ORIGINAL ARTICLE

RELATIONSHIPS BETWEEN NECTAR PRODUCTION AND HONEY BEE PREFERENCE

MARK P WIDRLECHNER¹ AND NEIL P SENECHAL²

¹United States Department of Agriculture – Agricultural Research Service, North Central Regional Plant Introduction Station, Iowa State University, Ames, Iowa 50011, USA

²Texas A & M University, Department of Soil and Crop Sciences, College Station, Texas 77843, USA

Introduction

A 1989 review of research related to the improvement of nectar production in plants by Shuel²⁶ presents evidence in support of intentional selection of plant genotypes for better nectar production. Such superior genotypes could be of great benefit for both beekeepers and other agricultural producers.

The selection of better nectar-producing plants to improve honey production requires a reliable and efficient system for screening large numbers of candidate plants. Physical measurement of nectar production, using centrifugation²⁸, capillary tubes^{7, 21}, filter-paper wicks¹, or water extraction²⁴, is often feasible; but for plants with large numbers of small flowers, estimates of total nectar production can be very labour intensive and may not accurately measure the amount of nectar available to the honey bees.

The authors have been selecting populations of perennial Labiatae for improved nectar production^{25,30} and have wanted an efficient method to screen large numbers of variable plant populations. As an alternative to direct measurements of nectar production, one can rank populations on the basis of measurements of honey bee visitation. However, this would be effective only if there were a strong positive correlation between nectar production and bee visitation and if accurate bee counts could be performed more easily than direct nectar measurements.

In preliminary field plots, we found that accurate and repeatable bee counts could be obtained more readily than could sufficient data from direct nectar measurements for *Agastache* spp. and *Pycnanthemum* spp. However, the relationship between nectar production and bee visitation remained to be determined. In preparation for experiments to evaluate this relationship in our test populations, we prepared a literature review that serves as the basis for this report. This review examines published reports that evaluate the relationship between nectar production and honey bee preference among different plant populations.

These reports help to answer some questions about the efficiency of honey bees in judging food resources. But there are factors that can vary among plants tested that could interfere with generalizations about bee efficiency. For instance, although one plant may produce more nectar sugar than another, it could have

Bee World 73 (3) 119-127 (1992)

119

flowers shaped to make a bee's feeding more difficult. In such a case, the efficient bee might still choose the plant with less nectar production.

Relationships between nectar production and bee visitation

Forage legumes have been popular experimental organisms for studies of the relationship between nectar production and bee preference because of their agronomic importance and inconsistent seed production. Such studies, however, are often confounded by variation for factors other than nectar production that influence bee visitation, such as ease of tripping²⁶, aroma¹⁷, corolla tube length¹¹, and colour¹³. Keeping these limitations in mind, we identified for analysis ten reports of field studies that examine the relationship between nectar production in forage legumes and honey bee visitation.

Table 1 summarizes the results of these ten reports. Seven reports^{1, 5, 13, 15, 22, 23, 29} indicate a positive statistical relationship between nectar sugar production or nectar volume and honey bee visitation, with three of these^{1, 5, 13} reporting that more than half the observed variability in bee visitation could be accounted for by differences in nectar sugar production. The remaining three reports do not show any statistical relationship. Two^{5, 16} failed to collect data to evaluate the role that differences in floral density can play in bee preference, and one¹⁶ was also confounded by significant differences in floral aroma. One should note, however, that the primary purpose of Loper and Waller's study¹⁶ was to measure the influence of floral aroma on bee preference, not to measure whole-plant nectar production. Differences in floral aroma and in ease of tripping may also have contributed to the lack of a statistical relationship in Jabłoński's report¹². None of these papers reported a significant negative relationship between nectar sugar production and honey bee preference.

There has been great interest in the role that honey bee preference plays in fruit and seed production for plants other than forage legumes. This interest, however, has rarely been expressed in the form of well-designed scientific investigations of the relationship between nectar production and honey bee visitation.

The following paragraphs consider five reports we identified that scientifically test this relationship for plants other than forage legumes. In addition, we found evidence of three other studies suggesting that honey bee visitation is positively correlated with nectar production of *Helianthus annuus* in Hungary³ and in the USA⁸, and of *Vaccinium corymbosum* in the USA^{9, 18}. These reports contain statements supporting such a correlation, but present no data for objective analysis and will not be considered further.

Table 2 summarizes the results of five studies of plants other than forage legumes. Three of these studies indicate a positive relationship between nectar production and honey bee visitation^{2, 10, 27}. The report by Ayers *et al.*² is especially interesting for it is the only study that evaluates selected populations of plants grown exclusively for bees, including *Agastache rugosa, Asclepias tuberosa, Echinops sphaerocephalus, Leonurus cardiaca, Nepeta cataria, Scrophularia nodosa*, and *Trifolium pratense*. The authors examined plants with great variation in nectar production.

120

TABLE 1	l. A summa			ing the relationship betwee nd honey bee visitation.	n nectar production in
Plant species	Citation	Populations evaluated	Year(s) evaluated	Relationship between nectar production & bee preference	Notes
Lotus corniculatus L.	5	6 cultivars	1978–79	Strong positive correlation between total number of flowers in test plot and aggregate bee visitation, $r = 0.95^{**}$; positive correla- tions between total number of flowers and bee visita- tion within varieties, $r = 0.74^{**}$ to 0.94^{**} ; no cor- relations presented to measure bee preference among varieties.	No significant differences in nectar sugar per floret; varietal differences in nectar production based on differences in total number of florets.
Lotus corniculatus L.	22	8 cultivars	1979	Honey bee visitation among cultivars was positively correlated with number of umbels per plant, $r = 0.66$, and total nectar sugar per plant, $r = 0.55$.	
Medicago sativa L.	12	15 cultivars	1982–83	Reported no significant correlations in 1982; in 1983, total insect density among cultivars was posi- tively correlated with nec- tar sugar yield, r = 0.57*.	We tested for a relation- ship between honey bee densities and nectar sugar yield and found no signi- ficant correlations for either year.
Medicago sativa L.	13	26 clones	1965	Field attractiveness of clones to honey bees cor- related positively with nectar production, r = 0.77**, and with nectar sugar concentration, r = 0.84**.	

۰. ۱

(, '

121

TABLE 1 Continued Plant species	Citation	Populations evaluated	Year(s) evaluated	Relationship between nectar production & bee preference	Notes
Medicago sativa L.	16	7 clones	?	No siginificant correlation between nectar sugar production and honey bee visitation.	Only reported on measure- ments taken on three days; used cut inflorescences to measure bee preference, eliminating differences in flower number; study was designed to test differences in in floral aroma.
Medicago sativa L.	23	16 clones	1947	Field attractiveness of clones to honey bees was correlated positively with nectar sugar production, r = 0.57*.	
Medicago sativa L.	29	2 selected lines from a single population.	1982–84	Line selected for high nectar volume had over twice the nectar produc- tion and over 35% higher honey bee density than the line selected for low nectar volume.	Data on nectar production were taken twice a day for seven days over one, two- week period. Honey bee densities were measured every two hours between 08.00 h and 18.00 h. In a personal communication, L R Teuber reported a correlation of r = 0.50** between nectar sugar and honey bee density.
Onobrychis viciifolia Scop.	15	1 cultivar	1966–68	An F-test was used to show highly significant, posi- tive effects (P << 0.01) of nectar volume and nectar sugar concentration on honey bee density.	A single cultivar was evaluated at two sites on 322 occasions over 3 years.

TABLE 1 Continued Plant species	Citation	Populations evaluated	Year(s) evaluated	Relationship between nectar production & bee preference	Notes
Trifolium pratense L.	-	5 strains	1943	Of the five strains tested, the strain 'Corl' was pre- fered by honey bees and had the highest nectar sugar production and the highest flower density.	We tested for a relation- ship between honey bee densities and nectar sugar yield among strains and found a highly significant correlation, r = 0.86**.
Trifolium pratense L.	Q	8 cultivars	1974	No evident correlation between nectar sugar content or nectar volume per flower and number of insect visits.	There was no report of data on floral density.
*, ** statistical significance at the $P \leq 0.05$ and $P \leq 0.01$ levels, respectively.	ice at the $P \leq 0$	0.05 and <i>P</i> ≤ 0.01 l€	evels, respective	ely.	

5

The strength of the correlation in their study is particularly high (table 2), suggesting that weaker correlation coefficients in other studies may be associated with less variability in nectar production among plants evaluated. This was clearly evident in Eriksson's study of *Trifolium pratense*⁶, in which nectar production varied little among the eight cultivars examined.

Although there were large differences in nectar volume and sugar concentration in nine Labiatae (Coridothymus capitatus, Melissa officinalis, Phlomis viscosa, Rosmarinus officinalis, Salvia fruticosa, Salvia hierosolymitana, Salvia judaica, Satureja thymbra, and Stachys aegyptiaca) evaluated by Dafni et al.4, these differences were not well correlated with bee preference. This may have resulted because the study did not measure the quantity of nectar actually available to honey bees. Four plant species had corolla tubes at least 9 mm long, and these plants were rarely visited by honey bees. Of the five species with shorter corolla tubes, three (C. capitatus, R. officinalis, and Stachys aegyptiaca) showed highly significant correlations between the number of open flowers and honey bee visitation. The authors did not report on the relationship between the number of open flowers and total nectar sugar production, but their data suggest that this would be a worthwhile area for investigation. If one assumes that the nectar volume and sugar concentration of individual flowers of these three species do not vary significantly with flower number, there appears to be a linear relationship between total nectar-sugar production and honey bee visitation.

The only study of plants other than forage legumes that showed no relationship between nectar sugar and bee visitation is that by Mayer *et al.*²⁰ for *Malus* spp. The cultivars studied had

Plant species	Citation	Populations evaluated	Year(s) evaluated	Relationship between nectar production & bee preference	Notes
Fragaria x ananassa Duchesne	27	6 cultivars	1982–84	Strong positive correla- tion between the number of honey bees working per 1000 flowers and the combined quantity of nectar sugar and pollen in those flowers, $r = 0.95$ (signifi- cance level not reported).	Honey bee densities and pollen and nectar sugar production were also ex- pressed on a per hectare basis. We performed re- gression analyses on these data and found only a sig- nificant correlation between nectar sugar per hectare and bee density among cultivars, r = 0.49*.
Helianthus annuus L.	10	male-fertile and male- sterile lines of 2 varieties	1982	Honey bee densities cor- related positively with quantity of nectar secreted, $r = 0.08$ and 0.88^* , and with sucrose concentration, $r = 0.76$ and 0.62.	There was no report of data on floral density.
Malus spp.	20	39 cultivars	1982–83	Only characteristics of flower colour were signi- ficantly correlated with honey bee density and behaviour. No signficant correlations were found between nectar sugar production and honey bee visitation.	There was no report of data on floral density.

TABLE 2. A summary of field studies examining the relationship between nectar production and honey bee

TABLE 2 Continued Plant species	Citation	Populations evaluated	Year(s) evaluated	Relationship between nectar production & bee preference	Notes
Nine Labiatae species	4	9 species	1984–85	Strong positive correlation between number of open flowers and honey bee visi- tation in 1985 for Corido- thymus capitatus L., r = 0.77**, Rosmarinus officinalis L., $r = 0.51**$, and Stachys aegyptiaca Pers., $r = 0.71**$. No relationship between number of open flowers and total nectar sugar production was established.	Four species had corolia tubes at least 9 mm long. These species were rarely, if at all, visited by honey bees.
Seven different genera	2	8 populations	1986	Strong positive correlation between nectar sugar yields and honey bee visitation for 7 of 8 test popula- tions, $r = 0.98**$.	Only the globe thistle, Echinops sphaerocephalus L., deviated from the observed relationship. This may be due, in part, to the reaction of foraging bees to the unusual morphology of this plant's inflorescence.
*, ** statistical significar	nce at the P ≤	≤ 0.05 and <i>P</i> ≤ 0.01	levels, respecti	vely.	

, '

125

. .

white, pink, red, or rose flowers, and visible flower colour and UV reflectance overrode any possible effect of nectar production on bee behaviour. This study supports Mayer's earlier observation¹⁹ that honey bees foraging on white apple blossoms avoid pink and red flowers, which is probably because of the wavelengths of light that bees perceive¹⁴.

Conclusion

Published reports of fifteen field studies investigating possible relationships between nectar production and honey bee visitation were analysed. Ten studies showed a positive relationship between nectar volume or nectar sugar production and bee visitation. Of the remaining five studies, three did not consider the influence of floral density on bee preference^{6, 16, 20}. Variation in floral aroma complicated results in studies of *Medicago* by Loper and Waller¹⁶ and of *Helianthus* by Fonta et al.¹⁰. Differences in flower colour were important confounding factors in *Malus*²⁰ and *Medicago*¹⁶. And differences in floral morphology strongly influenced the results of Dafni et al.⁴ for Labiatae.

Researchers wishing to use bee count data to infer differences in nectar production must answer the following questions:

- 1. Do the plants to be evaluated vary widely in nectar production ? If they do not, any differences observed in bee preference will likely be due to factors other than nectar production. These factors may be less important in no-choice situations than they are in choice tests.
- 2. Do the plants differ in availability of nectar to honey bees ? Although plants with long corolla tubes may produce large quantities of nectar, other insect visitors may exclude honey bees from these plants.
- 3. Do some of these plants emit undesirable aromas or display flower colours that bees cannot perceive ? Such variation can confound results.
- 4. Are bees using these plants primarily for nectar, or is pollen collection important ? If pollen collection is important, bee preference may be more closely related to pollen production than to nectar production.

If these questions can be satisfactorily answered, researchers may be justified in using bee count data as an alternative to direct measurements of nectar production to rank plant populations. Whether or not there is a strict relationship between nectar production and bee visitation, bee count data are an essential part of any programme to select superior bee forage.

Acknowledgements

This article constitutes Journal Paper No. J-14482 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project 1018. The authors thank George Ayers, Daniel Mayer, Larry Teuber, and William Roath for their useful critiques of this paper.

References

1. ANDERSON, E J; WOOD, M (1944) Honey bees and red clover pollination. *American Bee* Journal 84: 156–157.

 AYERS, G S; WROBLEWSKA, A; HOOPINGARNER, R A (1991) Perennial diversionary planting designed to reduce pesticide mortality of honey bees in apple orchards. American Bee Journal 131: 247–252.

- BENEDEK, P; MANNINGER, S (1972) [Pollinating insects of sunflower and the activity of honeybees on the crop.] Növénytermelés 21: 145–157 (in Hungarian).
- DAFNI, H; LENSKY, Y; FAHN, A (1988) Flower and nectar characteristics of nine species of Labiatae and their influence on honeybee visits. Journal of Apicultural Research 27(2): 103–114.
- DEGRANDI-HOFFMAN, G; COLLISON, C H (1982) Flowering and nectar secretion as they relate to foraging activity in birdsfoot trefoil (Lotus corniculatus). Journal of Apicultural Research 21(4): 199–207.
- ERIKSSON, M (1979) Nectar production of different cultivars of red clover. Swedish Journal of Agricultural Research 9: 107–112.
- FAHN, A (1949) Studies in the ecology of nectar secretion. Palestine Journal of Botany Jerusalem Series 4: 207–224.
- FELL, R D (1986) Foraging behaviors of Apis mellifera L. and Bombus spp. on oilseed sunflower (Helianthus annuus L.). Journal of the Kansas Entomological Society 59: 72–81.
- FILMER, R S; MARUCCI, P E (1963) The importance of honeybees in blueberry pollination (sic). Proceedings of the Annual Blueberry Open House 31: 14–21.
- FONTA, C; PHAM-DELÈGUE, M-H; MARILLEAU, R; MASSON, C (1985) Rôle des nectars de tournesol dans le comportment des insects pollinisateurs et analyse qualitative et quantitative des éléments glucidiques de ces sécrétions. Acta Oecologica et Oecologia Applicata 6: 175–186.
- JABLOŃSKI, B (1975) [Comparison of short corolla tube population of red clover with common cultivated varieties.] Pszcze/nicze Zeszyty Naukowe 19: 31–38 (in Polish).
- JABŁOŃSKI, B (1986) [Pollination and yielding of 15 varieties of alfalfa depending on abundance of blooming and nectar secretion.] *Pszczelnicze Zeszyty Naukowe* 30: 207–220 (in Polish).
- KAUFFELD, N M; SORENSEN, E L (1971) Interrelations of honeybee preference of alfalfa clones and flower color, aroma, nectar volume, and sugar concentration. Kansas Agricultural Experiment Station Research Publication 163. Kansas State University, Manhattan, USA; 14 pp.
- KEVAN, P G; BAKER, H G (1983) Insects as flower visitors and pollinators. Annual Review of Entomology 28: 407–453.
- KROPAČOVA, S; HASLBACHOVA, H (1970) A study of the honeybee work (Apis mellifera L.) on sainfoin plants (Onobrychis viciaefolia

s. sativa Thell.). Sborník Vysoké Školy Zemědělské v Brně (Řada A) 18: 71–82. 16. Loper, G M; Waller, G D (1970) Alfalfa flower

- LOPER, G M; WALLER, G D (1970) Alfalfa flower aroma and flower selection by honeybees. Crop Science 10: 66–68.
- LOPER, G M; WALLER, G D; BERDEL, R L (1974) Olfactory screening of alfalfa clones for uniform honey bee selection. *Crop Science* 14: 120–122.
- 18. MARUCCI, P E (1966) Blueberry pollination. American Bee Journal 106: 250–251, 264.
- MAYER, D F (1984) Behavior of pollinators on Malus. Proceedings of the 5th International Symposium on Pollination, Les Colloques de l'INRA 21: 387–390.
- MAYER, D F; JOHANSEN, C A; LUNDEN, J D (1989) Honey bee foraging behavior on ornamental crabapple pollenizers and commercial apple cultivars. *HortScience* 24: 510–512.
- 21. McGREGOR, S E; BUEHRER, T F (1952) A nectarometer. Journal of Economic Entomology 45: 895.
- MURRELL, D C (1980) Nectar production and floral attractiveness to honeybees of varieties of birdsfoot trefoil (Lotus corniculatus L.). M Sc thesis; University of Guelph; Canada.
- PEDERSEN, M W (1953) Seed production in alfalfa as related to nectar production and honeybee visitation. *Botanical Gazette* 115: 129–138.
- ROBERTS, R B (1979) Spectrophotometric analysis of sugars produced by plants and harvested by insects. *Journal of Apicultural Research* 18: 191–195.
- SENECHAL, N P (1990) Evaluation of native perennial Lamiaceae as sources of nectar for honey bees. M Sc thesis; Iowa State University; USA.
 SHUEL, R W (1989) Improving honey produc-
- SHUEL, R W (1989) Improving honey production through plant breeding. Bee World 70(1): 36–45.
- SKOWRONEK, J; JABLOŃSKI, B; SZKLANOWSKA, K (1985) [Influence of pollinating insects on fruit setting of 6 varieties of strawberry (Fragaria grandiflora Ehrah.).] Pszczelnicze Zeszyty Naukowe 29: 205–229 (in Polish).
- SWANSON, C A; SHUEL, R W (1950) The centrifuge method for measuring nectar yield. Plant Physiology 25: 513–520.
- TEUBER, L R; THORP, R W (1987) The relationship of alfalfa nectar production to seed yield and honey bee visitation. Proceedings Alfalfa Seed Production Symposium; 1987: 25–30.
- WIDRLECHNER, M P (1987) Mint family as plants for honey bee forage. Purdue Agricultural Experiment Station Bulletin 530: 66–76.