Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

GeneWeld: a method for efficient targeted integration directed by short homology

Wesley A. Wierson^{1,8}, Jordan M. Welker^{1,8}, Maira P. Almeida¹, Carla M. Mann¹, Dennis A. Webster², Melanie E. Torrie¹, Trevor J. Weiss¹, Macy K. Vollbrecht², Merrina Lan¹, Kenna C. McKeighan¹, Zhitao Ming¹, Alec Wehmeier¹, Christopher S. Mikelson¹, Jeffrey A. Haltom¹, Kristen M. Kwan³, Chi-Bin Chien⁴, Darius Balciunas⁵, Stephen C. Ekker⁶, Karl J. Clark⁶, Beau R. Webber⁷, Branden Moriarity⁷, Staci L. Solin², Daniel F. Carlson², Drena L. Dobbs¹, Maura McGrail¹, Jeffrey J. Essner^{1*}

- 1. Department of Genetics, Development and Cell Biology, Iowa State University, IA, USA
- 2. Recombinetics, Inc., St. Paul, MN, USA
- 3. Department of Human Genetics, University of Utah School of Medicine, UT, USA
- 4. Department of Neurobiology and Anatomy, University of Utah Medical Center, UT, USA
- 5. Department of Biology, Temple University, PA, USA
- 6. Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- 7. Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- 8. These authors contributed equally.

*Corresponding author and lead contact: jessner@iastate.edu

Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

In Brief

Wierson et al. describe a targeted integration strategy, called GeneWeld, and a vector series for gene tagging, pGTag, which promote highly efficient and precise targeted integration in zebrafish, pig fibroblasts, and human cells. This approach establishes an effective genome engineering solution that is suitable for creating knock-in mutations for functional genomics and gene therapy applications. The authors describe high rates of germline transmission (50%) for targeted knock-ins at eight different zebrafish loci and efficient integration at safe harbor loci in porcine and human cells.

Summary

Choices for genome engineering and integration involve high efficiency with little or no target specificity or high specificity with low activity. Here, we describe a targeted integration strategy, called GeneWeld, and a vector series for gene tagging, pGTag (plasmids for <u>Gene</u> <u>Tagging</u>), which promote highly efficient and precise targeted integration in zebrafish embryos, pig fibroblasts, and human cells utilizing the CRISPR/Cas9 system. Our work demonstrates that *in vivo* targeting of a genomic locus of interest with CRISPR/Cas9 and a donor vector containing as little as 24 to 48 base pairs of homology directs precise and efficient knock-in when the homology arms are exposed with a double strand break *in vivo*. Given our results targeting multiple loci in different species, we expect the accompanying protocols, vectors, and web interface for homology arm design to help streamline gene targeting and applications in CRISPR compatible systems.

Keywords

Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

CRISPR/Cas9, knock-in, homology mediated-end joining, targeted integration, zebrafish, pig fibroblasts, human K-562 cells

Introduction

Designer nucleases have rapidly expanded the way in which researchers can utilize endogenous DNA repair mechanisms for creating gene knock-outs, reporter gene knock-ins, gene deletions, single nucleotide polymorphisms, and epitope tagged alleles in diverse species (Bedell et al., 2012; Beumer et al., 2008; Carlson et al., 2012; Geurts et al., 2009; Yang et al., 2013). A single dsDNA break in the genome results in increased frequencies of recombination and promotes integration of homologous recombination (HR)-based vectors (Hasty et al., 1991; Hoshijima et al., 2016; Orr-Weaver et al., 1981; Rong and Golic, 2000; Shin et al., 2014; Zu et al., 2013). Additionally, *in vitro* or *in vivo* linearization of targeting vectors stimulates homologydirected repair (HDR) (Hasty et al., 1991; Hoshijima et al., 2016; Orr-Weaver et al., 1981; Rong and Golic, 2000; Shin et al., 2014; Zu et al., 2013). Utilizing HDR or HR at a targeted doublestrand break (DSB) allows base-pair precision to directionally knock-in exogenous DNA, however, frequencies remain variable and engineering of targeting vectors is cumbersome.

Previous work has shown *Xenopus* oocytes have the ability to join or recombine linear DNA molecules that contain short regions of homology at their ends, and this activity is likely mediated by exonuclease activity allowing base pairing of the resected homology (Grzesiuk and Carroll, 1987). More recently, it was shown in *Xenopus*, silkworm, zebrafish, and mouse cells that a plasmid donor containing short (\leq 40 bp) regions of homology to a genomic target site can promote precise integration at the genomic cut site when the donor plasmid is cut adjacent to the homology (Aida et al., 2016; Hisano et al., 2015; Nakade et al., 2014). Gene targeting is

Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

likely mediated by the alternative-end joining/microhomology-mediated end joining (MMEJ) pathway or by a single strand annealing (SSA) mechanism (Ceccaldi et al., 2016). In contrast, in human cell culture, linear donors with homologous ends have been reported to show inefficient integration until homology domains reach ~600 bp (Zhang et al., 2017), suggesting that different repair pathways may predominate depending on cell type. In the initial reports using short regions of homology for *in vivo* gene targeting in zebrafish, the level of mosaicism in F0 injected animals was high, resulting in inefficient recovery of targeted alleles through the germline (Aida et al., 2016; Hisano et al., 2015; Nakade et al., 2014).

Here, we present GeneWeld, a strategy for targeted integration directed by short homology, and demonstrate increased germline transmission rates for recovery of targeted alleles. We provide a detailed protocol and a suite of donor vectors, called pGTag, that can be easily engineered with homologous sequences (hereafter called homology arms) to a gene of interest, and a web interface for designing homology arms (<u>www.genesculpt.org/gtaghd/</u>). We demonstrate that 24 or 48 base pairs of homology directly flanking cargo DNA promotes efficient gene targeting in zebrafish, pig, and human cells with frequencies up to 10-fold higher than other HR strategies. Using short homology-arm mediated end joining, we can achieve germline transmission rates averaging approximately 50% across several zebrafish loci. Southern blot analysis in the F1 generation reveals that the GeneWeld strategy can yield alleles with precise integration at both 5' and 3' ends, as well as alleles that are precise on just one end. Finally, we present a strategy to delete and replace up to 48kb of genomic DNA with a donor containing homology arms flanking two distal CRISPR/Cas9 sites in a gene. These tools and methodology provide a tractable solution to creating precise targeted integrations and open the door for other genome editing strategies using short homology.

<u>Design</u>

Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

The GeneWeld strategy takes advantage of two simultaneous actions to initiate targeted integration directed by short homology (Fig. 1a). First, a high efficiency nuclease introduces a DSB in the chromosomal target. Simultaneously, a second nuclease makes a DSB in the pGTag vector integration cassette exposing the short homology arms. The complementarity between the chromosomal DSB and the donor homology arms activates a MMEJ/SSA or other non-NHEJ DNA repair mechanism, referred to as homology-mediated end joining (HMEJ). The reagents needed for this gene targeting strategy include Cas9 mRNA to express the Cas9 nuclease, a guide RNA targeting the genomic sequence of interest, a universal gRNA (UgRNA) that targets two sites in the pGTag series donor vectors to expose the homology arms, and a pGTag/donor vector with gene specific homology arms (Fig. 1a). The universal gRNA (UgRNA) has no predicted sites in zebrafish, pig, or human genomes. Alternatively, a gene specific guide RNA can be used to expose homology arms in the donor vector. For simplicity we will refer to this set of reagents as 'GeneWeld reagents'. Using GeneWeld reagents to target various loci, we demonstrate widespread reporter gene expression in injected F0 zebrafish embryos, porcine fibroblasts, and human K-562 cells, indicating efficient and precise in-frame integration in multiple species and cell systems.

<u>Results</u>

A single homology domain of up to 48 bp drives efficient integration of RFP into noto

To develop baseline gene targeting data, we engineered variable length homology domains to target *noto*. These lengths were based on observations that DNA repair enzymes bind DNA and search for homology in 3 or 4 base pair lengths (Supplementary Fig. 1a) (Conway et al., 2004; Singleton et al., 2002). Upon injection of a *noto* sgRNA to target both the genome and one homology domain of a 2A-TagRFP-CAAX-SV40 donor vector, efficient

Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

integration was observed as notochord-specific RFP (Supplementary Fig. 1b, c, Supplementary Table 1-3). The frequency of RFP expression increased as the homology domain was expanded up to 48 bp (Supplementary Fig. 1b), while 192 bp of homology displayed reduced integration activity (data not shown). Somatic junction fragment analysis showed precise integration efficiencies reaching 95% of sequenced alleles (Supplementary Fig. 1d). Following these initial experiments, a 3 bp spacer sequence was included in all homology arm designs to separate the donor CRISPR/Cas9 target PAM and the homology domain and prevent arbitrarily increasing the length of the targeting domain, as single base pair alterations in the homology region can affect knock-in efficiency up to 2-fold (Supplementary Fig. 2).

Using the UgRNA to Liberate Donor Homology

To simplify donor design and liberate donor cargo *in vivo* with reproducible efficiency, a UgRNA sequence, with no predicted targets in zebrafish, pig, or human cells, was designed based on optimal base composition (Supplementary Fig. 3a) (Moreno-Mateos et al., 2015). The target sequence for the UgRNA with a PAM sequence was cloned 5' adjacent to the homology arm in a donor vector to direct a DSB for homology exposure. Experiments targeting *noto* with this UgRNA donor plasmid resulted in RFP expression in the notochord in 21% of injected embryos, indicating correct targeting of *noto* and demonstrating the efficacy of Cas9/UgRNA to expose the single 5' homology arm in the donor and drive precise integration (Supplementary Fig. 2b, 3c). The high frequency of RFP+ cells following injection of GeneWeld reagents suggests that repair of the DSB preferentially utilizes the homology in the targeting construct over the NHEJ pathway.

Liberating Short Homology by Dual Targeting of Donor Vectors and Genomic Loci Directs Precise Integration in Somatic Tissue

Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

We leveraged the activity of the UgRNA in the design of the pGTag vector series by including UgRNA target sites on both ends of the cargo (Fig. 1b). Homology arms can be simply added to the vectors using Golden Gate cloning. Cleavage by Cas9 at the UgRNA sites in the embryo or cell liberates the DNA cargo from the plasmid backbone and exposes both 5' and 3' homology arms for interaction with DNA on either side of the genomic DSB (Fig. 1c). Injection of GeneWeld reagents containing either 2A-TagRFP-CAAX-SV40 or 2A-eGFP-SV40 donors targeting *noto* resulted in 24% of embryos showing extensive notochord expression of the reporter, indicating a similar targeting efficiency compared to targeting with 5' homology alone (Fig. 2a, e; Supplementary Fig. 1, Table 1-3).

To extend our results to other loci in zebrafish, we targeted different genes with 2A-TagRFP-CAAX-SV40 and varying homologies (Fig. 2, Supplementary Table 1-4). GeneWeld reagents targeting *connexin43.4* (*cx43.4*) with 24 and 48 bp of homology resulted in broad RFP expression throughout the nervous system and vasculature in 38 to 50% of the injected embryos (Fig. 2b, e). Together, these results suggest that 24 bp of homology directs targeted integration as efficiently as 48 bp.

Targeting exon 4 of *tyrosinase* (*tyr*) with GeneWeld reagents did not result in detectable RFP signal, similar to previous reports (Hisano et al., 2015). However, PCR junction fragments from injected larvae showed the 2A-TagRFP-CAAX-SV40 donor was precisely integrated in frame into *tyr* exon 4 (Supplementary Fig. 5), suggesting RFP expression was below the threshold of detection. To amplify the fluorescent signal, we injected homology directed pGTag-2A-Gal4VP16- β -actin to integrate the transactivator Gal4VP16 into the *tyr* exon 4 target site in transgenic zebrafish embryos carrying a 14xUAS-RFP reporter, Tg(*UAS:mRFP*)^{tpl2} (Balciuniene et al., 2013). This resulted in strong RFP signal in 64% of injected animals; however, the embryos were highly mosaic compared to targeting 2A-TagRFP-CAAX-SV40 into *noto* and

Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

cx43.4, with only 9% of RFP embryos displaying extensive expression throughout pigmented cells (Fig. 2c, e).

Similar to *tyr*, GeneWeld reagents used for targeting 2A-TagRFP-CAAX-SV40 into exon 2 of the *esama* gene did not result in detectable RFP expression, however, targeting pGTag-2A-Gal4VP16 in the Tg(*UAS:mRFP*)^{tpl2} transgenic background resulted in 21% of embryos displaying extensive RFP expression specifically in the vasculature (Fig. 2d, e). This approach was further extended to five additional loci, targeting 2A-Gal4VP16 to *filamin a* (*flna*), *moesin a* (*msna*), *aquaporin 1a1* (*aqp1a1*), *aquaporin 8a1* (*aqp8a1*), and *annexin a2a* (*anxa2a*). At these loci, transient expression of RFP was observed following injection in 4-55% of Tg(*UAS:mRFP*)^{tpl2} embryos (Supplementary Table 1 and 2). Taken together, these results show that the application of GeneWeld reagents promotes high efficiency somatic integration following injection into zebrafish embryos.

Efficient germline transmission

Three out of five (60%) *noto*-2A-TagRFP-CAAX-SV40 injected founder fish raised to adulthood transmitted *noto*-2A-*TagRFP*-CAAX-SV40 tagged alleles through the germline (Figure 3, Table 1, Supplementary Tables 3 and 4). For *tyr*-2A-Gal4VP16- β -actin injections, 8 embryos with expression in the retinal pigmented epithelia were raised to adulthood and outcrossed. Of those, three founder animals transmitted tagged alleles to the next generation (37.5%) (Figure 3, Table 1 and Supplementary Table 3 and 4). Likewise, for *esama-2A-Gal4VP16-β*-actin, 18 F0s displaying widespread vasculature RFP expression were raised to adulthood, and 12 (66.7%) transmitted *esama-2A-Gal4VP16-β*-actin alleles to the F1 generation. We have extended these results to *flna*, two different target sites in *msna* (exon 2 and 6), *aqp1a1*, *aqp8a1*, and *anxa2a* with a combined F0 transmission rate of 49% across all loci (Figure 3, Table 1, Supplementary Tables 3 and 4). Taken together, these results indicate

Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

GeneWeld reagents which efficiently promote targeted integration in zebrafish F0s based on reporter expression are also efficiently transmitted through the germline.

Precise 5' and 3' junctions and single copy integration in F1s

Given that homology was present on both sides of the pGTag constructs used for targeting, it was expected that precise integration would occur at both 5' and 3' of the genomic cut site. Genomic Southern blot analyses of four F1s from two of the *noto*-2A-TagRFP-CAAX-SV40 founders confirmed a single copy integration in *noto* exon 1 (Fig. 4, a-c). Progeny from the first founder had precise integrations at the 5' end of the target site but contained an ~400 bp deletion downstream extending into exon 2. The second founder produced offspring with an allele with precise 5' integration and also included an insertion at the 3' end, likely to be a segment of the vector backbone based on the size of the insert on Southern blot. Sequencing of junction fragments from the first founder confirmed that NHEJ drove integration at the 3' end rather than a homology-based mechanism which was not expected (Fig. 4, Supplementary Fig. 4). In contrast, Southern blot analysis and sequencing of *tyr*-2A-Gal4VP16- β -actin F1 progeny demonstrated a single copy integration of the Gal4VP16 cassette with precise integration at both 5' and 3' ends (Fig. 4, d-f, Supplementary Fig. 4, 5).

Junction fragment analysis of F1s from each of seven transmitting loci indicated precise events were primarily recovered at the 5' for all the genes examined (30/31 or 97% across seven genes) (Supplementary Fig. 4). This result is expected as precise 5' integrations are selected for by screening for expression of the report from the donor cassette. For *esama*, the 3' junctions were also precise in 9/10 of the F1s examined from 6 different F0s, and both *aqp1a1* and *app8a1* had precise 3' junctions. This is compared to *msna* E2 targeting with 2A-Gal4VP16- β -actin, where only one out of the 12 F1s examined had a precise 3' junction.

Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

Together, these results indicate that GeneWeld reagents can promote precise single copy integration at a genomic cut site without vector sequences, although events involving NHEJ at the at the 3' end are also recovered.

Homology Engineered to Distal Genomic gRNA Sites Seeds Deletion Tagging in Somatic Tissue

To further demonstrate the utility of GeneWeld reagents, we tested whether the pGTag donors could function to bridge two CRISPR/Cas9 genomic cuts, resulting in simultaneous deletion of endogenous sequences and integration of exogenous DNA to create a "deletion tagged" allele. The pGTag-2A-Gal4VP16 donor was cloned with homology arms to two gRNA target sites in the zebrafish retinoblastoma1 (rb1) gene. The two gRNA sites were located in exons 2 and 4, which are located 394 bp apart, or in exons 2 and 25 which are separated by ~48.4 kb (Fig. 5a). The 5' homology arm contained sequence upstream of the cut site in exon 2. while the 3' homology arm contained sequence downstream of the cut site in either exon 4 or exon 25. Injection of GeneWeld reagents with the corresponding exon 2-exon 4 or exon 2-exon 25 pGTaq-2A-Gal4VP16-β-actin donor into Tq(UAS:mRFP)^{tpl2} embryos resulted in 59% and 60%, respectively, of injected embryos showing broad and ubiguitous RFP expression (Fig. 5bc, f, Supplementary Table 1,2). Somatic junction fragment analysis showed precise integration at both the 5' (29/30 or 97% of the fragments analyzed) and 3' ends (20/30 or 67%) of rb1 (Supplementary Fig. 6). Increasing the size of the deleted region from 394 bp to 48.4 Kb did not affect the frequency of reporter integration. One out of 16 F0 founders screened (6%) transmitted a precise 5' junction through the germline, but the 3' junction could not be amplified by PCR (Supplementary Table 3, 4).

Using the same approach, we targeted the zebrafish gene *moesina* (*msna*) at exons 2 and 6, located 7.8 kb apart, with 2A-Gal4VP16- β -actin using 48 bp of homology. This resulted

Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

in 63% of embryos displaying RFP in a pattern consistent with the expression of *msna* (Fig. 5df, Supplementary Table 1,2). Somatic junction fragment analysis showed precise integration at both the 5' (11/13 or 85% of the fragments analyzed) and 3' ends (9/20 or 45%) of *msna* (Supplementary Fig. 6). Of the 10 F0 zebrafish raised to adulthood, none transmitted a deletion tagged allele to the next generation. In contrast, targeting 2A-Gal4VP16- β -actin to exon 2 or 6 alone resulted in 2 out of 7 F0s transmitting a targeted allele to the next generation (Supplementary Table 3, 4).

Together, these results demonstrate simultaneous targeting of two distal genomic cut sites can create integration at both ends of a pGTag reporter cassette by HMEJ in somatic tissue, but these events are not easily passed through the germline. This was reinforced by attempting deletion tagging at additional loci, including *kdrl*, *s1pr1*, and *vegfaa*, which showed 32-81% expression in F0s, but no germline transmission to F1s (Supplementary Table 2).

Integration of Exogenous DNA Using HMEJ in Porcine and Human Cells is More Efficient than HR

To determine if HMEJ integration directed by short homology functions efficiently in large animal systems, we tested the GeneWeld targeting strategy in *S. scrofa* fibroblasts. The *ROSA26* safe harbor locus was targeted with a cassette that drives ubiquitous eGFP expression from the UbC promoter (Fig. 6a-c). GeneWeld reagents, where the genomic sgRNA was replaced with mRNAs encoding a TALEN pair to generate a genomic DSB in the first intron of *ROSA26*, were delivered to pig fibroblasts by electroporation. This strategy was compared to cells electroporated with just the TALEN pair and a HR donor containing approximately 750 bp of homology flanking the genomic target site. GFP expression was observed in 23% of colonies using GeneWeld reagents, compared to 2% of colonies using the HR donor with ~750 bp homology arms. Co-occurring precise 5' and 3' junctions were observed in over 50% of the

Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

GFP+, GeneWeld engineered colonies while none of the GFP+, HR colonies contained both junctions. Sequencing of junctions from 8 GFP+, GeneWeld engineered colonies that were positive for both junctions showed precise integration in 7/8 colonies at the 5' junction and 8/8 colonies at the 3' junction.

The GeneWeld strategy was also used to target integration of a MND:GFP reporter (Halene et al., 1999) into the *AAVS1* safe harbor locus in human K-562 cells (Fig. 6d-f). Integrations were attempted with either GeneWeld reagents or an HR donor targeting the *AAVS1* cut site by electroporation of K-562 cells. Cells were FACs sorted by GFP at day 14 following electroporation. With GeneWeld reagents over 50% of cells were GFP positive, compared to only 6% of cells electroporated with the HR donor. This suggests the GeneWeld strategy promoted efficient integration and stable expression of the MND:GFP cassette at the *AAVS1* locus (Supplementary Fig. 7). Expression was maintained over 50 days, and 5' precise junction fragments were observed following PCR amplification in bulk cell populations (Supplementary Fig. 8). The results above demonstrate that the GeneWeld strategy outperforms traditional HR techniques in mammalian cell systems and is effective without antibiotic selection.

Discussion

The results described here demonstrate the utility of short homology-based gene targeting for engineering precise integration of exogenous DNA and expand the potential of efficient tagging to diverse loci with differing endogenous expression levels. We show that using short homology to bridge distal ends together simultaneously creates a deletion and a reporter integration, however, these events are not easily passed through the germline. We demonstrate efficient integration of cargos up to approximately 2 kb in length in zebrafish, pig

Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

fibroblasts, and human cells. Both CRISPR/Cas9 and TALENs are effective as GeneWeld genomic editors, providing flexibility in deployment and genome-wide accessibility.

Several components of the GeneWeld strategy may lead to enhanced somatic and germline targeting efficiencies in zebrafish as compared to previous reports (Hisano et al., 2015). Canonical NHEJ is highly active during rapid cell divisions in early zebrafish embryogenesis (Bedell et al., 2012). However, given the correct sequence context surrounding the dsDNA break, MMEJ is the preferred method of non-conservative repair (Ata et al., 2018; He et al., 2015; Kent et al., 2015). GeneWeld homology arms are rationally designed based on the known homology searching activity of RAD51 and strand annealing activity of RAD52 (Conway et al., 2004; Singleton et al., 2002). In our experiments at noto, gene targeting is significantly reduced when 48 bp homology arms are altered by 1 bp to 47 or 49 bp (Supplementary Fig. 3). This suggests that optimal short homology arms should be designed in groups of 3 and/or 4 bp increments. We are currently testing this hypothesis further. Additionally, Shin et al., 2014 showed the highest rates of somatic targeting when their donor was linearized in vitro inside a ~1 kb 5' homology arm, leaving 238 bp of homology flanking the knock-in cargo. Thus, it is tempting to speculate that gene targeting in these experiments proceeded not through HR, but through other related HMEJ DNA repair pathway more similar to the findings presented here.

The dramatic shift of DNA repair at genomic DSBs from cis-NHEJ to trans-HMEJ using GeneWeld donors likely also influences enhanced editing of the germline. Across all zebrafish experiments with germline transmission, 49% of founders transmitted tagged alleles, with 17.4% of gametes carrying the edited allele of interest (Supplementary Table 3, 4), demonstrating decreased germline mosaicism and increased germline transmission from previous reports. Given that our somatic knock-in and germline transmission rates are higher than published

Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

reports, we conclude that GeneWeld is a more effective homology-based method for generating precisely targeted knock-in alleles in zebrafish.

While targeting *noto* with 5' only homology shows an increase in targeting efficiency with longer homology, increasing homologies on both ends of the cargo DNA did not increase targeting efficiency (Fig. 2e). Positive events are selected only by fluorescently tagged alleles, indicating precise 5' integration patterns. We speculate that inclusion of homology at the 3' end of our cargo creates competition for the donor DNA ends, as not all editing events are precise at both 5' and 3' junctions (Fig. 4 and Supplementary Fig. 4). Thus, it is conceivable that precise events at the 3' end could preclude precise integration at the 5' end during some editing events. and vice versa. It is tempting to speculate that this data hints at synthesis dependent strand annealing (SDSA) as a possible DNA repair mechanism for pGTag donor integration (Ceccaldi et al., 2016). After strand invasion using either of the homology domains and replication through the reporter, second DNA end capture may abort before or after replication through the opposing homology domain, resulting in imprecision, as greater than or equal to 150 bp is required for proper second end capture in yeast (Mehta et al., 2017). Experiments to address this hypothesis by varying homology arm lengths flanking the donor cassettes and including negative selection markers are of note for future work in determining the genetic mechanisms that promote efficient integration.

Timing and turnover of Cas9 during the genomic editing event can influence cut efficiency and somatic mosaicism/germline transmission rates (Clarke et al., 2018; Zhang et al., 2018), increasing the interest of using RNP during all precision gene editing applications. However, we were unable to observe fluorescence following injection of GeneWeld components with RNPs or detect targeted integrations at a high frequency (unpublished data). We hypothesize this is due to Cas9 and UgRNA locating and binding to the UgRNA sites on the

Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

pGTag donors during dilution of the injection mixture. This heteroduplex either activates DSBs on the donor *in vitro*, or directly after injection, before the genomic gRNA can locate and cut the genome. Thus, the stochastics of DNA end availability are altered using RNPs and integration activity is greatly reduced. Injection of the GeneWeld plasmid donor and RNPs in separate injection mixtures does not produce integration in zebrafish embryos (unpublished data). Further experiments could address these limitations through the use of inducible nuclease systems.

Targeting genes with lethal phenotypes, such as tumor suppressors or other genes required for embryogenesis, is of interest to the zebrafish community. However, using fluorescence to screen for targeted events can be misleading. For example, the RFP signal is dramatically reduced or lost upon biallelic inactivation of *noto*, likely when notochord cells transfate to muscle cells (Melby et al., 1996; Talbot et al., 1995). Additionally, though deletion tagging using two target sites in the genome seems to be robust in somatic tissue, germline transmission of deletion tags is rare. This suggests that edited germ cells may be lost to apoptosis due to the additional cut in the genome, or that heterozygous deletion tagged alleles are recognized during homologous chromosome pairing and are repaired or lost as germ cells mature. Similar susceptibility of stem cells to apoptosis following gene editing has been previously observed (Ihry et al., 2018; Li et al., 2018). In both of these cases, it may be necessary to modulate GeneWeld reagent concentrations in order to avoid biallelic inactivation of the genomic target, or to ensure homozygous deletion tagging.

Amplification of the fluorescence signal using GAL4/VP16 allowed us to target several genes for which we did not observe a fluorescence report from integration of a fluorescent protein directly. While this approach is advantageous for selecting correctly targeted embryos to examine for germline integration, GAL4/VP16 may have toxic effects as reported previously

Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

(Ogura et al., 2009). For example, we found dominant phenotypes in the F1 generation for both *msna* and *flna* which could reflect toxicity from high levels of expression of GAL4/VP16. Alternatively, these gene could also display haploinsufficiency or express a partial protein product that functions in a dominant manner. Heterozygous *msna* mutants targeting exon 5 in the F1 generation display phenotypes similar to morpholino targeting of this gene (Wang et al., 2010) (data not shown), suggesting haploinsufficiency or a dominant negative peptide is a likely explanation.

GeneWeld is also an effective strategy to precisely control exogenous DNA integration in mammalian cell lines. While our data shows an approximate 10-fold increase in targeted integration using 48 bp of homology to drive HMEJ versus HR, Zhang et al. (2017) concluded that targeted integration did not appreciably increase until homology arms of ~600 bp were used (Zhang et al., 2017). However, this could reflect differences in the experimental design or cell types used and suggest different DNA repair pathways may be more prevalent in certain conditions. Deciphering the DNA repair pathway used for HMEJ in zebrafish and mammalian cells is paramount to increasing editing efficiencies in basic research and for gene therapy.

Given the high efficiency and precision of GeneWeld, additional applications to efficiently introduce other gene modifications, such as single or multiple nucleotide polymorphisms, by exon or gene replacement is possible using the deletion tagging method. Further, GeneWeld could be used to create conditional alleles by targeting conditional gene break systems into introns (Clark et al., 2011). In conclusion, our suite of donor vectors with validated integration efficiencies, methods, and web interface for pGTag donor engineering will serve to streamline experimental design and broaden the use of designer nucleases for homology-based gene editing at CRISPR/Cas9 and TALEN cut sites in zebrafish. We also demonstrate an advanced strategy for homology-based gene editing at CRISPR/Cas9 and TALEN cut sites in zebrafish.

Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

cell lines. Our results open the door for more advanced genome edits in animal agriculture and human therapeutics.

Methods

Contact for reagent and resource sharing

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Jeffrey Essner (jessner@iastate.edu).

Experimental model and subject details

Zebrafish were maintained in Aquatic Habitats (Pentair) housing on a 14 hour light/10 hour dark cycle. Wild-type WIK were obtained from the Zebrafish International Resource Center. The Tg(*miniTol2/14XUAS:mRFP, \gammaCry:GFP*)^{tpl2}, shortened to Tg(*UAS:mRFP*)^{tpl2}, was previously described (Balciuniene et al., 2013). All experiments were carried out under approved protocols from Iowa State University IACUC.

The human K-562 chronic myelogenous leukemia cell line (ATCC CCL-243) used in gene targeting experiments was cultured at 37°C in 5% CO₂ in RPMI-1640 (Thermo Fisher Scientific) supplemented with 10% fetal bovine serum (FBS) and Penicillin/Streptomycin. Electroporation was conducted with 1.5 x 10⁵ cells in a 10 µl tip using the Neon electroporation device (Thermo Fisher Scientific) with the following conditions: 1450V, 10ms, 3x pulse. Nucleic acid dosages were as follows: 1.5 µg Cas9 mRNA (Trilink Biotechnologies), 1 µg each chemically modified sgRNA (Synthego), and 1 µg donor plasmid.

Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

Fibroblasts were cultured in DMEM (high glucose) supplemented to 10% vol/vol FBS, 20 mM L-glutamine and 1X Pen/ Strep solution and transfected using the Neon[™] system (Invitrogen). Briefly, 1 x 10⁶ fibroblasts were transfected with 1 ug of polyadenylated ROSA TALEN mRNA, 1 µg of universal gRNA mRNA, 1 µg of polyadenylated Cas9 mRNA and 1 µg of donor plasmid. Transfected cells were cultured for 3 days at 30°C before low density plating, extended culture (10 days) and colony isolation. Individual colonies were aspirated under gentle trypsanization, replated into 96- well plates and cultured for 3-4 days.

pGTag series vectors

To build the pGTag vector series, 2A-TagRFP, 2A-eGFP, and 2A-Gal4/VP16 cassettes were assembled from a 2A-TagRFP-CAAX construct, p494. To clone the eGFP cassette, the plasmid p494 was amplified with primers F-p494-Xhol and R-p494-Spel to generate unique enzyme sites in the backbone. The eGFP coding sequence (Clontech Inc.) was amplified with the primers F-eGFP-Spel and R-eGFP-Xhol to generate the corresponding enzyme sites on the eGFP coding sequence. Fragments were digested with Spel-HF and Xhol (NEB) and following column purification with the Qiagen miniprep protocol, were ligated to the plasmid backbone with T4 ligase (Fisher).

The Gal4/VP16 coding sequence and zebrafish β-actin 3' untranslated region was amplified from vector pDB783 (Balciuniene et al., 2013) with primers F-2A-Gal4-BamHI and R-Gal4-Ncol to add a 2A peptide to the 5' end of the Gav4Vp16 cDNA. The resulting PCR product was then cloned into the intermediate Topo Zero Blunt vector (Invitrogen) and used for mutagenesis PCR with primers F and R '-gal4-Ecofix' to disrupt the internal EcoRI restriction site. The resulting Gal4/VP16 sequence was cloned into the BamHI and NcoI sites in the p494 backbone.

Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

The 5' universal/optimal guide site and *lac*Z cassette were added to pC-2A-TagRFP-CAAX-SV40, pC-2A-eGFP-SV40, and pC-2A-Gal4VP16-β-actin with the following steps. The *lac*Z was first amplified with primers F-lacZ and R-lacZ, which add the type IIS enzyme sites to either end of the *lac*Z. The resulting PCR product was then cloned into an intermediate vector with the Zero Blunt® TOPO® PCR Cloning Kit (Invitrogen). This intermediate was used as a template in a nested PCR to add the Universal

guide sequence GGGAGGCGTTCGGGCCACAGCGG to the end of the *lacZ*

sequence. The nested PCR used primers F-lacZ-universal-1 and R-lacZ-universal-BamHI to add the first part of the universal guide to one end and a BamHI site to the other. This was used as template for PCR with the primers F-lacZ-universal-EcoRI and R-lacZ-universal-BamHI to add the remainder of the universal guide and an EcoRI site. The fragment was column purified as above, digested with EcoRI-HF and BamHI-HF and cloned into the appropriate sites in the three vectors.

The 3' universal guide and type 2 restriction enzyme sites were cloned into each vector in two steps. A segment from a Carp beta-actin intron containing a 99 bp spacer flanked by two BspQI sites was amplified using the primers F-3'-uni-1 and R-3'-uni-1 to add the universal site to one side of the spacer. This product was column purified as above and used as template for the second amplification with primers F-3'-uniNco1 and R-3'-uniEagI to add cloning sites. This product was column purified and cloned using the Topo zero blunt kit. This intermediate was digested with NcoI-HF and EagI, and the BspQI fragment purified and cloned into the three vectors as above. Ligations were grown at 30°C to reduce the possibility of recombination between the two universal guide sites.

Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

Correct clones for pU-2A-TagRFP-CAAX-U, pU-2A-eGFP-U, and pU-2A-Gal4/VP16-U were selected and used as template for mutagenesis PCR with KOD to remove extra BspQI sites from the backbone with primers F/R-BBfix, digested with DpnI (NEB), and ligated with T4 ligase. A correct pU-2A-TagRFP-CAAX-U clone was used as template for PCR with F/R-TagRFPfix to interrupt the BspQI site in the TagRFP coding sequence as above. A correct clone of pU-2A-Gal4/VP16-U was selected and used as template with primers F/R-Bactfix to remove the BspQI site in the Beta-actin terminator, the product was re-cloned as above. All constructs were sequence verified.

Homology arm design and donor vector construction

For detailed methods, see Supplementary gene targeting protocol. In brief, homology arms of specified length directly flanking a genomic targeted double strand break were cloned into the pGTag vector, in between the UgRNA sequence and the cargo. A three nucleotide buffer sequence lacking homology to the genomic target site was engineered between the donor UgRNA PAM and the homology arms, in order to maintain the specified homology arm length. See Supplementary Table 4 for all homology arms, gRNA target sites, and spacers.

Zebrafish embryo injection

pT3TS-nCas9n was a gift from Wenbiao Chen (Addgene plasmid # 46757). Xbal linearized pT3TS-nCas9n was purified under RNase-free conditions with the Promega PureYield Plasmid Miniprep System. Linear, purified pT3TS-nCas9n was used as template for *in vitro* transcription of capped, polyadenylated mRNA with the Ambion T3TS mMessage mMachine Kit. mRNA was purified using Qiagen miRNeasy Kit. The genomic and universal sgRNAs were generated using cloning free sgRNA synthesis as described in (Varshney et al., 2015) and purified using

Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

Qiagen miRNeasy Kit. Donor vector plasmid DNA was purified with the Promega PureYield Plasmid Miniprep System. *noto, cx43.4, tyrosinase, and moesina,* were targeted by co-injection of 150 pg of nCas9n mRNA, 25 pg of genomic sgRNA, 25 pg of UgRNA (when utilized), and 10 pg of donor DNA diluted in RNAse free ddH₂O. The *rb1* targeting mixture contained 300 pg nCas9n mRNA. 2 nl was delivered to each embryo.

Recovery of zebrafish germline knock-in alleles

Injected animals were screened for fluorescence reporter expression on a Zeiss Discovery dissection microscope and live images captured on a Zeiss LSM 700 laser scanning confocal microscope. RFP/GFP positive embryos were raised to adulthood and outcrossed to wildtype WIK adults to test for germline transmission of fluorescence in F1 progeny. *tyr, esama, rb1* and *msna* embryos targeted with Gal4VP16 were crossed to *Tg*(*UAS:mRFP*)^{#/2}.

DNA isolation and PCR genotyping

Genomic DNA for PCR was extracted by digestion of single embryos in 50mM NaOH at 95°C for 30 minutes and neutralized by addition of 1/10th volume 1M Tris-HCl pH 8.0. Junction fragments were PCR-amplified with primers listed in Supplementary Table X and the products TOPO-TA cloned before sequencing.

Southern blot analysis

Genomic Southern blot and copy number analysis was performed as described previously (McGrail et al., 2011). PCR primers used for genomic and donor specific probes are listed in Supplementary Table 6.

Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

Junction fragment analysis in pig fibroblasts

Individual colonies were scored for GFP expression and prepared for PCR by washing with 1X PBS and resuspension in PCR-safe lysis buffer (10 mM Tris-Cl, pH 8.0; 2 mM EDTA; 2.5% (vol/vol) Tween-20; 2.5% (vol/vol) Triton-X 100; 100 µg/mL Proteinase K followed by incubation at 50°C for 60 min and 95°C for 15 min. PCR was performed using 1X Accustart Supermix (Quanta) with the primers: 5' junction F-5' TAGAGTCACCCAAGTCCCGT-3', R-5'- ACTGATTGGCCGCTTCTCCT-3'; 3' junction F-5'-GGAGGTGTGGGAGGTTTTT-3', R-5'- TGATTTCATGACTTGCTGGCT-3'. ROSA TALEN sequences are: TAL FNG NI NI HD HD NG NN NI NG NG HD NG NG NN NN; TAL RHD NN NG NI HD NI HD HD NG NN HD NG HD NI NI NG.

K-592 Flow Cytometry

K-562 cells were assessed for GFP expression every 7 days for 28 days following electroporation. Flow cytometry was conducted on an LSRII instrument (Becton Dickinson) and data was analyzed using FlowJo software v10 (Becton Dickinson). Dead cells were excluded from analysis by abnormal scatter profile and exclusion based on Sytox Blue viability dye (Thermo Fisher Scientific).

Junction PCR to detect targeted integration was conducted using external genomic primers outside of the 48bp homology region and internal primers complementary to the expression cassette. PCR was conducted using Accuprime HIFI Taq (Thermo Fisher Scientific). PCR products from bulk population were sequenced directly.

Quantification and statistical analysis

Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

Statistical analysis was performed using GraphPad Prism software. Data plots represent mean +/- s.e.m. of n independent experiments, indicated in the text. *p* values were calculated with two-tailed unpaired *t*-test. Statistical parameters are included in the figure legends.

Data and software availability

The webtool *GTagHD* was developed to assist users in designing oligonucleotides for targeted integration using the pGTag vector suite. GTagHD guides users through entering: 1) the guide RNA for cutting their cargo-containing plasmid; 2) the guide RNA for cutting their genomic DNA sequence; (3) the genomic DNA sequence, in the form of a GenBank accession number or copy/pasted DNA sequence; and 4) the length of microhomology to be used in integrating the plasmid cargo. If the user is utilizing one of the pGTag series plasmids, GTagHD can also generate a GenBank/ApE formatted file for that plasmid, which includes the user's incorporated oligonucleotide sequences. GTagHD is freely available online at http://genesculpt.org/gtaghd/ and for download at https://github.com/Dobbs-Lab/GTagHD.

Key resources table

REAGENT or RESOURCE	SOURCE	IDENTIFIER	
Antibodies			
Bacterial and Virus Strains			
NEB Stable Competent E. coli	NEB	CAT#C3040I	
One Shot TOP10 Chemically Competent E. coli	ThermoFisher	CAT#C404010	
Biological Samples			
Chemicals, Peptides, and Recombinant Proteins			
Critical Commercial Assays			
pCR4 TOPO TA Cloning Kit for Sequencing	ThermoFisher	CAT#K457502	
Deposited Data			
Experimental Models: Cell Lines			
Human: K562 cell line	ATCC	CAT# ATCC CCL- 243	

Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

Porcine: Fibroblast cell line	Recombinetics, Inc.	Recombinetics, Inc.	
Experimental Models: Organisms/Strains			
Zebrafish: WIK strain	ZIRC	CAT#ZL84	
Zebrafish: pDB790	Balciunas Lab	Upon request	
Oligonucleotides			
See Supplementary table 6 for all primers used	This paper	N/A	
Recombinant DNA			
p494-2a-TagRFP-CAAX-SV40	This paper	To be deposited at AddGene	
pGTag-2A-TagRFP-CAAX-SV40	This paper	To be deposited at AddGene	
pGTag-2A-Gal4VP16-bactin	This paper	To be deposited at AddGene	
pGTag-2A-eGFP-SV40	This paper	To be deposited at AddGene	
Software and Algorithms			
GTagHD	This paper	https://github.com/D obbs-Lab/GTagHD	
Other			

Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

Acknowledgements

The following NIH grants supported this work: 5R24OD020166 to J.J.E., M.M., D.L.D, K.J.C, and S.C.E.; GM088424 to J.J.E.; and GM63904 to S.C.E.

Author Contributions

W.A.W., J.M.W., M.M. and J.J.E conceived the study; W.A.W., J.M.W., M.M. and J.J.E wrote the manuscript with input from S.C.E. and K.J.C; W.A.W., J.M.W., M.P.A., M.E.T., K.C.M.s, Z.M., A.W. and J.A.H. designed and performed the zebrafish experiments; J.M.W. and T.J.W. designed and created the vector suite with input from W.A.W., K.J.C., S.C.E., K.M.K., C.-B.C., D.B., M.M., and J.J.E.; C.M.M. created the web interface with input from J.M.W., W.A.W., C.S.M. and D.L.D.; S.L.S., D.A.W., M.K.V. and D.F.C. designed and performed the pig cell experiments. B.S.M. and B.R.W. designed and performed the human cell experiments.

Declaration of interests

J.J.E., M.M., S.L.S., K.J.C., D.W., and D.F.C. have a financial conflict of interest with Recombinetics, Inc.; J.J.E. and S.C.E. with Immusoft, Inc.; K.J.C. and S.C.E. with ForgeBio and Lifengine; B.S.M. and B.R.W. with B-MoGen Biotechnologies, Inc.

Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

Figure Legends

Figure 1. GeneWeld strategy and pGTag vector series (a) GeneWeld reagent components are designed for simultaneous genome and donor nuclease targeting to reveal short regions of homology. Red arrowheads represent in vivo designer nuclease DSBs. Components include: 1 -Designer nuclease mRNA, either Cas9 to target both the genome and donor, or Cas9 to target the donor and TALEN to cut the genome; 2 - sgRNA for targeting Cas9 to genome; 3 - Universal sqRNA to liberate donor cargo and homologous ends; and 4 - pGTag donor of interest with short homology arms. (b) Type IIs restriction endonucleases BfuAI and BspQI create incompatible ends outside of their recognition sequence, allowing digestion and ligation of both homology arms into the vector in a single reaction. Homology arm fragments are formed by annealing complementary oligonucleotides to form dsDNA with sticky ends for directional cloning into the vector. XFP = Green or Red Fluorescent Protein. pA = SV40 or β -actin 3' untranslated region. Red and green fluorescent proteins were cloned into the pGTag vectors, and for each color, subcellular localization sequences for either nuclear localization (NLSs) and membrane localization (CAAX) are provided (c) Schematic of GeneWeld targeting in vivo. After designer nuclease creates targeted double-strand breaks in the genome and donor, end resection likely precedes homology recognition and strand annealing, leading to integration of the donor without vector backbone. Red arrowheads represent in vivo designer nuclease DSBs.

Figure 2. HMEJ strategy promotes efficient somatic targeting of knock-in cassettes at different zebrafish loci. (a-d) Live confocal images of F0 injected embryos showing fluorescent reporter expression of *noto-2A-eGFP-SV40* at mid somite stage (a, a'), *cx43.4-2A-tagRFP-CAAX-SV40* at 31 hours post fertilization (b, b'). Expression from UAS-RFP $Tg(UAS:mRFP)^{tp/2}$ after injection with *tyr-2A-Gal4VP16-β-actin* at 5 days post fertilization (dpf) (c, c'), or *esama-2A-Gal4VP16-β-actin* at 2 dpf (d) and 3 dpf (d'). (e) Reporter gene expression following targeting

Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

with HMEJ at *noto, cx43.4, tyr, and esama* results in a high proportion of injected F0 embryos displaying widespread signals. Homology lengths flanking donor cargos indicated by 24/24 or 48/48, in base pairs. Data represents mean +/- s.e.m. of 3 independent targeting experiments. Scale bars, 100 μ m.

Figure 3. Live confocal images of F1 zebrafish with inherited germline alleles of

integrated GTag reporters. (a, a') *Tg*(*noto-2A-TagRFP-CAAX-SV40*) embryo at mid somite stage showing expression in the notochord and floor plate. (b, b') *Tg*(*tyr-2A-Gal4Vp16-β-actin*) displaying expression in the melanocytes in a 5 dpf larva. (c, c') *Tg*(*esama-2A-Gal4Vp16-β-actin*) larva showing expression in the vascular system at 4 dpf. (d, d') *Tg*(*flna-2A-Gal4VP16-β-actin*) embryo at 1 dpf showing widespread expression. (e, e' and f, f') *Tg*(*msna-2A-Gal4VP16-β-actin*) targeted to either exon 2 or exon 6 showed expression in the central nervous system and vasculature at 2 dpf. (g, g' and h, h') *Tg*(*aqp1a1-2A-Gal4VP16-β-actin*) and *Tg*(*aqp8a1-2A-Gal4VP16-β-actin*) display expression in the trunk and tail vasculature at 2 dpf. All images are lateral views, and the *Gal4VP16* integrations have *Tg*(*UAS:mRFP*)^{tpl2} in the background for visualization of expression. Scale bars are 100 μm.

Figure 4. Molecular analysis of F1 embryos from gene targeting experiments at *noto* and *tyr.* (a-c) Tg(noto-2A-RFP) F1 targeted integration alleles from 2 independent F0 founders. (a) *noto* gene model with location of restriction enzymes used for genomic Southern blot analysis. Location of the 513 bp *noto* probe is indicated (dark lines). The predicted and recovered alleles are shown. (b) Southern blots of F1 Tg(noto-2A-RFP) individuals hybridized with RFP probe. F1 from founder F0#1 contain a ~2100 bp band corresponding to integration plus deletion of ~400 bp in *noto*. F1 progeny from founder F0#2 show two bands: a ~3700 bp band corresponding to integration of the reporter plus 2000 bp of vector backbone, and a ~1500 bp band which may

Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

represent an off-target integration. Loading controls (10, 1) correspond to 10 copies or 1 copy of RFP containing plasmid. WIK, wild type control DNA. (c) Southern blot in (b) stripped and rehybridized with the *noto*-specific probe. A 1342 bp band representing the wild type allele was detected in all individuals. The integration allele in F1s from F0 #1 was not detected due to deletion of the region containing the probe. F1s from F0 #2 contain the ~3700 bp band corresponding to the *noto-2A-RFP* integration allele. (d, e) Molecular analysis of *Tg(tyr-2A-GAL4/VP16*) F1 offspring from a single targeted F0 founder. (d) Schematic of expected integration pattern for *tyr* targeted with pGTag-2A-GAL4/VP16. 148 bp *tyr* probe in Exon 3 and 583bp probe in GAL4/VP16 are indicated. (e) GAL4/VP16 and (f) *tyr* probed Southern blots of genomic DNA from wild type (WIK) and 4 individual GAL4/VP16 positive F1s. The expected 7400 bp band is detected with both probes, suggesting a single copy integration.

Figure 5. Deletion tagged alleles created with the HMEJ strategy during zebrafish

embryogenesis. (a) Schematic for *Gal4VP16* reporter integration to tag a deletion allele of *rb1* exons 2-4 (top) and *rb1* exons 2-25 (bottom). Arrowheads designate CRISPR/Cas9 DSBs. CRISPR gRNAs in two exons are expected to liberate the intervening genomic DNA. The targeting vector to replace the liberated genomic sequence, contains a 5' homology arm to the upstream exon and a 3' homology arm to the downstream exon inside of uGuide sites. (b, b') Live confocal image of F0 Tg(*UAS:mRFP*)^{tpl2} embryo deletion tagged at *rb1* exons 2-4, and (c, c') deletion tagged at *rb1* exons 2-25 by integration of 2A-Gal4VP16-β-actin . (d) Schematic for Gal4VP16 deletion tagging of *msna* exons 2-6. (e, e') Live confocal image of F0 Tg(*UAS:mRFP*)^{tpl2} embryo deletion tagged at *rb1* exons (f) Somatic reporter efficiency of targeted deletion tagging using 48 bp homology arms for *rb1* exons 2-4, *rb1*, exons 2-25 and *msna* exons 2-6. Data represents mean +/- s.e.m. of 4 (*rb1*) and 5 (*msna*) independent targeting experiments. Scale bars in b, c, c', e are 200 μm and b', e' are 100 μm.

Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

Figure 6. HMEJ-based targeted integration with UgRNA-based vectors promotes efficient **knock-in in porcine fibroblasts and human K-562 cells.** (a) Strategy for integration using HMEJ and HR donors into intron 1 of S. scrofa ROSA26 locus. Arrow heads CRISPR/Cas9 (for HMEJ donor) and TALEN (genome) DSBs. (b) Targeting efficiency of the HMEJ donor vs the HR donor as reported by GFP positive colonies out of total colonies. (c) Percent of GFP positive colonies analyzed containing properly sized junction fragments, comparing HMEJ and HR donors. Data are from three independently targeted cell populations. Data represents mean +/s.e.m. of 3 independent targeting experiments. (d) Diagram of HR and HMEJ strategies for targeted integration of a MND:GFP reporter cassette into the human AAVS1 locus. (e) Flow cytometry analysis of GFP expression 14 days post-electroporation for each targeting modality: HR (left), HMEJ without universal sgRNA (middle), and HMEJ with universal sgRNA (right). Stable gate was drawn to measure the uniformly expressing population formed by targeted integration and was set based on episome only controls. (f) Quantitation of stable GFP expressing population as measured by flow cytometry at day 14. Data are from three independently targeted cell populations. Data represents mean +/- s.e.m. of 3 independent targeting experiments. p values calculated using two-tailed unpaired t-test.

Supplementary Figure 1. Short homology to the *noto* gene from a single homology arm 5' **to the gRNA target site targets integration in zebrafish embryos.** (a) Schematic for *noto* homology arm and donor vector design. gRNA is the *noto* non-coding template strand. Black bars represent 12, 24, and 48 bp homology arms. PAM sequences are underlined. (b) Targeting efficiency of 12, 24, and 48 bp *noto* 5' only donors. Data represents mean +/- s.e.m. of 3 independent targeting experiments. p values calculated using two-tailed unpaired t-test. (c) Live confocal image of *noto-2A-TagRFP-CAAX-SV40* targeted embryo showing specific RFP expression in the notochord. Scale bar is 100 μm. (d) Sanger sequencing of cloned 5' junction

Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

fragments from RFP positive F0 embryos, aligned to the expected sequence from a precise integration event.

Supplementary Figure 2. Single base pair differences in homology arm length 5' to the Cas9/gRNA cut site influence integration frequencies in zebrafish embryos. (a) Schematic for targeting 2A-TagRFP-CAAX-SV40 into *noto* exon 1 with 5' homology to the Cas9/gRNA cut site containing 47, 48, or 49 bp of homology. (b) The frequency of injected zebrafish embryos displaying notochord RFP expression after targeting *noto* exon 1 with donors containing 47, 48, or 49 bp of 5' homology. Data represents mean +/- s.e.m. of 3 (47 bp, 49 bp) or 7(48 bp) independent targeting experiments. p values calculated using two-tailed unpaired t-test.

Supplementary Figure 3. The Universal gRNA (UgRNA) promotes high efficiency targeted integration. (a) Universal gRNA (UgRNA) sequence. Cas9 PAM underlined. (b) Schematic showing the sequence of UgRNA in the targeting domain of the knock-in cassette. Sequence in green from the *noto* gene is the engineered homology in the donor vector for HMEJ. The Cas9 PAM is underlined. (b) Frequency of injected embryos displaying RFP expression in the notochord compared to total injected embryos following *noto* targeting using UgRNA to liberate the homology in the donor.

Supplementary Figure 4. Sequence of PCR junction fragments amplified from F1 genomic DNA show precise integrations at the 5' and 3' ends of most F1s. Lowercase letters represent "padding" nucleotides used to bring homology in frame of the coding region based on Cas9 cut site. Red letters represent mismatches unless otherwise noted below. Underline represents the up- and downstream sequence after homology arms and precise integration confirmation. Cross through is an imprecise insertion. *esama* F1 3' junctions – Red T in all samples was included in homology arms as an annotated synonymous variant per Ensembl.

Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

Supplementary Figure 5. Integration of Gal4/VP16 amplifies signal of targeted *tyr.* (a) PCR of 5' junction fragments and sequencing results from junction fragments between the pGTag vector and the *tyr* locus amplified from randomly selected RFP negative embryos after injection with GeneWeld reagents for targeting *tyr* with 2A-tagRFP-CAAX-SV40pA. Most F0 injected zebrafish contain the expected 5' junction fragment (marked with an '*'). The junction fragments from F0-1 and -2 were isolated for sequencing, and precise integrations were observed (b) Efficiency of 5' homology integration to target RFP or GAL4/VP16 into *tyr* and detect RFP expression. Data represents mean +/- s.e.m. of 3 independent targeting experiments. p values calculated using two-tailed unpaired t-test.

Supplementary Figure 6. Sequences of 5' and 3' junction fragments from *rb1* exon 2-4, *rb1* exon 2-25, and *msna* exon 2-6 deletion tagged alleles in F0 injected embryos.

Primarily precise junction fragments at the 5' and 3' ends are recovered in somatic tissue of F0 targeted embryos. Cloned PCR amplicons were sequenced from 3 individual embryos for each targeted deletion tagging experiment.

Supplementary Figure 7. HMEJ-mediated targeted integration of an MND:GFP reporter at the *AAVS1* locus in human K-562 cells. FACs sorted percent of GFP+ cells out of total K-562 cells at day 7, 21, 28, and 50. (b) Summary data for percent of stable GFP+ K-562 cells from day 7, 14, 21, and 28. (b') Summary data for percent of total cells GFP+ from day 7, 14, 21, 28, and 50. Data represents mean +/- s.e.m. of 3 independent targeting experiments. p values calculated using two-tailed unpaired t-test.

Supplementary Figure 8. Direct sequencing of 5' junction PCR products derived from three independently targeted bulk cell populations. (a) Direct sequencing of 5' junction PCR

Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

products derived from three independently targeted bulk cell populations. 48 bp HMEJ homology region and remainder of genomic *AAVS1* gRNA are indicated. Genomic sequence is directly left of the 48 bp HMEJ region and vector sequence is directly to the right of the *AAVS1* gRNA cut site.

Figure 1

Figure 2

Figure 3

e'

g'

h

d msna

f

С

d 12 base pair homology arm

					noto	<	12	bp	>	2A			
Precise junction - <u>ACCAACCAAACGCCTGTCGGATCC</u>													
Emb.	1	allele	1	-	ACCAAC	CAAA	ACGC	CTG	TCO	GATCC	1/5	clones	
Emb.	1	allele	2	-	ACCAAC	CAAA	ACGC	CTG	тС <mark></mark>	GGATCC	4/5	clones	
Emb.	2	allele	1	-	ACCAAC	CAAA	ACGC	CTG	TCO	GATCC	$\frac{4}{4}$	clones	
										Total	5/9	clones	

24 base pair homology arm

					noto <	24 bp	>	2A			
Prec	ise	e junct:	ion	—	TACCGGAGCATAACO	CAACCAAACC	GCCTGT	C <u>GGATCC</u>			
Emb.	1	allele	1	-	TACCGGAGCATAACO	CAACCAAAC	GCCTGT	CGGATCC	10/10 clones		
Emb.	2	allele	1	-	TACCGGAGCATAACO	CAACCAAAC	GCCTGT	CGGATCC	9/10 clones		
Emb.	2	allele	2	-	TACCGGAGCATAACC	CAACCAAAC	GCCTGT	TAGGAGC	САТААССААССАААС	CGCCTGTCGGATCC 1/	10 clones
										Total 19/	20 clones

48 base pair homology arm

					noto <	48 bp		> 2A		
Preci	Ĺse	e juncti	ion	—	GAGATGAGAGAACGAACAAACGCGTA	CCGGAGCAT	AACCAACCA	AACGCCTGTC <u>GGATC</u>	C	
Emb.	1	allele	1	-	GAGATGAGAGAACGAACAAACGCGTA	CCGGAGCAT	AACCAACCA	AACGCCTGTCGGATC	C 5/9	clones
Emb.	1	allele	2	-	GAGATGAGAGAAGAGAACAAACGCGI	ACCGGAGCA	TAACCAACC	AAACGCCTGTCGGAT	CC 4/9	clones
Emb.	2	allele	1	_	GAGATGAGAGAACGAACAAACGCGTA	CCGGAGCAT	AACCAACCA	AACGCCTGTCGGATC	C 9/1	0 clones
Emb.	2	allele	2	-	GAGATGAGAGAACGAACAAACGCGTA	CCGGAGCAT	AACCAACCA	AACGCCTGTCGGAT <mark>T</mark>	C <u>1/1</u>	0 clones
								Tot	al 15/	'19 clones

Supplementary figure 3

Supplementary figure 4

<u>noto F1 junction fragments from DNA represented on</u> <u>Southern Blot</u>

24 base pair homology arms -

5' F1 junctions from F0 #1

			noto	<	24	bp	domain	>Vector
Precise	junction -	_	TACCGG	AGCATA	ACCI	AAC	CAAACGCC	TGTC <u>GGATCC</u>
F1 #1	-	_	TACCGG	AGCATA	ACCI	AAC	CAAACGcC	TGTC <u>GGATCC</u>
F1 #2	-	_	TACCGG	AGCATA	ACCI	AAC	CAAACGcC	TGTC <u>GGATCC</u>
F1 #3	-	_	TACCGG	AGCATA	ACCI	AAC	CAAACGcC	TGTC <u>GGATCC</u>
F1 #4	-	_	TACCGG	AGCATA	ACCI	AAC	CAAACGcC	TGTC <u>GGATCC</u>

3' F1 junctions from F0 #1

				24bp	homology	domain	:	Alternate	homology
Kno	ock-	-in	alignment -	TCCAGCI	TCTGCGCTCC	CCGCTTATT		ATCTGCTCTC	CAACTCACT
F1	#1	no	sequencing p	performe	ed				
F1	#2		-	TCCAGCI	TCTGCGCTCC	CCGCTTATT	CCGCTT	ATCTGCTCTC	CAACTCACT
F1	#3		-	TCCAGCI	TCTGCGCTCC	CCGCTTATT	CCGCTT	ATCTGCTCTC	CAACTCACT
F1	#4		-	TCCAGCI	TCTGCGCTCC	CCGCTTATT	CCGCTT	ATCTGCTCTC	СААСТСАСТ

5' F1 junctions from F0 #2

				noto	<	24	bp	domair	1 ——	->Vector	•
Prec	cise	junction	_	TACCGG	AGCATA	ACCI	AAC	CAAACGO	CCTGT	C <u>GGATCC</u>	
F1 #	# 5		-	TACCGG	AGCATA	ACCI	AAC	CAAACGO	CCTGT	C <u>GGATCC</u>	
F1 #	# 6		-	TACCGG	AGCATA	ACCI	AAC	CAAACGo	CTGT	C <u>GGATCC</u>	
F1 #	¥7		-	TACCGG	AGCATA	ACCI	AAC	CAAACGO	CCTGT	C <u>GGATCC</u>	
F1 #	# 8		-	TACCGG	AGCATA	ACCI	AAC	CAAACGO	CCTGT	C <u>GGATCC</u>	

3' F1 junctions from F0 #2

No junctions obtained

<u>tyr F1 junction fragments - DNA from single F1</u> 24 base pair homology arms -

5' F1 junction

			Tyr <	24	bp	domain	>	Vector
Precise	junction	—	ACAACGACGGA	TAC	TTC	ATGGTGC	CCTTCAt	t <u>GGATCC</u>
F1		_	ACAACGACGGA	TAC	TTC/	ATGGTGC	CCTTCAt	t <u>GGATCC</u>

3' F1 junction

			Vector<	24	bp	domain	>	Tyr
Precise	junction	-	CCATGGTCCCTC	CTC	[AC]	AGGAACGG	AGACT	ATTTTC
F1		-	CCATGGTCCCT	CTC	[AC	AGGAACGG	AGACT	ATTTTC

esama F1 junction fragments

24 base pair homology arm -

5' F1 junctions

<u>5 II Juneerons</u>		
		esama < 24 bp domain> Vector
Precise junction	_	$\underline{CTTATG} \texttt{AAAATGTGGATGTGATCCAAGGGAtt} \underline{GGATCC}$
F0#4, F1#1	-	$\underline{CTTATGAAAATGTGGT}TGTGATCCAAGGGAtt\underline{GGATCC}$
F0#4, F1#2	-	$\underline{CTTATGAAAATGTGGATGTGATCCAAGGGAtt\underline{GGATCC}$
F0#5, F1#1	_	$\underline{CTTATGAAAATGTGGATGTGATCCAAGGGAtt\underline{GGATCC}$
F0#5, F1#2	-	GATAAGAAAATGTGGATGTGATCCAAGGGAttGGATCC
F0#6, F1#1	-	$\underline{CTTATG}AAAATGTGGATGTGATCCAAGGGAtt\underline{GGATCC}$
F0#6, F1#2	_	$\underline{CTTATGAAAATGTGGATGTGATCCAAGGGAtt\underline{GGATCC}$
F0#7, F1#1	-	CTTATGAAAATGTGGATGTGATCCAAGGGAttGGATCC
F0#7, F1#2	-	CTTATGAAAATGTGGATGTGATCCAAGGGAttGGATCC
F0#9, F1#1	_	$\underline{CTTATGAAAATGTGGATGTGATCCAAGGGAtt\underline{GGATCC}$
F0#11.F1#1	_	CTTATGAAAATGTGGATGTGATCCAAGGGAttGGATCC

3'F1 junctions

		Vector< 24 bp domain -> esama
Precise junction	-	<u>CCATGG</u> AGATGGTGGTGCTGCAGGCGTCAT <u>ATTCGA</u>
F0#4, F1#1	-	<u>CCATGG</u> AGATGGTGGTGCTGCAGGCTTCAT <u>ATTCGA</u>
F0#4, F1#2	-	<u>CCATGG</u> AGATGGTGGTGCTGCAGGCTTCATATTCGA
F0#5, F1#1	-	<u>CCATGG</u> AGATGGTGGTGCTGCAGGCTTCAT <u>ATTCGA</u>
F0#5, F1#2	-	<u>CCATGG</u> AGATGGTGGTGCTGCAGGCTTCAT <u>ATTCGA</u>
F0#6, F1#1	-	<u>CCATGG</u> AGATGGTGGTGCTGCAGGCTTCATATTCGA
F0#6, F1#2	-	<u>CCATGG</u> AGATGGTGGTGCTGCAGGCTTCATATTCGA
F0#7, F1#1	-	<u>CCATGG</u> AGATGGTGGTGCTGCAGGCTTCATGAAGGTGCTGCAGGCTTCATATTCGA
F0#7, F1#2	-	<u>CCATGG</u> AGATGGTGGTGCTGCAGGCTTCATATTCGA
F0#9, F1#1	-	<u>CCATGG</u> AGATGGTGGTGCTGCAGGCTTCAT <u>ATTCGA</u>
F0#11, F1#1	-	<u>CCATGG</u> AGATGGTGGTGCTGCAGGCTTCAT <u>ATTCGA</u>

flna F1 junction fragments

48 base pair homology arm -

5' F1 junctions

		flna <	48 bp	domain	>Vector
Precise	junction -	ATGACT TACCTGTCCCAGTTTCCC	AAAGC	CAAACTCAAGCCTGG1	GCCCCTCTG <u>GGATCC</u>
F1#1	-	ATGACT TACCTGTCCCAGTTTCCC	AAAGC	CAAACTCAAGCCTGGT	GCCCCTCTGGGATCC
F1#2	-	ATGACT TACCTGTCCCAGTTTCCC	AAAGC	CAAACTCAAGCCTGG1	GCCCCTCTGGGATCC
F1#3	-	ATGACT TACCTGTCCCAGTTTCCC	AAAGC	CAAACTCAAGCCTGG1	GCCCCTCTG <u>GGATCC</u>
F1#4	-	ATGACTTACCTGTCCCAGTTTCCC	AAAGC	CAAACTCAAGCCTGG1	GCCCCTCTGGGATCC

<u>3' F1 junctions</u>

not determined

<u>msna F1 junctions for exon 2 integration</u> 48 base pair homology arm -

5' F1 junctions

			msna	<			48	bp	domain	ı				->	Vector
Precise	junction	-	GTGTT	GTGTGA	СТАСАА	TGGAT	GCCG	GAGC	TGGAG	TTTGC	CATC	CAAC	CCGG	ATCO	GGAGCC
F1#1		_	GTGTT	GTGTGA	СТАСАА	TGGAT	GCCG	GAGC	TGGAG	TTTGC	CATC	CAAC	CCGG	ATCO	GGAGCC
F1#2		_	GTGTT	GTGTGA	СТАСАА	TGGAT	GCCG	GAGC	TGGAG	TTTGC	CATC	CAAC	CCGG	ATCO	GGAGCC
F1#3		—	GTGTT	CGTGTGA	СТАСАА	TGGAT	GCCG	GAGC	TGGAG	TTTGC	CATC	CAAC	CCGG	ATCO	GGAGCC
F1#4		_	GTGTT	GTGTGA	СТАСАА	TGGAT	GCCG	GAGC	TGGAG	TTTGC	CATC	CAAC	CCGG	ATCO	GGAGCC
F1#5		_	GTGTT	GTGTGA	СТАСАА	TGGAT	GCCG	GAGC	TGGAG	TTTGC	CATC	CAAC	CCGG	ATCO	GGAGCC
F1#6		—	GTGTT	CGTGTGA	СТАСАА	TGGAT	GCCG	GAGC	TGGAG	TTTGC	CATC	CAAC	CCGG	ATCO	GGAGCC
F1#7		_	GTGTT	GTGTGA	СТАСАА	TGGAT	GCCG	GAGC	TGGAG	TTTGC	CATC	CAAC	CCGG	ATCO	GGAGCC
F1#8		_	GTGTT	GTGTGA	СТАСАА	TGGAT	GCCG	GAGC	TGGAG	TTTGC	CATC	CAAC	CCGG	ATCO	GGAGCC
F1#9		_	GTGTT	GTGTGA	СТАСАА	TGGAT	GCCG	GAGC	TGGAG	TTTGC	CATC	CAAC	CCGG	ATCO	GGAGCC
F1#10		_	GTGTT	GTGTGA	СТАСАА	TGGAT	GCCG	AGC	TGGAG	TTTGC	CATC	CAAC	CCGG	ATCO	GGAGCC
F1#11		—	GTGTT	CGTGTGA	СТАСАА	TGGAT	GCCG	GAGC	TGGAG	TTTGC	CATC	CAAC	CCGG	ATCO	GGAGCC
F1#12		_	GTGTT	GTGTGA	СТАСАА	TGGAT	GCCG	GAGC	TGGAG	TTTGC	CATC	CAAC	CCGG	ATCO	GGAGCC
<u>3′ F1 jı</u>	inction														

		Vector<	48 bp	domain	> msna
Precise	junction	– <u>AGGAAG</u> CAGCACCACAGGGAAAC	AGTTAI	TTGACCAGGTTTGTGTGTGG	CCTCT <u>TTTTTT</u>
F1		– <u>AGGAAG</u> CAGCACCACAGGGAAAC	AGTTAI	TTGACCAGGTTTGTGTGTGG	CCTCT <u>TTTTTT</u>

Supplementary figure 4 continued

aqplal F1 junction fragments

5' F1 junction

	aqpala<	48 bp domain	> Vector
Precise junction	- <u>CCGTCA</u> GTCAGTCAGTCATGAAC	GAGCTGAAGAGCAAGGCTTTCTGGCGG	GGCCGcc <u>GGATCC</u>
F2 line 1	- <u>CCGTCA</u> GTCAGTCAGTCATGAAC	GAGCTGAAGAGCAAGGCTTTCTGGCG	GGCCGcc <u>GGATCC</u>
3' Fl junction			
	Vector <	48 bp domain	>aqpala
Precise junction	- <u>AGGAAG</u> TCCTGGCCGAGCTGCTG	GGAATGACCCTGTTCATCTTCCTCAG	CATTA <u>CAGCAG</u>
F2 line 1	- <u>AGGAAG</u> TCCTGGCCGAGCTGCTG	GGAATGACCCTGTTCATCTTCCTCAG	CATTA <u>CAGCAG</u>

aqp8a1 F1 junction fragments

5' F1 junction

	aqp1a1<	48 bp domain	> Vector
Precise junction	 <u>GAGTCG</u>TCGGCTCTTTCCTCTTCA 	ATGTTTGTGGGGCTGCGTGTCCGTCAT(GGCAtt <u>GGATCC</u>
F1#1	 <u>GAGTCG</u>TCGGCTCTTTCCTCTTCA 	ATGTTTGTGGGCTGCGTGTCCGTCAT	GGCAtt <u>GGATCC</u>
<u>3' Fl junction</u>			
	Vector<	48 bp domain	>aqpala
Precise junction	 <u>AGGAAG</u>ACGTGGGCATCAGCGGGA 	AGCATCCAGCCCGCCCTGGCACACGGA	ACTAG <u>CACTGG</u>
F1#1	 <u>AGGAAG</u>ACGTGGGCATCAGCGGGA 	AGCATCCAGCCCGCCCTGGCACACGGA	ACTAG <u>CACTGG</u>

Supplementary figure 5 a F0-1 F0-2 F0-3 F0-4 F0-5 F0-6 WIK neg * * * * * * 200 bp

24 base pair homology arm

					Tyr	<	24	bp	homolo	ogy	>	2a					
Prec	Ĺse) junct	ion	_	ACAAC	GACGGA	TACI	ГТСА	TGGTGC	CCT	TCATT <u>G</u>	GATCC					
Emb.	1	allele	1	-	ACAAC	<u>G</u> ACGGA	TACI	ГТСА	TGGTGC	CCT	TCATT <u>G</u>	GATCC	3/4	clones			
Emb.	1	allele	2	-	ACAAC	<u>G</u> ACGG <i>A</i>	TACI	гтса	TGGTG	CCCT	TCATT <u>G</u>	GA <mark>C</mark> CC	1/4	clones			
Emb.	2	allele	1	-	ACAAC	GACGGA	TACI	ГТСА	TGGTG	CCT	TCATT <u>G</u>	GATCC	3/3	clones			
												Fotal	7/7	clones	precise	integrat	ion

Supplementary figure 6

rb1 e2-e4 deletion tagging

5' junction

		rb1 e2<	48 bj	p domain		>	Vecto	r		
Precise junction	_	CGAGGAGCTCCAGTCCACTAAC	CCAT	CTGTGATCATGC	ATGGAGAATAT	rgggaaagaga	AATTAGGAGCATGGac <u>GGATC</u>	<u>C</u>		
<u>Embryo 1</u>	-	CGAGGAGCTCCAGTCCACTAAC	CCAT	CTGTGATCATGC	ATGGAGAATAT	rgggaaagaga	AATTAGGAGCATGGac <u>GGATC</u>	<u>C</u> 5/5	clones	precise
Embryo 2	-	CGAGGAGCTCCAGTCCACTAAC	CCAT	CTGTGATCATGC	ATGGAGAATAT	rggga <mark>g</mark> ag <mark>g</mark> ga	AATTAGGAGCATGGacGGATC	C 4/5	clones	precise
Embryo 3	-	CGAGGAGCTCCAGTCCACTAAC	CCAT	CTGTGATCATGC	ATGGAGAATAT	rgggaaagaga	AATTAGGAGCATGGac <u>GGATC</u>	<u>C</u> 5/5	clones	precise
3' junction					10	, , .				
		Vector		<	48	bp domain	>rb1 e4			
Precise junction	-	AGGAAGCCTAAGGTCAATAGCGC	CGTC	ACCCGCCTAGAG	AACAAATACGA	ATGTGACTTTG	GCCCTCTACCAAAGA <u>TTTGTA</u>			
<u>Embryo 1</u>	-	AGGAAGCCTAAGGTCAATAGCG	CGTC	ACCCGCCTAGAG	AACAAATACGA	ATGTGACTTTG	GCCCTCTACCAAAGA <u>TTTGTA</u>	1/5	clones ;	precise
Embryo 2	-	AGGAAGCCTAAGGTCAATAGCG	CGTC	ACCCGCCTAGAG	AACAAATACGA	ATGTGACTTTG	GCCCTCTACCAAAGA <u>TTTGTA</u>	2/5	clones ;	precise
Embasso 2								- /-	-	

rb1 e2-e25 deletion tagging

5' junction

		rb1 e2<	48 bp domain	>	Vector	
Precise junc Embryo 1	tion - -	CGAGGAGCTCCAGTCCACTA CGAGGAGCTCCAGTCCACTA	ACTCCATCTGTGATCATGCAT	GGAGAATATGGGAAAGA GGAGAATATGGGAAAGA	GAAATTAGGAGCATGGac <u>GGATCC</u> GAAATTAGGAGCATGGacGGATCC 5/5 cl	lones precise
Embryo 2	-	CGAGGAGCTCCAGTCCACTA	ACTCCATCTGTGATCATGCAT	GGAGAATATGGGAAAGA	GAAATTAGGAGCATGGac <u>GGATCC</u> 5/5 cl	lones precise
<u>Embryo 3</u>	-	CGAGGAGCTCCAGTCCACTA	ACTCCATCTGTGATCATGCAT	GGAGAATATGGGAAAGAG	GAAATTAGGAGCATGGac <u>GGATCC</u> 5/5 cl	ones precise.

3' junction

5 Jamee	1011												
			Vector	<	-	48	bp c	lomain	-	>rb1	e25		
Precise	junction	-	AGGAAGCCCTCAAAAGACTCAG	ATTCGATATGO	GACGGACAAGATG	AAGCAG	ACGGA	AGGTGGGAGT	CATGATCA	GTT <u>TAC</u>	TCT		
Embryo 1		-	AGGAAGCCCTCAAAAGACTCAG	ATTCGATATGO	SACGGACAAGATG	AAGCAG	ACGGF	AGGTGGGAGT	CATGATCA	GTT <u>TAC</u>	<u>гст</u> 5/	5 clones	precise
Embryo 2		-	AGGAAGCCCTCAAAAGACTCAG	ATTCGATATGO	GACGGACAAGATG	AAGCAG	ACGGA	AGGTGGGAGT	CATGATCA	GTTTAC:	CT 4/	5 clones	precise
Embryo 3		-	AGGAAGCCCTCAAAAGACTCAG	ATTCGATATG	GACGGACAAGATG	AAGCAG	ACGGA	AGGTGGGAGT	CATGATCA	GTT <u>TAC</u>	<u>гст</u> 3/	5 clones	precise

msna e2-6 deletion tagging

5' junction

-				
	msna <	48 bp domain	>Vector	
Precise junction	- GATCAGTGTTCGTGTGACT	ACAATGGATGCCGAGCTGGAGTTTGC	CATCCAACCC <u>GGATCC</u>	
Embryo 1	- GATCAGTGTTCGTGTGACT	AC <mark>G</mark> ATGGATGCCGAGCTGGAGTTTGC	CATCCAACCCGGATCC 4/	4 clones single SNP
Embryo 2	- GATCAGTGTTCGTGTGACT	ACAATGGATGCCGAGCTGGAGTTTGC	CATCCAACCCGGATCC 4/	5 clones precise
Embryo 3	- <u>GATCAG</u> TGTTCGTGTGACT	ACAATGGATGCCGAGCTGGAGTTTGC	CATCCAACCCGGATCC 3/	4 clones precise
3' junction				
	vector<	48 bp domain	> msna	
Precise junction	- AGGAAGCAAGGGCATGTTG	AGGTACAGACAATGGAATGTGCTCTT	GCTATTTTTCTGTTT	
Embryo 1	- No junction obtaine	d		
Embryo 2	- AGGAAGCAAGGGCATGTTG	AGGTACAGACAATGAAATGTGCTCTT	GCTATTTTTTCTGTTT 1/5	clones single SNP
	AGGAAGCAAGGGCATGTTG	AGGTACAGACAATGGAATGTGCTCTT	GCTATTTTTTCTGTTT 2/5	clones precise
	AGGAAGCAAGGGCATGTTG	AGGTACAGACAATGGAATG <mark>G</mark> GCTCTT	GCTATTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	clones single SNP
<u>Embryo</u> 3	- <u>AGGAAG</u> CAAGGGCATGTTG	AGGTACAGACAATGGAATGTGCTCTT	GCTATTTTT <u>CTGTTT</u> 4/5	clones precise

Supplementary Figure 7

Supplementary figure 8

AAVS1 5' junction										
	AAVS1 <	48 bp domain	>Vector							
Predicted junction -	<u>GCTCTG</u> GTTCTGGGTACTTTTATC	TGTCCCCTCCACCCACAGTGGGGG	CCACTA <u>CGATCG</u>							
Repetition 1 -	<u>GCTCTG</u> GTTCTGGGTACTTTTATC	CTGTCCCCTCCACCCCACAGTGGGGG	CCACTA <u>CGATCG</u>							
Repetition 2 -	<u>GCTCTG</u> GTTCTGGGTACTTTTATC	CTGTCCCCTCCACCCCACAGTGGGGG	CCACTA <u>CGATCG</u>							
Repetition 3 -	<u>GCTCTG</u> GTTCTGGGTACTTTTATC	TGTCCCCTCCACCCCACAGTGGGGG	CCACTA <u>CGATCG</u>							

Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

Tables

Genomic target	ic Exon Homology F0 e		F0 expression	F0s transmitting	Germline transmission percentage		
noto tyr cx43.4* cx43.4* esama fIna msna msna aqp1a1 aqp8a1 anxa2a^	E1 E4 E2 E4 E4 E4 E2 E6 E1 E1 E3	24/24 24/24 48/48 24/24 48/48 48/48 48/48 48/48 48/48 48/48	24% 64% 50% 38% 21% 100% 55% 26% 4% 14% 35% Total	3/5 3/8 0/1 0/4 12/18 3/4 1/4 1/3 2/9 1/1 4/4 30/61	60% 38% 0% 0% 67% 75% 25% 33% 22% 100% 100% 49%		

Table 1. Germline transmission of alleles in zebrafish using GeneWeld.

F0's raised to adulthood were outcrossed and screened for germline transmission of properly localized fluorescent signal. F0s transmitting/F0s outcrossed x 100 = Germline transmission percentage. F0s were considered screened if 75 F1 embryos were examined for fluorescence. *Other experiments showed *cx43.4* alleles could be transmitted through the germline in 3 out 11 F0 fish or 27% with a similar vector (data not shown). TALEN indels of cx43.4 result in sex determination defects, suggesting germline defects could contribute to variable frequencies for germline transmission (data not shown).

[^]Transmission is based on expression in the vasculature only.

msn and *flna* integrations display a dominant or haploinsufficient phenotype in the F0 and F1 generations.

Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

References

Aida, T., Nakade, S., Sakuma, T., Izu, Y., Oishi, A., Mochida, K., Ishikubo, H., Usami, T., Aizawa, H., Yamamoto, T., *et al.* (2016). Gene cassette knock-in in mammalian cells and zygotes by enhanced MMEJ. BMC Genomics *17*, 979.

Ata, H., Ekstrom, T.L., Martinez-Galvez, G., Mann, C.M., Dvornikov, A.V., Schaefbauer, K.J., Ma, A.C., Dobbs, D., Clark, K.J., and Ekker, S.C. (2018). Robust activation of microhomologymediated end joining for precision gene editing applications. PLoS Genet *14*, e1007652. Balciuniene, J., Nagelberg, D., Walsh, K.T., Camerota, D., Georlette, D., Biemar, F., Bellipanni, G., and Balciunas, D. (2013). Efficient disruption of Zebrafish genes using a Gal4-containing gene trap. BMC Genomics *14*, 619.

Bedell, V.M., Wang, Y., Campbell, J.M., Poshusta, T.L., Starker, C.G., Krug, R.G., 2nd, Tan, W., Penheiter, S.G., Ma, A.C., Leung, A.Y., *et al.* (2012). In vivo genome editing using a highefficiency TALEN system. Nature *491*, 114-118.

Beumer, K.J., Trautman, J.K., Bozas, A., Liu, J.L., Rutter, J., Gall, J.G., and Carroll, D. (2008). Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proc Natl Acad Sci U S A *105*, 19821-19826.

Carlson, D.F., Tan, W., Lillico, S.G., Stverakova, D., Proudfoot, C., Christian, M., Voytas, D.F., Long, C.R., Whitelaw, C.B., and Fahrenkrug, S.C. (2012). Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci U S A *109*, 17382-17387.

Ceccaldi, R., Rondinelli, B., and D'Andrea, A.D. (2016). Repair Pathway Choices and Consequences at the Double-Strand Break. Trends Cell Biol *26*, 52-64.

Clark, K.J., Balciunas, D., Pogoda, H.M., Ding, Y., Westcot, S.E., Bedell, V.M., Greenwood, T.M., Urban, M.D., Skuster, K.J., Petzold, A.M., *et al.* (2011). In vivo protein trapping produces a functional expression codex of the vertebrate proteome. Nat Methods *8*, 506-515.

Clarke, R., Heler, R., MacDougall, M.S., Yeo, N.C., Chavez, A., Regan, M., Hanakahi, L., Church, G.M., Marraffini, L.A., and Merrill, B.J. (2018). Enhanced Bacterial Immunity and Mammalian Genome Editing via RNA-Polymerase-Mediated Dislodging of Cas9 from Double-Strand DNA Breaks. Mol Cell *71*, 42-55 e48.

Conway, A.B., Lynch, T.W., Zhang, Y., Fortin, G.S., Fung, C.W., Symington, L.S., and Rice, P.A. (2004). Crystal structure of a Rad51 filament. Nat Struct Mol Biol *11*, 791-796.

Geurts, A.M., Cost, G.J., Freyvert, Y., Zeitler, B., Miller, J.C., Choi, V.M., Jenkins, S.S., Wood, A., Cui, X., Meng, X., *et al.* (2009). Knockout rats via embryo microinjection of zinc-finger nucleases. Science *325*, 433.

Grzesiuk, E., and Carroll, D. (1987). Recombination of DNAs in Xenopus oocytes based on short homologous overlaps. Nucleic Acids Res *15*, 971-985.

Halene, S., Wang, L., Cooper, R.M., Bockstoce, D.C., Robbins, P.B., and Kohn, D.B. (1999). Improved expression in hematopoietic and lymphoid cells in mice after transplantation of bone marrow transduced with a modified retroviral vector. Blood *94*, 3349-3357.

Hasty, P., Rivera-Perez, J., Chang, C., and Bradley, A. (1991). Target frequency and integration pattern for insertion and replacement vectors in embryonic stem cells. Mol Cell Biol *11*, 4509-4517.

He, M.D., Zhang, F.H., Wang, H.L., Wang, H.P., Zhu, Z.Y., and Sun, Y.H. (2015). Efficient ligase 3-dependent microhomology-mediated end joining repair of DNA double-strand breaks in zebrafish embryos. Mutat Res *780*, 86-96.

Hisano, Y., Sakuma, T., Nakade, S., Ohga, R., Ota, S., Okamoto, H., Yamamoto, T., and Kawahara, A. (2015). Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish. Sci Rep *5*, 8841.

Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

Hoshijima, K., Jurynec, M.J., and Grunwald, D.J. (2016). Precise Editing of the Zebrafish Genome Made Simple and Efficient. Dev Cell *36*, 654-667.

Ihry, R.J., Worringer, K.A., Salick, M.R., Frias, E., Ho, D., Theriault, K., Kommineni, S., Chen, J., Sondey, M., Ye, C., *et al.* (2018). p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med *24*, 939-946.

Kent, T., Chandramouly, G., McDevitt, S.M., Ozdemir, A.Y., and Pomerantz, R.T. (2015). Mechanism of microhomology-mediated end-joining promoted by human DNA polymerase theta. Nat Struct Mol Biol *22*, 230-237.

Li, X.L., Li, G.H., Fu, J., Fu, Y.W., Zhang, L., Chen, W., Arakaki, C., Zhang, J.P., Wen, W., Zhao, M., *et al.* (2018). Highly efficient genome editing via CRISPR-Cas9 in human pluripotent stem cells is achieved by transient BCL-XL overexpression. Nucleic Acids Res.

McGrail, M., Hatler, J.M., Kuang, X., Liao, H.K., Nannapaneni, K., Watt, K.E., Uhl, J.D., Largaespada, D.A., Vollbrecht, E., Scheetz, T.E., *et al.* (2011). Somatic mutagenesis with a Sleeping Beauty transposon system leads to solid tumor formation in zebrafish. PLoS One *6*, e18826.

Mehta, A., Beach, A., and Haber, J.E. (2017). Homology Requirements and Competition between Gene Conversion and Break-Induced Replication during Double-Strand Break Repair. Mol Cell *65*, 515-526 e513.

Melby, A.E., Warga, R.M., and Kimmel, C.B. (1996). Specification of cell fates at the dorsal margin of the zebrafish gastrula. Development *122*, 2225-2237.

Moreno-Mateos, M.A., Vejnar, C.E., Beaudoin, J.D., Fernandez, J.P., Mis, E.K., Khokha, M.K., and Giraldez, A.J. (2015). CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods *12*, 982-988.

Nakade, S., Tsubota, T., Sakane, Y., Kume, S., Sakamoto, N., Obara, M., Daimon, T., Sezutsu, H., Yamamoto, T., Sakuma, T., *et al.* (2014). Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun *5*, 5560.

Ogura, E., Okuda, Y., Kondoh, H., and Kamachi, Y. (2009). Adaptation of GAL4 activators for GAL4 enhancer trapping in zebrafish. Dev Dyn 238, 641-655.

Orr-Weaver, T.L., Szostak, J.W., and Rothstein, R.J. (1981). Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci U S A *78*, 6354-6358.

Rong, Y.S., and Golic, K.G. (2000). Gene targeting by homologous recombination in Drosophila. Science 288, 2013-2018.

Shin, J., Chen, J., and Solnica-Krezel, L. (2014). Efficient homologous recombination-mediated genome engineering in zebrafish using TALE nucleases. Development *141*, 3807-3818. Singleton, M.R., Wentzell, L.M., Liu, Y., West, S.C., and Wigley, D.B. (2002). Structure of the single-strand annealing domain of human RAD52 protein. Proc Natl Acad Sci U S A *99*, 13492-13497.

Talbot, W.S., Trevarrow, B., Halpern, M.E., Melby, A.E., Farr, G., Postlethwait, J.H., Jowett, T., Kimmel, C.B., and Kimelman, D. (1995). A homeobox gene essential for zebrafish notochord development. Nature *378*, 150-157.

Varshney, G.K., Pei, W., LaFave, M.C., Idol, J., Xu, L., Gallardo, V., Carrington, B., Bishop, K., Jones, M., Li, M., *et al.* (2015). High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Res *25*, 1030-1042.

Wang, Y., Kaiser, M.S., Larson, J.D., Nasevicius, A., Clark, K.J., Wadman, S.A., Roberg-Perez, S.E., Ekker, S.C., Hackett, P.B., McGrail, M., *et al.* (2010). Moesin1 and Ve-cadherin are required in endothelial cells during in vivo tubulogenesis. Development *137*, 3119-3128. Yang, H., Wang, H., Shivalila, C.S., Cheng, A.W., Shi, L., and Jaenisch, R. (2013). One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell *154*, 1370-1379.

Wierson, Welker et al. GeneWeld: a method for efficient targeted integration directed by short homology

Zhang, J.P., Li, X.L., Li, G.H., Chen, W., Arakaki, C., Botimer, G.D., Baylink, D., Zhang, L., Wen, W., Fu, Y.W., *et al.* (2017). Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biol *18*, 35.

Zhang, Y., Zhang, Z., and Ge, W. (2018). An efficient platform for generating somatic point mutations with germline transmission in the zebrafish by CRISPR/Cas9-mediated gene editing. J Biol Chem *293*, 6611-6622.

Zu, Y., Tong, X., Wang, Z., Liu, D., Pan, R., Li, Z., Hu, Y., Luo, Z., Huang, P., Wu, Q., *et al.* (2013). TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat Methods *10*, 329-331.

Supplementary Tak	ole 1 - Gene targetir	ng experim	ents and kr	nock-in avei	ages.			
Genomic target	Donor vector	Donor sgRNA target (genomic or UgRNA)	Homolog y length (5'/3')	Experime nt number	Reporter positive embryos	Total embryos	Percent with positive report	Standard Error
noto E1	2A-TagRFP-CAAX- SV40	genomic sgRNA	12/x	Average	22	178	12.4%	0.55%
noto E1	2A-TagRFP-CAAX- SV40	genomic sgRNA	24/x	Average	30	131	22.9%	0.74%
noto E1	2A-TagRFP-CAAX- SV40	genomic sgRNA	48/x	Average	40	114	35.1%	1.01%
noto E2	2A-TagRFP-CAAX- SV40	UgRNA	24/x	Average	32	150	21.3%	0.66%
noto E1	pGTag-2A-eGFP- SV40	UgRNA	24/24	Average	45	185	24.3%	0.90%
noto E1	pGTag-2A-eGFP- SV40	UgRNA	48/48	Average	44	172	25.6%	0.82%
tyr E4	pGTag-2A- Gal4VP16-bactin	UgRNA	24/24	Average	84	132	63.6%	1.44%
<i>cx43.4</i> E2	pGTag-2A- TagRFP-CAAX- SV40	UgRNA	24/24	Average	42	84	50.0%	4.39%
<i>cx43.4</i> E2	pGTag-2A- TagRFP-CAAX- SV40	UgRNA	48/48	Average	31	81	38.3%	4.15%
esama E2	ag-2A-Gal4VP16-ba	UgRNA	48/48	Average	34	162	21.0%	0.59%
msna E2	pGTag-2A- Gal4VP16-bactin	UgRNA	48/48	Average	102	185	55.1%	9.87%
msna E6	pGTag-2A- Gal4VP16-bactin	UgRNA	48/48	Average	25	96	26.0%	
anxa2a E3	pGTag-2A- Gal4VP16-bactin	UgRNA	48/48	Average	12	34	35.3%	
flna E4	pGTag-2A- Gal4VP16-bactin	UgRNA	48/42	Average	9	9	100.0%	
<i>aqp1a1</i> E1	pGTag-2A- Gal4VP16-bactin	UgRNA	48/48	Average	1	25	4.0%	
<i>aqp8a1</i> E1	pGTag-2A- Gal4VP16-bactin	UgRNA	48/48	Average	3	21	14.3%	
rb1 E2-E4	pGTag-2A- Gal4VP16-bactin	UgRNA	48/48	Average	273	463	59.0%	6.44%
rb1 E2-E25	pGTag-2A- Gal4VP16-bactin	UgRNA	48/48	Average	292	486	60.1%	3.78%
msna E2-E6	pGTag-2A- Gal4VP16-bactin	UgRNA	48/48	Average	91	151	60.3%	5.92%
kdrl E3-E30	pGTag-2A- Gal4VP16-bactin	UgRNA	42/48	Average	8	23	34.8%	
s1pr1 E2-E2	pGTag-2A- Gal4VP16-bactin	UgRNA	48/27	Average	76	94	80.9%	
<i>vegfaa</i> E3-E7	pGTag-2A- Gal4VP16-bactin	UgRNA	48/48	Average	29	92	31.5%	

Supplementary Table	2 - Gene targeting experiments and knock-in per	centages.						
							Percent	
Genomic target	Donor vector	Donor sgRNA target (genomic or	Homology length (5'/3')	Experiment	Reporter positive embryos	Total embryos	with	Standard Error
		-8,					report	
noto E1	2A-TagRFP-CAAX-SV40	genomic sgRNA	12/x	1	4	32	12.5%	
	2A-TagRFP-CAAX-SV40	genomic sgRNA	12/x	2	12	91	13.2%	
	2A-TagRFP-CAAX-SV40	genomic sgRNA	12/x	3	6	55	10.9%	
		2000 C 2010	24/	Average	22	178	12.4%	0.55%
noto El	2A-TagREP-CAAX-SV40	genomic sgRNA	24/x	1	10	47	21.3%	
	2A-TagREP-CAAX-SV40	genomic sgRNA	24/X 24/x	2	10	41	24.4%	
	ZA-TagKFF-CAAA-3V40	genomic sgrina	24/X	5 Average	30	45	23.5%	0 74%
noto E1	2A-TagRFP-CAAX-SV40	genomic sgRNA	48/x	1	10	29	34.5%	0.7470
	2A-TagRFP-CAAX-SV40	genomic sgRNA	48/x	2	15	40	37.5%	
	2A-TagRFP-CAAX-SV40	genomic sgRNA	48/x	3	15	45	33.3%	
	-			Average	40	114	35.1%	1.01%
noto E2	2A-TagRFP-CAAX-SV40	UgRNA	24/x	1	13	62	21.0%	
	2A-TagRFP-CAAX-SV40	UgRNA	24/x	2	10	49	20.4%	
	2A-TagRFP-CAAX-SV40	UgRNA	24/x	3	9	39	23.1%	_
				Average	32	150	21.3%	0.66%
noto E1	pGTag-2A-TagRFP-CAAX-SV40	UgRNA	24/24	1	18	68	26.5%	
	pGTag-ZA-TagREP-CAAX-SV40	UgRNA	24/24	2	9	38	23.7%	
	pGTag-ZA-TagREP-CAAX-SV40		24/24	3	12	28	21.4%	
	polag-2A-lagkrr-CAAA-3V40	Ugrina	24/24	4 Average	45	185	23.3%	0.90%
noto F1	nGTag-2A-eGEP-SV40	LIGRNA	48/48	1	9 9	33	27.3%	0.30%
	pGTag-2A-eGFP-SV40	UgRNA	48/48	2	17	71	23.9%	
	pGTag-2A-eGFP-SV40	UgRNA	48/48	3	18	68	26.5%	
				Average	44	172	25.6%	0.82%
tyr E4	pGTag-2A-Gal4VP16-bactin	UgRNA	24/24	1	21	31	67.7%	
	pGTag-2A-Gal4VP16-bactin	UgRNA	24/24	2	21	33	63.6%	
	pGTag-2A-Gal4VP16-bactin	UgRNA	24/24	3	42	68	61.8%	
				Average	84	132	63.6%	1.44%
	2A-TagRFP-CAAX-SV40	genomic sgRNA	24/x	1	0	41	0.0%	
	2A-TagRFP-CAAX-SV40	genomic sgRNA	24/x	2	0	22	0.0%	
	TOTAL 24 TEEDED CAAY SWAD	11-0014	24/24	Average	0 0	63	0.0%	0.00%
CX43.4 E2	pGTag-ZA-TagREP-CAAX-SV40		24/24	1	8	21	38.1%	
	pGTag-ZA-TagREP-CAAX-SV40		24/24	2	10	29	51.7%	
	polag-2A-lagkrr-CAAA-3V40	Ognina	24/24	5 Average	19	54 84	50.0%	1 20%
cx43.4 E2	pGTag-2A-TagREP-CAAX-SV40	UgRNA	48/48	1	10	34	29.4%	4.5576
	pGTag-2A-TagRFP-CAAX-SV40	UgRNA	48/48	2	15	32	46.9%	
	pGTag-2A-TagRFP-CAAX-SV40	UgRNA	48/48	3	6	15	40.0%	
		U U		Average	31	81	38.3%	4.15%
esama E2	pGTag-2A-Gal4VP16-bactin	UgRNA	24/24	1	9	40	22.5%	
	pGTag-2A-Gal4VP16-bactin	UgRNA	24/24	2	13	65	20.0%	
	pGTag-2A-Gal4VP16-bactin	UgRNA	24/24	3	12	57	21.1%	
				Average	34	162	21.0%	0.59%
msna E2	pGTag-2A-Gal4VP16-bactin	Ugrna	48/48	_1	11	34	32.4%	
			48/48	2	91	151	60.3%	0.97%
msna E6	nGTag-2A-Gal4VP16-bactin	LIGBNA	48/48	1	25	96	26.0%	9.07%
hishu Eo		oginia	40/40	Average	25	96	26.0%	-
anxa2a E3	pGTag-2A-Gal4VP16-bactin	UgRNA	48/48	1	12	34	35.3%	
		-		Average	12	34	35.3%	
flna E4	pGTag-2A-Gal4VP16-bactin	UgRNA	48/42	1	9	9	100.0%	
				Average	9	9	100.0%	
aqp1a1 E1	pGTag-2A-Gal4VP16-bactin	UgRNA	48/48	1	1	25	4.0%	_
				2	n/a	n/a	n/a	_
aan9a1 E1	pGTag 2A GaldV/D16 bactin	LIZENA	10/10	Average	2	25	4.0%	
uqpoul El	polag-2A-Gal4VP10-Dactili	Ognina	40/40	Average	2	21	14.5%	-
rh1 F2-4	nGTag-2A-Gal4VP16-bactin	LIGRNA	48/48	1	48	108	44.0%	
	pGTag-2A-Gal4VP16-bactin	UgRNA	48/48	2	56	111	50.0%	
	pGTag-2A-Gal4VP16-bactin	UgRNA	48/48	3	53	96	55.0%	
	pGTag-2A-Gal4VP16-bactin	UgRNA	48/48	4	116	148	78.0%	
		-		Average	273	463	59.0%	6.44%
rb1 E2-25	pGTag-2A-Gal4VP16-bactin	UgRNA	48/48	1	47	76	62.0%	
	pGTag-2A-Gal4VP16-bactin	UgRNA	48/48	2	58	119	49.0%	
	pGTag-2A-Gal4VP16-bactin	UgRNA	48/48	3	87	149	58.0%	
	pGTag-2A-Gal4VP16-bactin	UgRNA	48/48	4	100	142	70.0%	
FO 5 -			10/15	Average	292	486	60.1%	3.78%
msna E2-E6	pG fag-2A-Gal4VP16-bactin	UgRNA	48/48	1	8	13	61.5%	
	pG1ag-2A-Gal4VP16-bactin	UgRNA	48/48	2	29	34	85.3%	
	pG1ag-2A-Gal4VP16-bactin	UgRNA	48/48	3	1/	34 49	50.0%	
	polag-ZA-Gal4VP16-bactin	Ugkna	48/48	4 E	2b 11	4ð 22	54.2%	
	polag-2A-Gal4VP16-Dactin	Ugrina	48/48	5 Average	11	151	50.0%	E 0.3%
kdrl E3-E30	pGTag-2A-Gal4VP16-bactin	UgRNA	47/48	Average 1	8	23	34.8%	3.32%
	Poing 24 Outer 10 Datim	OBUILS.	+2/40	Average	8	23	34.8%	_
s1pr1 E2-E2	pGTag-2A-Gal4VP16-bactin	UgRNA	48/27	1	76	94	80.9%	
· ·		-	-, =-	Average	76	94	80.9%	
vegfaa E3-E7	pGTag-2A-Gal4VP16-bactin	UgRNA	48/48	1	29	92	31.5%	
			-	Average	29	92	31.5%	

Supplementary table 3 - Germline Transmission

	50	FOs	Germline
Genomic target	FUs outcrossed	transmitting	transmission
		5	percentage
noto E1 24/24	5	3	60.0%
tyr E4 48/48	8	3	37.5%
cx43.4 24/24	1	0	0.0%
<i>cx43.3</i> 48/48	4	0	0.0%
<i>esama</i> E2 48/48	18	12	66.7%
<i>msna</i> E2 48/48	4	1	25.0%
<i>msna</i> E6 48/48	3	1	33.3%
anxa2a E3 48/48	4	4	100.0%
flna E4 48/42	3	3	100.0%
aqp1a1 E1 48/48	9	2	22.2%
aqp8a1 E1 48/48	1	1	100.0%
rb1 E2-E4 48/48	10	0	0.0%
rb1 E2-E25 48/48	16	1	6.3%
msna E2-E6 48/48	8	0	0.0%
<i>kdrl</i> E3-E30 44/48	3	0	0.0%
s1pr1 E2-E2 48/48	24	0	0.0%
vegfaa E3-E7 48/48	16	0	0.0%
mmp14a E1-E10 48/48	4	0	0.0%

					Reporter		Percen
Genomic target	Knock-in	Homology length	Individual F0	Crossed to	positive F1 embryos	Total F1 embryos	germlin transmiss
noto E1	pGTag-2A-TagRFP- CAAX-SV40	24/24	1	Casper	4	28	14.3%
noto E1	pGTag-2A-TagRFP- CAAX-SV40	24/24	2	Casper	0	172	0.0%
noto E1	pGTag-2A-TagRFP- CAAX-SV40	24/24	3	Casper	0	15	0.0%
noto E1	pGTag-2A-TagRFP- CAAX-SV40	24/24	4	Casper	69	146	47.3%
noto E1	pGTag-2A-TagRFP- CAAX-SV40	24/24	1	Casper	11	61	18.0%
noto E1	pGTag-2A-TagRFP- CAAX-SV40	24/24	2	Casper	0	81	0.0%
tyr E4	pGTag-2A-Gal4VP16- bactin	24/24	1	UAS:RFP	0	174	0.0%
tyr E4	pGTag-2A-Gal4VP16-	24/24	2	UAS:RFP	0	122	0.0%
tyr E4	pGTag-2A-Gal4VP16- bactin	24/24	3	UAS:RFP	0	45	0.0%
tyr E4	pGTag-2A-Gal4VP16-	24/24	4	UAS:RFP	0	87	0.0%
tyr E4	pGTag-2A-Gal4VP16-	24/24	5	UAS:RFP	0	103	0.0%
tyr E4	pGTag-2A-Gal4VP16-	24/24	6	UAS:RFP	8	89	9.0%
tyr E4	pGTag-2A-Gal4VP16-	24/24	7	UAS:RFP	13	151	8.6%
tvr E4	pGTag-2A-Gal4VP16-	24/24	8	UAS:RFP	0	113	0.0%
tvr E4	bactin pGTag-2A-Gal4VP16-	24/24	9	UAS:RFP	19	155	12.3%
cx43.4 E2	bactin pGTag-2A-TagRFP-	24/24	1	fli1:EGFP	0	39	0.0%
cx43.4 E2	pGTag-2A-TagRFP- CAAX-SV42	24/24	2	fli1:EGFP	0	0	N/A
cx43.4 E2	pGTag-2A-TagRFP- CAAX-SV43	24/24	3	fli1:EGFP	0	0	N/A
cx43.4 E2	pGTag-2A-TagRFP- CAAX-SV44	24/24	4	fli1:EGFP	0	15	0.0%
cx43.4 E2	pGTag-2A-TagRFP- CAAX-SV45	24/24	5	fli1:EGFP	0	26	0.0%
cx43.4 E2	pGTag-2A-TagRFP- CAAX-SV46	24/24	6	fli1:EGFP	0	0	N/A
cx43.4 E2	pGTag-2A-TagRFP- CAAX-SV47	24/24	7	fli1:EGFP	0	23	0.0%
cx43.4 E2	pGTag-2A-TagRFP- CAAX-SV48	24/24	8	fli1:EGFP	0	0	N/A
cx43.4 E2	pGTag-2A-TagRFP- CAAX-SV49	24/24	9	fli1:EGFP	0	45	0.0%
cx43.4 E2	pGTag-2A-TagRFP- CAAX-SV50	24/24	10	fli1:EGFP	0	82	0.0%
cx43.4 E2	pGTag-2A-TagRFP- CAAX-SV40	48/48	1	fli1:EGFP	0	130	0.0%
cx43.4 E2	pGTag-2A-TagRFP- CAAX-SV40	48/48	2	fli1:EGFP	0	100	0.0%
cx43.4 E2	pGTag-2A-TagRFP- CAAX-SV40	48/48	3	fli1:EGFP	0	75	0.0%
cx43.4 E2	pGTag-2A-TagRFP-	48/48	4	fli1:EGFP	0	52	0.0%
cx43.4 E2	pGTag-2A-TagRFP-	48/48	5	fli1:EGFP	0	0	N/A
cx43.4 E2	pGTag-2A-TagRFP-	48/48	6	fli1:EGFP	0	12	0.0%
cx43.4 E2	pGTag-2A-TagRFP-	48/48	7	fli1:EGFP	0	0	N/A
cx43.4 E2	pGTag-2A-TagRFP-	48/48	8	fli1:EGFP	0	0	N/A
cx43.4 E2	pGTag-2A-TagRFP-	48/48	9	fli1:EGFP	0	34	0.0%
cx43.4 E2	pGTag-2A-TagRFP-	48/48	10	fli1:EGFP	0	86	0.0%
cx43.4 E2	pGTag-2A-TagRFP-	48/48	11	fli1:EGFP	0	0	N/A
cx43.4 E2	pGTag-2A-TagRFP-	48/48	12	fli1:EGFP	0	0	N/A
cx43.4 E2	pGTag-2A-TagRFP-	48/48	13	fli1:EGFP	0	0	N/A
cx43.4 E2	pGTag-2A-TagRFP-	48/48	14	fli1:EGFP	0	0	N/A
esama E2	pGTag-2A-Gal4VP16-	24/24	1	pDB790	0	21	0.0%
esama E2	pGTag-2A-Gal4VP16-	24/24	2	pDB790	0	212	0.0%
esama E2	bactin pGTag-2A-Gal4VP16-	24/24	3	pD8790	0	31	0.0%
esama E2	bactin pGTag-2A-Gal4VP16-	24/24	4	pD8790	1	4	25.0%
esama E2	bactin pGTag-2A-Gal4VP16-	24/24	5	pD8790	1	12	8.3%
esama E2	bactin pGTag-2A-Gal4VP16-	24/24	-	DB790	14	104	13 59
esama E2	bactin pGTag-2A-Gal4VP16-	24/24	7	pDB790	0	87	0.0%
esama E2	bactin pGTag-2A-Gal4VP16-	24/24	8	pDB790	0	209	0.0%
esama E2	bactin pGTag-2A-Gal4VP16-	24/24	0	008700	0	123	0.0%
esumu E2	bactin pGTag-2A-Gal4VP16-	24/24	9	-00700		132	22.20
esumu E2	bactin pGTag-2A-Gal4VP16-	24/24	10	-00700	4	10	22.27
esumu Ez	bactin pGTag-2A-Gal4VP16-	24/24	11	pb8790		37	0.0%
esama E2	bactin pGTag-2A-Gal4VP16-	24/24	12	pDB 790	11	43	25.6
esama E2	bactin pGTag-2A-Gal4VP16-	24/24	13	DB /90	14	97	14.49
esama E2	bactin	24/24	14	pDB790	0	91	0.0%
esama E2	bactin	24/24	15	pDB790	7	127	5.5%
esama E2	bactin	24/24	16	pDB790	0	25	0.0%
esama E2	bactin	24/24	17	pDB790	30	137	21.99
esama E2	bactin	24/24	18	pDB790	8	265	3.0%
esama E2	pGTag-2A-Gal4VP16- bactin	24/24	19	pDB790	31	227	13.79
esama E2	pGTag-2A-Gal4VP16- bactin	24/24	20	pDB790	11	146	7.5%
esama E2	pGTag-2A-Gal4VP16- bactin	24/24	21	pDB790	0	188	0.0%
esama E2	pGTag-2A-Gal4VP16- bactin	24/24	22	pDB790	3	66	4.5%
msna E2	pGTag-2A-Gal4VP16- bactin	48/48	1	pDB790	42	144	29.2%
msna E2	pGTag-2A-Gal4VP16- bactin	48/48	2	pDB790	0	377	0.0%
	pactin						

1	mrng 53	pGTag-2A-Gal4VP16-	49/49	2	oD8700	0	202	0.0%
	mishid L2	bactin	40/40	3	p08730	0	202	0.0%
	msna E2	bactin	48/48	4	pDB790	0	150	0.0%
	msna E6	pGTag-2A-Gal4VP16- bactin	48/48	1	pDB790	23	311	7.4%
	msna E6	pGTag-2A-Gal4VP16-	48/48	2	pDB790	0	67	0.0%
		bactin nGTag-2A-Gal4VP16-						
ļ	msna E6	bactin	48/48	3	pDB790	0	54	0.0%
	anxa2a E3	pGTag-2A-Gal4VP16- bactin	48/48	1	pDB790	16	73	21.9%
	anxa2a E3	pGTag-2A-Gal4VP16-	48/48	2	pDB790	10	22	45.5%
	anya 2a E2	pGTag-2A-Gal4VP16-	49/49	2	oDP 700	27	70	E2.0%
	011/020 23	bactin	40/40	3	p08730	37	70	32.370
	anxa2a E3	bactin	48/48	4	pDB790	23	36	63.9%
	fina E4	pGTag-2A-Gal4VP16- bactin	48/42	1	pDB790	21	64	32.8%
	fina E4	pGTag-2A-Gal4VP16-	48/42	2	pDB790	1	52	1.9%
		bactin pGTag-2A-Gal4VP16-						
	fina E4	bactin	48/42	3	pDB 790	4	21	19.0%
	aqp1a1 E1	bactin	48/48	1	pDB790	0	N/A	N/A
	aqp1a1 E1	pGTag-2A-Gal4VP16- bactin	48/48	2	pDB790	19	281	6.8%
	aanlal F1	pGTag-2A-Gal4VP16-	48/48	3	nD8790	0	N/A	N/A
	uqpiùi Li	bactin pGTag-2A-Gal4VP16-	40)40	2	p00730	0		
	aqp1a1 E1	bactin	48/48	4	pDB790	n>1	N/A	N/A
	aqp1a1 E1	pGTag-2A-Gal4VP16- bactin	48/48	5	pDB790	0	N/A	N/A
	aqp1a1 E1	pGTag-2A-Gal4VP16-	48/48	6	pDB790	0	N/A	N/A
		pGTag-2A-Gal4VP16-	10/10		0.0.700			
	adbiai Fi	bactin	48/48	/	DDR 190	U	N/A	N/A
	aqp1a1 E1	pGTag-2A-Gal4VP16- bactin	48/48	8	pDB790	0	N/A	N/A
	aqp1a1 E1	pGTag-2A-Gal4VP16-	48/48	9	pDB790	0	N/A	N/A
	aan8a1 F1	pGTag-2A-Gal4VP16-	48/48	1	nD8790	1	7	14.3%
ł	000001 21	bactin pGTag-2A-Gal4VP16-	40)40		p00730		,	14.570
	rb1 E2-E4	bactin	48/48	1	pDB790	0	38	0.0%
	rb1 E2-E4	pGTag-2A-Gal4VP16- bactin	48/48	2	pDB790	0	103	0.0%
	rb1 E2-E4	pGTag-2A-Gal4VP16-	48/48	3	pDB790	0	61	0.0%
		pGTag-2A-Gal4VP16-	40/40		-00.700		72	0.0%
	7D1 E2-E4	bactin	40/40	4	PDB /90	0	/5	0.0%
	rb1 E2-E4	bactin	48/48	5	pDB790	0	57	0.0%
	rb1 E2-E4	pGTag-2A-Gal4VP16- bactin	48/48	6	pDB790	0	69	0.0%
	rb1 E2-E4	pGTag-2A-Gal4VP16-	48/48	7	pD8790	0	37	0.0%
		bactin pGTag-2A-Gal4VP16-						
	rb1 E2-E4	bactin	48/48	8	pDB790	0	113	0.0%
	rb1 E2-E4	pGTag-2A-Gal4VP16- bactin	48/48	9	pDB790	0	79	0.0%
	rb1 E2-E4	pGTag-2A-Gal4VP16-	48/48	10	pDB790	0	20	0.0%
	rb1 E2 E4	pGTag-2A-Gal4VP16-	49/49	11	oDP 700	0	126	0.0%
	7D1 E2-E4	bactin	40/40	11	PDB /90	0	130	0.0%
	rb1 E2-E4	bactin	48/48	12	pDB790	0	124	0.0%
	rb1 E2-E4	pGTag-2A-Gal4VP16-	48/48	13	pDB790	0	129	0.0%
	rb1 E2-E4	pGTag-2A-Gal4VP16-	48/48	14	nDB790	0	39	0.0%
		bactin pGTag-2A-Gal4VP16-						
	rb1 E2-E4	bactin	48/48	15	pDB790	0	123	0.0%
	rb1 E2-E4	pGTag-2A-Gal4VP16- bactin	48/48	16	pDB790	0	40	0.0%
	rb1 E2-E4	pGTag-2A-Gal4VP16-	48/48	17	pDB790	0	99	0.0%
	rb1 E2 E4	pGTag-2A-Gal4VP16-	49/49	10	oDP 700	0	20.8	0.0%
	7D1 E2-E4	bactin	40/40	10	PDB /90	0	208	0.0%
	rb1 E2-E4	bactin	48/48	19	pDB790	0	241	0.0%
	rb1 E2-E25	pGTag-2A-Gal4VP16- bactin	48/48	1	pDB790	0	49	0.0%
	rb1 E2-E25	pGTag-2A-Gal4VP16-	48/48	2	pDB790	0	78	0.0%
		bactin pGTag-2A-Gal4VP16-						
	rb1 E2-E25	bactin	48/48	3	pDB790	0	162	0.0%
	rb1 E2-E25	pGTag-2A-Gal4VP16- bactin	48/48	4	pDB790	12	25	48.0%
	rb1 E2-E25	pGTag-2A-Gal4VP16-	48/48	5	pDB790	0	79	0.0%
	ch1 52 525	pGTag-2A-Gal4VP16-	49/49	6	oDP 700	0		0.0%
	101 62-623	bactin	40/40	D	pp0.790	v	-	0.0%
	rb1 E2-E25	bactin	48/48	7	pDB790	0	200	0.0%
	rb1 E2-E25	pGTag-2A-Gal4VP16- bactin	48/48	8	pDB790	0	38	0.0%
	rb1 E2-E25	pGTag-2A-Gal4VP16-	48/48	9	pDB790	0	128	0.0%
		bactin nGTag-2A-Gal4VP16-						
	rb1 E2-E25	bactin	48/48	10	pDB790	0	7	0.0%
	rb1 E2-E25	pGTag-2A-Gal4VP16- bactin	48/48	11	pDB790	0	119	0.0%
	rb1 E2-E25	pGTag-2A-Gal4VP16-	48/48	12	pDB790	0	136	0.0%
	ch1 52 525	pGTag-2A-Gal4VP16-	49/49	12	oDP700	0	76	0.0%
	101 12-125	bactin	40/40	13	p08730	0	70	0.0%
	rb1 E2-E25	bactin	48/48	14	pDB790	0	159	0.0%
	rb1 E2-E25	pGTag-2A-Gal4VP16- bactin	48/48	15	pDB790	0	168	0.0%
	rb1 E2-E25	pGTag-2A-Gal4VP16-	48/48	16	pDB790	0	139	0.0%
	-64 50 505	pactin pGTag-2A-Gal4VP16-	40/20		-00.200	0		
	<i>TD1</i> E2-E25	bactin	48/48	17	рив 790	U	25	U.0%
	rb1 E2-E25	porag-2A-Gal4VP16- bactin	48/48	18	pDB790	0	4	0.0%
	rb1 E2-E25	pGTag-2A-Gal4VP16-	48/48	19	pDB790	0	81	0.0%
	rh1 E2 E2E	pGTag-2A-Gal4VP16-	48/49	20	nD8700	0	71	0.0%
	101 62-623	bactin	40/40	20	ppp 790	v	/1	0.0%
	rb1 E2-E25	bactin	48/48	21	pDB790	0	75	0.0%
	rb1 E2-E25	pGTag-2A-Gal4VP16- bactin	48/48	22	pDB790	0	81	0.0%
	rb1 E2-E25	pGTag-2A-Gal4VP16-	48/48	23	pDB790	0	76	0.0%
		bactin pGTag-2A-Gal4VP16-					-	
	r01 E2-E25	bactin	48/48	24	pDB790	0	72	0.0%
	rb1 E2-E25	bactin	48/48	25	pDB790	0	69	0.0%

rb1 E2-E25	pGTag-2A-Gal4VP16- bactin	48/48	26	pDB790	0	33	0.0%
rb1 E2-E25	pGTag-2A-Gal4VP16- bactin	48/48	27	pDB790	0	74	0.0%
msna E2-E6	pGTag-2A-Gal4VP16-	48/48	1	pDB790	0	180	0.0%
msna E2-E6	pGTag-2A-Gal4VP16-	48/48	2	pDB790	0	53	0.0%
msna E2-E6	pGTag-2A-Gal4VP16-	48/48	3	nD8790	0	0	N/A
mrng E2 E6	bactin pGTag-2A-Gal4VP16-	49/49	-	=DR700	-	0	N/A
IIISIIU E2-E6	bactin pGTag-2A-Gal4VP16-	46/48	4	pb8790			N/A
msna E2-E6	bactin	48/48	5	pDB790	0	93	0.0%
msna E2-E6	bactin	48/48	6	pDB790	0	23	0.0%
msna E2-E6	pGTag-2A-Gal4VP16- bactin	48/48	7	pDB790	0	357	0.0%
msna E2-E6	pGTag-2A-Gal4VP16- bactin	48/48	8	pDB790	0	100	0.0%
msna E2-E6	pGTag-2A-Gal4VP16- bactin	48/48	9	pDB790	0	235	0.0%
msna E2-E6	pGTag-2A-Gal4VP16- bactin	48/48	10	pDB790	0	237	0.0%
msna E2-E6	pGTag-2A-Gal4VP16-	48/48	11	pDB790	0	84	0.0%
msna E2-E6	pGTag-2A-Gal4VP16-	48/48	12	pDB790	0	117	0.0%
kdrl E3-E30	pGTag-2A-Gal4VP16-	42/48	1	pDB790	0	250	0.0%
kdrl E2 E20	bactin pGTag-2A-Gal4VP16-	42/48	-	=DR700	-	250	0.0%
144 52 520	bactin pGTag-2A-Gal4VP16-	42,40	-	-00700	0	250	0.0%
Kari E3-E3U	bactin pGTag-2A-Gal4VP16-	42/48	3	s1nr1 E2-E2	0	250	0.0%
s1pr1 E2-E2	bactin	48/27	1	Animal 2	0	150	0.0%
s1pr1 E2-E2	bactin	48/27	2	Animal 1	0	150	0.0%
s1pr1 E2-E2	bactin	48/27	3	Animal 4	0	150	0.0%
s1pr1 E2-E2	pGTag-2A-Gal4VP16- bactin	48/27	4	s1pr1 E2-E2 Animal 3	0	150	0.0%
s1pr1 E2-E2	pGTag-2A-Gal4VP16- bactin	48/27	5	s1pr1 E2-E2 Animal 6	0	150	0.0%
s1pr1 E2-E2	pGTag-2A-Gal4VP16- bactin	48/27	6	s1pr1 E2-E2 Animal 5	0	150	0.0%
s1pr1 E2-E2	pGTag-2A-Gal4VP16-	48/27	7	s1pr1 E2-E2 Animal 8	0	150	0.0%
s1pr1 E2-E2	pGTag-2A-Gal4VP16-	48/27	8	s1pr1 E2-E2	0	150	0.0%
s1pr1 E2-E2	pGTag-2A-Gal4VP16-	48/27	9	s1pr1 E2-E2	0	150	0.0%
stort F2-F2	bactin pGTag-2A-Gal4VP16-	48/27	10	Animal 10 s1pr1 E2-E2	0	150	0.0%
	bactin pGTag-2A-Gal4VP16-	40/27	10	Animal 9 s1pr1 E2-E2		150	0.0%
SIPTI E2-E2	bactin pGTag-2A-Gal4VP16-	48/27	11	Animal 12 s1nr1 E2-E2	U	150	0.0%
s1pr1 E2-E2	bactin	48/27	12	Animal 11	0	150	0.0%
s1pr1 E2-E2	bactin	48/27	13	Animal 14	0	150	0.0%
s1pr1 E2-E2	bactin	48/27	14	Animal 13	0	150	0.0%
s1pr1 E2-E2	pGTag-2A-Gal4VP16- bactin	48/27	15	s1pr1 E2-E2 Animal 16	0	150	0.0%
s1pr1 E2-E2	pGTag-2A-Gal4VP16- bactin	48/27	16	s1pr1 E2-E2 Animal 15	0	150	0.0%
s1pr1 E2-E2	pGTag-2A-Gal4VP16- bactin	48/27	17	s1pr1 E2-E2 Animal 18	0	150	0.0%
s1pr1 E2-E2	pGTag-2A-Gal4VP16- bactin	48/27	18	s1pr1 E2-E2 Animal 17	0	150	0.0%
s1pr1 E2-E2	pGTag-2A-Gal4VP16-	48/27	19	s1pr1 E2-E2 Animal 20	0	150	0.0%
s1pr1 E2-E2	pGTag-2A-Gal4VP16-	48/27	20	s1pr1 E2-E2	0	150	0.0%
s1pr1 E2-E2	pGTag-2A-Gal4VP16-	48/27	21	s1pr1 E2-E2	0	150	0.0%
s1pr1 E2-E2	bactin pGTag-2A-Gal4VP16-	48/27	22	Animal 22 s1pr1 E2-E2	0	150	0.0%
c1or1 52 52	bactin pGTag-2A-Gal4VP16-	49/27		Animal 21 s1pr1 E2-E2	-	150	0.0%
31p/1 L2-L2	bactin pGTag-2A-Gal4VP16-	46/27	23	Animal 24 s1pr1 E2-E2		150	0.0%
s1pr1 E2-E2	bactin	48/27	24	Animal 23	0	150	0.0%
vegfaa E3-E7	bactin	48/48	1	Animal 2	0	150	0.0%
vegfaa E3-E7	bactin	48/48	2	Animal 1	0	150	0.0%
vegfaa E3-E7	pGTag-2A-Gal4VP16- bactin	48/48	3	vegfaa E3-E7 Animal 4	0	150	0.0%
vegfaa E3-E7	pGTag-2A-Gal4VP16- bactin	48/48	4	vegfaa E3-E7 Animal 3	0	150	0.0%
vegfaa E3-E7	pGTag-2A-Gal4VP16- bactin	48/48	5	vegfaa E3-E7 Animal 6	0	150	0.0%
vegfaa E3-E7	pGTag-2A-Gal4VP16- bactin	48/48	6	vegfaa E3-E7 Animal 5	0	150	0.0%
vegfaa E3-E7	pGTag-2A-Gal4VP16-	48/48	7	vegfaa E3-E7	0	150	0.0%
vegfaa E3-E7	pGTag-2A-Gal4VP16-	48/48	8	vegfaa E3-E7	0	150	0.0%
veqfaa E3-E7	pGTag-2A-Gal4VP16-	48/48	9	Animal 7 vegfaa E3-E7	0	150	0.0%
weafac 52 57	bactin pGTag-2A-Gal4VP16-	48/49	10	Animal 10 vegfaa E3-E7	0	150	0.0%
vograu C3-C/	bactin pGTag-2A-Gal4VP16-	+0/+0	10	Animal 9 vegfaa E3-E7	~	150	0.0%
vegjud E3-E7	bactin pGTag-2A-Gal4VP16-	40/48	11	Animal 12 vegfaa E3-E7	U	101	0.0%
vegtaa E3-E7	bactin	48/48	12	Animal 11	0	150	0.0%
vegfaa E3-E7	bactin	48/48	13	Animal 14	0	150	0.0%
vegfaa E3-E7	polag-2A-Gal4VP16- bactin	48/48	14	vegraa E3-E7 Animal 13	0	150	0.0%
vegfaa E3-E7	pGTag-2A-Gal4VP16- bactin	48/48	15	vegjaa E3-E7 Animal 16	0	150	0.0%
vegfaa E3-E7	pGTag-2A-Gal4VP16- bactin	48/48	16	vegfaa E3-E7 Animal 15	0	150	0.0%
mmp14a E1-E10	pGTag-2A-Gal4VP16- bactin	48/48	1	mmp14a E1-E10 Animal 2	0	112	0.0%
mmp14a E1-E10	pGTag-2A-Gal4VP16- bactin	48/48	2	mmp14a E1-E10 Animal 1	0	112	0.0%
mmp14a E1-E10	pGTag-2A-Gal4VP16-	48/48	3	mmp14a E1-E10	0	150	0.0%
mmp14a E1-E10	pGTag-2A-Gal4VP16-	48/48	4	mmp14a E1-E10	0	150	0.0%

Supplementary table 5 -	- Targeting domain information	for all gene targeting experiments. N/A means not applicable					
Genomic target	Donor vector	Genomic target sequence	Donor target sequence	5' Spacer sequence	5' homology arm	3' spacer	3' homology arm
noto E1	2A-TagRFP-CAAX-SV40	GGGAGCGCAGAGCTGGAGACAGG	GGGAGCGCAGAGCTGGAGACAG	5 aaa	CAAACGCCTGTC	N/A	N/A
noto E1	2A-TagRFP-CAAX-SV40	GGGAGCGCAGAGCTGGAGACAGG	GGGAGCGCAGAGCTGGAGACAG	<u>3</u> aaa	AGCATAACCAACCAAACGCCTGTC	N/A	N/A
noto E1	2A-TagRFP-CAAX-SV40	GGGAGCGCAGAGCTGGAGACAGG	GGGAGCGCAGAGCTGGAGACAG	5 aaa	AGAGAACGAACAAACGCGTACCGGAGCATAACCAACCAAACGCCTGTC	N/A	N/A
noto E2	2A-TagRFP-CAAX-SV40	GACTGGAGAAAGAGTTCGCG <u>CGG</u>	GACTGGAGAAAGAGTTCGCGCGG	aaa	CTGTCCAGACTGGAGAAAGAGTTC	N/A	N/A
noto E2	2A-TagRFP-CAAX-SV40	GACTGGAGAAAGAGTTCGCG <u>CGG</u>	GGGAGGCGTTCGGGCCACAG <u>CGG</u>	N/A	CTGTCCAGACTGGAGAAAGAGTTC	N/A	N/A
noto E1	pGTag-2A-TagRFP-CAAX-SV4	0 GGGAGCGCAGAGCTGGAGACAGG	GGGAGGCGTTCGGGCCACAG <u>CGG</u>	aaa	AGCATAACCAACCAAACGCCTGTC	N/A	TCCAGCTCTGCGCTCCCGCTTATT
noto E1	pGTag-2A-eGFP-SV40	GGGAGCGCAGAGCTGGAGACAGG	GGGAGGCGTTCGGGCCACAGCGG	aaa	AGAGAACGAACAAACGCGTACCGGAGCATAACCAACCAAACGCCTGTC	888	TCCAGCTCTGCGCTCCCGCTTATTTACTCGCAGATGCCACACTTCGCG
tyr E4	pGTag-2A-Gal4VP16-bactin	GTTCCTGTAGAGAGGGATGAAGG	GGGAGGCGTTCGGGCCACAGCGG	aaa	ACGGATACTTCATGGTGCCCTTCA	N/A	TCCCTCTCTACAGGAACGGAGACT
cx43.4 E2	pGTag-2A-TagRFP-CAAX-SV4	0 GAGCCATATCTTGCCCACGA <u>AGG</u>	GGGAGGCGTTCGGGCCACAG <u>CGG</u>	ccc	AAATCTCCAACCACTCCACCTTCG	ggg	TGGGCAAGATATGGCTCACGTTAT
cx43.4 E2	pGTag-2A-TagRFP-CAAX-SV4	0 GAGCCATATCTTGCCCACGA <u>AGG</u>	GGGAGGCGTTCGGGCCACAG <u>CGG</u>	ccc	GTTTTCTTACGCGGTTGTTGGATGAAATCTCCAACCACTCCACCTTCG	aaa	TGGGCAAGATATGGCTCACGTTATTCATCATCTTCCGCATTGTTTTGA
esama E2	pGTag-2A-Gal4VP16-bactin	GGATGTGATCCAAGGGAAGA <u>TGG</u>	GGGAGGCGTTCGGGCCACAG <u>CGG</u>	ctc	AAAATGTGGATGTGATCCAAGGGA	gag	GATECAATECETTGGATEACATECACATTTT
msna E2	pGTag-2A-Gal4VP16-bactin	GTTTCCCTGTGGTGCTGGGT <u>TGG</u>	GGGAGGCGTTCGGGCCACAG <u>CGG</u>	ttt	TGTTCGTGTGACTACAATGGATGCCGAGCTGGAGTTTGCCATCCAACC	GCG	cagcaccacagggaaacagttatttgaccaggtttgtgtgtg
msna E6	pGTag-2A-Gal4VP16-bactin	GTCTGGCACGAGGAGCACAA <u>GGG</u>	GGGAGGCGTTCGGGCCACAG <u>CGG</u>	aaa	GAATAAGGAGCAATGGGAGGAAAGAATTCAGGTCTGGCACGAGGAGC	A aaa	CAAGGGCATGTTGAGGTACAGACAATGGAATGTGCTCTTGCTATTTTT
anxa2a E3	pGTag-2A-Gal4VP16-bactin	TCTGGATCAAAGTTGGCCTC <u>TGG</u>	GGGAGGCGTTCGGGCCACAGCGG	GGG	CTCGAACTGGGCGGAGGAGAGAGCCCACCTACCCTACTGTTGTTCCAGAG	GGG	GCCAACTTTGATCCAGACAAAGATGCTGCCAGGATTGAGACCGCTATC
fina E4	pGTag-2A-Gal4VP16-bactin	GGATTGAGTTTGGGCCTCAGAGG	GGGAGGCGTTCGGGCCACAGCGG	GGG	TACCTGTCCCAGTTTCCCAAAGCCAAACTCAAGCCTGGTGCCCCTCTG	CCC	AGGCCCAAACTCAATCCCAAAAAGGCCCGTGCTTATGGACCA
aqp1a1 E1	pGTag-2A-Gal4VP16-bactin	GGCTTTCTGGCGGGCCGTCCTGG	GGGAGGCGTTCGGGCCACAGCGG	GGG	GTCAGTCAGTCATGAACGAGCTGAAGAGCAAGGCTTTCTGGCGGGCCG	TTT	TCCTGGCCGAGCTGCTGGGAATGACCCTGTTCATCTTCCTCAGCATTA
aqp8a1 E1	pGTag-2A-Gal4VP16-bactin	CGTGTCCGTCATGGGCAACGTGG	GGGAGGCGTTCGGGCCACAG <u>CGG</u>	AAA	TCGGCTCTTTCCTCTTCATGTTTGTGGGCTGCGTGTCCGTCATGGGCA	TTT	ACGTGGGCATCAGCGGGAGCATCCAGCCCGCCCTGGCACACGGACTAG
rb1 E2-E4	pGTag-2A-Gal4VP16-bactin	E2 GGAGAGGGAGATCAGATCGA <u>TGG</u> , E4 GTCACAGCAGAGTTCACTTT <u>AGG</u>	GGGAGGCGTTCGGGCCACAG <u>CGG</u>	N/A	GCTCCAGTCCACTAACTCCATCTGTGATCATGCATGGAGAATATGGGA	N/A	ACCCGCCTAGAGAACAAATACGATGTGACTTTGGCCCTCTACCAAAGA
rb1 E2-E25	pGTag-2A-Gal4VP16-bactin	E2 GGAGAGGGAGATCAGATCGATGG. E25 GTCAAAGCGCAGCCTCTTCAGGG	GGGAGGCGTTCGGGCCACAGCGG	N/A	GCTCCAGTCCACTAACTCCATCTGTGATCATGCATGGAGAATATGGGA	N/A	ATGGACGGACAAGATGAAGCAGACGGAAGgtgggagtcatgatcagtt
msna E2-E6	pGTag-2A-Gal4VP16-bactin	E2 GTTTCCCTGTGGTGCTGGGTTGG, E6 GTCTGGCACGAGGAGCACAAGGG	GGGAGGCGTTCGGGCCACAGCGG	ttt	TGTTCGTGTGACTACAATGGATGCCGAGCTGGAGTTTGCCATCCAACC	aaa	CAAGGGCATGTTGAGGTACAGACAATGGAATGTGCTCTTGCTATTTT
kdrl F3-F30	nGTag-2A-Gal4VP16-bactin	E3 GGCTAGCAGAAATGTGTCATCGG_E30 GGAGGACTCGTCCCTTGACTCGG	GGGAGGCGTTCGGGCCACAGCGG		GATCAACTGCACTGCACTGGAGGCTGGCTAGCAGAAATGTGT	N/A	actregagatggagtgtcacagtcctcctccagactataactatgtgg
s1nr1 F2-F2	nGTag-2A-Gal4VP16-bactin		GGGAGGCGTTCGGGCCACAGCGG	111	AGCGGACTCTGTGTGTGTGTCATCATCGTGTGCTGCTTCATCATCCTGGA	666	TICTGGGAATATCACCTCTTCTTCTTAAAGGGACTATTCGTGAACTTT
weatan E3-E7	nGTag-2A-GaldVP16-bactin	E3 GTGCAAGACCCGAGAGCTGCTGG E7 CGTTCGCTCGATCATCATCTTGG	GGGAGGCGTTCGGGCCACAGCGG		TTEETTEATGGATGTGTATAAAAAGAGTGCGTGCAAGACCCGAGAGC		TGATGATCGAGCGAACGCCGGGCAGAACTCTGCATGAAGGAAG
mmn14a E1-E10	nGTag-2A-GaldVP16-bactin	EL GLACTAGAAACACACTTGCGAGG, EL GGGAGCCGGCACAGATGAGGAGG	GGGAGGCGTTCGGGCCACAGCGG		GTTACCGAAACTGCAGACGTTACCTCGGCTTCTGCCCTCGC		AGGAGGTGCTCATTATTGAAGTGGACGGCTCGGAGGGCGGGGGGGG
ROSA26	HMEL donor	TTAACCTGATTCTTGGGCGTTGTCCTGCAGGGGGATTGAGCAGGTGTACGA	GGGAGGCGTTCGGGCCACAGCGG	TGAT	IGGGCGGGATICITTIGCCCGGCTTAACCTGATICITGGGCGTTGIC	GCT	TGCAGGGGATTGAGCAGGTGTACGAGGACGAGCCCAATTTCCCTATAT
875.135	10 decer				GIARAAACTICALVAAAGAGGUCTOTTGGUCTLTTGGUGGGGAD GAAGGUTAATAAGAAGTGACTUCGUGGUGGGUCTTGCUCALCTICCU CUGGGGAATUGGTTTACCUCQUCCUCTUGGUTTGGATUCAATTA CUCTAAAACTUCAGGUAAGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGU		IGGAGGGATTGAECAGGTGACGAGGAGCGACCCAATTCICTATAT IGGAGGGATTGAECAGACAACCTAAGCTGATTATATGAGGGGGAGAT GGAAATGAGTCAGGCAACCTAAGCCTGAATTTATGAGGGGGAGAT GGTATATTATAGAGCTGACTATGAGATTATATATGAGGGGGAGAT IGGTTATATATACAAGCTAGGATTTAGACTAGAGGGAGAT AGGTTAAAAAGCACGAAGTTATGAGATTAAGTTAGAGGGAGAT ATTTGACCACACTGACGAAGTATGAGATTAAGTAGACAATGAGT ACTTAGGCCCCTGACTGAGATTAAGTATATATCICCAA ACTTAGGCCCCTTAGTGAGTATAAATTAACTGACAA ACTTAGGCCCCTGACTGAGATTAAGTATACTCAACTAGAT IGGCTTICCCCACTGGAGTAGATTAGATTAAGTAGCAACAAGCAT IGGCTTICCCCACTGGAGTTAGGACTGAGAGTAGAATGACGAAGAT ATTCACACCACTGGGGATTTAGGTGAGCAAGAATGAGTAGAATGAGATGA ATTTAGGCCCGCTGAGGGATTATGACTGAGCAAGAGCAAGAATGAGATGAGATGAGATGAGATGAGATGAGAATGAGGAATTAGGGAGTTAGGAATGAGGAATTAGCTGAGCTAGAATGAGTAGAATGAGATGAGGAATGAGGGAATTAGCTGGAGTTAGGACTGAGGATGAGAATGAGCTGAGAATGAGTAGAATGAGTAGAATGAGTAGGAATGAGGGAGTAGGAATGAGAGAAGA
AAV51	HMELdonor	GTCACCAATCCTGTCCTGGGGG	GGGAGGCGTTCGGGCCACAGCGG		GTTCTGGGTACTITTATCTGTCCCCCCCCCCCCCGCGGGGGGCCACTA	aaa	GGGACAGGATTGGTGACAGAAAAGCCCCATCCTTAGGCCTCCTCCTC
					a contraction of the second se	t t a t t t t t	Lange and the set of t
AAVS1	HR donor	GTCACCAATCCTGTCCCTAGTGG	N/A	N/A		N/A	000 0 0

Supplementary table 6	- Primes and oligos	Purpose
notojxn5'f	GCTTTTTGGACTAAACAGACGCCATG	Junction fragment analysis
notojxn3'r	cttgtgcgtacacagctccacg	Junction fragment analysis
notojxn3'delr	CGATGTTATACTTGCTTCTTTTAGTTTTGTACATAT	Junction fragment analysis
tyrjxn5'f	CATCTITIGAGCAGTGGTTGAGGAGA	Junction fragment analysis
tyrjxn3'r ecamaiyn5'f	CALCIGGAICLIGIAAAIAIGCAIAIICAIAIC	Junction fragment analysis
esamajxn3'r		Junction fragment analysis
cx43.4jxn5'f	GCAGGACTGAGACGGTGGTA	Junction fragment analysis
cx43.4fxn3'r	CAAATGCATCGTAGCAAACG	Junction fragment analysis
Rb2jF	AAGGACAAGGATCCTGAGTTTG	Junction fragment analysis
galjt	GCAAACGCCTTAACTTCC	Junction fragment analysis
Rb4iR	GCTTGCATCACAACCTCAA	Junction fragment analysis
Rb25jR	AGCCAGCTTCTGGATCAGTG	Junction fragment analysis
RFP5'jxnr	CCTTAATCAGTTCCTCGCCCTTAGA	Junction fragment analysis
sv403'jxnf	GGGGAGGTGTGGGAGGTTTT	Junction fragment analysis
gfp5'R	GCTGAACTTGTGGCCGTTTA	Junction fragment analysis
GFP3 F E-msna-exon?		Junction fragment analysis
R-msna-exon2	GGGCACGGCTACAAAGAAG	Junction fragment analysis
R-msna-exon6	CGTGTGATTGACAGGGTCAC	Junction fragment analysis
F-msna-exon6	GTTCTGGAGCAGCACAAGC	Junction fragment analysis
anxa2a5'Cut3'JxnPrR	CTTCCAGACAGGACGAGTGA	Junction fragment analysis
anxa2a5 Cut5 JXnPrF		Junction fragment analysis
R-1aljunc	agaluagaggagitaagnuug	Junction fragment analysis
KDRLEx3JxnF	Ingtitution for the second sec	Junction fragment analysis
KDRLEx30JxnR	GGGTGGTGTGGAGTAACGAA	Junction fragment analysis
S1PR1.5'JxnF	ACAAGGACCCGGGACTCA	Junction fragment analysis
S1PR1.3'JxnR	CGAGACGAAAAAGTTCACGA	Junction fragment analysis
vegraatx3.5'JxnF		Junction fragment analysis
R-8a1-exon1 junc	tgatttccccaaaattgct	Junction fragment analysis
F-8a1-exon1_junc	gcccttcttcgagcactaca	Junction fragment analysis
F-mmp14a-junc	?	Junction fragment analysis
R-mmp14a-junc	?	Junction fragment analysis
notoSBf	CAGATGCCACACTTCGCGT	Southern blot analysis
notoSBr	LGAIGTTATACHTGCHTCHTHTAGTTHTGTACATAT	Southern blot analysis
tyrSBe3r		Southern blot analysis
esamaSBe3f		Southern blot analysis
esamaSBi4r		Southern blot analysis
gal4SBr	CTGAAGAACAACTGGGAGTGTCGC	Southern blot analysis
gal4SBf	TTACATATCCAGAGCGCCGTAGGG	Southern blot analysis
rfpSBf	ATGGTGTCTAAGGGCGAAGAGC	Southern blot analysis
rfpSBr	AGCTTCAGGGCCATGTCGC	Southern blot analysis
F-2A-Gal4-BamHI	GGATCCGGAGCCACGAACTTCTCTCTGTTAAAGCAAGCAGGAGAGCGGGAGAAGAAAACCCCCGGTCCTtctagaAAGCTACTGTCTTCTATCGAACA	PGTag vector cloning
F-eGFP-spel	gcalccardotagtatggtgagcagggcgaggagctg	pGTag vector cloning
R-eGFP-Xhol	tggatcCtcgagttacttgtacagctcgt	pGTag vector cloning
F-p494-Xhol	cgctgcctcgagGGCGCGCCTCTAGAACTATAG	pGTag vector cloning
R-p494-Spel	agccatactagtAGGACCGGGGTTTTCTT	pGTag vector cloning
R-lacZ	lgalacargeaggegeaaegeaatiaaegegege	pGTag vector cloning
F-lacZ-universal-1	GGGAGGCGTTCGGGCCACAGCGGacacgcaggtgcgcaacgcaattaatg	pGTag vector cloning
R-lacZ-universal-BamH	i ctgatcggatcctgtggcaggtccattcg	pGTag vector cloning
F-lacZ-universal-EcoRI	gtacatgaattcGGGAGGCGTTCGGGCCACAG	pGTag vector cloning
F-3'-uni-1		pGTag vector cloning
F-3'-uniNco1	tecaGccategCGTTGTCTAGCAAGGAAGTGAaga	pGTag vector cloning
R-3'-uniEagl	tgaGcggccgAGATCCCATCGCTAGCGGG	pGTag vector cloning
F-TagRFPfix	5'phos\cttaatcagttcctcgcccttag	pGTag vector cloning
R-TagRFPfix	5'phos-gagaacatgcacatgaagctgtac	pGTag vector cloning
F-BBTIX	S phos \AA I ALG GAAACCG CLI CL C	pG lag vector cloning
F-Bactfix	5/mbos/TTTAAAAGTCAAACCACCATGACTG	pGTag vector cloning
R-Bactfix	5'phos\CTGGCAGTTCCTTCCTGTTAA	pGTag vector cloning
F-Bact-Ascl	ATATGTGGCGCGCCACGGACTGTTACCACTTCACG	pGTag vector cloning
R-Bact-Ncol	ACAACGCCATGGTAATTTATTTAGC	pGTag vector cloning
F-gal4-Ecofix R-gal4-Ecofix	Signos/actors/ac	pG lag vector cloning
noto E1 guide	taatacgactcactataGGGAGCGCAGAGCTGGAGACgttttagagctagaa	gRNA oligo A
noto E2 guide	taatacgactcactataGACTGGAGAAAGAGTTCGCGgttttagagctagaa	gRNA oligo A
tyr E4 guide	taatacgactcactatagGTTCCTGTAGAGAGGGATGAgttttagagctagaa	gRNA oligo A
cx43.4 E2 guide	taatacgactcactataGGGCCATATCTTGCCCACGAgttttagagctagaa	gRNA oligo A
esama E2 guide	taatacgactcactataGGATGTGATCCAAGGGAAGAgttttagagctagaa	gRNA oligo A
msna E2 guide	taatacgactcactataGGCTGGCGCGCGGGGGCGCGCGGGGGGGGGGGGGGG	
anxa2a E3 guide	taatacgactcactataGGTGGATCAAAGTTGGCCTCgttttagagectagaa	gRNA oligo A
flna E4 guide	taatacgactcactataGGATTGAGTTTGGGCCTCAGgttttagagctagaa	gRNA oligo A
aqp1a1 E1	taatacgactcactataGGCTTTCTGGCGGGCCGTCCgttttagagctagaa	gRNA oligo A
<i>aqp8a1</i> E1	taatacgactcactataGGTGTCCGTCATGGGCAACGgttttagagctagaa	gRNA oligo A
rb1 E2 guide	taatacgactcactataGGAGAGGGGAGATCAGATCGAgttttagagctagaa	gRNA oligo A
rb1 E4 guide	taatacgactcactataGGCACAGCAGAGTTCACTTTgttttagagctagaa	gRNA oligo A
roi E25 guide	taatacgactcactataGGLAAAGUGLAGULILIILAgttttagagctagaa	gRNA oligo A
kdrl E30 guide	taatacgactcactataGGAGGACTCGTCCTTGACTgttttapagctagaa	gRNA oligo A
s1pr1 E2a guide	taatacgactcactataGGAGAACCAGAACATTTTCCgttttagagctagaa	gRNA oligo A
s1pr1 E2b guide	taatacgactcactataGGGAAACCATAGTGTCTTCTgttttagagctagaa	gRNA oligo A
vegfaa E3 guide	taatacgactcactataGGGGCAAGACCCGAGAGCTGCgttttagagctagaa	gRNA oligo A
vegfaa E7 guide	taatacgactcactataGGGTTCGCTCGATCATCATCTgttttagagctagaa	gRNA oligo A
mmp14a E1 guide	taatacgactcactataGGACCAGAAACAACACTTGCGgttttagagctagaa	gRNA oligo A
CRISPR Oligo B	taatacgacticactaataooobaollooolalaoba10aooggtttaggggtaggaa AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAAC	Oligo B for gRNA synthesis
noto E1 5' arm bait A		
12 noto E1 5' arm bait B	aattcGGGAGCGCAGAGCTGGAGACAGGCAAACGTCTGTCg	Homology arm oligo
12 noto E1 5' arm bait A	gatccGACAGACGTTTGCCTGTCTCCAGCTCTGCGCTCCCg	Homology arm oligo
24 noto E1 5' arm bait B	aattcGGGAGCGCAGAGCTGGAGACAGGAGCATAACCAAACGACTGTCg	Homology arm oligo
24 noto E1 5' arm bait A	gatecGACAGGCGTTTGGTTAGGTTATGCTCCTGTCTCCAGCTCTGCGCTCCCg	Homology arm oligo
48 noto E1 5' arm bait B	$\verb+attcGGAGCGCAGAGCTGGAGACAGGAGAGAACGAACAAACGCGTACCGGAGCATAACCAACGACCTGTg$	Homology arm oligo
48	$\verb+gatccACAGGCGTTTGGTTGGTTATGCTCCGGTACGCGTTTGTTCGTTC$	Homology arm oligo

noto E1 5' arm A 24		
Looke Ed El com D Dd	aattcGGGAGCGCAGAGCTGGAGACAGGaaaAGCATAACCAAACCA	Homology arm oligo
noto E1 3' arm A 24	gateceaelaegeGTTTGGTTGGTTGGTTATGCTETECCTGTCTCCAGCTCTGCGCTCCCg	Homology arm oligo
noto E1 3' arm P 24		Homology arm oligo
noto F1 5' arm A 48	GCGGaaaAGAGAACGAACAAACGCGTACCGGAGCATAACCCAACCAA	Homology arm oligo
noto E1 5' arm B 48	a+	Homology arm oligo
noto E1 3' arm A 48	aagtCCAGCTTCGCGCTCCCGCTTATTACTCGCAGATGCCACACTTCGCGqgg	Homology arm oligo
noto E1 3' arm B 48	cggcccCGCGAAGTGTGGCATCTGCGAGTAAATAAGCGGGAGCGCAGAGCTGGA	Homology arm oligo
noto E2 5' arm bait A		
24	aattcGACTGGAGAAAGAGTTCGCGCGGGCTGTCCAGACTGGAGAAAGAGTTCg	Homology arm oligo
noto E2 5' arm bait B		
24	gatecGAACTCTTTCTCCAGTCTGGACAGCCCGCGCGAACTCTTTCTCCAGTCg	Homology arm oligo
noto E2 5' arm		
UgRNA bait A 24	aattcGGGAGGCGTTCGGGCCACAGCGGGCTGTCCAGACTGGAGAAAGAGTTCg	
noto E2 5' arm		
tur E4 E' arm A 48	gatecGAACTCTTTTCTCCAGTCTGGACGCCCGCTGTGGCCCCGAACGCCCTCCCg	Hemelen, ermeline
tyr E4 5' arm B 48	ad tooso and a construction of the constructio	Homology arm oligo
tyr E4 3' arm A 48		Homology arm oligo
tyr F4 3' arm B 48		Homology arm oligo
, , , , , , , , , , , , , , , , , , , ,		
CX43.4 E2 5 arm A 24	GCGGcccAAATCTCCAACCACCCTCGtg	Homology arm oligo
cx43.4 E2.5' arm B.24		
CX45.4 E2 5 ann 6 24	ATCCcaCGAAGGTGGAGTGGTTGGAGATTTggg	Homology arm oligo
cx43.4 E2 3' arm A 24		
	AAGTGGGCAAGATATGGCTCACGTTATggg	Homology arm oligo
cx43.4 E2 3' arm B 24		
	LGGCCCATAALG IGAGLLATATLI IGLLLA	Homology arm oligo
cx43.4 E2 5' arm A 48	CCCCCCCTTTTTTACCCCCTTCTTCCATCAAATCTCCAACCACC	Homology arm oligo
	Geogettermentaesedenentosatoaaarereeaaeaeteeteae	Homology ann oligo
cx43.4 E2 5' arm B 48	ATCCCaCGAAGGTGGAGTGGGTGGAGATTTCATCCAACAACCGCGTAAGAAAACaga	Homology arm oligo
		nonoogy ann ongo
cx43.4 E2 3' arm A 48	AAGTGGGCAAGATATGGCTCACGTTATTCATCATCTTCCGCATTGTTTTGAaaa	Homology arm oligo
au 42 4 52 2' arm D 49		
CX43.4 EZ 3 arm B 48	CGGtttTCAAAACAATGCGGAAGATGATGAATAACGTGAGCCATATCTTGCCCA	Homology arm oligo
ecomo E2 5' arm A 24		
	AATTCGGGAGGCGTTCGGGCCACAGCGGCTCAAAATGTGGATGTGATCCAAGGGATTG	Homology arm oligo
esama E2 5' arm B 24		
	GATCCAATCCCTTGGATCACATCCACATTTTGAGCCGCTGTGGCCCGAACGCCTCCCG	Homology arm oligo
esama E2 3' arm A 24		
	CATGGAGATGGTGGTGCTGCAGGCTTCATAGACCGCTGTGGCCCGAACGCCTCCCC	Homology arm oligo
esama E2 3' arm B 24		Hemelen, ermeline
msng E2 5' arm A 48	GGGGTTheteropectalcasteropaeteropaeteropaeterocarchaeterof	Homology arm oligo
msna E2 5' arm B 48		Homology arm oligo
msna E2 3' arm A 48	AGcragramaragegaaraethattearcagetteteteterret/GCG	Homology arm oligo
msng F2 3' arm B 48	cpcGCapapeccacacaaaacteptcaaataactettccctptepterte	Homology arm oligo
msng E6 5' arm A 48		Homology arm oligo
msna E6 5' arm B 48		Homology arm oligo
mena E6 3' arm A 48		Homology arm oligo
mong E6 2' arm R 40		Homology arm oligo
		Homology and oligo
		Homology ann oligo
anxa2a E3 5' arm B		Homology arm oligo
anxa2a F3 3' arm A		
		Homology arm oligo
anxa2a E3 3' arm B	CGGCCCGATAGCGGTCTCAATCCTGGCAGCATCTTTGTCTGGATCAAAGTTGGC	Homology arm oligo Homology arm oligo
anxa2a E3 3' arm B flna E4 5' arm A	GCCCCGATAGCGGCTCCAAATCCCGGCAGCATCITTGTCTGGATCAAAGTTGGC GCCGGGGGATCCCGGTCCCAAATCCCGGCAGCATCITGTCTGGATCAAAGTTGGC	Homology arm oligo Homology arm oligo Homology arm oligo
anxa2a E3 3' arm B flna E4 5' arm A flna E4 5' arm B	CGCCCGATAGCGGCTCTCAATCCTGGCGCGCGCATCTTTGCTGGGATCAAGTTGGC GCGGGGGGTCCCAATCCTGGCAGCATCTTTGCTGGGATCAAGTTGGC GCGGGGGGTCCCAGTTTCCCAAAGCCAAACTCAAGCCTGGGGCCCCTCTG ATCCCAGAGGGGGCACCAGGCTTGAGTTTGGGCTTTGGGAAACTGGGACAGGTACCC	Homology arm oligo Homology arm oligo Homology arm oligo Homology arm oligo
anxa2a E3 3' arm B flna E4 5' arm A flna E4 5' arm B flna E4 3' arm A	AGGCCCGATAGCGGTCTCAAGTCGGCAGCATCTTGGTCGGATCAAGTGGC GCGCGGGTACCGGTCTCAGTTTCCCAAGGCCAAGTCGGCGGCGCCCTCTG ATCCCAGAGGGGCACCAGGCTTGGATTGGGCTAGCGGAAGGGTGCCCCTCG ATCCCAGAGGGGCACCAGGCTTCAAGAAGGCCCGGTGCTTATGGACAGCTGGCACAGGTACCC	Homology arm oligo Homology arm oligo Homology arm oligo Homology arm oligo Homology arm oligo
anxa2a E3 3' arm B fina E4 5' arm A fina E4 5' arm B fina E4 3' arm A fina E4 3' arm A fina E4 3' arm B	AGGECGATAGEGGETCCAAACCTGGCAGCATCITTGTCTGGATCAAAGTTGGC GCGCGGATAGCGGTCTCAATCCTGGCAGCATCITTGTCTGGATCAAAGTGGC GCGGGGGTACCTGTCCCAGGTTTCCCAAAGCCAAACTCAAGCCTGGTGCCCCTCTG ATCCCAGAGGGGCACCCAGGCTTGAGTTTGGCATTGGCAAACTGGGACCAGGTACCC AAGAGGCCCAAACTCAATCCCAAAAGGCCCGTGCTTATGGACCACCC CGGGGGTGGTCCATAAGCACGGGCCTTTTGGGATTGGGCCT	Homology arm oligo Homology arm oligo Homology arm oligo Homology arm oligo Homology arm oligo Homology arm oligo
anxa2a E3 3' arm B fina E4 5' arm A fina E4 5' arm A fina E4 3' arm A fina E4 3' arm B aqp1a1 E1 5' arm A	AGGCCGATAGCCGGGTCGTCATGAACCAGCGCGCGCCGCCGCGCGCG	Homology arm oligo Homology arm oligo Homology arm oligo Homology arm oligo Homology arm oligo Homology arm oligo Homology arm oligo
anxa2a E3 3' arm B fina E4 5' arm A fina E4 5' arm B fina E4 3' arm B fina E4 3' arm B aqp1a1 E1 5' arm B aqp1a1 E1 5' arm B	AGGCCCGATAGCGGTCTCAATCTGGCAGCATCTTGTGTGGATCAACTGGC GCGCGGGTAACCGGTCTCAAGTTGGCAGCATCTTTGTGTGGATCAACTGGC GCGGGGGTACCGGTCTCAAGTTGGCAGCATCTTGGCGGAACGGTGCCCCTCTG ATCCCAGAGGGGCACCAGGCTTGGGTTGGG	Homology arm oligo Homology arm oligo
anxa2a E3 3' arm B fina E4 5' arm A fina E4 5' arm A fina E4 3' arm A fina E4 3' arm B aqp1a1 E1 5' arm A aqp1a1 E1 5' arm A	AGGCCCGATAGCGGTCTCAATCCTGGCAGCATCTTTGTCTGGATCAAGTTGGC GCGCCGATAGCCGGTCTCAATCCTGGCAGCATCTTTGTCTGGATCAAAGTTGGC AGGCCCGATAGCCGGTCCCAAGTTTGGCTTGGC	Homology arm oligo Homology arm oligo
anxa2a E3 3' arm B fina E4 5' arm A fina E4 5' arm A fina E4 3' arm B aqp1a1 E1 5' arm A aqp1a1 E1 5' arm B aqp1a1 E1 3' arm B	AGGCUCGATAGCGGTCTCAAGTCGGCAGCATCTTTGTCTGGATCAAGTTGGC GCGCGGGTACTCGTCCAGTTTCCCCAGCAGCATCTTTGGTCGGATCAAGTTGGC GCGCGGGTACTCGTCCAGTTTCCCAAAGCCAAGCC	Homology arm oligo Homology arm oligo
anxa2a E3 3' arm B fina E4 5' arm A fina E4 5' arm A fina E4 3' arm A fina E4 3' arm A aqp1a1 E1 5' arm A aqp1a1 E1 3' arm B aqp1a1 E1 3' arm B aqp1a1 E1 3' arm B	AGGCCGAATAACGGCTGTGACTGACGGCGCGGCGCGCGCG	Homology arm oligo Homology arm oligo
anxa2a E33' arm B fina E45' arm A fina E45' arm A fina E43' arm A fina E43' arm A aqpia1 E15' arm A aqpia1 E13' arm B aqpia1 E13' arm B aqp8a1 E13' arm B	AGGCUGATAGCGGTCTCAGTTTGGCGCGCCGCCACACTGGCGCGCGC	Homology arm oligo Homology arm oligo
anx202 E 33 'arm B fine E 45' arm A fine E 45' arm A fine E 43' arm A fine E 43' arm B aqplo1 E 15' arm A	AGGCUCGATAGCGGTCTCAAGTCGGCAGCATCHTTGTCTGGATCAAGTGGC GCGCGGGTAACCTGTCCCAGTTTCCCAAAGCCAAGCTGGGACAAGTGGC ATCCAGAGGGGCACCAGCCTCAGTTTGGCAGCACTGTTATGGACAGCTGGCACGGTACCC AGGCGGGTGGTCATAAGCACCGGCCTTTTTGGGCTTATGGACACCC CGGGGGGTGGTCATAAGCACCGGCCTTTTTGGGCTGGCGGCGCC GCGGGGGGTGGTCATAAGCACCGGCGCTTTTTGGGCCGGCGCCC AGGCGGGGCGCCCCCAGAAAGCCTGCTCTGCT	Homology arm oligo Homology arm oligo
anx2a E 33 'arm B fina E 45' arm A fina E 45' arm A fina E 43' arm A fina E 43' arm A aqpia1 E 15' arm A aqpia1 E 13' arm A aqp8a1 E 13' arm A aqp8a1 E 13' arm B aqp8a1 E 13' arm B aqp8a1 E 13' arm B	AGGCUCGATAGCGGTCTCAAGTCGCGCGCGCGCGCGCGCGCGCGC	Homology arm oligo Homology arm oligo
anxo2o E 33 'arm B fino E 45 'arm A fino E 45 'arm A fino E 43 'arm B fino E 43 'arm B aqplo1 E 15 'arm B aqplo1 E 13 'arm B aqplo1 E 13 'arm B aqp8o1 E 15 'arm B aqp8o1 E 13 'arm B aqp8o1 E 13 'arm A	ANGEGUEGATAGEGGETCICAAGTCIGGEAGCACTCITTGETCIGGATCAAGEGGACAGGEAT GEGEGGGGTACCTGETCCAGTTTCCCAAGACCACAGCGATCATTGGCACAGGCACAGGTACCC AGAGGGCCCAAACTCAATCCGACTGGCTTTTGGCAACTGGGCACAGGTACCC AAGAGGCCCAAACTCAATCCAAAAAGGCCCGTGCTTATGGACACGGCACAGGTACCC CGGGGGGTGCTCCATAAGCACGGCCCTTTTGGGACAGGGACAGGTC CGGGGGGTGCTCCATAAGCACGGCCGTGCTTATGGACACGGCC CGGGGGGTGCTCCATAAGCACGGCCGTGCTTATGGACACGCC CGGGGGGTGCTCCATAAGCACGGCCGCTGCTTATGGACCGCC ACCCGGGGGGTCCATCAGTCAGCACGGCCGCC ACCCGGGGGCTCCATAGCAGCAGCAGGCCATTCCAGCAGGCACGGCCC CGGAAATAATGCTGAGGGACAGCGGCCGCTGTCCTGCGCCAGGGCGGCT CCGGAAATAGCGCGGCCGCCGAGCACGCACGACGGCCGCC CGGAAATAGCGCGGCTGGGAAAGCACGGCTGTTCCCAGCAGGGCGGCTG CGGAAATAGCGCGGCTGGGACAGCCACGACGGACGGCGGCGGCGCGCGC	Homology arm oligo Homology arm oligo
anx22 t 53 'arm B fine E45' arm A fine E45' arm A fine E45' arm B fine E43' arm B aqplo1 E15' arm B aqplo1 E13' arm A aqplo1 E13' arm B aqp801 E15' arm B aqp801 E15' arm B aqp801 E13' arm A hb E25' arm A hb E25' arm A	AGGCUCGATAGCGGTCTCAGTCGCGCGGCGGGTGGATGCTCGCGCGGCGGCGGCGGCGGGGGGGG	Homology arm oligo Homology arm oligo
anxa2a E33' arm B fina E45' arm A fina E45' arm A fina E43' arm A fina E43' arm B daplat E15' arm A daplat E13' arm B dap8a1 E13' arm A fina E42 S' arm A fb1 E2 S' arm A	ANGEGUEGATAGEGGETCTATACTGEGCAGCATCTTTGETCTGGATCAACTTGGC GCGGGGGTAACTCGTCCAGGTTCCCAGCTGCGTGCTGCGGGGACAGGTACCC ATCCCAGAGGGGCACCAGGCTTCGGCTGCGTGCTTATGGACACCCC AGCAGGGGGGTCATTAAGCAGGGGCTGTTTTGGGCAGGGCACGGTACCC GCGGGGGTCATTCAGCCGCAGCGGCGTTTTTGGGCAGGCGCGCC GCGGGGGGTCATTAAGCAGGGCCTTTTGGGCAGGCGGCGCC ATCCGGCGGGCCGCCCACAAACGAGCGCGCTGCTTCAGCGACGGCGCCC AGCTCGGCGGCCGCCCACAAACGGCGCTTGCTCTTCAGCTGATCGACGGCGCCCC AGCTCGGCGGCGCCCCCAGAAAGCGAAGGCAAGGC	Homology arm oligo Homology arm oligo
anxo2a E33 arm B fina E45' arm A fina E45' arm A fina E45' arm A fina E43' arm B aqpla1 E15' arm B aqpla1 E13' arm B aqpla1 E13' arm B aqpla2 E13' arm A aqp8a1 E13' arm A aqp8a1 E13' arm A aqp8a1 E13' arm B rb1 E25' arm B rb1 E23' arm B	AGGCUCGATAGCGGTCTCAATCTGGCAGCATCTTTGTCTGGATCAACAGTTGGC GCGCGGGTAACCTGTCCCAGTTTCCCAAAGCCAACTCAAGCCTGGTGCCCCTCTG ATCCAAGCGGGCACCAGCCTTGGACTTGGCTTGG	Homology arm oligo Homology arm oligo
anxo2a E33 arm B fina E45' arm A fina E45' arm A fina E45' arm B fina E43' arm B aqpia1 E15' arm B aqpia1 E13' arm A aqpia1 E13' arm B aqp8a1 E13' arm B aqp8a1 E13' arm B aqp8a1 E13' arm B aqp8a1 E13' arm B rb1 E2 5' arm B rb1 E2 3' arm A rb1 E2 3' arm A	ANGEGUEGATAGEGGETICIAGATCIGEGAGEGATCITTIGETIGEGATCAAGTIGEG GEGEGGGATAGECGETICICAGATTICCEGAGACTICTIGETIGEGATCAAGTIGEG GEGEGGGATAGECGACCAGEGETIGEGATGAGETIATGGGACAGETIATGGGACAGETACCC AGAGGGCCCAAACTCAATCCCAAAAAGGCCCGTGGTTATGGGACACCC GEGGGGGTGGTCATAAGCACGGGCCTTTTIGGGGTGAGAGEGACAGEGT GEGGGGGTGGTCATAAGCACGGGCCTTTTIGGGCGGGCGCC AAGTGCCCGCCAAAAAGCCTGCTTCAGCTGGTAGATGAGCGACGCG CCGGGGGGTCAGTCAGAAAGCCTGCTTCAGCTGGTCAGACGACGCGGCCCC AAGTGCCGCCGCCAAAAAGCCTGCTTCAGCTGGTCATGACTGAC	Homology arm oligo Homology arm oligo
anxo2o E33 arm B fino E45' arm A fino E45' arm A fino E43' arm B fino E43' arm B aqploI E13' arm B aqploI E13' arm A aqploI E13' arm A aqploI E13' arm A aqp8oI E13' arm A aqp8oI E13' arm A aqp8oI E13' arm A toI E2 5' arm A toI E2 3' arm B toI E2 3' arm B toI E2 3' arm B	ANGIGUESALA TAGGG TICIDADASANA TICIG CAGGATICITI GUIGGATCAAAGTIGGC GGGGGGGATACCTGTUCCAAGTICGGCAGCATUTTIGTUTGGATCAAGTIGGC GGGGGGGTCCTCAATAAGCAGGUCCGTGCTTATGGAAACGGGACAGGTACCC AAGAGGCCCAAACTCAATCCAAAAAGGCCGGTGCTTATGGAACGGGACAGGTACCC CGGGGGGTGCTCATAAGCACGGCCCTTITTGGGACAAGGGACAGGTC GCGGGGGTGCTCATAAGCACGGCCCTTITTGGGACAAGGGACAGGCCG CGGGGGGTGCTCATAAGCACGGCCCTTITTGGGACAGGGACAGGCCG ATCCGGGGGGTCATAGCAGCAGCAGCAGGGCCGTCTTATGGACCGC CGGGGGGTGCTCATAGCAGCGGCCGCTCATGACGACGGACTGGCCC AAGTCCTGGCGGAGGCGCTGGGAAAGGCCGGTCTTCATGACGGCGGCGCC CGGAAATAAGCTGGGGCAGGGCGGGGGGTCATTCCCAGCAGCTGGCGCGGCGGC GCGGAAATAGCGCGGCGGCGAGCACGGGCCGCCAAAGTGACGGACTGGGGCGGTG CGGAAATAGCTGAGGGGACGGCGGGCGGGGGGTGGTCCCGCGCGGGGGGGG	Homology arm oligo Homology arm oligo
anxo2a E33 'arm B fina E45' arm A fina E45' arm A fina E43' arm B dina E43' arm B aqpiat E13' arm B aqpiat E13' arm B aqp8a1 E13' arm B aqp8a1 E13' arm A aqp8a1 E13' arm A aqp8a1 E13' arm B tb1 E2 5' arm B tb1 E2 3' arm B tb1 E2 3' arm B tb1 E2 3' arm B tb1 E4 5' arm A	ANGEDENGEN THACGGETCLANTACTGEGAGACTUTTGETCGGATCANAGTEGGC GCGEGGGTACTCGGCTCCAGTTTCCCANAGCCAACTCANGCCTGGTGCCCCTCTG ATCCCAGAGGGGCTCCATATCCGGCAGCATCTTTGGTGGGATCAACTGGGACAGGTACCC AAGAGGCCCCAACTCAATCCCAAGAAGGCCTGGCTTATGGGACACGCC CGGGGGGTGGTCCATAAGCACGGGCCTTTTTGGGCGTGAGCCACCC CGGGGGGTGGTCCATAAGCACGGGCCTTTTTGGGCGTGGCGCTCC ATCCGGCGGGCTCGTCAGTAAGCACGGCCTTTTTGGGCGGCGCCC ATCCGGCGGGCTCGTGCATGACCGGCTGCTTGCTGCTGCAGCGGCGCCC ATCCGGCGGACTGCGGCGGGGGGGGGG	Homology arm oligo Homology arm oligo
anx2a E33 arm B fine E45' arm A fine E45' arm A fine E45' arm B fine E43' arm B aqpia1 E15' arm B aqpia1 E13' arm A aqpia1 E13' arm B aqp8a1 E13' arm B aqp8a1 E13' arm B aqp8a1 E13' arm B aqp8a1 E13' arm B rb1 E2 5' arm B rb1 E2 3' arm A rb1 E2 3' arm A rb1 E4 3' arm B rb1 E4 3' arm B	ANGEGUEGATAGEGGETCAGATACCEGEGAGEGEGATGEGEGATGEGEGEGAGEGAAGAGAATAGEGAGAATAGEGACCEGEGAGEGACAGGEGACAGGATAGEGACAGGACAG	Homology arm oligo Homology arm oligo
Anx202 E 33 'arm B fine E45' arm A fine E45' arm A fine E45' arm B fine E43' arm B aqplo1 E15' arm B aqplo1 E15' arm B aqplo1 E13' arm B aqp801 E13' arm B aqp801 E13' arm B aqp801 E13' arm B b1 E2 5' arm A b1 E2 5' arm B b1 E2 5' arm B b1 E4 5' arm B b1 E4 5' arm B b1 E4 5' arm B b1 E4 3' arm B b1 E4 3' arm B b1 E4 3' arm B	ANGEDENGEN THACEGETCALABURGHANDELE LEUROPENTIE SALABURGHANDELEURO GEGEGEGATAACEGETCAATACETGEGCAGCATETTIGTETGEGATCAAGETGEGCC GEGEGEGATCAETCAETTICCCAAAGECCAETGEGCAETGETGECCCCTCTG AAGAGEGCCAAACTCAATCCAAAAAGGCCGETGETTATGGAACAGEGGACAGGTACCC AAGAGEGCCAAACTCAATCCAAAAAGGCCGETGETTATGGAACAGCTG CGGEGGEGTGCTCATAAGCAECGGGCCTTITTGGGAACTGGACTGGCCC CGGEGGGGTGCTCATAAGCAECGGGCCTTITTGGGAACTGAGCTGACTGGACCGC ACCCGGGGGCTGCATCAACCAGCTGAACAGGCCAGGC	Homology arm oligo Homology arm oligo
anxo2a E33 arm B fina E45' arm A fina E45' arm A fina E43' arm B dipa E43' arm B aqpia1 E13' arm B aqpia1 E13' arm B aqp8a1 E15' arm A aqp8a1 E15' arm A aqp8a1 E13' arm B tb1 E25' arm B tb1 E2 3' arm B tb1 E2 3' arm B tb1 E4 3' arm B tb1 E4 3' arm A tb1 E4 3' arm B tb1 E4 3' arm B	ANGEGUEGATAGEGGTETGAATGETGETGETGETGETGETGETGETGEGATGAAGATGEGGEGGEGGEGGEGGEGGEGGEGGEGGEGGEGGEGGEG	Homology arm oligo Homology arm oligo
anxo2o E33 arm B fino E45' arm A fino E45' arm A fino E43' arm A fino E43' arm B aqploI E15' arm A aqploI E13' arm A aqploI E13' arm A aqp8oI E13' arm A aqp8oI E13' arm A aqp8oI E13' arm A b1 E2 5' arm A b1 E2 5' arm A b1 E4 5' arm B b1 E4 3' arm B b1 E5 5' arm A b1 E25 5' arm A b1 E25 5' arm A b1 E155 5' arm A	ANGEDENGEN TRADEGETICICALGUESTICAL CONCENTER OF A CONCENT	Homology arm oligo Homology arm oligo
Anx202 E 33 'arm B fine E45' arm A fine E45' arm A fine E45' arm B fine E43' arm B aqplo1 E15' arm B aqplo1 E15' arm B aqplo1 E13' arm B aqp801 E13' arm B aqp801 E13' arm B aqp801 E13' arm B b1E 25' arm B b1E 25' arm B b1E 25' arm B b1E 45' arm A b1E 45' arm A	ANDELDAGEN TRACEGETICALATICTGECAGCALTITTGETIGGATCAACATEGEC GCGEGGGTACTCAGTTTCCCAAAGCCAACTCAAGCCTGGTGCCCCTCTG ATCCAAGAGGGCCAACGCCTGGACTTGGGTTGGCCTTGGGACAGGTGCCCCTCTG AGAGGGCCCAAACTCAATCCAAAAAGGCCGGTGCTTATGGACAGCGGCCGCC CGGGGGGTGCTCATAAGCACGGGCCTTTTTGGGAATGAGTTGGGCCT GCGGGGGTGGTCCATAAGCACGGGCCTTTTTGGGACAGCGTTTCGGCCGGC	Homology arm oligo Homology arm oligo
anx22a E33 'arm B fine E45' arm A fine E45' arm A fine E43' arm B daplot E15' arm B daplot E15' arm B daplot E15' arm B daplot E15' arm B daplot E13' arm B daplot E13' arm B daplot E13' arm A daplot E13' arm B fb1 E2 5' arm B fb1 E2 3' arm B fb1 E4 2' arm B fb1 E4 3' arm B fb1 E55' arm B fb1 E55' arm A	ANGEDENGEN TRADEGGETCLANATICEGGENGENETURGUEGUEGUEGUEGUEGUEGUEGUEGUEGUEGUEGUEGUEG	Homology arm oligo Homology arm oligo
anxo2o E33 arm B fino E45' arm A fino E45' arm A fino E43' arm B fino E43' arm B aqploI E15' arm A aqploI E13' arm A aqploI E13' arm A aqp8oI E13' arm A aqp8oI E13' arm A aqp8oI E13' arm A hDI E25' arm A hDI E25' arm A hDI E45' arm B hDI E45' arm B hDI E45' arm B hDI E45' arm B hDI E43' arm B hDI E43' arm B hDI E43' arm B hDI E43' arm B hDI E45' arm A hDI E45' arm	ANDEDUCATING CONTRACTOR CONTRACTO	Homology arm oligo Homology arm oligo
anxo2o E33 arm B fine E45' arm A fine E45' arm A fine E45' arm A fine E43' arm B aqplo1 E15' arm B aqplo1 E15' arm B aqplo1 E13' arm B aqplo2 E13' arm B aqplo2 E13' arm B aqplo2 E13' arm B aqplo2 E13' arm B bdp801 E13' arm B b1E2 5' arm A b1E2 5' arm A b1E2 5' arm B b1E4 5' arm A b1E4 5' arm A b1E4 5' arm A b1E4 5' arm A b1E55 3' arm B b1E55 3' arm B b1E35' arm A b1E35' arm B b1E35' arm A b1E35' a	ANDELDAGEN TRACEGETICADALCTIGGCAGCALCTITTGTCTGGATCAACHTTGGC GCGGGGGTAACTCAGCCGGCAGCACACTCTTGTGTCTGGATCAACHTTGGC GCGGGGGTACTCAGCCGGCACGGCACTCTTGTGGCAACGGTGCCCCTCTG AAGAGGCCCAAACTCAATCCAAAAAGGCCGGTGCTTATGGAACAGCCC CGGGGGGTGCTCATAAGCACGGGCCTTTTTGGGAATGACTGGCCC CGGGGGGTGCTCATAAGCACGGGCCTTTTTGGGAATGACGGGCCGCC CGGGGGGTGCTCATAAGCACGGGCCTTTTTGGGACATGACTGAC	Homology arm oligo Homology arm oligo
anxo2a E33 arm B fina E45' arm A fina E45' arm A fina E45' arm A fina E43' arm B aqpial E15' arm B aqpial E15' arm B aqpial E15' arm B aqp8a1 E15' arm A aqp8a1 E15' arm A aqp8a1 E13' arm A thi E25' arm B thi E25' arm B thi E23' arm B thi E43' arm B thi E45' arm A thi E43' arm B thi E45' arm A thi E43' arm B thi E45' arm A thi E55' arm B thi E45' arm A thi E55' arm B thi E55' arm B thi E55' arm B thi E55' arm A thi E55' arm B thi E55' arm A thi E35' arm A thi E30' arm A thi E30' arm A	ANDEDUCATINGCGUTCLAATACCGCACGACLTTTGUTCGGATCAAAGTGGC GCGGGGGTAATCCGCCAGTTTCCCAAAGCCAAACTCAAGCCGGTGCCCCTCTG ATCCCAGAGGGGCTCCAATACCCAGCGCGCGTGCTTTTGGGCGGTGCCCCTCTG ATCCCAGAGGGGCCCAACTCAATCCCAAGCCGGCTGTTTTGGGCGGGGCCCCC CGGGGGGTGGTCCATAAGCACGGGCGTTTTTGGGCGGGGTGCCGTTTTGGGCGGCGCCC CGGGGGGTGGTCCATAAGCACGGGCGGTTGCTGTCATGACTGAC	Homology arm oligo Homology arm oligo
anxo2o E33 arm B fino E45' arm A fino E45' arm A fino E43' arm B fino E43' arm B aqplo1 E13' arm B aqplo1 E13' arm A aqplo1 E13' arm A aqplo1 E13' arm B aqplo1 E13' arm B aqplo1 E13' arm B aqplo1 E13' arm B to E25' arm A to I E43' arm B to I E43' arm B to I E43' arm B to I E43' arm B to I E25' arm A to I E35' arm A to I E25' arm A to I E35' arm A	ANDEDUSED TO ALL ACCOUNTS OF A CONTROL OF A	Homology arm oligo Homology arm oligo
anx22c E33 arm B fine E45' arm A fine E45' arm A fine E45' arm A fine E43' arm A applo1 E15' arm B aqplo1 E15' arm B aqplo1 E15' arm B aqplo2 E15' arm B aqplo2 E15' arm B aqplo2 E15' arm B aqplo2 E13' arm B b122 5' arm B b1 E2 5' arm B b1 E4 5' arm A b1 E	ANDELDAGEN TRACEGETICIAALCIGEAGAALCITTEGUEGEGAATAAACTAAGCUEGE GCGEGGGTAACCTGTUCCAATACCIGGCAGCALCITTEGUEGGAACGACACCUCG GCGEGGGTACCTGTUCCAATAGCCAGCAGCAGAACTCAAGCCUCGGCACGGCA	Homology arm oligo Homology arm oligo
anxo2a E33 arm B fina E45' arm A fina E45' arm A fina E45' arm A fina E43' arm B aqpia1 E15' arm B aqpia1 E15' arm B aqpia1 E15' arm B aqp8a1 E15' arm A aqp8a1 E15' arm A aqp8a1 E13' arm A thi E25' arm A thi E25' arm B thi E45' arm B	ANDEDUCED TO ADDRESS OF ADDRESS O	Homology arm oligo Homology arm oligo
anxo2o E33 arm B fino E45' arm A fino E45' arm A fino E43' arm A fino E43' arm B aqplo1 E13' arm B topBo1 E13' arm B topBo1 E13' arm B topBo1 E13' arm B topE 25' arm A tofI E2 S' arm A tofI E2 S' arm B tofI E4 S' arm B tofI E4 S' arm B tofI E43' arm B tofI E43' arm B tofI E43' arm B tofI E43' arm B tofI E55' arm A tofI E55' arm A tofI E55' arm A tofI E55' arm B tofI E55' arm B	ANDEDUSED TO SUBJOACHINE TO SUBJOACH	Homology arm oligo Homology arm oligo
anxo2a E33 arm B fina E45' arm A fina E45' arm A fina E43' arm A fina E43' arm B aqpla1 E15' arm B aqpla1 E13' arm B aqpla2 E13' arm B aqp821 E13' arm B aqp821 E13' arm B aqp821 E13' arm B to E25' arm B to E25' arm B to E25' arm B to E25' arm B to E43' arm B to E43' arm B to E43' arm B to E43' arm B to E45' arm A to E45' arm A to E45' arm A to E55' arm B to E55' arm A to E55' arm A t	ANDEDUSEL ITUSIANSUMATICE SUCCESSION IN SURVEY SUBJECT	Homology arm oligo Homology arm oligo
anxo2o E33 arm B fino E45' arm A fino E45' arm A fino E43' arm A fino E43' arm B aqploI E13' arm B aqploI E13' arm B aqploI E13' arm B aqp8oI E13' arm B aqp8oI E13' arm A aqp8oI E13' arm A aqp8oI E13' arm A to I E2 S' arm A to I E2 S' arm A to I E2 S' arm B to I E4 3' arm B to I E5 5' arm A to I E2 S' arm A to I E2 S' arm B to I E3 S' arm B to I E3 S' arm B to I E2 S' arm B to I E3 S' arm B to I E2 S' arm A to I E2 S' arm B to I E2 S	ANDEDUSED TO SUBJOACHINE TO SUBJOACH	Homology arm oligo Homology arm oligo
anx22c E3 3' arm B fine E4 5' arm A fine E4 5' arm A fine E4 5' arm A fine E4 3' arm B aqplo1 E15' arm B aqplo1 E15' arm B aqplo1 E13' arm B topBo1 E13' arm B topBo1 E13' arm B topBo1 E13' arm B topBo1 E13' arm B top1 E2 5' arm B top1 E2 5' arm B top1 E4 4'' arm B top1 E4 5' arm B top1 E4 4'' arm B top1 E4 4'' arm B top1 E4 4'' arm B top1 E2 5' arm B kdrl E3 3' arm A kdrl E3 3' arm A kdrl E3 3' arm A slpr1 E2 5' arm B slpr1 E2 3' arm B slpr1 E2 3' arm B slpr1 E2 3' arm B kdrl E3 3' arm B kdrl E3 3' arm A	ANDEDUSET ITUS ANDERGAR ANDER STUDIES ANDERGAR ANDERGE STUDIES AND	Homology arm oligo Homology arm oligo
anxo2a E33 arm B fina E45' arm A fina E45' arm A fina E45' arm B fina E43' arm B aqpla1 E15' arm B aqpla1 E15' arm B aqpla1 E13' arm B aqpla2 E13' arm A aqpla2 E13' arm A aqpla2 E13' arm A aqpla2 E13' arm B tb1 E25' arm A tb1 E25' arm A tb1 E25' arm A tb1 E43' arm B tb1 E45' arm A tb1	ANDEDUCUTION DEVICES AND	Homology arm oligo Homology arm oligo
anxo2o E33 arm B fino E45' arm A fino E45' arm A fino E43' arm B fino E43' arm B aqploI E15' arm A aqploI E13' arm A aqploI E13' arm A aqploI E13' arm A aqp8oI E13' arm A aqp8oI E13' arm A aqp8oI E13' arm A hb E2 S' arm A hb E2 S' arm A hb E2 S' arm A hb E4 S' arm A hb E5 S' arm A hb E5 S' arm A hb E2 S' arm B kdri E30 3' arm A kdri E30 3' arm A slpri E2 S' arm B slpri E2 S' arm B slpri E2 S' arm B slpri E2 S' arm A slpri E2 S' arm B slpri E2 S' arm B slpri E2 S' arm B slpri E2 S' arm B slpri E3 ' arm B slpri	ANDEDUSED TO SUBJOACHINE TO SUBJOACH	Homology arm oligo Homology arm oligo
anx226 123 'arm B fine 145 'arm A fine 145 'arm A fine 145 'arm A fine 145 'arm B aqplo1 E15 'arm B aqplo1 E15 'arm B aqplo1 E15 'arm B aqplo1 E15 'arm B aqplo1 E13 'arm B aqplo1 E13 'arm B aqplo1 E13 'arm B aqplo1 E13 'arm B to 125 'arm B to 125 'arm A to 125 'arm A to 125 'arm B to 125 'arm B slpr 15 'arm A slpr 15 'arm A arm A slpr 15 'arm A arm A slpr 15 'arm A arm A a	ANDEDUSED TO SUBJOACHINE TO SUBJOACHINE TO SUBJOACHINE TO SUBJOACHINE SUBJOACH	Homology arm oligo Homology arm oligo
anx22e 123 'arm B fine 145 'arm A fine 145 'arm A fine 145 'arm A fine 143 'arm B aqp121 E15 'arm B aqp121 E15 'arm B aqp221 E15 'arm B aqp221 E15 'arm B aqp221 E13 'arm B aqp221 E13 'arm B aqp221 E13 'arm B t21 E25 'arm B t21 E2 'arm A t21 E2 'arm A t22 E3 'arm A t21 E2 S' arm A t22 S' arm A t2	ANDEDUSELITUS ALGORDANDAS CONTROL SUBJECTS ALGORDANDAS	Homology arm oligo Homology arm oligo
anxo2o E33' arm B fino E45' arm A fino E45' arm A fino E43' arm B fino E43' arm B aqplo1 E13' arm B to 25' arm A to 1 E2 5' arm A to 1 E2 5' arm A to 1 E2 5' arm B to 1 E4 5' arm B to 1 E55' arm A to 1 E25' arm B to 1 E25' arm B kdrl E33' arm A kdrl E33' arm A kdrl E35' arm B kdrl E35' arm B slpr1 E25' arm B slpr1 E25' arm B slpr1 E23' arm B vegfoor E35' arm A vegfoor E35' arm A vegfoor E3' arm A mmp14o E15' arm B mmp14o E15' arm B	ANDEDUSET ITUS ALGORDANDAS CONTROL SUBJECT SUB	Homology arm oligo Homology arm oligo
anxo2o E33 arm B fino E45' arm A fino E45' arm A fino E45' arm A fino E43' arm B aqplo1 E15' arm B aqplo1 E15' arm B aqplo1 E13' arm B aqplo2 E13' arm B aqplo2 E13' arm B aqplo2 E13' arm B aqplo2 E13' arm B to E25' arm B to E45' arm A to E45' arm A to E45' arm A to E45' arm A to E45' arm B to E25' arm B slpr1 E25' arm B slpr1 E25' arm B slpr1 E23' arm A wegfor E35' arm A wegfor E35' arm A mmp140 E15' arm A mmp140 E10' arm B mmp140 E10' arm B	ANDEDUSED TO SUBJOACHINE TO SUBJOACHINE TO SUBJOACHINE TO SUBJOACHINE SUBJOACH	Homology arm oligo Homology arm oligo
anxo2o E33 arm B fino E45' arm A fino E45' arm B fino E43' arm B fino E43' arm B aqploI E15' arm B aqploI E15' arm B aqploI E13' arm B aqp8oI E13' arm B aqp8oI E13' arm B aqp8oI E13' arm B aqp8oI E13' arm A to E25' arm A to E25' arm A to E25' arm A to E25' arm B to E43' arm B to E45' arm B to E55' arm A to E25' arm A to E25' arm B to E43' arm B to E45' arm B to E55' arm A to E25' arm A to E25' arm A to E25' arm B to E25' arm B to E25' arm A to E25' arm A to E25' arm A to E25' arm B to E25' arm B to E25' arm A to E25' arm B to E25' arm A to E25' arm B to E25' arm	ANDEDUSET HOLENAL DEVALUATION COLOR OF CONTROL OF CONTR	Homology arm oligo Homology arm oligo
anx22c E3 3' arm B fine E4 5' arm A fine E4 5' arm A fine E4 3' arm B fine E4 3' arm B aqplat E15' arm A aqplat E13' arm B aqplat E13' arm B the E2 5' arm A the E2 5' arm A the E2 5' arm A the E2 5' arm A the E2 3' arm A the E2 3' arm A the E2 3' arm B the E4 5' arm B the E5 5' arm B the E2 5' arm B start	ANDEDUSET ITUS ALGORDANDAS CONTROL SUBJECT SUB	Homology arm oligo Homology arm oligo

Gene Targeting Protocol for Integrations with pGTag Vectors using CRISPR/Cas9

Targeting strategy (Figure 1):

- A. Selection of a CRISPR/spCas9 target site downstream of the first AUG in the gene of interest
- B. Synthesize sgRNA and spCas9 mRNA
- C. Injection of sgRNA and spCas9 mRNA
- D. Testing for indel production/mutagenesis
- E. Design short homology arms
- F. One Pot Cloning of Homology Arms into pGTag Vectors
- G. Injection of GeneWeld reagents (spCas9 mRNA, Universal sgRNA (UgRNA), genomic sgRNA and pGTag homology vector) into 1-cell zebrafish embryos
- H. Examine embryos for fluorescence and junction fragments

Figure 1. Targeting integration of the pGTag vectors into the 5' region of a gene. Upon CRISPR/Cas9 targeting and cutting of both the genome (with a sgRNA) and plasmid donor (with UgRNA), the genomic and plasmid DNA likely undergo end resection mediated by the MRN complex and *Exol*, resulting in annealing of complementary homology arms. This promotes precise homology-directed integration of cargo DNA at the CRISPR/Cas9 double-strand break.

A. Selection of a CRISPR/spCas9 target site downstream of the first AUG in the gene of interest

- 1. To select a CRISPR/Cas9 target site in a 5' exon, find and download the targeted gene's genomic and coding sequences.
 - a. At <ensemble.org> Search for the gene name of interest for the species of interest and open the Transcript page.
 - b. In the left-hand side bar click on "Exons" to find the first coding exon and initiation ATG. If there are alternative transcripts for the gene, make sure there are not alternative initiation ATGs. If there are alternative start codons, target the first 5' exon that is conserved in all transcripts to generate a strong allele.
 - c. Download the transcript and 5' exon to be targeted as separate sequence files.
 - d. Using ApE: <<u>http://biologylabs.utah.edu/jorgensen/wayned/ape/></u> annotate the coding sequence with the exons.
- Use CRISPRScan (<u>http://www.crisprscan.org/</u>) (Moreno-Mateos et al., 2015) to efficiently identify target sites and generate oligos for sgRNA synthesis for the target gene.
 - a. Select the "Predict gRNAs" on the lower right-hand side of the home page of the CRISPRScan website.
 - b. Paste the 5' exon sequence into the indicated box. If the exon is very large, start with a small amount of sequence. Ideally exon sequence of ~200 bp near the desired target site. Do <u>not</u> design CRISPRs to intron/exon borders. If there are problems with the copy and pasting of exon sequence, first paste the sequence into a new ape file, save, then copy and paste from the new file.
 - c. Select "Zebrafish (Danio rerio)" as the species
 - d. Select "Cas9 nGG" as the enzyme.
 - e. Select "In vitro T7 promoter".
 - f. Click on "Get sgRNAs." Examine the output. The generated targets are ranked by CRISPRScan from high to low. Select a target site (the 20 bp that are capitalized in the oligo column) from those given by CRISPRScan using the following criteria (The best gRNAs will have all of these):
 - i. An exact match to the genomic locus., When an oligo is clicked on the page will display additional information to the right. In the section called "Site Type" any mismatches in the oligo are displayed. Exact matches including 5'GG- are ideal for in vitro transcription and 100% genomic target match.
 - ii. The target is in the desired location of the gene.
 - iii. The Target is on the reverse (template) strand. Reverse strand guides are more favorable, but either will work
 - iv. A high CRISPRScan score, and a lower CFD score. However, lower score sgRNA targets may work fine.
 - g. Annotate the selected target sequence in the transcript sequence files.
 - h. For sgRNA synthesis the entire oligo sequence from CRISPRscan containing the selected target will need to be synthesized. This oligo is represented as "Oligo A" in Figure 2.

One-cell Stage Embryo

Figure 2. Cloning-free gRNA synthesis. Oligo A is composed of the T7 promoter at the 5' end, target sequence for gRNA, and gRNA overlap sequence for gRNA synthesis. CRISPRScan provides direct output for Oligo A. The strategy for gRNA production using Oligo A is based on (Varshney et al., 2015).

3. Alternative to CRISPRScan: Designing "CRISPR Oligo A" from a genomic target sequence. Skip this section if Oligo A was designed with CRISPRScan.

If the target sequence was identified using tools other than CRISPRScan, Oligo A can be designed manually. (Note: CRISPRScan will use a shorter overlap region but this does not affect template production). Add T7 and Overlap sequences (see Figure 2) to the 20 bp of target sequence without the PAM. Oligo A for the targeted gene will look like the example below:

The sequences in blue (first 17 characters) are the T7 promoter, the grey GG are part of the T7 promoter and ideally are part of the target sequence (see below), the Ns are the target

sequence, and the sequence in green (last 20 characters) are the overlap region to synthesize the non-variable part of the sgRNA. The T7 promoter works optimally with the two grey GGs, however, these GGs will be transcribed by T7 and thus become a part of the sgRNA. Target sequences that contain the GGs may work better, but there are differing reports in the literature on the importance of this (Moreno-Mateos et al., 2015). If possible, select a target that starts with GG. Refer to Moreno-Mateos et al., 2015 for other gRNA architectures with variations on the 5'GG motif.

a. If the target sequence did not have two Gs at the beginning, additional G's will need to be added to the start of the target sequence for efficient transcription as outlined below:

*The lower case 'g' is an extra 'G' not in the genomic sequence; the upper-case G *is* in the genomic. Lower case gs will not base pair with the genomic target.

- i. without GG: ggN NNN NNN NNN NNN NNN NNN N(22 bp) 2 bases are added,
- ii. with one G: gGN NNN NNN NNN NNN NNN (21 bp) one base is added, G is part of the target sequence.
- iii. with two G: GGN NNN NNN NNN NNN NNN (20 bp) no bases are added, GG is part of the target sequence.

Oligo A is made by taking this target sequence with 5'GG and pasting it into a clean file.

- b. Copy and paste the T7 promoter sequence to the 5' end of the target sequence: TAATACGACTCACTATA
- c. Copy and paste the Overlap sequence to the 3' end of the target sequence: GTTTTAGAGCTAGAAATAGC
- d. Check the sequences to ensure they are correct and that the PAM is <u>NOT</u> present in this oligo.
- 4. Oligo B design (Figure 2) contains the conserved guide RNA sequence: All Oligo Bs will be the same and can be ordered in large quantities.

5'-GATCCGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTT AACTTGCTATTTCTAGCTCTAAAAC-3'

- To increase yield of the sgRNA synthesis the primers "T7 primer" (5'-TAATACGACTCACTATA-3') and "3'gRNA primer" (5'- GATCCGCACCGACTCGGTG-3') are also required.
- For checking for mutagenesis at the target site, design ~20 bp DNA primers for PCR amplification to amplify at least 130 bp of DNA surrounding the target site. Mutagenesis is estimated through comparison of PCR products from injected and uninjected embryos, by visualizing small insertions and/or deletions (Indels) using electrophoresis, or by sequencing.
 - a. Primer 3 is used for primer design: http://biotools.umassmed.edu/bioapps/primer3_www.cgi
 - b. Paste DNA sequence surrounding the target site into the web interface. It is recommended to use 160 300 bp of exon sequence centered on the cut site for

primer design. Intron sequence can be used, but this often contains polymorphisms that can lead to amplification failure.

c. Locate the target sequence, including the PAM sequence (*italicied* below), and predict the cut site (3 bp into the target sequence from the PAM represented here by the 'x'). Mark the targeted exon sequence approximately 65-150 bp on both sides of the cut site by putting [square brackets] around it. Primer3 will design primers outside this sequence. This design allows the primers to be used for both checking of mutagenesis and for junction fragment analysis when checking for integration.

Example:

CGGCCTCGGGATCCACCGGCC<mark>I</mark>AGAATCGATATACTACGATGAACAGAGCAAATTT GTGTGTAATAC<u>GGTCGCCACCATGGCCT×CCTCGG</u>TTTGCTACGATGCATTTGCAC CACTCTCTCATGTCCGGTTCTGGG<mark>I</mark>AGGACGTCATCAAGGAGTTCATGCGCTTCAA GGTGCGCATGGAGGGCTCCGTGAAC

- d. Set the "Primer Size" variables to Min = 130, Opt = 170, and Max = 300. Everything else can be left at the defaults.
- e. Click on "Pick Primers"
- f. Select primers from the output. Note the "product size" expected and the "tm" or melting temperature of each primer/pair. Smaller product sizes are easier to visualize mutagenesis.

B. Synthesize the sgRNA

General guidelines and good laboratory practices for working with DNA and RNA. DNA, RNA and the enzymes are sensitive to contamination from dust and skin. Following these guidelines will prevent the degradation of the DNA and RNA you are trying to make:

- Be clean. Clean the workbench, pipetmen, racks, and centrifuges with RNase Away or something equivalent.
- Wear gloves and change when contaminated. Contamination will occur when gloves contact hair, face, skin, or the floor.
- Keep everything on ice unless the protocol indicates otherwise.
- Centrifuge components to the bottom of the tube before use, after mixing, after use, and after incubation steps.
- Do not vortex enzymes. Gently flick the tube or pipet up and down to mix samples.
- Avoid touching the walls of the tube when pipetting.
- Use a new pipette tip for each new dip.
- Dispense solutions from a pipet to the bottom of the tube, or into the liquid at the bottom of the tube when setting up reactions.
- Only remove 1.5 ml centrifuge tube and PCR tubes from their package while wearing gloves. Reseal the tube package after tubes are removed.

Assembly of CRISPR Oligos A + B into a Transcription Template

1. For synthesis of the gRNA from Oligo A and B, make a 100 μ M freezer stock and 1 μ M working stock for each oligo. All oligos are described in Section A starting on page 7.

- 2. Centrifuge ordered oligos briefly <u>before</u> opening, to move all dried DNA flakes to the bottom of the tube.
- Add a volume (x μL) of RNase-free water to make a 100 μM stock. The tubes should be labeled with the gene name as well as the number of nmol in the tube. The amount of water to be added will need to calculated based on the nanomoles of material contained within.
- 4. Vortex for 30 seconds.
- 5. Centrifuge briefly.
- Make a 100-fold dilution of each 100 μM stock Oligo A and B in separate 1.5 ml tubes.
 a. Label one 1.5 mL centrifuge tube per Oligo A with name of oligo, date, and "1 μM" to indicate working stocks.

1 μ L of 100 μ M Oligo A stock or Oligo B <u>99 μ L</u> of RNF-water 100 μ L total

- b. Vortex.
- c. Briefly centrifuge.
- d. Store all stocks in freezer at -20 °C for long-term storage.
- Set up the following reaction in PCR tubes. The next two steps will generate a short segment of DNA (gDNA or guideDNA Template) which will be used as a template for synthesis of RNA:

12.5 μL 2X KOD Master Mix 1 μL Oligo A (1 μM) 1 μL Oligo B (1 μM) 1 uL T7 primer (10 μM) 1 uL gRNA 3' primer (10 μM) <u>8.5 μL</u> RNF-water 25 μL total

8. Run PCR under the following conditions:

Denature at 98°C for 2 minutes Denature at 98 °C for 30 sec. Anneal at 50 °C 30 sec. Extend at 70 °C 30 sec. Go to (step 2) nine times. Extend at 70 °C 2 min Hold 4 °C forever.

- 9. Run 1.2% agarose gel in 1X TAE to check that the template was synthesized:
 - a. Remove 3 µL of the reaction and place in a 1.5 ml tube.
 - b. Mix in 1 μ L of 6x loading buffer.
 - c. Load all 4 µL of the sample on the gel. Run the gel at 125 V for 30 minutes. Be sure

to load a molecular weight marker.

- d. Check on the transilluminator and image the gel.
- e. A single 120 bp band should be detected when 3 µL is loaded on gel.

In vitro transcription (IVT) using the gRNA template

- 1. Use the Ambion T7 Megascript Kit for transcription reagents, but follow the instructions below.
- 2. Thaw the T7 10X Reaction Buffer and RNF-water at room temperature, and thaw the ribonucleotides solutions on ice.
- 3. Vortex the T7 10X Reaction Buffer to make sure all DTT is solubilized. No white flecks should be visible.
- 4. Microcentrifuge all reagents briefly before opening to prevent loss of reagents and/or contamination by materials that may be present around the rim of the tube(s).
- 5. Keep the T7 Enzyme Mix on ice or in a -20 °C block during assembly of the reaction.
- 6. Make a master mix for each reaction. Assemble the reaction at room temperature on the bench. Add reagents from largest to smallest volume, adding the 10X Reaction Buffer second to last and the T7 Enzyme Mix last.

Note: Components in the transcription buffer can lead to precipitation of the template DNA if the reaction is assembled on ice. If the reaction precipitates, the synthesis reaction will not fully occur.

7. Reagent list:

10 μL of RNF-water
5 μL of gDNA template (100 to 500 ng total)
4 μL of NTP (1 μl of each; A, U, C, G)
1 μL of 10x transcription buffer – must be fully resuspended at room temp
1 μL of T7 polymerase enzyme mix

- Incubate at 37 °C for 4 to 16 hours. Longer incubations result in considerably better yields.
- 9. Add 1 μ L of Turbo DNAse and incubate for 15 min at 37 °C. This will digest the template DNA in the sample.
- 10. Optional quality control step: Run 2 µL of sample on a 1.2% gel in 1X TAE.
 - a. Clean the gel box, comb and tray with RNase Away, rinse with DI water.
 - b. Remove 2 µl of sample into a clean 1.5 ml (Keep RNA on ice!)
 - c. Add 3 μ L of RNF-water and 5 uL of Ambion RNA loading buffer with formamide.
 - d. Vortex briefly.
 - e. Spin down samples briefly.
 - f. Run all of this mixture on a 1.2% agarose gel/1X TAE, at 100 V for 1 hour.

g. Image gel. 2 bands should be visible at ~100 and 120 bp.

Purification of guide RNA

- 1. Use the miRNeasy Qiagen kit for purification of gRNAs according to the manufacturer's instructions.
- 2. After Purification verify presence of RNA by running a 1.2% gel in 1X TAE.
- 3. Clean the gel box, comb and tray with RNase Away, rinse with DI water. Run on a 1.5% agarose gel/1X TAE, at 100 V for 1 hour as above.
- 4. Image gel. 2 bands should be visible at ~100 and 120 bp.
- 5. Nanodrop the RNA sample to determine the concentration.
- 6. Store RNA at -20 °C.

Preparation of SpCas9 mRNA

- 1. Digest ~5-10 μg pT3TS-nCas9n plasmid with Xba1 (plasmid Addgene #46757 (Jao et al., 2013)).
- 2. Purify digested DNA with Qiagen PCR cleanup kit or Promega PureYield Plasmid Miniprep System. Elute in RNF-water.
- 3. Run 100-500 ng on 1.2% agarose gel in 1X TAE to confirm the plasmid is linearized.
- 4. Use 100 ng to 1 μ g DNA as template for in vitro transcription reaction.
- 5. Use mMESSAGE mMACHINE T3 kit Life Technologies (AM1348) and follow the instructions in the manual.
- 6. Use the miRNeasy Qiagen kit for purification of nCas9n mRNA according to the manufacturer's instructions.
- 7. Verify mRNA integrity by mixing 1 uL of purified Cas9, 4 μ L of RNF water, 5 μ L glyoxl dye (Ambion).
- 8. Heat mixture at 50 °C for 30 minutes, then place on ice.
- 9. Clean the gel box, comb and tray with RNase Away, rinse with DI water.
- 10. Run all 10 μ L of RNA mixture on 1.2% agarose gel in 1X TAE at 100 V for 1 hour as above. One band should be visible at 4.5 kb.
- 11. Nanodrop the RNA sample to determine the concentration. Concentrations between 0.45 and 1 μ g/ μ L are expected.
- 12. Aliquot and store RNA at -80 °C.

C. Injection of sgRNA and spCas9 mRNA

The injections here are designed to deliver 25 pg of gRNA and 300 pg of Cas9 mRNA in 2 nL of

fluid to embryos at one-cell stage.

Injection trays are cast with 1.2% agarose with 1X embryo media (Zebrafish Book; zfin.org) in polystyrene petri dishes (Fisher No. FB0875713). Injection trays can be used multiple times and stored at 4*C for up to three weeks between use.

- 1. Trays are pre-warmed to 28.5 °C prior to injection by placing them in the 28.5 °C incubator. Try to mitigate tray cooling while not in use.
- 2. Glass needles are pulled from Kwik-Fil borosilicate glass capillaries (No. 1B100-4) on a Flaming/Brown Micropipette puller (Model P-97).

Injection samples are made to contain the following diluted in RNF water or injection buffer (final concentration: 12.5 mM HEPES pH 7.5, 25 mM Potassium Acetate, 37.5 mM Potassium Chloride, 0.0125 % glycerol, 0.025 mM DTT ph 7.5)

- a. 12.5 ng/µL of genomic gRNA
- b. 150 ng/µL of mRNA for Cas9
- Needles are loaded with 1.5 to 2.5 μL of sample, and then loaded onto a micromanipulator attached to a micro injector (Harvard Apparatus PLI - 90) set to 30-40 PSI with an injection time of 200 msec.
- 4. Needles are calibrated by breaking the end of the tip off with sterile tweezers, ejecting 10 times to produce a droplet of fluid, collecting the droplet into a 1 μL capillary tube (Drummond No. 1-000-0010), and measuring the distance from the end of the capillary to the meniscus of the droplet. This distance is converted to volume (where 1 mm = 30 nL) and adjusted to achieve an effective injection volume of 2 nL. Volumes are adjusted by changing the injection time. There is a linear relationship between volume and time at a set pressure. Avoid injection times less than 100msec and over 400 msec.
- 5. One cell embryos that have been collected from mating cages are pipetted from collection petri dishes to the wells on the injection tray.
- 6. Use the micro-manipulator and microscope to pierce the one-cell of embryos on the injection tray at an angle of 30° with the needle. Inject 2 nL of sample in the one-cell near the center of the cell-yolk boundary.
- 7. After embryos have been injected, wash them from the injection tray into a clean petri dish with embryo media.
- 8. Keep 20 40 embryos separate as uninjected controls. Treat and score the control embryos in the same way as the injected embryos.
- 9. At 3 5 hrs post injection remove any unfertilized or dead embryos from the dishes. This will prevent death of the still developing embryos.

D. Testing for indel production/mutagenesis

Phenotypic scoring of embryos

- The gRNA itself may be toxic to the developing embryos. Injection toxicity can be estimated by the number dead embryos from a round of injection compared to the uninjected control dish. Count and remove any brown/dead embryos from injected and uninjected dishes. If there are significantly more dead embryos in the injected dish then the guide may be toxic, impure, or very effective at disrupting a required gene. Reducing the amount of guide or Cas9 mRNA injected may help reduce toxicity.
- 2. Score and document embryonic phenotypes on days 1 4 post fertilization (dpf). Under a dissection microscope examine the un-injected controls and injected embryos, and sort the embryos into categories.
- 3. Scoring categories
 - -Severe- These embryos have some parts that look like a control embryos, but are missing key features. Examples: embryos that lack their head, eyes, or tail, or embryos that have an unnaturally contorted shape or are asymmetric.
 - -Mild- These embryos appear mostly normal, but have slight defects such as small eyes, pericardial edema, shortened trunk/tail, or curled/twisted tails.
 - -Normal- appears normal and similar to controls.

Digestion of embryos for isolation of genomic DNA for mutagenesis analysis

Genomic DNA (GDNA) can be isolated from zebrafish embryos aged between 1 and 5 dpf using this protocol. Embryos can be analyzed as individuals or as pools (maximum 5) from the same injection.

- 1. Dechorionate embryos, if they have not emerged from the chorion.
- It is recommended to screen a minimum of 3 embryos from each scoring category for mutagenesis. Place each embryo, including controls, into separate PCR tubes. Remove as much of the fish water as possible. If needed, spin briefly and remove additional water.
- 3. Add 20 µL of 50 mM NaOH per embryo.
- 4. Heat the embryos at 95°C in a thermocycler for 15 minutes.
- 5. Vortex samples for 10 seconds. Be sure that the tubes are sealed to prevent sample loss while vortexing.
- 6. Spin samples down and heat for an additional 15 min at 95 °C in a thermocycler.

7. Vortex samples and then spin the tubes down again. The embryos should be completely dissolved.

- 7. Neutralize the samples by adding 1 μ L of 1 M Tris pH 8.0 per 10 μ L NaOH. Mix by vortexing then spin down.
- 8. Genomic DNA should be kept at 4 °C while in use and stored at -20°C.

Analysis of CRISPR/Cas9 mutagenesis efficiency at targeted gene locus.

1. Set up the following PCR reactions for each tube of digested embryos using the primers designed at the end of section A, page 10.

12.5 μL of 2x GoTaq Mastermix
1 μL of Forward Primer (10 uM)
1 μL of Reverse Primer (10 uM)
1 μL of gDNA template (digested embryos)
<u>9.5 μL of nuclease-free water</u>
25 μL total

- 2. Vortex and briefly spin down the PCR reactions.
- 3. Run the following PCR program to amplify the targeted locus.

95°C	2 minutes	
95°C	30 seconds]
55°C*	30 seconds] x 35 cycles
72°C	30 seconds]
72°C	5 minutes	
4°C	hold	

*if the primers were designed with higher or lower tm's than the annealing temperature in line three, then that temperature will need to be adjusted to 2°C below the designed primer tm.

- 4. Run up to 7 μL of PCR product on a 3.0% agarose gel, 1X TAE, for 1 hr at 80-100V.
- 5. Analyze the gel for DNA bands that appear diffuse or different in size from the control lane. This indicates that the presence of indels in the gene of interest
- 6. Alternatively clone and sequence PCR products or sequence them directly to verify the presence of indels.

E. Design short homology arms

Homology directed gene targeting allows the integration of exogenous DNA into the genome with precision to the base pair level. However, designing and cloning individual targeting vectors and homology arms for each gene of interest can be time consuming. The pGTag vector series provides versatility for ease of generation of knockout alleles (Figure 3). The vectors contain BfuAl and BspQI type II restriction enzymes for cloning of short homology arms (24 or 48 bp) using Golden Gate cloning. The pGTag vectors require in-frame integration for proper reporter gene function. The reporter gene consists of several parts. First, a 2A peptide sequence causes translational skipping, allowing the following protein to dissociate from the locus peptide. Second and third, eGFP, TagRFP, or Gal4VP16 coding sequences for the reporter protein have a choice of sequence for localization domains, including cytosolic (no) localization, a nuclear localization signal (NLS), or a membrane localization CAAX sequence. Finally translation is terminated by one of two different polyadenylation sequences (pA); a β -actin pA from zebrafish or the SV40pA.
For many genes, the signal from integration of the report protein is too weak to observe. In these cases the Gal4VP16 vector allows for amplification of the report to observable expression levels in F0s and subsequent generations. A 14XUAS/RFP Tol2 plasmid is provided to make a transgenic line for use with the Gal4VP16 vector.

Sequence maps for these plasmids can be downloaded at <u>www.genesculpt.org/gtaghd/</u>

Figure 3. The pGTag vectors allow one step cloning of homology arms.

All vectors can be obtained through Addgene (<u>www.addgene.org</u>). Because the pGTag plasmids contain repeated sequences, they may be subject to recombination in certain strains of bacteria. It is strongly recommended that they are propagated at 30°C to reduce the possibility recombination.

The web tool, GTagHD <u>www.genesculpt.org/gtaghd/</u>, allows for quick design of cloning ready homology arm oligos for a gene of interest. To use the tool, choose the "Submit Single Job" tab. Follow the instructions in the tab.

There should be 4 oligos (two pairs that will be annealed) generated that should be ordered for cloning. If there are any problems with the sequences and values that were entered, the web page will display the errors and give advice on how to fix them.

The following protocol describes how to design homology arm oligos manually:

Note In the following section when orientation words are used, they are used in the context of the reading frame of the genetic locus of interest. Example: A 5' template strand CRISPR means that the target site for the CRISPR is on the template strand at the locus and is toward the 5' end of the gene. Upstream homology domains are 5' of the CRISPR cut and downstream homology domains are 3' of the cut with respect to the gene being targeted. Also note: Upper case and lower case bases are not specially modified; they are typed the way they are as a visual marker of the different parts of the homology arms.

For the Upstream Homology Domain

1) Open the sequence file for the gene of interest and identify the CRISPR site. (In this example it is a Reverse CRISPR target in Yellow, the PAM is in Orange, coding sequence is in purple)

Copy the 48 bp 5' of the CRISPR cut (the highlighted section below) into a new sequence file; this is the upstream homology.

1	Sequence		Start		Length		End	ORF		Tm	%GC	6GC Linear 🛟		r 🛟		
_			2391		232<0>		48<0>	48<0>				72°C	48%	48% 🔽 Dam/0		/Dcm
\$₹		*	10	*	20	*	30	*	40	*	50	*	60	*	70	*
1	CGCTZ	ATA	TGAA	CCCCGA	CGGCG	GCACGO	GGGAGGZ	AGAZ	AAACGAG	CCA	CATG	CTGCCA	GACTCC	GAAT	GGGTTZ	ATG ^
76	AAGA	GCG	IGTC	TTTCAT	CGTCZ	AAAGA1	TAGCTG	AGAZ	ATGTGG	GAT/	ATTA	AACGCA	CCAGAAG	ааа	CTCTT	CGT
151	AGGA	CGT	AGCT	GAGGAA	AAGAG	STGGA	AATCTAC	CTC	ATCGAGG	ACTG	AGAC	GTGGT.	ACTTCT1	IGAA	GCACC	ATGA
226	GCTG	GAC	TTTT	CTTACG	CGGTI	GTTG	GATGAA	ATC1	CCAACCA	ACTC(CACC.	TCGTG	GGCAAGA	TAT	GGCTC	ACGT
301	TATT(CAT	CATC	TTCCGC	ATTG	TTTG	ACTGTTO	STGO	GGGGGAG	ATC	GATA	TACTAC	GATGAAC	CAGA	GCAAAI	TTG
376	TGTG	ΓΑΑ΄	TACC	CAGCAA	CCTGG	STTGT	GAGAACO	STTI	GCTACG	ATGC2	ATTT(GCACCA	CTCTCTC	CATG	TCCGGI	TCT
451	GGGT1	TTT(CCAG	ATCATT	TTGAT	ICACA2	ACCCCCI	ACT7	ATCATGT	ACTTO	GGGA.	ITTGCT	ATGCAC	AGA	TCGCTO	GGT
376 451	TGTG GGGT	TAA' TTT(TACC	CAGCAA	CCTGO	GTTGT(GAGAACO ACCCCCZ	GTTI ACTI	GCTACGA ATCATGTA	ATGCI ACTT(ATTT(GGGA	GCACCA	CTCTCTC	CATG	TCCGG1 TCGCT(TCT CGGT

2) Observe the next three bases immediately upstream of the 48 bp of homology, and pick a base not present to be the 3 bp spacer between the homology and the Universal PAM in the vector. (Here the three bases are "GGA" so "ccc" was chosen for the spacer) Add the spacer to the new file 5' (in front) of the homology, see below. The spacer acts a non-homologous buffer between the homology and the eventual 6 bp flap from the universal guide sequence that will occur when the cassette is liberated and may improve intended integration rates over MMEJ events.

3) Determine where the last codon is in the homology. Here the 3' G in the homology domain is the first base in the codon cut by this CRISPR target. Complete the codon by adding the remaining bases (called padding on GTagHD) for that codon from your sequence to ensure your integration event will be in frame.

4) Add the BfuAI enzyme overhang sequences for cloning, to the ends of the homology domain. 5'-GCGG and 3'-GGAT. (Here both overhangs are added to prevent errors in copying sequence for the oligos in the next two steps.)

5) The Upstream Homology Oligo A will be this sequence from the beginning to the end of the last codon (see highlighted below). Copy and paste this sequence into a new file and save it. In this example this oligo sequence is 5'-

GCGGcccGTTTTCTTACGCGGTTGTTGGATGAAATCTCCAACCACTCCACCTTCGtg-3'.

6) The Upstream Homology Oligo B will be the reverse compliment of this sequence from beginning of the spacer to the end of the sequence (see highlighted below). Copy the reverse compliment, paste it into a new file, and save it. In this example this oligo sequence is 5'-ATCCcaCGAAGGTGGAGTGGAGTGGAGATTTCATCCAACAACCGCGTAAGAAAACggg-3'.

For the Downstream Homology Domain

7) Open sequence file for the gene of interest and identify the CRISPR site. (Reverse CRISPR target in Yellow, PAM in Orange, coding sequence is in purple) Copy the 48 bp 3' of the CRISPR cut into a new sequence file; this is the downstream

homology.

8) Observe the next three bases downstream of the 48 bp of homology, and pick a base not present to be the 3 bp spacer between the homology and the Universal PAM in the vector. (Here the bases are "CTG" so "aaa" was chosen for the spacer.) Add the spacer to the new file 3' of (after) the homology.

9) Add the BspQI enzyme overhang sequences for cloning, to the ends of the homology domain. 5'-AAG and 3'-CCG. (Here both overhangs are added to prevent errors in copying sequence for the oligos in the next two steps.)

10) The Downstream Homology Oligo A will be this sequence from the beginning of the sequence to the end of the spacer (see highlighted below). In this example this oligo sequence is 5'-AAGTGGGCAAGATATGGCTCACGTTATTCATCATCTTCCGCATTGTTTTGAaaa-3'.

11) The Downstream Homology Oligo B (will be the reverse compliment of this sequence from the beginning of the homology to the end of the sequence (see highlighted below). In this example this oligo sequence is 5'-

CGGtttTCAAAACAATGCGGAAGATGATGAATAACGTGAGCCATATCTTGCCCA-3'

\$ 7	*	10	*	20	*	30	*	40	*	50	*	60	*	70	*	80
1 AAG	TGGG	GCAAGA	TATG	GCTC <mark>AC</mark>	GTTAT	TCATC	ATCT:	ICCGC2	ATTGTI	TTGA <mark>a</mark>	aaCCO	3				

F. One Pot Cloning of Homology Arms into pGTag Vectors

**Note if the homology arm oligos contain either the sequence "5'-ACCTGC-3'" or "5'-GAAGAGC-3'" (or their compliments) the cloning reaction will be less efficient. *Note some sequences just don't work very well. Ligation is more efficient with annealed homology arms and the purified ~1.2 kb and ~2.4kb fragments from vectors that have been digested with BfuAl and BspQI. If problems are encountered, one homology arm can also be cloned sequentially.

1. Homology Arm Annealing

Anneal upstream and downstream homology oligo pairs separately:

4.5 μ L oligo A at 10 uM 4.5 μ L oligo B at 10 uM 4 μ L 10x Buffer 3.1 from NEB 27 μ L dH20 total = 40 μ L

Incubate at 98°C for 4 min, 98°C 45 sec x 90 steps decrementing temp 1°C/cycle, 4°C hold

(Alternatively heat in 95-98°C water for 5 minutes, and then remove the boiling beaker from the heat source and allow it to cool to room temp for 2 hours, before placing samples on ice.)

2. 1-Pot Digest

Assemble the following:

4.0 μ L dH2O 2 μ L Plasmid at 50 ng/uL 1 μ L 10x Buffer 3.1 from NEB 1 μ L 5' annealed homology arm 1 μ L 3' annealed homology arm 0.5 μ L BfuAI enzyme from NEB 0.5 μ L BspQI enzyme from NEB 10 uL total

Incubate at 50°C for 1 hr, place on ice.

3. Ligation

Add the following:

3 uL 5x T4 quick ligase buffer 1.5 uL dH2O 0.5 uL T4 quick ligase 15 uL total

Incubate 8-10 min at room temperature (to overnight). Store at -20 °C,

- 4. Transformation
 - a. On ice, thaw 1 (one) vial competent cells (50 µL) for every 2 ligation reactions. (approx. 5 min). It is recommended to use NEB Stable Competant E. coli (C3040H) cells to limit recombination.
 - b. While cells are thawing, label the microcentrifuge tubes for each ligation and put on ice.
 - c. Once the cells are thawed, use a pipette to transfer 25 μ L of the competent cells into each labeled tube.
 - d. Add 1.5 µL of a ligation reaction into competent cells to transform.
 - a. Amount of ligation reaction added should be less than 5% of volume of competent cells.
 - e. Mix by tapping the tube several times or gently mixing with the pipet tip.
 - a. Do NOT mix by pipetting, this will lyse the cells.
 - f. Incubate on ice for 5 to 20 minutes.
 - g. Heat shock the cells by submerging the portion of the tube containing the cells in a 42°C water bath for 40 50 seconds.
 - h. Incubate cells on ice for 2 minutes.
 - i. Add 125 μ L of room temperature LB to each transformation.
 - j. Incubate cells at 30°C for 1-1.5 hour(s) in a shaking incubator.
 - k. While the transformed cells are recovering, spread 40 μ L of X-Gal solution, and 40 μ L IPTG 0.8 M on LB Kanamycin selection plates.
 - a. X-Gal is lethal to cells while wet, it is recommended to first label the plates and then place them in a 30°C incubator to dry.
 - I. After recovery and the X-Gal is dry, Plate 150 μL of each transformation on the corresponding correctly labeled plate.
 - m. Incubate plates overnight at 30°C.

5. Growing colonies

Pick 3 white colonies from each plate and grow in separate glass culture tubes with 3 mL LB/Kanamycin.

Or to pre-screen colonies by colony PCR:

- a. Pick up to 8 colonies with a pipet tip and resuspend them in separate aliquots of 5 μL dH2O. Place the tip in 3 ml of LB/Kan, label, and store at 4°C.
- b. Make a master mix for your PCR reactions containing the following amounts times the number of colonies you picked.

7.5 μL 2x Gotaq mastermix
5.5 μL dH2O
0.5 μL primer at 10 uM "F3'-check" 5'- GGCGTTGTCTAGCAAGGAAG -3'
0.5 μL primer at 10 uM "3'_pgtag_seq"5'-ATGGCTCATAACACCCCTTG-3'
14 μL total

- c. Aliquot 14 µL of mixed master mix into separate labeled PCR tubes.
- d. Add 1 μ L of colony to each reaction as template.
- e. or 20 ng purified plasmid as control.
- f. Cycle in a thermocycler

95°C	2 minutes	
95°C	30 seconds]
57°C	30 seconds] x 35 cycles
72°C	30 seconds]
72°C	5 minutes	
4°C	hold	

- g. Run 5 μ L of PCR product on a 1% agarose gel. You should get bands that are a different size than the control.
- 6. Mini Prep Cultures

Follow Qiagen Protocol

7. Sequencing of Plasmids

The 5' homology arm can be sequenced by the 5'_pgtag_seq primer: 5'-GCATGGATGTTTTCCCAGTC-3'. The 3' homology arm can be sequenced with the "3'_pgtag_seq"primer: 5'-ATGGCTCATAACACCCCTTG-3'.

G. Injection of GeneWeld Reagents (spCas9 mRNA, Universal sgRNA (UgRNA), genomic sgRNA and pGTag homology vector) into 1-cell zebrafish embryos

Prepare and collect the following reagents for injection

- 1. Prepare nCas9n mRNA from pT3TS-nCas9n (Addgene #46757 from (Jao et al., 2013)) as described above (page 14).
- 2. Synthesize UgRNA and purify as described above (page 11) using the following oligo A:

5'-TAATACGACTCACTATAGGGAGGCGTTCGGGCCACAGGTTTTAGAGCTAGAAATAGC-3'

Corresponding to the universal target sequence: GGGAGGCGTTCGGGCCACAG

Alternatively, the UgRNA can be directly ordered form IDT and resuspended in RNF water.

5'-GGGAGGCGUUCGGGCCACAGGUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGG CUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCGGAUC-3'

3. The pGTag homology vectors should be purified a second time prior to microinjection under RNase free conditions with the Promega PureYield Plasmid Miniprep System beginning at the endotoxin removal wash and eluted in RNF water.

Embryo Injections for Integration of pGTag vectors

Injections are performed as previously described in 2 nl per embryo with the addition of the UgRNA and targeting pGTag DNA.

Final per embryo:

Injection mixture:

75 pg/nl of nCas9n mRNA
12.5 pg/nl of genomic gRNA
12.5 pg/nl of UgRNA
5 pg/nl of pGTag DNA

H. Examine embryos for fluorescence and junction fragments

Embryos are examined for fluorescence under a Zeiss Discovery dissecting microscope with a 1X objective at 70-100X magnification. If weak signals are observed, embryos are manually dechorionated, and viewed on glass depression well slides. If no or weak signals were observed, Gal4VP16 integrations are attempted in a 14XUAS-RFP background. Embryos displaying widespread fluorescence in expression domains consistent with the targeted gene are examined for junction fragments or raised to adulthood for outcrossing.

F0 Junction fragment analysis between the genomic locus and the targeting vector is carried out by isolating DNA from embryos followed by PCR. The following primers are used for junction fragment analysis and must be paired with gene specific primers (5' to 3'):

5' pGTag junctions:

R-Gal4-5'juncM	GCCTTGATTCCACTTCTGTCA	with a gene specific forward primer
R-RFP-5'junc	CCTTAATCAGTTCCTCGCCCTTAGA	
R-eGFP-5'-junc	GCTGAACTTGTGGCCGTTTA	

3' pGTag junctions:

F-Gal4-3'juncM F-Gal4-3'juncJ F-RFP-3'junc F-eGFP-3'junc GCAAACGGCCTTAACTTTCC CTACGGCGCTCTGGATATGT CGACCTCCCTAGCAAACTGGGG ACATGGTCCTGCTGGAGTTC with a gene specific reverse primer

PCR amplification of junction fragments can be a result of artifacts (Won and Dawid, 2017), so it is important to carryout control amplifications with injected embryos that lack the genomic gRNA. F0 analysis by PCR of junction fragments is carried out to examine correct targeting. F-Gal4-3'juncM and F-Gal4-3'juncJ are two alternate primers for amplification of junction fragments from the Gal4 cassette due to gene specific mis-priming depending on the target loci.

7.5 μL 2x Gotaq mastermix
5.5 μL dH2O
0.5 μL primer at 10 uM genomic primer
0.5 μL primer at 10 uM pGTag primer
14 μL total

- 1. Aliquot 14 μ L of mixed master mix into separate labeled PCR tubes.
- 2. Add 1 μ L of genomic DNA to each reaction as template.
- 3. Cycle in a thermocycler with the following steps:
 - 95°C
 2 minutes

 95°C
 30 seconds
]

 55°C
 30 seconds
] x 35 cycles

 72°C
 30 seconds
]

 72°C
 5 minutes
 4°C
- 4. Run 5 μL of PCR product on a 1.2 % agarose gel in 1XTAE. Putative junction fragments should give bands that are of predicted size.

F0 animals that are positive for the reporter gene are raised to adults then outcrossed and examined for fluorescence as above. The Gal4VP16 system can lead to silencing resulting in mosaic patterns in F1 embryos. F1 embryos displaying fluorescence are examined for junction fragments as above, raised to outcross to make F2 families or sacrificed at 3 weeks post fertilization for Southern-Blot analysis of integrations. F0 and F1 identified fish can be incrossed or backcrossed to get an initial impression of the homozyogous phenotypes. It is recommended that lines are continuously outcrossed once established.

References:

Jao, L.E., Wente, S.R., and Chen, W. (2013). Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci U S A *110*, 13904-13909. Moreno-Mateos, M.A., Vejnar, C.E., Beaudoin, J.D., Fernandez, J.P., Mis, E.K., Khokha, M.K., and Giraldez, A.J. (2015). CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods *12*, 982-988.

Varshney, G.K., Pei, W., LaFave, M.C., Idol, J., Xu, L., Gallardo, V., Carrington, B., Bishop, K., Jones, M., Li, M., *et al.* (2015). High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Res *25*, 1030-1042.

Won, M., and Dawid, I.B. (2017). PCR artifact in testing for homologous recombination in genomic editing in zebrafish. PLoS One *12*, e0172802.