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Abstract
A new methodology is proposed for estimating the proportion of true null hypothe-

ses in a large collection of tests. Each test concerns a single parameter δ whose value
is specified by the null hypothesis. We combines a parametric model for the condi-
tional CDF of the p-value given δ with a nonparametric spline model for the density
g(δ) of δ under the alternative hypothesis. The proportion of true null hypotheses and
the coefficients in the spline model are estimated by penalized least-squares subject
to constraints that guarantee that the spline is a density. The estimator is computed
efficiently using quadratic programming. Our methodology produces an estimate ĝ(δ)
of the density of δ when the null is false and can address such questions as “when
the null is false, is the parameter usually close to the null or far away?” This leads
us to define a “falsely interesting discovery rate” (FIDR), a generalization of the false
discovery rate. We contrast the FIDR approach to Efron’s “empirical null hypothesis”
technique. We discuss the use of ĝ in sample size calculations based on the expected
discovery rate (EDR). Our recommended estimator of the proportion of true nulls has
less bias compared to estimators based upon the marginal density of the p-values at 1.
In a simulation study, we compare our estimators to the convex, decreasing estimator
of Langaas, Ferkingstad, and Lindqvist. The most biased of our estimators is very sim-
ilar in performance to the convex, decreasing estimator. As an illustration, we analyze
differences in gene expression between resistant and susceptible strains of barley.
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1 Introduction

We consider testing H0i : δi = 0 for i = 1, . . . , n. Let π0 be the proportion of δ1, . . . , δn equal

to the null value 0. We assume that the remaining proportion (1 − π0) of the δi have an

empirical distribution Gn well approximated by a continuous G with density g. We assume

that, under H0i, the p-value is uniformly distributed, as is true in many simple but important

cases, for example, of t- and F -tests.

A major advantage of our approach that we estimate G as well as π0. We use the estimate

of G to address the problem that if the number of false null hypotheses is large, then one

may not wish to discover all false nulls (Efron, 2004). We partition the parameter space into

three subspaces: the region where the null hypothesis is true, the region where the null is

false but the parameter value is close to the null, and the region where the null is false and

the parameter value is sufficiently far from the null to be of interest. Specifically, we define

a non-null value of δ to be “interesting” if it exceeds a user-defined bound δ ′. The falsely

interesting discovery rate (FIDR) is defined as the conditional probability, given that the

null has been rejected, that either the null is true or that it is false but the value of δ is not

interesting. Using our estimate of G, we are able to estimate the FIDR; see Section 10. Also,

we illustrate how and estimate of G can be used to plan sample sizes for future experiments.

Another advantage of our methodology is that it reduces bias when estimating π0. Es-

timates of π0 are useful for several purposes such as selection of a sample size to control

the FDR (Jung, 2005 and Liu and Hwang, 2005). Estimation of the false discovery rate

(FDR) requires estimates of π0 and of the probability of rejecting the null. An estimate of

G can be used for sample size calculations based on the expected discovery rate (EDR) and

to determine the proportion of null hypotheses that are “false but uninteresting” meaning

that the null is false but δ is close to the null value.

Suppose that the parameters δ1, . . . , δn have associated p-values, p1, . . . , pn, with pi com-

ing from a test of H0i : δi = 0 versus either a one or two-sided alternative. The conditional
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CDF of pi given δi will be denoted by Fp|δ(p ; δi), e.g., for a t-test Fp|δ would be derived from

a non-central t-distribution with non-centrality parameter δi. Since the p-value is assumed

to be uniformly distributed under H0, the marginal CDF of pi is

Fp(p ; π0) = π0p + (1− π0)EDR(p) (1)

where

EDR(p) =

∫ ∞

−∞
Fp|δ(p ; δ)dG(δ) (2)

is the Expected Discovery Rate (Gadbury et al., 2004). If one fixes α and varies δ, then

Fp|δ(α) is the power curve of a level-α test and EDR(α) is the expected power.

Much of the recent interest in estimation of π0 is due to applications to false discovery

rates. However, there are other interesting applications, e.g., Meinshausen and Rice (2005)

discuss estimating the number of objects in the Kuiper Belt. These objects are detected by

a reduction in light when they pass between a star and an observer. The null hypothesis is

that there is no reduction, and the number of false null hypotheses gives information about

the number of objects.

Currently, the most popular estimators of π0 are equal to some estimator of the p-value

density evaluating at 1, i.e., of fp(1; π0) = F ′
p (1; π0). The underlying assumption is that p-

values near 1 come from the null. However, this need not be true if fp|δ(1; δ) = F ′
p|δ(1; δ) > 0

for all δ in a set with positive probability, which is a common occurrence in applications;

see Section 3. The difference between fp(1; π0) and π0 can be especially large if G has

considerable probability near 0, as occurs in the example of Section 12. In one of the cases

of the simulation study of Section 8, π0 is 0.7 but estimates of fp(1; π0) = F ′
p(1; π0) are near

0.85; thus, the probability (1−π0) of a false null is twice what one of the currently available

estimators would report. The semiparametric estimators proposed in this paper are designed

to reduce this positive bias and in our simulations the bias just mentioned is reduced from

0.15 to 0.05.
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Our methodology is related to methods for estimation of mixing distributions, deconvolu-

tion, and other inverse problems, e.g., O’Sullivan (1986), Carroll and Hall (1988), Fan (1991),

and Lesperance and Kalbfleisch (1992). Estimation of (π0, g) is an inverse problem, which

we approach similarly to O’Sullivan (1986) by using B-splines with a roughness penalty.

Our estimation methodology is described in Section 2–6. The promising convex, decreas-

ing estimator of Langaas, Ferkingstad, and Lindqvist (2005), which we consider state-of-the-

art, and two additional estimators based on our semiparametric approach are introduced

in Section 7. A simulation study in Section 8 compares our estimators to the convex, de-

creasing estimator. Section 9 discusses estimation of the false discovery rate. In Section 10

the “falsely interesting discovery rate” is defined. Power and sample size calculations are

discussed in Section 11. An example using gene expression data is in Section 12, and a

summary is provided in Section 13.

2 The Semiparametric Estimator

We will model g as g(δ ; β) where g(· ; ·) is a spline and β is vector of coefficients. Let

Fp(· ; π0,β) be given by (1) with g(δ) replaced by g(δ ; β). We use penalized least squares to

estimate β with constraints that guarantee that the estimate is a density.

In many applications, n is very large and for computationally efficiency it is useful to bin

the p-values into, say, 2000 bins. Binning reduces computation both by data compression

and by changing the estimation problem into a quadratic programming problem. Let Nbin

be the number of bins; let li, ci, ri, and wi = ri − li be the left edge, center, right edge,

and width of the ith bin, i = 1, . . . , Nbin; and let M1, . . . , MNbin
be the bin counts. Then

yi = Mi/(nwi) is an unbiased estimate of

mi(π0,β) =
Fp(ri ; π0, β)− Fp(li ; π0, β)

wi

≈ fp(ci ; π0). (3)
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We will estimate (π0,β) by minimizing the penalized weighted sum of squares,

SS(π0,β ; λ) =

Nbin∑
i=1

ω2
i {yi −mi(π0, β)}2 + λQ(β) (4)

where ω2
i is a weight, Q(β) is a penalty to be discussed later, and λ ≥ 0 is a penalty

parameter. This estimator of π0 will be called the “semiparametric” estimator since it

combines fp|δ(p ; δ) with a nonparametric spline model for g. The weights could be ω2
i ≡ 1

or they could be the reciprocals of the estimated variances of the yi. In the latter case, the

weighted least-squares estimator is an approximate minimum chi-squared statistic.

3 The Conditional CDF Fp|δ

To evaluate mi(π0,β) in (3), we need Fp|δ. Suppose that we observe iid X1, . . . , Xn with

conditional CDF Fx(x ; δ) and that the rejection regions are Xi > κ for some κ. Then the

ith p-value is 1− Fx(Xi ; 0). The CDF of the p-value under δ is

Fp|δ(p ; δ) = 1− Fx{F−1
x (1− p ; 0) ; δ}, 0 < p < 1. (5)

Ruppert, Nettleton, and Hwang (2005) apply (5) to t-tests as well as one- and two-sided

location problem, including z-tests. Here we focus on t-tests.

Let T be a statistic whose CDF is Ft(· ; ν, δ), the non-central-t CDF with ν degrees of

freedom and non-centrality parameter δ. By (5), the CDF of the p-value for is Fp|δ(p ; δi) =

1 − Ft

{
F−1

t (1− p ; ν, 0) ; ν, δ
}

for one-sided tests and, for two-sided tests, Fp|δ(p ; δi) = 1 −
{Ft(t ; ν, δ) − Ft(−t ; ν, δ)}

∣∣
t=F−1

t (1−p/2 ; ν, 0)
, which depend on δi only through |δi|. Since we

will focus on t-tests, there is no loss in generality by assuming that

δ ≥ 0, (6)

or, alternatively, of viewing |δ| rather than δ as the parameter. Assumption (6) is especially

convenient for modeling g and will be made throughout this paper.

In both one- and two-sided t-tests, fp|δ(1 ; δ) > 0 for all δ.
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4 The Spline Model for g(·)
The density g will be modeled as a linear spline and estimated using the B-spline basis. We

will be using assumption (6). Let δ∗ be an upper bound for δ so that g is assumed to have

support contained in [0, δ∗]. The spline will have K knots, 0 = κ1, . . . , κK = δ∗, equally

spaced between 0 and δ∗, so that the distances between adjacent knots are all equal to

d = δ∗/(K−1). The choice of K is not critical as long as it is large enough. Because the spline

is penalized, the “effective” number of parameters is controlled by the penalty parameter

and K only provides an upper bound. We have experimented with K = 8 and 16 and found

that both choices work well, because data-driven methods for choosing the effective number

of parameters choose a value less than the upper bound of 8 when K = 8. For example, in

an experiment with 5000 p-values, the approximate generalized cross validation method we

introduce in Section 6 chose between 4 and 5 effective parameters when using either K = 8

or K = 16. In our numerical examples of Sections 8 and 12, we use K = 12.

Another issue is the choice of δ∗, the upper bound for δ. We have used δ∗ = 6 in our

empirical studies and this choice proved satisfactory. The explanation for this is that the

tests we studied were t-tests with δ the non-centrality parameter. Thus, δ is the deviation of a

parameter from its null value expressed in standard deviation units, so that 6 is a reasonable

upper bound for δ. If we bin the p-values into 2000 bins, say, then there is virtually no

information about the exact value of δ once it exceeds 6, for any δ above 6 is almost certain

to produce a p-value in the [0, 1/2000] bin.

The B-splines are plotted in Web Figure 1 for the case δ∗ = 6 and K = 7. The first

B-spline, B1, decreases linearly from 2/d to 0 on the interval [0, κ2] = [κ1, κ2] and is zero

elsewhere. The remaining B-splines B2, . . . , BK−1 are such that Bk increases linearly from 0

to 1/d on [κk−1, κk] and then decreases linearly from 1/d to 0 on [κk, κk+1] and is 0 elsewhere.

The B-splines span the space of linear splines with knots κ1, . . . , κK and constrained to be

zero at the last knot. This constraint forces the splines to be continuous on [0,∞), which
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seems reasonable. The constraint could be removed by adding an additional B-spline that

increases linearly from κK−1 to κK and is zero elsewhere. This B-spline is shown as a

dashed line in Web Figure 1. Each B-spline has been normalized so that it is a density, and

therefore any convex combination of the B-splines is also a density. Thus, our model for g

will be g(δ, β) =
∑K−1

k=1 βkBk(δ), where βk ≥ 0 for all k and
∑K−1

k=1 βk = 1.

5 The Penalized Least-Squares Estimator

To find a more explicit expression for the middle expression in (3), we now write Fp(· ; π0,β) in

terms of the B-splines. It is convenient to reparameterize to a parameter vector θ as follows.

Define θ1 = π0 and θk+1 = (1−π0)βk for k = 1, . . . , K− 1, and define θ = (θ1, . . . , θK)T. Let

Z1(p) = p be the (uniform) CDF of the p-values under H0, and for k = 1, . . . , K − 1 let

Zk+1(p) =

∫
Fp|δ(p; δ)Bk(δ)dδ (7)

be the marginal CDF of a p-value if the density of δ is Bk. Then the marginal CDF of a

p-value is modeled as Fp(p ; θ) =
∑K

k=1 θkZk(p) where θk ≥ 0 for all k and
∑K

k=1 θk = 1.

The roughness penalty we will use penalizes deviations of ĝ from a linear function using a

finite difference approximation to the second derivative of g. It is convenient if the roughness

penalty is expressed in terms of θ. The value of g at the knots is g(κ1) = g(0) = 2β1/d =

2(1−π0)
−1θ2/d, g(κk) = βk/d = (1−π0)

−1θk+1/d for k = 2, . . . , K−1, and g(κK) = g(δ∗) = 0.

The roughness penalty is

Q(θ) = (2θ2 − 2θ3 + θ4)
2 +

K−2∑

k=3

(θk − 2θk+1 + θk+2)
2

= {d(1− π0)}2

K−3∑

k=1

{g(κk)− 2g(κk+1) + g(κk+2))}2. (8)

Now define y = (y1, . . . , yNbin
)T and let Z be the Nbin ×K matrix whose i, jth element is

Zi,j = {Zj(ri)− Zj(li)}/wi. (9)
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Then the sum of squares is

SS(θ; λ) =

Nbin∑
i=1

ω2
i

{
yi −

K∑

k=1

θkZi,k

}2

+ λ

{
(2θ2 − 2θ3 + θ4)

2 +
K−2∑

k=3

(θk − 2θk+1 + θk+2)
2

}

= (y −Zθ)TΩ(y −Zθ) + λθT
{
(DA)TDA

}
θ, (10)

where Ω = diag(ω2
1, . . . , ω

2
n), A = diag(0, 2, 1, . . . , 1), and D is a (K − 3)×K “differencing

matrix” whose ith row has +1 in the columns i + 1 and i + 3, −2 in column i + 2 and zeros

elsewhere. Minimizing (10) is equivalent to minimizing fTθ+0.5 θTHθ where fT = −yTΩZ

and H = ZTΩZ + λATDTDA, with constraints θ ≥ 0 and 1Tθ = 1 where 1 is a K-

dimensional vector of ones. The objective function and constraints are in the form used by

the quadratic programming algorithm quadprog of MATLAB.

If λ is chosen by cross-validation, then the quadratic program must be solved for each

value of λ on some grid. Much of the effort is devoted to computing f and ZTΩZ since y

is Nbin × 1 and Z is Nbin ×K. However, these matrices can be computed once.

Computation of the Zi,j’s defined by (9) requires that we compute Zj(p) given by (7)

with p equal to each of the bin edges. We computed the integral in (7) numerically using

500 values of δ. Doing this required that Fp|δ(p ; δ) be valued at Nbin × 500 combinations of

p and δ. For the t-tests this takes several minutes of clock time. To speed up computations,

we computed these values of Fp|δ(p ; δ) once, saved them, and then loaded them into memory

as needed. With this device, our estimators can be computed in about 10 seconds of clock

time using a MATLAB program run on a 2.2 GHz PC.

The fitted value

f̂p(ci) = ŷi =
K∑

k=1

θ̂kZi,k (11)

estimates mi(π0,β) given by (3), which is an approximation to fp(ci), the marginal density

8



of the p-values at the center of the ith bin. Also, Fp(p) can be estimated by

F̂p(ri) =
i∑

i′=1

wi′

{
K∑

k=1

θ̂kZi′,k

}
(12)

when p is some right bin edge ri and then interpolated to other values of p. The estimator

of π0 is

“Semi, θ1” = θ̂1. (13)

The notation “Semi, θ1” is intended to remind the reader that this is a semiparametric esti-

mator based only on θ̂1. Two other semiparametric estimators based on θ̂ will be introduced

in Section 7. Also, let ĝ(δ) =
∑K−1

k=1 β̂kBk(δ) and Ĝ(δ) =
∫ δ

0
ĝ(u)du.

6 Approximate Cross-Validation

An obvious method for choosing λ is cross-validation (CV). However, exact cross-validation

would be slow to compute, so instead we used an approximation to the generalized cross-

validation (GCV) statistic. The GCV statistic itself is not defined for our estimator because

the constraints make the estimator nonlinear in y. Thus, there is no hat matrix and the usual

method of defining the degrees of freedom of the fit (DF) does not apply—see Chapter 3

and Section 5.3 of Ruppert, Wand, and Carroll (2003) for an introduction to GCV, linear

estimators, the hat matrix, GCV, and DF for penalized least-squares estimators. Therefore,

we use the DF parameter from estimating θ by minimizing (10) without constraint—this is

a poor estimator of θ but gives a DF value that worked well in our simulations when put

into the GCV formula.

The unconstrained minimizer of (10) is
{
ZTΩZ + λ(DA)T(DA)

}−1
ZTΩy, and has

hat matrix H(λ) = Z
{
ZTΩZ + λ(DA)T(DA)

}−1
ZTΩ. Then DF(λ) = trace{H(λ)} =

trace
[{

ZTΩZ + λ(DA)T(DA)
}−1

ZTΩZ
]
, and the approximate GCV statistic we use is

GCV(λ) = ‖y −Zθ̂(λ)‖2/{Nbin −DF(λ)}2, where θ(λ) is the estimator of Section 5 that

minimizes (10) with constraints. The smoothing parameter λ is chosen by computing GCV(λ)

on a grid on λ values and choosing the value that minimizes GCV(λ).
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7 Alternative Estimators of π0

Alternative estimators of π0 can be obtained by minimizing estimators of fp, the marginal

density of the p-values. In this section, we describe three estimators in this class. The

first two are based on our penalized least-squares fit. The third is the convex, decreasing

estimator proposed by Langaas et al. (2005) and found by them to be best among estimators

of π0 that minimize an estimate of fp.

7.1 Estimator Based On The Penalized Least-Squared Fit

An alternative semiparametric estimator, denoted by “Semi, min{f̂}” is the minimum over

i of (11), i.e.,

“Semi, min{f̂}” = min
i

f̂p(ci) = f̂p(cNbin
) =

K∑

k=1

θ̂kZNbin,k. (14)

The minimum occurs at i = Nbin because the estimated density is decreasing.

We found that “Semi, θ1” can biased downward and is somewhat more variable than

“Semi, min{f̂}”. However, when a substantial proportion of the p-values near 1 come

from the alternative hypothesis, then, because it is based on the incorrect assumption that

fp|δ(1 ; δ) > 0, “Semi, min{f̂}” can be biased upwards to such an extend that nearly 100%

of the MSE (mean squared error) is attributable to squared bias; see Section 8. These re-

sults motivated us to find an estimator that is a compromise between “Semi, θ1” and “Semi,

min{f̂}”. The former attempts to separate fp(1) into a component from the null and another

component from the alternative and uses only the component from the null to estimate π0.

The latter uses both components. The problem with “Semi, θ1” is that it is difficult to sep-

arate p-values coming from the null from those coming from alternative values of δ near the

null. To circumvent this problem, we defined a new estimator, “Semi, compromise”, which

decomposes fp(1) in three components, one from the null, one from the alternative near the

null, and the third from the alternative away from the null. Then “Semi, compromise” uses

the first two components. This induces a slight upward bias which provides a margin of
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safety. It also decreases variability. More precisely, we define

“Semi, compromise” =
2∑

k=1

θ̂kZNbin,k ≈ “null and near null part” of f̂p(1) (15)

One can see from (13), (14), and (15) and the fact that Zi,k ≥ 0 for all i, k, that “Semi, θ1”

≤ “Semi, compromise”≤ “Semi, min{f̂}”.

We studied two versions each of “Semi, θ1”, “Semi, min{f̂}”, and “Semi, compromise”,

an unweighted version where ωi ≡ 1 and a weighted version where ωi = 1/

√
f̂p(ci), where f̂p

is the unweighted estimator. The latter weights are based on the fact that the bin counts are

approximately Poisson distributed. We found that weighting did not have a consistent effect

on “Semi, θ1”, “Semi, min{f̂}”, and “Semi, compromise”, but that the weighted versions of

these estimators often had a somewhat smaller mean squared error.

7.2 The Convex, Decreasing Estimator

Langaas et al. (2005) considered a number of different estimators of π0. The best performing

of these is the convex, decreasing density estimator applied to the p-values and evaluated

at 1. These authors show that any twice differentiable, convex, and decreasing density f

on [0, 1] has a representation as f(x) =
∫ 1

0
fθ(x)γ(θ) dθ + f0(x)a0 + f1(x)a1, where f0 is

the uniform(0, 1) density, fθ(x) = 2θ−2(θ − x)+, 0 ≤ x ≤ 1, 0 < θ ≤ 1, a0 = f(1),

a1 = −1/2f ′(1), and γ = (1/2) θ2/f ′′(θ). The nonparametric MLE (NPMLE) of a convex,

decreasing density maximizes the likelihood over this class of densities. Langaas et al. (2005)

suggest an iterative algorithm for approximating the nonparametric MLE by a discrete mix-

ture, using only values of θ contained in some fine grid, e.g., {0, 0.01, 0.02, . . . , 1}.
We developed a algorithm for approximating the NPMLE that differed in a few ways

from the Langaas et al. algorithm. First, we minimized a chi-squared statistic rather than

maximizing the likelihood. Second, we used all θ on the grid {0, 0.01, 0.02, . . . , 1}. Finally,

we used quadratic programming to optimize. Our estimators were of the form

100∑
i=0

bifi/100(x), bi ≥ 0 ∀ i,

100∑
i=0

bi = 1. (16)
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The minimum chi-squared statistics is a quadratic function of (b0, . . . , b100) and the con-

straints in (16) are linear. Thus, our estimator can be calculated by quadratic programming

in the same way that (10) was minimized. Computation is very fast using this algorithm

taking about 4 seconds of clock time. Following Langaas et al. (2005), we denote this esti-

mator evaluated at 1 by “Convex”. It is well known that minimum chi-square estimators are

asymptotically equivalent to MLE based on grouped data, e.g., see Holland (1967) or Rao

(1973), and there should be little loss of information in grouping data into a large number,

e.g., 2000, bins. Therefore, the estimate computed by our algorithm is expected to be nearly

equal to the MLE.

8 Simulation Studies

We performed simulations of the two-sided t-test to compare “Convex”, “Semi, θ1”, “Semi,

min{f̂}”, and “Semi, compromise”. We generated t1, . . . , tn that were independent non-

central-t variates with non-centrality parameters δ1, . . . , δn and each with 4 degrees of free-

dom. The null hypotheses was H0 : δi = 0 and under the alternative the δi were generated

from a Beta(b1, b2) density on [δmin, δmax] where (δmin, δmax, b1, b2, π0) varied across several

cases. In each simulation, we generated 10,000 p-values and exactly 10,000π0 came from the

null.

The simulations used six cases of (π0, g). In Cases 1–3 π0 = 0.95 and in Cases 4–6 π0 =

0.7. Three densities were used for g and their parameters were, respectively, (δmin, δmax, b1, b2)

= (0, 4, 1, 2), (0, 4, 2, 2), and (0.5, 4.5, 3, 2). The first density, used in Cases 1 and 4, has

support [0, 4] and is concentrated around 0, making it difficult to distinguish p-values from

the null and from the alternative. This density is similar to the estimates of g in the gene

expression study in Section 12, which suggests that difficulty distinguishing p-values from

the null and alternative might be common, at least in gene expression studies. The second

density, used in Cases 2 and 5, also has support [0, 4], but has a mode away from 0. The
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third density, used in Cases 3 and 6, has support [0.5, 4.5] which is separated from the null

hypothesis. The three densities are labelled, respectively, “near,” “moderately near,” and

“far” from the null in the Table 1.

For a two-sided t-test, the distribution of the p-value depends only on |δ|, so there is

no loss in generality in having g supported on a positive interval. For the semiparametric

estimator, Nbin was fixed at 2000 and K was 12.

We also found that the weighted versions of “Semi, θ1” and “Semi, min{f̂}” did not

dominate unweighted versions, but generally the weighted estimators were somewhat better.

To save space, only results for the weighted estimators will be presented.

The results are in Table 1. From these results, we conclude that:

• In Cases 1, 2, 4, and 5 where g is near or moderately near the null, “Semi, compromise”

has the smallest RMSE of the four estimators.

• In Case 4, “Semi, min{f̂}” and “Convex” have severe positive bias because many of

the p-values near 1 are from the alternative. In this case, “Semi, compromise” is far

superior to “Semi, min{f̂}” and “Convex”.

• In Cases 3 and 6 where g is far from the null, “Semi, min{f̂}” has the smallest RMSE

of the four estimators.

• “Semi, θ1” has large RMSE values.

In many applications, the test statistics will not be independent. In microarray exper-

iments, for example, between-gene correlations of varying magnitude are expected among

genes functioning together in biological pathways. To investigate the effects of varying

between-gene correlation levels, we simulated two-sided t-tests with an autoregressive type

correlation and DF=4 and n = 10,000. More specifically, the ith p-value was based on

ti = (δi + ei)/
√

s2
i /DF where ei is a Gaussian AR(1) process and s2

i is independent of ei and

χ2
DF distributed with DF = 4. Specifically, ei = ρei−1 + ui where the ui are independent

13



N(0, 1 − ρ2), so that the ei are N(0, 1) and ei and ej have correlation ρ|i−j|. The s2
i were

mutually independent. When ρ 6= 0, the joint distribution of the p-values will depend on

how the δi are ordered. We considered two orderings of the δi, “permute” where the δi

were randomly permuted and “sort” where the δi were sorted from smallest to largest, so,

in particular, all the p-values from true nulls came first. Under “sort” p-values with similar

values of δ will be more highly correlated. The proportion of true nulls, π0, was fixed at 0.9

and (δmin, δmax, b1, b2) was fixed at (0, 4, 2, 2). The results are in Web Table 1 and will be

summarized here. We were at first surprised to see that the RMSE’s of “Semi, min{f̂}”,

“Semi, compromise”, and “Convex” were nearly independent of ρ and also of whether the

δi were permuted or sorted. However, there is a simple explanation. For these estimators,

the largest component of RMSE is squared bias, not variance, and bias should depend little,

if at all, on the amount of autocorrelation. In contrast, “Semi, θ1” has a larger component

due to variance and its RMSE is larger when ρ is larger. However, the RMSE of “Semi,

θ1” also depends very little upon whether the δi were permuted or sorted. It was interesting

that “Semi, compromise” had a smaller RMSE than “Convex” and “Semi, min{f̂}” in all

five cases.

How much one is willing to tolerate bias will influence the choice of estimator. When using

an estimate of π0 for determining the false discovery rate, a positive bias is often considered

to be less serious than a negative bias, because it leads to conservative false discovery rates.

However, a bias of 0.15 seen in “Semi, min{f̂}” and “Convex” may be too conservative, and

it is unnecessary now that “Semi, compromise” is available. In other applications, such as

determining the number of Kuiper Belt objects (Meinshausen and Rice, 2005), bias in either

direction is undesirable.

In general, bias is a major component of the RMSE of the estimators. The amount of

bias depends on both π0 and g. Obviously, there can be little positive bias if π0 is close to

1, but if π0 is 0.7 then bias can be severe. Fortunately, our semiparametric methodology
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provides estimates of both of π0 and g, so one can be alerted to situations where bias may

be severe. Web Figures 2 and 3 show estimates of fp and g from 10 independent simulated

data sets for Cases 4 and 6, respectively. The estimates of g are rather close to g itself,

showing that it is possible to determine whether values of δ under the alternative are mostly

close to or far from the null; it is only when they are mostly close to the null that severe

bias should be expected. In Cases 4–6, π0 = 0.7 so there is more information about g than

in Cases 1–3, where g is not estimated quite so well. However, when π0 is close to 1 as in

Cases 3–6, the estimate of π0 will indicate both that g may not be estimated accurately and

that, fortunately, positive bias will not be severe.

A referee mentioned that in SNP association studies, one expects that π0 will increase with

n and, in general, to be close to 1. To investigate such cases, we simulated with n = 25, 000

and π0 = 0.99. The results are in Table 2. The performances of “Semi, min{f̂}”, “Semi,

compromise”, and “Convex” are very good. As might be expected, upward bias is not a

serious problem when estimating a probability that is close to 1.

Another referee was interested in cases where most of the nulls are false. To investigate

this situation, we added three cases to Table 2 where n = 5, 000 and π0 = 0.3. We see from

that table that when π0 is this small, then “Convex” is very biased but “Semi, compromise”

works reasonably well.

9 Estimating the False Discovery Rate

Benjamini and Hochberg (1995) introduced the False Discovery Rate (FDR) for multiple

testing problems. A variety of methods have been proposed for estimating the FDR when

rejecting all null hypotheses with a p-value below some fixed α. Benjamini and Hochberg

(2000), Storey (2002), and Storey and Tibshirani (2003) among others have proposed FDR

estimators of the form

F̂DR =
απ̂0

F̂p(α)
, (17)
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where F̂p(α) is estimated simply by the proportion of observed p-values that fall below α, and

π̂0 is an estimator of π0 that differs among methods. The method of Storey and Tibshirani

(2003), which is perhaps the most widely used in practice, estimates π0 by approximating

the p-value density at p = 1. As discussed in the Introduction and in Section 8, π0 can be

substantially less than estimates of the p-value density at p = 1. From (17) we see that

upward bias in π̂0 will cause upward bias in F̂DR. To improve the situation, we propose to

estimate FDR by (17) where F̂p(α) is estimated by (12) and “Semi, compromise” is used

to estimate π0. Our least-squares fitting method will minimize the difference between our

denominator and that of Storey and Tibshirani (2003), so the main difference will be in the

numerators, where the results of Section 8 suggest that our method will exhibit less positive

bias.

10 When is a p-value Interesting?

Efron (2004) discusses a potential problem when one has a large number of tests—the number

of false nulls is often very large and we do not necessarily want to “discover” every one of

them. This problem does not always occur. In the astronomy example of Meinshausen

and Rice (2005) mentioned in Section 1, we are not really interested in which nulls are

false, only in how many nulls are false, so there is no danger of discovering too many false

nulls. However, in gene expression studies one is primarily interested in finding nulls that

are both false and “important” or “interesting” biologically. For example, in the microarray

experiment described in Section 12, the biologists were looking for barley genes that are

involved in resistance to a fungal pathogen. Many genes are likely to change expression

during attack by a pathogen, but some changes may be quite small and play only a minor

role in a plant’s defense response. While all changes, regardless of size, are potentially of

interest, researchers may wish to focus attention initially on the genes that exhibit the largest

and most consistent changes in expression. In some cases this may provide a clearer picture
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of the biology than attempting to simultaneously interpret the meaning of small changes in

thousands of genes.

10.1 The Falsely Interesting Discovery Rate

If “interesting” is interpreted as an especially unusual p-value as in Efron (2004), then we are

assuming that the δ values farthest from the null are of greatest interest. This assumption

is debatable, of course, and we do not think that making this assumption is always a good

idea. However, if we are willing to make it, then our estimates of π0 and g can be useful for

determining the number of interesting δ values. Suppose we want to know what proportion

of the p-values come either from a true null or from a null that is false but with a δ value

that is “uninteresting,” where “uninteresting” is defined by subject-matter considerations to

mean that δ < δ ′ for some fixed δ ′ > 0. This is proportion can be estimated by

π̂0 + (1− π̂0)

∫ δ ′

0

ĝ(δ) dδ. (18)

We define the “falsely interesting discovery rate” (FIDR) as the conditional probability

that a null hypothesis is either true or false but with an uninteresting value of δ, given that

it has been rejected, i.e., again assuming that a null hypothesis is rejected if the p-value is

its less than α,

FIDR(α, δ ′) =
P (δ < δ ′ and p-value < α)

P (p-value < α)
. (19)

The denominator of (19) can be estimated by F̂p(α). If δ ′ is one of the knots, say the

k′th, then the numerator of (19) can be estimated when α is a right bin edge, say ri,

by
∑i

i′=1 wi′

{∑k′
k=1 θ̂kZi′,k + (1/2)θ̂k′+1Zi′,k′+1

}
and then interpolated for other values of

α. Here we use the facts that θ1 is the probability that the null is true, that θk+1 is the

coefficient of the kth B-spline, and that the kth B-spline peaks at the kth knot and has half

of its probability to the left of that knot.

Efron (2004) has a rather different approach to the problem of rejecting too many nulls.

He replaces the “theoretical null hypothesis” by an “empirical null hypothesis.” Efron applies
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the inverse probit transformation to the p-values so that those “z-values” coming from the

null will have an exact N(0, 1) distribution. He then finds an estimate, f̂z, of the density of

the z-values. The “empirical null” is that the z-value is N(δz, σ
2
z) where δz is the mode of

the estimated density and σ2
z is the −1/{log(f̂z)}′′(δz).

Subject-matter specialists might find confusing a null hypothesis estimated from the data

and without the clear scientific meaning typical of a theoretical null. In contrast, the idea

that “the null is false but not by much” seems natural.

11 Power and Sample Sizes

Gadbury et al. (2004) define the Expected Discovery Rate (EDR) to be the probability of

a “discovery,” given that the effect is real, i.e., the probability that an effect is declared

significant, given that the null hypothesis is false. The EDR in our notation was given by

(2). We assume that g has been estimated and we are now contemplating a repetition of the

same experiment, or perhaps a similar experiment, with new sample sizes that differ from

the old by a factor η. We assume that δ represents the non-centrality parameter of a test

that changes from δ to δ∗ =
√

ηδ with the new sample size. This would be the case, for

example, if we were considering two-sample t-tests with n observations per sample.

It is of interest to see how EDR changes with η. Since G is the conditional distribution

of δ given that the null is false, the EDR for any η is defined by

EDR(α, η) =

∫ ∞

0

Fp|δ(α ;
√

ηδ) dG(δ). (20)

Let ÊDR(α, η) be (20) with G replaced by Ĝ. Gadbury et al. also define TN (True Negative)

as the probability an effect is not real given that it is declared not significant and TP (True

Positive) as the probability an effect is real given that it is declared significant. In our

notation

TN(α, η) =
(1− α)π0

(1− α)π0 + (1− π0){1− EDR(α, η)} (21)
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and

TP(α, η) =
(1− π0)EDR(α, η)

απ0 + (1− π0)EDR(α, η)
. (22)

TN(α, η) and TP(α, η) can be estimated by plugging ÊDR(α, η) and “Semi, min{f̂}” or

“Semi, compromise” into (21) and (22).

We also define an Expected Interesting Discovery Rate (EIDR) as the probability of

a “discovery” given that the null is false and interesting meaning that δ > δ ′. Thus,

EIDR(α, η, δ ′) =
∫∞

δ ′ Fp|δ(α ;
√

ηδ)g(δ)dδ
/
(
∫∞

δ ′ g(δ)dδ). Note that EIDR can be viewed as

the sensitivity of the test for detecting departures from the null that are interesting (δ > δ ′).

It is straightforward to extend the usual definition of specificity in a similar manner to the

probability that a gene will be declared not significant, given that the gene is null or near

null (δ ≤ δ ′).

Examining estimates of EDR, EIDR, TP, and TN as a function of α for varying choices

or η will help researchers determine appropriate sample sizes for future microarray experi-

ments. For example, a researcher may have the goal of identifying 90% of all “interesting”

gene expression differences, where “interesting” is defined by specifying a value for δ ′. Fur-

thermore, suppose this level of discovery is to be achieved while maintaining a true positive

rate (TP) in excess of 0.95. By estimating EIDR and TP from pilot data, we can estimate

the sample size relative to that in the pilot experiment (η) that will be required to meet the

desired performance criteria. Such information will prevent researchers from wasting effort

and resources on experiments that are likely to fall far short of their performance goals, or

from using more resources than necessary to achieve their performance goals. These calcula-

tions are particularly valuable for microarray experiments where labor and supply costs are

quite high.
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12 Example: Gene Expression in Barley

Caldo, Nettleton, and Wise (2004) conducted a microarray experiment to identify barley

genes that play a role in resistance to a fungal pathogen. To illustrate our methods, we

describe the analysis of a subset of the data they considered.

Two genotypes of barley seedlings, one resistant and one susceptible to a fungal pathogen,

were grown in separate trays randomly positioned in a growth chamber. Each tray contained

six rows of 15 seedlings each. The six rows in each tray were randomly assigned to six tissue

collection times: 0, 8, 16, 20, 24, and 32 hours after fungal inoculation. After simultaneously

inoculating plants with the pathogen, each row of plants was harvested at its randomly

assigned time. One Affymetrix GeneChip was used to measure gene expression in the plant

material from each row of seedlings. The entire process was independently repeated a total

of three times, yielding data on 22,840 probe sets (corresponding to barley genes) for each

of 36 GeneChips (2 genotypes × 6 time points × 3 replications). This can be viewed as a

split-plot experimental design with replications as blocks, trays as whole plots, and rows of

seedlings as split plots.

A mixed linear model corresponding to the split-plot design was separately fit to the 36

log-scale measures of expression for each gene. Specifically, each mixed linear model included

fixed effects for genotypes, times, and genotype-by-time interaction along with random effects

for replications, replication-by-genotype terms (i.e., trays), and residuals corresponding to

rows of seedlings. The usual assumptions regarding independence, normality, and constant

variance were assumed for the random effects within a gene.

Genes that exhibit different patterns of expression over the time course following inocula-

tion are of primary interest because this type of differential gene activity may help to explain

why the one genotype is resistant to the fungus while the other is susceptible. Thus inter-

action between genotype and time is of primary interest in this experiment. We focus here

on t-tests intended to detect specific sub-interactions within the overall genotype-by-time
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interaction. In particular, for each gene indexed by i and for each time t = 8, 16, 20, 24, and

32 hours after inoculation, we test H
(t)
0i : µirt − µist = µir0 − µis0 where µirt and µist denote

the mean expression of gene i in resistant and susceptible barley genotypes, respectively, at

t hours after inoculation. Note that rejection of H
(t)
0i suggests that the expression difference

between genotypes at time t during fungal attack has changed from the baseline difference

between the genotypes at the initial time point.

According to our mixed-linear model, the test statistic for H
(t)
0i will have a non-central t

distribution with 20 degrees of freedom and non-centrality parameter δ
(t)
i =

√
n(µirt − µist

−µir0 + µis0)/(
√

4σ2
e), where n denotes the number of replications (n = 3 in this case) and

σ2
e denotes the residual variance component. Clearly H

(t)
0i is equivalent to δ

(t)
i = 0. We

now present results for the five sets of p-values obtained by testing H
(t)
0i : δ

(t)
i = 0 for all

i = 1, . . . , 22, 840 at each time t = 8, 16, 20, 24, and 32 hours after inoculation.

12.1 Estimating π0 and g

Table 3 contains the “Semi, θ1”, “Semi, compromise”, “Semi, min{f̂}”, and “Convex” esti-

mates of π0 for tests of the 0-8, 0-16, 0-20, 0-24, and 0-32 interactions. The “Semi, compro-

mise” estimates for the 0-t interaction decreases as t increases, indicating that more genes are

being differentially expressed as the time since exposure increases. The “Convex” and “Semi,

min{f̂}” estimates are similar to each other and both are larger than the “Semi, compromise”

estimates. Moreover, the differences between the “Convex” or “Semi, min{f̂}” estimate and

the “Semi, compromise” estimate increases as t gets larger. Table 3 also has results from

bootstrapping “Semi, compromise” by resampling p-values. There is little variability in the

estimator and the bootstrap mean is near the estimate from the original sample.

Figure 1 shows the estimates of fp and g for each set of tests. Note that the estimates

of g peak at 0, indicating that δ is typically near the null. This is another reason why the

“Convex” and “Semi, min{f̂}” have a large positive bias. In the plots on the left side of this
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figure, we also show the component of fp coming from the null hypothesis, which is

θ̂1I{0 ≤ p ≤ 1}+
L∑

k=2

θ̂k

∫
fp|δ(p ; δ)Bk(δ)dδ, (23)

with L = 1 (the sum from 2 to L is defined to be 0 if L = 1) and the component of fp coming

from or near the null which is (23) with L = 2. The semiparametric estimate of fp is (23)

with L = K.

Figure 2 contain 30 bootstrap estimates of g and histograms of 250 bootstrap “Semi,

compromise” estimates. The bootstrap results suggest that g and π0 can be estimated with

reasonably good accuracy. However, the bootstrap may overestimate accuracy if the p-values

are not conditionally independent, so these results should be interpreted cautiously.

Web Figure 4 is a plot of (18), the estimated proportion of δi less than δ ′, versus δ ′

for the 0-8, 0-20, and 0-32 hour interactions. The estimate of π0 is “Semi, compromise”,

which is 0.57 in this example. If δ ′ = 1, then one can see in the figure that for the 0-

32 hour interaction about 82% of the null hypotheses are either true or “false but with δ

uninteresting.” Since, from Table 3, “Semi, compromise” = 0.57, it appears that about 25%

of the null hypotheses are “false but with δ uninteresting” and about 18% are “false and δ

is interesting.”

12.2 Estimating the FDR and FIDR

Web Figure 5 shows estimates of FDR as functions of the critical value α for the p-value (α

has been multiplied by 100 to make the figure more legible). That figure has estimates using

both “Semi, compromise” and “Convex” for the 0-8 and 0-32 hour interactions. For the 0-8

hour interaction, “Semi, θ1” and “Convex” are very close to each other and therefore give

similar FDR estimates. For the 0-32 hour interaction, the upward bias of “Convex” causes

a some overestimation of the FDR; if 100×α = 0.2, then the estimated FDR is about 0.038

using “Semi, compromise” but 0.046, about 21% higher, using “Convex”.

Web Figure 6 shows the estimate of the FIDR(α, δ ′) for the 0-32 hour interaction data.
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Here δ ′ = 0.55, 1.09, and 2.18 which are the second, third, and fifth of 12 knots. Suppose

we use 100 × α = 0.2, that is, we reject the null if p-value < 0.002. Then one can see from

Web Figure 4 that the FIDR(0.002,1.09) is about 0.13, more than three times the FDR of

0.038. However, FIDR(0.002,0.55) is only 0.05, much closer to the FDR.

If we wanted to have the FIDR(α, 1.09) close to 0.1, for example, then Web Figure 4

suggests α = 0.001. For the 0-32 hour interaction, about 2.3% (534 of 22,840) of the p-

values are below 0.001.

12.3 Estimating EDR, TN, and TP

Estimates of the EDR(α, η), EIDR(α, η, 1), EIDR(α, η, 2), TP(α, η), and TN(α, η) for the

0-32 hour interaction are shown in Figure 3 for 0.001 ≤ α ≤ .02 and η = 1, 2, and 4. There

are vertical lines in these plots through α = 0.01. Suppose we use this value of α. Then from

the top plot in Figure 3 we see that the EDR is 0.1 if the current number of replicates, three,

is maintained. If six replicates are used, then the EDR rises to about 0.18, and if twelve

replicates are used then the EDR is about 0.3. These numbers somewhat discouraging—even

with twelve replicates only about 30% of the genes with a 0-32 interaction will be discovered.

The problem here is that most of these expressed genes are difficult to discover because δ is

near 0. If we only consider “interesting” genes with δ > 1 then the value of EIDR(0.01, η, 1)

is nearly double the value of EDR(0.02, η), i.e., about 0.2, 0.38, and 0.6 for three, six, and

twelve replicates, respectively. Moreover, EIDR(0.01, η, 2) is even larger, approximately 0.4,

0.7, and 0.95 for three, six, and twelve replicates, respectively. Thus, with twelve replicates,

we can expect to discover 95% of the genes with a 0-32 hour interaction so large that the

non-centrality parameter is 2 or larger.

13 Summary

The barley gene expression data suggests that g is close to the null for these data. In such

situations, the simulation results show that “Convex” and “Semi, min{f̂}” are positively
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biased and “Semi, compromise” is the best of these three estimators, especially when π0 is

not close to 1.

In other studies, g may be far from the null and then the simulation results suggest

that “Convex” and “Semi, min{f̂}” will outperform “Semi, compromise”. The simulation

studies also suggest that “Semi, min{f̂}” will be somewhat superior to “Convex” is such

cases. Since our semiparametric methodology produces an estimator of g, in any application

we can assess whether g is near the null or not. This assessment will provide guidance as to

whether “Semi, compromise” or “Semi, min{f̂}” should be used.

In our example, we found that in all five cases the alternative was poorly separated from

the null in that g peaked at 0 with high probability that δ was less than 1. This is different

from the alternatives used in simulation studies by other investigators, e.g., Broberg (2005)

and Langaas et al. (2005). In our Monte Carlo study, we used three different g which range

from being poorly to well separated from H0 and that bias depends strongly on g. We suggest

that other researchers estimate g and that future studies investigate g poorly separated from

the null. Langaas et al. (2005) state that they use a g separated from the null “to make

the estimable upper bound π0 close to the true π0,” that is, to ameliorate the positive bias

of “Convex” and the other estimators they consider, and they also state that this “does

not mean that we imply that smaller changes are biologically uninteresting.” Our results

suggest that one can target π0 itself as the quantity to estimate rather than the upper bound

of π0 = fp(1), and then there is no need to restrict g as they have done.

If one must choose a single estimator among those studied, we recommend “Semi, com-

promise” since it had generally good performances in all cases in our simulations study, for

both one- and two-sided tests and for z-tests as well as t-tests. No other estimator in our

study performed well across all cases.

There are many other estimators of π0 beside those we have studied. Broberg (2005)

describes and compares eight of them in a simulation study. However, the estimators in
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Langaas et al. (2005) are not included in Broberg’s study. A full comparison of all available

estimators is beyond the scope of this paper. As can be seen in the Table 1 as well as Table

3 in Broberg, bias is often the major component of RMSE and the size and direction of bias

depends heavily upon π0 and g. Finding an estimator with a consistently small bias would

be a desirable, but perhaps unattainable, goal.

No other estimator that we are aware of also provides an estimate of g. We believe that

this is an important advantage of our methodology, since ĝ can be used to assess the possible

size and direction of bias, to estimate how many false nulls are close to the null, and to

determine sample sizes appropriate for future studies.

Genovese and Wasserman (2004) discuss identifiability of π0 and mention that π0 is

identified under parametric assumptions. We make a parametric assumption only about fp

and this seems enough to identify π0, though we know of no proof. We intend future study

of robustness to this parametric assumption. Robustness is an issue even for nonparametric

estimators, e.g., “Convex”, that assume that the null distribution of the p-value is uniform.

14 Supplementary Materials

Web Tables and Figure referenced in Sections 4, 8, and 12 are available under the Paper

Information link at the Biometrics website http://www.tibs.org/biometrics.
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Table 1: Two-sided t-tests with DF = 4 and n = 10,000 p-values per data set. RMSE
(root mean squared error) and bias. 600 Monte Carlo simulated data sets per case.
(δmin, δmax, b1, b2) is (0, 4, 1, 2) in Cases 1 and 4, (0, 4, 2, 2) in Cases 2 and 5, and (0.5, 4.5,
3, 2) in Cases 3 and 6.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
π0 0.95 0.95 0.95 0.7 0.7 0.7

nearest of g from null near moderate far near moderate far
RMSE

“Semi, θ1” 0.0251 0.0348 0.0346 0.0503 0.1035 0.0732

“Semi, min{f̂}” 0.0276 0.0145 0.0066 0.1519 0.0748 0.0187
“Semi, compromise” 0.0206 0.0124 0.0269 0.0492 0.0268 0.0458

“Convex” 0.0238 0.0148 0.0121 0.1485 0.0767 0.0214
Bias

“Semi, θ1” 0.0001 −0.0228 −0.0286 −0.0063 −0.0703 −0.0233

“Semi, min{f̂}” 0.0266 0.0123 −0.0014 0.1517 0.0743 0.0166
“Semi, compromise” 0.0076 0.0007 −0.0221 0.0367 0.0158 −0.0169

“Convex” 0.0208 0.0089 −0.0020 0.1476 0.0749 0.0167

Table 2: Two-sided t-tests with DF = 4 and n = 25,000 (Cases 7–9) or 5,000 (Cases 10–
12) p-values per data set. RMSE and bias. 600 Monte Carlo simulated data sets per case.
(δmin, δmax, b1, b2) is (0, 4, 1, 2) in Cases 7 and 10, (0, 4, 2, 2) in Cases 8 and 11, and (0.5,
4.5, 3, 2) in Cases 9 and 12.

Case 7 Case 8 Case 9 Case 10 Case 11 Case 12
π0 0.99 0.99 0.99 0.3 0.3 0.3

nearest of g from null near moderate far near moderate far
RMSE

“Semi, θ1” 0.0123 0.0156 0.0175 0.2100 0.0750 0.0112

“Semi, min{f̂}” 0.0069 0.0044 0.0039 0.3468 0.1738 0.0357
“Semi, compromise” 0.0065 0.0057 0.0081 0.2075 0.0740 0.0112

“Convex” 0.0060 0.0067 0.0066 0.3496 0.1794 0.0453
Bias

“Semi, θ1” 0.0000 −0.0087 −0.0144 0.1266 0.0705 −0.0043

“Semi, min{f̂}” 0.0063 0.0027 −0.0021 0.3466 0.1734 0.0348
“Semi, compromise” 0.0046 −0.0005 −0.0063 0.2045 0.0709 −0.0043

“Convex” 0.0017 −0.0007 −0.0029 0.3489 0.1783 0.0422



Table 3: Estimates of π0 for barley gene expression interaction tests. “0-t” is the interaction
between resistant/susceptible and time at 0 and t hours after exposure. The bootstrap
results are for “Semi, compromise”.

Interaction 0-8 0-16 0-20 0-24 0-32
“Semi, θ1” 0.8639 0.6497 0.2734 0.1644 0.2307

“Semi, min{f̂}” 0.9435 0.9074 0.8743 0.8605 0.7097
“Convex” 0.9324 0.9087 0.8668 0.8468 0.7032

“Semi, compromise” 0.9195 0.8519 0.8075 0.7884 0.5728
bootstrap mean 0.9197 0.8522 0.8133 0.7885 0.5721

bootstrap std dev 0.0067 0.0101 0.0100 0.0114 0.0116
bootstrap 2.5 % 0.8885 0.8277 0.7907 0.7592 0.5395
bootstrap 97.5 % 0.9412 0.9003 0.8592 0.8185 0.6042



List of Figures

Figure 1: Barley gene expression data. Top to bottom rows: 0-8, 0-16, 0-20, 0-24, and 0-

32 hour interactions. Left plots show the semiparametric (semipar) and convex, decreasing

(conv-decr) estimates of fp and a histogram of the p-values—the “o” are at the tops of the 50

bins. “From null” shows the estimated component of fp coming from the null hypotheses—it

is the uniform (0,1) density multiplied by “Semi, θ1”. “Compromise” shows the estimated

component of fp coming from the null hypotheses or δ close to the null value—see text. The

height of the “compromise” estimate of fp at 1 is the “Semi, compromise” estimate of π0.

The right plots are the estimates of g.

Figure 2: Plot of 30 bootstrap estimates of g (left) and histogram of 250 bootstrap estimates

of π0 (right). Top to bottom: 0-8, 0-16, 0-20, 0-24, and 0-32 hour interactions.

Figure 3: Barley data. 0-32 hour interaction. Estimates of EDR(α, η) (Expected Discovery

Rate), EIDR(α, η, 1) (Expected Interesting Discovery Rate with δ ′ = 1), TP(α, η) (True

Positive), and TN(α, η) (True Negative) curves for η = 1, 2, 4.
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