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Abstract

We present a general, dynamic model of within-season harvesting competition in a fish-
ery managed with individual transferable quotas. Markov-Perfect equilibrium harvesting
and quota purchase strategies are derived using numerical collocation methods. We identify
rent loss caused by a heterogeneous-in-value fish stock, congestion on the fishing ground,
revenue competition and stock uncertainty. Our results show that biological, technological
and market conditions under which rents will be dissipated in a standard individual trans-
ferable quota program are fairly special. These findings provide new insights for designing
rights-based programs capable of generating resource rent in marine fisheries.
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1 Introduction

Growing evidence finds that property rights-based management approaches, such as individual
transferable quotas (ITQs), offer important advantages over traditional fisheries management,
which has relied on input controls to prevent overfishing, e.g., vessel entry limits, gear restric-
tions, time and area closures (Committee to Review Individual Fishing Quotas, 1999; Grafton,
et al., 2006; Costello, Gaines and Lynham, 2008). Rights-based approaches better align the
incentives of individual resource users with those of managers and can eliminate common-pool
inefficiencies which otherwise plague fishery resources. Some authors point out, however, that
conditions may exist under which ITQs do not fully correct all externalities, and therefore, do
not generate first-best economic outcomes.! These conditions, hereafter unattended production
externalities, include a heterogeneous-in-value fish stock, congestion on the fishing ground, and
situations where fishermen must gather information about the true location of fish. With a
standard ITQ design, resource users are granted rights to harvest a portion of a common fish
stock during a set production period. If the stock is heterogeneous in value, an inefficient race
to fish can ensue as fishermen attempt to harvest the highest-valued units before rivals (Boyce,
1992; 2001; Costello and Deacon, 2007). It has been argued that a single quota trading price
cannot reflect both the shadow price of the harvest constraint and the price of congestion on the
fishing ground, and therefore congestion externalities can continue to dissipate economic rent in
ITQ fisheries (Boyce, 1992, 2001; see Danielsson 2000 for an opposing view). Lastly, Costello
and Deacon (2007) suggest rent dissipation can arise in decentralized ITQ fisheries if fishermen
engage in redundant, costly search for information. The authors recommend granting enhanced
or “fully delineated” property rights to fishery resources to correct the problems and restore first

best economic outcomes.

While considerable progress has been made in understanding the role of unattended production
externalities in ITQ fisheries, several unresolved questions remain. What factors cause hetero-
geneity in stock value and do all lead to rent dissipation? How important are congestion effects?

To what extent will a well-functioning quota trading market offset the ill-effects of unattended



production externalities? And what design features should be adopted to restore full economic

rents in [TQ-managed fisheries?

An obstacle to answering these and other questions is the complex — strategic, dynamic and
stochastic — setting in which unattended production externalities reside. Game-theoretic mod-
els and solution concepts are required for predicting fishing behavior and market outcomes.
Unfortunately, dynamic games of common pool resource extraction are difficult to solve analyti-
cally. As a consequence, most previous research has relied on heuristic arguments for generating
results, or have studied restrictive models to understand rent dissipation due to unattended

production externalities (Fell, 2010 is an exception).

We use numerical methods to solve for Markov Perfect Nash (closed-loop) equilibria to a gen-
eral model of a dynamic, within-season fishing game which nests models of Clark (1980), Boyce
(1992), and others who have espoused the problem of unattended externalities in ITQ fisheries.
Our approach allows direct observation of harvest patterns, quota trading outcomes, and rent
loss over a range of biological and market conditions. As such, we are able to provide a fairly
complete picture of the precise biological, technological and market factors that cause rent loss
in ITQ-managed fisheries. The insights are important for improving the design of quota man-

agement programs in fisheries.

Our results confirm early insights by Clark (1980a), Boyce (1992), and others, that suggest
ITQs will not fully remove the incentives to race to fish. We show, however, that the incentive
to race and the accompanying rent losses arise under fairly special structural properties for the
harvest technology and stock conditions. We show how the extent of rent losses depends on
the cost-stock elasticities and economies of harvest size. Both must be large for significant rent
losses to persist. Additional results show that rents are not dissipated due to congestion effects
alone, a result argued in Danielsson (2000) and later questioned in Boyce (2001). We also show
that marketing competition in the presence of finitely elastic fish demand does not alone cause

rent dissipation in ITQ fisheries. In fact, finitely elastic demand for fish provides incentives to



smooth the harvest throughout the fishing season, and effectively counters the incentive to race

to fish.

We present a policy simulation to identify the impacts of modifying standard ITQ designs, to-
ward fully delineated property rights, as has been suggested in the literature. Our simulation
shows the potential downside of delineating harvest rights temporally, i.e., restricting the calen-
dar period during which the harvest right can be used to manage temporal competition among
fishermen. We find that such restrictions can reduce total rents if they limit the ability of fish-

ermen to respond to unanticipated productivity shocks.

Our results provide guidance for managers who must decide, based on measurable characteris-
tics of a fishery, when rent dissipation is likely to persist and when modification/enhancement
of the harvest rights is warranted. Our results show that it may be difficult to identify rent
dissipation due to unattended production externalities in practice. This is due to the finding
that accelerated harvests early in the fishing season are not evidence of rent dissipation. Ac-
celerated harvest can be an optimal response to structural properties of the harvest technology
or capital opportunity costs. We therefore caution against I'TQ rule modification until key pa-
rameters/attributes, e.g., the cost-stock elasticity parameter and the cost elasticity of size are

measured and deemed empirically important.

Our paper is organized as follows. Section 2 reviews the literature on unattended production
externalities in rights-based fisheries. Section 3 presents our model and describes the numerical
methods used to solve for a Markov-Nash equilibrium of our within-season fishing game. Results
are presented in section 4. Section 5 summarizes our findings, and discusses implications for

improving the design of rights-based fisheries management programs and extensions.



2 Externalities in ITQ fisheries

Christy (1973) and Maloney and Pearse (1978) proposed using quantitative fishing rights, or
individual transferable quotas (ITQs), to address common-pool inefficiencies in commercially
exploited marine fisheries. Rights-based approaches are currently used throughout the world.
Mounting empirical evidence suggests that rights-based approaches offer important advantages
over traditional management, which relies on input controls to conserve fish stocks (see Grafton,

et al., 2006; Costello, Gaines and Lynham, 2008).2

Clark (1980a) characterized the performance of alternative management instruments, effort re-
strictions, taxes, aggregate and individual vessel quotas in replicating socially optimal (econom-
ically efficient) harvesting behavior and economic rent in a decentralized fishery. In his analysis
of ITQs, Clark (1980a) presented a seasonal model, and to simplify the analytical presentation,
assumed that no natural stock growth occurred while harvesting operations were underway.
Under a fixed total quota and with no natural stock growth, the stock size necessarily declined
during the fishing season from its initial size to the end of season escapement level, which by
assumption was equal to the initial stock size less the harvested quota. As is standard in the
resource economics literature, Clark assumed the harvest technology exhibited a stock effect,
where the productivity of fishing effort is greater when the stock size is large. One implication
of his model is that as the total quota is extracted and the stock size declines, the net profit per
unit of harvest, also the residual profit per unit of quota, also declines. Clark (1980a, p.1124)
correctly observed that a fisherman operating under an ITQ regulation could lower the cost of
harvesting a fixed quota allocation “by concentrating his catch at the early part of the season
when the stock level is high.” He also pointed out that, “This situation is suboptimal for the
fishery as a whole, since vessel i’s catches have an external influence on all vessels subsequent
catch rates.” Clark discussed briefly an extension to the case of congestion externalities and con-
cluded that ITQs would not replicate first best outcomes in the presence of stock and congestion
effects. Clark did not rigorously derive his results regarding the implications of externalities,

and understood full well that to do so would require solving an N-player differential game. He



left this challenging exercise for future research (see also, Clark, 1980b).

Boyce (1992) revisited the issue of unattended production externalities in ITQ fisheries. He
introduced the N player differential game that Clark (1980a) alluded to. In the Boyce (1992)
model autonomous agents simultaneously chose effort rates and quota purchases with the goal
of maximizing individual single season fishing profits. As in Clark (1980a), Boyce featured
a declining within stock and unit profits which results from the assumption that no-natural
growth occurred during the fishing season. Boyce (1992) also assumed a congestion externality
which operated through a primal production function. He assumed the harvest of a represen-
tative fisherman increased with the fisherman’s own effort allocation and the size of the fish
stock, but decreased with the effort allocations of other fishermen. The model featured both
stock and congestion externalities. Boyce also did not derive the Nash equilibrium of the dif-
ferential game in the paper but rather derived results by comparing necessary conditions for
the optimal and equilibrium play of the game. Boyce (1992) concluded that the equilibrium
trading price of quota would not reflect differences in the value of a heterogeneous fish stock,
and that ITQ management will not replicate socially optimal harvesting behavior and rent in

the presence of stock and/or congestion externalities (see Theorem 1 and Corollary 1, page 399).

Danielsson (2000) challenged Boyce’s (1992) claim that congestion externalities alone precluded
socially optimal outcomes in an ITQ fishery. Danielsson’s (2000) article suggests that Clark
(1980) and Boyce (1992) did not correctly incorporate the quota constraint and a well-functioning
quota market in the analysis of fishing behavior. Danielsson (2000) presented his arguments in a
continuous time model which could not reflect stock externalities caused by a declining (hetero-
geneous) fish stock. Boyce (2001) offered a response to the Danielsson (2000) critique, reiterating
his earlier claim that congestion externalities alone were, in fact, enough to cause a divergence

between socially optimal and ITQ outcomes.

Costello and Deacon (2007) argue that rent dissipation, due to unattended externalities in ITQ

fisheries, may be common in real world fisheries. The authors find that “even with homoge-



neous fishermen, no stock externalities and no congestion externalities, property rights assigned
to harvest (ITQs) may not secure all rents in a fishery.” 2 Rents are dissipated as competing
fishermen race to the higher valued sub-stock at earlier than the optimal date. Costello and Dea-
con (2007) consider a new avenue for rent dissipation in ITQ fisheries, which is uncertainty over
the true spatial location of the fish stock. The authors characterize the gains from coordinating
search efforts among fishermen and show that such efforts can avoid redundant searches that
occurs under decentralized ITQ management. The authors call for a more refined assignment of

property rights to correct the inefficiencies identified in their model.

Fell (2010) studies within-season fishing behavior in the presence of stock effects, exogenously
driven time-dependent harvesting costs, and ex-vessel fish prices that depend on aggregate har-
vest rates. Fell (2010) is the first to consider a price competition externality, i.e., fishermen in
the model have an incentive to slow their individual harvest rates to avoid market gluts and low
fish prices. The externality occurs because the benefits of higher prices flow to all fishermen.
A second innovation is that Fell (2010) numerically derives the Nash equilibrium to a within-
season fishing game. Fell (2010) uses a genetic algorithm to identify a symmetric, open-loop
Nash equilibrium to the N-player differential game. He finds that rent dissipation persists under
an ITQ management program, due to the simultaneous presence of stock effects and an inelas-
tic demand for fish. Fishermen who would otherwise prefer to slow harvest and maintain high
dockside prices have incentive to harvest early when stock size is largest and harvesting costs

are lowest.

Bisack and Sutinen (2006) report empirical estimates of rent loss due to unattended production
externalities in the New Zealand scallop fishery.* The authors compare a total cost minimizing
harvest plan with a solution to a within-season harvest game that is derived numerically. The
authors estimate that unattended production externalities caused losses in the range of 9.6%

and 20.2% in the 1996-97 fishing seasons.’

Recent empirical work by Huang and Smith (2012) measures the impacts of stock and congestion



externalities in a North Carolina shrimp fishery which is managed under open access. The au-
thors find that shrimp fishermen dissipate rents, by an estimated 17% of annual fishery revenue,
by harvesting shrimp too early in the fishing season; the value of stock would increase if left to
grow during the season. Huang and Smith (2012) suggest temporally delineated effort controls
could be used to dampen the race to fish and generate economic rent. Whether similar outcomes
could be achieved under ITQ management, and whether similar gains might be expected in other

fisheries remains an open question.

Results from the above literature impact the analysis that follows. First, there is unresolved
debate as to which factors can cause rent dissipation, the magnitude of losses, and the policy
prescriptions for restoring economic rent in ITQ fisheries. The question of whether conges-
tion externalities alone are sufficient to cause rent dissipation in ITQ fisheries is an example
(Danielsson, 2000; Boyce, 2001). Second, with the exception of Fell (2010), past researchers
have relied on heuristic arguments and/or simplified models of behavior in an ITQ fishery to
characterize the impacts of unattended externalities. The reason is that analytical solutions to
general N-player differential games, in the presence of multiple externalities, are unavailable.
The sections that follow introduce a general within-season model of an ITQ fishery and use
numerical collocation methods to derive Markov Perfect (closed-loop) Nash equilibrium harvest
patterns and rent outcomes. We are aware of the trade-offs inherent in our numerical approach,
but contend that (1) the added insights from directly observing equilibrium play in a general,
dynamic setting, and (2) the lack of analytical alternatives warrant their use.® We describe the
solution algorithm and report results from a sensitivity analysis in the appendix. Additional
details for the use of numerical methods in dynamic games can be found in Miranda and Fackler

(2002), Judd (1998), and Vedenov and Miranda (2001).

Before we introduce the model, we briefly review the role of time in our model. Much of the anal-
ysis of unattended production externalities in ITQ fisheries is conducted in continuous time. We
choose a discrete time model for two reasons. First, neo-classical production theory and concepts

related to inefficiency have been developed, and are best-understood in a discrete (fixed) time



production model (Luenberger 1995). Second, strategic harvesting behavior in continuous time
must be modeled as a differential game. Solutions to Markov (closed-loop) differential games
are often difficult to obtain even with numerical methods (Dockner, Jgrgensen, Van Long and
Sorger, 2000). The discrete time framework is less suited to examination of growth processes in
marine fisheries. However, this shortcoming is addressed with simplifying assumptions that do

not discredit our main results.

3 Model

We consider a single-stock fishery. The fishery manager issues permits to harvest a specified
portion of the stock during a single, fixed length calendar period, hereafter, a fishing season.

The fishing season is divided into ¢ = 1,...,T" equal length production periods.

The aggregate seasonal quota is denoted y, and is delineated in the same units as the stock
and harvest. The determination of the optimal harvest level is a central focus of the fisheries
management literature. We do not consider these factors here; y is exogenous. Our measure of

economic performance is the net profit from harvesting y from the sea.

There are N > 1 fishermen, each operating a single fishing vessel. We assume each fisherman
acts independently and non-cooperatively in pursuit of their own private profit objective. We
rule out the possibility of a single fisherman purchasing the entire quota and internalizing all
externalities. We do not necessarily agree with this characterization of fishing behavior in ITQ
fisheries, but maintain the assumption to be consistent with previous literature. The assumption

is revisited in the concluding section.

The size of the fish stock at the beginning of period t is denoted z;. We simplify our model and
assume no growth, reproduction, or mortality occurs while harvesting operations are underway.

We use h;; to denote the harvest of fisherman ¢ in period ¢. Total harvest in the period is



hy = Zi\;l hit, and period t escapement is s; = x; — hy. In all periods and for all fishermen,
harvest cannot exceed quota holdings. We use y; ; to denote the quantity of unfished quota held
by fisherman 7 in period ¢; the quota regulation implies h;; < y;¢, V ¢,t. There is no cheating

in our model. The quota transition equation for fisherman i is given as,
Yit+1 = Yit — hig, t=1,2,...,T —1. (1)

The initial quota allocation, y; 1 for fisherman 4, is determined in a pre-season market which we
describe shortly. Unfished quota is valueless following the season. Note that mid-season quota
adjustments are considered in the stochastic version of the model; mid-season quota adjustment
is not relevant for the deterministic case since all harvests along the equilibrium path are known
by rational agents. The maximum number of production periods is fixed at 7. However, fish-
ermen choose the number of periods in which they are active, i.e., periods in which harvest are
positive. For example, a fisherman may choose to cease fishing mid-season, in period ' < T, in

which case harvest h;; =0, V¢t > t.

The within-season evolution of the fish stock, in the general case, is governed by a stochastic

logistic growth function:
Tt41 :§t+18t[1+’r(]—_8t/l{)]’ t:1727"'7T_]-5 (2)

with the initial stock size, x1, given. In the above expression r is the intrinsic growth parameter,

 denotes carrying capacity, and 41 € [£,£] where 0 < § < & < ¢ < oo is a random shock

unobservable in period t.

Harvesting cost for fisherman ¢ in period ¢ takes the general form,
Ci(hi,ta h—iﬂfa Tt, Nta t)?

where h_;j; =) ki hj: is the period ¢ harvest of all fishermen other than ¢. Costs are assumed



to be strictly increasing and convex in a fisherman’s own harvest, and non-increasing in the
stock size. Costs may vary exogenously throughout the season, for example, if stocks become
more or less concentrated over time (e.g., Costello and Deacon, 2007). The larger is total harvest
in the period, the smaller is the average stock size during the period and thus the higher are
the harvesting costs for all fisherman. This is the source of the stock externality on our model.
Following Smith (1968), we assume congestion externalities arise as vessels interfere with each
others harvesting operations on the fishing ground; ¢;(-) is assumed to be non-decreasing in N

for N > 1.

Lastly, the price of fish in period ¢ is a non-increasing function of the period’s harvest h;. We
also allow the price to vary exogenously across periods to reflect the possibility of market-driven
external changes in stock value (Costello and Deacon, 2007). The inverse demand for harvested

fish is denoted p;(hy).

The goal of each fisherman is to maximize seasonal expected profits (there is no discounting).

Operating profits, net of quota purchase costs, are given as,

T

E Z [pt(ht)hi,t — ¢i(hit, h—i ¢, e, Ny, t)] , (3)
=1

where E denotes expectations.

3.1 Functional forms

Implementing our numerical algorithm requires we specify functional forms for the costs and
inverse demand functions. We specify the harvest cost function as (period subscripts are omit-
ted),
-8
c(hi, h—i, @, N, 1) = ay(N)h (m —0.5(h; + h_i)> , (4)
where n > 1 and 8 > 0. The parameter, 3, measures the percentage change in harvest cost

due to a percentage change in the midpoint of the period’s common stock size. The parameter
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a;(N) > 0 takes the form

ai(N) = a+721(h,i > 0), (5)

—1
where v > 0, and ) _,I(h_; > 0) is an indicator function set equal to the number of rival
fishermen with strictly positive harvest during the period. As required, harvest costs increase

with the number of fishermen present on the fishing ground.

Alternate parameterizations in equation (4) allow us to capture a range of structural properties
for the harvest technology. Setting 5 = 0 turns off the stock effect, and setting v = 0 shuts
down the congestion effect. If n > 1, the technology exhibits per-period diminishing returns to

harvest size.

To be consistent with empirical observation of vessel-level harvesting technology, and a finite
equilibrium ITQ fleet structure, as we discuss shortly, we require a harvest technology that ex-
hibits variable returns to size at the seasonal level. Unless otherwise noted, we assume fishermen
incur a strictly positive fixed cost if they are active, where active implies they hold positive quota
and have positive harvests during the fishing season. The seasonal cost plays a limited role in

the analysis below, and therefore no new notation is introduced.

The inverse demand for fish follows:
p(ht) =p— why.

Exogenous demand shocks and changes in harvesting costs are considered by allowing parame-
ters, e.g., stock effect parameter 8 and the inverse demand choke price p, to vary across periods.
Unless otherwise stated a quadratic in harvest cost function (7 = 2) is considered. Much of the
analysis below considers a constant fish price; p; = p. Hereafter, we set kK = 1 to normalize the

stock size on the interval [0, 1].

Our general model nests previous models, and is able to isolate the various externalities that have

11



appeared in earlier literature. Deterministic stock transitions (Bisak and Sutinen, 2006)) arise
under a degenerate shock distribution with Prob(§ = 1) = 1,V¢. Declining stock size (Clark,
1980a; Boyce, 1992, 2001; Fell, 2010), and thus heterogeneous-in-value stock if stock effects are
present, is obtained by setting » = 0. The corresponding stock transition equation becomes,
Tiyl = S¢ = Tt — va hit. Our specification for the inverse fish demand captures marketing
competition (Fell, 2010). Exogenous changes in harvesting costs or harvest value (Costello and
Deacon, 2007) are easily considered by allowing parameters of the cost and demand functions
to vary throughout the fishing season. We are able isolate stock and congestion externalities
through parametric restrictions. We are also able to examine the role of alternate structural
assumptions for the harvest technology, e.g., varying returns to size. Lastly, our numerical
methods do not require that we impose symmetric equilibria or strictly positive harvests in each
period. With zero harvest allowed the length of the harvest period is endogenous in the model
as in Fell (2010). The results below indicate that the generality and flexibility in the model is

important.

3.2 Dynamic fishing game

At the beginning of each period, fishermen simultaneously choose quota-constrained harvest
quantities. Each fisherman has full knowledge of the current period stock size and the quota
holdings of all fishermen. In the case of stochastic stock transitions, the current period shock is
known but future shocks are unobserved and follow a known distribution. The state variables
in the game include the current period stock size, a fisherman’s own quota holding, the quota

holdings of rival fishermen, and the harvesting period.

We focus on pure strategy Markov perfect equilibrium (MPE), which exhibit the properties
of dynamic consistency and subgame perfection. We therefore emphasize strategic interaction
between fishermen through the evolution of state variables, which in our model include the fish
stock size and the unfished quota holdings of fishermen. Open loop equilibria, or path strategies,

which specify harvests as functions of time alone are not suited for analysis of stochastic stock
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evolution which is an important characteristic of fisheries and a key component of our model.”
Let y+ = (y1¢, ..., Yyn,) denote the vector of unfished quota at the beginning of period t. We seek
a seasonal, expected net profit maximizing harvest strategy which maps the N + 2-dimension
state vector (x¢,y:,t) to a harvest quantity. The equilibrium harvest policy function prescribes,
for each fisherman and every feasible state, a best harvest response to the harvest choices of
other fishermen. Analytical solutions to the MPE harvest policy are not available. The algo-

rithm used to numerically solve for value functions and MPE strategies is described in appendix

A.

The final step in defining equilibrium play is to specify the initial values of the state vector. The
starting period and initial size of the fish stock are given exogenously. The initial quota holdings
for each fisherman are determined as the outcome of pre-season quota trading. The value of the

initial quota allocation y; 1 for fisherman ¢ is,

T

Vi(x1,y1,1) = mar E [pt(ht)hi,t_Ci(hibhfi,taftaNt)]a (6)
(higlh—ie) 4

subject to the quota constraint and state transition equations (1) and (2). The equilibrium

initial quota allocation is then defined as,

Y7 = argmaz <Vl($1,y1, 1)+ Va(zy, g1, 1) + .. + Vv (e, 0, 1)>' @
SN yia=y

3.3 Additional considerations

Technology

Agents in our model operate a single fishing vessel. Clark (1980a) recognized that a variable
returns technology was necessary for a meaningful discussion of equilibrium fleet size in an I'TQ
fishery. If the technology exhibits increasing returns over the range of harvest [0,y], the Nash
equilibrium fleet will be made up of a single fisherman/vessel. With a single fisherman there
can be no externality and therefore no rent dissipation under decentralized I'TQ management.

On the other hand, if the harvest technology exhibits decreasing returns over the range [0, y],

13



adding one more vessel to the fleet will always lower average costs, and increase the RHS of
equation (7).% In this case, the equilibrium fleet size will include the entire population of vessels.
For these reasons the analysis that follows will focus attention on a variable returns technology

at the seasonal level.

Fleet structure

The expressions in equations (6) and (7) can be used to identify the equilibrium fleet structure in
the ITQ fishery, along with the equilibrium quota price. Divide the population of fishermen into
those who are active (holders of positive quota) in the ITQ equilibrium as defined in equation
(7), and inactive fishermen (fishermen with zero quota). Denote the subset of active fishermen
in the population as N. The maximum that an inactive fisherman can pay to enter the fishery
is, Vj(z1,71,1),j ¢ N, where the notation y; emphasizes that the initial quota allocation has
changed to accommodate the additional participant. Entry can occur only if the entrant j can
profitably purchase quota from incumbents. This requires a gain from trade, which contradicts
the original definition of y1°. Similarly, an incumbent can profitably exit the ITQ fishery only
if some quota buyer is willing to pay to hold the quota. Buyers may include other incumbents
or non-active fishermen. In either case, a gain from trade is required which contradicts the

definition of y7°.

Quota price
The shadow price of quota is determined by its value in the hands of other incumbents or inactive
fishermen. Holding the number of participants fixed, the marginal value of additional quota to

an incumbent is calculated as ,

dVi(z1,y1,1) Z OVi(z1,y1,1) dyjn

dy;,1 P 0yj1 dyiq1’
(8)
dyj1
s.t. E —Zhs — .
= dy; 1

The above expression emphasizes the fact that in the presence of a quota constraint and pro-

duction externalities that operate through harvest choices, the value of quota for fisherman 1 is
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affected by the MPE harvest choices of all fishermen, which are functions of the state vector,
including the initial quota allocation 3. The requirement that sum of quota adjustments across
active firms be equal to zero highlights a crucial feature of quota-managed fisheries. When the
quota constraint binds, the quota held by fishermen 7 can increase, only if the quota held by
rival fishermen is reduced by the same amount. This feature is crucial for understanding the

effects of unattended externalities in ITQ fisheries, as recognized by Danielsson (2000).

The above expression assumes the set of active fishermen is unchanged when quota is reallo-
cated. This is a reasonable assumption for small quota changes. What is the value of quota to
potential entrants? Under a variable returns technology, an entrant must acquire enough quota
to exploit available economies of size. Moreover, because the aggregate quota constraint must

hold, > j y;1 = y may be significantly different than Yy e

Rent dissipation

Rent loss in a decentralized ITQ fishery requires an externality, but also a mechanism by which
harvesting inefficiency occurs. The structure of the harvest technology provides this mecha-
nism. The term “race to fish” is a euphemism for accelerated and costly harvest behavior. In
the context of our model, accelerated per period harvest will raise costs under a strictly convex
cost function, i.e., a decreasing returns to size technology. Under decreasing returns, higher
per-period harvest implies increased marginal cost above the level that would be incurred at a
slower harvest pace. To see why this property is crucial, consider the opposite case where the
cost per unit of harvest is independent of harvest size. An example is ¢(h,z) = c(z)h, where
c(x) is a decreasing function of stock size x, and h is quantity harvested (see Clark, 1990; Reed
1979). With constant returns to size, an increase in h raises unit cost only through its effect on
stock size. Racing for fish does not raise costs above the minimum feasible cost. Therefore, we
consider decreasing or variable returns to size at the level of a production period and maintain
the variable returns at the seasonal level, due to the presence of seasonal fixed costs, as required

for a positive but finite equilibrium fleet size.
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Number of players

A strength of the collocation method is its ability to accommodate a high-dimension state space.
Solving the fishing game with IV large is computationally demanding and yields few insights be-
yond those obtained under a smaller value of N. We report results for N = 2 and N = 3.9
The number of periods is set to T" = 4. While the number of periods can be easily increased,
our preliminary analysis found that four periods were enough to illustrate the temporal forces

operational in the dynamic fishing game, and allows us to report results in less space.

Initial conditions

For the results that follow, we set the beginning season stock size at 1 = k/2, and the sea-
sonal quota at y = 0.2. The collocation method approximates value functions and MPE harvest
policy functions for any feasible state. We report results for the Nash equilibrium initial quota

allocations as derived in equation (7).

4 Results

Collocation methods provide a high-order polynomial approximation to an unknown value func-
tion. Our investigation reveals that the approximation is extremely accurate. The average
approximation error in the terminal period value function is 0.46%. The Lo, norm (maximum
% error) is 1.87%. The largest percentage errors occur at small quota values, which tend not
to be observed in equilibrium. Therefore we are fairly confident that approximation error does
not significantly impact our results. Nonetheless, the results that follow should be interpreted

accordingly.

Figure 1 presents the per-period value functions, net of quota purchase costs, for representative
fisherman 1 under the assumptions of two active fishermen, no-within season stock growth and
no congestion effects. Value functions are plotted over two dimensions of the state, x; and 1,

holding 2+, fixed at an intermediate level.
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t=1 t=2

Figure 1: Value function

The value function is increasing in z; and y;; as larger stock and/or quota cannot reduce MPE
profits. Notice that the value at all combinations of (z,y1+) declines throughout the fishing
season as t increases. Holding a large amount of quota in the terminal period yields lower value
under a decreasing returns to size technology. Marginal profits eventually decline to zero and
therefore there exists a threshold quota amount at which the marginal value of additional quota

is zero. This threshold quantity is smaller later in the fishing season.

Figure 2 reports the period 1, fisherman 1 value function, again net of quota purchase costs, over
the range of feasible quota holdings; the stock size is held fixed. The effects of stock externalities
are small but clear. The value that firm 1 places on quota declines with the quota held by a

rival fisherman, since when fisherman 2 is quota constrained, fisherman 1 can earn more profit
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Figure 2: Value function

from a given amount of quota.

We now turn to results for some important cases of our general model. The results we present
illustrate insights that may not be transparent without direct observation of MPE harvest be-

havior. We present additional results in an appendix to demonstrate the robustness of the main

findings under a wider range of parameter values.

Table 1 reports MPE equilibrium harvests, stock size, and profits, both by period and for the full
season. First-best outcomes are reported as a benchmark for assessing economic performance
under ITQ management.'? Harvest quantities are reported as percentages of the seasonal quota.
Stock sizes are reported as the percentage of the stock carrying capacity. Columns under the
Performance heading report the percentage harvest obtained for the MPE of the ITQ fishing
game, relative to the first-best harvest. The final column, labeled V™ /V*, reports the percent-

age rent attained under the MPE equilibrium relative to the first-best rent.

Case 1.1 of table 1 assumes a heterogeneous in size fish stock and, with stock effect param-

eter § = 1 and no within-season growth r = 0, a heterogeneous in value fish stock. There
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Case 1.1: Heterogenous stock
ITQ game First best Performance

Period Ay ha T hi ha x  h"¢/h* V"V
1 15.0 15.0 50.0 13.7 13.7 50.0 109.6 105.0
2 13,5 13,5 44.0 129 129 445 104.7 101.7
3 119 119 386 121 121 394 985 98.3
4 96 96 338 11.3 11.3 345 846 91.2

Total 50.0 50.0 30.0 50.0 50.0 30.0 100.0 99.6

CASE 1.2: Heterogeneous stock, congestion effects
ITQ game First best Performance

Period  hy ho x h1 ho x  h"/h* V"e/V*
1 14.6 14.6 50.0 13.7 13.7 50.0 106.9 102.7
2 13.1 13.1 44.2 129 129 44.5 101.5 100.0
3 11.6 11.6 389 12.1 12.1 394 958 97.8
4 10.7 10.7 34.3 11.3 11.3 345 94.6 98.1

Total 50.0 50.0 30.0 50.0 50.0 30.0 100.0 99.9

Case 1.3: Heterogenous stock, per-period capital costs

ITQ game First best Performance

Period Ay ho x h1 ho x  h"/h* VeV
1 16.7 16.9 50.0 156 15.6 50.0 107.8 106.4
2 14.4 13.7 43.3 14.6 14.6 43.8 96.6 95.5
3 13.8 11.0 37.7 13.5 13.5 379 91.7 89.1
4 13.5 0.0 327 127 0.0 325 106.1 105.5

Total 584 41.6 30.0 56.4 43.6 30.0 100.0 99.0

Table 1: Heterogeneous-in-value fish stock

are no congestion effects, and fishermen are symmetric. Case 1 mirrors the conditions in Clark

(1980a) and Boyce (1992), with the exception of congestion which is considered separately below.

The case 1.1 results indicate MPE harvests are symmetric across fishermen. Both MPE and
first best harvests decline throughout the season. Under our cost specification, marginal costs

increase as the stock size is reduced, i.e., 9%c(.)/0hdx < 0. Harvesting more fish early in the

season, when the stock size is larger, lowers seasonal costs.!!

MPE harvest patterns verify that, relative to first-best outcomes, a race to fish, and rent dissipa-
tion occur under I'TQs when stock-value is heterogeneous. In period 1, the combined harvest is

109.6% of the first-best harvest, whereas in period 4, the MPE harvest is 84.6% of the first-best
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harvest. The race to fish occurs because marginal profit associated with each unit of harvest
falls as the stock size declines. With no growth, the stock size is reduced from 50% of carry-
ing capacity to 30%, the difference being the total allowable catch that is extracted during the
season. Non-cooperating fishermen increase per-period harvest and extract their quota units at
a higher unit cost in order to benefit from the stock effect (Clark 1980a). Relative to the first
best, this strategy raises period profits early in the season and lowers profits late in the season.
The results find that total seasonal profit is lower in the ITQ fishery, as expected, at 99.6% of

first best rent.

Case 1.2 in table 1 maintains the assumption of a heterogeneous in value fish stock and sym-
metric fishermen, but adds congestion costs. We set v = 1, which effectively raises the marginal
harvesting cost for both fishermen. Comparing MPE harvest patterns to the no-congestion re-
sults of case 1, we see that raising costs has the effect of slowing the race to fish. This finding is
intuitive if we reconsider the incentive to race. ITQ fishermen prefer to extract their quota early
in the season to benefit from stock effect implicit in the harvest technology. However, beating
rival fishermen to the highest value comes at a cost which, all else equal, lowers unit profits.
Note also that the terminal period stock size cannot fall below the escapement level, x1 — y,
and therefore, residual profit per unit of quota, presumably at a slower fishing pace later in the
season, is bounded below. We see that congestion costs make it more costly to race and thus

the incentive to do so is diminished.

Case 1.3 in table 1 maintains the assumption of a heterogeneous in value fish stock and sym-
metric fishermen. We introduce a per-period cost of remaining active in the I'TQ fishery. For
example, fishermen are often able to switch fisheries mid-season to harvest different species, of-
tentimes with different gear. The case 1.3 results assume that seasonal fixed cost is proportional
to the time the vessel is active in the ITQ fishery. Fishermen therefore face a per-period cost of

participating in the ITQ fishery, rather than a seasonal cost.

The results indicate asymmetric MPE harvest policies, even though fishermen are otherwise
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identical. Fisherman 1 harvests during all production periods and harvests more fish per-period
(with the exception of period 1) than his counterpart. Fisherman 2 harvests in the first three
periods only. There are, of course, two equilibria; a second asymmetric equilibrium exists where
the fishermen exchange roles. The first best harvest policy follows a similar pattern, although
when both fishermen are active they share the per-period harvest equally under the first-best.
The entire total allowable catch is extracted in both cases. Rents under the MPE are 99.0% of

the first-best rent.

A per-period capital cost provides an incentive to concentrate harvesting activity into fewer pe-
riods, i.e., by increasing the harvest rate, fishing is completed early, which saves the per-period
fixed cost. This can be seen by comparing MPE harvest patterns in case 1 of the table, where

period fixed costs were absent.

Summarizing the results in table 1, we find that the general insights of Clark (1980a) and Boyce
(1992) are confirmed; in the presence of a heterogeneous-in-value fish stock, non-cooperating
ITQ fishermen have incentive to engage in a costly race to fish. Extracting quota before rival
fishermen lowers unit harvest cost, and increases the residual profit to each quota unit. This
behavior raises costs above the minimum required to extract the total quota, and thus dissipates
rents in the I'TQ fishery. We find that adding congestion effects improves the rents outcomes by
raising the cost of competition for the higher-valued units of the stock, and, in fact, improves
rent outcomes. Lastly, the results show that patterns of accelerated harvest early in a fishing
season when stock size is high may be optimal, depending on the structure of the harvest tech-

nology and the opportunity cost of remaining active.

Case 2.1 in table 2 introduces within-season stock growth (Bisack and Sutinen, 2006). We con-
sider a case of symmetric fishermen, and no congestion effects. The growth rate is chosen such
that the first best escapement at the end of the fishing season is equal to beginning season stock
size (r = .202). The scenario is intended to represent a stock that grows continuously and a

fishery managed under a sustainable harvest policy.
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Case 2.1: Within-season stock growth
ITQ game First best Performance

Period hy ha T hi ha x  h"¢/h* V"V
1 12.2 122 500 11.5 11.5 50.0 106.6 104.2
2 124 124 50.1 12.2 122 504 101.9 101.0
3 12.6 12.6 50.1 12.8 128 50.6 984 98.7
4 12.7 12,7 50.2 13,5 13.5 504  94.2 96.2

Total 50.0 50.0 50.0  50.0 100.0 99.9
Case 2.2: Elastic demand
ITQ game First best Performance

Period Ay ha x hi ha x  h"/h* V"e/V*
1 14.0 14.0 50.0 13.2 13.2 50.0 106.3 101.5
2 13.1 131 444 128 12.8 44.7 1024 100.2
3 12.0 12.0 39.2 123 123 396 973 98.9
4 10,9 109 344 11.8 11.8 34.7 93.0 98.3

Total 50.0 50.0 50.0  50.0 100.0 99.8
Case 2.3: Varying stock elasticity
ITQ game First best Performance

Period hy, he x hi  hy x  h"¢/h* VeV
1 158 158 50.0 145 145 50.0 108.8 1047
2 135 135 43.7 132 13.2 442 1027  100.8
3 113 11.3 383 118 11.8 389  96.1 97.2
4 93 93 337 105 105 342 889  93.8
Total 50.0 50.0 50.0 50.0 100.0 998

Table 2: Stock Growth, Price and Cost Effects

The results show, not surprisingly, that within-season stock growth slows the race to fish. The
explanation is simple: growth replenishes the stock before subsequent period harvesting begins.
Within-season growth creates temporally homogeneous stock abundance, and restores the con-

ditions under which ITQs are known to generate first best outcomes.

Case 2.2 in table 2 introduces payoff interaction on the revenue side; the demand for fish is
assumed to be finitely elastic. The parameters of the linear fish demand function are set such
that a demand elasticity of -5 results when the total allowable catch is spread evenly across

harvest periods. Case 2.2 assumes identical fishermen and no congestion effects.

22



The downward sloping demand introduces an incentive to distribute the harvest evenly through-
out the season. This slows the rate of harvest relative to the case of a perfectly elastic demand
for fish. Notice that there are no revenue-side market distortions in case 2.2 as the entire seasonal
quota is harvested. The strategy of holding back quota to maintain high fish prices will raise
profits only if the residual demand facing an individual fishermen is inelastic. Additional results
(not reported here) show that market power distortions can arise in a MPE if the demand for
fish is sufficiently inelastic. For example, at a demand elasticity of -0.5, we find seasonal MPE

less than the total allowable catch.

It should be noted that price effects alone do not cause rent dissipation in our model when we
solve for MPE harvest behavior with the stock elasticity parameter set to zero. For these cases,
the MPE outcomes matched first-best outcomes for various demand elasticities, and over a range
of other parameter values (see appendix). Costello and Deacon (2007) suggest rent dissipation
can occur in an I'TQ-managed fishery, in the absence of stock externalities and congestion effects.
We consider scenarios where the price of fish changes exogenously throughout the season. In
these cases, MPE harvest rates respond to seasonal price changes in obvious ways. However, in
the absence of stock effects, rent dissipation does not occur. If stock effects are absent, nothing
is gained by fishing when the stock size is large or small. In fact, there is no strategic interaction
in the model when § = 0. Fishermen optimally tradeoff the gains of harvesting when prices
are high with the cost savings from spreading the catch evenly throughout the season. MPE

harvests and rents mirror first-best outcomes.

Case 2.3 in table 2 assumes no within-season stock growth or congestion effects, and homo-
geneous fishermen. The scenario assumes that the stock effect varies throughout the season
to approximate naturally varying stock conditions (Costello and Deacon, 2007). For example,
salmon concentrate in bays at the mouths of streams prior to swimming upstream to spawn. We
approximate heterogeneous stock concentrations by allowing the stock elasticity parameter to
vary across periods. In case 2.3, the stock elasticity parameter 8 = 0.9, 0.95, 1, 1.1 in periods

1-4.
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Results show that MPE harvests increase early in the season due to the higher stock size. The
results, while unsurprising, demonstrate how biological forces alter temporal harvest patterns
in ITQ fisheries. Separating these effects from rent seeking behavior by fishermen is likely to be

difficult in practice particularly if temporal movements of fish stocks are not fully known.

4.1 Stochastic stock evolution

Case 3.1: Stock uncertainty, no stock growth

ITQ game First best Performance
Period  hy ho x h1 ho x h™e/h* vne /v
1 14.9 14.9 50.0 14.1 14.1 50.0 106.0 102.8
2 13.1 13.1 44.1 12.8 12.8 444 102.8 100.6
3 11.6 11.6 38.8 11.8 11.8 39.3 98.7 98.3
4 10.1 10.1 34.2 10.8 10.8 34.6 93.4 96.2
Total 49.7 49.7 49.3 49.3 100.7 99.8
Case 3.2: Stock uncertainty, within-season stock growth
ITQ game First best Performance
Period  hy ha x h1 ho x h"e/h* vne v
1 13.6 13.6 50.0 13.0 13.0 50.0 104.5 102.4
2 12.8 12.8 47.0 126 12.6 47.2 101.8 100.5
3 12.1 121 44.2 12.3 12.3 44.6 98.9 98.9
4 114 114 41.7 11.9 11.9 42.0 95.3 97.3
Total 49.9 49.9 49.8 49.8 100.2 99.9
Case 3.3: Temporally-delineated ITQs
Time-delineated ITQs  Standard ITQs Performance
Period  hy ho x h1 ho x  h"eC/pne ymnec/ymne
1 13.3 13.3 50.0 14.9 14.9 50.0 89.2 94.0
2 11.7 11.7 44.7 13.1 13.1 44.0 89.4 94.0
3 12.9 12.9 40.0 11.6 11.6 38.8 111.2 107.1
4 114 114 34.8 10.1 10.1 34.2 113.4 107.2
Total 49.3 49.3 49.7 49.7 99.3 99.9

Table 3: Stochastic Stock Growth and Enhanced Rights

Table 3 reports results for a fish stock that evolves stochastically. Case 3.1 assumes no within-
season stock growth, symmetric fishermen, and no congestion. The one-period-ahead stock size is

subject to multiplicative shock, which take values, ¢ = 0.85, 1, and 1.15 with equal probability.!?
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The case 3.1 results are similar to the deterministic model studied above, with a few excep-
tions. A race to fish and rent dissipation occurs in the ITQ fishing game. Expected harvests
under ITQs and under the first best policy are both less than the total allowable catch. Net
fishing profits are concave in the stock size. Stock uncertainty lowers expected net profits by
Jensen’s inequality, and lowers expected harvest. Notice that expected seasonal harvests in
the ITQ game are slightly larger (100.7%) than first-best harvest. The race to fish caused by
the stock externality increases MPE harvests early in the season. Under case 3.1 parameters,
the higher MPE early on more than offset the lower harvests in later periods. The decline
in expected harvest is explained by poor growing conditions throughout the season, i.e., with
positive probability, a series of low growth shocks are realized in which case extracting the en-
tire quota is not profitable. We examined additional cases where harvesting is more profitable,
e.g., within-season growth, lower harvest costs and smaller stock effects and found that MPE

outcomes involve harvesting all available quota (these results are not reported to conserve space).

Case 3.2 assumes with-season stock growth (r = 0.1). Relative to the no-growth case, within-
season stock growth results in lower expected harvests early in the season and higher harvests
later in the season. Under stochastic stock conditions, harvest quota can be viewed as an option
to be exercised at any time during the fishing season. If the fish stock grows during the season,
the return from exercising the option later can be higher. As the season progresses however,
exercising the option later risks the possibility of a low growth shock and low quota return.
Notice that under within-season growth, the sum of expected harvests falls only slightly below
the aggregate quota. Stock growth counters the effects of low growth shocks leading fishermen

to harvest a larger share of the total quota than under the no growth case, 3.1.

Our case 3.3 (table 3) results report the findings of a policy experiment. We simulate the effect
of a finer delineation of harvest rights. In the experiment, the fishery manager issues temporally
delineated rights with the total allowable catch split evenly between the first and second half

of the harvest season.' Case 3.3 assumes no congestion, a constant fish price, and symmetric
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fishermen.

To isolate the effect of the temporal delineation, case 3.3 compares MPE harvest policies with
and without the temporal rights delineation in place. h™¢ and V¢ denote, respectively, the
MPE harvest and profit with the temporal quota constraint in place. Not surprisingly, the re-
sults show that temporal delineation slows the race to fish, relative to the unconstrained case.
We also see that the under temporally delineated rights fishermen harvest less h™"*¢/h"™ = 99.3%
and earn lower seasonal profit, V"*¢/V"¢ = 99.9% than under an unconstrained quota. The
temporal delineation limits the ability of fishermen to respond to unanticipated growth shocks
throughout the fishing season. The result is reduced harvest and lower economic rent in the

fishery.

4.2 Further results

We solved for MPE harvest policies and rent outcomes for the case of three fishermen, and under
a range of stock growth and demand conditions with and without stock and congestion effects.
The results are qualitatively similar to the two fisherman results. We present a subset of our
findings in an appendix. There is one quantitative difference worth pointing out when moving
from two to three active fishermen. Relative to the first best outcomes, we find smaller rent losses
under the MPE harvest policies when N = 3. Recall that rent is dissipated in our model when
fishermen increase per-period harvest, which causes marginal costs to rise under a diminishing
returns technology, i.e, a strictly convex cost function. When the total quota is spread across
three fishermen, racing for fish continues to increase marginal costs, but to a lesser extent since
there is less variation in marginal costs at lower per-fishermen harvests levels. The implication

is that rent losses in decentralized ITQ fisheries will decline with the number of active fishermen.

We thoroughly examined the role or congestion externalities in our model. Congestions effects
where included under a host of biological, technological and market conditions. A subset of

these results appear in an appendix. Two key findings emerge. First, introducing congestion
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externalities to the model quantitatively affects MPE harvesting patterns but does not change
our general findings. Congestion and stock effects are non-separable in our harvest technology
and therefore including both effects alters but does not remove the incentive to race to fish.
We find that the combined effect of congestion and stock effects is ambiguous. Congestion may

increase the costs of racing to fish and counter the rent seeking motive.

A second result, which holds over all model parameterizations that we examined (appendix B)
is that congestions effects alone do not cause rent to be dissipated. This result supports the
analysis of Danielsson (2001) and can be understood as follows. Congestion effects influence
the harvest productivity and the costs of all active fishermen. As shown in the derivation of
equation (8), these effects are internalized under a binding quota constraint. A fishermen whose
actions lower the productivity of others will bear the cost of this action because the shadow
price of all quota, including his own, will be reduced. Congestion costs can be lowered by re-
moving active fishermen from the fishing ground. However, removing fisherman ¢ during period
t, implies hZ”te = 0, which in a quota-managed fishery, and assuming the quota binds, alters the
valuation of quota for all active fishermen. Adding and removing fishermen from the fishing
grounds affects each fisherman’s valuation of quota and is fully captured in the quota trading

market (Danielsson, 2000).

5 Conclusion

We have used numerical collocation to identify Markov-Perfect Nash equilibrium harvesting be-
havior in a dynamic fishing game. Our approach allows direct examination of MPE harvest
patterns and rent dissipation outcomes in a general model of an I'TQ-managed fishery. Our find-
ings refine some earlier insight regarding unattended production externalities in I'TQ fisheries,

and offer new insights for the design of quota management programs.

We find that conditions can exist in which rights-based management programs do not replicate
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first-best economic outcomes. A race to fish by non-cooperating fishermen can persist under
decentralized ITQ management when the fish stock is heterogeneous in size and the harvest
technology exhibits stock effects. When these conditions hold, fishermen will find it privately
optimal to increase harvest rates to extract quota units before rival fishermen deplete the stock.
Rents are dissipated under diminishing returns technology as unit costs increase above the min-

imum required to harvest the quota.

Overall, we find that rent dissipation occurs under fairly special technological and biological
conditions. The harvest technology must exhibit decreasing returns. Stock effects bust be large
enough to induce cost-inefficient competition for the highest-valued units of the stock. Within

season changes in the stock size or value must be significant induce inefficient production.

We show that accelerated harvest early in a fishing season is not a sufficient condition for rent
dissipation, e.g., fishermen may speed harvest to exploit available cost economies, save on capi-
tal costs, or respond to exogenous changes in prices and stock conditions. Our results find that
congestion effects alone do not cause rent dissipation in I'TQ-managed fisheries, a result noted in
Danielsson (2000). All else equal, congestion effects slow the race to fish for the highest valued
units of a heterogenous fish stock. This result is supported empirically in Huang and Smith

(2012).

Our results show that rent dissipation in ITQ fisheries will not arise due to price competition
alone. Elastic demand provides incentives to smooth the harvest throughout the fishing season,
and all else being equal, will slow a race to fish. Rent loss due to market power can occur if
fishermen reduce their harvest to maintain high prices at the dock. However, this strategy raises

profits only under sufficiently inelastic fish demand.

A question we do not resolve in this paper is whether some form of enhanced property rights,
e.g., time- or spatially-delineated rights, will be required to secure the full economic benefits

promised by rights-based fisheries management programs. A stochastic policy simulation is
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presented to demonstrate the potential negative effects of imposing constraints in the form of
temporally-delineated fishing rights. We do not incorporate spatial competition in our model,
but have reason to suspect similar problems would arise if quota is spatially delineated. If regu-
lations prohibit fishermen from responding to unanticipated movements of fish stocks over time
and across space, rents can be dissipated. Our results suggest the benefits from fully delineat-
ing fishing rights is an empirical question that will depend on the characteristics of the fishery
under consideration. Managers should assess, and if possible, empirically measure stock effects,
returns to size, and within-season stock declines, to determine if rent dissipation is likely to be
significant under a standard ITQ design. Managers should also consider alternate motives to

race to fish before labeling accelerated harvest patterns as evidence of rent dissipation.

Enhanced property rights are likely to be information intensive, adding to administrative and
monitoring costs. Alternatively, managers may wish to consider the potential for fishermen to
devise their own solutions to the problem of unattended externalities in ITQ fisheries.'* Program
designs with low transactions costs, i.e., minimal restrictions on quota trading and ownership,
and long-term security may allow fishermen to coordinate their activities and correct the effects
of unattended externalities (Coase, 1960). Externalities create problems when fishermen cannot
coordinate their actions. I'TQ programs that place limits on quota trading and ownership may

prevent such coordination and may increase problems related to unattended externalities.

As demonstrated, numerical methods offer a powerful tool to study economic behavior and the
impacts of regulation in complex settings. These methods can be extended to consider additional
sources of uncertainty, e.g., price and cost uncertainty, games with many players (e.g., Farias,
Saure and Weintraub, 2008), and can provide a basis for econometric estimation of strategic in-
teractions among competing fishermen (see Bajari, Benkard, and Levin, 2007). Such extensions
could provide further insights to improve rights-based management programs in fisheries and

other natural resources.
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7 Appendix A

This appendix describes the collocation method used in our analysis. Additional details are
Miranda and Fackler (2002), Judd (1998), and Vedenov and Miranda (2001).

7.1 Application of collocation methods to an ITQ fishing game

To simplify the presentation, we first describe the algorithm for the case of deterministic stock
growth. The modification required for uncertain stock growth follows.

7.1.1 Step1

The state space in our fishing game is naturally bounded. The stock size is contained in the
interval [0, k]. Seasonal quota holdings for any fishermen in any period cannot exceed the total
quota y. The maximum number of discrete fishing periods is finite. The stock-quota state space

is continuous. In the first step, we discretize the stock and quota state space using the method
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developed by Chebychev (see Miranda and Fackler, 2002, ch. 6). Our approach solves for MPE

harvest strategies recursively. The numerical algorithm is best described in the same sequence.

Consider the terminal period harvest choices. To ease notation, we drop the period index
momentarily. Let 27 = (2,24, , ..., z?V_H) = (2%, y{,vy4,...,y%) denote a particular element of the
stationary stock-quota state space. We can solve for the pure strategy Cournot-Nash harvest
for each fisherman given the state z7. We make an initial guess, hY;(z7) < y%, for all —i. A

hill-climbing algorithm is used to obtain i’s best response to h° ;(27). We iterate across fishermen

and repeat until the best harvest responses for all fishermen satisfy a convergence criterion:
N
DY) =R <,
i
where € > 0 is small. We next evaluate profit for each fisherman at the equilibrium harvest

vector. These steps are repeated for each element 29, g = 1,...,Q of the state space.

Let 7('%(27) denote the MPE profit for fisherman ¢ in the terminal period given 29.

7.1.2 Step 2

We next approximate MPE profits over the full state space using a series of Chebychev polyno-
mial basis functions (Miranda and Fackler, 2002, ch. 6). Application of the collocation methods
using cubic splines generated virtually identical results.

Reintroducing the period index we have,

Q
mip(27) = Z bijr4(2]), q=1,...,Q,
j=1
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where {bi,j,T}?zl are the collocation coefficients, and ¢, (z;?) is the j’th basis polynomial. Using

upper case to denote vector notation, the above system of linear equations can be written as:

ne

ir=®(2) - Bir,
Collocation coefficients are obtained as

Bir=&"1(2)- T

)

7.1.3 Step 3

We next examine MPE equilibrium harvest behavior in period T'— 1. Recall, v;(z¢,t) denotes the
expected profit for fisherman ¢ given state z; in period ¢. This value can be written in Bellman

equation form:
vi(2t,t) = mazp, <y, , {p(ht)hi,t — ci(hit, h—ig, x4, Ny t) +vi(2e41,t + 1)}- 9)

At the MPE, equation (9) incorporates the shadow prices of the quota and fish stock. An in-
crease in current period harvest affects current revenues and costs, reduces y; 41, and affects
stock size 441 in the subsequent period. The continuation value v;(z441,t + 1) quantifies the

future costs associated with the current harvest decision.

To solve the problem in equation (9) for periods ¢t = 1,...,7T — 1, we substitute the estimate of

vi(z441,t + 1), which is obtained from the collocation procedure,

Vi(zt41,t + 1) = B 1P(2e41).

The iterative hill-climbing procedure (step 1) is then repeated to obtain period ¢t MPE harvests.
The reader will notice that in the terminal period, the collocation method approximates the
operating profit only since there is no period T+ 1 continuation value. The collocation method

approximates the right hand side of equation 9 in all earlier periods, t =1,2,...,7 — 1.
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Steps 2 and 3 are repeated to obtain MPE equilibrium harvest policies and numerical value
functions for all periods. MPE equilibrium harvest strategies for any state and period are then

easily calculated.

7.2 Stochastic stock evolution

To introduce stochastic stock evolution we discretize the shock space and introduce stock tran-
sition probabilities. We divide [, ] equally into I = 1,...,L + 1 intervals. Let & denote the
midpoint of interval [. We assume Prob({ = §|z) = 6;. Under stock uncertainty we replace the

Bellman equation in equation (9) with the following:
L

MaTh, <y, , {p(ht)hi,t — ci(hit, h—ig, x4, Ni,yt) + Z 010i (241, + 1!51)}- (10)
I

7.3 First best harvest policies

Under deterministic stock conditions, the first best harvest policy is calculated directly as the

solution to the following optimization problem:
N
maz(, 3 Y [p(ht)hi,t —ci(hig, hoy oo hive, e, Ny t) |

t=1 =1

If stock evolution is stochastic, we utilize the collocation algorithm described above, but modify

the objective to maximize the sum of fisherman profits in each production period.
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8 Appendix B

Case 4.1: Heterogenous stock, 3 fishermen

ITQ game First best Performance
Period h1 hg h3 T hl h2 h3 x hne/h* V”G/V*
1 95 93 95 500 91 91 91 500 1035 102.6
2 88 86 88 443 86 86 86 445 1015 101.0
3 80 79 81 391 81 81 81 394 99.0 99.1
4 72 71 72 343 75 75 75 345 952 96.5

TOTAL 335 329 336 30.0 333 333 333 30.0 100.0 100.0
CASE 4.2: No stock effect, congestion, 3 fishermen

ITQ game First best Performance
Period hl h2 h3 T hl hg hg xT hne/h* V”G/V*
1 83 83 83 500 83 83 83 50.0 999 99.9
2 83 83 83 450 83 83 83 450 999 100.0
3 83 83 83 400 83 83 83 40.0 998 99.9
4 84 84 84 350 83 83 83 350 100.3 100.3
TOTAL 33.3 333 33.3 33.3 333 333 100.0 100.0
Case 4.3: No stock effect, congestion, 2 fishermen
ITQ game First best Performance
Period h1 hg h3 X hl h2 h3 x hne/h* Vne/v*
1 12,5 12.5 - 50.0 125 125 - 50.0  100.0 100.0
2 12.5 12.5 - 45.0 12,5 125 - 45.0  100.0 100.0
3 12.5 12.5 - 40.0 12,5 125 - 40.0  100.0 100.0
4 12.5 12.5 - 35.0 125 12,5 - 35.0  99.9 100.0
TOTAL 50 50 - 50 50 - 100.0 100.0

Table 4: Three Fishermen, Congestion Effects

Case 4.1 of table 4 adopts the same assumptions of case 1.1 of table 1 (no within-season stock
growth, no congestion), but adds a third fishermen. As in the 2 fishermen example, The MPE
harvest exhibits a race to fish relative to the first-best policy. Notice that the rent loss is insignif-
icant with 3 fishermen. The reason is that all are now operating at lower per-period harvest
quantities. The increase in marginal harvest costs caused by a race to fish are only slightly
larger than the first best marginal costs. The difference is not noticeable at the seasonal level

in the presence of numerical approximation error.

Cases 4.2 reports results for 3 fishermen, no stock effects (8 = 0), and congestion effects (y = 3).

The results show that MPE harvest outcomes mirror first-best outcomes apart from numerical
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approximation error. Case 4.3 replicates the conditions in case 4.2, but with 2 fishermen. Again
MPE harvest outcomes mirror first-best outcomes. Which fleet structure will emerge in the
pre-season quota trading equilibrium? The total (absolute) variable profit is higher with three
fishermen than with two. With strictly convex costs, variable cost of harvesting the quota is
less with three active fishermen. The fleet structure that will emerge in equilibrium will depend
on the magnitude of the seasonal fixed cost, favoring the fleet structure with lowest total costs.
If for example, total costs are lower with N = 2, a third fishermen will be unable to profitably
purchase quota since the unit value (rent) will be highest when y is divided among two active
fishermen. If fishermen are identical, multiple Nash equilibria exist. Similar arguments suggest
that if fixed costs are small, so that total costs are less with N = 3, the Nash equilibrium will

involve three active fishermen.

CASE 5.1: Elastic demand, congestion, no stock effect

ITQ game First best Performance
Period  hy ha x hi ha x  h"™/n* VeV
1 12.5 124 50.0 12.5 12.5 50.0 99.5 99.7
2 12.5 124 45.0 125 125 450 994 99.6
3 12.3 123 40.1 12,5 12.5 40.0 98.7 99.2
4 126 13.0 35.1 125 12.5 35.0 1024 101.5
Total 49.9 50.1 50.0 50.0 100.0 100.0
CASE 5.2: Declining fish price, congestion, no stock effect
ITQ game First best Performance

Period h1 hz €T hl h2 €T hne/h* Vne/v*
1 16.3 16.3 50.0 16.3 16.3 50.0 100.3 100.2

2 13.8 13.8 435 13.8 138 435 999 99.9
3 115 115 379 113 11.3 38.0 1004 100.3
4 84 84 334 88 88 335 993 99.3

Total 50.0 50.0 30.0 50.0 50.0 30.0 100.0 100.0

Table 5: Demand and Price Effects

Case 5.1 isolates the effects of revenue competition. The per-period price of fish depends on
the total period harvest. Congestion effects are present but there are no stock effects. In this
setting each fisherman prefers that his counterpart(s) make zero deliveries to maintain high

prices. In equilibrium, the total catch is spread evenly (with the exception of approximation
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error) throughout the season, with each fisherman harvesting half the quota.

In case 5.2, the price of fish is perfectly elastic, but falls exogenously throughout the season.
The MPE and first-best harvest patterns are identical, except for approximation error. Both
show a predictable pattern of declining harvest throughout the season. Both policies optimally
tradeoff the gains from higher prices early on, with the added costs from increasing harvest rates

in early periods under strictly convex harvest costs.

Case 6.1 of table 6 considers a heterogeneous stock, but allows for asymmetric fishermen; fish-
erman 1 costs are set lower than fisherman 2 costs. Asymmetry is introduced by lowering «
for fisherman 1 and increasing « for fisherman 2. The cost parameters are adjusted such that
the first best rent under the asymmetric fishermen case is equal to first best rent generated
under the case 1.1 parameter values. The results show that MPE harvests are asymmetric as
expected, with the bulk of the harvesting responsibility falling to the lower cost fisherman 1.
The race to fish continues in the ITQ fishery, also as expected, which results in rent dissipation.
These results are not surprising. The results demonstrate the role of quota trading on economic

performance, and the flexibility of our numerical approach.
Case 6.2 combines a per-period capital cost and congestion effects. Case 6.3 increases the cur-
vature of the harvest cost function, increasing the value of n to 2.2. These results are included

as further robustness checks on the model.

Case 6.3 reports results under increased harvesting costs (« is increased by 40%). Case 6.4

reports the results under a higher stock elasticity parameter (3 is increased by 20%).
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Case 6.1: Heterogenous stock, asymmetric fishermen
ITQ game First best Performance

Period hi ha T hi ha x  h"¢/h* V"e/V*
1 184 11.1 500 17.2 10.2 50.0 107.8 104.1
2 16.2 9.7 441 162 96 445 1004 99.7
3 148 86 389 152 9.0 394 96.9 97.9
4 134 7.7 342 142 84 345 934 96.5

Total 629 37.1 62.8 37.2 100.0 99.9
CASE 6.2: Per-period capital costs, congestion effects
ITQ game First best Performance
Period hi ho x h1 ho x  h"™/h* VeV
1 16.1 16.5 50.0 15.2 152 50.0 107.6 104.5
2 146 13.2 435 142 142 439 98.0 96.3

3 129 114 379 132 132 383 920 91.6
4 153 0.0 33.1 149 0.0 33.0 102.6 100.9
TOTAL 589 41.1 30.0 574 42.6 30.0 100.0 99.0

CASE 6.3: Heterogeneous stock, n = 2.2

ITQ game First best Performance
Period  hy ha x hi ha x  h"™/h* VeV
1 13.5 13,5 50.0 13.6 13.6 50.0 99.6 99.7

2 12.7 127 446 129 129 446 99.0 99.2
3 12.3 123 395 121 121 394 101.0 100.8
4 115 115 346 114 114 346 100.5 100.4

Total  50.0 50.0 50.0  50.0 100.0 100.0
CASE 6.4: Heterogeneous stock, a = 6.5
ITQ game First best Performance

1 14.3 143 50.0 13.7 13.7 50.0 104.1 101.3
2 129 129 443 129 129 44.5 100.2 99.7
3 11.6 11.6 39.1 121 121 394 958 98.5
4 11.2 11.2 34,5 11.3 11.3 345 99.3 99.9

Total  50.0 50.0 50.0 50.0 100.0 99.9
CASE 6.5: Heterogeneous stock, 5 = 0.5
ITQ game First best Performance

1 133 133 500 131 13.1 50.0 101.3 101.0
2 12.8 12.8 44.7v 12.7 127 44.8 100.9 100.6
3 12.2 122 396 123 123 39.7 99.1 99.3
4 11.7 117 347 119 119 348 98.6 98.9

Total  50.0 50.0 50.0  50.0 100.0 100.0
CASE 6.5: Heterogeneous stock, § = 1.2

ITQ game First best Performance

1 15.0 15.0 50.0 139 139 50.0 107.7 103.0

2 13.1 13.1 44.0 13.0 13.0 444 101.2 99.7

3 114 114 387 120 12.0 39.2 949 97.4

4 10.5 10.5 34.2 11.1 11.1 344 945 98.1
Total  50.0 50.0 50.0 50.0 100.0 99.8

Table 6: Senslf‘ﬂvity Analysis



9 Extended Appendix

This appendix contrasts our model and results to the case where the fishery is managed under (1)
a common total allowable catch (TAC) policy, hereafter TAC management, and (2) open access
management. Under TAC management, the fishery remains open to fishing until the aggregate
quota is harvested. Thus, all fishermen compete to harvest a common quota from a common
stock. Under open access the fishery remains open irrespective of the aggregate harvest. Clearly
in this latter case, there is no way to prevent fishermen from harvesting more than the TAC. We
first present the modified fishermen’s optimization problem under these alternate management
regimes. Equilibrium harvests and profits for a case of no-within-season stock growth and no

congestion are presented next

Under TAC management, seasonal operating profits for fisherman i are given as,
E Z [pt(ht)hi,t —ci(hit, h—it, zt, Nt, t)]7 (11)
t=1

where F denotes expectations. The optimization is subject to the within-stock evolution and

the constraint,
Zzhi,t <, (12)
it

where y is the (common) aggregate seasonal quota. The optimization problem in an open access

fishery is again given in (11), however, the quota constraint (12) is dropped.

Sole ownership 1TQs TAC Open Access

Period ht V;f ht ‘/t ht V;g ht ‘/t
1 274 3.54 275 355 328 3.75 337 3.7
2 25.8 3.22 25.1 319 292 327 301 3.27
3 24.2 2.96 2277 285 272 285 270 283
4 22.6 2.59 247 265 109 1.25 23.7 241
Total 100.0 12.26 100.0 12.24 100.0 11.12 114.5 12.28

Table 7: Comparisons with TAC and open access management

Table 7 reports aggregate (summed across two fishermen) per-period harvests as a percentage of
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the aggregate quota and profits under four management scenarios: sole ownership, ITQs, TAC
management and open access. Consider the sole owner, ITQ and TAC management regimes
which each limit the total allowable catch in the fishery. The race to fish is most pronounced,
and profits are lowest under the TAC management regime. TAC management attains only 90.7%
of the first best profit; 99.8% of first best profit is attained under ITQs. This result confirm
consensus in the literature that ITQs reduce the race to fish relative to TAC and open access

management (e.g., Boyce, 1992).

The harvest rate under IT(Q management is considerably slower that under TAC management.
This result is consistent with Fell (2010) and highlights an important benefit of I'TQ manage-

ment where slower harvest rates avoid market gluts and low ex-vessel prices.

The final columns report MPE harvests and profit under open access. Open access does not
control aggregate harvest and we see that 114.5% of the managers target quota is harvested.
Seasonal profit is higher under open access than under sole ownership management, also the first
best outcome. Of course, this result masks the longer term costs of exceeding the manager’s
target quota. The result is an illustration of the tragedy of the commons and teh well-known
result where under open access, excessive harvest yield initial high payoffs but deplete resource
stock eventually driving fishing profit to zero (Gordon. H. S., The Economic Theory of a

Common Property Resource: The Fishery, Journal of Political Economy, 62 (1954):124-142).
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Notes

2Authors are respectively, Ph.D. candidate and associate professor, Department of Economics, Iowa State
University, 260 Heady Hall, Ames, TA, 50011-1070. Please send all correspondence to weninger@iastate.edu,
phone: (515) 294-8976.

1Clark, 1980; Boyce, 1992, 2001; Holland, 2004; Bisack and Sutinen, 2006; Cancino, Uchida and Wilen, 2007;
Costello and Deacon, 2007; Deacon, Parker and Costello, 2008; Fell, 2010.

2Copes (1986), and more recently Pinkerton (2009), provide critiques of rights-based management approaches
in fisheries.

3Costello and Deacon (2007) present a model in which fishermen compete to harvest a fixed number of stock
units, or sub-stocks. Sub-stock values vary exogenously throughout a fishing season, with each sub-stock having
its own optimal and unique harvest date. Harvesting a sub-stock before or after the unique optimal date results in
lost value. The model is static; fishermen simultaneously announce the date that they plan to visit each sub-stock
and the amount of quota that dedicated to each sub-stock. The authors are able to solve for a Nash equilibrium
for the special case where the value of a sub-stock falls to zero for any fishermen arriving late to a sub-stock, i.e.,
after some other fisherman has visited the sub-stock, and fishermen dedicate their full quota holding to a single
sub-stock.

4The authors caution that these estimates are likely influenced by data limitations.

5A data fitting approach was used to overcome missing cost data. The implications for the author’s results are
not clear. It is also not clear how the author derive Nash equilibrium harvesting behavior in their simulations of
fishing behavior. Page 243 states “we use a GAMS numerical algorithm to solve for the harvest and effort path
that maximizes profits for each firm, given that every other firm is maximizing its profits.”

5Judd (1998) discusses the use of numerical methods for analyzing complex economic problems.

"See Fudenberg and Tirole for a discussion of open-loop, closed loop and Markov strategies in dynamic games
(p-501). Reinganum and Stokey (1985) study the role of commitment and discuss alternate equilibrium concepts
in the context of common property resource games.

8The optimal fleet size would be finite in the presence of congestion effects.

9The number of active fisherman we consider is clearly smaller than would be observed in an actual fishery.
Our results illustrate qualitative strategic interactions only.

0ur model can be used to study outcomes under alternate management regimes. We derive MPE harvests and
profits in a fishery that is managed under a common quota, also called a total allowable catch policy, and under
open access. Results are reported in an extended appendix and are available, upon request, from the authors.

YWhile our assumptions for cross-derivative cost effect are reasonable, empirical evidence for second-order
properties of resource extraction costs is scarce.

128tock uncertainty is common to all identical fishermen and therefore no within-season quota trading takes

place. If uncertainty was fishermen-specific, quota trades based on pre-season expectations could become ex post
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sub-optimal, providing incentives for further trade. An analysis of within-season quota trading is left for future
work.

13Costello and Deacon (2007) suggest that redundant and costly searches for uncertain, spatially located fish
stocks could be reduced by allocating spatially delineated harvest rights. We do not incorporate space or search
costs in our model, and therefore cannot examine the performance of spatially-delineated rights. Salmon bycatch
permits issued for the Bearing Sea pollock fishery are delineated bi-seasonally (NOAA, 2010)

14 British Columbia groundfish trawl fishermen have demonstrated remarkable willingness to coordinate harvest-
ing activities to secure available quota rent (Grafton, Nelson and Turris, 2007). Evidence of cooperation among
fishermen, and between fishermen and managers in rights-based-managed fisheries, although anecdotal, has also

emerged (Munro, 2007).
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