 4 times, 10 min each, in PBS before imaging via digital fluorescence detection 

using an Odyssey CLx imaging system (Li-Cor). The net intensity of each band was determined 

using Empiria Studio Software (Li-Cor) and normalized to α-tubulin 

 

Cystathionine beta synthase activity. Ovarian CBS enzyme activity was determined using a 

commercially available assay by Abcam (cat. no ab241043; Cambridge, MA). Briefly, one ovary 

per rat (5.5 mg) was homogenized in CBS assay buffer using a mechanical homogenizer on ice 

at speed 3.5 for 5 sec. Tissue lysates were then centrifuged at 10,000 x g for 15 min at 4○C. The 

remaining preparation of the assay was performed per the manufacturer’s instructions using the 

Synergy H1 Hybrid Microplate Reader (BioTek Instruments, Winooski, VT). CBS activity was 

determined by analyzing the assay in kinetic mode with the gain setting on auto for 50 minutes, 

at 1-min intervals, resulting in a total of 50 reads. CBS enzyme activity is presented as 

nmol/min/mL. 

 



62 
 

Statistical Analysis. All data were analyzed with SAS 9.4 Statistic Software (Cary, NC). Means 

were assessed for normality using Pearson residuals. Normally distributed data are presented as 

means ± SEMs and analyzed using unpaired t-tests between treatment groups within each age as 

determined previously (20). When data were assessed as an overall effect across age and 

treatment groups, a linear mixed model with analysis of main effects of treatment and age in 

addition to simple effects of within age and treatment groups was reported. Repeated measure 

analysis of IPGTT and BW were assessed via a mixed-model analysis and Satterthwaite 

approximations were used to estimate degrees of freedom for post-hoc tests to compare pairwise 

treatment means within each age level for all indicators. Statistical significance was determined 

at a level of P < 0.05.  

Results 

Letrozole-induced rats had higher body weight. A main effect of letrozole treatment was 

observed for growth, resulting in higher cumulative BW gain as a function of time across all 

three age groups (P < 0.001; Figure 3-2). At 8 wk of age, letrozole-induced rats had ~2-fold 

higher cumulative BW gain compared to their placebo counterparts (P < 0.01) and by 24 wk of 

age, letrozole-induced rats gained ~1.8-fold more weight than the placebo group (P < 0.0001). 

There was a significant interaction between treatment and age (P < 0.0001). Moreover, pairwise 

comparisons determined differences in BW gain as a function of age in both the letrozole-

induced and placebo rats (P < 0.0001).  

 

Letrozole did not impair glucose tolerance. There were no main effects of letrozole treatment on 

impaired glucose tolerance (P = 0.80) as measured by the change in blood glucose 

concentrations from baseline up to 120 minutes, indicating that the growth rate of the letrozole-

induced rats was not concomitant with blood glucose intolerance (Figure 3-3). A main effect of 
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age on a greater change in blood glucose concentrations was detected (P = 0.034), but there was 

no interaction between treatment and age (P = 0.13).  

 

Letrozole attenuated the frequency of proestrus occurrence. There are four stages of the estrous 

cycle: proestrus, estrus, metestrus and diestrus; however, due to the effects of letrozole, a number 

of vaginal smears were unclassifiable potentially as a result of letrozole-induced acyclicity. The 

impact of letrozole exposure on the time spent at each stage of the estrous cycle was determined 

(Figure 3-4). Samples that only presented leukocytes and not able to be classified into one of the 

4 estrous stages, were termed pseudodiestrus and have been described in previous studies 

(21,22). These samples were maintained in the analyses, and indicated as pseudodiestrus (U). 

There was a main effect of treatment (P = 0.01) and age (P < 0.0001) on the percentage of 

samples that were in pseudodiestrus. Moreover, there was a main interaction between treatment 

and age on percent in pseudodiestrus (P < 0.01). When simple effects were examined by 

extrapolating to treatment effects within age groups, there was higher prevalence of animals in 

pseudodiestrus (P = 0.0002) in letrozole-treated (22.7 ± 2.0%) vs. placebo-treated (12.7 ± 2.0 %) 

rats. A shorter time (P < 0.0001) spent at proestrus was observed in the letrozole-induced rats 

compared to their placebo counterparts. This effect was not observed as a function of age (P = 

0.71) and differed as animals aged (16 wk, P = 0.003; 24 wk, P < 0.001). There were no main 

effects of treatment or age on the time spent in estrus or diestrus, but a prolonged occurrence of 

metestrus was observed in the letrozole-induced rats (P < 0.0001) and as a function of age (P = 

0.03). Metestrus was more prevalent in the letrozole-induced rats compared to controls at 8 (P 

<0.001), 16 (P <0.001), and 24 (P <0.001) wk of age. 
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Relative uterine horn weights were atrophic as a result of letrozole exposure. A main effect of 

letrozole treatment for a marked reduction in relative uterine horn weight (P < 0.0001) was 

observed, but there was no effect of age or the interaction of the two on relative uterine horn 

weight (Table 3-2). At 8 wk of age, letrozole-induced rats had a 53% decrease in relative uterine 

horn weight compared to the placebo group (P = 0.003), an 80% decrease at 16 wk (P = 0.0003), 

and a decrease of 81% by 24 wk (P = 0.003).  Interestingly, there was a trend (P = 0.085) for 

higher relative ovarian weight as a result of letrozole-exposure. There was a main effect of age 

(P < 0.0001) and the interaction of treatment and age (P = 0.017) on relative ovarian weight. 

When we examined the simple effects of letrozole treatment on relative ovarian weight within an 

age group, a difference was only observed at 8 wk of age (P = 0.003). 

 

Letrozole-induced rats had elevated circulating testosterone concentrations. To confirm the 

PCOS phenotype, circulating testosterone concentrations were measured in the rats. Letrozole-

induced rats had higher circulating serum testosterone concentrations at 8 (P = 0.009), 16 (P = 

0.005), and 24 (P = 0.02) wk of age (Figure 3-5). Concentrations in the letrozole-induced rats 

were elevated as much as 2.8-fold higher when compared to the placebo rats. 

 

Letrozole modulates the gene expression of two key enzymes in the OCM pathway. Out of the 

five OCM enzymes examined with respect to transcript level, only two were altered (P < 0.05) in 

the letrozole-induced rats (Figure 3-6). An analysis within age groups determined a reduction in 

ovarian cystathionine β-synthase (Cbs) mRNA abundance in letrozole-treated rats of 59% (P = 

0.05; Fig 3-6B), and 77% (P = 0.008; Fig 3-6C) at 16 and 24 wk of age, respectively. There was 

a trend for a 39% reduction of Cbs mRNA abundance in rats at 8 wk of age (P = 0.06; Fig 3-6A). 
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In contrast, there was a trend for 85% higher Cbs transcript abundance in letrozole-induced rats 

compared to the placebo controls at 16 (P = 0.06) wk of age (data not shown). When testing 

across both treatment and age, there was an overall effect of treatment as a function of age as 

evidenced by increased Bhmt mRNA abundance (P = 0.034) in the letrozole-treated rats (Figure 

3-6). No differences in Bhmt mRNA level were identified between treatment groups (P = 0.32). 

The abundance of mRNA encoding Cyp19a1 was significantly reduced by 75% in rats at 8 wk of 

age.  

 

Cystathionine β-synthase protein abundance is diminished in the early onset of PCOS. We 

measured the protein abundance and enzyme activity of CBS in rats with and without PCOS 

across 3 age groups. Protein abundance decreased 32% in the letrozole-induced rats at 8 wk of 

age (P = 0.02), but there was no significant change at 16 or 24 wk of age (Figure 3-6E). 

Furthermore, there was no significant variation in the level of ovarian CBS enzymatic activity at 

any age (Figure 3-6F). 

Discussion 

Our previous work determined aberrations in methyl group and homocysteine 

metabolism, resulting in global hypermethylation (23) in an obese model of type 2 diabetes 

(T2D), suggesting potential alterations in the OCM pathway during the pathophysiological 

progression of PCOS. Therefore, the objective in this study was to characterize OCM in an 

animal model of chemically-induced PCOS, and potentially one that displays an obese 

phenotype. In addition, similar to our studies in a hyperphagia-induced mouse model of obesity 

(20), the experimental paradigm included analysis of tissues at three ages in order to examine 

mechanisms involved in the progression of a PCOS phenotype.  



66 
 

Letrozole is an inhibitor of CYP19A1, which is the key enzyme involved in the ovarian 

conversion of testosterone to 17β-estradiol. Compromised CYP19A1 activity is one of the 

underlying conditions in the pathogenesis of PCOS, resulting in concomitant elevations in 

testosterone concentrations, thus making circulating testosterone an excellent biomarker for 

PCOS (24). Although polycystic ovaries are a consistent result from letrozole treatment (25), 

there are inconsistencies in the reported metabolic and phenotypic characteristics of letrozole 

exposure. For instance, several studies have reported almost full recapitulation of insulin-

resistant PCOS that is observed in humans, as evidenced by observations of insulin sensitivity, 

increased adiposity, and obesity in the letrozole-induced rodents (25–27). In contrast, the 

letrozole-treated rats in this study had no indication of glucose intolerance when compared to 

their control counterparts at any age. There were no differences in fasting blood glucose 

concentrations or glucose tolerance tests between treatment groups. There was a robust 

difference in absolute BW and cumulative BW gain across all age groups, but this was not 

concomitant with increased adiposity. The findings in our study are consistent with other studies 

reporting a lack of glucose intolerance (28), insulin sensitivity (29,30), and adiposity (27) in 

adult letrozole-induced rodents.  

We are one of the first groups to report using a slow, time-release pellet method for 

delivering letrozole, as compared to the more common practice of daily intramuscular injections, 

a clearly stressful mode of delivery. Thus, it is evident that the phenotypic outcomes of letrozole 

treatment are variable and could be species, dose, and/or developmental stage dependent (31–

33). Furthermore, the letrozole treated rats in this study were affected by the intervention, albeit 

to a more moderate level. We chose the three age groups of 8, 16, and 24 wk of age because they 

reflect earlier reproductive periods of approximately 12, 20, and 28 years of human age, 



67 
 

respectively (34). Creating a model of PCOS that eliminates many of the confounding factors, 

such as insulin resistance and glucose intolerance is important, as the model in this current study 

is therefore more suitable for elucidating the mechanisms that are involved in the pathogenesis of 

PCOS.  

We observed significantly perturbed estrous cyclicity in our letrozole-induced rats. 

During metestrus, cornified epithelial cells along with leukocytes are present in the vaginal 

smears, whereas predominant presence of leukocytes indicates diestrus. Other studies employing 

letrozole treated rodents have confirmed to be almost entirely acyclic, as assessed by exclusive 

presence of leukocytes, otherwise classified as pseudodiestrus (21,22,35). For the purpose of our 

model, acyclicity allows us to reduce the variability within the letrozole treated group and 

examine differences in ovarian metabolism that is indicative of human PCOS conditions. 

Additionally, we determined greater evidence of perturbations to ovarian function due to the 

observed uterine horn atrophy in the letrozole-induced rats across all stages. Uterine growth is 

responsive to circulating estrogen levels, and previous studies have reported dose-dependent 

suppression of the uterine weight upon letrozole exposure (32). Taken together, these 

observations provide us with evidence of a strong and robust model of PCOS.  

A hallmark of the PCOS phenotype is elevated circulating testosterone concentrations, 

leading to disruption of the hypothalamic pituitary ovarian axis. It was important for us to 

examine the influence of letrozole on circulating testosterone concentrations, because research 

has reported sex differences on OCM, but it has not been investigated whether conditions of 

PCOS affect OCM (36). Our letrozole-induced PCOS model resulted in an overall mean of 3.5 

ng/mL of serum testosterone, which is comparable to the circulating testosterone concentrations 

of 5.5 ng/mL and 3.2 ng/mL that have been reported in 12-wk old male SD rats (37,38). The 
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effects of testosterone on OCM have predominantly been reported in prostate cancer models. For 

instance, high testosterone concentrations post-transcriptionally decreased Cbs gene expression 

specifically in a prostate cancer cell line (39). Furthermore, high testosterone exposure resulted 

in a compensatory decrease in the transsulfuration flux and glutathione production, partially 

explained by reduced CBS activity in the cell line. These findings are also corroborated by 

research examining the effects of estrogen-replacement therapies on postmenopausal women. 

Estrogen has been reported to have a dose-dependent effect on the transsulfuration of 

homocysteine to cysthathionine, whereby oral estradiol has been reported to result in an increase 

in plasma glutathione concentrations and a reduction in circulating homocysteine (40,41). 

Cystathionine-β synthase is an enzyme encoded by the Cbs gene that is critical in the 

transsulfuration pathway by catalyzing the irreversible conversion of homocysteine to 

cystathionine (42). The primary role of CBS is its involvement in the canonical transsulfuration 

pathway that results in maintaining homocysteine concentrations, as well as the downstream 

production of cysteine and glutathione, the latter representing a major antioxidant (43). To date, 

when it comes to the female reproductive systems, altered Cbs expression has been almost 

exclusively studied in ovarian cancer as indicated by enhanced cellular proliferation, tumorigenic 

overexpression, and enhanced antioxidative capacity in cancer cells (42). Though it remains 

largely uncharacterized, due to the presence of increased circulating homocysteine 

concentrations (7) and elevated inflammatory stress (44) in the ovaries in women with PCOS, the 

OCM pathway is a logical candidate for involvement in PCOS pathogenesis.  

We demonstrated a temporal decrease in ovarian Cbs mRNA abundance during the 

progression of PCOS. Moreover, we reported a significant reduction in CBS protein abundance, 

but this was not a progressional response as it was only observed at 8 wk of age. Due to the role 
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of CBS in the transsulfuration pathway, this finding suggests reduced catabolism of 

homocysteine which, in part, may explain the elevated follicular homocysteine concentrations 

that have been previously reported (7,8). Although we did not report fasting blood insulin levels, 

previous research by Ratnam et al. demonstrated the effects of insulin on decreasing CBS 

enzymatic activity (45). In their diabetic animal model, insulin treatment restored the elevated 

CBS activity back to baseline. We previously established that diabetic rats exhibit elevated 

hepatic CBS activity (23), and interestingly, we observed a trend in increased Cbs gene 

expression in the liver (data not shown). It is possible, that our markedly lower ovarian Cbs 

expression and trend for elevated hepatic Cbs mRNA abundance is influenced by circulating 

insulin concentrations; however, we were not able to confirm this finding, since we did not 

observe a significant reduction in CBS activity. 

Although letrozole treatment did not affect the abundance of Bhmt significantly within 

each time point, we did observe increased transcript abundance in Bhmt as a function of age, 

exclusively in our letrozole-treated rats. To our knowledge, there is only one report indicating 

altered Bhmt expression in a model of PCOS. A study by Jia and colleagues (14) reported 

increased Bhmt gene expression in the ovaries of gilts with PCOS. Their findings were 

accompanied by hyperhomocysteinemia; therefore, elevated circulating levels of homocysteine 

resulted in perturbed ovarian OCM, particularly disrupting Bhmt and Gnmt activation in the 

oocytes of gilts. BHMT is the enzyme that functions in the transmethylation of homocysteine 

back to the amino acid, methionine via the donation of one methyl group from betaine. 

Upregulation of Bhmt suggests prevention of hyperhomocysteinemia conditions, as previous 

research has reported elevated BHMT activity at the expense of elevated homocysteine 

concentrations in models of progressive folic-acid deficiency (46) and diabetes (47).   
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In conclusion, our results demonstrate that progressive PCOS via letrozole treatment 

perturbs the enzymatic mRNA abundance and protein level of CBS at the early stage of PCOS (8 

wk of age). The data and results provide a novel representation of the mechanistic OCM 

consequences in the ovaries during the progression of PCOS, one that is absent of metabolic 

characteristics such as increased adiposity and insulin resistance. Additionally, the importance of 

determining the alterations in OCM enzymes allows us to apply our findings to understand how 

nutrition in the early stages of development may help mitigate alterations to the canonical OCM 

pathway and thereby limit the severity of PCOS. Future dietary intervention studies, such as 

intervening with a high dietary methyl diet, are warranted to examine the therapeutic role of 

nutrition in supporting OCM during progressive PCOS.  
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Tables and Figures 

 

Figure 3-1. Schematic of the one-carbon and methyl group metabolism pathwayAbbreviations 
used: BHMT, betaine homocysteine S-methyltransferase; CBS, cystathionine β-synthase; DMG, 
dimethylglycine; MAT, methionine adenosyltransferase; MS, methionine synthase; MTHFR, 
methylenetetrahydrofolate reductase; SAH, S-adenosylhomocysteine; SAHH, S-
adenosylhomocysteine hydrolase; SAM, S-adenosylmethionine; THF, tetrahydrofolate; X, 
methyl group acceptor; 5-CH3-THF, 5-methyltetrahydrofolate. 
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Figure 3-2. Cumulative body weight gain of rats on letrozole and placebo across 8, 16, and 24 
wk of age.  Data are means ± SEMs; n = 6. Main effects of letrozole and age were tested in a 
linear mixed-model of repeated measures at significance P < 0.05.  
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Figure 3-3. Change in blood glucose concentrations in rats on letrozole vs. placebo following an 
intraperitoneal glucose tolerance test. Data are means ± SEMs; n = 6. Main effects of letrozole 
and age were tested in a linear mixed-model of repeated measures at significance P <  0.05. 
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Figure 3-4. Percent frequency of days spent in each stage of the estrous cycle for a total of 30 d. 
Data are means ± SEMs of the percent frequency; n = 6. Main effects of letrozole and age were 
tested in a linear mixed-model at significance P < 0.05. Abbreviations used: Pr, proestrus; E, 
estrus; M, metestrus; D, diestrus; and U, pseudodiestrus; P, placebo; and L, letrozole.  

 

 

Figure 3-5. Serum testosterone concentrations for letrozole-induced and placebo control SD rats. 
Data are means ± SEMs; n = 6. Significant differences were assessed by unpaired t-test; *P <0 
.05, **P < 0.01. 
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Figure 3-6. Ovarian mRNA abundance of select proteins in letrozole-induced and placebo 
control SD rats at 8 (A), 16 (B), and 24 (C) wk of age, representative western blot (D), CBS 
protein abundance (E), and CBS enzyme activity (F). The abundance of mRNA were normalized 
to 18S ribosomal mRNA and expressed as relative to placebo rats. Data are means ± SEMs of 
the relative fold change of mRNA transcript abundance, protein abundance, and enzymatic 
activity, respectively; n = 6/group. Relative fold change, protein abundance, and enzyme activity 
were compared via an unpaired t-test within in age group and deemed significant at P < 0.05. 
Abbreviations used: L, letrozole; P, proestrus; Gnmt, glycine n-methyltransferase; Mtr, 
methionine synthase; Bhmt, betaine-homocysteine S-methyltransferase; Cbs, cystathionine beta-
synthase; Dnmt, DNA methyltransferase; Esr1, estrogen receptor 1; Cyp19A1, cytochrome P450 

isoform 19a1 
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Table 3-1. Primer sequences for Rattus Norvegicus mRNA qRT-PCR quantification1. 

 

1Abbreviations used: Gnmt, glycine n-methyltransferase; Mtr, methionine synthase; Bhmt, 

betaine-homocysteine S-methyltransferase; Cbs, cystathionine β-synthase; Dnmt, DNA 
methyltransferase; Esr1, estrogen receptor 1; Cyp19A1, aromatase. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    
 

Gnmt TM GC% 
5' to 3' CAGCAGGAGATGGCTTTGA 57.44 52.63 

5' to 3' antisense CCATGCTTGCGATGTTCTTTAG 58.31 45.45  
Mtr 

  

5' to 3' CAGACAGATGAGTGGAGGAATG 58.21 50 
5' to 3' antisense CTGGCTTCTTCAGTGTCTTCA 57.88 47.62  

Bhmt 
  

5' to 3' CACCTGTGATTGGTGCTAGTTA 58.06 45.45 
5' to 3' antisense CTGTGGACTTCTCCTTTCTTCC 58.33 50  

Cbs 
  

5' to 3' CTTAGCAGTTCCTCCTCACATC 58.21 50 
5' to 3' antisense AGGTAGACATGACCACAGGTA 57.53 47.62  

Dnmt 
  

5' to 3' CAGAGGAGAGAGACCAGGATAA 57.82 50 
5' to 3' antisense GGCCTTACTCGTTCAGGTTT 57.82 50  

Esr1 
  

5' to 3' AGGCTGCAAGGCTTTCTT 57.06 50 
5' to 3' antisense CAACTCTTCCTCCGGTTCTTATC 58.57 47.83  

Cyp19a1 
  

5' to 3' ATTTGTGTGTGTGTGTGTGTG 62 42.9 
5' to 3' antisense GCTCCTACTCCAGGTCTAGTAA 62 50 

 18S   
5' to 3' AAGACGAACCAGAGCGAAAG 62 50 

5' to 3' antisense TCGGAACTACGACGGTATCT 62 50 
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Table 3-2. Relative organ weights of letrozole-induced or placebo Sprague Dawley rats at 8, 16, or 24 wk of age1. 
  

8 wk 16 wk 24 wk   P-value   

Tissue LET Placebo LET Placebo LET Placebo Trt Age Trt ××××Age 

BW (g) 222 ± 4.2 186 ± 3.7 363 ± 5.8 239 ± 4.1 410 ± 9.2 275 ± 8.5 <0.0001 <0.0001 <0.0001 

UH (g) 1.14 ± 

.014** 

2.15 ± 21.1 .047 ± .002*** 2.42 ± .035 .052 ± .002** 2.73 ± .058 <0.0001 0.76 0.12 

Ovary  26.5 ± 1.8* 20.6 ± 0.9 16.4 ± 1.1 14.8 ± 1.3 16.8 ± 0.7 18.7 ± 1.5 0.08 <0.0001 0.02 

Kidney (g) 3.4 ± 1.0 3.1 ± 1.0 2.6 ± 1.0 2.9 ± 0.9 2.5 ± 1.1 2.8 ± 0.7 0.20 0.0002 0.06 

Adipose 1.0 ± 0.2 0.9 ± 0.0 2.9 ± 0.4 2.2 ± 0.2 3.7 ± 0.3 3.2 ± 0.3 0.14 <0.0001 0.73 

Liver 3.8 ± 0.1 3.7 ± 0.1 2.9 ± 0.1 3.0 ± 0.1 2.7 ± 0.1 2.8 ± 0.1 0.61 <0.0001 0.87 

BG (g/dL) 86.3 ± 4.5 95.0 ± 3.2 119.8 ± 8.9 108.0 ± 7.3 114.7 ± 3.6 116.0 ± 7.4 0.90 0.0005 0.26 

 
1 Data are means ± SEMs; n = 6/group. Different from placebo group (*P < 0.05, **P < 0.01, ***P < 0.001). Data within age group 
determined by unpaired t-test. Overall main (Trt and Age) effects and their interaction (Trt x Age) were determined via a linear mixed 
model. Abbreviations used: BG, blood glucose; BW, body weight; LET, letrozole; and UH, uterine horn. 
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CHAPTER 4.    POLYCYSTIC OVARY SYNDROME MODULATES BETAINE 

HOMOCYSTEINE S-METHYLTRANSFERASE IN 8 WEEK OLD FEMALE 

LETHAL YELLOW AGOUTI MICE 

A manuscript prepared for submission to the Journal of Nutrition 

Amanda E. Bries, Joseph L. Webb, Brooke Vogel, Claudia Carrillo, Samantha K. Pritchard, 

Aileen F. Keating, and Kevin L. Schalinske 

Abstract 

Background Polycystic ovary syndrome (PCOS) is a condition that has linked poor oocyte 

quality with inadequate methyl group supply, yet the literature regarding the pathophysiology of 

methyl group/one-carbon metabolism (OCM) mediated in PCOS is not well understood.  

Objectives The objective of this study was to examine the effects of metabolically perturbed 

PCOS on OCM in the ovary and liver of mice during the progression of PCOS. 

Methods Five wk old female lethal yellow agouti mice (KK.CG-Ay/J; agouti; n = 18), and their 

wild type (WT) controls (a/a; n = 18), were obtained and acclimated for one wk. Mice were 

placed on a modified standard AIN93G diet. All mice were randomly assigned to be euthanized 

in proestrus, at 8, 16, and 24 wk of age, whereas acyclic agouti mice (24 wk of age) were 

euthanized in diestrus (n = 6/group/genotype). mRNA abundance of the OCM enzymes was 

evaluated via RT-qPCR. Betaine homocysteine S-methyltransferase (BHMT) protein abundance 

was determined via western blotting. Serum testosterone concentrations were determined via 

ELISA, and all analyses were performed using an unpaired t-test on each experimental age group 

(P < 0.05). 

Results Circulating testosterone concentrations were markedly higher in agouti vs. WT at 16 and 

24 wk of age. When compared to WT mice, 8 wk agouti exhibited a 4.6-fold increase and a 27% 

decrease in Bhmt transcript abundance in the ovary and liver, respectively. There was a trend for 
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decreased hepatic BHMT protein abundance in 8 wk old agouti mice. By 16 wk of age, an 

observed 44% reduction in ovarian glycine N-methyltransferase (Gnmt) transcript abundance, 

along with a 33% reduction in hepatic Gnmt at 24 wk old agouti mice was detected.  

Conclusion These data suggest that Bhmt is modulated in the ovary and liver during the early 

onset of PCOS prior to phenotypic changes. 

Introduction 

Upwards of 20% of premenopausal women are diagnosed with polycystic ovary 

syndrome (PCOS), an endocrine disorder that is characterized by hyperandrogenism, impaired 

oogenesis, and ultimately infertility (1). Moreover, the etiology of PCOS is unknown and has 

been attributed to a combination of both genetic and environmental factors (2), making it 

challenging to elucidate the mechanisms of this disorder. There is also a high prevalence of 

comorbidities, such as cardiovascular disease, type 2 diabetes, and obesity in women diagnosed 

with PCOS (3). Management of PCOS varies on a per-patient basis, as the diagnostic criteria is a 

complex set of symptoms (4). Therefore, the first line of treatment for PCOS includes lifestyle 

modifications to induce weight loss as a means to improve ovarian function and lessen the 

burden of hyperinsulinemia and metabolic anomalies that disrupt the hypothalamic-pituitary-

ovarian axis.  

Emerging research has identified that women with PCOS present elevated serum 

homocysteine concentrations, whether obese or not (5). Several studies have also reported an 

observed vitamin B12 deficiency as a secondary indicator of hyperhomocysteinemia in 

subpopulations with PCOS (6). Homocysteine is regulated by methyl group/one-carbon 

metabolism (OCM), and homeostasis involves several key substrates and cofactors, specifically, 

methionine, betaine, choline, and B-vitamins, folate, B12, B6, and B2. The interplay and 

sufficiency of all of these nutrients are critical for maintaining proper methylation status, 
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antioxidants like glutathione, and homocysteine balance. One carbon metabolism not only 

influences the pathogenesis of the disease, but the literature indicates that DNA methylation is 

critical in the maintenance of oocytes quality and maturation – key components of fertility (7,8). 

Subsequently, inadequate production of methyl groups affects downstream gene expression, 

which may influence genes involved in androgen production, insulin resistance, among other 

metabolic anomalies. 

The literature surrounding the mechanistic reasoning for the observed perturbations in 

methyl group-mediated OCM in PCOS is very limited. Research has primarily focused on the 

physiological role of methylation status on oogenesis and oocyte quality in livestock (9–11), but 

given the metabolic complexities of PCOS, it is essential to observe these outcomes under 

conditions representative of human PCOS. Therefore, this study's objective was to investigate 

and characterize OCM in the ovary and liver during the progression of PCOS with concomitant 

obesity and impaired metabolic outcomes. This research aims to determine whether PCOS 

represents a condition further characterized by abnormal OCM, to provide a strategic means of 

addressing these PCOS-related complications through dietary intervention strategies that support 

OCM. 

Materials and Methods 

Animals and Diets. All animal studies were approved by the Institutional Animal Care and Use 

Committee at Iowa State University (IACUC # 18-294) and were performed according to the 

Iowa State University Laboratory Animal Resources Guidelines. Female agouti lethal yellow 

mice (KK.Cg-Ay/J; n = 18) and their wild-type non-agouti mice (a/a; n = 18) were purchased at 

4 wk of age from the Jackson Laboratory (Bar Harbor, ME; stock no: 002468). According to 

their genotype, mice were dual caged with a 12-h light-dark cycle in a temperature-controlled 

room. All rats were acclimated on a semi-purified diet (AIN-93G) for one wk. Both agouti and 
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wild-type (WT) mice were randomly assigned to cage and age of sacrifice (8, 16, or 24 wk of 

age). Mice were given ab libitum access to water and a modified standard AIN93G diet 

containing 50.4% carbohydrate; 17.3% protein, and 32.3% fat from energy. Body weights were 

recorded daily, and during the last 30 d of the experimental period, vaginal cytology was 

monitored to determine the patterns of their estrous cycle, as previously described (12). 

Intraperitoneal glucose tolerance tests (IPGTT) were performed 3 days prior to euthanasia at 8, 

16, and 24 weeks of age (n = 6/age/genotype). All WT mice were euthanized in proestrus, and 

agouti mice were euthanized in proestrus until they reached acyclicity, in which they were 

euthanized in diestrus (24 wk of age). Mice were anesthetized via a single intraperitoneal 

injection of ketamine:xylazine (90:10 mg/kg BW) prior to euthanasia via bilateral thoracotomy. 

Whole blood was collected via cardiac puncture for serum separation, and the epididymal fat 

pad, liver, kidneys, and ovaries were removed and weighed. One ovary and liver, kidney, and 

adipose tissue samples were stored in RNAlater. Sections of the liver, kidney, and adipose were 

snap-frozen in liquid nitrogen, and all tissues were stored at -80°C until subsequent analysis. 

 

Intraperitoneal glucose tolerance test. Three days prior to euthanasia, mice underwent an 

IPGTT test over 120 min as described in the Methods section of Chapter 3 in this dissertation.   

 

Assessment of estrous cyclicity. To determine the cyclicity of the mice, vaginal smears were 

performed in the last 30 d of life. Briefly, vaginal smears were performed from 8-9 am via a 

lavage using 15 µL of sterile PBS solution. Smears were allowed to dry, followed by staining 

with methylene blue, as previously described (13,14). Classification of the estrous stage was 

determined based on the proportion of leukocytes, nucleated epithelial cells, and desquamated 
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(cornified) epithelial cells (15). Proestrus consisted primarily of nucleated epithelial cells, with a 

few cornified cells; estrus was characterized by the predominant presence of cornified epithelial 

cells, with a few nucleated cells; metestrus was classified by the presence of a few cornified cells 

with an abundance of leukocytes; diestrus was determined by the presence of polymorphonuclear 

leukocytes and nucleated epithelial cells.  

 

Testosterone. Serum testosterone concentrations were determined using a mouse-specific 

commercially available enzyme linked-immunosorbent assay (Crystal Chem; Elk Grove Village, 

IL). 

 

RNA extractions  

Total RNA was isolated from one-half of an ovary. Briefly, the ovarian tissue was lysed in RNA 

lysis buffer, and total RNA was extracted and purified using 15 uL of elution buffer from Zymo 

Research Quick RNA-miniprep extraction kit (R1054; Zymo Research, Irvine, CA). Before 

reverse transcription cDNA conversion using the Agilent High Capacity cDNA kit (Thermo-

Fisher Scientific), total RNA concentrations were measured via spectrophotometry (λ= 260/280 

nm of ~2.0) using a Nanodrop 2000 (Thermo Fisher Scientific).  

 

Quantitative real-time PCR (qRT-PCR) 

Primers (Table 4-1) were designed and obtained from Integrated DNA Technologies (Coralville, 

IA) using the NCBI accession number for the corresponding gene. Quantitative reverse 

transcription PCR reactions were performed on each sample in triplicate using 30ng of cDNA, a 

forward and reverse final primer concentration of 0.3 µM, and LightCycler FastStart Master 
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SYBR Green 1 (no. 03003230001; Roche) on a LightCyler 96-well Real-time PCR System 

(Roche) according to manufacturer’s instructions. CT values were normalized to 18S ribosomal 

mRNA and presented as a relative-fold change to the WT mice. Amplification efficiencies of 

target and reference gene assays were verified, and data were analyzed using the Livak, delta-

delta CT method for relative mRNA expression (16). 

 

Western blot. Liver (20 mg) was homogenized in 500 µL in lysis buffer [Tris-HCl (50 mmol/L, 

pH 7.4), 1 mmol/L of EDTA, EGTA, DTT, glycerol (10%, w/v), and Triton-X (1%, w/v)] with 

halt protease inhibitor cocktail (Thermo Fisher Scientific, no. 78439). Liver lysates were diluted 

to 2.0 μg/μL in Laemmli loading buffer with protein quantities determined via Pierce Coomassie 

Bradford assay (ThermoFisher Scientific, no. 23236). A total of 40 μg protein was loaded onto a 

15% sodium dodecyl sulfate-polyacrylamide gel and separated via electrophoresis (80 min; 

200V) in cold 1X Tris-Glycine SDS buffer. After separation, proteins were transferred to a 

nitrocellulose membrane via a fully-wet transfer in cold towbin buffer (25 mM Tris, 192 mM 

glycine, 20% v/v methanol, pH 8.3) for 120 min at 100V. All membranes were stained with 

Ponceau S to verify equal loading and transfer efficiency. Membranes were washed with PBS 

and incubated with BHMT (1:200 dilution) and α-tubulin (1:400 dilution) primary antibodies 

(BHMT, santa cruz, H-7 sc-69708; α-tubulin, cat. no sc-5286; ThermoFisher Scientific) in 5% 

non-fat dry milk/PBS-tween buffer, overnight at 4◦C. After 3 washes with PBS-tween, 

membranes were incubated with a secondary antibody (IRDye 800CW Goat anti-Mouse cat no. 

926-32210 and 600CW Goat anti-rabbit cat. no 926-68021) at a dilution of 1:5,000 for 1 h at 

room temperature. Membranes were washed 4 times, 10 min each, in PBS-tween before imaging 

via digital fluorescence detection using an Odyssey CLx imaging system (Li-Cor). The net 
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intensity of each band was determined using Empiria Studio Software (Li-Cor) and normalized 

to α-tubulin. 

 

Statistical Analysis. All data were analyzed with SAS 9.4 Statistic Software (Cary, NC), and 

residuals were assessed for normal distribution of the data. Normally distributed data are 

presented as means ± SEMs and analyzed using unpaired t-tests between genotypes (i.e. WT and 

agouti) within each age, as detailed previously (17). A linear mixed model with an analysis of 

main effects of genotype and age in addition to simple effects were reported when the function of 

age was considered (e.g. IPGTT and BW). Satterthwaite approximations were used to estimate 

degrees of freedom for post-hoc tests. Statistical significance for both methods of testing was 

determined at a level of P < 0.05.  

Results 

Cumulative body weight gain differed between genotypes and as a function of age. Significant 

main effects on change in cumulative body weight gain were detected (P < 0.001) as both a 

result in the genotype and age of the mice (Figure 4-1). Furthermore, there was a significant 

interaction between age and genotype on cumulative body weight gain, but analysis of simple 

effects did not detect differences between genotypes within age groups (Figure 4-1). 

Interestingly, when t-tests were performed on absolute body weight at each experimental age 

(i.e., 8, 16, and 24 wk), only agouti mice at 16 wk of age had significantly higher final body 

weight when compared to their WT counterparts (P = 0.03; Table 4-2).  

 

Agouti mice exhibited higher fasting blood glucose than wild-type mice. When examining the 

main effects of the IPGTT, there was a significant finding of the genotype on glucose intolerance 

(P < 0.001; Figure 4-2). Additionally, there was a significant main effect of glucose intolerance 
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on age (P = 0.013). There was no significant interaction between genotype and age (P = 0.49); 

therefore no simple effects were performed. When examining differences in fasting blood 

glucose (BG), fasting BG concentrations were 38% higher at 8 and 16 wk of age in the agouti 

mice when compared to the WT mice (P = 0.02 and P = 0.001, respectively; Table 4-2). 

Interestingly, fasting BG concentrations were not found to differ between genotypes in mice at 

24 wk of age (P = 0.26). 

 

Agouti mice had perturbed estrous cyclicity by 24 wk of age. Percent frequency of occurrence in 

each stage of the estrous cycle are presented in Figure 4-3. When examining the main effects of 

frequency in proestrus, overall, WT mice cycled exhibited increased frequency ofproestrus 

compared to agouti mice (P = 0.03). Similarly, WT mice were in estrus at a higher percentage of 

time compared to their agouti counterparts (P < 0.006). Conversely, overall main effects 

demonstrated that agouti mice were in diestrus more frequent than WT mice (P < 0.0001). When 

examining simple effects, agouti mice exhibited acyclicity at 24 wk of age with a decrease in the 

frequency of proestrus (P = 0.002) and estrus (P = 0.007) when compared to WT mice. 

Moreover, by 24 wk of age, agouti mice arrested in diestrus (80% of the last 30 d of life), 

compared to WT mice (P <0.0001) that were in diestrus 31% of the time. Significant differences 

in perturbed estrous cyclicity between the genotypes at a given age were not reported at 8 wk or 

16 wk of age, however, trends for decreased frequency of estrus (P = 0.06) and increased 

frequency of diestrus (P = 0.07) in the agouti mice compared to WT were observed.  

 

Organ weights. As expected, there was a significant main effect of genotype on uterine horn 

weight (P < 0.0001; Table 4-2). This was primarily driven by the agouti mice that exhibited a 
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68% reduction in uterine horn weight compared to their WT counterparts (P < 0.0001). It is not 

surprising that these findings were not observed at 8 or 16 wk of age mice, as the 24 wk old mice 

were euthanized in diestrus as a result of acyclicity, introducing discrepancies in uterine horn 

weight.  

 

Agouti mice had elevated circulating testosterone concentrations. Testosterone concentrations 

are presented in Figure 4-4. There were significant differences in serum testosterone 

concentrations in the agouti mice compared to the WT at 16 and 24 wk of age. Specifically, 

circulating testosterone concentrations were 38% higher in the agouti mice compared to the WT 

mice (P = 0.04; Figure 4-4) at 16 wk of age. By 24 wk of age, agouti exhibited 68% elevated 

serum testosterone concentrations when compared to WT control mice (P = 0.008; Figure 4-4). 

No differences were observed in circulating testosterone concentrations between the agouti and 

WT mice at 8 wk of age (P = 0.26; Figure 4-4). 

 

Agouti mice presented a transient response to ovarian and hepatic BHMT mRNA abundance. 

We characterized the transcript abundance of the central enzymes in the OCM pathway in both 

the ovary and liver of agouti and WT mice at 8, 16, and 24 wk of age. These results are presented 

in Figure 4-5. Interestingly, agouti mice displayed a transient response in Bhmt and Dnmt1 

mRNA abundance, resulting in 4.56-fold (P = 0.04) and 2.2-fold P = 0.05) higher transcript 

abundance, respectively, at 8 wk of age when compared to WT mice; whereas this was not 

observed at 16 or 24 wk of age (Figure 4-5). Conversely, in agouti mice hepatic Bhmt mRNA 

abundance was attenuated 27% in the agouti mice compared to WT mice at 8 wk of age (P = 

0.03). Likewise, there was no significant difference in hepatic Bhmt transcript abundance at 16 or 
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24 wk of age. In agouti mice, a 44% reduction in Gnmt transcript abundance was observed in the 

ovary at 16 wk of age (P = 0.03), and a 33% reduction in Gnmt occurred in the liver of agouti 

mice at 24 wk of age (P = 0.009). No differences were observed in ovarian or hepatic Gnmt at 

any other age. All other mRNA transcript abundances for the genes encoding the remaining 

OCM enzymes were unchanged.  

 

Western blots. When examining the relative protein abundance of hepatic BHMT, there was a 

tendency for diminished BHMT protein abundance in the agouti mice at 8wk of age (P = 0.09; 

Figure 4-6). There were no observed differences in BHMT protein abundance at 16 or 24 wk of 

age.  

Discussion 

Polycystic ovary syndrome is a condition with an array of metabolic insults, often 

manifesting in comorbidities such as diabetes, obesity, and cardiovascular disease (4,18). 

Hyperhomocysteinemia has been long appreciated as an independent risk factor for 

cardiovascular disease, but it has also been implicated in PCOS. For instance, several prospective 

studies have reported elevated homocysteine levels in patients with PCOS, irrespective of 

obesity (5,19). The role of hyperhomocysteinemia and its determinants in the pathogenesis of 

disease remains inconclusive. Intervention trials employing micronutrients that support OCM 

have demonstrated promising results in correcting circulating homocysteine concentrations, 

thereby reducing disease risk (20–22). Moreover, the provision of methyl groups is critical for 

folliculogenesis, ovulation, and reproduction as a whole (8); therefore, we hypothesized that the 

progression of PCOS would be characterized by altered one-carbon metabolism. To address this 

question, we chose the lethal yellow agouti mouse, as it is an excellent model for progressive 

obesity, and it is accompanied by acyclicity and disrupted folliculogenesis, providing a strong 
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model for PCOS (23). The time points selected were based on the model providing temporally 

compromised fertility, concomitant with hyperinsulinemia, insulin resistance, hyperphagia, and 

obesity beginning at 12 wk of age (24–26).  

 Homocysteine is a non-proteinogenic amino acid that contains a sulfur group and is 

endogenously biosynthesized from the essential amino acid, methionine (27). Homocysteine 

concentrations are regulated via three pathways: 1) folate-dependent remethylation; 2) folate-

independent remethylation; and 3) transsulfuration. The conversion of methionine to 

homocysteine is critical for the catabolic generation of cysteine and subsequent glutathione 

production. Furthermore, homocysteine is a central product of S-adenosylmethionine (SAM)-

dependent transmethylation reactions, whereby the donated methyl groups are used in the 

epigenetic regulation of DNA silencing and posttranslational modifications. Several nutrients, 

such as folate, vitamin B12, B2, B6 and choline, play an essential role in one-carbon metabolism, 

and insufficient supply in any one of these nutrients over time leads to hyperhomocysteinemia 

(28). It is important to explore the OCM characteristics in a PCOS model given the association-

based studies that have been reported (19,20,29) to mechanistically examine the effects of PCOS 

and identify an intervention strategy.  

 PCOS progression was verified in our agouti lethal yellow model as indicated by 

acyclicity by 24 wk of age, accompanied by a decrease in the frequency of time spent in 

proestrus and estrus, leading to prolonged diestrus. Our findings are corroborated by previous 

studies employing this model (23,26). Circulating testosterone concentrations were also used as a 

confirmatory measure, as the heterogeneity of the agouti genotype can introduce variable ectopic 

agouti protein expression levels, resulting in a spectrum of metabolic severity (30). We did 

identify significantly elevated serum testosterone concentrations but only at 16 and 24 wk of age. 
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This is consistent with previous reports of metabolic characteristics such as hyperinsulinemia, 

impaired fasting blood glucose, and increased body weight observed as early as 12 wk of age 

(23). It is important to note that our findings were not associated with cumulative body weight 

gain, but we hypothesize this phenotypic outcome may have been influenced by exposure to a 

moderately high-fat diet (37% kcal from fat). The a/a wild-type mice's growth rate was 

comparable to the agouti mice at 24 wk of age, but the inverse was reported at 8 and 16 wk of 

age. These observations have been demonstrated in the KK.CG-a/a mice continuously fed a 

high-fat diet between 20-26 wk of age (31), whereby there was a significant effect of high-fat 

diet on the growth rate in the wild type mice when compared to its control on the standard chow 

diet. Despite these observations, we did verify the presence of altered estrous cyclicity and 

metabolic anomalies characteristic of PCOS in our agouti model.  

 To our knowledge, only two studies to date have examined the OCM pathway in an 

animal model of PCOS. In gilts with polycystic ovaries, an observed increase in follicular 

homocysteine concentrations was reported in association with an upregulation of several key 

OCM enzymes (10,11). Poor oocyte quality as an outcome of PCOS has also been associated 

with high serum homocysteine concentrations in cohorts undergoing assisted reproductive 

treatment (32). There is no mechanistic research describing these associations, but elevated 

homocysteine has been observed as a product of aging, endometriosis, and ovarian cancer (33–

35). The corollary is that elevated homocysteine indirectly inhibits nitric oxide production, which 

may explain the poor oocyte quality as diminished nitric oxide concentrations can lead to arrest 

in ovulation, follicular atresia, and impaired early embryonic development (34,36). Furthermore, 

the irreversible catabolism of homocysteine is essential for the downstream production of 

glutathione via the transsulfuration pathway. Elevated follicular homocysteine concentrations 
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have been subject to lower intracellular glutathione concentrations due to decreased 

cystathionine β-synthase enzymatic activity (37). Taken together, the lack of nitric oxide and 

glutathione production may account for increased reactive oxygen species, leading to a 

propensity for low quality follicles and impaired reproduction. These molecular mechanisms 

have yet to be explored under conditions reflective of PCOS, but experiments assessing these 

indicators are warranted. 

 Numerous studies have demonstrated epigenetic modifications, namely, altered 

methylation patterns in oocytes under various environmental conditions (37,38). The 

establishment of DNA methylation via DNMTs is crucial for the proper regulation of gene 

expression and genomic imprinting during oogenesis (39–41). Failure to regulate repetitive 

sequences during folliculogenesis alters the genetic expression of subsequent genes (39). DNA 

methyltransferase-1 (DNMT1) catalyzes the methylation of CpG-rich regions, requiring the 

biosynthesis of the ubiquitous methyl donor, s-adenosylmethionine (SAM). Interestingly, Dnmt1 

expression is decreased in oocytes of aging mice (42,43) and hyperandrogenized mice treated 

with dehydroepiandrosterone (44), suggesting imbalanced methylation patterns as a result of 

senescence and hyperandrogenism. On the contrary, Jia et al. (10) reported elevated Dnmt1, 

accompanied by hypermethylated mitochondrial DNA in ovaries of gilts with PCOS. The 

consequences of hypermethylated mitochondrial DNA was associated with impaired oocyte 

quality (10). Similarly, our results demonstrated a 2.2-fold elevation in Dnmt1 transcript 

abundance, but only in our 8 wk old agouti model. These results, combined with findings in the 

literature, suggest perturbed methylation patterns during the early onset of PCOS.  

 In addition to Dnmt1, our 8 wk old agouti mice exhibited increased ovarian Bhmt mRNA 

abundance, but attenuated hepatic Bhmt abundance. Bhmt is a metalloenyzme that requires zinc 
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as a cofactor for its catalytic function in recycling homocysteine back to methionine via the 

folate-independent remethylation pathway (27). BHMT is also important for the biosynthesis of 

SAM; therefore, inhibition of BHMT leads to hyperhomocysteinemia and hypomethylation, 

owing to depletion in SAM concentrations (45). Studies determining the role of BHMT in PCOS 

remain scant, but few studies have reported perturbed BHMT activity during oocyte maturation 

(10,37,46). Tian et al. determined that oocyte BHMT inhibition resulting from acute zinc 

deficiency, led to drastic shifts in global DNA methylation and compromised oocyte integrity 

(47). They attributed the alterations in oocyte quality to hypomethylation, as zinc deficient 

oocytes supplemented with s-adenosylmethionine (SAM) restored oocyte maturation. It is 

important to note that this in vitro model does not entirely reflect the conditions of PCOS. 

Furthermore, the determinants exhibited by SAM supplementation on oocytes are similar to 

ovarian response to circulating levels of SAM. Therefore, it is possible that our observed 

decrease in hepatic Bhmt more closely aligns with the results of the zinc-deficient model. 

Considering the liver is a significant supplier of methyl groups for subsequent organs, the 

observed alterations in ovarian Bhmt, Dnmt1, and Gnmt may reflect its response to disrupted 

hepatic OCM. Moreover, it is important to distinguish that these findings were only detected in 

our 8wk old mice, but elevated ovarian Bhmt has been reported in a gilt (10), androgen-receptor 

knockout mouse model (48), and reported in a letrozole-induced rat model of PCOS (Chapter 3).  

 Several limitations should be considered when determining the impact of PCOS on 

ovarian and hepatic OCM. First, in order to adequately characterize the effects of PCOS on 

OCM to set the foundation for future nutrition intervention studies, we employed a modified 

AIN93G diet containing 37% kcal from fat, whereas standard AIN93G diet for rodent contains 

17% kcal from fat. We recognize that our diet was a moderately high fat diet, as 45% kcal from 
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fat is considered to be a high fat diet, potentially introducing variable phenotypic outcomes 

between the agouti and wild-type mice, such as cumulative body weight gain and fasting blood 

glucose indicators. Future studies will examine the effects of diets supplemented with dietary 

methyl groups in order to understand how nutrition may play a role in the OCM burden of 

progressive PCOS. This study's control diet is the same control diet that will be used for future 

dietary methyl group intervention studies. Another limitation was that we did not verify the 

follicular or homocysteine concentrations in our model, as this has been explored and reported 

on numerous occasions (10,11,17,49), and we plan to make these observations in a dietary 

intervention study in a model of PCOS.  

Conclusion 

Our data and findings, in combination with our chemically-induced model of PCOS (Chapter 3 

of this dissertation) suggest that BHMT and CBS-mediated hyperhomocysteinemia may be a 

result of the onset and progression of PCOS in response to perturbed hepatic OCM regulation. 

Although the data presented in this paper are primarily descriptive, our findings make substantial 

strides towards better understanding the implications of PCOS on OCM beyond biomarker 

association studies. Determining the transient response of OCM in both the liver and ovaries of 

progressive PCOS allows us to further explore the pathogenesis and identify a suitable nutrition-

based strategy in attenuating the long-term metabolic consequences from PCOS. 
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Figure 4-1: Cumulative body weight gain of agouti and wild-type mice across 8, 16, and 24 wk 
of age. Vertical dotted lines represent the end of an experimental period at 8 and 16 wk of age. 
Data are means ± SEMs; n = 6. Main effects of genotype and age were tested in a linear mixed-
model of repeated measures at significance P < 0.05.  

 

 

Figure 4-2: Change in blood glucose concentrations in agouti and their wild-type mice following 
an intraperitoneal glucose tolerance test. Data are means ± SEMs; n = 6. Main effects of 
genotype and age were tested in a linear mixed-model of repeated measures at significance P < 
0.05. 
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Figure 4-3: Distribution of the days spent in the four stages of the estrous cycle over a total of 
30d. Data are means ± SEMs of the percent frequency; n = 6. Main effects of genotype and age 
were tested in a linear mixed-model at significance P < 0.05. Abbreviations used: P, proestrus; E, 
estrus; M, metestrus; and D, diestrus; WT, wild type; and A, agouti.  

 

Figure 4-4: Serum testosterone concentrations (ng/mL) in agouti and WT mice. Data are means 
± SEMs; n = 6/group, *P < 0.05, **P < 0.01. Data were analyzed via unpaired t-test at a 
significance of P < 0.05. Abbreviations used: WT, wild type. 
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Figure 4-5: Ovarian one carbon metabolism enzyme mRNA abundance at 8 (A), 16 (B), and 24 
(C) wk of age and hepatic mRNA abundance at 8 (D), 16 (E), and 24 (F) wk of age as 
determined by real-time polymerase chain reaction. Transcript abundance of the target genes was 
normalized against 18S ribosomal mRNA and reported as relative fold-change. Relative fold-
change was compared using t-tests for relative abundance compared to WT mice. Data are means 
± SEMs; n = 6/group, *P < 0.05. Abbreviations used: A, agouti; WT, wild type; GNMT, glycine 
N-methyltransferase; BHMT, betaine homocysteine S-methyltransferase; CBS, cystathionine β-
synthase; MTR, 5-methyltetrahydrofolate-homocysteine methyltransferase; and DNMT1, DNA 
(cytosine-5)-methyltransferase-1.  
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Figure 4-6: Hepatic BHMT protein abundance (A) and representative western blots of BHMT 
and α-tubulin (B) at 8, 16, and 24 wk of age for agouti and WT mice fed a modified standard 
AIN93G diet. Data are means ± SEMs; n = 6/group, *P < 0.05. Abbreviations used: WT, wild 
type; and A, agouti.  
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Table 4-1: Primer sequences for Mus Musculus mRNA qRT-PCR quantification. 

 

 

 

 

 

 

 

 

 

 

1Abbreviations used: Gnmt, glycine n-methyltransferase; Mtr, methionine synthase; Bhmt, 

betaine-homocysteine S-methyltransferase; Cbs, cystathionine β-synthase; and Dnmt, DNA 
methyltransferase. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    
 

Gnmt TM GC% 
5' to 3' GTGACCTGACCAAGGACATTAC 62 50 

5' to 3' antisense GAACTTACTGAAGCCAGGAGAG 62 50  
Mtr 

  

5' to 3' CTGTGGATGGCTTGGTGAATA 62 47.6 
5' to 3' antisense GGGACTCTTGGCTTACACTTT 62 47.6  

Bhmt 
  

5' to 3' TGATGAAGGAGACGCTTTGG 62 50 
5' to 3' antisense CCTCTAGCTGTTGGCGAAATA 62 47.6  

Cbs 
  

5' to 3' GGATGGGCACAGACTACAATAG 62 50 
5' to 3' antisense CCACACAATCAGTCCAAGGT 62 50  

Dnmt 
  

5' to 3' CCATCTTCTTGTCTCCCTGTATG 62 47.8 
5' to 3' antisense GGTGCTTTGTCCTTCTCCTT 62 50  

 18S   
5' to 3' CTGAGAAACGGCTACCACATC 62 52.4 

5' to 3' antisense GCCTCGAAAGAGTCCTGTATTG 62 50 



 
106 

 

Table 4-2: Relative organ weights of agouti lethal yellow and wild-type mice at 8, 16, or 24 wk of age1. 
 
Tissue 8 week 16 week 24 week   P-value   
 

Agouti WT Agouti WT Agouti WT Genotype Age Genotype*A
ge 

Body weight 
(g) 

37.2 ± 
1.47 

34.1 ± 
1.08 

49.5 ± 
0.91 

46.6 ± 
0.74* 

51.7 ± 
1.46 

54.7 ± 
0.95 

0.38 <0.001 0.065 

Uterine horn 
(mg)1 

- - 24.7 ± 
3.90 

36.9 ±  
5.84 

15.1 ± 
1.26 

47.8 ± 
4.60*** 

<0.0001 0.88 0.03 

IPGTT 
(AUC)2,3 

22647 ± 
2618 

19613 ± 
1882 

21450 ± 
3644 

16925 ± 
4937 

17720 ± 
3870 

11122 ± 
2566 

0.04 0.06 0.83 

Fasting BG 
(g/dL)3 

216.5 ± 
27.2* 

132.2 ± 
18.9 

254.0 ± 
20.7** 

156.0 ± 
7.46 

165.2 ± 
11.4 

139.8 ± 
18.1 

0.001 0.06 0.20 

 

1 Data are means ± SEMs; n = 6/group. Different from wild-type control group (*P < 0.05, **P < 0.01, ***P < 0.001). Data within age 
group determined by unpaired t-test. Overall main (Genotype and Age) effects and their interaction (Genotype x Age) were 
determined via a linear mixed model. Abbreviations used: BG, blood glucose; AUC, area under the curve; and WT, wild type. 
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CHAPTER 5.    GENERAL CONCLUSIONS 

Overall summary and conclusions 

Polycystic ovary syndrome is a multifactorial disorder that has several metabolic and 

reproductive ramifications in women of childbearing age (1). The etiology of PCOS remains 

elusive. Consequently, identifying a treatment strategy that addresses the underpinning of PCOS 

is challenging. Several research studies have reported aberrations in the global methylation of 

oocytes at different stages of oogenesis (2,3), as well as environmental insults that may impose 

an increased risk of developing PCOS (4–6). Moreover, association-based studies have detected 

key biochemical markers that correlate with PCOS - including elevated homocysteine levels 

(7,8) and micronutrient deficiencies (9–12). Notably, the overall theme of these studies is their 

implication in methyl group metabolism. Several research studies have noted the beneficial role 

of nutrients that support methyl group metabolism (i.e., B12 and folate) on key outcomes such as 

homocysteine and methylation status in women with PCOS seeking reproductive assistance (13–

15). Despite these reports, research has not characterized the fundamental mechanisms of methyl 

group metabolism in the progression nor management of PCOS. The studies presented in this 

dissertation examine the perturbations of methyl group metabolism as a result of various stages 

of PCOS. By employing both a chemically-induced and genetic model of PCOS, the research 

demonstrates that there are critical enzymes in the methyl group metabolism pathways that are 

fluctuating as a result of dysfunctional metabolism due to PCOS. 

In the first study, we sought to examine the impact of letrozole-induced PCOS, on 

ovarian methyl group metabolism. To date, this is the first study that has examined the methyl 

group or one carbon metabolism enzymes in a rodent model of PCOS; therefore, the data 

presented herein - is exploratory in nature. The descriptive results of the metabolic and 
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phenotypic outcomes of the PCOS model include normal glucose tolerance, unaltered organ 

weights, and significantly higher body weight gain accompanied by normal epididymal adipose 

tissue. In order to determine the potential effects of PCOS on methyl group metabolism, we 

selected three age groups of 8, 16, and 24 wk of age. Observations from the vaginal lavage 

indicated that implantation of the letrozole slow-release bead did work within days, as 

determined by disrupted estrous cyclicity, and PCOS was confirmed by significantly elevated 

serum testosterone concentrations. Notably, in the letrozole-induced model of PCOS, Cbs 

transcript abundance decreased as a function of age, but this effect of reduced mRNA abundance 

on subsequent protein abundance was only explained in the rats at 8 wk of age. When examining 

the gene transcript abundance in the liver across 8, 16 and 24 wk of age, no differences were 

detected between the letrozole-induced and placebo control rats. One of the most interesting 

findings was the observed increase in Bhmt transcript abundance as a function of age, but only 

among the letrozole-induced rats. Conclusions from this study do point to potential methyl group 

metabolism imbalances, particularly in the folate-independent (BHMT) and transsulfuration 

(CBS)-mediated pathways. 

Based on the findings from the first study in the chemically-induced model, we aimed to 

assess the same primary outcomes of interest in a metabolically perturbed model of PCOS. In the 

second study, we examined the ovarian and hepatic outcomes of methyl group metabolism in a 

progressively obese model of PCOS. As previous research has reported, agouti mice become 

obese and are acyclic by 24 wk of age. Therefore, in order to assess this gradual impact, we also 

examined agouti and their wild type control mice at 8, 16, and 24 wk of age. The phenotypic 

outcomes of the animal model recapitulate the classic metabolic disturbances that are present in 

women with PCOS, such as increased body weight gain, adiposity, fasting blood glucose, and 
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impaired glucose tolerance. An interesting finding from this second study was that in 8wk old 

agouti mice there was a 4.6-fold increase in ovarian Bhmt transcript abundance – an outcome 

similar to that of the chemically-induced model. Notably, an inverse effect of Bhmt transcript 

abundance was observed in the liver, whereby a 27% reduction in abundance was detected, 

exclusively at 8 wk of age. Moreover, when examining the results as a function of age, there was 

a significant increase in Bhmt transcript abundance in the agouti mice with age. It is important to 

note that these results were not supported by an alteration in protein abundance. Results from this 

second study also concluded a decrease in Gnmt in the ovaries at 16 wk of age and in the liver at 

24 wk of age, but these findings were not further explored on the protein and activity levels.  

Overall, the collective observations from these two studies suggest that BHMT may play 

a critical role in the progression of PCOS. It is important to highlight that Bhmt transcript 

abundance was elevated in both the letrozole-induced and agouti rodent models of PCOS as a 

function of age and between experimental groups, respectively. Given the inverse observation 

between the ovaries and the liver in the agouti mouse model of PCOS, we suspect that the 

ovaries are either responding to elevated circulating Hcy concentrations due to diminished 

hepatic Bhmt transcript abundance, or that the ovary has increased demand for methyl groups, as 

evidenced by the increased abundance of the Bhmt transcript.  

In conclusion, the findings from these characterization research studies suggest that there 

are underlying alterations in methyl group metabolism at various stages of PCOS progression, 

and more so, differences in methyl group outcomes are depicted by the phenotypic dissimilarities 

between the two PCOS models used. Future studies are warranted to determine some of the 

metabolic parameters that are affected by PCOS due to changes in methyl group metabolism, 

such as serum insulin, Hcy, FSH, LH, and follicular Hcy concentrations. Moreover, it is 
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necessary to examine the mechanistic outcomes of providing a micronutrient rich diet to support 

methyl group metabolism to determine if such dietary intervention strategies attenuate PCOS-

related anomalies.  
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Abstract 

Background: Nutrigenomic evidence supports the idea that Type 2 Diabetes Mellitus (T2DM) 

arises due to the interactions between the transcriptome, individual genetic profiles, lifestyle, and 

diet.  

Objective: Since eggs are a nutrient dense food containing bioactive ingredients that modify 

gene expression, our goal was to examine the role of whole egg consumption on the 

transcriptome during T2DM.  We analyzed whether whole egg consumption in Zucker Diabetic 

Fatty (ZDF) rats alters microRNA and mRNA expression across the adipose, liver, kidney, and 

prefrontal cortex tissue.  

Methods: Male ZDF (fa/fa) rats (n = 12) and their lean controls (fa/+) (n = 12) were obtained at 

6 wk of age. Rats had ad libitum access to water and were randomly assigned to a modified 

semi-purified AIN93G casein-based diet or a whole egg-based diet, both providing 20% protein 

(w/w). TotalRNA libraries were prepared using QuantSeq 3' mRNA-Seq and Lexogen 

smallRNA library prep kits and were further sequenced on an Illumina HighSeq3000. 
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Differential gene expression was conducted using DESeq2 in R and Benjamini-Hochberg 

adjusted P-values controlling for false discovery rate at 5%.  

Results: We identified 9 microRNAs and 583 genes that were differentially expressed in 

response to 8 wk of consuming whole egg-based diets. Kyto Encyclopedia of Genes and 

Genomes/Gene ontology pathway analyses demonstrated that 12 genes in the glutathione 

metabolism pathway were upregulated in the liver and kidney of ZDF rats fed whole egg. Whole 

egg consumption primarily altered glutathione pathways such as conjugation, methylation, 

glucuronidation, and detoxification of reactive oxygen species.  

Conclusion: These pathways are often negatively affected during T2DM, therefore this data 

provides unique insight into the nutrigenomic response of dietary whole egg consumption during 

the progression of T2DM. 

Introduction 

Type 2 Diabetes Mellitus (T2DM) is an insulin independent metabolic disease 

characterized by chronic hyperglycemia and concomitant insulin resistance and it is estimated 

that greater than 415 million adults worldwide have T2DM [1]. Oxidative stress is a potential 

key mediator in the pathogenesis of T2DM and may underlie the progressive development of 

hyperglycemia and insulin resistance [2]. More specifically, reports demonstrate that glutathione 

(a major intracellular antioxidant) enzymes are diminished in the liver and brain of T2DM 

animal models [3]. Sekhar and colleagues examined the ability of patients with uncontrolled and 

controlled T2DM to synthesize glutathione via measuring isotopically labelled glycine [4,5]. 

They reported that patients with uncontrolled T2DM were severely deficient in the ability to 

maintain glutathione metabolism in cardiac tissue [4], which may be, in part, due to 

hyperglycemia decreasing L-cysteine concentrations [5] and the reduced flux of methionine to 
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cysteine [6]. Because of the deleterious effects of hyperglycemia on organ function, it is 

important to consider the global transcriptomic effects of T2DM. Similar to humans, the Zucker 

Diabetic Fatty (ZDF) rat model of T2DM also displays increased oxidative stress [7], whereby 

endogenous protective antioxidants like glutathione are similarly downregulated in ZDF rats [8]. 

The gene expression profiles in animal models of T2DM, such as the ZDF rat, is consistent with 

gene expression profiles of humans with T2DM [9], making this a suitable model to explore the 

global gene expression effects of diet in the ZDF rat. 

Dietary treatments with bioactive foods such as cocoa or Shenyuan granules [10,11] in 

ZDF rats have been shown to reduce oxidative stress or attenuate renal injury in the presence of 

T2DM-related nephropathy [12]. Consumption of eggs as a bioactive food during T2DM in 

humans remains controversial [13–15], but eggs have been shown to display antioxidative 

properties, which may be beneficial during the progression of T2DM [16]. Additionally, our 

laboratory has consistently reported that long-term whole egg (WE) consumption improves 

metabolic parameters during T2DM such as the maintenance of circulating vitamin D 

concentrations, decreased weight gain, and nephroprotection via reduced proteinuria in male 

ZDF rats [17–20]. These are important findings, as vitamin D deficiency, increased adiposity, 

and kidney failure have collectively been suggested to exacerbate oxidative stress during T2DM 

[21].  

While the literature surrounding the effects of dietary WE on insulin resistance during 

T2DM is inconclusive in both rodent [17] and human population studies [22], there are no 

studies to date examining the molecular mechanisms underlying how WE consumption affects 

the transcriptome across multiple tissues. Longitudinal, prospective, and comprehensive meta-

analyses have been performed to assess the independent risk factors of increased dietary egg 
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consumption on chronic diseases [23,24]. Because of the highly controversial science of whole 

egg consumption on increased cardiovascular disease in patients with T2DM, it is important to 

examine the possible underlying molecular targets and drivers of whole egg consumption on 

disease. Ultimately, analyzing the transcriptomic impact of egg consumption would provide us 

with a better understanding of the nutrigenomic actions that dietary egg consumption contributes 

to T2DM, and bridge the gap in our understanding of how whole eggs may effect the 

physiological progression of T2DM. Therefore, the objective of this study was to determine the 

influence of WE consumption on gene and microRNA expression profiles in a ZDF rat model of 

progressive T2DM. We examined the transcriptomes from the adipose, liver, kidney, and 

prefrontal cortex (PFC) tissues to determine how WE consumption alters gene expression and 

examined whether these changes correspond to altered microRNA expression profiles in T2DM.  

Results and Discussion 

Whole eggs have predominantly been criticized for their associated risk of developing 

chronic diseases [25], yet the benefits of WE consumption have also been reported [26]. For 

instance, several groups have suggested that WE provide antioxidant properties [12,27] , either 

through antioxidant peptides in the egg yolk [12] or other reactive oxygen species-reducing 

nutrients [28]. Other studies examining the role of quail egg consumption in rat models of T2DM 

have demonstrated upregulation of glutathione metabolism in alloxan-induced T2DM in Wistar 

rats [29] and improved oxidative stress profiles in streptozotocin-injected rats [30]. Raza and 

colleagues [30] identified that in diabetic rat liver glutathione content and glutathione S-

transferase (GST) activity were decreased 65% while also observing that brain glutathione and 

GST activity were increased two-fold as a result of a T2DM phenotype.  
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Total RNASeq differential expression. When comparing the WE versus casein (CAS) in ZDF 

rats and their lean controls, differential expression analyses of the mRNAseq data resulted in 583 

differentially expressed genes (DEGs) across four tissues in both genotypes (Table 1). S1 Table 

contains the results from DESeq2 with the results for each gene across all four tissues with data 

on individual genes. S2 Table contains raw mRNA read counts for each tissue and rat across 

both genotypes. Among the lean controls, 13 genes were differentially expressed in the adipose 

tissue, 32 in the liver, and 6 in the kidney. Notably, none of the genes were differentially 

expressed in the PFC between dietary treatments in the lean rats. In the ZDF rats, dietary WE 

consumption resulted in 532 total DEGs across all tissues where 50 genes were differentially 

expressed in adipose tissue, 474 in the liver, 6 in the kidney and 2 genes in the PFC following 

multiple testing correction using the false discovery rate (FDR) threshold of 5%. We 

demonstrated that consuming WE-based diets for 8 wk resulted in significant alterations in 

oxidative stress pathways, as well as glutathione metabolism pathways. While there were tissue-

specific changes in gene expression, glutathione metabolism was altered in the kidney and liver 

among ZDF rats, and in the kidney of lean controls were significantly upregulated.  Overall, 

these data highlight how consumption of WE-based diets can provide beneficial effects through 

modifying gene expression of oxidative reduction targets. 

We previously demonstrated that WE consumption for 8 wk is effective at improving 

serum vitamin D status and providing nephroprotective benefits [31,32]; however, despite our 

gene expression findings in this study we still have yet to elucidate the mechanism underlying 

how WE consumption leads to decreased weight gain. We also identified that ZDF rats fed WE 

upregulated 11 genes involved in glutathione metabolism in the liver and kidney. In the PFC, 

WE consumption had differing effects whereby in the lean PFC, WE consumption did not 
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change the transcriptome, whereas in the ZDF rats WE consumption strongly downregulated the 

expression of 2, AY172581 exon transcripts. These exon transcripts have yet to be characterized 

and future proteomic studies may reveal their biological importance. Across both genotypes, the 

most significantly altered genes were involved in the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathways of: glutathione metabolism, metabolic pathways, steroid 

biosynthesis, and cholesterol metabolism. After controlling for the genetic background 

differences of our ZDF rats, a combined analysis indicated that 428 unique genes were 

differentially expressed across these tissues as a product of WE consumption. Moreover, 13 

different glutathione metabolism genes were significantly upregulated across the liver and 

kidney in both genotypes suggesting that increased whole egg consumption, may increase 

glutathione metabolism independent of T2DM, and attenuate the decreased glutathione 

metabolism during diabetes.  

To visualize the global differences in the transcriptomes based on dietary treatment, we 

performed principal component analysis (PCA) and generated volcano plots for genes that 

exhibited ≥1.5-fold change, respectively. Fig 1 displays the samples in a three-dimensional 

principal component space, whereby samples are colored in red or black to distinguish either WE 

or CAS, respectively. In the mRNA samples, rats on the same dietary treatment (i.e. black or red) 

clustered together, while animals belonging to different dietary treatments separated, indicating 

distinctly different patterns across global mRNA expression. These results were further 

visualized using volcano plots for each tissue as presented in Fig 2. These volcano plots 

demonstrate the degree to which genes were upregulated or downregulated across each tissue. 

For instance, volcano plots indicate a relatively equal number of upregulated and downregulated 
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genes in the lean PFC following WE consumption, whereas WE consumption primarily resulted 

in downregulated gene expression in the ZDF PFC. 

During T2DM, reports indicate that genes within the oxidative stress-related pathways 

upregulated [28]. Evans et al. suggested that oxidative stress was driven by the hyperglycemic 

environment concomitant with increased concentrations of free fatty acids in the plasma [28].  

Corbett et al. [31]  reported that protective antioxidant genes such as glutathione peroxidase are 

downregulated during T2DM, and both glutathione s-transferases (GSTs) and glutathione-

dependent enzymes are important in the regulation of pathophysiological alterations in numerous 

chronic diseases, especially T2DM [33]. Previous work has shown that dietary intervention with 

direct glutathione supplementation was protective against diabetic nephropathy in an insulin 

dependent streptozotocin-induced T1DM model [30]. This current study provides new 

transcriptomic evidence supporting our previous report demonstrating that WE consumption 

protects against diabetic nephropathy, where WE consumption leads to altered gene expression 

in the kidney. In this study, we noted that the strongest alterations in glutathione metabolism 

were in the liver, potentially because hepatic glutathione is produced at much higher 

concentrations (10 mM), whereas intracellular glutathione concentrations are approximately 1-2 

mM [30]. This body of previous work is important in relation to our findings that several GSTs 

and glutathione-dependent enzymes are significantly altered during WE consumption in lean 

controls and during diabetes in the kidneys and livers across both genotypes. Future mechanistic 

studies identifying the beneficial impact of these two enzymes in chronic diseases like T2DM are 

warranted. 

Outside of the glutathione pathways, we also observed that there were significant 

differences in early growth response-1 (Egr-1) gene expression following WE consumption. Egr-
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1 has been implicated in the onset of insulin-resistance, as previous studies in insulin-resistant 

T2DM mice identified that loss of function in Egr-1 restores insulin sensitivity via increased 

phosphorylation of the insulin receptor substrate-1 tyrosine kinase [34]. Notably, we observed a 

30% decrease in hepatic Egr-1 expression in the ZDF rats fed WE. This is an interesting finding 

as research by Garnett et al. [35] determined that exposing beta cells to hyperglycemic 

conditions resulted in a temporal and dose-dependent increase in Egr-1 transcription and 

translation. Furthermore, Egr-1 null mice are known for their inability of displaying diabetic and 

obese phenotypes [36] owing to their increased energy expenditure. These data suggest that 

consumption of WE may lead to altered Egr-1 expression which may play a key role in 

regulating energy expenditure.  

We also demonstrated that WE consumption resulted in tissue-specific alterations in gene 

expression and that there were distinct transcriptomic differences between genotypes. WE 

consumption did not influence gene expression in the PFC of lean animals, while 2 genes were 

significantly altered in the ZDF PFC. There were more stark differences when comparing the 

liver tissues between the two genotypes, where more than 400 genes were altered in ZDF livers 

that were not altered in the liver of lean controls. It has been shown that T2DM impacts a variety 

of tissues [1] but previous studies have provided very little evidence of how T2DM alters the 

nutrigenomic responses to foods in specific tissues. It is still unknown which specific egg 

components lead to phenotypic differences in gene expression and future studies should focus on 

identifying the specific egg constituents that mediate these gene expression differences. These 

collective findings are likely mediated through the alteration of several genes; therefore, we 

aimed to further examine microRNA changes involved in the underlying progression of T2DM 

during WE consumption. 
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MicroRNA sequencing differential expression. We examined if endogenously expressed 

microRNA profiles in the adipose, liver, kidney, and prefrontal cortex tissues would be altered 

following 8 wk consumption of dietary WE. Differential expression analyses of the ZDF 

microRNA data resulted in 1 differentially expressed microRNA in the adipose tissue, none in 

the liver, none in the kidney and 2 in the PFC that surpassed multiple testing correction. Among 

the lean rats, there were 2 marginally differentially expressed microRNAs in the adipose tissue, 4 

in the liver, none in the kidney and none in the PFC that survived multiple testing correction. 

Table 2 presents the differentially expressed microRNAs in the adipose, liver, kidney, and PFC 

tissues across both genotypes. S3 Table contains results from DESeq2 with the results for each 

microRNA across all four tissues and raw microRNA read counts are contained in S4 Table.  

Based on the microRNA sequencing analysis, 9 microRNAs were differentially 

expressed following multiple testing correction. Several of these microRNAs have been 

previously correlated with gestational diabetes or show to be altered in the plasma of individuals 

with diabetes. Very few studies to date have examined the tissue-specific changes of endogenous 

microRNA expression in response to dietary patterns and this is the first study to demonstrate 

that endogenous microRNA expression in the liver, adipose, and PFC can be altered following 8 

wks of WE consumption. Future studies should focus on identifying if similar foods such as 

quail eggs alter microRNA expression in these tissues and determine the smallest effective 

dosage of egg required to recapitulate these changes in microRNAs.  

Mapping between microRNAs and target genes. Next, we sought to determine if these 

significantly altered microRNAs were responsible for the tissue-specific differential expression 

of their predicted target genes. MicroRNA mapping analyses of the differentially expressed 

microRNAs and their target genes demonstrates that in each of the tissues with differentially 



121 
 

expressed microRNAs, key target genes of these microRNAs were altered. For instance, in the 

lean liver microRNA-181a-3p was upregulated and two of its mRNA target genes were 

differentially expressed, Cytochrome P450 Family 7 Subfamily A Member 1 (Cyp7a1) and 

stearoyl-CoA desaturase (Scd). Similarly, in the lean adipose, microRNA-125b-5p was 

downregulated while its target gene phosphoglycolate phosphatase (Pgp) was upregulated. The 

microRNAs in the PFC and kidney tissue did not map to any differentially expressed genes. 

Table 4 summarizes the mapping between microRNAs and their gene targets.  

While examining the relationship between significantly altered microRNAs and their 

target genes, we identified that in the livers of lean rats fed WE, the upregulated microRNA-

181a-5p affected target genes involved in steroid hormone biosynthesis such as Cyp7a1 and Scd.  

Notably, only Cyp7a1 was upregulated in the liver of ZDF rats fed the WE-based diet while both 

Scd and Cyp7a1 were upregulated in the livers of lean control rats. In rodent models of diabetes, 

liver expression of Cyp7a1 has been shown to be decreased and thought to play a key role in 

regulating whole body energy homeostasis [37]. Similarly, transgenic mice overexpressing 

Cyp7a1 were shown to become resistant to weight gain and fatty liver disease [37]. Experiments 

examining the role of Scd in rat hepatocytes has demonstrated that Scd expression regulates 

hepatic insulin resistance during diabetes [38], but very few studies have determined the 

expression of Scd genes in the context of dietary consumption. Based on the data, WE 

consumption more strongly upregulated hepatic expression of Cyp7a1 in ZDF animals than in 

the lean controls and this might suggest that WE consumption can prevent or reverse the loss of 

hepatic Cyp7a1 expression due to diabetes.   

In our lean rats, we also identified that microRNA-125b-5p was downregulated in 

adipose tissue where its gene target Pgp was strongly upregulated. Pgp is known to hydrolyze 
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glycerol-3-phosphate into glycerol, and overexpression experiments in rodents showed that 

upregulation of Pgp leads to a reduction in body weight gain and improves hepatic glucose 

regulation [39]. Additionally, we observed the upregulation of liver microRNA-9a-5p, which has 

been correlated with gestational diabetes in humans [40]. While the gene targets of microRNA-

9a-5p were not differentially expressed in the liver, future studies should look into whether 

endogenous microRNA expression fluctuates in response to consuming other eggs, such as quail 

eggs, or egg yolk alone.  

KEGG and GO functional enrichment analysis. To further examine the molecular function of 

the identified DEGs, KEGG pathway analysis indicated that the most prevalent pathways 

influenced by dietary WE across multiple tissues in the ZDF rats were: glutathione metabolism; 

oxidation-reduction; metabolism of xenobiotics; steroid hormone biosynthesis; and fatty acid 

synthesis pathways. In the livers of lean control rats, the most significantly expressed pathways 

included metabolic pathways and retinol metabolism. All the differentially expressed genes that 

map to KEGG and gene ontology (GO) pathways analyses are presented in S5 Table. 

To further investigate the specific genes involved in the glutathione metabolism 

pathways, genes were categorized into the corresponding reactions identified by Reactome.org in 

Fig 3.  Glutathione metabolism functions in antioxidant defense, signal transduction, cytokine 

production, and other cellular processes such as detoxification. The role of GST, GSTK, GSTO 

dimers, and GPX1 which function in glutathione conjugation, glucuronidation, methylation, and 

detoxification of reactive oxygen species, respectively, are detailed within Fig 3. These reactions 

within glutathione metabolism are essential for recycling of glutathione disulfide or the 

conjugation of GSH that can be utilized in redox reactions.  



123 
 

KEGG pathway analysis highlighted that in addition to an upregulation of glutathione 

metabolism pathways, several of the same gene products mediate metabolism of xenobiotics, a 

pathway upregulated in our rats fed WE-based diets. Xenobiotic metabolism has previously been 

shown to be downregulated during insulin dependent T1DM [30], where in this study these 

pathways were upregulated in response to feeding WE-based diets. These observed effects 

appear to be tissue specific, as these alterations were the most prominent in ZDF liver, whereas 

one gene, glutathione s-transferase p (Gstp1), was differentially upregulated in the kidney of 

ZDF rats while glutathione s-transferase mu 1 (Gstm1) was upregulated in the lean kidney. These 

findings support the previous observation that WE consumption affects obese phenotypes 

differently than a lean phenotype [13], in part, due to the different transcriptomic responses to 

dietary WE. We previously hypothesized that these differences in response to WE consumption 

were not due to satiety, because there was increased food intake in the WE group [13]; the 

present study identifies a potential molecular response to egg partially explaining these previous 

findings. Other suggested mechanisms that might explain differences between obese and lean 

genotypes include thermogenesis [42], altered methylation patterns [43], intestinal microbiome 

alterations [44], and changes in energy expenditure [33]. While there have been numerous 

studies highlighting differences in the microbiota between obese and lean phenotypes in rats [33] 

and humans [42], one recent study examining WE consumption concluded that it did not 

influence the intestinal microbiome in postmenopausal women [45]. Taken together, these 

observations support the idea that phenotypic alterations during T2DM may depend strongly on 

obesity status and energy expenditures on a molecular level, potentially in response to changes in 

the transcriptome.  
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qPCR analyses. Finally, we examined the relationship between our qPCR data for several genes 

to validate the results from the Quantseq analysis. Confirmatory analysis with qPCR 

demonstrated that across the genes selected, the qPCR data highly correlates with the mRNA 

Quantseq results (R2 = 0.72; S1 Fig) indicating strong similarities between these two methods. 

Strengths and Limitations 

The strengths and limitations of this study should be addressed to better understand how 

these results fit into the larger context of the current literature. It is estimated that in 2019, people 

in the United States consumed on average, 5.6 eggs per week [46]. The dose of egg used in this 

study would equate to roughly 14 eggs per day for a human. While our study demonstrated that 

consuming a large dose of WE may alter gene expression of various metabolic pathways, 

particularly during T2DM, this quantity of egg would not be a standard dietary practice in 

humans. We do recognize that our whole egg dosage was high, but the goal was to examine 

whether there was a transcriptomic response from consuming dietary whole egg in a T2DM 

model. It is worth noting that our laboratory has previously reported in ZDF rats that even 

smaller dosages, such as the human equivalent of <2 eggs/day, significantly reduced weight gain 

in the ZDF rat and therefore may be effective in identifying oxidative stress outcomes from long-

term dietary whole egg consumption [13]. After the examination of the transcriptome following 

our high WE-based diet, it is warranted to examine these specific genes in a follow-up 

intervention study. Future studies will focus on titrating down the egg dosages to discern the 

smallest dosage to elicit similar transcriptomic responses to egg consumption that will be more 

translatable to human consumption patterns. Overall, our findings are significant as we are the 

first to report that whole hen egg consumption promotes glutathione metabolism expression 

during T2DM and alters the transcriptome of multiple tissues using next-generation sequencing. 
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Additionally, we provide evidence supporting the idea that egg consumption modifies 

endogenous microRNA expression in a tissue-specific manner. 

In summary, we examined whether feeding WE modifies expression of microRNAs or 

gene expression profiles across multiple tissues in a diabetic versus a lean rat model. Across all 

tissues examined with next generation sequencing, we identified that 9 microRNAs were 

differentially expressed in response to consuming WE. Additionally, we have shown that these 

microRNAs were related to tissue-specific changes in gene expression, and that 8 wk of 

consuming diets high in whole egg modified 583 genes across the PFC, kidney, liver, and 

adipose tissue.  KEGG/GO analyses identified that glutathione metabolism was highly 

upregulated in response to feeding WE and qPCR results validated the sequencing results. These 

data suggest that high WE consumption may provide beneficial effects during T2DM by 

improving glutathione metabolism gene expression across multiple tissues and decreasing gene 

expression in oxidative stress pathways.  

Materials and Methods 

 The data discussed in this publication have been deposited in NCBI's Gene Expression 

Omnibus [47] and are accessible through GEO Series accession number GSE157491 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE157491). All protocols used within 

this study have been made publicly available at protocols.io. Protocols have been zipped into one 

file and can be accessed at dx.doi.org/10.17504/protocols.io.bjgakjse. 

Animal housing and experimental design This animal study was approved by the Institutional 

Animal Care and Use Committee (IACUC) at Iowa State University. All animal care was 

performed according to Laboratory Animal Resources Guidelines at Iowa State University. Male 

ZDF (fa/fa) rats (n = 12) and their lean controls (fa/+; n = 12) were obtained at 6-wk of age 
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(Charles River, Wilmington, MA). Rats were dual-caged and acclimated for 72 h in conventional 

cages in a temperature-controlled room (25°C) with a 12-h light-dark cycle. Rats were randomly 

assigned to an experimental diet (Table 4) consisting of either a casein (CAS)-based diet, or a 

WE-based diet containing dried WE powder (Rose Acre Farms).  

Both diets provided 20% protein (w/w) from either vitamin-free CAS or WE powder. To 

match the diets for total lipid content (18.3%), corn oil was added to the control diet. Both diets 

were prepared in-house weekly by mixing all ingredients into a powdered form and administered 

daily in a standard amount for both lean and ZDF rats. For the remainder of the study, rats were 

fed ad libitum for 8 wk and at the end of the experimental period, rats were anesthetized with a 

dissociative agent combination of ketamine:xylaxine (90:10 mg/kg body weight) via an 

intraperitoneal injection of 1µL/g body weight. Two methods of animal euthanasia were 

performed according to the American Veterinary Medical Association guidelines for the 

Euthanasia of Animals: 2020 edition [47]. Cardiac exsanguination of whole blood on the 

anesthetized rat was performed and serum was subsequently stored at −80°C for downstream 

analysis. The second method of exsanguination was the procurement of organs. Following 

cardiac puncture, tissues were immediately excised, weighed, and snap frozen in liquid nitrogen 

for storage at −80°C in RNALater. 

RNA extraction and analysis. Tissue samples (20 mg) were rapidly thawed on ice and 

largeRNA and smallRNA fractions were extracted from the same isolate using the RNA SPLIT 

Kit (Lexogen) according to the manufacturer’s instructions. Briefly, samples were homogenized 

in an isolation buffer and phase separated using a phenol/chloroform extraction followed by a 

spin column-based purification procedure. All samples were aliquoted and stored at −80°C for 

downstream analysis. Following extraction, sample concentrations for the largeRNA fraction 
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were analyzed using a Qubit 2.0 fluorometer (Thermo Fisher) using the Qubit™ Broad Range 

RNA Assay Kit. RNA integrity was assessed using the Bioanalyzer 2100 (Agilent Technologies) 

and samples with low RNA integrity number (RIN) values <5 were discarded and re-extracted. 

SmallRNA concentrations were measured using a Qubit 2.0 fluorometer (Thermo Fisher) using 

the Qubit™ microRNA Assay Kit.  

TotalRNA and smallRNA sequencing. Libraries for totalRNA were prepared using an 

automated protocol according to the manufacturer’s instructions for half reactions on the 

QuantSeq 3' mRNA-Seq Library Prep Kit (Lexogen) using a MANTIS® Liquid Handler 

pipetting robot (Formulatrix). All totalRNA samples were multiplexed together across two lanes 

on an Illumina High-Seq 3000. SmallRNA Libraries were prepared manually using the 

SmallRNA-Seq Library Prep Kit (Lexogen). Briefly, 100 ng of enriched smallRNA was used as 

input and 3’ and 5’ adapters were ligated followed by column purifications. Subsequently, the 

ligation products were reverse transcribed and double stranded cDNA libraries were generated. 

Finally, individual sample barcodes for multiplexing were introduced via 17 cycles of PCR. All 

libraries were assessed on the Bioanalyzer 2100 (Agilent) to examine if adapter dimers formed 

during PCR. All libraries were further prepared using a bead purification module (Lexogen) and 

pooled into a single sample at 2 nM (20 µL reaction) for sequencing.  

Sequencing quality control and adapter trimming. For both totalRNA and smallRNA samples, 

the resulting FASTQ files were analyzed using Fast-QC [21] and sequencing adapters were 

trimmed using on BBDUK [48] with an example of the trimming procedure: bbduk.sh 

in=reads.fq out=clean.fq maq=10 ref= /bbmap/resources/adapters.fa. For smallRNA samples, 

reads were additionally trimmed using the literal flag to remove the Lexogen specific sequence 

“5’-TGGAATTCTCGGGTGC CAAGGAACTCCAGTCAC – 3’” following similar trimming 



128 
 

procedures. Briefly, any read segments that matched Illumina Truseq or Nextera adapters, along 

with reads containing integrity scores <10 were trimmed out. 

Alignment and read quantification. For totalRNA, reads were mapped to the Ensembl release 

94 of the Rattus Norvegicus RNO_6.0 genome using RNA STAR [49]. TotalRNA read counts 

were generated during the read alignment using the --genecounts function in STAR. For 

smallRNA samples, reference fasta files from www.RNACentral.org were downloaded for 

microRNA, piwiRNA, snRNA, nRNA, rRNA, and tRNA. Indexes were generated using Bowtie 

[50] and alignment was conducted using the smallrnaseq python tool [51]. Read counts for all 

reference indices and IsomiRs were generated using the smallrnaseq python tool. 

Data filtering and normalization. Following read count generation, Quantseq gene expression 

data was merged into a single data frame for analysis in R (version 3.6.0). Genes were discarded 

from the analysis if there were <3 samples without a single read for that given gene. TotalRNA 

data initially generated read counts for 32,883 genes and over 50% of the trimmed reads from 

each sample mapped to the RNO_6 version 94 genome. Prior to normalization, remaining gene 

counts across all four tissues contained between 8,700-12,000 genes for analysis. The microRNA 

data originally generated read counts for over 350 microRNAs and the formal analysis was 

conducted on 60-150 targets across each tissue. For totalRNA and smallRNA fractions, all 

samples were normalized using the Trimmed Mean of M values (TMM) method [52]. Briefly, 

TMM accounts for variable depth between samples by normalizing them according to the 

weighted trimmed mean of the log expression ratios across all samples prior to analysis. 

Differential expression analysis. All differential expression analyses were conducted using R 

(version 3.6.0). Differential expression was conducted using DESeq2 from Bioconductor. 
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DESeq-DataSetFromMatrix generated p-values and Benjamini-Hochberg [53] adjusted P-values 

controlling false discovery rate (FDR) at 5%. Significance was determined at adj P<0.05.   

Heatmaps, principal component analysis, and volcano plots. Principal Component Analysis 

(PCA) was used to visualize sample relatedness across treatments and tissues. Subsequent 

hierarchical clustering grouped samples according to transcriptomic relatedness, while volcano 

plots were constructed to visualize samples with absolute log-fold changes >1.5. All figures were 

generated with MatplotLib in Python version 3.2.0rc1.  

KEGG/GO pathway analysis. Biological pathways for each DEG were generated using the 

KEGG pathway analysis and GO analysis conducted via the Database for Annotation, 

Visualization, and Integrated Discovery (DAVID) v6.7 software tool.   

qPCR validation analyses. TotalRNA from each tissue was aliquoted and frozen at -80○C, and 2 

µg of total RNA was reverse-transcribed into cDNA using the High-Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems, Catalog # 4368813). cDNA was diluted to 250 ng/µL 

and qPCR reactions were performed using 250 ng of total cDNA with primers at 300 nM 

concentration in 10 µL FastStart Sybr Green Master (Roche) according to the manufacturer’s 

instructions. Briefly, the thermocycling protocol followed a pre-incubation at 95°C for 10 

minutes, followed by 45 cycles of 3-Step amplification: 1) denature at 95°C for 20 seconds; 2) 

anneal and extend at 60°C for 20 seconds; and 3) elongate at 72°C for 20 seconds. All qPCR 

reactions were conducted in a Roche LightCycler 96 Real-Time PCR System. Primers sequences 

for qPCR are as follows: Fatty Acid Synthase FWD: GGCGAGTCTATGCCACTATTC, REV: 

GCTGATACAGAGAACGGATGAG; Indolethylamine N-methyltransferase FWD: 

CTGGAGAAGGAGACGGTAGAA, REV: CGGGCAACCACGAAGTATAA; Cytochrome 



130 
 

P450, family 2, subfamily c, polypeptide 22 FWD: AGAGAGAGAGAGAGAGAGAGAGA, 

REV: GAGACCCTCTGCATCTCAATAC; 18S Ribosomal Subunit FWD: 

AAGACGAACCAGAGCGAAAG, REV:TCGGAACTACGACGGTATCT; Cytochrome P450, 

family 51 FWD: CCTTCCAGTGGTGCTCTTATT, REV: 

CTAAGCCACTACCCAAAGACTATAC. In all qPCR experiments, 18s RNA expression was 

used to normalize gene expression within each tissue sample that was processed in triplicate. All 

data were analyzed using the Livak Delta-Delta CT method [54]. 

MicroRNA bioinformatic analysis. All microRNA fastq files were processed using the 

smallrnaseq [51] package in python. Smallrnaseq automates standard bioinformatic processes for 

quantification and analysis of small non-coding RNA species such as microRNA quantification 

and novel microRNA prediction. Briefly, smallrnaseq uses bowtie to align fastq files to user 

defined reference fasta sequences and all reference sequences were downloaded from 

www.RNAcentral.org (version 14). Following alignment to the Rattus Norvegicus genome and 

reference tRNA, rRNA, microRNA, lncRNA, and snRNA files, novel microRNA predictions are 

conducted using microRNADeep2. Additionally, differential expression was automated using the 

DEseq2 package in R. 
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Tables and Figures 

 

Figure A-1. Principle component analysis for both mRNA and microRNA data according to 
each genotype. Samples in the first three principle component space are colored in red or black 
for either WE or CAS, respectively. Each panel displays PCA results using microRNA data or 
mRNA data are colored by dietary treatment groups with A) ZDF microRNA, B) ZDF mRNA, 
C) lean microRNA, D) lean mRNA. 
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Figure A-2. Volcano plots indicating the directionality of the differentially expressed genes. 
Genes upregulated (green) or downregulated (red) by WE consumption, correspond to a 1.5 
decrease or increase in log fold changes. Each panel corresponds to a tissue in a given genotype: 
A) lean adipose; B) lean PFC; C) lean kidney; D) lean liver; E) ZDF adipose; F) ZDF PFC; G) 
ZDF kidney; and H) ZDF liver. 
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Figure A-3. Differentially Expressed Genes Involved in Glutathione Metabolism. This figure 
was adapted from D’Eustachio, P., and Jassal, B. from the Reactome [41]. Glutathione 
metabolism reactions can be categorized into glutathione conjugation, glucuronidation, 
methylation, or detoxification of reactive oxygen species. All genes are listed within each 
reaction category followed by their corresponding log2fold change in parentheses for each given 
tissue. Abbreviations used: ZDF, Zucker Diabetic fatty rat; GSSG, glutathione disulfide; GSH, 
glutathione; AS3MT, arsenite 3-methyltransferase; AdoMet, S-adenosyl methionine; AdoHcy, S-
adenosyl homocysteine; CDNB, 1-chloro-2, 4-dinitrobenzene; DNPSG, S-(2,4-
dinitrophenyl)glutathione; glu, glutamate; cys, cysteine; gly, glycine; gGluCys, gamma-
glutamyl-L-cysteine; GST, glutathione s-transferase; and GPX, glutathione peroxidase. 
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Supplemental Figure A-1. qPCR Correlation with mRNA Sequencing. Log fold change 
comparisons between qPCR and mRNA sequencing of several genes suggesting strong 
relationship between these two methods. 

 
Table A-1: Differentially expressed genes in the liver, kidney, adipose and PFC tissues stratified 
according to each genotype1-3.  
 

Genotype Tissue 

Ensembl_ID 

(ENSRNO) Symbol Gene Name L2FC P-value3 

ZDF 

Adipose 

Down-

regulated G00000011039 Gch1 GTP cyclohydrolase 1 -2.71 2.1E-05 
  G00000040108 RGD156535

5 
similar to fatty acid 
translocase/CD36 

-2.65 2.7E-07 

  G00000011024 Zdhhc20 zinc finger DHHC-type 
palmitoyltransferase 20 

-2.49 1.2E-04 

  G00000006946 Arhgap9 Rho GTPase activating 
protein 9 

-2.49 2.6E-06 

  G00000006715 Ccr1 C-C motif chemokine 
receptor 1 

-2.39 7.4E-06 

  G00000032546 Dot1l DOT1 like histone lysine 
methyltransferase 

-2.12 1.9E-06 

  G00000034230 Fcrl1 Fc receptor-like 1 -2.09 6.9E-05 
  G00000019283 P2ry2 purinergic receptor P2Y2 -2.07 1.2E-04 
  G00000022975 Nfam1 NFAT activating protein with 

ITAM motif 1 
-1.92 3.1E-04 

  G00000013917 Igsf10 immunoglobulin superfamily, 
member 10 

-1.91 2.4E-05 

  G00000049115 Ccr5 C-C motif chemokine 
receptor 5 

-1.89 4.3E-07 

  G00000015895 B4galt6 beta-1,4-galactosyltransferase 
6 

-1.84 5.1E-05 
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Table A-1 Continued. 

Genotype Tissue 
Ensembl_ID 

(ENSRNO) Symbol Gene Name L2FC P-value3 
  G00000020479 Pik3c2a phosphatidylinositol-4-

phosphate 3-kinase, catalytic 
subunit type 2 alpha 

-1.83 2.2E-04 

  G00000061379 C7 complement C7 -1.82 1.8E-04 
  G00000011927 Sdc3 syndecan 3 -1.82 2.3E-04 
  G00000026644 Glipr1 GLI pathogenesis-related 1 -1.77 6.4E-05 
  G00000011946 Ptn pleiotrophin -1.74 4.8E-05 
  G00000013922 Dok2 docking protein 2 -1.61 2.7E-04 
  G00000013526 Rassf4 Ras association domain 

family member 4 
-1.60 3.1E-06 

  G00000001989 Alcam activated leukocyte cell 
adhesion molecule 

-1.57 1.5E-05 

  G00000016643 Lpcat2 lysophosphatidylcholine 
acyltransferase 2 

-1.52 2.9E-04 

  G00000003835 Slc43a2 solute carrier family 43 
member 2 

-1.52 1.6E-04 

  G00000019077 Lipa lipase A, lysosomal acid type -1.51 3.8E-05 
  G00000009347 Arhgap25 Rho GTPase activating 

protein 25 
-1.49 2.1E-04 

  G00000000257 Smpd3 sphingomyelin 
phosphodiesterase 3 

-1.47 2.8E-04 

  G00000012616 Ppt1 palmitoyl-protein thioesterase 
1 

-1.41 2.7E-04 

  G00000009331 Hck HCK proto-oncogene, Src 
family tyrosine kinase 

-1.30 4.6E-05 

  G00000010183 Gask1b golgi associated kinase 1B -1.26 2.7E-04 
  G00000017022 Cerk ceramide kinase -1.25 3.2E-04 
  G00000008465 Tmem176b transmembrane protein 176B -1.23 2.4E-04 
  G00000010208 Timp1 TIMP metallopeptidase 

inhibitor 1 
-1.20 1.8E-04 

ZDF Adipose 

Up-

regulated 

Ensembl_ID 

(ENSRNO) 

Gene 

Symbol 

Gene Name L2FC P-value 

  
G00000015072 Ptgr1 prostaglandin reductase 1 1.15 2.2E-04 

  
G00000010389 Ndrg2 NDRG family member 2 1.30 2.0E-04 

  
G00000037446 Pxmp2 peroxisomal membrane 

protein 2 
1.30 2.3E-04 

  
G00000002896 Prdx6 peroxiredoxin 6 1.37 3.1E-04 

  
G00000019328 Phgdh phosphoglycerate 

dehydrogenase 
1.45 3.4E-04 

  
G00000021316 Tmem98 transmembrane protein 98 1.48 2.1E-04 

  
G00000046858 MGC10934

0 
similar to Microsomal signal 
peptidase 23 kDa subunit 
(SPase 22 kDa subunit) 

1.52 9.7E-05 
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Table A-1 Continued. 

Genotype Tissue 
Ensembl_ID 

(ENSRNO) Symbol Gene Name L2FC P-value3 
(SPC22/23) 

  
G00000017012 Coq7 coenzyme Q7, hydroxylase 1.56 4.5E-05 

  
G00000021524 Mrap melanocortin 2 receptor 

accessory protein 
1.69 1.6E-04 

  
G00000017226 Slc2a4 solute carrier family 2 

member 4 
1.87 1.8E-04 

  
G00000002579 Parm1 prostate androgen-regulated 

mucin-like protein 1 
1.89 7.0E-06 

  
G00000001001 Retn resistin 1.95 3.0E-05 

  
G00000008615 Mal2 mal, T-cell differentiation 

protein 2 
2.09 1.6E-04 

  
G00000019412 Rhbg Rh family B glycoprotein 2.12 1.3E-05 

  
G00000009715 Me1 malic enzyme 1 2.13 2.0E-06 

  
G00000012404 Thrsp thyroid hormone responsive 2.43 2.4E-06 

  
G00000019914 Tlcd3b TLC domain containing 3B 2.47 4.8E-10 

  
G00000045636 Fasn fatty acid synthase 3.25 1.7E-11 

  
G00000049911 LOC102556

347 
carbonyl reductase [NADPH] 
1-like 

4.33 6.0E-18 

Lean Adipose 

Down-

regulated 

Ensembl_ID 

(ENSRNO) 

Gene 

Symbol 

Gene Name L2FC P-value 

  
G00000016700 Tcf21 transcription factor 21 -2.82 3.2E-06 

Lean Adipose 

Up-

regulated 

Ensembl_ID 

(ENSRNO) 

Gene 

Symbol 

Gene Name L2FC P-value 

  
G00000013733 Ppp4r1 protein phosphatase 4, 

regulatory subunit 1 
2.68 2.4E-05 

  
G00000009536 Pgp phosphoglycolate 

phosphatase 
2.69 3.4E-05 

  
G00000031789 Rangap1 RAN GTPase activating 

protein 1 
2.97 3.9E-05 

  
G00000005082 Irf6 interferon regulatory factor 6 3.25 1.3E-05 
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Table A-1 Continued. 

Genotype Tissue 
Ensembl_ID 

(ENSRNO) Symbol Gene Name L2FC P-value3   
G00000031934 Enah ENAH, actin regulator 3.26 2.4E-05 

  
G00000011296 Cenpn centromere protein N 3.34 2.8E-05 

  
G00000056550 Epb41l4b erythrocyte membrane protein 

band 4.1 like 4B 
3.51 1.9E-05 

  
G00000021589 Nexmif neurite extension and 

migration factor 
4.43 2.9E-05 

  
G00000008713 Slc41a2 solute carrier family 41 

member 2 
4.51 4.8E-07 

  
G00000033262 Reep6 receptor accessory protein 6 4.72 1.0E-05 

  
G00000003098 Prom1 prominin 1 5.25 2.6E-06 

  
G00000015403 Cd52 CD52 molecule 7.66 2.5E-07 

ZDF PFC 

Down-

regulated 

Ensembl_ID 

(ENSRNO) 

Gene 

Symbol 

Gene Name L2FC P-value 

  
G00000033932 AY172581.2

2-201 
AY172581.22-201 -5.21 1.1E-05 

  
G00000032112 AY172581.1

4 
AY172581.14 -4.73 1.5E-05 

ZDF PFC Up-

regulated 

Ensembl_ID 

(ENSRNO) 

Gene 

Symbol 

Gene Name L2FC P-value 

  
None 

    

Lean PFC 

Down-

regulated 

Ensembl_ID 

(ENSRNO)  

Gene 

Symbol 

Gene Name L2FC P-value 

  
None 

    

Lean PFC Up-

regulated 

Ensembl_ID 

(ENSRNO) 

Gene 

Symbol 

Gene Name L2FC P-value 

  
None 

    

ZDF Kidney 

Down-

regulated 

Ensembl_ID 

(ENSRNO) 

Gene 

Symbol 

Gene Name L2FC P-value 

  
G00000020204 Srp19 signal recognition particle 19 -1.72 3.3E-05 

  
G00000004794 Rtn1 reticulon 1 -2.01 5.1E-05 

  
G00000055471 Ywhah tyrosine 3-

monooxygenase/tryptophan 
5-monooxygenase activation 
protein, eta 

-1.29 5.5E-05 
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Table A-1 Continued. 

Genotype Tissue 
Ensembl_ID 

(ENSRNO) Symbol Gene Name L2FC P-value3   
G00000003357 Col3a1 collagen type III alpha 1 

chain 
-1.46 6.4E-05 

ZDF Kidney 

Up-

regulated 

Ensembl_ID 

(ENSRNO) 

Gene 

Symbol 

Gene Name L2FC P-value 

  
G00000018237 Gstp1 glutathione S-transferase pi 1 2.04 5.2E-07 

  
G00000018940 CNT1 solute carrier family 28 

member 1 
1.65 7.8E-05 

Lean Kidney 

Down-

regulated 

Ensembl_ID 

(ENSRNO) 

Gene 

Symbol 

Gene Name L2FC P-value 

  
G00000020151 Cdh1 cadherin 1 -1.08 1.4E-05 

  
G00000013062 Cyp24a1 cytochrome P450, family 24, 

subfamily a, polypeptide 1 
-1.30 4.3E-06 

  
G00000012956 Tgm2 transglutaminase 2 -1.34 3.5E-05 

  
G00000004019 Phlda1 pleckstrin homology-like 

domain, family A, member 1 
-2.30 2.7E-08 

Lean Kidney 

Up-

regulated 

Ensembl_ID 

(ENSRNO) 

Gene 

Symbol 

Gene Name L2FC P-value 

  
G00000029726 Gstm1 glutathione S-transferase mu 

1 
1.40 1.5E-05 

  
G00000053811 Arg2 arginase 2 1.51 3.5E-05 

  
G00000000576 Anapc16 anaphase promoting complex 

subunit 16 
2.11 3.3E-05 

ZDF Liver 

Down-

regulated 

Ensembl_ID 

(ENSRNO) 

Gene 

Symbol 

Gene Name L2FC P-value 

  
G00000014320 Inhba inhibin subunit beta A -4.77 3.2E-12 

  
G00000007923 Cgref1 cell growth regulator with EF 

hand domain 1 
-3.74 4.4E-09 

  
G00000004307 Tor3a torsin family 3 -3.55 6.1E-18 

  
G00000034190 Ighm immunoglobulin heavy 

constant mu 
-3.38 1.4E-16 

  
G00000003802 Pttg1 PTTG1 regulator of sister 

chromatid separation 
-3.35 1.2E-05 

  
G00000007060 Plin2 perilipin 2 -3.31 6.8E-28 
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Genotype Tissue 
Ensembl_ID 

(ENSRNO) Symbol Gene Name L2FC P-value3   
G00000045636 Fasn fatty acid synthase -3.31 1.5E-10 

  
G00000022256 Cxcl10 C-X-C motif chemokine 

ligand 10 
-3.30 4.4E-04 

  
G00000009019 Slc6a6 solute carrier family 6 

member 6 
-3.09 6.0E-11 

  
G00000025691 Pla2g7 phospholipase A2 group VII -3.03 4.5E-06 

  
G00000020035 Cyp17a1 cytochrome P450 -3.00 2.1E-09 

  
G00000020480 Fads1 fatty acid desaturase 1 -2.93 1.5E-13 

  
G00000000658 Acacb acetyl-CoA carboxylase beta -2.91 4.0E-18 

  
G00000030154 Cyp4a2 cytochrome P450 -2.88 5.0E-04 

  
G00000021802 Isg15 ISG15 ubiquitin-like modifier -2.72 2.4E-03 

  
G00000001052 Slc25a30 solute carrier family 25 -2.58 1.8E-09 

  
G00000001963 Mx2 MX dynamin like GTPase 2 -2.56 2.1E-03 

  
G00000040151 Sdr16c6 short chain 

dehydrogenase/reductase 
family 16C 

-2.55 6.3E-04 

  
G00000017914 Cavin3 caveolae associated protein 3 -2.51 1.4E-14 

  
G00000006859 Insig1 insulin induced gene 1 -2.50 3.4E-13 

  
G00000006204 Slc30a3 solute carrier family 30 

member 3 
-2.47 3.0E-07 

  
G00000016353 Nim1k NIM1 serine/threonine 

protein kinase 
-2.40 3.6E-08 

  
G00000016011 Plekhg1 pleckstrin homology and 

RhoGEF domain containing 
G1 

-2.40 7.8E-05 

  
G00000028137 Mki67 marker of proliferation Ki-67 -2.38 1.5E-04 

  
G00000014476 Evl Enah/Vasp-like -2.37 3.4E-04 

  
G00000008022 Apaf1 apoptotic peptidase activating 

factor 1 
-2.36 7.1E-05 
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Genotype Tissue 
Ensembl_ID 

(ENSRNO) Symbol Gene Name L2FC P-value3   
G00000053891 Phf11 PHD finger protein 11 -2.34 6.4E-08 

  
G00000010819 Hspa4l heat shock protein family A 

(Hsp70) member 4 like 
-2.32 6.9E-06 

  
G00000021150 Plcb3 phospholipase C beta 3 -2.31 3.1E-05 

  
G00000001414 Serpine1 serpin family E member 1 -2.27 1.2E-04 

  
G00000016924 Acly ATP citrate lyase -2.25 5.5E-17 

  
G00000045560 Gvin1 GTPase -2.25 2.1E-06 

  
G00000020503 Cbln3 cerebellin 3 precursor -2.22 1.4E-06 

  
G00000052444 Samd9 sterile alpha motif domain 

containing 9 
-2.22 3.3E-04 

  
G00000005209 Spred1 sprouty-related -2.21 1.7E-05 

  
G00000010888 Ankrd33b ankyrin repeat domain 33B -2.20 2.1E-06 

  
G00000047218 Clic5 chloride intracellular channel 

5 
-2.20 1.7E-03 

  
G00000009481 Ddhd1 DDHD domain containing 1 -2.19 2.0E-04 

  
G00000022242 Cxcl9 C-X-C motif chemokine 

ligand 9 
-2.16 1.3E-05 

  
G00000008807 Rp1 RP1 -2.08 4.7E-05 

  
G00000014426 Lox lysyl oxidase -2.07 1.9E-03 

  
G00000015498 Il17rb interleukin 17 receptor B -2.07 2.3E-04 

  
G00000051965 Smad4 SMAD family member 4 -2.07 8.7E-04 

  
G00000017512 Aldh3b1 aldehyde dehydrogenase 3 

family 
-2.05 1.0E-04 

  
G00000057092 Slfn4 schlafen family member 4 -2.05 6.2E-06 

  
G00000012685 Adck1 aarF domain containing 

kinase 1 
-2.04 1.8E-03 

  
G00000011268 Chd5 chromodomain helicase DNA 

binding protein 5 
-2.02 2.3E-03 
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Genotype Tissue 
Ensembl_ID 

(ENSRNO) Symbol Gene Name L2FC P-value3   
G00000032374 Paqr9 progestin and adipoQ receptor 

family member 9 
-2.01 3.3E-14 

  
G00000020272 Elapor1 endosome-lysosome 

associated apoptosis and 
autophagy regulator 1 

-1.97 1.0E-04 

  
G00000061118 LOC102551

095 
uncharacterized 
LOC102551095 

-1.96 9.6E-05 

  
G00000061527 Gck glucokinase -1.93 4.4E-07 

  
G00000053460 Acot3 acyl-CoA thioesterase 3 -1.91 1.4E-04 

  
G00000005043 Cpeb2 cytoplasmic polyadenylation 

element binding protein 2 
-1.91 2.0E-03 

  
G00000017332 Dapk2 death-associated protein 

kinase 2 
-1.87 3.8E-04 

  
G00000034013 Acaca acetyl-CoA carboxylase alpha -1.86 4.5E-05 

  
G00000017611 Tnp1 transition protein 1 -1.86 2.0E-03 

  
G00000012603 Sestd1 SEC14 and spectrin domain 

containing 1 
-1.85 1.2E-03 

  
G00000025558 Palm2 paralemmin 2 -1.84 5.7E-06 

  
G00000018461 Pdgfrb platelet derived growth factor 

receptor beta 
-1.82 1.0E-03 

  
G00000016123 Rnf144b ring finger protein 144B -1.80 5.5E-17 

  
G00000013111 Mettl3 methyltransferase-like 3 -1.78 6.7E-04 

  
G00000045679 Apoa1 apolipoprotein A1 -1.78 1.1E-11 

  
G00000001926 Cldn1 claudin 1 -1.78 1.8E-06 

  
G00000005600 Nr4a2 nuclear receptor subfamily 4 -1.77 4.2E-04 

  
G00000012148 Trio trio Rho guanine nucleotide 

exchange factor 
-1.76 7.0E-04 

  
G00000004626 Slc34a2 solute carrier family 34 

member 2 
-1.76 8.7E-05 

  
G00000009360 Sh3bp1 SH3-domain binding protein 

1 
-1.74 2.2E-03 

  
G00000010890 Bmp1 bone morphogenetic protein 1 -1.71 1.8E-07 
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Genotype Tissue 
Ensembl_ID 

(ENSRNO) Symbol Gene Name L2FC P-value3   
G00000011820 Acp3 acid phosphatase 3 -1.69 1.1E-04 

  
G00000007591 Slc45a3 solute carrier family 45 -1.68 8.9E-05 

  
G00000006170 Bach2 BTB domain and CNC 

homolog 2 
-1.68 1.2E-03 

  
G00000028895 Rtp4 receptor (chemosensory) 

transporter protein 4 
-1.66 5.3E-05 

  
G00000002773 Rgs4 regulator of G-protein 

signaling 4 
-1.65 5.0E-04 

  
G00000007234 Cyp51 cytochrome P450 -1.64 1.2E-09 

  
G00000020918 Ccnd1 cyclin D1 -1.64 7.0E-09 

  
G00000028941 Zbed3 zinc finger -1.63 8.4E-06 

  
G00000012681 Lgals9 galectin 9 -1.63 2.8E-13 

  
G00000001640 Tomm70 translocase of outer 

mitochondrial membrane 70 
-1.63 2.6E-03 

  
G00000009117 Otub2 OTU deubiquitinase -1.62 1.9E-04 

  
G00000005726 Pclo piccolo (presynaptic 

cytomatrix protein) 
-1.62 6.2E-04 

  
G00000051171 G6pc glucose-6-phosphatase -1.61 1.6E-04 

  
G00000016552 Hmgcs1 3-hydroxy-3-methylglutaryl-

CoA synthase 1 
-1.60 4.4E-15 

  
G00000004577 Fez2 fasciculation and elongation 

protein zeta 2 
-1.60 1.9E-04 

  
G00000000547 Tspyl4 TSPY-like 4 -1.59 5.0E-04 

  
G00000017120 Abhd2 abhydrolase domain 

containing 2 
-1.59 1.9E-07 

  
G00000015906 Tgif1 TGFB-induced factor 

homeobox 1 
-1.56 1.1E-03 

  
G00000008144 Irf1 interferon regulatory factor 1 -1.54 2.4E-06 

  
G00000007319 Trib3 tribbles pseudokinase 3 -1.54 8.5E-06 

  
G00000018467 Mitd1 microtubule interacting and 

trafficking domain containing 
1 

-1.52 1.9E-03 
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Genotype Tissue 
Ensembl_ID 

(ENSRNO) Symbol Gene Name L2FC P-value3   
G00000023238 Dgkd diacylglycerol kinase -1.52 1.2E-05 

  
G00000020776 Dhcr7 7-dehydrocholesterol 

reductase 
-1.51 1.1E-05 

  
G00000033824 Gpd2 glycerol-3-phosphate 

dehydrogenase 2 
-1.51 5.5E-04 

  
G00000003442 Adora1 adenosine A1 receptor -1.50 2.3E-06 

  
G00000025689 Abhd1 abhydrolase domain 

containing 1 
-1.50 2.1E-07 

  
G00000018198 Dapk1 death associated protein 

kinase 1 
-1.48 5.3E-04 

  
G00000029668 Wfdc21 WAP four-disulfide core 

domain 21 
-1.45 1.6E-04 

  
G00000006280 Pcsk9 proprotein convertase 

subtilisin/kexin type 9 
-1.44 4.7E-07 

  
G00000008215 Trim47 tripartite motif-containing 47 -1.44 1.3E-04 

  
G00000014013 Map4k4 mitogen-activated protein 

kinase kinase kinase kinase 4 
-1.43 1.1E-05 

  
G00000018627 Plekhb1 pleckstrin homology domain 

containing B1 
-1.43 8.9E-05 

  
G00000007713 Tmcc3 transmembrane and coiled-

coil domain family 3 
-1.43 2.6E-05 

  
G00000000987 Ptcd1 pentatricopeptide repeat 

domain 1 
-1.43 1.0E-03 

  
G00000014702 Elovl2 ELOVL fatty acid elongase 2 -1.43 2.8E-11 

  
G00000037595 Gpbp1l1 GC-rich promoter binding 

protein 1-like 1 
-1.41 2.3E-04 

  
G00000001205 Agpat3 1-acylglycerol-3-phosphate 

O-acyltransferase 3 
-1.41 3.8E-09 

  
G00000019776 Sh3gl3 SH3 domain containing 

GRB2 like 3 
-1.40 4.1E-05 

  
G00000012622 Mmp15 matrix metallopeptidase 15 -1.40 1.9E-03 

  
G00000023856 Agxt alanine--glyoxylate and 

serine--pyruvate 
aminotransferase 

-1.39 7.5E-11 

  
G00000042560 Bag4 BCL2-associated athanogene 

4 
-1.38 1.2E-03 

  
G00000013841 Dcaf1 DDB1 and CUL4 associated 

factor 1 
-1.38 2.1E-03 
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Genotype Tissue 
Ensembl_ID 

(ENSRNO) Symbol Gene Name L2FC P-value3   
G00000019995 Dnajc18 DnaJ heat shock protein 

family (Hsp40) member C18 
-1.37 2.4E-04 

  
G00000019996 Slc16a1 solute carrier family 16 

member 1 
-1.36 1.6E-04 

  
G00000023226 S100a10 S100 calcium binding protein 

A10 
-1.35 2.2E-04 

  
G00000006227 Ifih1 interferon induced with 

helicase C domain 1 
-1.35 7.5E-04 

  
G00000019005 Pde8a phosphodiesterase 8A -1.34 1.5E-03 

  
G00000021259 Prnp prion protein -1.33 1.7E-03 

  
G00000055909 Apoa4 apolipoprotein A4 -1.33 2.6E-10 

  
G00000008012 Abcb4 ATP binding cassette 

subfamily B member 4 
-1.33 4.1E-10 

  
G00000021405 Cyp2c7 cytochrome P450 -1.32 1.0E-08 

  
G00000012181 Lpl lipoprotein lipase -1.31 5.3E-05 

  
G00000056041 

 
AABR07062570 -1.30 2.5E-03 

  
G00000016815 Tmem135 transmembrane protein 135 -1.29 4.1E-05 

  
G00000019422 Egr1 early growth response 1 -1.29 1.1E-05 

  
G00000054077 

 
Aabr07024870 -1.29 1.4E-03 

  
G00000008194 Znfx1 zinc finger -1.28 5.5E-04 

  
G00000009076 Ttpal alpha tocopherol transfer 

protein like 
-1.27 1.7E-03 

  
G00000005825 Lyz2 lysozyme 2 -1.26 2.7E-05 

  
G00000032293 Polg DNA polymerase gamma -1.26 2.9E-04 

  
G00000008586 Aldh1l2 aldehyde dehydrogenase 1 

family 
-1.26 3.5E-04 

  
G00000010805 Fabp4 fatty acid binding protein 4 -1.25 2.5E-03 

  
G00000016044 Mab21l3 mab-21 like 3 -1.25 1.0E-04 
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Genotype Tissue 
Ensembl_ID 

(ENSRNO) Symbol Gene Name L2FC P-value3   
G00000000459 Psmb9 proteasome 20S subunit beta 

9 
-1.25 7.4E-04 

  
G00000015124 Gpam glycerol-3-phosphate 

acyltransferase 
-1.25 1.4E-03 

  
G00000020871 Ltbp4 latent transforming growth 

factor beta binding protein 4 
-1.22 2.1E-03 

  
G00000016516 Mbp myelin basic protein -1.22 1.2E-04 

  
G00000007324 Plxna2 plexin A2 -1.22 2.4E-07 

  
G00000001821 Adipoq adiponectin -1.21 2.7E-03 

  
G00000020573 Efna1 ephrin A1 -1.19 1.7E-04 

  
G00000004606 Meis1 Meis homeobox 1 -1.19 8.3E-04 

  
G00000001647 Ets2 ETS proto-oncogene 2 -1.17 9.1E-09 

  
G00000059043 Itch itchy E3 ubiquitin protein 

ligase 
-1.17 1.4E-03 

  
G00000006787 Dhcr24 24-dehydrocholesterol 

reductase 
-1.16 1.9E-12 

  
G00000015121 N4bp1 Nedd4 binding protein 1 -1.15 3.0E-04 

  
G00000042771 Apol3 apolipoprotein L -1.14 7.6E-08 

  
G00000023664 Lepr leptin receptor -1.12 2.5E-03 

  
G00000000451 RT1-Ba RT1 class II -1.12 1.1E-03 

  
G00000012782 Cemip2 cell migration inducing 

hyaluronidase 2 
-1.11 1.0E-05 

  
G00000014766 Galt galactose-1-phosphate 

uridylyltransferase 
-1.11 1.7E-05 

  
G00000014718 Acsl3 acyl-CoA synthetase long-

chain family member 3 
-1.11 1.4E-03 

  
G00000017428 Map1b microtubule-associated 

protein 1B 
-1.10 1.7E-03 

  
G00000018517 Trim21 tripartite motif-containing 21 -1.09 2.0E-03 

  
G00000001426 Prkrip1 PRKR interacting protein 1 -1.09 2.2E-03 
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Genotype Tissue 
Ensembl_ID 

(ENSRNO) Symbol Gene Name L2FC P-value3   
G00000028448 Elovl1 ELOVL fatty acid elongase 1 -1.08 2.2E-03 

  
G00000005695 Mgp matrix Gla protein -1.07 1.2E-03 

  
G00000017558 Tubb2a tubulin -1.07 7.2E-04 

  
G00000012876 Slc6a13 solute carrier family 6 

member 13 
-1.07 7.1E-05 

  
G00000018960 Syne1 spectrin repeat containing 

nuclear envelope protein 1 
-1.07 7.3E-05 

  
G00000017993 Abcb10 ATP binding cassette 

subfamily B member 10 
-1.05 8.6E-05 

  
G00000007545 Angptl4 angiopoietin-like 4 -1.04 4.1E-07 

  
G00000007990 Adipor2 adiponectin receptor 2 -1.04 1.1E-04 

  
G00000020134 Upf1 UPF1 -1.03 5.1E-04 

  
G00000027434 Fitm2 fat storage-inducing 

transmembrane protein 2 
-1.02 1.7E-05 

  
G00000048315 Eif2ak2 eukaryotic translation 

initiation factor 2-alpha 
kinase 2 

-1.02 6.7E-05 

  
G00000005642 Frs2 fibroblast growth factor 

receptor substrate 2 
-1.02 7.7E-04 

  
G00000014604 Sigmar1 sigma non-opioid intracellular 

receptor 1 
-1.01 4.9E-09 

  
G00000002175 Clock clock circadian regulator -1.01 2.4E-04 

  
G00000042785 Sesn2 sestrin 2 -1.00 1.7E-05 

  
G00000023463 Parp9 poly (ADP-ribose) 

polymerase family 
-0.99 3.5E-04 

  
G00000043377 Fdps farnesyl diphosphate synthase -0.99 1.6E-03 

  
G00000000593 Rev3l REV3 like -0.98 2.0E-03 

  
G00000019283 P2ry2 purinergic receptor P2Y2 -0.98 1.0E-03 

  
G00000024061 Rarb retinoic acid receptor -0.98 2.7E-03 

  
G00000017220 Tcirg1 T-cell immune regulator 1 -0.98 3.3E-04 
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G00000021032 Sphk2 sphingosine kinase 2 -0.97 2.3E-05 

  
G00000001585 Nrip1 nuclear receptor interacting 

protein 1 
-0.97 1.1E-03 

  
G00000003882 Cep350 centrosomal protein 350 -0.96 5.2E-04 

  
G00000005292 Trip11 thyroid hormone receptor 

interactor 11 
-0.96 2.4E-06 

  
G00000046889 Dbi diazepam binding inhibitor -0.96 2.3E-05 

  
G00000000664 Tpst2 tyrosylprotein 

sulfotransferase 2 
-0.95 2.1E-03 

  
G00000014900 Crem cAMP responsive element 

modulator 
-0.95 2.0E-03 

  
G00000024115 C6 complement C6 -0.93 2.9E-04 

  
G00000030225 Clpx caseinolytic mitochondrial 

matrix peptidase chaperone 
subunit X 

-0.92 3.8E-05 

  
G00000038012 Commd6 COMM domain containing 6 -0.91 1.8E-04 

  
G00000007302 Fbn1 fibrillin 1 -0.91 1.4E-03 

  
G00000018420 Slc22a7 solute carrier family 22 

member 7 
-0.90 4.1E-04 

  
G00000002635 Dexi Dexi homolog -0.89 1.6E-06 

  
G00000007728 Gsdmd gasdermin D -0.89 2.3E-03 

  
G00000026942 RGD131159

5 
similar to KIAA2026 protein -0.88 2.9E-05 

  
G00000034066 Hspa8 heat shock protein family A 

(Hsp70) member 8 
-0.87 3.0E-04 

  
G00000019372 Pc pyruvate carboxylase -0.87 8.5E-06 

  
G00000000177 Plpp2 phospholipid phosphatase 2 -0.87 9.6E-04 

  
G00000056703 Atrx ATRX -0.86 2.0E-04 

  
G00000016219 Vnn1 vanin 1 -0.86 1.5E-04 

  
G00000014338 Slc25a25 solute carrier family 25 

member 25 
-0.86 6.6E-04 



153 
 

Table A-1 Continued. 

Genotype Tissue 
Ensembl_ID 

(ENSRNO) Symbol Gene Name L2FC P-value3   
G00000013391 Sorbs2 sorbin and SH3 domain 

containing 2 
-0.84 9.9E-06 

  
G00000016692 Hsdl2 hydroxysteroid 

dehydrogenase like 2 
-0.83 1.3E-04 

  
G00000024145 Trim65 tripartite motif-containing 65 -0.83 5.9E-05 

  
G00000010947 Mmp14 matrix metallopeptidase 14 -0.83 1.7E-03 

  
G00000018584 Ptma prothymosin alpha -0.83 1.5E-05 

  
G00000008274 Xpc XPC complex subunit -0.83 3.6E-04 

  
G00000011261 Ttc14 tetratricopeptide repeat 

domain 14 
-0.83 2.7E-03 

  
G00000047386 Smg1 SMG1 -0.82 2.7E-03 

  
G00000007400 Srebf2 sterol regulatory element 

binding transcription factor 2 
-0.82 4.0E-04 

  
G00000028801 Gsap gamma-secretase activating 

protein 
-0.82 2.1E-03 

  
G00000007700 Inhbc inhibin subunit beta C -0.81 5.3E-04 

  
G00000013178 Cmip c-Maf-inducing protein -0.81 6.6E-04 

  
G00000032394 Tymp thymidine phosphorylase -0.80 5.0E-04 

  
G00000031709 Ppfibp1 PPFIA binding protein 1 -0.79 6.6E-04 

  
G00000003020 Slc25a47 solute carrier family 25 -0.79 1.5E-03 

  
G00000019450 Etf1 eukaryotic translation 

termination factor 1 
-0.78 1.6E-03 

  
G00000010497 RGD130580

7 
hypothetical LOC298077 -0.77 1.7E-05 

  
G00000000184 Tmprss6 transmembrane serine 

protease 6 
-0.75 3.7E-04 

  
G00000004709 Foxn3 forkhead box N3 -0.73 2.2E-04 

  
G00000007681 Brd3 bromodomain containing 3 -0.72 2.1E-03 

  
G00000033593 Osbpl9 oxysterol binding protein-like 

9 
-0.72 7.9E-04 
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G00000002212 Hsd17b13 hydroxysteroid (17-beta) 

dehydrogenase 13 
-0.70 5.2E-06 

  
G00000053550 Itga1 integrin subunit alpha 1 -0.68 1.6E-03 

  
G00000030700 COX3 cytochrome c oxidase subunit 

3 
-0.67 2.8E-04 

  
G00000020425 Stim1 stromal interaction molecule 

1 
-0.66 1.0E-03 

  
G00000057814 Nsdhl NAD(P) dependent steroid 

dehydrogenase-like 
-0.66 2.0E-05 

  
G00000056371 Pik3ca phosphatidylinositol-4 -0.66 1.5E-03 

  
G00000016266 Mphosph10 M-phase phosphoprotein 10 -0.65 2.2E-03 

  
G00000015441 Il4r interleukin 4 receptor -0.65 1.8E-03 

  
G00000009102 Fermt2 fermitin family member 2 -0.62 2.2E-03 

  
G00000005015 Rabep1 rabaptin -0.62 1.8E-03 

  
G00000020151 Cdh1 cadherin 1 -0.60 2.4E-03 

  
G00000013135 Ptpn12 protein tyrosine phosphatase -0.58 2.7E-04 

  
G00000057623 Copb1 COPI coat complex subunit 

beta 1 
-0.53 4.7E-04 

  
G00000011140 Prxl2a peroxiredoxin like 2A -0.51 2.0E-03 

  
G00000018849 Tcerg1 transcription elongation 

regulator 1 
-0.51 2.0E-03 

  
G00000008305 Sc5d sterol-C5-desaturase -0.47 2.0E-03 

  
G00000009263 Ifi27 interferon -0.47 2.2E-03 

  
G00000004345 Daam1 dishevelled associated 

activator of morphogenesis 1 
-0.46 2.7E-03 

  
G00000016963 Trip12 thyroid hormone receptor 

interactor 12 
-0.43 1.7E-03 

ZDF Liver Up-

regulated 

Ensembl_ID 

(ENSRNO) 

Gene 

Symbol 

Gene Name L2FC P-value 

  
G00000003119 Gc GC 0.45 1.1E-03 
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G00000000610 Cisd1 CDGSH iron sulfur domain 1 0.46 7.7E-04 

  
G00000019629 Lamp1 lysosomal-associated 

membrane protein 1 
0.50 8.8E-05 

  
G00000000701 Iscu iron-sulfur cluster assembly 

enzyme 
0.51 4.0E-05 

  
G00000037850 Mtarc2 mitochondrial amidoxime 

reducing component 2 
0.51 6.0E-04 

  
G00000019048 Sod2 superoxide dismutase 2 0.54 2.8E-04 

  
G00000007967 Sdhb succinate dehydrogenase 

complex iron sulfur subunit B 
0.54 1.8E-03 

  
G00000013928 Dsp desmoplakin 0.54 1.5E-03 

  
G00000016794 Phyhd1 phytanoyl-CoA dioxygenase 

domain containing 1 
0.55 2.0E-03 

  
G00000019626 Slc27a5 solute carrier family 27 

member 5 
0.55 8.8E-05 

  
G00000028368 Etnk2 ethanolamine kinase 2 0.55 1.4E-03 

  
G00000011535 Gcsh glycine cleavage system 

protein H 
0.56 9.9E-04 

  
G00000008921 Dynll2 dynein light chain LC8-type 2 0.56 1.5E-03 

  
G00000030449 Gsta4 glutathione S-transferase 

alpha 4 
0.56 1.1E-03 

  
G00000018604 Tufm Tu translation elongation 

factor 
0.59 2.2E-03 

  
G00000017672 Akr1c14 aldo-keto reductase family 1 0.59 3.1E-04 

  
G00000020994 Slc25a39 solute carrier family 25 0.59 7.3E-04 

  
G00000047708 Gstz1 glutathione S-transferase zeta 

1 
0.59 1.1E-04 

  
G00000013704 Cps1 carbamoyl-phosphate 

synthase 1 
0.60 5.4E-04 

  
G00000043404 Uroc1 urocanate hydratase 1 0.60 1.6E-05 

  
G00000007395 Baat bile acid CoA:amino acid N-

acyltransferase 
0.60 5.3E-04 

  
G00000017577 Bphl biphenyl hydrolase like 0.60 6.8E-04 
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Genotype Tissue 
Ensembl_ID 

(ENSRNO) Symbol Gene Name L2FC P-value3   
G00000007069 Adhfe1 alcohol dehydrogenase 0.62 4.9E-04 

  
G00000023538 Aldh5a1 aldehyde dehydrogenase 5 

family 
0.62 4.9E-04 

  
G00000006653 Slc38a4 solute carrier family 38 0.62 1.2E-04 

  
G00000001333 Azgp1 alpha-2-glycoprotein 1 0.62 8.6E-06 

  
G00000016339 Uox urate oxidase 0.63 2.8E-05 

  
G00000061876 Tas1r2 taste 1 receptor member 2 0.63 2.4E-04 

  
G00000006916 Sardh sarcosine dehydrogenase 0.63 8.6E-05 

  
G00000029549 Eci3 enoyl-Coenzyme A delta 

isomerase 3 
0.63 8.9E-04 

  
G00000048723 Pros1 protein S 0.64 4.9E-04 

  
G00000009005 Slco2a1 solute carrier organic anion 

transporter family 
0.64 2.7E-05 

  
G00000007839 Slc16a7 solute carrier family 16 

member 7 
0.64 8.2E-04 

  
G00000010389 Ndrg2 NDRG family member 2 0.65 5.7E-04 

  
G00000014165 Ssr1 signal sequence receptor 

subunit 1 
0.65 1.0E-04 

  
G00000029735 Pid1 phosphotyrosine interaction 

domain containing 1 
0.65 1.9E-03 

  
G00000033466 Apon apolipoprotein N 0.65 1.1E-03 

  
G00000000158 Cdo1 cysteine dioxygenase type 1 0.65 6.6E-06 

  
G00000008364 Cat catalase 0.67 1.1E-03 

  
G00000061883 Aqp9 aquaporin 9 0.68 1.3E-03 

  
G00000021916 Slc16a12 solute carrier family 16 0.68 2.5E-03 

  
G00000007743 Mgst1 microsomal glutathione S-

transferase 1 
0.68 1.8E-05 

  
G00000003653 Fh fumarate hydratase 0.68 1.6E-03 
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Genotype Tissue 
Ensembl_ID 

(ENSRNO) Symbol Gene Name L2FC P-value3   
G00000013223 Fah fumarylacetoacetate 

hydrolase 
0.69 2.4E-04 

  
G00000014700 Ttc36 tetratricopeptide repeat 

domain 36 
0.69 8.4E-05 

  
G00000030862 Atp6v1h ATPase H+ transporting V1 

subunit H 
0.69 4.9E-04 

  
G00000030667 Ppm1b protein phosphatase 0.71 4.7E-06 

  
G00000004139 Ndel1 nudE neurodevelopment 

protein 1-like 1 
0.72 3.8E-05 

  
G00000007927 Mettl7b methyltransferase like 7B 0.72 5.0E-05 

  
G00000004147 Abca8a ATP-binding cassette 0.73 1.4E-03 

  
G00000029726 Gstm1 glutathione S-transferase mu 

1 
0.74 1.3E-03 

  
G00000003370 Otc ornithine 

carbamoyltransferase 
0.74 6.8E-06 

  
G00000013039 Add1 adducin 1 0.74 4.2E-04 

  
G00000014727 Fahd1 fumarylacetoacetate 

hydrolase domain containing 
1 

0.75 4.2E-04 

  
G00000059463 Slc39a1 solute carrier family 39 

member 1 
0.76 1.6E-03 

  
G00000004302 Pah phenylalanine hydroxylase 0.76 3.4E-07 

  
G00000029651 Rdh16 retinol dehydrogenase 16 0.76 8.2E-04 

  
G00000028746 Gsto1 glutathione S-transferase 

omega 1 
0.77 3.2E-04 

  
G00000018426 NEWGENE

_2134 
apolipoprotein C1 0.77 1.3E-06 

  
G00000001053 Tmed2 transmembrane p24 

trafficking protein 2 
0.77 6.7E-04 

  
G00000016173 Cyp1a2 cytochrome P450 0.77 6.7E-04 

  
G00000004089 Enpp2 ectonucleotide 

pyrophosphatase/phosphodies
terase 2 

0.78 3.5E-04 

  
G00000042274 Fbxo31 F-box protein 31 0.78 2.3E-03 
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Genotype Tissue 
Ensembl_ID 

(ENSRNO) Symbol Gene Name L2FC P-value3   
G00000000186 Tst thiosulfate sulfurtransferase 0.78 8.6E-05 

  
G00000048812 Gpx1 glutathione peroxidase 1 0.79 5.0E-04 

  
G00000047986 Sult2a1 sulfotransferase family 2A 

member 1 
0.79 2.5E-03 

  
G00000006345 Sec61b SEC61 translocon subunit 

beta 
0.79 6.2E-04 

  
G00000009779 Krt8 keratin 8 0.79 2.2E-03 

  
G00000006623 Cd302 CD302 molecule 0.80 1.5E-04 

  
G00000005987 Suox sulfite oxidase 0.81 1.1E-03 

  
G00000061890 Ust5r integral membrane transport 

protein UST5r 
0.81 2.3E-04 

  
G00000020879 Nags N-acetylglutamate synthase 0.81 3.3E-04 

  
G00000008902 Pon1 paraoxonase 1 0.82 9.7E-07 

  
G00000018904 Dtymk deoxythymidylate kinase 0.82 2.1E-03 

  
G00000023116 Agmo alkylglycerol monooxygenase 0.82 4.0E-05 

  
G00000047816 Ccs copper chaperone for 

superoxide dismutase 
0.84 1.3E-04 

  
G00000012142 Glyat glycine-N-acyltransferase 0.84 5.6E-07 

  
G00000021206 Plaat3 phospholipase A and 

acyltransferase 3 
0.84 7.5E-04 

  
G00000012962 Nudt16 nudix hydrolase 16 0.85 1.9E-04 

  
G00000050315 Dcxr dicarbonyl and L-xylulose 

reductase 
0.86 2.9E-06 

  
G00000000024 Hebp1 heme binding protein 1 0.86 2.7E-04 

  
G00000000386 Pbld1 phenazine biosynthesis-like 

protein domain containing 1 
0.87 1.3E-05 

  
G00000007378 Acox2 acyl-CoA oxidase 2 0.87 7.0E-05 

  
G00000003307 Gcdh glutaryl-CoA dehydrogenase 0.87 2.2E-08 
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Genotype Tissue 
Ensembl_ID 

(ENSRNO) Symbol Gene Name L2FC P-value3   
G00000002205 Ociad1 OCIA domain containing 1 0.87 1.4E-03 

  
G00000014645 Aldh7a1 aldehyde dehydrogenase 7 

family 
0.88 8.2E-08 

  
G00000008638 Angptl3 angiopoietin-like 3 0.88 2.9E-09 

  
G00000011351 Mat1a methionine 

adenosyltransferase 1A 
0.89 3.6E-05 

  
G00000009421 Ivd isovaleryl-CoA 

dehydrogenase 
0.89 1.9E-09 

  
G00000036894 Cisd3 CDGSH iron sulfur domain 3 0.89 4.0E-04 

  
G00000014128 Ecsit ECSIT signaling integrator 0.90 1.6E-03 

  
G00000017619 Aldh1a1 aldehyde dehydrogenase 1 

family 
0.90 3.1E-05 

  
G00000018662 Amacr alpha-methylacyl-CoA 

racemase 
0.90 3.9E-07 

  
G00000020000 Tmem219 transmembrane protein 219 0.90 5.2E-04 

  
G00000001957 Sult1e1 sulfotransferase family 1E 

member 1 
0.90 2.8E-06 

  
G00000051860 Rnase4 ribonuclease A family 

member 4 
0.91 1.3E-09 

  
G00000014160 Tcp1 t-complex 1 0.91 2.2E-04 

  
G00000048114 Echdc3 enoyl CoA hydratase domain 

containing 3 
0.91 2.7E-07 

  
G00000003291 Creg1 cellular repressor of E1A-

stimulated genes 1 
0.92 1.3E-07 

  
G00000008837 Ass1 argininosuccinate synthase 1 0.92 7.7E-04 

  
G00000018159 Anxa4 annexin A4 0.92 2.3E-04 

  
G00000010993 Dpm1 dolichyl-phosphate 

mannosyltransferase subunit 1 
0.92 9.1E-04 

  
G00000019982 Ethe1 ETHE1 0.92 2.4E-05 

  
G00000023177 Esrp2 epithelial splicing regulatory 

protein 2 
0.93 9.8E-07 

  
G00000013409 Gclm glutamate cysteine ligase 0.93 3.0E-04 
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Genotype Tissue 
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(ENSRNO) Symbol Gene Name L2FC P-value3   
G00000001806 Fetub fetuin B 0.93 2.9E-04 

  
G00000017291 Sord sorbitol dehydrogenase 0.94 7.2E-09 

  
G00000053362 Gabarapl1 GABA type A receptor 

associated protein like 1 
0.94 1.4E-07 

  
G00000021174 Macrod1 mono-ADP ribosylhydrolase 

1 
0.95 7.1E-05 

  
G00000014268 Abca2 ATP binding cassette 

subfamily A member 2 
0.95 9.8E-04 

  
G00000049771 Gstt1 glutathione S-transferase theta 

1 
0.96 8.4E-05 

  
G00000011226 Timm8a1 translocase of inner 

mitochondrial membrane 8A1 
0.96 4.5E-06 

  
G00000005175 Sgpp1 sphingosine-1-phosphate 

phosphatase 1 
0.97 2.0E-03 

  
G00000049464 Cyp2c13 cytochrome P450 0.97 6.0E-10 

  
G00000002210 Hsd17b11 hydroxysteroid (17-beta) 

dehydrogenase 11 
0.97 4.4E-10 

  
G00000012786 Pgrmc1 progesterone receptor 

membrane component 1 
0.99 1.2E-07 

  
G00000004327 Ddc dopa decarboxylase 0.99 4.8E-05 

  
G00000046357 Adh5 alcohol dehydrogenase 5 

(class III) 
0.99 1.2E-11 

  
G00000054049 Prelid2 PRELI domain containing 2 0.99 7.6E-04 

  
G00000004442 Dglucy D-glutamate cyclase 0.99 1.6E-03 

  
G00000014876 Lpin2 lipin 2 1.00 3.9E-04 

  
G00000012911 Erlin1 ER lipid raft associated 1 1.00 6.8E-04 

  
G00000055314 Msrb1 methionine sulfoxide 

reductase B1 
1.00 1.1E-07 

  
G00000006619 Dnajc9 DnaJ heat shock protein 

family (Hsp40) member C9 
1.01 6.5E-04 

  
G00000018937 Gstm7 glutathione S-transferase 1.01 1.6E-04 

  
G00000027016 Cobll1 cordon-bleu WH2 repeat 

protein-like 1 
1.01 1.4E-04 
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Genotype Tissue 
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(ENSRNO) Symbol Gene Name L2FC P-value3   
G00000046007 Cldn3 claudin 3 1.02 2.8E-04 

  
G00000033609 Irx1 iroquois homeobox 1 1.02 2.0E-03 

  
G00000017777 Ahcy adenosylhomocysteinase 1.02 1.5E-05 

  
G00000019180 Acsl4 acyl-CoA synthetase long-

chain family member 4 
1.02 1.0E-08 

  
G00000022932 Serhl2 serine hydrolase-like 2 1.03 1.5E-04 

  
G00000016484 Gstk1 glutathione S-transferase 

kappa 1 
1.03 1.5E-07 

  
G00000003620 Fmo3 flavin containing 

dimethylaniline 
monoxygenase 3 

1.04 1.7E-05 

  
G00000032895 Cyp4f4 cytochrome P450 1.04 5.0E-08 

  
G00000032737 F7 coagulation factor VII 1.05 2.1E-04 

  
G00000023816 Aph1a aph-1 homolog A 1.05 1.6E-03 

  
G00000015205 Cyb5a cytochrome b5 type A 1.06 9.6E-07 

  
G00000008079 Ugp2 UDP-glucose 

pyrophosphorylase 2 
1.06 4.1E-08 

  
G00000011559 Cnn3 calponin 3 1.07 5.6E-05 

  
G00000013484 Gsta1 glutathione S-transferase 

alpha-1 
1.07 4.2E-10 

  
G00000050595 Mup5 major urinary protein 5 1.07 1.5E-04 

  
G00000026775 Pmpca peptidase 1.08 3.9E-04 

  
G00000001338 Hpd 4-hydroxyphenylpyruvate 

dioxygenase 
1.08 7.7E-06 

  
G00000001618 Ripk4 receptor-interacting serine-

threonine kinase 4 
1.09 2.3E-03 

  
G00000000768 Ubd ubiquitin D 1.10 2.4E-05 

  
G00000007508 Lrtm2 leucine-rich repeats and 

transmembrane domains 2 
1.10 1.8E-08 

  
G00000031769 Chchd7 coiled-coil-helix-coiled-coil-

helix domain containing 7 
1.10 4.4E-04 



162 
 

Table A-1 Continued. 
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G00000013291 Cyp2c23 cytochrome P450 1.10 4.4E-07 

  
G00000017188 Cyp27a1 cytochrome P450 1.11 1.7E-08 

  
G00000058327 

  
1.13 7.4E-04 

  
G00000025079 Fam126b family with sequence 

similarity 126 
1.13 4.7E-04 

  
G00000061215 Crym crystallin 1.14 2.1E-04 

  
G00000017752 Mccc2 methylcrotonoyl-CoA 

carboxylase 2 
1.16 1.8E-05 

  
G00000016166 Pdlim1 PDZ and LIM domain 1 1.16 7.7E-07 

  
G00000010079 Ca3 carbonic anhydrase 3 1.17 4.7E-10 

  
G00000013728 Polg2 DNA polymerase gamma 2 1.17 6.2E-04 

  
G00000062298 Rpl13a ribosomal protein L13A 1.19 2.6E-03 

  
G00000013751 Plpbp pyridoxal phosphate binding 

protein 
1.19 2.3E-06 

  
G00000001442 Por cytochrome p450 

oxidoreductase 
1.19 1.2E-09 

  
G00000042253 Ecd ecdysoneless cell cycle 

regulator 
1.20 6.0E-04 

  
G00000020254 Per2 period circadian regulator 2 1.20 3.1E-04 

  
G00000007949 Rgn regucalcin 1.21 8.8E-08 

  
G00000003253 Qdpr quinoid dihydropteridine 

reductase 
1.21 3.4E-09 

  
G00000003515 Ephx1 epoxide hydrolase 1 1.22 7.9E-07 

  
G00000011039 Gch1 GTP cyclohydrolase 1 1.23 2.8E-07 

  
G00000038746 Bco2 beta-carotene oxygenase 2 1.24 6.3E-07 

  
G00000005861 Hsd11b1 hydroxysteroid 11-beta 

dehydrogenase 1 
1.24 4.3E-09 

  
G00000000588 Slc16a10 solute carrier family 16 

member 10 
1.24 1.6E-05 
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G00000020202 Asrgl1 asparaginase and isoaspartyl 

peptidase 1 
1.25 2.7E-03 

  
G00000017826 Mtrr 5-methyltetrahydrofolate-

homocysteine 
methyltransferase reductase 

1.26 1.6E-03 

  
G00000033700 Bud23 BUD23 1.27 1.7E-03 

  
G00000000281 Prodh1 proline dehydrogenase 1 1.28 2.1E-11 

  
G00000042084 Acsm2 acyl-CoA synthetase medium-

chain family member 2 
1.30 3.4E-09 

  
G00000006972 Zfp189 zinc finger protein 189 1.30 1.5E-03 

  
G00000027784 Tsku tsukushi 1.32 7.2E-04 

  
G00000012387 Glyatl2 glycine-N-acyltransferase-like 

2 
1.33 7.3E-07 

  
G00000011714 Sat2 spermidine/spermine N1-

acetyltransferase family 
member 2 

1.33 6.9E-05 

  
G00000045799 Rup2 urinary protein 2 1.34 7.8E-04 

  
G00000021924 Cyp2c22 cytochrome P450 1.35 9.3E-08 

  
G00000018494 Ppp1r3c protein phosphatase 1 1.36 4.1E-11 

  
G00000004693 Pbx1 PBX homeobox 1 1.36 1.4E-03 

  
G00000001258 Snx8 sorting nexin 8 1.37 2.0E-04 

  
G00000020698 Rnd2 Rho family GTPase 2 1.37 6.0E-05 

  
G00000051227 

  
1.38 6.2E-04 

  
G00000052810 Cyp2c11 cytochrome P450 1.39 2.0E-11 

  
G00000012436 Adh6 alcohol dehydrogenase 6 

(class V) 
1.41 4.4E-15 

  
G00000015936 Gng5 G protein subunit gamma 5 1.41 2.6E-03 

  
G00000018413 Per3 period circadian regulator 3 1.42 1.6E-04 



164 
 

Table A-1 Continued. 

Genotype Tissue 
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G00000016967 Hfe homeostatic iron regulator 1.42 2.9E-07 

  
G00000001376 Mettl7a methyltransferase like 7A 1.43 3.1E-04 

  
G00000056940 Cited2 Cbp/p300-interacting 

transactivator 
1.44 1.5E-11 

  
G00000015002 Abhd15 abhydrolase domain 

containing 15 
1.44 1.5E-04 

  
G00000032959 Adh7 alcohol dehydrogenase 7 

(class IV) 
1.45 7.6E-09 

  
G00000050232 LOC680406 similar to Urinary protein 2 

precursor (RUP-2) 
1.46 1.5E-09 

  
G00000020700 Rnaseh2c ribonuclease H2 1.48 7.7E-04 

  
G00000011635 Ces2e carboxylesterase 2E 1.49 2.9E-08 

  
G00000015354 Aox1 aldehyde oxidase 1 1.54 2.6E-12 

  
G00000061450 Homer2 homer scaffold protein 2 1.54 2.5E-05 

  
G00000009629 Car2 carbonic anhydrase 2 1.55 2.9E-05 

  
G00000042111 Sult1c2a sulfotransferase family 1.55 2.3E-03 

  
G00000057072 Slc12a3 solute carrier family 12 

member 3 
1.55 3.1E-04 

  
G00000004009 Xpnpep2 X-prolyl aminopeptidase 2 1.57 1.1E-08 

  
G00000013313 Nceh1 neutral cholesterol ester 

hydrolase 1 
1.57 8.8E-07 

  
G00000015438 LOC501233 LRRGT00080 1.58 1.2E-13 

  
G00000015076 Cyp26b1 cytochrome P450 1.62 6.3E-04 

  
G00000016456 Il33 interleukin 33 1.65 4.2E-18 

  
G00000001766 Tfrc transferrin receptor 1.67 1.1E-04 

  
G00000011718 C1rl complement C1r 

subcomponent like 
1.68 1.2E-06 

  
G00000013949 Idh2 isocitrate dehydrogenase 

(NADP(+)) 2 
1.68 2.3E-16 
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G00000018740 Ugt1a6 UDP glucuronosyltransferase 

family 1 member A6 
1.69 6.1E-14 

  
G00000016807 Oat ornithine aminotransferase 1.72 1.2E-05 

  
G00000025418 Armc9 armadillo repeat containing 9 1.74 4.5E-04 

  
G00000023778 Gcnt2 glucosaminyl (N-acetyl) 

transferase 2 (I blood group) 
1.77 6.8E-05 

  
G00000056596 Alas1 5'-aminolevulinate synthase 1 1.80 2.3E-15 

  
G00000046643 Cyp3a9 cytochrome P450 1.82 5.3E-04 

  
G00000003260 Nr1i3 nuclear receptor subfamily 1 1.84 6.4E-05 

  
G00000001158 Abcg1 ATP binding cassette 

subfamily G member 1 
1.86 3.0E-05 

  
G00000020250 Pcgf6 polycomb group ring finger 6 1.88 9.2E-04 

  
G00000006420 Rbm38 RNA binding motif protein 38 1.89 2.0E-04 

  
G00000012458 Cyp2e1 cytochrome P450 1.91 1.3E-19 

  
G00000002258 Tmem150c transmembrane protein 150C 1.94 9.3E-05 

  
G00000013982 Hsd17b2 hydroxysteroid (17-beta) 

dehydrogenase 2 
1.94 5.1E-04 

  
G00000021027 Dbp D-box binding PAR bZIP 

transcription factor 
1.94 3.2E-05 

  
G00000004437 Map2k6 mitogen-activated protein 

kinase kinase 6 
2.07 1.1E-08 

  
G00000032246 Acsm3 acyl-CoA synthetase medium-

chain family member 3 
2.19 2.3E-16 

  
G00000014490 Bdh2 3-hydroxybutyrate 

dehydrogenase 2 
2.21 2.5E-14 

  
G00000036687 Alyref Aly/REF export factor 2.23 8.9E-04 

  
G00000015519 Ces1d carboxylesterase 1D 2.24 6.9E-32 

  
G00000009598 Ncaph2 non-SMC condensin II 

complex 
2.41 3.8E-05 

  
G00000043131 LOC100360

095 
urinary protein 1-like 2.43 4.9E-19 
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G00000034191 Fmo1 flavin containing 

dimethylaniline 
monoxygenase 1 

2.46 2.8E-25 

  
G00000005985 Kcnma1 potassium calcium-activated 

channel subfamily M alpha 1 
2.82 1.6E-04 

  
G00000011250 Inmt indolethylamine N-

methyltransferase 
2.90 3.9E-21 

  
G00000058904 Tex13b testis expressed 13B 3.10 5.9E-15 

  
G00000012772 Nqo1 NAD(P)H quinone 

dehydrogenase 1 
3.11 1.5E-12 

  
G00000001388 Sds serine dehydratase 3.29 1.7E-09 

  
G00000056847 Gsta3 glutathione S-transferase 

alpha 3 
3.40 3.1E-21 

  
G00000001242 Gstt3 glutathione S-transferase 3.66 1.2E-85 

  
G00000051912 Acnat2 acyl-coenzyme A amino acid 

N-acyltransferase 2 
3.74 8.9E-05 

  
G00000009488 Cyp7a1 cytochrome P450 family 7 

subfamily A member 1 
4.19 1.4E-18 

Lean Liver 

Down-

regulated 

Ensembl_ID 

(ENSRNO) 

Gene 

Symbol 

Gene Name L2FC P-value 

  
G00000029668 Wfdc21 WAP four-disulfide core 

domain 21 
-2.72 1.3E-04 

  
G00000020480 Fads1 fatty acid desaturase 1 -2.53 4.0E-08 

  
G00000006859 Insig1 insulin induced gene 1 -2.32 3.2E-05 

  
G00000057557 Prlr prolactin receptor -2.27 2.3E-04 

  
G00000055909 Apoa4 apolipoprotein A4 -1.93 2.3E-04 

  
G00000030154 Cyp4a2 cytochrome P450 -1.75 2.2E-08 

  
G00000019776 Sh3gl3 SH3 domain containing 

GRB2 like 3 
-1.62 8.9E-05 

  
G00000046889 Dbi diazepam binding inhibitor -1.61 1.1E-05 

  
G00000014702 Elovl2 ELOVL fatty acid elongase 2 -1.60 1.8E-05 
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G00000032297 Msmo1 methylsterol monooxygenase 

1 
-1.56 3.6E-05 

  
G00000007234 Cyp51 cytochrome P450 -1.56 4.9E-05 

  
G00000020989 Tm7sf2 transmembrane 7 superfamily 

member 2 
-1.45 6.6E-05 

Lean Liver Up-

regulated 

Ensembl_ID 

(ENSRNO) 

Gene 

Symbol 

Gene Name L2FC P-value 

  
G00000001376 Mettl7a methyltransferase like 7A 1.16 1.7E-04 

  
G00000048114 Echdc3 enoyl CoA hydratase domain 

containing 3 
1.17 1.2E-04 

  
G00000023116 Agmo alkylglycerol monooxygenase 1.21 1.7E-04 

  
G00000002643 Ugdh UDP-glucose 6-

dehydrogenase 
1.29 7.6E-05 

  
G00000015354 Aox1 aldehyde oxidase 1 1.33 1.2E-04 

  
G00000004089 Enpp2 ectonucleotide 

pyrophosphatase/phosphodies
terase 2 

1.34 9.6E-05 

  
G00000034191 Fmo1 flavin containing 

dimethylaniline 
monoxygenase 1 

1.37 1.7E-04 

  
G00000013291 Cyp2c23 cytochrome P450 1.47 1.1E-04 

  
G00000003809 Sat1 spermidine/spermine N1-

acetyl transferase 1 
1.58 3.9E-05 

  
G00000018740 Ugt1a6 UDP glucuronosyltransferase 

family 1 member A6 
1.80 2.6E-05 

  
G00000015519 Ces1d carboxylesterase 1D 1.94 5.6E-10 

  
G00000033570 Arhgap8 Rho GTPase activating 

protein 8 
2.03 1.5E-04 

  
G00000051912 Acnat2 acyl-coenzyme A amino acid 

N-acyltransferase 2 
2.05 1.1E-04 

  
G00000001158 Abcg1 ATP binding cassette 

subfamily G member 1 
2.21 1.1E-04 

  
G00000001388 Sds serine dehydratase 2.29 8.0E-06 

  
G00000047613 AABR0704

8463.1 
AABR07048463.1 2.34 1.4E-06 
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G00000013552 Scd stearoyl-CoA desaturase 2.36 4.8E-06 

  
G00000001242 Gstt3 glutathione S-transferase 2.93 1.4E-09 

  
G00000021924 Cyp2c22 cytochrome P450 3.22 5.2E-15 

  
G00000009488 Cyp7a1 cytochrome P450 family 7 

subfamily A member 1 
3.36 1.5E-09 

1All genes were analyzed using DESeq2 for differential analysis 
2Abbreviations used: ZDF, Zucker Diabetic Fatty; L2FC, log2 fold change; PFC, prefrontal 
cortex 
3 Benjamini-Hochberg adjusted P-values controlling for false discovery rate at 5%, where P< 
0.05 was considered significant. 

 

 

Table A-2: Differentially expressed microRNAs in WE vs CAS-based diets in ZDF rats and 
their lean controls1-3.  

Genotype Tissue MicroRNA L2F

C 

Non adjusted  

p-value 

P-

value3 

ZDF Adipose 
Downregulated 

rno-miR-221-3p -1.60 9.53E-05 0.007 

ZDF PFC Upregulated rno-miR-29a-3p 0.59 0.0001 0.022 
ZDF PFC Upregulated rno-miR-151-5p 0.89 0.0005 0.036 
Lean Adipose 

Downregulated 
rno-miR-125a-5p -1.48 0.0022 0.069 

Lean Adipose 
Downregulated 

rno-miR-125b-5p -1.78 0.0029 0.069 

Lean Liver Upregulated rno-miR-9a-5p 1.89 9.08E-05 0.006
3 

Lean Liver Upregulated rno-miR-181a-5p 1.10 0.0007 0.024 
Lean Liver Upregulated rno-miR-10b-5p 1.37 0.0011 0.024 
Lean Liver Downregulated rno-miR-192-5p -0.57 0.0013 0.024 

1All miRNAs were analyzed using DESeq2 for differential analysis 
2Abbreviations used: ZDF, Zucker Diabetic Fatty; WE, whole egg; CAS, casein; L2FC, log2 fold 
change; and PFC, prefrontal cortex 
3Benjamini-Hochberg adjusted P-values controlling for false discovery rate at 5%, where P< 0.05 
was considered significant. 
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Table A-3: Differentially expressed microRNAs and their corresponding target genes that were 
differentially regulated by dietary WE consumption1-3. 

MicroRNA Tissue 
Gene 

Name 
L2FC 

Non-adj  

p-value 

Human 

Symbol 

Ensembl  

Rat ID 

(RNOG) 

Rat 

Symbol 
Gene Name 

miR- 
125b-5p  
(down-
regulated)  

lean 
adipose 

Pgp 2.69 0.00003 PGP 00000009536 Pgp 
phosphoglycolate 
phosphatase 

rno-miR- 
181a-5p  
(up-regulated) 

lean  
liver 

CYP7A1 3.36 0.000000001 Cyp7a1 00000009488 Cyp7a1 

Cytochrome 
P450-Family-7 
SubfamilyA-
Member 1 

rno-miR- 
181a-5p  
(up-regulated) 

lean  
liver 

Scd 2.35 0.0000048 Scd 00000013552 SCD 
stearoyl-CoA 
desaturase 

1All miRNAs were analyzed using DESeq2 for differential analysis 
2Abbreviations used: miR, microRNAS; rno, rattus norvegicus; WE, whole egg; and L2FC, log2 
fold change. 
3Gene targets for Rattus Norvegicus and humans were determined by DRSC Integrative Ortholog 
Prediction Tool. 
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Table A-4: Composition of the CAS and WE based diets fed to lean and ZDF rats for 8 wk1. 

 CAS WE 
Ingredient (g/kg) 

Casein 200 - 

Whole Egg2 - 435 

Cornstarch 417 365 

Corn Oil 183 - 

Glucose Monohydrate 150 150 

Mineral Mix 35 35 

Vitamin Mix 10 10 

Choline Bitartrate 2 2 

L-methionine 3 3 

Biotin (1%) - 0.4 

Macronutrients (% total kcal)3 

Protein 17 17 

Carbohydrate  48 48 

Fat 35 35 

Caloric Content 4,715 4,715 

1All ingredients were purchased from Envigo except for dried whole egg (Rose Acre Farms, 
Guthrie Center, IA), as well as L-methionine and choline bitartrate (Sigma-Aldrich). 
Abbreviations used: CAS, casein-based diet, WE, whole egg-based diet  
2 Total protein and lipid content provided by 435 g of dried WE was 46% (200 g) and 42% (183 
g), respectively.  
3 To formulate all diets such that protein was provided at 20% (w/w).  
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APPENDIX B. LARGE AND SMALL RNA SEQUENCING REVEALS OXIDATIVE-

REDUCTION PATHWAYS ARE MODIFID BY SHORT-TERM WHOLE EGG 

CONSUMPTION.  

A manuscript prepared for submission to Molecular Nutrition and Food Research 

Amanda E. Bries*, Joe L. Webb*, Brooke Vogel, Claudia Carrillo, Lily Harvison, Timothy A. 

Day, Michael J. Kimber, Rudy J. Valentine, Matthew J. Rowling, Stephanie Clark, Elizabeth 

McNeill, and Kevin L. Schalinske. *AEB and JLW contributed equally to this work. 

 

Abstract 

Scope: Eggs are protein-rich, nutrient-dense, and contain bioactive ingredients that have been 

shown to modify gene expression.  

Methods: In order to understand the effects that egg consumption has on tissue-specific mRNA 

and microRNA gene expression, we examined the role of whole egg consumption (20% protein, 

w/w) on differentially expressed genes (DEGs) between rat (n =12) transcriptomes in the 

prefrontal cortex (PFC), liver, kidney and adipose tissue. Principal component analysis with 

hierarchical clustering were used to examine transcriptomic profiles between treatment groups. 

Finally, we performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathway analysis to examine which metabolic pathways were the most predominantly altered 

each tissue.  

Results: Overall, these data demonstrate that whole egg consumption for 2 wk modified the 

expression of 52 genes in the PFC, 20 genes in the adipose, and two genes in the liver (adj P < 

0.05). Additionally, miR125b-5p was downregulated in the adipose, and miR-192-5p and miR-

10b-5p were downregulated in the PFC. The main pathways influenced by WE consumption 

were glutathione metabolism in the adipose and cholesterol biosynthesis in the PFC.  
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Conclusion: These data highlight potential microRNA targets and the genes that may be 

modified by acute consumption of whole egg based diets.  

Introduction 

Eggs are a low-cost, nutrient-dense food comprised of numerous vitamins, bioactive 

compounds and have been proposed to play a role in disease prevention1,2. Dietary whole eggs 

and their derived compounds3 have been linked to several mechanisms of modulating gene 

expression, such as vitamin D-mediated transcriptional regulation and methyl group metabolism 

by supplying choline, methionine, folate, B12, B6, and B2
4. Despite the beneficial components of 

eggs, they remain one of the most controversial foods5, due to their level of cholesterol 6,7. 

Observational studies examining the role of long-term egg intake on the risk of developing 

cardiovascular disease (CVD) have reported inconsistent results8, but most recently, Dehghan 

and others reported no significant association between whole egg intake and major CVD events 

in a conglomerate of 50 studies9. Although the role of whole egg (WE) consumption has been 

extensively examined in population-based studies10,11, only a few studies have thoroughly 

identified the biological role of the individual egg components.  

For instance, egg yolk peptides have been shown to display anti-oxidative properties12 

and lutein, a carotenoid that is high in egg yolk, has been demonstrated to protect dopaminergic 

neurons from oxidative damage in a model of Parkinson’s Disease (PD)13. Similar effects of 

lutein administration have also been shown in other animal models of aging and cognitive 

impairment14,15; however, the role of these egg components and their influence on their global 

gene expression remains elusive. In addition to WE decreasing oxidative stress, our laboratory 

has previously reported that consuming a WE-based diet reduced body weight gain in rats with 

type 2 diabetes16,17. To date, very few studies have focused on identifying the molecular 
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mechanisms that are altered by WE consumption in additional to the global gene expression 

changes in the rats fed WE vs. casein (CAS)-based protein diets. By gaining an in-depth 

understanding of gene-diet interactions, we can shed light on the molecular mechanisms 

underlying WE consumption, and identify targets for future therapeutics in metabolic or aging 

diseases. 

In this study, male Sprague Dawley rats were fed WE-based diets to examine the 

influence of short-term WE consumption on gene and microRNA expression in comparison with 

CAS-based diets. We examined the transcriptomic profiles of the prefrontal cortex (PFC), 

adipose, liver, and kidney tissues to identify metabolic pathways that may be altered by WE 

consumption and mapped these changes to microRNAs. The primary aim of this study was to 

first identify if WE consumption had a significant impact on global gene expression, and if there 

were potential molecular drivers, such as microRNAs that were upstream effects of these 

observed transcriptomic differences.  

Materials and methods 

Animals and Diets. This animal study was approved by the Institutional Animal Care and Use 

Committee at Iowa State University and was performed according to the Iowa State University 

Laboratory Animal Resources Guidelines. Male Sprague Dawley rats (n =12) were obtained at 6 

wk of age (151-175 g) from Charles River Laboratories (Wilmington, MA). Rats were 

individually housed in conventional cages in a temperature-controlled environment (22°C ± 2°C) 

following a 12-h light-dark cycle. All rats were acclimated for one week on a standard rat chow 

diet, whereby they were randomly assigned to one of two dietary intervention groups. There 

were no significant differences in baseline weights between groups (P=0.62). Rats were either 

placed on the control casein (CAS)-based diet, or a whole egg (WE)-based diet (Table B-1) 
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matched for 20% protein (w/w). For 72 h, animals underwent a controlled fasted-refeeding 

protocol to train them to consume food ad libitum within a 4h window (Figure B-1). After 

training, animals were fasted overnight for 10 h with water provided ad libitum, followed by 

controlled feeding (4 g) of either the CAS- or WE-based diet. At 7 wk of age, serum was 

collected via tail vein at 0, 2, 4, 6, and 8 h immediately following refeeding. Following the serum 

time curve collection, rats were maintained on their respective diets for 2-wk with food intake 

and body weight gain monitored daily. Following the dietary intervention, 9-wk old rats 

underwent a 12 h overnight fast with water provided ad libitum; rats were anesthetized with a 

ketamine:xylazine cocktail (90:10 mg/kg bw) via a single intraperitoneal injection. Whole blood 

was collected via cardiac puncture and stored at -80○C. The epididymal adipose, kidney, liver, 

and PFC tissues were procured, weighed, and stored in RNAlater.   

Large and small RNA Extraction & Sequencing. Total RNA and microRNA were extracted 

using a SPLIT Total RNA Extraction Kit (Lexogen, Greenland, NH). RNA quantities were 

measured using the Qubit Fluorometer (ThermoFisher Scientific), and integrity was assessed 

using a Bioanalyzer 2100 (Agilent Technologies). Large RNA libraries were prepared using an 

automated protocol for the QuantSeq 3' mRNA-Seq Library Prep Kit (Lexogen, Greenland, NH) 

and small RNA libraries were prepared using Small RNA Library Prep Kits (Lexogen, 

Greenland, NH). Total RNA samples were multiplexed across two lanes using an Illumina High-

Seq 3000 resulting in an average of 7.5 million reads per sample prior to quality control. Small 

RNA libraries were also multiplexed and run on a separate lane on an Illumina High-Seq 3000.  

Quality Control & Adapter Trimming. All large and small RNA reads were inspected using 

Fastqc and were trimmed to remove adapter sequences using BBDUK18. Read segments 

matching common Illumina Truseq or Nextera adapter sequences were removed for the reverse-
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complement or forward sequence of the adapters during processing. Subsequently, low-quality 

reads with average quality < 10 were discarded. 

Read Alignment & Quantification. Reference genome (fasta) and genome annotation files (gtf) 

were obtained from the Ensembl genome browser. Reads were aligned to the RNO version 6 

release 94 of the Ensembl genome using the STAR v2.5.2 aligner19. Transcripts aligning to 

specific genes were counted using the STAR - quantMode geneCounts function to map 

transcripts to each genome. Files containing microRNA counts and gene counts for all samples 

are supplemental and not included in this dissertation. Small RNA samples were processed using 

the smallrnaseq python tool20, which aligns samples using Bowtie and quantifies small RNA read 

counts using reference fasta and gtf files from RNAcentral.org. 

Data Filtering & Quality Control. All data analysis was conducted in Python within an IPython 

notebook unless otherwise specified. Genes were filtered out if they were not expressed in any 

samples or had fewer than 10 counts in half of the samples for each gene. Data filtering and 

alignment settings were adapted from Lexogen‘s QuantSeq 3‘ mRNA-Seq Kit and integrated 

Data Analysis Pipeline on Bluebee® platform according to the manufacturer’s instructions.  

Differential Expression Analysis using DESeq2. Read normalization was conducted using a 

weighted trimmed mean of the log expression ratios (trimmed mean of M values (TMM)) 

method to account for variable sequencing depth between samples. Differential expression 

analysis was conducted using the DESeq221 package in the R programming language. When 

applying DESeq2, DESeqDataSetFromMatrix was used to generate P values and adjusted p-

values were calculated using the Benjamini-Hochberg method22 of false discovery rate (FDR) 
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correction. For all analyses, FDR was controlled at 1% and all adjusted p-values < 0.01 were 

considered significant.  

Heatmaps, Principal Component Analysis, & Volcano Plots. Principal Component Analysis 

(PCA) was conducted for the initial clustering and characterization of RNAseq data. Hierarchical 

clustering was used to create a dendrogram classifying samples according to similar 

transcriptomic profiles, while volcano plots were constructed to visualize genes which surpass a 

log-fold change of >1.5 increase or decrease to assess biological significance. PCA, clustering, 

and volcano plots were all constructed using MatplotLib in python version 3.2.0rc1.  

Functional Enrichment Annotations. Pathway-based analysis was performed using the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) database that contains annotated biological 

functions for genes23. All KEGG pathway analysis was performed in python using the KEGG 

package version bio2bel-kegg 0.2.5. All differentially expressed genes (DEGs) were additionally 

categorized based on cellular localization, function, and processes using Gene Ontology (GO) 

Analysis using the Database for Annotation, Visualization and Integrated Discovery (DAVID) 

v6.8 database through the online web application24. MicroRNA target genes were identified 

through TargetScan analysis tools and target genes were then downloaded and deidentified 

through the Ensembl software25. Gene identifiers were then cross-validated through our 

differentially expressed genes on the basis of significance at FDR correction of <0.05.  

qRT-PCR Validation Analyses. Total RNA from each tissue was aliquoted and reverse 

transcribed into cDNA using the High-Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems, Catalog # 4368813). The cDNA was diluted to 100ng/uL and qPCR reactions were 

performed using 200ng of total cDNA with primers at 300nM concentration in 10 uL FastStart 

Sybr Green Master (Roche) according to the manufacturer’s instructions. All qPCR reactions 
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were conducted in a Roche LightCycler 96 Real-Time PCR System. Primers sequences for qPCR 

are were obtained from Integrated DNA Technology (IDT) and 18s RNA was used as an internal 

control for normalization in each tissue. Each sample was assessed in triplicate. All data were 

analyzed using the Livak Delta-Delta CT method26.  

Protein-Protein Interaction Network Mapping. The STRING database was used for analyzing 

protein-protein interaction networks between DEGs using their online web portal https://string-

db.org/ . These interactions include direct (physical) and indirect (functional) associations from 

other published studies and databases. 

Results 

RNA Seq Differential Expression. Differential gene expression analyses of the resulted in 52 

DEGs in the PFC, 20 in the adipose tissue, 2 in the liver, and 0 in the kidney. Of the 74 DEGs 

that surpassed multiple testing corrections (adjusted P < 0.05), 1 gene was differentially 

upregulated across both the PFC (5.6-fold increase) and adipose (3.2-fold increase) tissue - 

indolethylamine N-methyltransferase (INMT). Table B-2 describes the DEGs in each tissue, 

whereas supplemental data not contained in this dissertation contains adjusted P-value results for 

all genes.  

KEGG & GO Functional Enrichment Analysis. To examine the function pathway for each 

DEG, mRNA were mapped to KEGG/GO pathway terms, which are described in Table B-3. The 

primary KEGG enrichment analyses of the DEGs indicated that in adipose tissue, the top KEGG 

pathway that was upregulated by consuming a WE-based diet was glutathione metabolism. In the 

PFC, glutathione metabolism was ranked third, while steroid biosynthesis and terpenoid 

backbone biosynthesis were the other top biological pathways. In the liver, there were no 

pathway processes that were determined from the differentially expressed gene pool. 
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To further investigate the molecular function and localization of these DEGs, GO 

analyses revealed that all 74 genes could be classified according to their biological processes, 

cellular components, and molecular functions. GO Functional Analysis of DEGs indicated that in 

the PFC, the top altered pathways were oxidation-reduction processes, cholesterol biosynthetic 

processes, metal ion binding pathways, and fatty acid biosynthetic processes. In the adipose, the 

main pathways were organic acid transmembrane transport, phosphate ion transmembrane 

transport, and glutathione metabolic processes. A table of the GO analysis results are described 

in Table B-3.  

microRNA Seq Differential Expression. Differential expression analyses of the microRNAs, 

resulted in 6 upregulated microRNAs and 10 downregulated microRNAs across all four tissues 

based on non-adjusted P < 0.05. No microRNAs survived multiple testing correction with FDR 

correction at 5%. Table B-4 describes the differentially expressed microRNAs in each tissue, 

and likewise, adjusted P values results for all microRNAs are in supplemental files. Interestingly, 

across the PFC, adipose, and liver, miR-10b-5p was downregulated in both the adipose and PFC 

(non-adjusted; P=0.03 and P=0.02, respectively) and miR-192-5p was downregulated in both the 

liver and PFC (non-adjusted; P=0.02 and P=0.05, respectively). 

MicroRNA Gene Target Analysis. Differentially expressed microRNAs from Table B-2 were 

mapped against their human genetic targets, and cross-referenced against the DEGs from Table 

3. For instance, Table B-5 indicates the targets of the downregulated miR-10b-5p in the PFC. 

The DEG that was upregulated in the PFC as it relates to miR-10b-5p was the Arrestin Domain 

Containing 3 protein (Arrdc3). Nine DEGs were identified in the PFC and were correlated with 

the suppression of miR-192-5p in the PFC (Table B-4).  
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Serum MicroRNA Refeeding Analysis. There was no significant effects of dietary treatment on 

serum microRNA at 0, 2, 4, 6, or 8 h immediately following refeeding based on multiple testing 

corrective measures using FDR adjusted P < 0.05.  

Principal Component Analysis (PCA) & Hierarchical Clustering. To examine the similarity 

between transcriptomic profiles, lowly expressed genes across all tissues were filtered and 

illustrated in a PCA, as shown in Figure B-2A. The PCA plots indicate that these rat samples 

cluster by diet (WE vs. CAS). Subsequently, the top DEGs were visualized using a hierarchical 

clustering heatmap for each tissue that displays distinct differential expression patterns according 

to each diet, as shown in Figure B-2 (B-D).  To visualize which of these DEGs may have 

biological significance, each tissue was plotted using volcano plots, as displayed in Figure B-3. 

qRT-PCR validation. To validate the RNA-seq data, 5 DEGs were selected for qRT-PCR 

analysis in each tissue. The PCR gene expression data were correlated with the RNA-seq data in 

Figure B-4, suggesting that RNA-seq and PCR results were in alignment with one another.  

Food Intake & Body Weight Gain. There was no significant effect of dietary treatment on food 

intake or total energy intake throughout the study (data not shown). Additionally, there was no 

statistically significant effect of dietary treatment on final body weight or cumulative body 

weight gain at 8 wk of age. There were also no differences in organ weights at tissue collection 

except for the liver, where rats on the WE-based diets had 16% increased relative liver weight 

(P<0.01).  

Discussion 

Previous studies have examined specific egg components, such as hen egg lysozymes in 

altering gene expression in pig intestinal tissues27, but very little information is known about how 
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dietary WE affects endogenous gene expression across multiple tissues. Our laboratory has 

consistently demonstrated the beneficial role of a WE-based diet in maintaining vitamin D status 

and modulating phenotypic outcomes in both a type 1 diabetes (T1D) and type 2 diabetes (T2D) 

animal model17,28; however, we have yet to investigate how WE consumption modulates gene 

expression in a standard rodent model. RNA-sequencing is a powerful tool that can examine the 

influence of dietary patterns on whole genome gene expression. Since nutrition was one of the 

first major environmental factors that was identified as an epigenetic influencer, it’s important to 

look at more global effects of WE consumption in a standard rodent model to better understand 

how consuming WE alone, influences genetic expression. Measuring these effects is especially 

important when it comes to better understanding the molecular drivers of disease. By assessing 

the genes that are influenced by WE, we can contribute to scientifically sound intervention 

strategies using dietary WE as a means of disease mitigation or supplementation.  

In this study, next generation sequencing revealed that consuming WE for 2-wk 

significantly modified the expression of 74 different genes across the PFC, liver, and adipose 

tissue. In the PFC, the top three represented GO pathways were oxidation-reduction process, 

cholesterol biosynthetic process, and metal ion binding. Notably, profiling the DEGs within the 

given pathways indicated that 9 out of the 12 DEGs in the oxidation-reduction process pathway 

were downregulated. Two cytochrome P450 genes, Cyp2c22, and Cyp4A1 were upregulated in 

the PFC of the animals fed WE- vs. CAS-based diets. Moreover, squalene epoxidase (Sqle), a 

rate-limiting gene in the sterol biosynthesis pathway29, was significantly downregulated (-31-

fold) within the PFC of rats fed WE-based vs. CAS-based diets. Sqle is important for steroidal 

synthesis, and previous studies have demonstrated that ablation of Sqle may disrupt 

tumorigenesis, owing to blunted cholesterol biosynthesis30. Moreover, the dysregulation of Sqle 
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has been observed during the onset of diabetes31,32. Q Ge et al.33 indicated a significant 

upregulation in the expression of Sqle, as well as an abundance in the protein in a chemically-

induced diabetic animal model34. Another contrast between the diabetic animal model and our 

WE dietary fed animals is the observed increased expression of the Cyp genes, whereas, there 

was a global reduction in Cyp51 and other cytochrome P450 genes in the liver of diabetic 

animals. Similar findings have been reported in other diabetic animal models, where it’s been 

detected that Cyp2c22 was markedly reduced in a T2D mouse35. Interestingly, Ding et al31 

conducted a cross-sectional study in an obese population of men, examining the relationship 

between body mass index and DEGs. They reported the close association between body mass 

index and increased expression of Fads1, Sqle, Scd, Cyp51a1 whereas, in a weight-loss 

intervention study, Sqle expression was significantly reduced. Similar to these findings, we 

observed downregulation of Fads1 and Sqle in animals fed the WE- vs. CAS-based diets. The 

results from our findings may indicate a potential benefit of WE-based diet on the increased 

expression of these cytochrome P450 enzymes, which may have a beneficial role in correcting 

the progression of T2D. 

Functional annotation of the DEGs to GO terms indicated that the two targeted genes of 

the glutathione S-transferase (GST) pathway were glutathione S-transferase zeta 1 (Gstz1) and 

glutathione S-transferase pi 1 (Gstp1), which were upregulated 1.9- and 3.7-fold, respectively in 

the adipose tissue of the SD animals fed WE-based diets. Previously, it has been reported that 

deficiency of glutathione-related pathways alters antioxidant responses36, suggesting that our 

data may indicate an upregulation of glutathione with WE consumption, providing protection 

against oxidative stress. In a recent study, a Gstp1 polymorphism was associated with increased 

glucose intolerance and greater androgen production in non-obese women with polycystic ovary 
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syndrome37. Moreover, the literature indicates that dysregulated GST production has been 

implicated in conditions of obesity and T2D38. It was previously reported that glutathione 

metabolism is regulated by egg yolk peptide consumption in a porcine model of oxidative 

stress39, while in Zucker Diabetic Fatty rats, egg white hydrolysate consumption increased 

glutathione concentrations in the liver40. In a meta-analysis of clinical studies with long-term egg 

consumption, there were no observed effects of WE consumption on blood inflammatory 

markers41, whereas other researchers have reported elevation in endothelial and arterial 

inflammation from WE consumption42 and some report vascular inflammation to be exclusive to 

egg white consumption and not WE43,44. It is important that we examined these differences in 

gene expression, as we identified upregulation not only in the adipose tissue, but also observed 

an increase of glutathione S-transferase mu 2 (Gstm2) expression in the brain of rats fed WE-

based diet. These are important considerations as the data from clinical trials regarding WE 

consumption on inflammation-mediated cardiovascular disease is indeterminate.  

To better understand how the DEGs interact with one another, we used the STRING-DB 

to interrogate potential protein-protein interactions using models based on gene pathways and 

functional categories. K-nearest-neighbor (KNN) clustering was used to more granularly define 

relationships between DEGs and identify sub-networks in our data. In adipose tissue, very few 

genes interacted and KNN clustering revealed 3 main pathways that corroborated the KEGG 

analysis: 1) glutathione processing, 2) carbamoyl-phosphate processing and 3) peroxisome 

proliferator activated genes.  One of the most intriguing findings resulted from examining the 

PFC, where distinct protein-protein interaction networks occurred among the DEG genes. Nearly 

all of the fatty acid biosynthesis genes and cholesterol synthesis genes physically interacted, 

while very few of the genes in any other pathways were interrelated. KNN clustering also 
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revealed 3 common clusters in the PFC according to the protein interaction maps, with two main 

subgroups: 1) steroid biosynthesis processing; and 2) fatty acid synthesis, with the remaining 

genes not interacting.  

Although in this study we demonstrated multiple genes were differentially expressed 

across these tissues, each of these genes highlighted here should be investigated further to 

confirm if they are regulated through WE consumption. After examining whether these DEGs 

were changing across all of the sequenced tissues, we did not identify any DEGs that were 

globally affected by WE consumption, which was a rigorous assessment. Additionally, we 

wanted to interrogate the mechanism by which these 74 genes were being altered by WE 

consumption, by performing smallRNA sequencing. Surprisingly, there was no observed effect 

of acute WE consumption on postprandial serum microRNAs within 8h of testing. Previous 

research by Zemplini et al. reported robust effects of egg consumption on transient plasma 

microRNA expression45,46.  While it is controversial whether diet consumption directly 

influences circulating microRNA status47, we didn’t observe any serum changes in microRNAs 

between the two dietary treatments. MicroRNAs are a great tool for biomarker detection48, as 

well as granular mediators in the pathogenesis of various diseases49,50. By using next generation 

sequencing to observe serum microRNA changes, we concluded that diet alone, is not promising 

to elicit acute changes in microRNA status. The tissue microRNA profiles however, may change 

due to diet, thus we examined the microRNA expression changes in rats following 2-wk 

consumption.   

Since we observed prominent pathways that were altered by WE consumption, we 

wanted to explore whether these gene changes could be associated by their microRNA targets. 

Interestingly, of the target microRNAs detected as influencers of the glutathione-mediated 
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pathways, 5 microRNAs were detected from the small RNA-Seq in the adipose tissue that are 

targets of glutathione-related genes, but only was deemed significant. MicroRNA-125b-5p was 

downregulated (-1.4-fold) by the WE-based diet, with a non-adjusted P-value of (P=0.007). miR-

125b-5p does logically link with the upregulation in Gstz1 and Gstp1 in the adipocytes.  

The biological significance of miR-125b-5p in the adipocytes has been examined in both human 

and animal models. Brovkina et al. reported an upregulation of miR-125b-5p in the subcutaneous 

adipose tissue in individuals T2D and obesity51. Additionally, in a population with T1D, Satake 

and others52 reported a strong positive correlation between hemoglobinA1c and the expression of 

miR-125b-5p, and this has also been reported in a diabetic db/db mouse model53.  Future 

mechanistic studies exploring the relationship between miR-125b-5p and glutathione metabolism 

in a diabetic animal model are warranted.  

In this study, we examined the effects of rats consuming a WE-based diet for 2 wk on 

gene expression in multiple tissues, revealing 74 novel DEGs across the PFC, liver, adipose and 

kidney transcriptomes in Sprague Dawley rats using Illumina HiSeq 3000 platform. In the 

adipose, KEGG analyses highlighted that glutathione metabolism was upregulated by WE 

consumption accompanied by downregulated miR-125b-5p in the adipose tissue of rats fed a 

WE-based diet. GO analysis showed that multiple reduction-oxidation reactions in the PFC were 

also altered by consuming WE. These results indicate that WE-based diets attenuate the 

expression of glutathione and oxidative-reduction processes as a result of WE-based diets. 

Together, these results may provide utility in diseased models where these given pathways are 

involved in the pathogenesis. 

References 

1. Park, S. J., Jung, J. H., Choi, S. W. & Lee, H. J. Association between egg consumption 
and metabolic disease. Korean Journal for Food Science of Animal Resources 38, 209–
223 (2018). 



185 
 

2. Andersen, C. J. Bioactive egg components and inflammation. Nutrients 7, 7889–7913 
(2015). 

3. Nimalaratne, C. & Wu, J. Hen egg as an antioxidant food commodity: A review. Nutrients 
7, 8274–8293 (2015). 

4. Wallace, T. C. & Fulgoni, V. L. Usual choline intakes are associated with egg and protein 
food consumption in the United States. Nutrients 9, (2017). 

5. Miranda, J. M. et al. Egg and egg-derived foods: Effects on human health and use as 
functional foods. Nutrients 7, 706–729 (2015). 

6. Alexander, D. D., Miller, P. E., Vargas, A. J., Weed, D. L. & Cohen, S. S. Meta-analysis 
of Egg Consumption and Risk of Coronary Heart Disease and Stroke. Journal of the 

American College of Nutrition 35, 704–716 (2016). 

7. Zhong, V. W. et al. Associations of Dietary Cholesterol or Egg Consumption with 
Incident Cardiovascular Disease and Mortality. JAMA - J. Am. Med. Assoc. 321, 1081–
1095 (2019). 

8. Drouin-Chartier, J. P. et al. Egg consumption and risk of cardiovascular disease: Three 
large prospective US cohort studies, systematic review, and updated meta-analysis. The 

BMJ 368, (2020). 

9. Dehghan, M. et al. Association of egg intake with blood lipids, cardiovascular disease, 
and mortality in 177,000 people in 50 countries. Am. J. Clin. Nutr. (2020). 
doi:10.1093/ajcn/nqz348 

10. Fuller, N. R. et al. Effect of a high-egg diet on cardiometabolic risk factors in people with 
type 2 diabetes: The Diabetes and Egg (DIABEGG) Study - Randomized weight-loss and 
follow-up phase. Am. J. Clin. Nutr. 107, 921–931 (2018). 

11. DiMarco, D. M. et al. Intake of up to 3 Eggs/Day Increases HDL Cholesterol and Plasma 
Choline While Plasma Trimethylamine-N-oxide is Unchanged in a Healthy Population. 
Lipids 52, 255–263 (2017). 

12. Yousr, M. & Howell, N. Antioxidant and ACE inhibitory bioactive peptides purified from 
egg yolk proteins. Int. J. Mol. Sci. 16, 29161–29178 (2015). 

13. Nataraj, J., Manivasagam, T., Justin Thenmozhi, A. & Essa, M. M. Lutein protects 
dopaminergic neurons against MPTP-induced apoptotic death and motor dysfunction by 
ameliorating mitochondrial disruption and oxidative stress. Nutr. Neurosci. 19, 237–246 
(2016). 

14. Akbaraly, N. T., Faure, H., Gourlet, V., Favier, A. & Berr, C. Plasma carotenoid levels 
and cognitive performance in an elderly population: results of the EVA Study. J. 

Gerontol. A. Biol. Sci. Med. Sci. 62, 308–16 (2007). 



186 
 

15. Binawade, Y. & Jagtap, A. Neuroprotective effect of lutein against 3-nitropropionic acid-
induced huntington’s disease-like symptoms: Possible behavioral, biochemical, and 
cellular alterations. J. Med. Food 16, 934–943 (2013). 

16. Saande, C. J., Webb, J. L., Curry, P. E., Rowling, M. J. & Schalinske, K. L. Dietary 
Whole Egg Reduces Body Weight Gain in a Dose-Dependent Manner in Zucker Diabetic 
Fatty Rats. J. Nutr. 149, 1766–1775 (2019). 

17. Saande, C. J. et al. Dietary Whole Egg Consumption Attenuates Body Weight Gain and Is 
More Effective than Supplemental Cholecalciferol in Maintaining Vitamin D Balance in 
Type 2 Diabetic Rats. J. Nutr. jn254193 (2017). doi:10.3945/jn.117.254193 

18. BBMap: A Fast, Accurate, Splice-Aware Aligner. Available at: 
https://escholarship.org/uc/item/1h3515gn. (Accessed: 28th January 2020) 

19. Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 
(2013). 

20. Farrell, D. smallrnaseq : short non coding RNA-seq analysis with Python. Bioarxiv 
110585 (2017). doi:10.1101/110585 

21. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion 
for RNA-seq data with DESeq2. Genome Biol. 15, (2014). 

22. Benjamini, Y. & Hochberg, Y. Benjamini-1995.pdf. Journal of the Royal Statistical 

Society B 57, 289–300 (1995). 

23. Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic 

Acids Research 28, (2000). 

24. DAVID Functional Annotation Bioinformatics Microarray Analysis. Available at: 
https://david.ncifcrf.gov/home.jsp. (Accessed: 23rd March 2020) 

25. Ensembl genome browser 99. Available at: https://useast.ensembl.org/index.html. 
(Accessed: 25th March 2020) 

26. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time 
quantitative PCR and the 2-ΔΔCT method. Methods 25, 402–408 (2001). 

27. Lee, M. et al. Hen egg lysozyme attenuates inflammation and modulates local gene 
expression in a porcine model of dextran sodium sulfate (DSS)-Induced Colitis. J. Agric. 

Food Chem. 57, 2233–2240 (2009). 

28. Jones, S. K., Koh, G. Y., Rowling, M. J. & Schalinske, K. L. Whole Egg Consumption 
Prevents Diminished Serum 25-Hydroxycholecalciferol Concentrations in Type 2 Diabetic 
Rats. J. Agric. Food Chem. 64, 120–124 (2016). 



187 
 

29. Boone, L. R., Brooks, P. A., Niesen, M. I. & Ness, G. C. Mechanism of Resistance to 
Dietary Cholesterol. J. Lipids 2011, 1–9 (2011). 

30. Garcia-Bermudez, J. et al. Squalene accumulation in cholesterol auxotrophic lymphomas 
prevents oxidative cell death. Nature 567, 118–122 (2019). 

31. Ding, J. et al. Alterations of a cellular cholesterol metabolism network are a molecular 
feature of obesity-related type 2 diabetes and cardiovascular disease. Diabetes 64, 3464–
3474 (2015). 

32. Seiki, S. & Frishman, W. H. Pharmacologic inhibition of squalene synthase and other 
downstream enzymes of the cholesterol synthesis pathway: A new therapeutic approach to 
treatment of hypercholesterolemia. Cardiology in Review 17, 70–76 (2009). 

33. Ge, Q. et al. Mulberry leaf regulates differentially expressed genes in diabetic mice liver 
based on RNA-seq analysis. Front. Physiol. 9, (2018). 

34. Ge, Q. et al. RNA-Seq analysis of the pathogenesis of STZ-induced male diabetic mouse 
liver. J. Diabetes Complications 34, 107444 (2020). 

35. Pass, G. J. et al. Effect of hyperinsulinemia and type 2 diabetes-like hyperglycemia on 
expression of hepatic cytochrome p450 and glutathione s-transferase isoforms in a New 
Zealand obese-derived mouse backcross population. J. Pharmacol. Exp. Ther. 302, 442–
50 (2002). 

36. Blackburn, A. C. et al. Deficiency of glutathione transferase zeta causes oxidative stress 
and activation of antioxidant response pathways. Mol. Pharmacol. 69, 650–657 (2006). 

37. Savic-Radojevic, A. et al. Glutathione S-transferase (GST) polymorphism could be an 
early marker in the development of PCOS: An insight from non-obese and non-insulin 
resistant adolescents. Endokrynol. Pol. 69, 366–374 (2018). 

38. Dastidar, S. G. et al. Glutathione s-transferase p deficiency induces glucose intolerance 
via jnk-dependent enhancement of hepatic gluconeogenesis. Am. J. Physiol. - Endocrinol. 

Metab. 315, E1005–E1018 (2018). 

39. Young, D., Fan, M. Z. & Mine, Y. Egg Yolk Peptides Up-regulate Glutathione Synthesis 
and Antioxidant Enzyme Activities in a Porcine Model of Intestinal Oxidative Stress. J. 

Agric. Food Chem. 58, 7624–7633 (2010). 

40. Garcés-Rimón, M. et al. Pepsin Egg White Hydrolysate Ameliorates Obesity-Related 
Oxidative Stress, Inflammation and Steatosis in Zucker Fatty Rats. PLoS One 11, 
e0151193 (2016). 

41. Sajadi Hezaveh, Z., Sikaroudi, M. K., Vafa, M., Clayton, Z. S. & Soltani, S. Effect of egg 
consumption on inflammatory markers: a systematic review and meta-analysis of 
randomized controlled clinical trials. Journal of the Science of Food and Agriculture 99, 
6663–6670 (2019). 



188 
 

42. David Spence, J. Dietary cholesterol and egg yolk should be avoided by patients at risk of 
vascular disease. J. Transl. Intern. Med. 4, 20–24 (2016). 

43. Jiayu, Y. et al. Egg white consumption increases GSH and lowers oxidative damage in 
110-week-old geriatric mice hearts. J. Nutr. Biochem. 76, 108252 (2020). 

44. Njike, V., Faridi, Z., Dutta, S., Gonzalez-Simon, A. L. & Katz, D. L. Daily egg 
consumption in hyperlipidemic adults - Effects on endothelial function and cardiovascular 
risk. Nutr. J. 9, 28 (2010). 

45. Zempleni, J., Baier, S. R., Howard, K. M. & Cui, J. Gene regulation by dietary 
microRNAs. Canadian Journal of Physiology and Pharmacology 93, 1097–1102 (2015). 

46. Baier, S. R., Nguyen, C., Xie, F., Wood, J. R. & Zempleni, J. MicroRNAs Are Absorbed 
in Biologically Meaningful Amounts from Nutritionally Relevant Doses of Cow Milk and 
Affect Gene Expression in Peripheral Blood Mononuclear Cells, HEK-293 Kidney Cell 
Cultures, and Mouse Livers. J. Nutr. 144, 1495–1500 (2014). 

47. Witwer, K. W. & Zhang, C. Y. Diet-derived microRNAs: Unicorn or silver bullet? Genes 

and Nutrition 12, 15 (2017). 

48. Mosallaei, M. et al. PBMCs: a new source of diagnostic and prognostic biomarkers. Arch. 

Physiol. Biochem. 1–7 (2020). doi:10.1080/13813455.2020.1752257 

49. Akbar, N. et al. Endothelium-derived extracellular vesicles promote splenic monocyte 
mobilization in myocardial infarction. JCI insight 2, (2017). 

50. Fulga, T. A. et al. A transgenic resource for conditional competitive inhibition of 
conserved Drosophila microRNAs. Nat. Commun. 6, 7279 (2015). 

51. Brovkina, O. et al. Role of MicroRNAs in the Regulation of Subcutaneous White Adipose 
Tissue in Individuals With Obesity and Without Type 2 Diabetes. Front. Endocrinol. 

(Lausanne). 10, (2019). 

52. Satake, E. et al. Circulating miRNA profiles associated with hyperglycemia in patients 
with type 1 diabetes. Diabetes 67, 1013–1023 (2018). 

53. Villeneuve, L. M. et al. Enhanced levels of microRNA-125b in vascular smooth muscle 
cells of diabetic db/db mice lead to increased inflammatory gene expression by targeting 
the histone methyltransferase Suv39h1. Diabetes 59, 2904–2915 (2010). 
 

 

 

 



189 
 

Tables and Figures 

 

Figure B-1. Schematic of the study design.  
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Figure B-2. Principle component analysis (A) and hierarchical clustering of genes between 
casein and whole egg based diets in the Prefrontal cortex (B), adipose (C) and liver (D) of 
Sprague Dawley rats. Samples in the first three principle component space are colored in red or 
black for either WE or CAS, respectively.  
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Figure B-3. Volcano plots indicating the directionality of the differentially expressed genes. 
Genes upregulated (green) or downregulated (red) by WE consumption, correspond to a 1.5 
decrease or increase in log fold changes. Each panel corresponds to a tissue in a given genotype: 
A) lean adipose; B) lean PFC; C) lean kidney; D) lean liver; E) ZDF adipose; F) ZDF PFC; G) 
ZDF kidney; and H) ZDF liver. 
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Figure B-4. qPCR results for select differentially expressed genes from mRNA Sequencing. Log 
fold change comparisons between qPCR and mRNA sequencing of several genes validating the 
sequencing results. 
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Table B-1. Composition of the WE- and CAS-based diets fed to male Sprague Dawley rats for 2 
wk. 
 
 CAS WE 
Ingredient (g/kg) 

Casein 200 0 

Whole Egg - 435 

Cornstarch 417 365 

Glucose monohydrate 150 150 

Lard - 200 

Corn Oil 183 0 

Mineral Mix 35 35 

Vitamin Mix 10 10 

Choline Bitartrate 2 2 

L-methionine 3 3 

Biotin (1%) - 0.4 

1All ingredients were purchased from Envigo except for dried whole egg (Rose Acre Farms, 
Guthrie Center, IA), as well as L-methionine and choline bitartrate (Sigma-Aldrich). Abbreviations 
used: CAS, casein-based diet, WE, whole egg-based diet 
2 Total protein and lipid content provided by 435 g of dried whole egg was 46 (200 g) and 42% 
(183 g), respectively.  
3 To formulate all diets such that protein was provided at 20% (w/w). 

 

Table B-2. List of Differentially Expressed Genes in the PFC, Liver, Adipose, and Kidney. 

Tissue 
Ensembl_ID 

(ENSRNO) Symbol Gene Name L2FC P-value3 
Adipose Up-

regulated      

 G00000018237 Gstp1 glutathione S-transferase pi 1 1.89 1.65E-05 

 G00000011250 Inmt indolethylamine N-methyltransferase 1.78 3.42E-05 

 G00000013484 Gsta3 glutathione S-transferase alpha-3 1.37 3.20E-03 

 G00000058571 N/A unclassified 1.14 3.76E-02 

 G00000033206 Entpd5 
ectonucleoside triphosphate 
diphosphohydrolase 5 1.10 2.57E-02 

 G00000032745 Slc17a3 solute carrier family 17 member 3 1.06 5.08E-02 
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Table B-2. Continued 

Tissue 

Ensembl_ID 

(ENSRNO) Symbol Gene Name L2FC P-value3 

 G00000011573 Csad cysteine sulfinic acid decarboxylase 1.01 2.49E-03 

 G00000008755 Acox1 acyl-CoA oxidase 1 0.98 1.07E-02 

 G00000047708 Gstz1 glutathione S-transferase zeta 1 0.92 2.08E-02 
Adipose 

Down-

regulated G00000017672 Akr1c14 aldo-keto reductase family 1, member C14 -3.43 2.66E-16 

 G00000043451 Spp1 secreted phosphoprotein 1 -3.14 3.20E-03 

 G00000010047 Ddit4l DNA-damage-inducible transcript 4-like -2.56 5.51E-03 

 G00000013704 Cps1 carbamoyl-phosphate synthase 1 -1.90 1.72E-03 

 G00000010833 Mthfd2 

methylenetetrahydrofolate dehydrogenase 
(NADP+ dependent) 2, 
methenyltetrahydrofolate cyclohydrolase -1.79 3.24E-02 

 G00000058739 Snn stannin -1.56 5.51E-03 

 G00000004626 Slc34a2 solute carrier family 34 member 2 -1.54 4.45E-03 

 G00000014453 Anxa5 annexin A5 -1.52 3.81E-06 

 G00000002579 Parm1 
prostate androgen-regulated mucin-like 
protein 1 -1.50 3.81E-03 

 G00000003120 Prelp 
proline and arginine rich end leucine rich 
repeat protein -1.48 3.63E-03 

 G00000015550 Ptgds prostaglandin D2 synthase -1.35 2.45E-02 

 G00000018351 Thap4 THAP domain containing 4 -1.22 3.81E-03 

 G00000009019 Slc6a6 solute carrier family 6 member 6 -1.19 5.08E-02 
Liver Up-

regulated G00000003144 Gprc5c 
G protein-coupled receptor, class C, group 5, 
member C 2.13 4.43E-02 

Liver Down-

regulated G00000019422 Egr1 early growth response 1 -2.06 1.04E-02 
PFC Up-

regulated G00000010262 Hdc histidine decarboxylase 2.67 2.77E-08 

 G00000011250 Inmt indolethylamine N-methyltransferase 2.36 2.76E-07 

 G00000000961 Glt1d1 glycosyltransferase 1 domain containing 1 1.95 4.70E-04 

 G00000061527 Gck glucokinase 1.94 1.29E-03 

 G00000013851 Spry4 sprouty RTK signaling antagonist 4 1.90 5.19E-03 

 G00000010337 Slc13a2 solute carrier family 13 member 2 1.79 1.70E-02 

 G00000013552 Scd stearoyl-CoA desaturase 1.78 7.50E-03 

 G00000020869 mrpl9 mitochondrial ribosomal protein L9 1.70 4.23E-02 

 G00000032246 Acsm3 
acyl-CoA synthetase medium-chain family 
member 3 1.69 1.03E-02 

 G00000009597 Cyp4a1 
cytochrome P450, family 4, subfamily a, 
polypeptide 1 1.62 1.34E-03 

 G00000021924 Cyp2c22 
cytochrome P450, family 2, subfamily c, 
polypeptide 22 1.55 3.56E-02 

 G00000057072 Slc12a3 solute carrier family 12 member 3 1.46 1.70E-02 

 G00000045649 Arrdc3 arrestin domain containing 3 1.36 6.69E-03 

 G00000000978 N/A unclassified 1.26 8.58E-03 

 G00000019587 Ptprn protein tyrosine phosphatase, receptor type, N 1.17 1.86E-02 

 G00000011648 Aqp1 aquaporin 1 1.17 2.70E-02 

 G00000018937 Gstm2 glutathione S-transferase mu 2 0.94 7.05E-05 
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Table B-2. Continued 

Tissue 

Ensembl_ID 

(ENSRNO) Symbol Gene Name L2FC P-value3 

 G00000003515 Ephx1 epoxide hydrolase 1 0.93 1.27E-02 

 G00000009421 Ivd isovaleryl-CoA dehydrogenase 0.93 4.42E-02 

 G00000004009 Xpnpep2 X-prolyl aminopeptidase 2 0.92 9.78E-04 

 G00000013949 NADP isocitrate dehydrogenase  0.92 4.04E-02 

 G00000010017 Wee1 WEE1 G2 checkpoint kinase 0.79 3.19E-03 

 G00000000645 Reep3 receptor accessory protein 3 0.76 4.59E-02 

 G00000011747 Tmem205 transmembrane protein 205 0.71 2.70E-02 

 G00000003038 Sft2d2 SFT2 domain containing 2 0.53 2.21E-02 
PFC Down-

regulated G00000009550 Sqle squalene epoxidase -4.96 3.53E-14 

 G00000016690 Idi1 isopentenyl-diphosphate delta isomerase 1 -2.71 3.53E-14 

 G00000020480 fasn fatty acid desaturase 1 -2.61 5.31E-14 

 G00000012819 Gdnf glial cell derived neurotrophic factor -2.48 1.65E-03 

 G00000007234 Cyp51 cytochrome P450, family 51 -2.06 3.53E-14 

 G00000006859 Insig1 insulin induced gene 1 -1.96 8.06E-03 

 G00000006280 Pcsk9 proprotein convertase subtilisin/kexin type 9 -1.89 6.29E-05 

 G00000016552 Hmgcs1 3-hydroxy-3-methylglutaryl-CoA synthase 1 -1.77 3.11E-07 

 G00000036615 
RGD1560
242 similar to RIKEN cDNA 1700028P14 -1.76 3.56E-02 

 G00000032297 Msmo1 methylsterol monooxygenase 1 -1.74 3.76E-14 

 G00000011622 Echdc1 ethylmalonyl-CoA decarboxylase 1 -1.65 3.32E-03 

 G00000005871 Il1rn interleukin 1 receptor antagonist -1.60 6.69E-03 

 G00000043377 Fdps farnesyl diphosphate synthase -1.39 3.81E-03 

 G00000006787 Dhcr24 24-dehydrocholesterol reductase -1.36 9.88E-03 

 G00000045636 Fasn fatty acid synthase -1.34 9.14E-04 

 G00000020704 Tkfc triokinase and FMN cyclase -1.32 3.07E-02 

 G00000016924 Acly ATP citrate lyase -1.30 2.15E-04 

 G00000016122 Hmgcr 3-hydroxy-3-methylglutaryl-CoA reductase -1.25 1.43E-04 

 G00000018755 Acss2 
acyl-CoA synthetase short-chain family 
member 2 -1.20 9.88E-04 

 G00000032508 Acot5 acyl-CoA thioesterase 5 -1.09 1.95E-02 

 G00000002212 17-beta hydroxysteroid  -1.08 2.36E-02 

 G00000023348 Tbc1d2 TBC1 domain family, member 2 -1.08 4.42E-02 

 G00000000658 Acacb acetyl-CoA carboxylase beta -1.02 2.59E-02 

 G00000013387 Tpcn2 two pore segment channel 2 -0.92 4.04E-02 

 G00000046889 Dbi 
diazepam binding inhibitor, acyl-CoA binding 
protein -0.89 3.39E-02 

 G00000057814 Nsdhl NADP-dependent steroid dehydrogenase-like -0.64 8.06E-04 

 G00000004903 Ebo emopamil binding protein (sterol isomerase) -0.64 2.60E-02 
1All genes were analyzed using DESeq2 for differential analysis 
2Abbreviations used: L2FC, log2 fold change; and PFC, prefrontal cortex 
3Benjamini-Hochberg adjusted P-values controlling for false discovery rate at 5%, where P< 0.05 
was considered significant. 
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Table B-3. Kegg Pathway and Gene Ontology (GO) Analysis. 

Category GO_ID Term Count P-Value Gene Symbols 

Adipose      

 
GO:1903825 organic acid transmembrane transport 2 4.80E-03 Slc17a3, Slc6a6 

 
GO:0044341 sodium-dependent phosphate transport 2 7.70E-03 Slc17a3, Slc34a2 

 
GO:0006817 phosphate ion transport 2 9.70E-03 Slc17a3, Slc34a2 

 
GO:0035435 phosphate ion transmembrane transport 2 1.70E-02 Slc17a3, Slc34a2 

 
GO:0006749 glutathione metabolic process 2 4.90E-02 Gstz1, Gstp1 

 
GO:0043200 response to amino acid 2 5.50E-02 Cps1, Gstp1 

 
GO:0048545 response to steroid hormone 2 5.80E-02 Cps1, Spp1 

 
GO:0098869 cellular oxidant detoxification 2 6.50E-02 Gstz1, Gstp1 

 
GO:0035725 sodium ion transmembrane transport 2 6.60E-02 Slc17a3, Slc34a2 

 
GO:0005436 sodium:phosphate symporter activity 2 6.70E-03 Slc17a3, Slc34a2 

 
GO:0015321 

sodium-dependent phosphate 
transmembrane transporter activity 2 7.70E-03 Slc17a3, Slc34a2 

 
GO:0042301 phosphate ion binding 2 1.10E-02 Mthfd2, Slc34a2 

 
GO:0004602 glutathione peroxidase activity 2 2.00E-02 Gstz1, Gstp1 

 
GO:0005504 fatty acid binding 2 2.60E-02 Ptgds, Acox1 

 
GO:0004364 glutathione transferase activity 2 4.10E-02 Gstz1, Gstp1 

 
KEGG Metabolic pathways 6 8.70E-03 Cps1, Mthfd2, Csad, Ptgds, Gstz1, Acox1 

Brain GO:0006695 cholesterol biosynthetic process 8 3.90E-13 Hmgcr, Hmgcs1, sterol isomerase, Nsdhl, Dhcr24, Idi1, Fdps 

 GO:0006633 fatty acid biosynthetic process 6 1.10E-07 Scd, Acsm3, Acacb, Fasn, Acly, Msmo1 

 GO:0055114 oxidation-reduction process 12 8.70E-07 17-beta, Scd, Hmgcr, Fads1, Fasn, Sqle, Cyp2c22, Cyp51, Nsdhl, Dhcr24, Cyp4a1, Msmo1 

 GO:0016126 sterol biosynthetic process 4 5.10E-06 Insig1, Sqle, sterol isomerase, Msmo1 

 GO:0008610 lipid biosynthetic process 4 8.00E-06 Scd, Fasn, Acly, Acss2 

 GO:0008203 cholesterol metabolic process 5 2.30E-05 Pcsk9, Insig1, Sqle, Nsdhl, Dhcr24 

 GO:0008299 isoprenoid biosynthetic process 4 2.30E-05 Hmgcr, Hmgcs1, Idi1, Fdps 

 GO:0006084 acetyl-CoA metabolic process 3 1.50E-04 Acacb, Fasn, Acly 

 GO:0006641 triglyceride metabolic process 4 1.70E-04 Pcsk9, Scd, Insig1, Dbi 
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Table B-3. Continued 

Category GO_ID Term Count P-Value Gene Symbols 

 GO:0014070 response to organic cyclic compound 6 7.80E-04 Hmgcs1, Fads1, Acacb, Ephx1, Il1rn, Gstm2 

 GO:0006637 acyl-CoA metabolic process 3 2.50E-03 Acsm3, Acot5, Dbi 

 GO:0019932 second-messenger-mediated signaling 2 8.00E-03 Gck, Ptprn 

 GO:0043588 skin development 3 9.90E-03 Arrdc3, Dhcr24, Dbi 

 GO:0006085 acetyl-CoA biosynthetic process 2 1.10E-02 Acly, Acss2 

 GO:0031999 
negative regulation of fatty acid beta-
oxidation 2 1.30E-02 Acacb, Dbi 

 GO:0006725 
cellular aromatic compound metabolic 
process 2 1.90E-02 Ephx1, Sqle 

 GO:0030157 pancreatic juice secretion 2 2.10E-02 Aqp1, Dbi 

 GO:0006629 lipid metabolic process 3 2.40E-02 Fads1, Il1rn, Acly 

 GO:0009725 response to hormone 3 2.90E-02 Hmgcs1, Aqp1, Dhcr24 

 GO:0021670 lateral ventricle development 2 3.20E-02 Aqp1, Dbi 

 GO:0070723 response to cholesterol 2 3.40E-02 Hmgcs1, Fdps 

 GO:0046889 
positive regulation of lipid biosynthetic 
process 2 3.70E-02 17-beta, Dbi 

 GO:0006636 
unsaturated fatty acid biosynthetic 
process 2 3.70E-02 Scd, Fads1 

 GO:0032869 cellular response to insulin stimulus 3 4.30E-02 Gck, Pcsk9, Insig1 

 GO:0042493 response to drug 5 5.20E-02 Hmgcs1, Aqp1, Acacb, Il1rn, Fdps 

 GO:0001889 liver development 3 5.80E-02 Pcsk9, Hmgcs1, Ephx1 

 GO:0008584 male gonad development 3 5.90E-02 Hmgcs1, Gdnf, Fdps 

 GO:0046835 carbohydrate phosphorylation 2 6.20E-02 Gck, Tkfc 

 GO:0010033 response to organic substance 3 6.30E-02 Hmgcs1, Fads1, Sqle 

 GO:0006694 steroid biosynthetic process 2 8.20E-02 Cyp51, Dbi 

 GO:0019369 arachidonic acid metabolic process 2 8.20E-02 Fads1, Cyp4a1 

 GO:0030073 insulin secretion 2 9.00E-02 Ptprn, Il1rn 

 GO:0070542 response to fatty acid 2 9.90E-02 Scd, Insig1 

 GO:0005506 iron ion binding 5 1.80E-03 Scd, Cyp2c22, Cyp51, Cyp4a1, Msmo1 
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Table B-3. Continued 

Category GO_ID Term Count P-Value Gene Symbols 

 GO:0016491 oxidoreductase activity 4 4.30E-03 17-beta, Scd, Fads1, Dhcr24 

 GO:0050660 flavin adenine dinucleotide binding 3 1.40E-02 Sqle, Dhcr24, Ivd 

 GO:0000287 magnesium ion binding 4 1.70E-02 Gck, NADP, Wee1, Idi1 

 GO:0016831 carboxy-lyase activity 2 2.80E-02 Echdc1, Hdc 

 GO:0070402 NADPH binding 2 4.10E-02 Hmgcr, Fasn 

 GO:0005215 transporter activity 3 4.40E-02 Slc13a2, Aqp1, Slc12a3 

 GO:0042803 protein homodimerization activity 6 5.50E-02 Hmgcr, Hmgcs1, Fasn, Hdc, Gdnf, Gstm2 

 GO:0046872 metal ion binding 8 6.10E-02 Scd, Acsm3, Acacb, Xpnpep2, Acly, Idi1, Tkfc, Fdps 

 GO:0020037 heme binding 3 6.80E-02 Cyp2c22, Cyp51, Cyp4a1 

 GO:0019899 enzyme binding 4 7.90E-02 Ephx1, Dhcr24, Gstm2, Slc12a3 

 GO:0000062 fatty-acyl-CoA binding 2 9.40E-02 Ivd, Dbi 

 KEGG Metabolic pathways 23 9.50E-10 
Gck, Hmgcs1, Acsm3, Acacb, Fasn, NADP, sterol isomerase, Sqle, Hdc, Acly, Acot5, Nsdhl, Cyp51, 
Acss2, Dhcr24, Idi1, Cyp4a1, Tkfc, Fdps, Hmgcr, Cyp2c22, Ivd, Msmo1 

 KEGG Biosynthesis of antibiotics 12 1.60E-09 Gck, Hmgcr, Hmgcs1, NADP, Sqle, Acly, Acss2, Cyp51, Nsdhl, Idi1, Msmo1, Fdps 

 KEGG Steroid biosynthesis 6 2.10E-08 Sqle, sterol isomerase, Cyp51, Nsdhl, Dhcr24, Msmo1 

 KEGG Terpenoid backbone biosynthesis 4 1.40E-04 Hmgcr, Hmgcs1, Idi1, Fdps 

 KEGG Propanoate metabolism 3 7.00E-03 Echdc1, Acacb, Acss2 

 KEGG Biosynthesis of unsaturated fatty acids 3 7.50E-03 Scd, Fads1, Acot5 

 KEGG Carbon metabolism 4 1.70E-02 Gck, NADP, Acss2, Tkfc 

 KEGG AMPK signaling pathway 4 2.00E-02 Scd, Hmgcr, Acacb, Fasn 

 KEGG Fatty acid metabolism 3 2.40E-02 Scd, Fads1, Fasn 

 KEGG Bile secretion 3 4.10E-02 Hmgcr, Aqp1, Ephx1 

 KEGG PPAR signaling pathway 3 4.70E-02 Scd, Cyp4a1, Dbi 

 KEGG Fatty acid biosynthesis 2 6.10E-02 Acacb, Fasn 

 KEGG Chemical carcinogenesis 3 6.30E-02 Ephx1, Cyp2c22, Gstm2 
1All pathway analyses were determined via g:Profiler 
2Abbreviations used: GO, gene ontology; KEGG, Kyto Encyclopedia of Genes and Genomes 
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Table B-4. Differentially Expressed MicroRNAs between Sprague Dawley Rats Fed Dietary 
Whole Egg Compared to Casein Control.  
 

Tissue MicroRNA Log2Fold FDR non-adjusted P-value 

Adipose Upregulated rno-miR-221-3p 0.8928 0.023787818 

Adipose Downregulated rno-miR-140-3p -1.01197 0.001986062 

 rno-miR-125b-5p -1.17509 0.007240392 

 rno-miR-191a-5p -0.7673 0.011564826 

 rno-miR-10b-5p -0.49055 0.033921745 

Brain Upregulated rno-let-7e-5p 1.339427 0.005181862 

 rno-miR-30a-3p 0.388272 0.029746435 

 rno-miR-98-5p 0.960443 0.035167986 

Brain Downregulated rno-miR-10a-5p -1.42826 0.025129776 

 rno-miR-10b-5p -1.35052 0.027749043 

 rno-miR-29a-3p -0.89674 0.03613351 

 rno-miR-192-5p -0.82033 0.057313629 

Liver Upregulated rno-miR-30c-5p 0.352427 0.027632486 

 rno-miR-30d-5p 0.32298 0.056044331 

Liver Downregulated rno-miR-21-5p -0.44345 0.003247421 

 rno-miR-192-5p -0.19144 0.021920638 
1All miRNAs were analyzed using DESeq2 for differential analysis 
2Abbreviations used: L2FC, log2 fold change; and PFC, prefrontal cortex 
3Benjamini-Hochberg adjusted P-values controlling for false discovery rate at 5%, where P< 0.05 
was considered significant. 
 

Table B-5. MicroRNA Targets of Differentially Expressed Genes in the PFC and Adipose 
Tissue of Sprague Dawley Rats Fed Dietary Whole Egg vs. Casein.  
 

MicroRNA Tissue Human GeneID Log2fold change 

Log fold 

change Rat Symbol 

Non-adj p 

value 

miR-10b-5p (down regulated) Brain ARRDC3 1.36E+00 1.85E+00 Arrdc3 1.96E-05 

miR-192-5p (down regulated) Brain AMER1 1.26E+00 1.58E+00 Amer1 2.81E-03 

  BLCAP -4.96E-01 -2.46E-01 Blcap 1.10E-02 

  MYLK -4.61E-01 -2.12E-01 Mylk 1.16E-02 

  FABP3 1.33E+00 1.78E+00 Fabp3 1.64E-02 

  TAOK1 -5.43E-01 -2.95E-01 Taok1 1.74E-02 

  PCDH17 1.21E+00 1.46E+00 Pcdh17 2.01E-02 

  FRMD4B 8.81E-01 7.76E-01 Frmd4b 2.62E-02 

  KIF1B 4.56E-01 2.08E-01 Kif1b 3.37E-02 

  C4orf46 -5.31E-01 -2.82E-01 

RGD156001

0 3.72E-02 

  COL5A1 1.41E+00 2.00E+00 Col5a1 4.17E-02 

  ZFP36L1 4.13E-01 1.71E-01 Zfp36l1 4.86E-02 

  NIPAL1 6.36E-01 4.05E-01 Nipal1 5.19E-02 

  PDHB -4.43E-01 -1.96E-01 Pdhb 5.49E-02 

  SNX33 4.25E-01 1.81E-01 Snx33 5.88E-02 

miR-125b-5p (down regulated)  Adipose PARM1 -1.50E+00 -2.24E+00 Parm1 4.19E-06 

  DNAJC14 -9.69E-01 -9.39E-01 Dnajc14 4.79E-04 
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APPENDIX C. ACUTE SERUM AND NON-TRANSFERRIN BOUND IRON AND 

GASTROINTESTINAL SYMPTOMS WITH 3 WEEK CONSUMPTION ARE 

LOWER WITH IRON-ENRICHED ASPERGILLUS ORYZAE COMPARED TO 

FERROUS SULFATE  

Amanda E. Bries, Chong Wang, Isaac Agbemafle,
 Brian Wels, and Manju B. Reddy., Acute 

serum and non-transferrin bound iron and gastrointestinal symptoms with 3 week consumption 

are lower with iron-enriched Aspergillus oryzae compared to ferrous sulfate. Curr Dev Nutr  

2019, 3:12, nzz127, reprinted by permission of Oxford University Press.  

 

Abstract 

Background: Iron deficiency anemia (IDA) is a widespread nutritional deficiency and iron 

supplementation, especially with ferrous sulfate (FeSO4) is the most common strategy to treat 

IDA; however, compliance is often poor with daily FeSO4 due to negative side effects. In a 

previous study, iron from iron-enriched A. oryzae [Ultimine® Koji Iron, (ULT)] was similarly 

absorbed as FeSO4.  

Objective: The main objective of this study was to assess the safety of consuming ULT in terms 

of increasing non-transferrin bound iron (NTBI) and gastrointestinal distress. 

Methods: Young female participants (n=16) with serum ferritin < 40μg/L were 

randomized to a double-blind, 9-wk cross-over study with a 3-wk placebo/washout period 

between treatments. Oral FeSO4 and ULT supplements containing 65 mg Fe mg/dose were 

administered daily, for 21 consecutive days. On day 1, serum iron (SI), percentage transferrin 

saturation (%TS), and NTBI were measured for 8h on the first day of iron consumption. Changes 

in biochemical indicators were evaluated after 3 wk consumption. Side effects questionnaires 

were completed weekly on 2 randomly selected weekdays and 1 weekend day for the entire of 

the study.  
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Results: SI, %TS, and NTBI were all markedly higher during hours 2-8 (P < 0.001) with 

FeSO4 than with ULT. Oxidative stress, inflammatory, and kidney and liver function markers 

remained unchanged with both supplementations compared with placebo. Changes in iron status 

markers were not significantly different among the 3 treatments. Individual or global side effects 

were not significantly different among all treatments. Even when common side effects of nausea, 

constipation, and diarrhea were combined, FeSO4 treatment had a significantly higher effect than 

ULT (P = 0.04) and placebo (P = 0.004) only at week 3, but the difference was not significant 

between ULT and placebo. 

Conclusions: Low NTBI production and fewer common gastrointestinal side effects with ULT 

suggest that it is a safe oral iron supplement to treat IDA. This trial was registered at 

clinicaltrials.gov as NCT04018300.  

Introduction 

An estimated 12.5% of the global population has iron deficiency anemia (IDA) (1) and it 

is the most common nutritional deficiency in the world, especially among women and children in 

developing countries. Negative consequences of IDA include reduced cognitive and physical 

development and increased mortality of children (2, 3). The WHO guidelines are aimed toward 

using food fortification, home fortification, or supplementation strategies in treatment of IDA 

(4). Food iron fortification is one of the most economical strategies to address anemia; however, 

iron supplementation is more effective in short-term treatment. Ferrous sulfate (FeSO4), the most 

commonly used oral iron supplement, is highly absorbed and improves iron status, but causes 

adverse effects such as constipation, diarrhea, and nausea (5). Owing to the quick absorption of 

FeSO4, iron influx into blood is rapid, saturating transferrin transiently and producing non-

transferrin-bound iron (NTBI) (6). Under normal iron status, transferrin is capable of binding 
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iron present in circulation. It is well known that in chronic iron overload conditions, the capacity 

of transferrin to bind iron decreases, causing high transferrin saturation and production of NTBI, 

a highly reactive iron, which induces oxidative stress owing to its involvement in free radical 

production, as well as potentially damaging DNA, protein, and lipids (7). Research has also 

demonstrated that circulating NTBI is likely to appear despite the presence of available binding 

sites on transferrin if the rate of iron influx into plasma exceeds the rate of iron acquisition by 

transferrin (8). Further consequences of circulating NTBI constitute increased bacterial-

pathogenic infections, due to the free iron being utilized by the parasite, causing increased 

infections and even death in malaria–endemic areas (9). Therefore, it is important to maintain 

low iron saturation levels to minimize the production of NTBI and thereby reduce systemic 

inflammation and bacterial infections (10). Furthermore, research indicates that maintaining 

percentage transferrin saturation (%TS) <35% delays biological aging and lessens the risk of 

age-associated diseases induced by oxidative stress (11). 

FeSO4 is the gold-standard treatment of anemia, especially in pregnant women, but 

concerns about high soluble iron supplements during pregnancy continue to emerge owing to 

high amounts of unabsorbed reactive iron in the gut, causing diarrhea, inflammation, and 

constipation, resulting in low patient compliance (5). There is also a need for a low-risk and safe 

iron supplement targeted to vulnerable populations with increased physiological need, who may 

be susceptible to infection. 

Ultimine® Koji Iron (ULT) is a source of natural iron produced by fermentation 

with Aspergillus oryzae, also known as koji culture. Most of the iron is stored within the mycelia 

of the koji culture. Our recent publication showed that the iron from ULT is as bioavailable as 

FeSO4 in humans (12). The main objective of this study was to compare the acute effect of 
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consuming 65 mg Fe from FeSO4 and ULT with food, in young female subjects, on serum iron 

(SI) and NTBI production as a function of time. In addition, we evaluated the effectiveness in 

improving iron status and safety of 65 mg Fe/d from these supplements by assessing changes in 

gastrointestinal-related side effects, oxidative stress, and biochemical indicators after 3 wk oral 

intake. 

Materials and Methods 

Subjects and Study Design. Women 18–40 y of age were recruited via an Iowa State University 

(ISU)-wide email. Consented subjects (n = 126) completed a prescreening online health 

questionnaire including demographics (age, gender, education, and ethnicity) and questions 

pertaining to the initial inclusion criteria: a BMI (in kg/m2) of 18.5–30; no medication use 

(except noniron combination oral contraceptives); no blood donation within 2 mo; nonsmoking; 

nonpregnant or lactating; no history of chronic diseases; no gastrointestinal-associated conditions 

or dietary intolerances; and no intake of vitamin, mineral, or herbal supplements 1 wk before and 

during the study period. Subjects were excluded based on the following criteria: hemoglobin 

(Hb) < 12 g/dL, serum ferritin (SF) ≥ 40 µg/L, or abnormal kidney, liver, and basic metabolic 

panel indicators. A total of 91 consented subjects were screened, of whom only 17 were eligible 

based on the set inclusion criteria and were randomly assigned to their respective treatment 

groups. One subject dropped out during placebo treatment because of reported side effects of 

gastrointestinal discomfort. A total of 16 subjects completed the 3 arms of the study. We 

estimated a sample size of 15 subjects for each group was needed to provide a power of 80% 

(β=0.20) to detect an intrasubject difference of 30% in NTBI with α = 0.05. Written informed 

consent was obtained from each participant and the study was approved by the Institutional 

Review Board (IRB) at ISU: IRB# 17-365. 
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This 9-wk intervention was conducted at the Nutrition and Wellness Research Center at 

ISU and was aimed at assessing the acute influx of iron into serum and NTBI as a function of 

time over 8 h after oral Fe supplementation and change in iron status, safety, and gastrointestinal 

distress with 3-wk consumption of iron. Seventeen female subjects were enrolled in a double-

blind crossover study. They were randomly assigned to receive daily capsules containing 65 mg 

Fe as either FeSO4 or ULT for 3-wk periods with a 3-wk placebo/washout before treatment 

crossover (Figure C-1). A gastrointestinal side effects questionnaire (GISQ) was distributed 

electronically to participants over 2 randomly chosen weekdays and 1 weekend day during each 

intervention period. The SI response and NTBI determination procedures are described below. 

Subjects acted as their own controls and side effects from iron supplementation were monitored 

throughout the study. General compliance was recorded by documenting the remaining capsules 

from the returned containers. Safety of supplementation was evaluated via kidney function 

[blood urea nitrogen (BUN), creatinine, and estimated glomerular filtration rate (eGFR)]; liver 

function [aspartate aminotransferase (AST) and alanine aminotransferase (ALT)]; oxidative 

stress [protein carbonyls (PCOs) and thiobarbituric acid reactive substances (TBARS)]; and 

inflammatory indicators [C-reactive protein (CRP) and hepcidin]. 

Iron Supplements. Each iron supplement contained 65 mg Fe as FeSO4 (Nature Made®) or as 

ULT (iron-enriched A. oryzae containing 8.7% Fe) and placebo capsules were prepared with 

dextrose monohydrate. Similarly to our previous study (12), a commercial sample of ULT (13) 

was supplied by Cura Global Health, Inc. All pills were prepared in opaque-colored, 

pharmaceutical-grade gelatin capsules (Capsuline). New pill containers with 21 capsules (a 3-wk 

supply) were given to subjects on day 1 of each treatment period to prevent cross-contamination. 
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Subjects were explicitly instructed to only take 1 capsule daily with food, even if they forgot to 

take it on prior days. 

Biochemical Assessment. Biochemical indicators were assessed at baseline (day 1) and end (day 

21) of treatment period 1 and baseline (day 42) and end (day 63) of treatment period 2. The 

effect of the washout period (placebo) was evaluated using the week 3 and week 6 time points. 

Whole blood and serum were collected and sent to a certified diagnostic laboratory (Quest 

Diagnostics) for Hb, SI, total iron-binding capacity, %TS, ALT, AST, BUN, eGFR, and 

creatinine analyses. The SF concentration was determined using an S-22 Spectro Ferritin Kit 

(Ramco Laboratories, Inc.). Serum aliquots were collected at all 4 visits and stored at −80°C 

until oxidative indicators were measured within 3 mo of time of collection. Circulating hepcidin, 

CRP, and soluble transferrin receptor concentrations were measured using commercial ELISA 

kits (DRG International, Inc.; American Laboratory Products Company; and Ramco 

Laboratories, Inc., respectively). Lipid peroxidation (TBARS) was measured as a 

malondialdehyde colorimetric assay (Cayman Chemical). Serum PCOs were measured based on 

a modified assay (14). 

Acute SI response and NTBI production. To determine NTBI and SI concentrations after iron 

supplements (FeSO4 and ULT) consumed with a semipurified meal (egg albumin, maltodextrose, 

and corn oil) after a 10-h fast on days 1 and 42, serum was collected at time points 0 (time of 

supplementation), 1, 2, 3, 4, 6, and 8 h after supplementation. The ingredients and procedure 

used in preparing the meals were as previously described (12). During the 8-h period, the 

subjects consumed unfortified white bread with cheese and butter at 3 h and an apple at 6 h. The 

NTBI was determined as previously described (15, 16) with modifications. In brief, serum 

aliquots were rapidly thawed at 37°C for 10 min and incubated with resin-treated 400 mM 
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nitriloacetic acid (NTA) at pH 7.0 for 30 min at room temperature. The serum–NTA complex 

was then centrifuged in a 30 kD microcon ultracel-30 column (Millipore Sigma) at 7437 × g for 

90 min. Sample ultrafiltrates were diluted to a final concentration of 10 mM NTA. To ensure 

negligible concentrations of NTBI, pooled serum ultrafiltrate obtained from the screening serum 

of the subjects with SF < 15 µg/L was used to prepare blanks and standards. A pooled 

ultrafiltrate (10 mM NTA) was used as blank and spiked with 2 and 5 µg/L of iron as quality 

controls. 

Serum NTBI from the Fe–NTA filtered complex was measured using graphite furnace 

atomic absorption spectrometry (Perkin Elmer AAnalyst600). The lower limit and upper limit of 

detection were 0.1 and 60 µg/L, respectively. Linearity was established from 0.1 to 60 µg/L 

(r = 0.99) with the iron containing the pooled filtrate. The percentage recovery was 96% with a 

known 60 µg/L standard, ensuring the accuracy of the measurement. 

Side Effects Questionnaire. We used a modified GISQ assessment tool that was based on a 

previously reported oral iron supplement questionnaire (17). The GISQ covers gastrointestinal-

related side effects commonly reported with oral FeSO4 supplementation. We asked subjects to 

report the following common side effects due to the iron supplement intake: nausea, heartburn, 

abdominal discomfort, fatigue, diarrhea, and constipation. The severity of the side effects was 

recorded on a 7-point Likert scale (0 = absent, 1 = somewhat mild, 2 = mild, 3 = somewhat 

moderate, 4 = moderate, 5 = somewhat severe, 6 = severe). Frequency of weekly side effects was 

the number of reported side effects for 2 randomly selected weekdays and 1 weekend day over 

the 9-wk study period. From the 6 side effects reported, the most common ones related to iron 

were nausea, diarrhea, and constipation, which are likely to cause abdominal discomfort (5); 

these were combined to test the effect of the supplements. 
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Statistical Analysis. Analysis was performed by intention to treat, consistent with CONSORT 

guidelines (18). All analyses were performed using SAS version 9.4 (2018; SAS Institute Inc.). 

Changes in SI, TS, and NTBI from baseline to 8 h after administration of 65 mg FeSO4 or ULT 

were analyzed using repeated-measures regression models over the 8 h time. The biochemical 

variable values (mean ± SEM) refer to the change from baseline to end for their respective time 

points within the crossover design. Normality for the biochemical data was tested using the 

Shapiro–Wilk test and geometric means (95% CIs) were reported for non-normally distributed 

data. Effects of the treatments on the change were compared using SAS PROC GLIMMIX for 

repeated-measures ANOVAs with Tukey multiple comparisons to test the difference between 

least-square means. A total of 16 subjects were included in all biochemical and questionnaire 

analyses, whereas 15 subjects were included in SI, NTBI, and TS analyses, because 1 subject had 

difficulty with multiple blood draws. 

Data for the side effects were obtained from the online survey of the GISQ exported from 

QualtricsTM into Microsoft Excel. The severity of the side effects was recoded from the 7-point 

Likert scale into 4 levels: 0 = absent, 1 = mild (somewhat mild and mild), 2 = moderate 

(somewhat moderate and moderate), 3 = severe (somewhat severe and severe). To record the 

frequency of side effects, we created a dichotomous variable from the 7-point Likert scale as 

follows: 0 = absent and 1 = present (somewhat mild, mild, somewhat moderate, moderate, 

somewhat severe, and severe). After the 3-wk supplementation, the frequency of weekly side 

effects was aggregated to total reported side effects over the 3-wk supplemental period. The 

models included fixed effects for treatment, period, and sequence; they also included random 

effects for subjects nested within sequence. Descriptive statistics were presented as frequencies 

for the side effects. Differences between treatments in the frequency of reported side effects were 
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specified using SAS PROC GLIMMIX. For all statistical analysis, P < 0.05 was considered 

statistically significant. 

Results 

Subject Characteristics. Age, BMI, and biochemical characteristics of the 16 subjects at baseline 

are shown in Table C-1. The mean age and BMI of subjects in the study were 21 y and 22.9, 

respectively. At screening, all participants had normal Hb concentrations (≥12 g/dL) and 

suboptimal SF concentrations (19.3 ± 8.4 µg/L). One subject was borderline for the SF cutoff 

concentration at baseline (40.4 µg/L); however, it was 37.4 µg/L at screening. 

Acute Response of Serum Iron, Transferrin saturation, and NTBI. Mean changes in both %TS 

and SI concentrations peaked at 4 h with FeSO4 (39.6% ± 5.2% and 27.8 ± 3.6 µM, respectively) 

and with ULT (11.7% ± 2.0% and 8.3 ± 1.6 µM, respectively) supplements, but the change was 

less distinct with ULT. The SI progressively decreased after 4 h for FeSO4, but values did not 

return to baseline within 8 h with either FeSO4 or ULT supplements (Figure C-2). TS percent 

rapidly spiked with a 65-mg dose of FeSO4, but the same effect did not occur with ULT (Figure 

2). NTBI concentrations peaked at 4 h (0.35 ± 0.17 µM) with FeSO4 and remained above 

baseline even at 8 h post-dosing, although they were not statistically different from baseline 

concentrations (Figure C-3). On the contrary, at all time points, ULT NTBI concentrations were 

nearly unchanged from baseline. As expected, both SI (r = 0.52, P = 0.0001) and %TS 

(r = 0.54, P = 0.0001) were significantly correlated with NTBI when both treatments were 

combined (Supplemental Figure C-1). 

Biochemical Indicators. There were no significant differences in the change of biochemical 

indicators among the iron supplements and placebo (Table C-2). Although, nonsignificantly, SI 

with ULT was higher than with FeSO4 (mean ± SD: 12.7 ± 11.6 µg/dL and −5.69 ± 10.5 µg/dL, 
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respectively) at the end of the 3-wk supplementation period. Unlike a decline with placebo, 

improvements in SF were found both with ULT and with FeSO4 supplementation (ULT: 

2.03 ± 3.44 µg/L; FeSO4: 9.38 ± 4.91 µg/L; Table C-2) but the differences were not statistically 

significant between the 2 treatments (P = 0.23). No other iron indicators were significantly 

different among the 3 treatments. Nonsignificant changes in inflammatory and oxidative stress 

markers were observed between treatment groups (P > 0.05). Based on kidney and liver function 

markers, the changes with ULT were not significantly different from those with FeSO4. 

Compared with FeSO4 and placebo, there were slight improvements in eGFR with ULT (ULT: 

6.0 ± 2.46; FeSO4: −0.81 ± 3.42; placebo: −1.63 ± 2.29; Table 2) but the differences were 

nonsignificant (P = 0.09). ALT concentrations for placebo were significantly higher from 

baseline to end than for ULT (Table 2; P = 0.01). 

Gastrointestinal side effects. Compliance was 97%, 93%, and 95.2% for ULT, FeSO4, and 

placebo, respectively. Although nonsignificantly, FeSO4 tended to contribute higher incidence of 

constipation, diarrhea, nausea, and abdominal discomfort than did ULT and placebo (Table C-3). 

The differences for global side effects (combined effects) were not significant among the 

treatments (P = 0.37). Even when we combined the most common symptoms (nausea, diarrhea, 

and constipation) associated with FeSO4, the differences were only significant at week 3 of 

FeSO4 supplementation compared with both ULT and placebo (P = 0.04 and P = 0.004, 

respectively; data not shown), but no differences were found at the preceding weeks. 

Discussion 

Despite FeSO4 being the most commonly used supplement for its effectiveness in treating 

anemia, its rapid absorption is of concern. When a bolus of iron enters the blood quickly, this 

exceeds the capacity for transferrin to bind the circulating iron, resulting in a transient increase in 
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NTBI concentrations. The catalytically reactive NTBI can promote oxidative stress and 

inflammatory response in the body (19). Therefore, there is a need for safer alternatives to 

FeSO4 (20), without compromising iron absorption. 

Based on the similar absorption of ULT to FeSO4 in our previous stable isotope study in 

humans (12), the low SI response with ULT suggested its slow release mechanism, not low 

absorption. Several studies have demonstrated that the rate in which iron is taken up by the body 

is dependent on the dose, form of iron, and whether it was taken with or without food (21–23). 

Both %TS levels and SI concentrations did not return to baseline, even at 8 h post-

supplementation, with either iron source. The %TS data are in agreement with a previous study 

demonstrating that %TS could reach baseline levels only after 24 h of supplementation (24). 

Although nonsignificantly, change in SI was higher (after a 10-h overnight fast) with 

ULT compared with FeSO4 after 3 wk consumption, suggesting that ULT iron may be released 

beyond 8 h (Table C-2). On the contrary, improvement in ferritin was less with ULT, but the 

change was nonsignificantly different from that with FeSO4. Although we do not know the form 

of iron in ULT, Perls stain, and DAB/H2O2 iron intensification confirmed that >90% of the iron 

is inside the A. oryzae mycelia (data not shown). We can postulate that the iron from the 

complex fungal matrix is digested over a longer period of time than FeSO4 and the digested iron 

may be taken up into enterocytes, processed, and released slowly. Also, it doesn't rule out 

absorption in the large intestine. Nearly 5 decades ago, a study showed a delayed peak of 

circulating iron with Hb iron compared with FeSO4, because of its slow absorption and its 

alternative heme-absorption pathway (25). Evidence indicates that heme-iron absorption may be 

saturable because of the lack of dose-response observed after a 15-mg Fe dose (26). Therefore, 
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the slow mechanism of release observed in this trial may support a heme-like alternative 

absorption pathway. 

The use of the SI curve as a surrogate for iron absorption is well established (27), and we 

may interpret that ULT absorption is 3 times lower than that of FeSO4 based on our results. 

However, caution should be taken when examining different iron sources owing to the 

differences in digestion rate and mucosal processing time. Our study showed a much lower SI 

change with ULT than with FeSO4 but based on that we cannot necessarily predict the iron 

absorption. For example, despite having high bioavailability shown in many studies, plasma iron 

release in 270 min with NaFeEDTA was much lower than with FeSO4 (23). The limitation in 

applying SI curves for predicting iron absorption was clearly discussed by Schümann et al., 

especially in reference to Hb iron because of its complex digestibility (23). Therefore, ULT 

absorption is similar to FeSO4 (12), despite low SI supporting the aforementioned hypothesis. 

Under normal physiological conditions, the iron is bound to transferrin in circulation, 

resulting in negligible amounts of NTBI (20). When a bolus of iron enters blood with a high dose 

of iron supplementation, the transferrin becomes quickly saturated, causing a transient increase 

in NTBI concentrations and a propensity for associated adverse side effects. One study (28) 

reported that 6.5 mg Fe as FeSO4 resulted in no NTBI production (similar to placebo), but a 65-

mg Fe dose induced a 300-fold increase in the AUC of NTBI. Because higher iron doses are 

given to anemic subjects (200 mg/d) and a 65-mg dose was used in a previous study to assess 

NTBI (6), this was a reasonable amount for us to use in this study for subjects with an SF < 40 

µg/L. The significant association found between SI and both %TS and NTBI suggests the 

importance iron influx has for %TS and NTBI production. Hence, it is critical for the controlled 
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absorption of iron to thereby reduce the elevation in SI concentrations, minimize the saturation 

of transferrin, and the subsequent production of NTBI. 

NTBI has become a concern because of the involvement of free iron in promoting 

infection (20). In a large iron supplementation intervention trial in Pemba, adverse effects, 

including death, were observed when iron-replete children with malaria were given iron daily 

(9). This was primarily attributed to the role of NTBI in promoting the parasitic growth of 

malaria (29). More recent evidence from Parkkinen et al. (10) aligns with this observation in a 

study where they gave hemodialysis patients 100 mg intravenous iron. In their study, they 

identified significantly higher bacterial growth when cultured in the serum of hemodialysis 

patients with 80% TS, and the authors directly related it to NTBI availability (10). Although we 

cannot directly compare intravenous results and our oral supplementation results, a single 65-mg 

dose of FeSO4 in healthy subjects in this study reached an absolute mean of 64% TS and ≤97% 

TS in some of the subjects. The mean %TS from ULT was half of that from FeSO4 (34%) and 

remained at normal concentrations throughout the 8 h. Interestingly, the AUC for NTBI was 19-

fold higher for FeSO4 (97.5 ± 61.9) than for ULT (5.5 ± 6.6) (Figure C-3, data not shown). 

Our findings suggest that %TS > 60% (as seen with FeSO4) may produce NTBI 

concentrations at levels that promote systemic inflammation and other adverse effects. On the 

contrary, iron supplements, like ULT, with no NTBI production may result in less inflammation 

with long-term administration. Despite our observations of significantly reduced PCOs in rats 

fed ULT compared with FeSO4 (30), in our short-term human study we found no differences in 

inflammatory and oxidative stress markers (CRP, PCOs, and TBARS) between ULT and FeSO4. 

This could be attributed to several confounding variables such as the young age of our subjects, 

and resilience to acute oxidative stress induction. 



213 
 

One of the goals of this research was also to assess the safety and advantage of ULT 

supplementation as an alternative supplement to FeSO4, to mitigate the commonly reported 

negative gastrointestinal side effects and low patient compliance. The higher individual side 

effects with FeSO4 were not significantly different from those found with ULT. With a larger 

sample size, we may have detected significant differences; however, the sample size was based 

on NTBI as the primary outcome. Based on the most common side effects (nausea, diarrhea, and 

constipation) that were reported in a meta-analysis (5), the combined effects of those 3 gradually 

increased from week 1 to week 3 for FeSO4 and were significantly different at week 3 compared 

with ULT and placebo. The increase with time in the reported number of side effects with 

FeSO4 suggests the body's inability to tolerate its long-term use. On the contrary, side effects 

with ULT decreased with time. The natural encapsulation of the iron within the fungal matrix 

may have resulted in slower digestion, potentially reducing the liberation of free reactive iron in 

the gut. We expect less reactive unbound iron in the distal colon for bacterial growth, creating 

less oxidative stress, inflammation, and gastrointestinal-related side effects with ULT iron. The 

inability of the body to tolerate FeSO4 compared with ULT may have accounted for the severe 

abdominal discomfort and lower compliance with FeSO4 supplementation. Although there was 

no carryover effect from one iron supplementation to the other, the high frequency of side effects 

reported in week 1 for the placebo group is in agreement with previous studies (17) and may 

indicate inflammatory insult to the gut for continued short periods of time after switching to 

placebo. In a meta-analysis examining the incidence of gastrointestinal symptoms with FeSO4 in 

20 trials, the authors reported significant side effects when compared with placebo; however, 

most of these placebo-controlled trials were not truly double-blind (5). In Pereira et al.’s (17) 

double-blind 1-wk intervention study (not crossover), higher side effects were reported in the 
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group supplemented with FeSO4 than in the group on placebo. In their study, symptoms still 

existed during the washout period after FeSO4 supplementation, suggesting a 7-d washout period 

is not long enough. The strength in our study was that our treatments were double-blind, with a 

crossover study of 21 d supplementation and a 21-d washout period between treatments. The 

limitation of our study was that we were not able to identify significant differences in 

gastrointestinal side effects between treatment groups. This limitation may have been due to an 

inadequate sample size, the duration of supplementation, or the duration of the washout period 

resulting in potential residual side effects. Because our primary objective was to determine the 

implications of these 2 supplements for NTBI production, we did not account for the power 

needed for gastrointestinal side effect outcomes. Lastly, although we did see the acute effects of 

iron supplementation on NTBI production, this was not supported by our inflammatory and 

oxidative stress measurements. Longer supplementation periods are warranted to potentially see 

a response in healthy subjects. Kidney and liver function markers were similarly affected by 

ULT and FeSO4, suggesting the safety of ULT consumption. 

In conclusion, significantly lower production of NTBI and slightly fewer gastrointestinal 

side effects (although nonsignificant) were found with ULT consumption than with FeSO4. ULT 

iron is safe to consume because oxidative stress, inflammatory, and kidney and liver function 

markers were not elevated. Therefore, ULT may be a safer alternative to oral FeSO4 in 

maintaining healthy kidney and liver function, as well as iron status in young women. The results 

we have to date indicate that ULT has a slow release mechanism, but further studies are needed 

to identify the form of iron and the mechanism of ULT absorption in humans. 
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Table and Figures 

 
  

 

 

 
Figure C-1. Study design for the double blind cross-over study with young female subjects 
(n=16). *8h NTBI and serum iron curve analyses; arrows indicate biochemical parameters 
testing.  

 

Figure C-2. Mean ± SEM (n=15) change in serum iron (solid lines) and % transferrin saturation 
(dotted lines) from baseline over 8 h after administration of 65 mg FeSO4 or ULT with a semi-
purified meal. One subject was removed due to blood draw complications. Differences between 
treatments at each time point was analyzed with two-way repeated-measures of ANOVA. *P < 
0.01, **P < 0.0001. 

Randomization 
(n=17) 

FeSO4 (n=9) 

ULT (n=8) Placebo (n=8) 

Placebo (n=9) FeSO4 (n=8) 

ULT (n=9) 

*D1 D21 *D42 D63 
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Figure C-3. Mean ± SEM (n=15) change in non-transferrin bound iron (NTBI) from baseline 
over 8 h after administration of 65 mg FeSO4 or ULT with a semi-purified meal. One subject was 
removed due to blood draw complications. Differences between treatments at each time point 
was analyzed with two-way repeated-measures of ANOVA. *P < 0.01, **P < 0.0001. 
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Supplemental Figure C-S1. Correlation between SI and NTBI (Fig A) and TS and NTBI (Fig 
B). Values represent 194 pairs combining ULT and FeSO4. 
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Table C-1. Age, body mass index and biochemical indicators of subjects at baseline (n=16)* 

* mean ± SD or 1 geometric mean [95% Cls]  

 

 

 

 

Age, y 20.6 ± 1.4 

Anthropometric measures  

BMI, kg/m2 22.9 ± 2.8 

Laboratory measures  

Hemoglobin, g/dL 13.3 ± 0.8 

Hematocrit, % 39.2 ± 2.3 

Serum ferritin1, µg/L 19.3 [15.1, 24.7] 

Serum iron, µg/dL 90.5 ± 35.7 

Transferrin saturation, % 23.8 ± 8.9  

Soluble transferrin receptor1, ng/mL 4.6 [3.9, 5.4] 

Hepcidin1, ng/mL 4.4 [3.3, 5.8] 

C-reactive protein1, mg/L 1.0 [0.4, 2.3] 

Glomerular filtration rate, mL/min/1.73m2 100.9 ± 13.0 

Creatinine, mg/dL 0.8 ± 0.1 

Blood urea nitrogen, mg/dL  11.1 ± 3.1 

Aspartate aminotransferase, U/L 16.4 ± 3.5 

Alanine aminotransferase, U/L 13.2 ± 5.4 
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Table C-2. Change from baseline to 3 weeks with supplementation of ULT, FeSO4 and placebo 
(n=16)* 

 

Biochemical Indicators ULT  FeSO4  Placebo  

Iron Status    

Hemoglobin, g/dL 0.07 ± 0.12 -0.04 ± 0.13 0.06 ± 0.16 

Hematocrit, % -0.07 ± 0.31 -0.59 ± 0.44 0.12 ± 0.40 

Serum ferritin, µg/L 2.03 ± 3.44 9.38 ± 4.91 -2.61 ± 4.0 

Soluble transferrin receptor, ng/mL -0.02 ± 0.22 -0.13 ± 0.21 0.04 ± 0.18 

Serum iron, µg/dL 12.7 ± 11.6 -5.69 ± 10.5 -5.63 ± 12.5 

Transferrin saturation, % 4.63 ± 3.39 0.63 ± 2.72 -3.44 ± 3.61 

Total iron binding capacity, µg/dL -6.06 ± 4.71A -36.19 ± 9.08B 20.19 ± 8.49C 

Inflammatory Markers    

C-reactive protein, mg/L -0.41 ± 0.37 -0.27 ± 0.85 -0.27 ± 0.52 

Hepcidin, ng/mL 0.53 ± 1.0 -1.47 ± 1.25 -0.09 ± 0.65 

Oxidative stress    

TBARS, µM 0.73 ± 0.97 1.94 ± 0.95 0.90 ± 0.90 

Protein carbonyls, nmol/mL -0.24 ± 2.0 2.23 ± 3.06 -6.13 ± 3.91 

Kidney and Liver Function    

Glomerular filtration rate, mL/min/1.73m2 6.0 ± 2.46A -0.81 ± 3.42AB -1.63 ± 2.29B 

Creatinine, mg/dL -0.04 ± 0.02 0.01 ± 0.02 -0.69 ± 0.69 

Blood urea nitrogen, mg/dL  0.63 ± 0.94 -0.43 ± 0.76 0.57 ± 1.47 

Aspartate aminotransferase, U/L -0.94 ± 0.85 0.06 ± 1.15 -2.19 ± 1.07 

Alanine aminotransferase, U/L 0.31 ± 0.63A  0.06 ± 0.93AB 3.44 ± 1.02B 

*Mean ± SEM of change from baseline to final for each treatment period. Different letters 
indicate statistical significance at alpha=0.05 using a One-way ANOVA with Tukey multiple 
comparison test. TBARS, thiobarbituric acid reactive substances. 
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Table C-3. Frequency of reported gastrointestinal side effects during the 3 week 
supplementation of ULT, FeSO4 and placebo* (n=16) 
 

Symptom ULT FeSO4 Placebo 

Constipation 1.13 ± 0.42a 1.56 ± 0.50a 1.06 ± 0.37a 

Diarrhea 0.63 ± 0.22a 1.00 ± 0.33a 0.5 ± 0.24a  

Nausea 0.38 ± 0.18a 0.75 ± 0.30a 0.44 ± 0.16a 

Abdominal Discomfort 2.5 ± 0.5a 2.81 ± 0.56a 2.75 ± 0.78a 

Heartburn 0.13 ± 0.09a 0.13 ± 0.09a 0 ± 0a 

Fatigue 1.9 ± 0.55a 1.81 ± 0.54a 2.00 ± 0.47a 

*Mean ± SEM of frequency of reported gastrointestinal side effects over the 3-week 
supplementation period for each treatment period. Sharing same letters indicate no statistical 
significance at P=0.05 using a generalized linear mixed model of effects.  
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APPENDIX D. IRON SUPPLEMENTATION CONFERS PROTECTION AGAINST 

DISEASE SEVERITY IN DEXTRAN SODIUM SULFATE (DSS)-INDUCED COLITIS 

IN RATS 

 

A manuscript prepared for submission to Current Developments in Nutrition 

Amanda E. Bries, Rachel J. Derscheid, Paige Curry, Joseph L. Webb, Olivia N. Meier, Casey 

Johnson, Taylor Ferrere, Matthew J. Rowling, and Manju B. Reddy 

Abstract 

Background: Koji iron, enriched with ferrous sulfate (FeSO4), otherwise known as Ultimine® 

(ULT), is a novel source of supplemental iron. Previously, we reported ULT had similar 

absorption as FeSO4, while resulting in less circulating non-transferrin bound iron in young 

women. Iron deficiency anemia is a common manifestation of inflammatory bowel disease (IBD) 

due to malabsorption of iron and gastrointestinal (GI) bleeding.  

Objective: The objective of our study was to assess the efficacy of two forms of iron 

supplementation on improving impaired GI integrity and anemia caused by dextran sulfate 

sodium (DSS)-induced colitis.  

Methods: Six wk old Sprague Dawley rats (n = 40) were randomly assigned to one of four 

treatment groups (n =10/group): 1) control with no DSS; 2) control + DSS only (NFe); 3) DSS + 

ULT; and 4) DSS + FeSO4. Animals were maintained on the AIN-93G diets for 7 days. Colitis 

was induced by administering fresh 3.5% (w/v) DSS in water ad libitum throughout the study. 

Daily iron supplementation (6 mg Fe/kg body weight) was provided in a pulverized treat, and 

disease activity indices were measured (gross bleeding, stool consistency and weight loss). 

Histological scoring of colonic ulcerations, inflammation and grade were assessed. Basic iron 

status indicators and circulating inflammatory markers were determined via ELISA and 

multiplex bead assays, respectively.  
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Results: The severity score of IBD was significantly higher in the animals without iron 

supplementation than those treated with iron (P < 0.0001). Moreover, iron supplementation 

protected against diminished hemoglobin and hematocrit levels as a result of DSS treatment 

(P=0.001 and P=0.03, respectively); whereas, these parameters were not significantly (NS) 

different between ULT and FeSO4. A trend for improvement of post-mortem disease scores for 

DSS-induced rats on ULT compared to FeSO4 and NFe by 14% and 39%, respectively (NS). 

Among all groups, FeSO4 had significantly elevated circulating interleukin-17A (P<0.05). 

Conclusions: The results of this study highlight the beneficial effects iron supplementation has 

on the disease activity promoted by severe GI inflammation. Furthermore, this data suggests that 

FeSO4, but not ULT, may lead to increased chronic inflammation.  

Introduction 

Inflammatory Bowel Disease (IBD) is an idiopathic condition that affects upwards of 1.3 

million people in the United States (1). IBD is sub-classified into either Crohn’s disease or 

ulcerative colitis, whereby the hallmark of both conditions is gastrointestinal inflammation – 

leading to nutrient malabsorption, gastrointestinal bleeding, and hematochezia (2). Because of 

these chronic occurrences, iron deficiency anemia (IDA) often manifests in patients with IBD 

(3). In healthy adults, approximately 1-2 mg of iron is lost daily from desquamation of mucosal 

epithelial tissue; however, in IBD patients a myriad of precursors, such as rapid epithelial 

turnover, blood loss, and inflammatory-mediated iron sequestration can lead to IDA (4). 

 therefore often need iron therapy in order to maintain adequate iron stores. Currently, the 

recommended first line of treatment for IDA is elemental iron at a dose of 200 mg/day in highly 

bioavailable forms like ferrous sulfate (FeSO4) (5). It has been of concern with production of 

non-transferrin bound iron (NTBI) due to the rapid absorption of FeSO4 (6). The deleterious 
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consequences of circulating NTBI leads to the generation of reactive oxygen species, 

potentiating systemic inflammation.  

NTBI also has been implicated increasing bacterial-pathogenic infections in vulnerable 

populations (7). The perturbed microbiome in patients with IBD is not only a result from the 

clinical aberrations, but oral iron supplementation can induce microbial dysbiosis (8). 

Approximately 90% of unabsorbed oral iron salts end up in the colon, creating an environment 

that favors the growth of iron-dependent pathogenic bacteria (9–11). For instance, studies have 

reported growth of pathogenic Enterobacteriacae and increased virulence following oral iron 

supplementation in patients with IBD (11). Not only does iron shift the microbial population, but 

compounds like FeSO4 have been shown to exacerbate intestinal ulcerations and gastrointestinal 

inflammation, raising concerns of FeSO4 use (8,10).   

Koji iron, Ultimine® (ULT), is a natural compound that is enriched with approximately 

8% iron. Koji is capable of providing a relatively high amount of iron because of its ability to 

harbor it in the mycelium. The bioavailability and efficacy was tested in human subjects, 

whereby results indicated that ULT was as bioavailable as FeSO4, in addition to a slower rate of 

absorption with ULT, and reduced protein carbonyl concentrations (12–14). Previously, we 

reported in young females that ULT produced almost untraceable amounts of NTBI in 

circulation compared to FeSO4, despite an observed serum iron peak at 4 h post ingestion (13). In 

the same study, we reported no adverse effects or systemic inflammatory changes in patients that 

were administered ULT for 3 wk (13). With the collective results from cell culture, animal, and 

human studies testing the safety, efficacy, and bioavailability of the koji iron, the objective of our 

current study was to examine the effects of oral koji iron compared to FeSO4 when treating the 

progression of disease in an acute model of IBD. Our goal was to determine whether the koji iron 
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could be a safe iron compound for long-term therapy in IBD patients without exacerbating 

common clinical symptoms.  

Material and Methods 

Chemicals and Reagents. Colitis grade dextran sulfate sodium (DSS) with a molecular weight of 

36-50 kDa was purchased from MP Biologics (Santa Ana, CA), hemoglobin was assessed by the 

HemoCue HB 201 device (Brea, CA), hemoccult assay kit was from Beckman Coulter, Inc. (San 

Diego, CA), qRT-PCR SYBR green was purchased from Zymo Research (Irvine, CA), and 

custom designed hepcidin mRNA and 18S ribosomal primers were obtained from Integrated 

DNA technologies (Davenport, IA). ULT was kindly donated from Cura Global Health, Inc. and 

FeSO4 by Paul Lohman Company, Germany. 

 

Animals and Diets. This animal study was approved by the Institutional Animal Care and Use 

Committee at Iowa State University and performed according to the Iowa State University 

Laboratory Animal Resources Guidelines. Forty, 6 wk old male Sprague Dawley rats (140-160 

g) from Charles River Laboratories (Wilmington, MA) were obtained. Rats were individually 

housed in innovive cages (San Diego, CA) at 22∘C ± 2∘C temperature-controlled environment 

and a 12 h light-dark cycle. Following acclimation for 72 h on a standard rat chow diet. Rats 

were placed on a semi-purified AIN-93G diet containing 65 ppm iron, 39.75% corn sugar; 20% 

vitamin-free casein lactic; 10% granulated sugar; 13.20% dextran; 3.5% mineral mix (AIN-93); 

1% vitamin mix (AIN-93); 0.30% L-Cysteine; and 0.25% choline bitartrate from Envigo 

Laboratories (Madison, WI TD.97184) throughout the experimental period.  
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Induction of colitis and iron supplementation. Rats (n =10) were randomly assigned to one of 

four treatment groups: 1) no DSS, no Fe (control); 2) DSS, no Fe (NFe); 3) DSS + ULT; and 4) 

DSS + FeSO4. Colitis was induced by giving rats fresh 3.5% (w/v) of DSS consumed food ad 

libitum, daily, throughout the study for the respective treatment groups. Iron supplementation 

was provided in a vehicle of pulverized rat treats containing alfalfa sprouts, apple, corn oil, peas, 

parsley and wheat (Sunseed Animal Lovens Bowling Green, OH) with no vitamin C 

contribution. Treats were weighed in 3 g portions and pelleted with 30 mg agar-agar. Each iron 

treat was supplemented with 6 mg Fe/kg BW/d based on the average baseline weight of all DSS 

treatment groups (140 grams), equating to 0.84 mg Fe/day. ULT dry weight contained 8.7% iron, 

whereas FeSO4 contained 32% iron enrichment. The human equivalent dose of the iron 

administered to the rats was 58 mg Fe (for a 60 kg adult human) based on a 6.2 conversion rate 

using the estimate of a 0.15 kg rat (15). Individual iron treatments were incorporated and 

administered daily via the same vehicle treat, with groups 1 and 2 devoid of iron. Consumption 

of the iron supplemental treats were monitored and adjusted for final hemoglobin regeneration 

efficiency (HRE) ratios, as previously described (16–19).  

Rats were maintained on the same AIN-93G diet for 7 days, along with daily DSS 

administration and iron supplementation for respective groups. On the morning of day 8 

following a 10 h overnight fast with water provided ad libitum, rats were anesthetized with a 

ketamine:xylazine cocktail (90:10 mg/kg BW) via a single intraperitoneal injection. Liver and 

kidney tissues were procured and weighed; whole blood was collected via cardiac puncture. The 

intestine was removed, measured for length and photographed for total disease assessment. All 

tissues were sectioned and either fixed in 4% paraformaldehyde or snap frozen in liquid nitrogen 

and stored at -80○C. 
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Disease activity index. Disease activity index (DAI) is a proxy to assess the severity of 

inflammation and colitis conditions for in vivo models. Disease activity index was calculated by 

taking the cumulative score based on the magnitude of percent daily weight loss, stool 

consistency, and gross bleeding of the rats as previously described (20,21). Daily water intake 

was measured and assessed between groups administered DSS to determine if disease severity 

was attributed to DSS consumption. Total post-mortem disease scores were summed after 

binary-assessment of the presence of: cecal atrophy, enlarged cecal tonsil, cecal emptying, 

absence of formed fecal pellets in colon, as well as watery/mucoid, luminal blood, and tissue 

thickening in both the colon and cecum. Assessment of these parameters were performed in a 

blinded fashion by a Veterinary Pathologist.  

 

Histological scoring of the distal colon. Following fixation of the tissues in 4% 

paraformaldehyde for 24 h, liver, kidney and colon were paraffin embedded. Blocks were 

sectioned to 5 μm thick and stained with hematoxylin and eosin (H&E) for histological scoring 

and evaluation. The lesion and inflammation index were evaluated based on a modified method 

by Toblli et al (22). Briefly, the areas were scored based on the levels of damage, as well as, each 

of these was given an additional grade of the percentage of the area (in 25% increments)  

affected by the damage or inflammation as follows: 0=intact crypt, 1=1/3 loss, 2=2/3 loss, 3=loss 

of crypt, intact surface, 4=crypt loss+ulceration; 0=normal, 1=lamina propria, 

2=inflammation+gland dropout, and 3=complete abscesses. A cumulative score was assessed by 

the percent affected of crypt damage (Table D-1). Degree of lesion and inflammatory severity is 

described as: 1) crypt hypertrophy; 2) crypt abscesses; and 3) ulceration (Figure D-1). Lesion 

and inflammatory scores and their respective grades were summed, and compared as individual 
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indicators and total disease scores among groups. Distal colon thickness was also measured to 

determine level of proliferative epithelial tissue.  

 

Iron status indicators. Nonheme-iron was assessed as previously described (23). Briefly, livers 

were homogenized in water and subjected to trichloroacetic acid (TCA) protein precipitation at 

65○C for 20 h. Nonheme iron assay was determined colorimetrically using ferrozine in 

thioglycolic acid measuring the absorbance of soluble iron (ug/g) as percent solubility. 

Hematocrit was determined as a ratio of red blood cells to total blood volume following 

hematocrit centrifugation (24), and hemoglobin (Hb) was assessed at baseline and final 

endpoints of the study. To determine the efficiency of converting dietary Fe into Hb among all 

groups, the hemoglobin regeneration efficiency (HRE) ratio was calculated as described 

previously (16–18). Fecal hemoccult tests were performed to determine positive or negative 

presence of blood in the fecal content. 

 

Cytokine and inflammatory markers. Serum inflammatory analytes, interleukin (IL)-1 alpha, 

IL-beta, IL-2, IL-6, IL-10, IL-17A, IL-18, and interferon-gamma were analyzed using a 

multiplex magnetic bead array from Millipore Sigma (Burlington, MA). Liver mRNA was 

isolated using the Autogen QuickGene RNA tissue kits II (Holliston, MA) and verified for a 

260/280 ratio of 2.0 using the nanodrop followed by cDNA conversion using the high capacity 

cDNA reverse transcription kit from Applied Biosystems (Beverly, MA). Fecal S100A8/S100A9 

calprotectin, a biomarker for inflammatory gastrointestinal disease, was analyzed using a 

commercially available kit. 
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Statistical methods. All statistical analyses were performed using SAS (version 9.4, 2018, SAS 

Institute Inc., Cary, NC). Evaluation of statistically significance (P < 0.05) between group means 

was performed using a one-way ANOVA. When LS means between each group were compared 

Tukey post hoc analyses were utilized; whereas, when treatments were compared to the no DSS 

control animals, a Dunnett post hoc analyses were used for LS mean comparisons. Temporal data 

were analyzed using repeated measures test. 

Results 

Iron supplementation delayed the progression of disease activity in DSS-induced rats. All 

DSS-induced animals expressed higher total post-mortem disease scores compared to healthy 

controls (P < 0.001; Figure D-1A). There were no observed significant differences among the 

DSS-induced rats with and without iron, verifying presence of IBD. Moreover, when comparing 

all DSS groups to the control rats, FeSO4 protected against a significant reduction in body weight 

gain (P < 0.05); whereas the DSS + ULT and DSS, NFe groups gained significantly less weight 

(P < 0.01 and P < 0.001, respectively). As expected, all animals treated with DSS, resulted in 

significantly higher DAI scores compared to the animals without DSS (P < 0.001; Figure D-

2A). When comparing DSS-induced animals, those on iron supplementation (ULT and FeSO4) 

had reduced disease severity when compared to the rats on DSS alone (P < 0.001; Figure D-1A). 

Animals on the DSS consumed significantly less water compared to the no DSS group (P < 

0.001, data not shown); however, there were no differences in water consumption among three 

DSS-induced groups (data not shown), indicating no effect of consumption on disease severity. 

Notably, when compared to the no DSS group, the iron supplemented animals displayed a 

significant reduction in intestinal length (P < 0.05); whereas the difference between control and 

alone was highly significant (P < 0.001; Figure D-2B).  
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Histological lesion scoring of distal colon. All DSS-induced animals had significantly higher 

crypt lesions, inflammation, and hypertrophy of their distal colons compared to the healthy 

controls (P < 0.001; Table D-2). There was a tendency for higher scores in all three parameters 

(crypt, inflammation, and total disease score) for the DSS, no Fe group, although not significant.  

 

Iron status indicators. As expected, the DSS groups supplemented with both ULT and FeSO4 

protected against reduction in Hb from baseline when compared to no DSS healthy control, 

although it was borderline significant (P = 0.07 and P = 0.06, respectively). In contrast, NFe 

group resulted in significantly depleted Hb from baseline compared to no DSS control group (P 

< 0.05; Figure D-3A). Likewise, the same was observed for hematocrit among the three groups 

when compared to the healthy control (P = 0.12, ULT; P = 0.15, FeSO4; P < 0.05, NFe; Figure 

D-3B). No significant differences were detected in total non-heme iron stores in the liver among 

all groups (Figure D-3C).  

 

Fecal disease indicators were significantly higher in the rats void of iron supplementation. 

Hemoccult is a test to determine the presence of hematochezia by a simple test strip. All rats 

treated with DSS exhibited higher incidence of hematochezia compared to the control rats 

(P<0.05). Although not significantly different from one another, the percentage of rats testing 

positive in the DSS, FeSO4 group was 100%, 90% in the DSS, NFe group, and 80% in the DSS, 

ULT group. Calprotectin, a clinical test used to distinguish the difference between inflammatory-

related bowel disease, and non-inflammatory related, was 46% higher in DSS alone compared to 

DSS, ULT (P<0.0001) and 32% higher than DSS, FeSO4 (P<0.001; Figure D-4). Traceable 
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calprotectin concentrations were detected in the control rats, but were lower compared to DSS-

treated rats (P<0.0001).  

 

Interleukin-17A and interleukin-1 alpha were elevated DSS-induced rats supplemented with 

FeSO4. After multiplexing 8 different cytokines/chemokines, the only two that were statistically 

significant among groups were IL-1α and IL-17A. Interestingly, IL-1α was only detectable in the 

DSS treated rats on iron supplementation (Table D-3). DSS, ULT rats did not have significantly 

higher IL-1α compared to the DSS and no DSS control rats; however, DSS, FeSO4 rats exhibited 

higher circulating IL-1α concentrations compared to the no DSS and DSS, NFe control rats 

(P<0.001), but was not statistically different from DSS, ULT rats (Table D-3). Lastly, there were 

no significant differences among the control, DSS, NFe; and DSS, ULT groups for 

concentrations of IL-17A. The DSS-induced rats supplemented with FeSO4 did exhibited 

elevated circulating IL-17A concentrations when compared among all groups (P<0.05; Table 3). 

Discussion 

Anemia of chronic disease or inflammation, is one of the most common anemia’s that 

exits among the elderly and chronically ill in the United States (25). Chronic diseases that are 

compounded by inflammation, such as obesity, kidney disease, and cancer often result in iron 

deficiency due to the elevation in circulating hepcidin (26,27). The increase in hepcidin 

production is directly proportional to inflammation and since its hormonal mode of action is to 

block the efflux of iron into circulation, chronic elevation in hepcidin concentrations can 

manifest in anemia. Therefore, one of the most prevalent complications of IBD is anemia, which 

can vastly affect the rate of remission and long-term progress of patients with this disorder. The 

impact of IBD can be much more severe due to the multifactorial insults of iron malabsorption, 
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increased intestinal desquamation, and elevated hepcidin, which in turn, blocks iron 

mobilization. All of these warrant to identify a safe and effective iron supplement that is 

effective in treating anemia, but does not exacerbate these conditions and allows for increased 

patient compliance during long-term iron regimens. 

Previously, we have reported in a stable iron isotope clinical study that ULT is as 

bioavailable as FeSO4 (28), as well as resulted in no significant gastrointestinal related side 

effects and nearly untraceable amounts of serum NTBI (13). Furthermore, we reported no effect 

on serum C-reactive protein and hepcidin levels following 3 wk of ULT consumption. These 

studies demonstrated the safety and efficacy of this oral koji iron supplement for potential use in 

chronic diseases, such as IBD. In this study, we administered the koji iron supplement to an 

acute chemical-induced rodent model of IBD. Dextran sulfate sodium is one of the most 

commonly used chemicals for recapitulating the clinical aberrations observed in human IBD 

(29). Because of the localized impact of DSS on the colon, it more closely mimics conditions of 

ulcerative colitis. This is an important distinction, as iron is predominantly absorbed in the 

duodenum and proximal jejunum (30). Although the intestinal lining is compromised in the 

colon as a result of DSS, upstream inflammation may advance due to colonic atrophy and an 

increase in inflammatory signaling cascades.  

Numerous studies have examined the effects of oral iron compounds, dosage, and 

duration in a chemical-induced rodent model of IBD (8,10,31,32). The effectiveness of 

improving iron stores in an IBD animal model with ferrous-fumarate, that has high 

bioavailability was promising, however the animals exhibited exacerbated gastrointestinal 

inflammation and diminished colonic integrity (10). It did not, however have an effect on 

circulating glutathione activity or subsequent inflammatory markers. More recently, a study 
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examining the effects of FeSO4 and iron polymaltose complex in a DSS model of IBD reported 

elevated inflammatory markers, disease activity, severity and further histological damage as a 

result of FeSO4 (22). On the contrary, we did not observe increased disease activity in our DSS 

model supplemented with FeSO4 and ULT; rather, we concluded a protective element of both 

iron supplements on the disease severity. Several observations can be identified by our 

contradicting results. Firstly, we administered a ~60 mg human dose equivalent of iron – which 

is a standard iron dose for those with iron deficiency; whereas the published study (22) employed 

a 300 mg human dose equivalent. Furthermore, studies have relied on iron delivery via gavage or 

ad libitum food intake. In our study we gave a standard iron dosage via supplementation, as we 

were limited by gavage due to the insoluble nature of our koji iron compound. These variations 

may have influenced the vast differences observed in gastrointestinal related side effects between 

these studies.  

The DSS model has been studied in a number of applications. Wirtz and colleagues 

reported that the upper lethal dose of DSS is 5%, whereby rodents experience a marked reduction 

in weight, blood volume and goblet cells (33). Furthermore, high death rates in chemical induced 

IBD models are often a result of severe colon perforation and bacterial infections. Despite these 

observations, we reported protective characteristics as a result of both FeSO4 and ULT iron 

supplements on disease activity and post-mortem disease severity. Given the short duration of 

our combined method of DSS and iron supplementation, we were not surprised by the 

diminished disease outcomes. Hypoferremia is a common symptom of this IBD model (34), and 

in this study, it was observed that iron supplements prevented the depletion of both hemoglobin 

and hematocrit when compared against the healthy control rats. We hypothesized that the disease 

activity protection conferred by the iron supplementation may in part, be due to the support of 
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hemoglobin production. A study examining the role of heme-injected IBD mice reported that 

systemic heme supplementation greatly remedied DSS-induced colitis in mice (35). They 

proposed that the mechanism mediating this attenuation was the ability for heme repletion 

therapy to maintain gut and epithelial regeneration via heme oxygenase-1, which plays a major 

role in IBD-related intestinal inflammation (36). Although inflammation and bacterial infections 

are of large concern with highly bioavailable iron compounds, perhaps the mitigation in lack of 

iron stores and anemia outweighed the previously reported deleterious effects of iron on 

gastrointestinal integrity. 

Despite a significant decrease in disease activity, gross disease scores, and mitigation of 

iron depletion, there was a significant rise in cytokines, IL-17A and IL-1α as a result of FeSO4 

supplementation. IL-17A is an important regulator in the promotion of intestinal fibrosis, by its 

role in stimulating upstream inflammatory cascades (37). Therefore, a rise in IL-17A in 

circulation may indicate increased tissue fibrosis, although it is inconclusive whether the 

observed elevated IL-17A in IBD rats supplemented with FeSO4 was directly related to colonic 

fibrosis. There have been several studies reporting the pathophysiological role of IL-17A in IBD. 

For instance, Chae and colleagues reported the mitigation of epithelial fibrosis and bowel 

obstruction in an IL-17A global knockout mouse (38). Despite these reports, clinical studies 

employing anti-IL17A drugs have not demonstrated the clinical benefits in patients with Crohn’s 

disease (39). Interestingly, neutrophil gelatinase-associated lipocalin (NGAL) is an innate 

immune response protein that is directly stimulated by a rise in IL-17A, and its function is to 

scavange and sequester iron from bacterial phagocytosis (40). Therefore, NGAL has been 

identified to protect against bacteria growth by preventing iron acquisition, as evidenced by a 

NGAL knockout mouse model which resulted in bacterial infections from iron uptake (41). 
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Because of the probable unabsorbed labile iron in the colon, we postulate that IL-17A in the 

DSS, FeSO4 group may have induced the production of NGAL, preventing readily available iron 

for bacterial overgrowth in the colon and further exacerbation of histological damage and disease 

risk. In further exploratory studies, it would be important to examine the production of IL-17A 

and NGAL in the colonic tissue upon the administration of iron supplementation.  

In our study, we primarily demonstrated that low doses of oral iron supplementation 

during the progression of a chemically-induced acute rodent model of IBD may have a protective 

measure against the disease severity, potentially attributed to hemoglobin regeneration and 

increased epithelial turnover. Ultimately, we concluded that more gentle forms of iron 

supplements, such as ULT might be more beneficial in reducing the prevalence of IBD-specific 

intestinal inflammation as evidenced by calprotectin concentrations and interleukin mediators. 

Furthermore, based on our previous work with ULT, there may be potential benefit from ULT 

supplementation in chronic ailments like IBD, due to its effectiveness in improving iron stores 

and lack of NTBI generation. These findings should be supported in a clinical study comparing 

the efficacy of low-dose iron supplementation in different forms to prevent and improve the 

severity of IBD.  
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Tables and Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D-1. Effects of 3.5% dextran sulfate sodium on colonic lesion score, inflammation and 
grade of affected area determined by histopathology of a colonic cross section from IBD-induced 
Sprague Dawley rats supplemented with and without iron. Hemotoxylin and eosin staining of 
colonic tissue sections were analyzed for histopathology parameters in Table 1. Image was 
representative of examples of grade and affected area in the control rats (A), in addition to the 
representative histology (H&E staining; magnification, 10X) of colonic-sample sections to 
demonstrate differences in proliferation in control (B), NFe (C), ULT (D), FeSO4 (E). Post-
mortem colon injury scores were determined (F). Data are presented as mean ± SEM, n = 10. 
Bars are expressed as *P <0.05, ** <0.01, *** <0.001. Abbreviations used: ULT, ultimine; 
FeSO4, ferrous sulfate; and NFe, no iron.  
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Figure D-2. DAI scores over one week (A) and post-mortem intestinal length (B) for control; 
NFe; ULT; and FeSO4 using one-way ANOVA with Dunnett multiple comparisons. Data are 
means ± SEMs; n = 10. Mean values without a common letter, are significantly different (P 
<0.05); whereas bars are expressed as *P <0.05, ** <0.01, *** <0.001. Abbreviations used: 
ULT, ultimine; FeSO4, ferrous sulfate; and NFe, no iron.  
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Figure D-3. Change in hemoglobin from baseline to end of life (A) final hematocrit (B) and total 
non-heme liver iron (C) for control; NFe; ULT; and FeSO4 using one-way ANOVA with Dunnett 
multiple comparisons. Data are means ± SEMs; n = 10. Bars are expressed as *P <0.05, ** 
<0.01, *** <0.001. Abbreviations used: ULT, ultimine; FeSO4, ferrous sulfate; and NFe, no iron. 
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Figure D-4. Fecal calprotectin for control; NFe; ULT; and FeSO4 using one-way ANOVA with 
Dunnett multiple comparisons. Data are means ± SEMs; n = 10. Mean values without a common 
letter, are significantly different (P <0.05). Abbreviations used: ULT, ultimine; FeSO4, ferrous 
sulfate; and NFe, no iron. 

 

Table D-1. Histological scoring for gross anatomy of the colon in control and 3.5% DSS-
induced Sprague Dawley rats for 8 consecutive days1. 

Colonic Lesion Score Colonic Inflammation Grade of affected area 

0= Intact crypt 0= normal 0= 0% 

1= 1/3 crypt loss 1= lamina propria  1= 1%–25% 

2= 2/3 crypt loss 2= inflammation + 

gland dropout 

2= 26%–50% 

3= complete crypt loss, intact surface 3= complete abscess  3= 51%–75% 

4= crypt loss + ulceration 
 

4= 76%–100%  

1 Post-mortem disease scoring index is calculated by taking the sum of the lesion score, 
inflammation, and grade of colonic section affected. All scoring was performed in a blinded 
fashion by a Veterinary Pathologist. 
 



247 
 

Table D-2. Histological scoring for crypt lesion, inflammation, and hypertrophy of distal colon 
of control and IBD-induced Sprague Dawley rats1. 

Parameter No DSS DSS + NFe DSS + ULT DSS + FeSO4 

 Mean ± SEM 

Crypt 0 ± 0A 3.5 ± 0.4B 3.4 ± 0.4B 3.4 ± 0.4B 

     Grade 0 ± 0A 1.7 ± 0.42B 1.4 ± 0.34B 1.2 ± 0.15B 

Inflammation 0 ± 0A 2.1 ± 0.28B 2.1 ± 0.23B 1.6 ± 0.34B 

     Grade 0 ± 0A 2.0 ± 0.42B 1.5 ± 0.31B 2.9 ± 0.71B 

Total histological disease  0 ± 0A 9.3 ± 1.3B 8.4 ± 0.93B 8.2 ± 0.73B 

Distal colon thickness 168.4 ± 29.7A 518.8 ± 52.3B 521.9 ± 55.2B 449.8 ± 35.6B 

1 Data are means ± SEMs; n = 10. Data within the same row without a common letter differ (P < 
0.05). Abbreviations used: DSS, dextran sulfate sodium; IBD, inflammatory bowel disease; Fe, 
iron; FeSO4, ferrous sulfate; and ULT, ultimine. 
 

 

 

 

 

 

 

 

 

 



248 
 

Table D-3. Circulating cytokine and chemokine indicators for control and IBD-induced Sprague 
Dawley rats1. 

Inflammatory marker No DSS DSS + NFe DSS + ULT DSS + FeSO4 

IL-1 alpha 0 ± 0A 0 ± 0A 0.97 ± 0.7AB 1.9 ± 0.6B 

IL-1 beta 4.34 ± 0.7A 11.26 ± 8.4A 11.55 ± 6.2A 22.5 ± 5.2A 

IL-2 27.5 ± 4.7A 28.63 ± 7.1A 43.3 ± 16.8A 26.7 ± 15.2A 

IL-6 0 ± 0A 0 ± 0A 3.84 ± 3.04A 0.18 ± 0.2A 

IL-10 6.26 ± 2.2A 1.96 ± 1.4A 14.7 ± 7.9A 2.3 ± 2.3A 

IFN-gamma 0 ± 0A 4.76 ± 4.8A 10.48 ± 4.5A 10.3 ± 2.4A 

IL-17A 9.88 ± 1.9A 14.7 ± 2.5A 21.9 ± 6.1A 39.5 ± 5.0B 

IL-18 57.35 ± 10A 52.0 ± 9.4A 197.9 ± 87.3A 45.72 ± 21.8A 

1 Data are means ± SEMs; n = 10. Data within the same row without a common letter differ (P < 
0.05). Abbreviations used: DSS, dextran sulfate sodium; IBD, inflammatory bowel disease; IL, 
interleukin; IFN, interferon; Fe, iron; FeSO4, ferrous sulfate; and ULT, ultimine. 
 


