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ABSTRACT 

A TGEV isolate, VMRI 5170, and a PRCV isolate, NVSL 5170, originating 

from a TGE outbreak on a swine farm in 1995, were characterized biologically, antigenically 

and genetically. Their growth characteristics were compared with the standard Miller strain of 

TGEV. The growth curves for the three viruses were similar. However, the average plaque 

size of the PRCV isolate NVSL 5170 (0.99 +/- 0.31 mm) was smaller than that for the TGEV 

isolate VMRI 5170 (2.33 +/- 0.56 mm) and the TGEV isolate Miller (2.47 +/- 0.50 mm). 

These isolates reacted in virus neutralization tests with both hyperimmune sera raised against 

Miller strain of TGEV and the MAbs against the conserved epitopes on the S glycoprotein of 

TGEV. For genetic characterization of these isolates, the S and 3/3.1 genes were sequenced 

and compared with known sequences of TGEV and PRCV isolates. The S gene of the TGEV 

isolate VMRI 5170 showed a 96 - 97 % homology with the published sequences of TGEV, 

with 120- 169 nucleotide differences. The identity between the S gene sequence of the PRCV 

isolate NVSL 5170 and that of other PRCV isolates was also 96 - 97 %. The PRCV isolate 

NVSL 5170 had a truncated S gene with a 714 nucleotide deletion. This is the largest deletion 

detected thus far in PRCV isolates. Without accounting for the deletion, TGEV isolate VMRI 

5170 and PRCV isolate NVSL 5170 showed a very high level of homology in the S gene with 

only 6 nucleotide differences between all 4353 nucleotides. At the amino acid level, the 

difference was only 4 amino acids. The protein profiles of these isolates by 

radioimmunoprecipitation assay also confirmed that the M and N proteins of TGEV isolate 

VMRI 5170 and PRCV isolate NVSL 5170 were similar in size but the S glycoprotein of 

PRCV isolate NVSL 5170 was smaller. The ORF 3 and 3.1 genes of PRCV isolate NVSL 

5170 were intact with only 2 nucleotide differences in this region when compared to TGEV 

isolate VMRI 5170. However, the first different nucleotide in the 3.1 gene of NVSL 5170 

created a stop codon which may have resulted in a truncated 3.1 protein. In conclusion, TGEV 

isolate VMRI 5170 and PRCV isolate NVSL 5170 are closely related to each other in both 

antigenic and genetic properties as well as biological characteristics. In addition, Phylogenetic 

analysis of the sequences demonstrated a very close relationship among these two isolates and 

presented strong evidence that PRCV isolate NVSL 5170 emerged from TGEV isolate VMRI 

5170 by a single deletion. This deletion could possibly be the cause of the smaller S 

glycoprotein and the smaller plaque size of PRCV isolate, NVSL 5170. 
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1. INTRODUCTION 

Transmissible gastroenteritis (TGE) disease in swine was first detected by Doyle in 

1946. The causative agent was referred to as transmissible gastroenteritis virus (TGEV) which 

was shown to be in the family of coronaviridae (Siddell et al. 1983a). TGEV produces watery 

diarrhea in swine of all ages; however, the disease is most severe in pigs less than 3 weeks of 

age. The severity of disease depends on the immune status and the age of the piglets (Hill, 

1988). By negative staining electron microscopic examination, coronavirus particles are 60 -

160 nm in diameter and are spherical to pleomorphic (Holmes, 1990; Saif and Wesley, 1992). 

The TGEV is enveloped with widely spaced club-shaped peplomers, 12 - 25 nm in length (Saif 

and Wesley, 1992). The TGEV has 3 major structural proteins, the nucleocapsid protein (N), 

the integral membrane glycoprotein (M) and the peplomer glycoprotein (S) (Spaan et al., 

1988). The N protein is a basic phosphoprotein to which the genomic RNA binds to form a 

helically symmetrical nucleocapsid. The Mand S proteins are glycosylated transmembrane 

proteins. 

As a member of coronaviridae, TGEV contains a large, positive - sense, single stranded 

RNA genome (Siddell et al., 1983). During productive infection, TGEV synthesizes at least 8 

subgenomic mRNAs (Sethna et al., 1989; Wesley et al., 1989), arranged as a nested set which 

have a common 3' poly-A termini, with different base sequences on the 5' end (Spaan et al., 

1988). The products of 8 subgenomic mRNAs are: polymerase from mRNA 1, the peplomer 

or spike protein (S) from mRNA 2, a 7.9 kD protein from mRNA 3, a 27.7 kD protein from 

mRNA 4, a 9.3 kD protein from mRNA 5, an integral membrane from mRNA 6, nucleocapsid 

from mRNA 7 and a 14 kD polypeptide from mRNA 8. 

The TGEV is closely related to porcine respiratory coronavirus (PRCV), because 

PRCV was neutralized in vitro by antiserum against TGEV (Callebaut et al., 1988). However, 

some of the monoclonal antibodies against the S protein epitopes of TGEV do not recognize 

PRCV. The close antigenic relatedness between these viruses is due to the similarity of their 

genomic RN As. The differences that have been observed between TGEV and PRCV are 

deletions in the S gene and the nonstructural ORF 3 gene of PRCV (Laude et al., 1993; 

Russchaert et al., 1990; Vaughn et al., 1995). Thus, PRCV may be regarded as a TGEV 

variant. However, TGEV and PRCV isolates from the same pigs are not available to 

conclusively determine if PRCV originated from TGEV. 
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The TGEV isolate, VMRI 5170, and the PRCV isolate, NVSL 5170, provide the 

opportunity to study the genetic and antigenic relationship between TGEV and PRCV. The 

VMRI 5170 and NVSL 5170 isolates originated from the same TGE outbreak in a swine herd. 

However, they were later determined to be different viruses. Therefore, the hypothesis of this 

study is that the PRCV isolate, NVSL 5170, emerged from the TGEV isolate, VMRI 5170, 

caused by a deletion mutation. In addition, the purpose of the study is also to determine how 

the mutation influences some biological properties of the viruses. To achieve the objective, the 

two viruses will be characterized in comparison to the standard Miller strain of TGEV. The 

characteristics to be examined include: 

1. growth characterization 

1.1. one step growth curve 

1.2. plaque size measurement 

2. antigenic characterization using viral neutralization test 

3. viral protein profiles by radioimmunoprecipitation assay 

4. genetic characterization by PCR and sequence analysis 

It is expected that this study should present strong evidence of the emergence of PRCV isolate, 

NVSL 5170, from TGEV isolate, VMRI 5170, caused by a deletion mutation. 
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2. LITERATURE REVIEW 

Coronaviruses 

Coronaviruses are large pleomorphic single - stranded positive RNA viruses (Tyrrell et 

al., 1978). The viruses in this genus have an unique morphology which is a pleomorphic 

spherical virion with club - shaped peplomers, when examined by negative stained 

electronmicroscopy. Their genomic nucleotides are plus - stranded RNAs which replicate by a 

unique mechanism. Coronaviruses infect humans and a wide range of animals causing either 

systemic or local diseases. However, the viruses can be divided into 3 antigenic groups (Table 

1) in which there are some degrees of cross - reactivity within each group. 

Table 1: Coronaviruses, antigenic groups and diseases. (from Holmes and Lai, 1996, 

Coronaviridae: The Virus and Their Replication) 

antigenic Virus Host Respiratory Enteric Hepatitis Neurologic 
group infection infection infection 

1 HCV-229E Human x 
TGEV Pig x x 
PRCV Pig x 
CCV Dog x 

FECV Cat x 
FIPV Cat x x 
Rb CV Rabbit x x x 

2 HCV-OC43 Human x 
MHV Mouse x x x x 
SDAV Rat x 
HEV Pig x x x 
BCV Cow x 

BRCV Cow x 
RbEVC Rabbit x 

TCV Turkey x x 
3 IBV Chicken x x 

BDV Turkey x 

Note: HCV-229E, human respiratory coronavirus; TGEV, porcine transmissible gastroenteritis 

virus; PRCV, porcine respiratory coronavirus; CCV, canine coronavirus; FECV, Feline enteric 

coronavirus; FIPV, feline infectious peritonitis virus; TCV, turkey coronavirus; HCV-OC43, 

human respiratory coronavirus; MHV, mouse hepatitis virus; SDAV, sialodacryoadenitis virus; 

HEV, porcine hemagglutinating encephalomyelitis virus; BCV, bovine coronavirus; BRCV, 

bovine respiratory coronavirus; RbCV, rabbit coronavirus. 
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Coronavirus Properties 

Coronaviruses are separated from other groups of viruses according to their distinct 

morphology. Their genomes are single plus stranded RNAs, 27 - 32 kb in size, which are 5' 

end capped and 3' end polyadenylated (Spaan et al., 1988; Lai, 1990). The genomic RNA of 

coronavirus is associated with nucleocapsid phosphoprotein to form a helical ribonucleoprotein 

about 9 - 11 nm in diameter. The ribonucleocapsid is surrounded by an envelope, derived from 

a host intracellular membrane and viral structural proteins. All coronaviruses possess 3 major 

structural proteins; a nucleocapsid protein (N; 50 - 60 kD), a membrane glycoprotein (Mor El; 

23 - 29 kD) and a spike glycoprotein (S or E2; 170 - 220 kD). Trimers of S glycoproteins held 

by a noncovalent bond form long petal - shaped spikes which are embedded in and projected 

from the viral envelope. Therefore, the morphology of the coronaviruses is similar to a solar 

corona when examined by negative staining EM. The size of coronavirus particles is about 100 

nm. However, they are pleomorphic and range in size from 75 - 160 nm. 

Antigenic group II coronaviruses also have a fourth structural protein, hemagglutinin -

esterase glycoprotein (HE, E3 or gp65; 62 - 65 kD) (Holmes and Lai, 1996). The HE dimer 

protein linked by a disulfide bond forms a short spike on the envelope which is homologous to 

that of influenza C virus. Coronaviruses that possess HE have hemagglutination, 

hemadsorption and acetylesterase activities. 

Virions attach to receptors on the host cell membrane via the S protein. Coronaviruses 

are endocytosed into the cytoplasm where they replicate (Fenner et al., 1993). The genomic 

RNA is transcribed to a minus - stranded RNA which in tum is transcribed to a nested set of 

mRNA with a common 3' end. The translated proteins mature in the endoplasmic reticulum 

followed by assembly in and budding from Golgi cystemae. The budding viruses do not 

contain RNA - directed RNA polymerase (Siddell et al., 1981). 

Transmissible Gastroenteritis Virus 

Virion structure 

TGEV is a virus in the genus coronaviruses, under the family coronaviridae (Siddell et 

al. 1983a) with pleomorphic spherical morphology and a diameter of about 60 - 160 nm 

(Okaniwa et al., 1968; Philip et al., 1971 ). Like other coronaviruses, TGEV also has a corona 

like morphology because the S glycoproteins form club - shaped surface projections, 12 - 25 

nm in length which are scattered on the virus envelope. Without projections, the size of the 

viral particle is around 65 - 90 nm. (Thake, 1968; Pensaert et al., 1970b; Wagner et al., 1973). 
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Intact virions have a buoyant density of 1.18 - 1.20 g/ml in a sucrose gradient (Briton et al., 

1980; Jimenez et al., 1986). 

The genomic RNA of TGEV encodes 4 structural proteins which include the small 

integral protein (sM), nucleocapsid protein (N), membrane glycoprotein (M), and the spike 

glycoprotein (S) (Spann, 1988; Laude et al., 1993; Holmes and Lai, 1996). These structural 

proteins incorporate into the virion and have different functions, as discussed below. 

Small integral protein (sM) 

Godet et al. (1992) reported that ORF 4 of genomic RNA encodes a 10 kD polypeptide 

called the small integral membrane (sM). This sM is incorporated into the virus envelope as an 

integral protein, however, its function is unknown. 

Nucleocapsid Protein ( N) 

The N protein is a 47 kD phosphoprotein bound with RNA to form the 

ribonucleoprotein (Laude et al., 1990). These proteins are basic as they contain clusters of 

basic residues, but their C termini are acidic (Kapke and Brian, 1986; Spaan, 1988). Around 8 

- 10 % of the total amino acid residues are serine. In fact, most of the serine residues on the N 

protein are phosphorylated. The N protein has 3 structural domains; the middle domain binds 

to the RNA (Master, 1992) to form a helical nucleocapsid. In vitro studies reveal that N binds 

to the intracytoplasmic domain of the M protein during virus budding (Sturman et al., 1980). 

This leads N to facilitate encapsidation of the genomic RNA. In addition, it is now known that 

N protein also participates in RNA replication since antibody against N significantly inhibits 

genomic RNA synthesis (Compton et al., 1987; Spaan et al., 1988). The N protein is also 

known to elicit cell - mediated immunity (Holmes and Lai, 1996). 

Membrane Glycoprotein (M) 

The M is a 29 - 36 kD protein which functions as a matrix protein (Laude et al., 1993). 

It is composed of a 245 amino acid residue polypeptide that folds into 3 domains; hydrophilic 

N terminal domain, transmembrane domain, and C terminal intracytoplasmic membrane 

domain (Spaan et al., 1988). The N terminus domain of M, about 10 % of the M molecule, is 

N - linked glycosylated and is exposed on the outer surface of the envelope. Around 17 

residues of the N - terminus of the M glycoprotein form a signal peptide which is recognized 

by the signal recognition particle for membrane insertion. This signal peptide targets M protein 

to the golgi complex. 

The transmembrane domain is about one third of the M protein. It spans 3 times in the 

envelope while folding into 3 hydrophobic alpha helices (Spaan et al., 1988). This domain 

functions as the matrix for the viral envelope. Approximately half of the M molecule is a C 



6 

terminus intracytoplasmic domain which lies under the intracellular bilayer. This part associates 

with the N protein during viral budding. 

The M protein not only serves as a matrix protein, but also participates in other TGEV 

properties. Hydrophilic N terminus which is exposed on the outer surface is responsible for 

mediating complement - dependent neutralization and interferon induction (Charley and Laude, 

1988; Woods et al., 1988). Mis also important for viral maturation, assembly and budding of 

the virus. The supportive evidence is that M appears to accumulate in the golgi apparatus where 

the virus buds in infected cells. 

Spike Glycoprotein (S) 

Spike or peplomer is a large membrane - anchored glycoprotein which is 220 kD of 

relative mass (Laude et al., 1993). S glycoprotein contains 1447 amino acid residues which 

form the N - to C - terminus containing a 16 amino acid residue, long N - terminal signal 

sequence, two large external domains (S1 & S2), a transmembrane domain, and a short C -

terminal intracytoplasmic domain. S protein contains a large number of N - linked 

glycosylation sites (Rasschaert and Laude, 1987; Jacob et al., 1987). The Intracytoplasmic 

domain which is rich in cysteine residues may direct S glycoproteins to be incorporated into the 

viral envelope and interact with other structural proteins (Holmes and Lai, 1996). The S2 

segment, which connects to the cytoplasmic domain, is the carboxyl half of the S molecule. 

This part forms the alpha helix secondary structure with 2 heptad repeated motifs that tend to 

fold to an intra - chain coiled coil structure of the peplomer. Unlike antigenic group II 

coronaviruses, TGEV does not have a trypsin cleavage motif between S2 and S1• The S1 is a N 

terminal polypeptide which forms a globular glycoprotein. Trimers of S1 and S2 hold together 

by non covalent bonds to form petal - shaped spikes projecting from the envelope. 

S glycoprotein has many biological functions (Holmes and Lai, 1996). It binds to 

aminopeptidase N, a specific host cell surface receptor glycoprotein, during viral attachment. 

Inhibition of cell fusion by monoclonal antibodies against S glycoprotein suggests that S 

induces cell fusion of infected cells (Spaan et al., 1988). Furthermore, S glycoprotein 

possesses neutralizing epitopes as antibodies raised against it can neutralize the viruses at 

multiple steps in the viral replication cycle (Nguyen et al., 1986; Sune et al. 1990). 

Presentation of the S protein on infected cells also induces cellular mediated immune response 

(Holmes et al., 1986; Welsh et al., 1986). 
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Genomic Structure and Organization 

The genome of coronavirus is a large single stranded RNA of positive polarity (Spaan 

et al., 1988; Laude et al., 1993). It is about 27 - 30 kb in length, which is the largest known 

genome of all RNA viruses (Spaan et al. , 1988). The genomic RNA is 5' capped and 3' 

polyadenylated, therefore, it is infectious when introduced into host cells (Lai, 1990). TGEV 

genome contains 7 genes and a 60 - 80 nucleotide leader sequence at its 5' end. Each gene may 

have 1 or more ORFs which are separated by intergenic sequences (IS) which contain signals 

for transcription of a nested set of subgenomic RNAs (Spaan et al., 1988). The first gene from 

the 5' end is about 20 kb long consisting of 2 ORFs that encode viral RNA polymerase, 

protease, and other nonstructural proteins (Holmes and Lai, 1996). The rest of the genomic 

RNA is approximately 8.5 kb made up of 6 genomic regions; 2 (S), 3, 4 (sM), 5 (M), 6 (N) 

and 7. TGEV also shares the common gene order for coronaviruses, Pol - S - M - N, (Laude et 

al., 1993). In addition to region 1 of the genomic RNA, gene 3 of TGEV is also bicistronic. 

(Spaan et al, 1988; Lai 1990). 

Growth Characteristics and Physicochemical Properties 

TGEV can be propagated in primary and secondary pig kidney cells, pig kidney cell 

line (Laude et al. 1981), and McClurkin swine testicle (ST) cell line (McClurkin and Norman, 

1966). The virus also replicates in organ cultures from pig esophagus, ileum and colon 

(Rubenstein et al. , 1970). Cytopathic effect ( CPE) may not be observed in the primary isolate, 

so a higher viral passage may be required for CPE production. The CPE includes fusion of 

infected cells, rounding, enlargement or elongation of infected cells, ballooning effect of the 

infected cells and detachment of cells (McClurkin and Norman, 1966; Kemeny, 1978; Vaughn 

and Paul, 1993). TGEV can be isolated from freezing and thawing of the infected cell culture, 

and the titer of TGEV isolates range from 1x105 to 5 x 107 pfu/ml (Vaughn and Paul, 1993). 

TGEV is sensitive to heat and light but is resistant to the intestinal environment. TGEV 

is very stable when stored frozen but is labile at room temperature (Bay et al., 1952; Young et 

al., 1995). The virus can be kept at -20° C for 6 months without loss of infectivity. In contrast, 

at 37° C, the infectivity titer of the viruses will decrease 10 fold at every 24 hour interval. In 

addition, TGEV is inactivated by exposure to both sunlight and UV light (Haelterman, 1963; 

Cartwright et al. , 1965). TGEV is resistant to trypsin and bile and is stable at pH 3 (Harada et 

al., 1968; Moscari 1980a). Resistance of TGEV to trypsin and bile allows it to pass from the 

stomach to the small intestine without degradation. 
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Replication Strategy 

The replication cycle of coronaviruses has been extensively studied for mouse hepatitis 

virus (MHV). The events from the very beginning to the end of the cycle include; attachment 

and penetration, primary translation, transcription, replication, late translation and assembly, 

and release. The following section summarizes a TGEV replication strategy based on a MHV 

replication model. 

Attachment and Penetration 

The first step of the replication cycle is the binding of S glycoprotein to a specific 

receptor on the host cell membrane. For TGEV, S glycoprotein binds with aminopeptidase N 

(APN), a zinc binding protease (Delmas et al., 1992a) which is abundantly present on the 

brush border membrane of small intestinal villi (Delmas et al., 1992a). However, protease 

activity is not required for viral attachment. It was found that some monoclonal antibodies 

against porcine and human APN can inhibit binding of S to APN. The cells that are normally 

resistant to TGEV become susceptible to infection when cDNA coded for APN glycoprotein 

was inserted in the cells (Tung et al., 1992). Viruses enter into cells by fusion of the virus 

envelope with either a plasma membrane or an endosomal membrane (Gallagher et al., 1991; 

Kooi et al., 1991). 

Primary Translation 

After viruses penetrate into cells, they start translation of their genomic RNA. The first 

translated gene encodes RNA directed RNA polymerase (Holmes and Lai, 1996). It contains 2 

ORFs which are translated into a polyprotein by a ribosomal frame - shifting mechanism 

(Brierley et al., 1989; 1991). The polyprotein is co - translationally modified to multiple 

proteins including RNA directed RNA polymerase by viral and host protease. The polymerase 

is synthesized continuously during the replication cycle. 

Transcription and replication 

Positive sense stranded genomic RNA is transcribed into a minus - strand RNA which 

in tum serves as the template for either subgenomic mRNA or genomic RNA synthesis. All 

minus stranded RNAs appear as double stranded RNA in replicative intermediate forms and no 

free minus stranded RNA is found (Perman et al., 1986). All mRNAs and genomic RNA are 

5' capped and 3' polyadenylated. TGEV have 7 subgenomic mRNAs which form a nested set 

of mRNA with a common 3' end. They are numbered 1 to 7 according to their sizes which 

decrease by the increasing number (Lai, 1990). Most of the subgenomic mRNAs except the 

smallest one are polycistronic. However, only the ORF at the 5' end of each mRNA is 

translated, with the exception of mRNA 1 and 3 which are translated into 2 proteins (Spaan et 
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al, 1988; Lai 1990). The subgenomic rnRNAs are synthesized in unequal but constant amounts 

during the replication cycle (Siddell et al., 1983). The rnRNAs are not processed by splicing 

because the replication takes place in the cytoplasm, and rnRNAs are transcribed independently 

(Siddell et al., 1983). 

As a coronavirus member, TGEV rnRNAs have some specific characteristics. 

Although the leader sequence is on the 5' end of the genomic RNA only, all subgenomic 

rnRNAs have the leader sequence at their 5' end. However, at the 5' end of each ORF of the 

TGEV genome, there is a consensus intergenic sequence of 6 - 8 nucleotides, AACUAAAC 

(Spaan, 1986; Laude et al., 1993). This sequence is complementary to that of the 3' end of the 

leader sequence. 

Two models can explain how coronaviruses synthesize their subgenomic rnRNAs 

(Holmes and Lai, 1996). The first model is the discontinuous, nonprocessive leader - primed 

transcription (Holmes and Lai, 1996). In this model, the full length minus - strand RNA is 

translated from the genomic plus strand RNA. Thereafter, polymerase transcribes the antileader 

sequence at the 3' terminus of the full length minus - strand RNA, and then terminates with 

dissociation of the leader from the template. The leader with or without polymerase jumps to 

bind with an intergenic sequence (IS) down stream of the template, which serves as the primer 

for mRNA synthesis. Thus, an IS acts as the core promoter for rnRNA transcription (Joo et 

al., 1992; Kim et al., 1993). However, the upstream sequence from the leader and 5' end 

sequence of subgenomic rnRNA are also required for transcription initiation (Liao and Lai, 

1994). Within the TGEV genome, there is a conserved sequence of 10 nucleotides, around 80 

bases from the 3' end of the genomic RNA that may relate to minus - stranded template 

synthesis (Kapke and Brian, 1986). 

Another synthesis model is discontinuous transcription during minus - stranded RNA 

synthesis (Sawicki and Sawicki, 1990). Transcription of minus - stranded RNA terminates 

when the polymerase complex reaches the 3' end of an IS, which then jumps to bind to the 3' 

end of the leader sequence at the 5' end of the genomic RNA. Subsequently, the minus -

stranded subgenomic and genomic RNAs with an antileader at their 3' end can be continuously 

transcribed into subgenomic or genomic rnRNAs. Therefore, ISs serve as termination sites and 

bind with leader sequences for jumping of RNA polymerase during minus - strand 

transcription (Holmes and Lai, 1996). However, this model is controversial. Since loop 

structures have never been found on the Replicative Intermediate molecules, therefore, jumping 

of polymerase by looping out of the negative - stranded template and co - or post -

transcriptional ligation of subgenomic minus - stranded RN As to leaders, should not occur. 
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Furthermore, by coinfection of 2 strains of coronaviruses, the combination of mRNA of one 

strain and the leader of another strain may occur (Spaan et al., 1988). 

In vitro transcription studies suggest that RNA polymerase complexes with some 

proteins. These proteins may be the products of the gene 1 and N protein (Brayton et al., 1982; 

Dennis and Brian, 1982). The polymerases for minus and plus stranded RNAs synthesis are 

different (Brayton et al., 1982; Brayton et al., 1984). The two RNA polymerase complexes, 

the early and the late polymerases, involved in the negative - stranded RNA synthesis and the 

mRNA synthesis, respectively. 

For replication of coronaviruses to occur the Replicative Intermediate form of the full 

length RNA is needed (Holmes and Lai, 1996). The genomic RNA must be transcribed 

continuously to the full length minus - stranded RNA which in tum will serve as the template 

for the plus - stranded genomic RNA synthesis. The studies on defective interfering RNA of 

coronavirus (mouse hepatitis virus) suggest that the replication also requires a leader sequence. 

However, the nucleotides in the IS for genomic RNA synthesis may differ from those for the 

subgenomic mRNA synthesis. In addition, about 200 nucleotides at the 3' and the 5' termini of 

the genomic RNA may participate in the replication. 

Late Translation 

During late translation, coronaviruses synthesize all structural proteins and some non 

structural proteins from their corresponding mRNA. Most subgenomic mRNAs of TGEV are 

polycistronic, but only the ORF at the 5' end is translated (Holmes and Lai, 1996). However, 

mRNA 1and3 are bicistronic (Rasschaert et al., 1987). The mRNA 3 of TGEV has 2 ORFs 

which are translated into 2 non structural proteins. In non virulent Purdue - 15, and virulent 

British FS772 strain of TGEV, the genomic RNA possess the ORF 3a and 3b which are 

bicistronic (Spaan et al, 1988; Laude et al., 1993). Unlikely, upstream of the ORF 3b of the 

virulent Miller strain of TGEV exists a hexameric IS, CUAAAC. The beginning of the ORF 

also has a start codon to signal for mRNA production (Laude et al, 1993). Therefore, ORF 3 of 

Miller strain is transcribed into 2 mRNAs, so called ORF 3/3-1 instead of ORF 3a/3b. The IS 

of ORF 4 is also a hexamer, CUAAAC, while those of the ORF M, N and 7 are the heptameric 

ACUAAAC (Britton et al., 1991). 

The translated proteins are processed and transported to their target sites. N is translated 

on free polysomes, rapidly phosphorylated in cytosol and then bound to the genomic RNA 

(Stohlman et al., 1983; Barie et al., 1988). Mis translated and inserted into the RER and post -

translationally modified by N - linked glycan (Spaan et al., 1988). The processed M 

glycoproteins then accumulate in the golgi apparatus where the budding virions are located. S 
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proteins are N - linked glycosylated, reduced and non covalently linked to form trimers. Mature 

S glycoproteins also accumulate in the golgi apparatus. However, some of the excess S 

glycoprotein is transported to the host cell membrane which may mediate cell to cell fusion 

(Vennema et al., 1990; Griffiths and Rottier, 1992). 

Assembly and Release 

Assembly and budding of viruses takes place in specific compartments followed by 

release of virions by exocytosis (Holmes and Lai, 1996). N phosphoproteins may bind to 

specific sequences, possibly leader sequences (Stohlman et al., 1988), on the genomic RNAs 

to initiate the helical structure. The successive binding may not require the specific binding 

between the RNAs and the N protein (Robbin et al., 1986; Stohlman et al., 1988). 

Encapsidation of RNA may be associated with a specific sequence within gene 1 b, 

approximately 20 kb from the 5' end of the genomic RNA (Van der Most et al., 1991; Fosmire 

et al., 1992). The nucleoproteins of the encapsidated particles bind to M glycoproteins 

incorporated on to the intracellular membrane. Thereafter, they develop from a budding 

compartment between the RER and the golgi apparatus (Holmes and Lai, 1996). S 

glycoproteins which are incorporated at the time of budding, are not necessary for viral 

assembly but S - naked virions are non infectious (Holmes et al., 1981 ). 

Genetics 

RNA recombination is common among coronaviruses because of their unique 

replication strategy (Lai, 1992). During discontinuous transcription, RNA polymerase 

sometimes dissociates from a RNA template and jumps to attach to a homologous region on a 

different RNA template (Lai, 1992). RNA recombination leads to evolution of different strains 

of the same species or to different species of coronaviruses. For example, feline infectious 

peritonitis virus (FIPV) may have originated from the combination between TGEV and related 

viruses (Jacobs et al., 1987) because one domain of the S protein of FIPV and the S protein of 

TGEV is 93% homologous where as the other domains are somewhat different. Moreover, the 

homology between the amino acid sequence of the HA 1 domain of MHV - 59 and the amino 

acid sequence of the S protein of influenza C could be evidence of RNA recombination 

between 2 types of viruses (Spaan et al., 1988). 

Like other RNA viruses, which have no proof - reading mechanism in their replication 

process, mutations frequently occur among coronaviruses (Holmes and Lai, 1996). The 

mutations are either point mutations or large genomic deletions. The point mutations in the S 

gene of MHV lead to alteration of CPE and tissue tropism (Dalziel et al., 1986; Fazakerley et 
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al., 1992; Gombol et al., 1993). The incidence of deletion mutations among coronaviruses is 

also high. The most distinctive deletion mutation is the emergence of porcine respiratory 

coronavirus (PRCV) from TGEV (Holmes and Lai, 1996). 

Antigenicity 

Antigenic Determinants 

Studies on the monoclonal antibodies against TGEV structural proteins have allowed 

characterization of the antigenic map of TGEV. The structural S, Mand N proteins are 

antigenic but the S glycoprotein is the primary protein that induces neutralizing antibodies 

(Jimenez et al., 1986; Laude et al., 1986). Antibodies against the M protein can neutralize 

TGEV in the presence of complement (Woods et al., 1988; Laude e al., 1988; Callebaut et al. 

1988; Laude et al., 1990). There are 4 major antigenic sites on the S glycoprotein defined as 

site A, B, C and D (Gebauer et al., 1991). All antigenic sites are located in the N terminal half 

(543 amino acid residues) of the S glycoprotein (Correa et al., 1990). Only antigenic site A 

elicits neutralizing antibodies ( Callebaut et al., 1988; Laude et al., 1988; Sanchez et al., 1990). 

Antigenic site A is complex and is divided into 3 subsites, Aa, Ab and Ac (Correa et 

al., 1988). The amino acid residues in site A are intracellular, glycosylated and are located on 

the surface of TGEV. Amino acid residues involved in site A are 538, 591, and 543 for 

subsites Aa, Ab and Ac, respectively (Gebuaer et al., 1991). In addition, subsites Aa and Ab 

may overlap in residue 586 because change in residue 586 effects the conformation of both 

subsites. The amino acid sequence, 537 - MKSGYGQPIA - 547, which is highly conserved 

among TGEV may contribute partially to subsite Ac. This subsite may also contribute to 

protective immunity and is most likely crucial for diagnosis (Sanchez et al., 1990; Gebauer et 

al., 1991). Antigenic site A represents group specific epitopes which are shared by enteric 

TGEV and respiratory PRCV isolates (Sanchez et al., 1990). 

Other antigenic sites are also characterized. Antigenic site B contains type specific 

epitopes which are represented by enteric TGEV isolates (Sanchez et al., 1990). It consists of 

at least 3 conformational epitopes two of which overlap to each other (Gebauer et al., 1991). 

The residues involved in antigenic site Bare glycosylated residues 97 and 144. Antigenic site C 

contains linear epitopes which are non glycosylated (Correa et. al., 1990; Gebauer et al., 

1991). The amino acid residues involved in site Care residues 50 and 51. However, the 

consensus sequence of site C, deduced by PEPSCAN, is possibly 48 - P - PIS - N - S - DIE -

52 (Gebauer et al., 1991). In contrast to site A, Band D, antigenic site C is not accessible in 

the native form. Most TGEV isolates are conserved at antigenic sites B and C but vary in site D 
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(Wesley et al., 1990a). The residues involved in site Dare residues 381 (Gebauer et al., 1991) 

to 392 (Pothumus et al., 1990; Delmas et al. , 1990). 

Antigenic Relationship 

There is only one serotype of TGEV; however, TGEV is related to other coronaviruses 

(Saif and Wesley, 1992). TGEV and PRCV are closely related because hyperimmune serum 

against TGEV can neutralize PRCV. In contrast, TGEV shows no antigenic relationship to 

other porcine coronaviruses, porcine epidemic diarrhea virus or hemagglutinating 

encephalomyelitis virus. TGEV is related to feline infectious peritonitis virus (FIPV) and 

canine coronavirus (CCV) showing cross reactivity with TGEV to some degree by IFA and 

VN. However, they can be differentiated using a two way cross neutralization test (Reynolds et 

al., 1986). The monoclonal antibodies against non neutralizing epitopes of the spike protein of 

TGEV can recognize TGEV; however, it does not recognize FIPV, CCV or PRCV (Laude et 

al. , 1988; Callebaut et al., 1988; Sanchez et al., 1990). 

Porcine Respiratory Coronavirus (PRCV) 

History 

From the early 1980's, the incidence of TGE, the disease caused by TGEV, has 

decreased considerably in Europe. However, the serostatus of swine herd for TGEV increased 

without evidence of any clinical enteric disease (Pensaert et al., 1986; Jestin et al. , 1987b). A 

coronavirus, isolated from nasal swabs, was neutralized by antiserum to TGEV (Penseart et 

al., 1986), and was found to infect cells of the respiratory tract (Pensaert et al., 1989). In 

1990, the TGEV-like virus was also isolated from swine herds in the US (Hill, 1989; Wesley 

et al. , 1990a). Recent studies revealed that the virus seemed to be a TGEV like - mutant since 

there were deletion mutations of the viral genome when compared with those of TGEV. The 

virus was named porcine respiratory coronavirus because of its respiratory tropism (Pensaert et 

al., 1986; Wesley et al., 1990a; Paul et al., 1995). It is not clear whether PRCV emerged from 

the recombination of TGEV and related viruses or a mutation within the TGEV genome itself. 

Nevertheless, the evidence from genetic sequencing suggests that PRCV originated from 

TGEV (Laude et al. , 1993). In fact, the defective RNAs, discontinuous parts of the genomic 

RNAs, are normally found in infected cells. Thus, it is possible that dissociated RNA 

polymerase together with a nascent RNA may reassociate with the template downstream of the 

pause site, resulting in a deletion. 
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Genetic Relationship between TGEV and PRCV 

The pairwise alignments of the genomic RNAs and the translated ORFs of TGEV and 

PRCV show only a 3 % nucleotide and amino acid difference (Laude et al., 1993). This 

diversity results from deletion mutations and point mutations which are limited within the 5' 

half of the S gene and ORF 3a (Rasschaert et al., 1990; Britton et al., 1991; Page et al., 1991). 

Indeed, there are some differences in the mutations between European PRCV and USA PRCV 

isolates. Subsequently, both USA and European PRCV may have emerged from different 

mutational events (Laude et al., 1993; Paul et al., 1995). However, both of them possess S 

genes encoding the N terminus truncating S glycoproteins, and non - translated ORF 3a 

psuedogenes (Laude et al. , 1993). The evolutionary tree of 6 European PRCV and 5 TGEV 

isolates suggests that PRCV and TGEV have a common ancestor (Sanchez et al., 1992). 

The mutation within the S gene of PRCV is a large deletion of 672 - 681 nucleotides at 

the 5' end of the S gene of TGEV (Laude et al., 1993). All European PRCV isolates have a 

672 nucleotide deletion of the S gene (Sanchez et al., 1992). The deletions occur in the same 

position and cause a 224 amino acid truncated S glycoprotein. The number of deleted bases 

within the S gene of USA PRCV vary greatly. It is a 681 nucleotide deletion within the S gene 

of USA PRCV, ISU 1, which corresponds to 227 amino acid residues (Laude et al., 1993). 

Other USA PRCV isolates have 621 - 681 nucleotide deletions within the S gene (Vaughn et 

al., 1994; Vaughn et al., 1995). Without accounting for the deleted amino acids, the S proteins 

of PRCV and TGEV show a 98 % homology (Britton et al. 1991 ). Therefore, the S protein of 

PRCV and TGEV contain about 1206 - 1209 and 1431 - 1433 amino acid residues, 

respectively (Laude et al., 1993). Subsequently, the S glycoprotein produced by PRCV has a 

relative mass of 190 kD compared with that of 220 kD for TGEV (Rasschaert et al., 1990). 

The mutation within the ORF 3a of European PRCV and USA PRCV are also different, 

but the ORF 3b are the same (Laude et al., 1993). The ORF 3a of European PRCV has 3 

mutation events; a 13 nucleotide deletion including the hexameric IS, a 22 nucleotide deletion 

covering the AUG initiation codon, and a 36 nucleotide deletion (Laude et al. , 1993). These 

deletions destroy the transcription start site in which, consequently the ORF 3a is a 

pseudogene. In the ORF 3a of USA PRCV, there is a 5 nucleotide deletion, but IS or the 

initiation codon is intact which does not effect transcription. However, the consensus sequence 

is CUAAAU instead of CUAAAC which may cause ineffective transcription. In contrast, the 

ORF 3b of the PRCV genome has both IS and the start codon like that of TGEV. Thus, it can 

be transcribed into the 3 - 1 non structural protein (Wesley et al., 1989). In fact, gene 3 of 
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Purdue - 115, and FS 772 TGEV do not have the CUAAAC sequence downstream of the ORF 

3b but their ORF 3b encodes the same 3 - 1 products by a RNA framshifting mechanism. 

The ORF 4, M, N and 7 of PRCV and TGEV are 98 % homologous (Britton, 1991). 

The ORF 4 of PRCV shows 96 % homology to FS 772 and Purdue 115, but 100 % identity to 

Miller TGEV (Rasschaert et al., 1987; Britton et al., 1989; Wesley et al., 1989). There is no 

deletion or insertion within the N and 7 gene of PRCV when compared with those of TGEV. 

The relative mass of the M and N protein produced by PRCV and TGEV infected cells are 

similar (Rasschaert et al., 1990). 

Antigenic Relationship between TGEV and PRCV 

It has been known since 1984 that TGEV and PRCV are closely related, as polyclonal 

antibodies were not able to distinguish between TGEV and PRCV. By one way and two way 

viral neutralization tests, both viruses showed complete cross reactivity (Callebaut et al., 

1988). By immunoblotting using polyclonal antiserum, their antigenicities could not be 

differentiated using S, M and N antigens (Callebaut et al., 1988). However, monoclonal 

antibodies elicited to some epitopes of TGEV were unique for TGEV which would therefore 

differentiate PRCV from TGEV. 

TGEV and PRCV have several common antigenic determinants, but recent studies 

show that some epitopes are not present on PRCV. Antigenic site A with neutralizing activity is 

fully shared between TGEV and PRCV because monoclonal antibodies against these antigenic 

sites neutralize both TGEV and PRCV (Callebaut, 1988; Laude et al., 1988; Sanchez et al., 

1990). PRCV possesses the deleted S gene whose products are the truncated S glycoprotein 

(Rasschaert et al., 1990; Britton et al. 1991; Wesley et al., 1991). The deletions are 224 to 227 

amino acid residues which may include antigenic sites B, C and D since the monoclonal 

antibodies against the epitopes within these sites do not recognize PRCV (Callebaut, 1988; 

Laude et al., 1988; Sanchez et al., 1990). Indeed, Laude et al. (1988) found that there is some 

cross reactivity at site D between TGEV and PRCV, as some residues involved in the 

conformational epitopes of site D come from outside the truncated domain. 

In addition to the S antigen, TGEV and PRCV also exhibit M and N antigens. 

Monoclonal antibodies against the epitopes within the M and N protein of TGEV can recognize 

PRCV (Callebaut, 1988; Laude et al., 1988; Sanchez et al., 1990). However, about 30 

residues of the N terminus of the M protein of TGEV which are extruded from the virion 

envelope do not react with 3 PRCV isolates (Laude et al., 1988). On the other hand, the 

epitopes within the C terminus of the M protein are conserved between TGEV and PRCV 

because of their cross reactivities. 
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Tissue Tropism 

TGEV causes an enteric disease because the virus itself has a tropism for the 

gastrointestinal tract, but some strains of TGEV replicate in other organs. TGEV receptors on 

the host cell membrane are aminopeptidase N (APN) which are abundant on the brush border 

of the intestinal villi (Delmas et al., 1992a). Therefore, TGEV can infect the mucosal epithelial 

cells of intestinal villi. However, most of TGEV strains also replicate in the cells of the 

respiratory tract and alveolar macrophage (Wesley, 1990b; Britton, 1992; Laude et al., 1993). 

The Nebraska strains of TGEV are found to have respiratory tropism, so called respiratory 

TGEV (Underdhal et al., 1978; Laude et al., 1993). The antigenic sites of TGEV for APN 

receptors are likely to be antigenic sites AID and B/C on the globular domain or N - terminal 

half of the S glycoprotein (Sanchez et al., 1992) because monoclonal antibodies against site A 

and D inhibit virus binding (Sanchez et al., 1992) and decrease multiplicity of TGEV in ST 

cells (Sune et al., 1990). 

The cell receptor for PRCV seems to be APN, as it is for TGEV (Laude et al., 1993). 

The APN is also expressed on epithelial cells of the respiratory tract. In fact, anti APN 

monoclonal antibodies can inhibit the multiplication of PRCV (Delmas et al., 1992b ). 

Additionally, cells resistant to PRCV replication when transfected with cDNA encoded for 

APN could support growth of PRCV (Laude et al., 1993). Interestingly, PRCV has respiratory 

tropism instead of enteric tropism. However, it can replicate to a limited extent in epithelial cells 

of the intestinal villi (Paul et al, 1995). 

The mechanism of the difference in tissue tropism of TGEV and PRCV is unclear but it 

may be due to genetic deletions. The deletion region in the S gene of PRCV includes B and C 

antigenic sites (Sanchez et al., 1992) which may be the enteric receptor binding sites that 

TGEV uses for attachment. The four residue changes in the S protein of respiratory TGEV 

(residue 219 of NEB 72 and residues 92, 94 and 218 of TOY 56) are located within the 

deletion region of the PRCV S protein. This assumption might not be true since receptors on 

host cell membrane for both TGEV and PRCV are APN which are expressed in either 

respiratory tract or enteric tract (Laude et al., 1993). However, the deletion in the S gene of 

PRCV may result in an unstability of the globular part of the S glycoprotein in gastroenteric 

tract (Laude et al. 1993) which could effect the attachment of viruses to cells. In addition, the 

deletion of ORF 3a may lead to respiratory tropism of PRCV (Laude et al. 1993) since the 

TGEV adapted strains, which produce small plaque (SP) size, have a reduced ability to grow in 

intestinal cells (Wesley et al., 1990b). SP strains of TGEV also have a deletion of 462 

nucleotides downstream of the S gene including ORF 3a but have a normal S gene (Wesley et 
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al., 1990b; Britton et al., 1992). Indeed, several cell types, which are conducted to stably 

express APN, could support growth of TGEV in different levels (Delmas et al., 1992b). Other 

factors that influence the replication cycle of the viruses may effect tissue tropism of viruses 

(Laude et al., 1993). 

Transmissible Gastroenteritis (TGE) 
Transmissible Gastroenteritis (TGE) is a disease caused by TGEV. This disease is 

classified in to 2 forms, epizootic and enzootic TGE (Saif and Wesley, 1992). The epizootic 

feature seems to be seasonal in appearance which is most prevalent in winter. This may be due 

to the characteristics of the virus which is easily labile at warm temperature and to sun light 

(Haelterman, 1962). The susceptible herds may become infected by addition of carrier pigs 

from infected herds. The infected pigs can shed TGEV in their feces for up to 2 weeks 

(Pensaert et al., 1970a) and via respiratory tract for up to 11 days (Kemeny et al., 1975). 

Clinical Signs 

Epizootic TGE occurs in swine herds in which most or all animals are susceptible (Saif 

and Wesley, 1992). The disease spreads rapidly to swine of all ages, but high mortality occurs 

in suckling pigs under 2 weeks of age. However, pigs over 3 weeks of age normally survive. 

The typical clinical signs in piglets are; transient vomiting, concomitantly or rapidly followed 

by profuse watery diarrhea, rapid weight loss and dehydration (Saif and Wesley, 1992). 

Clinical signs in growing and finishing pigs are inappetance and diarrhea for a few days. Some 

lactating sows may show a very sick appearance with fever, agalactia, vomiting, inappetance 

and diarrhea (Saif and Wesley, 1992). The incubation period of the virus is approximately 18 

hours to 3 days. Therefore, most of the pigs in the herd will be affected within 2 - 3 days. 

Enzootic TGE refers to a persistence of the virus and disease in a herd which 

periodically results in an outbreak in susceptible animals such as weaning piglets and 

replacement swine (Saif and Wesley, 1992). The susceptibility of animals and severity of the 

disease are associated with the immune status of those animals. In herd replacements, TGEV 

spreads slowly among adult swine. The outbreak in piglets after weaning is common because 

viral exposure exceeds the passive immunity of pigs (Saif and Wesley, 1992). The pigs will 

show signs of TGE after weaning from 6 days to 2 weeks. Clinical signs of enzootic TGE are 

similar to but are less severe than those of epizootic TGE. Mortality is also low. The disease 

will perpetuate in the herd as long as susceptible animals or immune deprived piglets are 

exposed to TGEV. 
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Pathogenesis 

In the gastrointestinal tract, TGEV can survive in acidic condition and in the presence of 

proteolytic enzymes (Saif and Wesley, 1992). Subsequently, virus particles attach to epithelial 

cells of the villi of the small intestine. The infected cells are rapidly destroyed and lose their 

functions in digestion and absorption (Moon, 1978), resulting in diarrhea. The extensive 

destruction by viruses results in atrophy of villi which is most severe in jejunum and ileum, but 

is seldom found in the proximal part of duodenum (Hooper and Haelterman, 1966). Both virus 

production and villous atrophy are severe in newborn piglets rather than in piglets over 3 

weeks of age (Moon et al., 1973) because the 3 - week old pigs replace villous epithelial cells 3 

times more rapidly than neonatal pigs (Moon, 1978). The immune status also plays an 

important role in protecting cells from viral infection since the older pigs are more resistant to 

TGE. 

Although the enteric tract is the most important replication site of TGEV, virus can 

multiply in other organs. TGEV was found in alveolar macrophages of infected neonatal pigs 

and cell culture adapted TGEV can replicate in alveolar macrophage cultures (Laude et al., 

1984). Some TGEV such as a highly attenuated strain of TGEV has been found in the 

respiratory tract of pigs. TGEV can also replicate in the mammary glands and is shed in milk 

(Kemeny and Woods, 1977), which serves as a source of infection for piglets. 

The most severe TGEV - induced lesions are found in the gastrointestinal tract of 

suckling piglets with severe dehydration (Saif and Wesley, 1992). The stomach are full of 

curdled milk. The small intestine is distended with yellow and foamy fluid and the intestinal 

wall is thin due to villous atrophy. A lack of chyle absorption is observed in lacteals of 

mesentery. The shortened villi appear in both the jejunum and the ileum. The ratio of the length 

of jejunal villi, and the depths of crypts of Lieberkuhn, decreases from 3: 1 to 1: 1 in severe 

cases of TGEV - induced villous atrophy. Transmission EM of TGEV infected epithelial cells 

reveals that the viral particles are in cytoplasmic vacuoles within villous enterocytes, as well as 

in M cells, lymphocytes and macrophages in Peyer's patches (Thake, 1968; Wagner et al., 

1973; Chu et al., 1982a). 

PRCV Associated Disease 

Although PRCV was first isolated from normal swine and thought to be non -

pathogenic, some experiments and field observations have shown that, in young piglets, it can 

cause a mild to moderate respiratory disease without enteric signs (O' Toole et al., 1989; Cox 

et al., 1990a; Laval et al., 1991; Halbur et al., 1993). Anorexia, fever and coughing are the 

main clinical signs. In severe cases, dyspnea, polypnea, short lasting fever and prostration may 
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appear (Vannier, 1990). Young piglets are much more susceptible to the disease than adults. 

Therefore, the older pigs may be asymptomatic following aerosal infection (Cox et al., 1990b). 

The virus can be isolated from nasal mucosa, tonsils, trachea, lung, stomach and small 

intestines (O' Toole et al., 1989; Cox et al., 1990a). However, in aerosol infected piglets, the 

viruses are found in mesenteric lymph nodes and in the colon. The virus particles may reach 

the intestine via ingestion or viremia from the respiratory tract (Laude et al., 1993). 

Diagnosis 

TGE shows very distinctive clinical signs and characteristic lesion of villous atrophy 

(Bohl 1981). Differential diagnosis should include rotavirus, porcine epidemic diarrhea virus 

and coccidia which may produce profuse watery diarrhea with villous atrophy. Laboratory 

diagnosis of TGEV may be achieved by one or more methods, such as detection of viral 

antigen, detection of viral nucleic acid, identification of the virus or detection of antibody 

response. Yet, PRCV is closely related to TGEV in both genetic and antigenic properties which 

requires more specific differential procedures. 

The viral particles can be detected in feces and in the intestinal contents of infected 

animals by negative - contrast transmission EM (Saif et al., 1977). Sensitivity of diagnosis 

may be enhanced using immune EM (IEM) to differentiate TGEV from other enteric viruses. 

TGEV and PRCV may be distinguished using monoclonal antibodies. 

TGEV antibodies have been detected by several different serological tests (Saif and 

Wesley, 1992). The most common serological method is the VN test. However, polyclonal 

antibodies and some monoclonal antibodies can not discriminate between TGEV and PRCV. In 

addition, a variety of serological techniques such as IFA, immunodiffusion, passive HA and 

ELISA have been applied for diagnosis. Other recently developed methods are, blocking 

ELISA, indirect immunoperoxidase, radioimmunoprecipitation and modified autoradiography 

(Saif and Wesley, 1992). 

A competitive inhibition ELISA or blocking ELISA can differentiate antibodies to 

PRCV from those to TGEV with the same sensitivity as when detected by a viral neutralization 

(VN) test (Callebaut et al., 1989). The competitive inhibition ELISA has been developed using 

TGEV as the coating - antigen. The dilutions of test sera are reacted with the fixed antigen. Anti 

- TGEV serum blocks the binding of mouse monoclonal antibody raised against antigenic site 

B of S glycoprotein (Callebaut et al., 1988). Therefore, it gives a negative result when detected 

with peroxidase - mouse IgG conjugate. In contrast, anti - PRCV serum does not recognize the 

antigenic site B of S glycoprotein, giving a positive signal. By this method, pigs infected with 
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PRCV can be differentiated from those infected with TGEV (Callebaut et al., 1989; Laude et 

al., 1993). 

Viral antigen can be detected in epithelial cells of the small intestine (Saif and Wesley, 

1992). Infected pigs should be euthanized at the early stages of diarrhea for collection of 

mucosa} scrapings or frozen sections from jejuni and ileum. These specimens are examined by 

FA, IFA or a immunoperoxidase method. Cross reactions may occur among TGEV, PRCV, 

FIPV and CCV. 

TGEV could be differentiated from PRCV based on genetic differences. Both PCR and 

hybridization techniques have been developed to detect TGEV genomic RNA in fecal samples 

or infected tissues (Shockley et al., 1987; Benfield et al. , 1991; Vaughn et al., 1994). Since 

PRCV has a 672 - 681 nucleotide deletion in the S gene, the relative mass of the PCR product 

of the PRCV S gene is lower than that of the TGEV S gene (Vaughn et al., 1994). Moreover, 

RNA probes for hybridization have also been derived from the 5' end of the S gene of TGEV 

which can differentiate between TGEV and PRCV. Recently, in situ hybridization (ISH) has 

been developed that can detect nucleic acid of TGEV in formalin - fixed tissue (Sirinarumitr et 

al., 1995). This technique applies not only to diagnostic testing for the differentiation of TGEV 

and PRCV, but also in studies of virus pathogenesis. 

Isolation and Identification of Virus 

A swine testicle cell line has been used for detecting field strains of TGEV and PRCV 

(McClurkin, 1966; Kemeny, 1978; Bohl, 1979; Pensaert and Cox, 1989; Vaughn et al., 

1993). The presence of the virus in the cells may be observed by CPE, plaque production, VN 

and IFA. The CPE or plaque formation may be enhanced by using older cells (Stark et al., 

1975) and adding pancreatin or trypsin to the cell culture media (Bohl, 1979; Woods, 1982). 

The CPE produced by PRCV resembles that of TGEV plus syncytia formation (Pensaert and 

Cox, 1989). 

Immunity 

Adult swine infected with TGEV are immune against TGEV but only local immunity is 

protective (Saif and Wesley, 1992). Swine infected orally develop both serum and mucosa! 

antibodies. Serum antibodies can be detected in serum for 6 months to several years after 

infection (Stepanek et al., 1979), but serum antibodies provide little protection against TGEV 

reinfection (Haelterman, 1965; Harada, 1969). In contrast, local mucosa! immunity, induced 

by oral but not parenteral inoculation with TGEV can protect swine from subsequent TGEV 

exposure (Kodama, 1980; Sprino and Ristic, 1982). The prominent class of local 
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immunoglobulin is secretory IgA (sigA) which covers along the gut mucosa (Kodama, 1980). 

CMI also appears in infected swine but no direct evidence has been presented as to the role of 

CMI in the resistance of swine against TGEV (Saif and Wesley, 1992). However, it is believed 

that CMI may play a role in either recovery from TGEV infection or resistance to reinfection. 

Sows recovered from TGE can transmit passive immunity to their suckling piglets via 

colostrum (Saif and Wesley, 1992). Since newborn piglets lack immunity to TGEV, passive 

immunity is important for immediate protection against TGEV. In the first week of parturition, 

the IgG class is dominant in colostrum which crosses piglets' enterocytes and provides serum 

antibodies (Porter and Allen, 1972; Bourne, 1973). The circulatory antibodies protect against 

systemic infection but not intestinal infection (Hooper and Haelterman, 1966). After a week, 

IgG in milk decreases while sigA in milk is predominant (Porter and Allen, 1972). Secretory 

IgA will not be absorbed by the piglets but provides local immunity against TGEV in the gut 

tract (Roux et al., 1977), by neutralizing ingested TGEV. IgA class is produced only by oral 

immunization of sows but not by parenteral or systemic infection. 

Vaccines have been developed to induce protective immunity for both piglets and sows. 

Live attenuated and inactivated TGEV vaccines are available for oral or intraperitoneal 

administration after birth (Saif and Wesley, 1992). Orally vaccinated newborn piglets require 5 

days for active immunity development which obviously can not provide immediate protection 

against TGEV for the first few days of life (Pensaert, 1979). Immunization of suckling or 

feeder pigs could decrease mortality rate of enzootic TGEV. However, the presence of maternal 

antibodies in these pigs can suppress active immunity (Furuuchi et al., 1978; Hess et al., 

1982). Vaccination of pregnant swine increases passive immunity for suckling piglets via 

colostrum and milk. There are several vaccine preparations for immunization of pregnant dams 

such as virulent, attenuated, inactivated and subunit vaccines which may be inoculated via oral, 

intranasal, intramuscular and intramammary routes (Saif and Wesley, 1992). Oral 

administration of virulent autogenous viruses induces the highest level of immunity, 

consistently producing higher titers of persisting IgA in milk (Saif and Wesley, 1992; Paul et 

al., 1988). 

The wide prevalence of PRCV in swine herds seems to overcome the prevalence of 

epizootic TGE, since TGE outbreaks have declined concomitantly with the increases in the 

occurrence of PRCV infection (Pensaert and Cox, 1989). This suggests that PRCV infected pigs 

are partially immune to TGEV infection (Pensaert, 1989; Pensaert and Cox, 1989). Sows 

oronasally infected with PRCV after natural exposure to PRCV secrete sigA in their milk but the 

level of antibody rapidly decrease approximately 24 weeks after infection (Laude et al., 1993). 
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However, natural infection of sows with TGEV followed with PRCV infection during pregnancy 

stimulates slgA production against TGEV which can protect offspring (Duen et al., 1990). Sows 

first infected with PRCV develop rapid secondary immune response against TGEV with higher 

lactogenic IgA (Pensaert, 1989, Pensaert and Cox, 1989). Lactogenic protection in piglets from 

TGEV immune sows is higher than in piglets from PRCV immune sows (De Diego et al., 1992). 

However, Paton and Brian (1990) reported that no cross protection occurs between PRCV and 

TGEV via sow' s milk. 
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3. MATERIALS AND METHODS 

Cell Culture 

The swine testis (ST) cell line (McClurkin and Norman, 1966) was used to propagate 

TGEV and PRCV. The ST cells were cultured in Eagle's minimum essential medium (MEM; 

Gibco BRL, Grand Island, NY) supplemented with 10 % fetal bovine serum (FBS; Gibco 

BRL, Grand Island, NY), sodium bicarbonate (2.0 g/l) (Fisher Scientific, Fair Lawn, NJ), 2 

% L - glutamine (Gibco, Grand Island, NY) and lactalbumin enzymatic hydrolysate (5.0g/l) 

(Sigma, St. Louis, MO). The ST cell lines were grown in 75 cm2 flasks (Coming, Cambridge, 

MA) at 37° C in a humid 5 % C02 atmosphere and subcultured every 3 - 4 days. 

Viruses 

The Miller strain (American Type Culture Collection, Rockville, MD) was used as the 

standard TGEV strain in this study. The VMRI 5170 and NVSL 5170 isolates were obtained 

from diarrheic pigs. 

VMRI 5170 and NVSL 5170 isolates are the viruses isolated from suckling pigs in a 

herd with enteric disease in 1995 (Halbur et al. , 1995). Approximately 15 - 20 % of sows and 

almost 100% of weaned pigs had diarrhea which suggested periodical TGE since November, 

1994. However, the causative agent was still unclear. The fecal samples and tissues from 

neonatal pigs with diarrhea were then sent to Iowa State University - Veterinary Diagnostic 

Laboratory for definitive identification of enteric pathogens. Microscopic examination of 

intestinal section demonstrated severe atrophic enteritis. Electron microscopic examination of 

feces demonstrated a large number of atypical coronavirus like particles. Fluorescent antibody 

examination of frozen tissues demonstrated weak positive staining using anti - TGEV 

polyclonal antibodies. The fecal samples were also cultured on ST cells at Veterinary Medical 

Reseach Institute and National Veterinary Service Laboratory. Cytopathic effect typical of 

TGEV was observed in both laboratories. The isolates were called VMRI 5170 and NVSL 

5170. By In situ hybridization, performed at VMRI, the tissue sample demonstrated a weak 

positive signal. Finally, RT - PCR was performed on RNA isolated from the viruses 

propagated on ST cells. Initial results revealed that the VMRI 5170 isolate was TGEV while 

NVSL 5170 isolate was PRCV. 
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Virus Plaque Purification 

The 2 viral isolates and a standard virus, Miller strain of TGEV, were plaque purified a 

total of three times. Ten - fold serial dilutions of the viral isolates were prepared as inoculum. 

Four-day-old ST cell monolayers in six-well plates were inoculated with 0.5 ml of each virus 

and then incubated at 37° C for 1 hour. After incubation, the inoculum was removed, and the 

ST cell monolayers were overlaid with 2 ml of a mixture of Eagle's basal medium (BME; 

Gibco BRL, Grand Island, NY) and 2% agarose (FMC Bioproducts, Rockland, ME) 

containing 0.0016% neutral red (Fisher Scientific, Fair Lawn, NJ) and 30 mM sodium 

bicarbonate. The plates were placed in the dark at room temperature until the agarose became 

solid and then incubated at 37° C for 2 days. The virus was collected from individual plaques 

by aspirating infected cells and agarose with a sterile Pasteur pipette. The agarose plugs 

containing TGEV-infected cells were transferred into tubes containing 1 ml of MEM with 2 % 

FBS and 1 % antibiotics - antimycotics (GibcoBRL, Grand Island, NY). The tubes were 

frozen and thawed three times and clarified by centrifugation at 2,000 rpm for 10 minutes. The 

viral suspension was diluted ten - fold for further plaque purification. This procedure was 

replicated three times. The viral stocks were stored at -70° C. 

One Step Growth Curves 

Each strain of virus was inoculated on 4 day old ST cells cultured in 12 well plates 

(Coming, Cambridge, MA) at a MOI of 1 pfu/cell. At each time point from 0 to 96 hours post 

inoculation, the media was collected and the infected cells were scraped and transferred into a 

tube. The virus - cell suspension was frozen at -70° C and thawed 3 times and then clarified by 

centrifugation at 2,000 rpm for 10 minutes. The virus suspension was inoculated on 2 - 3 day 

old ST cells seeded in 96 - well plates, 8 wells each, and then incubated at 37° C in a C02 

incubator. After 72 hours post inoculation, the cultures were observed for CPE. The reciprocal 

of the highest dilution that was infectious for cell cultures was the virus titer. One step growth 

curves were generated for each virus. 

Plaque Size Measurement 

Four to five day old ST cells cultured in 6 - well plates (Coming, Cambridge, MA) 

were inoculated at a 0.001 MOI for each strain of virus. One hour post inoculation, the 

inoculum was removed and replaced with 2 % Sea Plaque agarose (FME bioproducts, 

Rockland, NY) in an equal amount of BME (Gibco, Grand Island, NY) containing 0.0016 % 

neutral red (Fisher Scientific, Fair Lawn, NJ) and 30 mM sodium bicarbonate. The plates were 
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placed in the dark for 15 minutes and then incubated at 37° C. At 48 hours post inoculation the 

diameters of plaques were randomly measured in one direction. Sixty plaques of each strain of 

viruses were recorded and analyzed statistically using the ANOV A procedure. 

Virus Neutralization Test 

Hyperimmune serum or monoclonal antibodies, MHl 1 and MH5, directed against 

conserved epitopes on the S glycoprotein of TGEV were serially diluted two - fold in 96 - well 

plates from 1: 100 to 1: 102,400. Eight wells were used for each serum dilution. Diluted serum 

or monoclonal antibodies were mixed with 50 µl of MEM containing 100 pfu of the virus and 

incubated for 1 hour at 37° C. One hundred µl of ST cell suspension at a concentration of 5 x 

105 cells/ml were dispensed into each well. The plates were incubated at 37° C for 48 hours 

and the cultures were observed for CPE. The experiment was replicated 6 times. The VN titer 

of the tested serum, resulting from the last dilution of serum neutralizing TGEV, was calculated 

from the average of the 6 values by the regression analysis procedure. 

Radioimmunoprecipitation Assay (RIP) 

Metabolic Labeling 

Radioimmunoprecipitation was used to determine differences in the migration of viral 

structural proteins. The ST cells infected with the Miller strain, the NVSL 5170 or the VMRI 

5170 isolate, and mock-infected cells were labeled with 35S-methionine-cysteine. The viruses 

were inoculated into 3-day-old ST cells in 25 cm2 flasks at a MOI of 0.1 pfu/cell. Inoculum 

was removed after 16 hours post inoculation and Met - Cys deficient DMEM (ICN, Costa -

Mesa, CA) was added. After 1 hour of incubation at 37° C, the spent media was decanted and 

replaced with fresh Met - Cys free DMEM containing 100 µCi/ml35S-methionine-cysteine 

(ICN, Costa Mesa, CA). Four hours after adding 35S-methionine-cysteine, the spent media 

was removed and the infected cell monolayers were washed 3 times with cold PBS. 

Subsequently, 1 ml of lysis buffer (Cellular labeling and immunoprecipitation kit, Boehringer 

Mannheim, Indianapolis, IN) was added into each flask. ST cells were then scraped from the 

surface of the flasks and transferred into 1.5 ml microfuge tubes. The cell - lysis buffer 

suspensions were vortex mixed vigorously for 1 minute and then incubated on ice for 30 

minutes. Then, the suspensions were centrifuged at high speed at 4° C for 15 minutes. The 

supernatant was collected and stored at -20° C until needed. 
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Immunoprecipitation 

Lysate (50 µl) was clarified by incubating with 20 µl of protein A coated sepharose 

beads (Sigma, St. Louis, MO) for 1 hour at 4° Con a rocking platform. The clarified lysate 

was allowed to react with 1 µl of the hyperimmune serum or monoclonal antibody, MH 11, for 

3 hours at 4 ° C on a rocking platform. Immune complexes were collected by adding protein - A 

- coated sepharose beads (Sigma. St. Louis, MO) and incubated overnight at 4° C on a rocking 

platform. The antigen-antibody complexes were washed by rinsing twice with wash buffer I, 

twice with wash buffer II, once with wash buffer III and twice with deionized distilled water as 

the method described in the cellular labeling and immunoprecipitation kit (Boehringer 

Mannheim, Indianapolis, IN). These immune complexes were resuspended in 30 µl Laemmli 

sample buffer (Bio - Rad, Hercules, CA) and heated for 3 minutes in a boiling water bath. The 

protein - bead mixtures were centrifuged at high speed for 30 seconds, and the supernatants 

were electrophoresesed through a 10 % SDS-polyacrylamide gel at 100 volts for 15 minutes, 

and 150 volts for 1 hour, respectively. 

Autoradirography 

The electrophoresed gel was fixed in acid - methanol (1 % formic acid and 31.25 % 

methanol) for 15 minutes and then washed 3 times with deionized water. The radioactive 

signals were enhanced by incubation of the fixed gel in 50 volumes of Enlightening™ (NEN, 

Boston, MA) for 30 minutes on rocking platform. Subsequently, the gel was vacuum dried for 

90 minutes at 65° C, and was then exposed to biomax film (Kodak, Rochester, NY) overnight 

at -70° C. 

Sequence Analysis 

RNA Extraction 

Viral RNAs were isolated from TGEV or PRCV infected ST cells by using a RNA 

isolation kit (Strategene, La Jolla, CA). Four day old ST cells grown in 75 cm2 flasks were 

inoculated with NVSL 5170 or VMRI 5170 isolates and then incubated until approximately 50 

% CPE was observed. The spent media was decanted and replaced with 2 ml of cold solution 

D (provided by the kit) in each flask. The flasks were swirled gently for 30 seconds at room 

temperature to lyse the cells and denature all proteins. The suspensions in 5 flasks were 

transferred into a chilled polypropylene tube. Then 0.5 ml of 2 M sodium acetate and 5 ml of 

phenol were added into each tube immediately, and thoroughly mixed. Subsequently, 1 ml of 
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chloroform: isoamyl alcohol was added into the mixture, vortex mixed vigorously for 10 

seconds and incubated on ice for 15 minutes. The suspension was transferred into a prechilled 

thick - wall Nalgene 50 - ml round - bottom centrifuge tube and centrifuged at 10,000 x g for 

20 minutes at 4° C. The aqueous phase was transferred to a tube and mixed with an equal 

volume of isopropanol. The RNA was precipitated by chilling the RNA - isopropanol mixture 

at -20°C for 1 hour. The mixture was centrifuged at 10,000 x g for 20 minutes at 4° C and then 

the supernatant was discarded. The quality of RNA was improved by dissolving the pellet in 3 

ml of solution D and precipitating with 3 ml of isopropanol. The RNA - isopropanol mixture 

was dispensed in 100 µl volumes into 0.5 ml microfuge tubes and stored at -20° C for 1 hour 

or until used. The chilled RNA - isopropanol mixture was thawed and pelleted at 10,000 rpm 

for 10 minutes at 4° C. The supernatant was removed and the pellet was dried under vacuum 

for 3 - 5 minutes. The RNA pellet was resuspended in 10 µl of sterile DEPC - treated water. 

cDNA Synthesis 

cDNA was synthesized using the cDNA cycle kit for RT-PCR (Invitrogen, San Diego, 

Calif). RNA samples in the previous step were transferred using 7 µl of each into 0.5 ml 

microfuge tubes. Then, 1 µl of random primer and 4 µl of DEPC - treated water was added into 

the tubes and mixed well. The tubes were placed in a 65° C water bath for 10 minutes to 

denature the secondary structure of RN As. The tubes were then left at room temperature for a 

few minutes to let the primer anneal. Subsequently, 4 µl of 5 x RT buffer, 1 µl of dNTP, 1 µl 

of 80 mM sodium pyrophosphate, 1 µl of RNase inhibitor and 1 µl of reverse transcriptase 

were' added into each tube and mixed well. For cDNA synthesis, the mixture was then 

incubated in a 42° C water bath for 60 minutes. 

Polymerase Chain Reaction (PCR) and Sequence Analysis 

PCR-amplified fragments were obtained using cDNA-RNA heteroduplexes as 

templates and following the basic PCR protocol (Gibco BRL, Gaithersburg, MD). The 

components of the PCR mixture in each reaction were 10 µl of 5 x PCR buffer (Gibco BRL, 

Gaithersburg, MD), 2 mM dNTP, 6 µl of 50 mM MgC12, 10 µl of 2 mM forward primer, 10 µl 

of 2 mM reverse primer, 4 µl of cDNA template, 5 units of Taq DNA polymerase (Gibco BRL, 

Gaithersburg, MD) and sterile distilled water to 100 µl. Thirty cycles of 92° C for 30 seconds 

for denaturation, 48° C for 30 seconds for annealing and 72° C for 45 seconds for primer 

extension were performed in a thermocycler (Gene Amp PCR system 2400, Perkin Elmer). 

The primers used in the PCR reaction are shown in Table 2. The PCR products were 
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electrophoresesed through a 0.8% agarose gel and then extracted from the gel using the QIAEX 

II Gel Extraction kit (QIAGEN, Germany). The extracted DNA was sequenced using the 

primers presented in Table 3, by an automated fluorescent method using ABI 377 at the DNA 

sequencing facility, ISU. The positions and primers used in PCR and sequence analysis are 

presented in Figure 1. The base sequences were analyzed and DNA fragments were combined 

using the Mac Vector program. The combined fragments were compared by the Gene Works 

program. 

Table 2: primers and their sequences used for amplification 

name sequence(5' -->3') direction base range 

1 185 AGGGTAAGTTGCTCATTAG forward -50 - -32 

2 2F CAA ACA ACG GIT AAA CGT forward 297 - 316 

AG 

3 5FC CGC TTC ATA CCA AGA CCA reverse 1599-1616 

4 4FF GTATCTAGGAACATT ACCA forward 1224-1242 

5 6RR GTT AGAATAGGTTATGACAG reverse 2393-2412 

6 6FF TTACACATCACT ATCAGGT forward 2130-2148 

7 4RR CCT TGT GGG TTG ACA ACA T reverse 3308-3326 

8 4RC AGA TGT TGT CAA CAC ACA A forward 3306-3324 

9 2R GCC TAT TAG TAG CCA CAC reverse 4171-4188 

10 5RC CGT TGT ACA GGT GGT TAT G forward 2941-2959 

11 3RR CTG GAC ATC TIT AAC GAC reverse 3736-3573 

12 3RC GTC GTT AAA GAT GTC CAG forward 3736-3753 

13 662 ATTGATGCT AATGACCATTC reverse 5495-5514 

Note : The primer 2F was used for VMRI 5170 gene amplification only 
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Table 3: Primers used for DNA sequencing 

name sequence(5' -->3') direction base range 

1 185 AGGGTAAGTTGCTCATTAG forward -50 - -32 

2 2F CAA ACA ACG GTT AAA CGT AG forward 297 - 316 

3 3FF GATCAA TGTGCTAGTTATG forward 657-675 

4 5FC CGC TTC ATA CCA AGA CCA reverse 1599-1616 

5 4FF GTATCTAGGAACATT ACCA forward 1224-1242 

6 5FF CAGGAT AACAACACCGAT forward 1672-1689 

7 6RR GTTAGAATAGGTTATGACAG reverse 2393-2412 

8 6FF TTACACATCACT ATCAGGT forward 2130-2148 

9 6RC CGT CAC ACA TTC TGA TGG forward 2451-2468 

10 GAPl GCT CTT GGC TAG AAG GTC forward 2807-2824 

11 4RR CCT TGT GGG TTG ACA ACA T reverse 3308-3326 

12 4RC AGA TGT TGT CAA CAC ACA A forward 3306-3324 

13 2R GCC TAT TAG TAG CCA CAC reverse 4171-4188 

14 5RC CGT TGT ACA GGT GGT TAT G forward 2941-2959 

15 3RR CTG GAC ATC TTT AAC GAC reverse 3736-3573 

16 3RC GTC GTT AAA GAT GTC CAG forward 3736-3753 

17 583 CTA TTG AAA AAG TGC ACG TC reverse 

18 662 ATTGATGCT AATGACCATTC reverse 5495-5514 

19 EV048 GCA TAG GTC CTA AAA GTG TCl forward 

TTG 

Note: The primer 2F was used for VMRI 5170 gene sequencing only 
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Figure 1: The positions and the primers used in DNA amplification and sequence analysis. 

The thick line indicates S gene and ORF 3/3 .1 regions of the genome of TGEV. Each thin line 

shows the amplified fragment. The letters and numbers are the names of the primers while the 

arrows indicate the direction of the amplification leaded by the primers. 
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4.RESULTS 

One Step Growth Curve 

The titers of the three viruses exhibited the same pattern at each time point. The average 

titers that represented the TCID50 of each virus and time points are shown in Table 4. 

However, the highest titer of each virus at a certain time point is different. The Miller strain of 

TGEV reached the highest titer, 106·25, at 30 hour post inoculation while those of PRCV isolate 

NVSL 5170, and TGEV isolate VMRI 5170 were 106·63 and 105·63 at the time points of 46 and 

54 hour post inoculation respectively. The log10 of the virus titers were plotted to create 3 

growth curves demonstrated in Figure 2. There was no difference among the growth curves of 

the three viruses (p = 0.63) using one way ANOV A. 

Plaque Size Measurement 

The Miller strain of TGEV, TGEV isolate VMRI 5170, and PRCV isolate NVSL 5170 

produced almost round plaques at 48 hour post inoculation. The diameters of the plaques of 

Table 4: The average titers of the Miller strain of TGEV, the TGEV isolate, VMRI 5170, and 

the PRCV isolate, NVSL 5170, at each time point. 

Virus Strain 

Time(h.p.i.) TGEVMiller PRCV NVSL 5170 TGEV VMRl 5170 

0 0 0 0 

5 102.5 102.75 10325 

11 104.0 103.75 104.13 

18 105.13 1045 104.38 

22 106.0 1055 105.0 

30 106.25 105.5 105.0 

38 105.38 106.13 105.63 

46 105.63 106.63 105.5 

54 I 05.25 106.5 105.63 

66 104.75 10613 104.75 

80 10325 105.5 103.75 

90 102.52 10488 103.25 

Note: Cell culture were moculated with TGEV or PRCV at 1 MOI 
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Table 5: Diameters of plaques of the Miller strain of TGEV, the TGEV isolate, VMRI 5170, 

and the PRCV isolate, NVSL 5170. 

Plaque No. TGEV Miller PRCV NVSL 5170 TGEV VMRI 5170 
1 1.925 0.950 2.650 
2 2.500 0.950 3.200 
3 2.400 0.825 2.300 
4 3.375 0.500 2.900 
5 2.425 1.300 3.450 
6 2.400 0.400 1.600 
7 2.725 1.050 2.675 
8 2.575 0.850 2.700 
9 2.450 0.700 2.575 
10 2.975 1.200 3.000 
11 3.050 1.450 2.675 
12 2.000 0.975 2.000 
13 2.425 1.175 3.175 
14 2.450 1.175 2.200 
15 3.400 1.675 2.300 
16 3.175 1.000 2.450 
17 2.000 1.025 2.850 
18 3.350 1.000 2.800 
19 3.200 1.025 1.650 
20 1.925 1.500 2.000 
21 2.000 1.000 2.200 
22 2.500 0.900 2.900 
23 2.950 1.150 1.750 
24 2.225 1.500 2.200 
25 2.975 1.075 2.500 
26 2.600 1.175 2.600 
27 2.475 1.125 2.750 
28 2.400 0.900 2.700 
29 2.200 1.075 3.050 
30 2.700 0.575 1.975 
31 2.375 0.750 2. 100 
32 2.875 0.575 3.425 
33 2.975 0.825 2.725 
34 3.125 1.000 3.900 
35 2.975 0.900 2.275 
36 2.125 1.250 2.350 
37 2.500 1.000 2.850 
38 2.000 0.800 2.300 
39 2.000 1.350 2.050 
40 2.325 0.650 1.975 
41 2.475 0.500 1.975 
42 2.125 0.700 2.600 
43 1.000 0.950 2.000 
44 2.250 1.000 2.525 
45 2.575 1.300 1.600 
46 2.725 1.300 1.500 
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Table 5: (continued) 
Plaque No. TGEV Miller PRCV NVSL 5170 TGEV VMRI 5170 

47 3.050 0.750 1.575 
48 1.525 0.800 2.250 
49 2.325 1.600 1.825 
50 2.075 0.900 2.000 
51 2.975 1.000 1.500 
52 3.100 0.525 2.525 
53 3.200 0.800 2.425 
54 2.500 0.725 1.800 
55 2.075 1.500 1.500 
56 2.400 0.825 1.425 
57 2.050 0.950 1.400 
58 2.000 1.450 1.375 
59 2.100 0.500 1.975 
60 1.100 0.350 2.200 
61 1.975 - -

62 2.700 - -

63 2.500 - -

n 63 60 60 

each virus is included in Table 5. Average size of plaques of Miller strain, VMRI 5170 isolate 

and NVSL 5170 isolate were 2.4 7 ± 0.50, 2.33 ± 0.56 and 0.987 ± 0.31, respectively. The 

raw data calculated by the ANOV A procedure revealed that the plaque sizes of these 3 viruses 

were different (p < 0.0001). However, comparison of the plaque sizes of the Miller strain and 

VMRI 5170 isolate showed that they were not distinguishable (p = 0.13). In contrast, the 

plaque size of the TGEV isolate, Miller strain and VMRI 5170, were significantly larger than 

that of PRCV isolate NVSL 5170 (p < 0.0001). 

Virus Neutralization Test 

The virus neutralization titer of the TGEV hyperimmune sera or monoclonal antibodies 

was calculated from an average of the replications of the highest dilution of the serum or ascites 

fluid that resulted in neutralization of TGEV. The VN titers are shown in Table 6. The TGEV 

isolate VMRI 5170 and PRCV isolate NVSL 5170 were neutralized by hyperimmune sera 

raised against the Miller strain of TGEV, as well as Mab against the S glycoprotein of TGEV. 

However, TGEV hyperimmune sera, MAb 3H 11 and MAb 5A5 had lower VN titers for TGEV 

isolate VMRI 5170 and PRCV isolate NVSL 5170 than for the TGEV Miller strain. VN titer of 

MAb 5A5 for TGEV isolate VMRI 5170 was an exception. 
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Table 6: Neutralization of the Miller strain of TGEV, the TGEV isolate VMRI 5170, and the 

PRCV isolate NVSL 5170 by TGEV hyperimrnune sera, and anti - TGEV MAbs, 3H 11 and 

5A5. 

Antibodies 

Viruses MAb 3Hll MAb5A5 Polyclonal anti - TGEV 

Ab 

TGEV - Miller 1:32,948 1:34,261 1:16,574 

TGEV-VMRI 1:27,199 1:64,710 1:12,761 

PRCV- NVSL 1:12,295 1:12,162 1:4,575 

Radioimmunoprecipitation Assay 

In the radioimrnunoprecipitation assay, the three viruses demonstrated the similar 

pattern of protein profiles (Figure 3) when reacted with hyperimrnune sera, against TGEV. The 

molecular mass of M (28 kD) and N ( 46 kD) proteins were similar for the Miller strain of 

TGEV, the TGEV isolate VMRI 5170 and the PRCV isolate NVSL 5170. The molecular mass 

of the S glycoprotein of the TGEV isolate VMRI 5170 was 220 kD and was similar for the 

Miller strain. In contrast, the S glycoprotein of the PRCV isolate NVSL 5170 was 

approximately 190 kD which was less than that for the TGEV isolates Miller and VMRI 5170 

(Figure 3&4). 

Sequencing Analysis 

The pairwise alignment of the S gene of TGEV isolate VMRI 5170 and PRCV isolate 

NVSL 5170 compared to other strains of TGEV are presented in Figure 5. The S gene of 

TGEV isolate VMRI 5170 consisted of 4353 bases while that of PRCV isolate NVSL 5170 

was 3639 bases, including start and stop codons. The PRCV isolate NVSL 5170 had a 714 

and 711 nucleotide deletion when aligned with the VMRI 5170 isolate and Miller strain; FS772; 

TFl; Purdue and NEB 72. The nucleotide and deduced amino acid homology S gene of TGEV 

isolate VMRI 5170 compared with those of other TGEV s are shown in Table 7. It was found 

that the S gene ofTGEV isolate VMRI 5170 exhibited 96-97% identity to the published 

sequences of the S genes ofTGEV with 120-169 nucleotide differences. Without accounting 

for the 714 nucleotide deletion, the S genes of TGEV isolate VMRI 5170 and PRCV isolate 

NVSL 5170 are markedly identical with only 5 nucleotide differences. 
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Figure 3: Irnmunoprecipitation of 35S trans 

methionine - cysteine labeled structural 

proteins of the Miller strain of TGEV, the 

TGEV isolate VMRI 5170 and the PRCV 

isolate NVSL 5170 by hyperimmune anti -

TGEV serum. The S glycoprotein of the 

Miller strain of TGEV and the VMRI isolate 

of TGEV have a molecular mass of 220 kD 

and that of PRCV isolate NVSL 5170 is 

190 kD. The Mand N proteins of the three 

viruses had molecular mass of 28 and 46 

kD respectively. 

Note: A= mock infected cell lysate. 

A B c D 
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Figure 4: Irnmunoprecipitation of 35S trans 

methionine - cysteine labeled S glyco­

protein of the Miller strain of TGEV, TGEV 

isolate VMRI 5170 and PRCV isolate 

NVSL 5170 by MAb 3Hll against 

S glycoprotein of TGEV. The S glyco­

protein of the Miller strain of TGEV and 

the TGEV isolate VMRI 5170 have Mr of 

220 kD and that of PRCV isolate NVSL 

5170 is 190 kD. 

B = Miller strain of TGEV infected cell lysate. 

C = PRCV isolate NVSL 5170 infected cell lysate. 

D = TGEV isolate VMRI 5170 infected cell lysate. 
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Likewise, the sequence of the S gene of the TGEV isolate VMRI 5170 and the PRCV 

isolate NVSL 5170 were also compared with other published sequences of the S genes of 

PRCV. The pairwise alignments are shown in Figure 6. The S gene of NVSL 5170 isolate had 

a 96 - 97 % nucleic acid identity with that of the published sequences of PRCV isolates (Table 

8). The position of the deletions within the S gene of PRCV isolate NVSL 5170 and that of 

other PRCVs are summarized in Table 9. 
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Figure 5: Pairwise alignments of S genes of the TGEV isolate VMRI 5170, the PRCV isolate 
NVSL 5170 and other TGEV isolates. 
Note: The sequences begin with the start codons and are shown as un?~rlined bases. The 
position having identical nucleotides are presented as dots. and the positions of de~eted 
nucleotides are exhibited as dashes. The 5 bases that are diferent between TGEV isolate VMRI 
5170 and PRCV isolate NVSL 5170 are presented as bold letters. 
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Figure 5: (continued) 
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Figure 5: (continued) 
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Figure 5: (continued) 
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Figure 5: (continued) 
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Figure 5: (continued) 
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Figure 5: (continued) 

1741 
1741 
1747 
1747 
1747 
1036 
1750 
1750 

1791 
1791 
1797 
1797 
1797 
1086 
1800 
1800 

1841 
1841 
1847 
1847 
1847 
1136 
1850 
1850 

1891 
1891 
1897 
1897 
1897 
1186 
1900 
1900 

1941 
1941 
1947 
1947 
1947 
1236 
1950 
1950 

1991 
1991 
1997 
1997 
1997 
1286 
2000 
2000 



Purdue S 
NEB72 S 
TFl S 
Miller S 
FS772 S 
NVSL S 
VMRI S 

Consensus 

Purdue S 
NEB72 S 
TFl S 
Miller S 
FS772 S 
NVSL S 
VMRI S 

Consensus 

Purdue S 
NEB72 S 
TFl S 
Miller S 
FS772 S 
NVSL S 
VMRI S 

Consensus 

Purdue S 
NEB72 S 
TFl S 
Miller S 
FS772 S 
NVSL S 
VMRI S 

Consensus 

Purdue S 
NEB72 S 
TFl S 
Miller S 
FS772 S 
NVSL S 
VMRI S 

Consensus 

Purdue S 
NEB72 S 
TFl S 
Miller S 
FS772 S 
NVSL S 
VMRI S 

Consensus 

44 

G .............. T .. T ...... G.G .. 
G .............. T .. T ...... G.G .. 
G .............. C .. C ...... T.G .. 
G .............. T .. T . . .... T.A .. 
G .............. C .. T ...... T.G .. 
A .............. C .. T . . .... T.G .. 
A .............. C .. T ...... T.G .. 
RGGTGTACCG TCTGAYAAYA GTGGTKTRCA CGATTI'GTCA GTGCTACACC 

....... c ........... c ...... c .. . 

....... c ........... c .... .. c . . . 

....... A .. . ........ T ..... . c .. . 

....... c ........... c ..... . c . . . 

....... A . ... ....... C .. .. . . G .. . 

....... A ........... C ..... . c . . . 

....... A ........... C ..... . c .. . 
TAGATTCMTG CACAGATTAY AATATATATG GTAGAASTGG TGTTGGTATT 

. . . . . . c .. . G .. ...... . 

...... A .. . G . . ...... . 

. . . . . . c .. . A . .. ..... . 

. . . . . . c .. . G ........ . 

. ..... C .. . G ........ . 

...... c .. . A ...... .. . 

...... c .. . A ........ . 

ATTAGAMAAA CTAACAGGAC RCTACTTAGT GGCTTATATT ACACATCACT 

... A ..... . G.C ... . .. . 

. .. A ... .. . G.C ...... . 
• . . T .••... G.T ...... . 
•.. A .. ... . G.C .... .. . 
. . . T ..... • G.C ...... . 
... T ..... . A.T . ..... . 
... T ..... . A.T ...... . 
ATCWGGTGAT TTGTTAGGTT TTAAAAATGT TAGTGATGGT RTYATCTACT 

....... G .. A ............. C .. .. . 

•...... G .. A ....... . . .. .. C .... . 

....... G .. A ............. T .... . 

•...... G .. A ......... . ... C .... . 

....... T .. A ........ .... . C .... . 

•••.... G •• G ..•••..•• ••• . C .•... 

••••••• G . • G .......• ••.• . C • •••• 

CTGTAACKCC RTGTGATGTA AGCGYACAAG CAGCTGTTAT TGATGGTACC 

. . A ....... C ............ C . ............ A .. 

.. A ••..... C ............ C ............. A .. 

. . G ....... C ... ... ...... T .... ....... .. A .. 

.. A ....... C .. ... . .... .. C ...... ....... A .. 

.. A ....... C ............ T ....... ..... . A .. 

.. A ...... . T . ... .. ...... T ....... . .. . .. G .. 

.. A ....... T .. .......... T . ..... ..... .. G .. 

ATAGTTGGGG CTRTCACTTC YATTAACAGT GAAYTGTTAG GTCTAACRCA 

Figure 5: (continued) 
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Table 7: Percent nucleotide and deduced amino acid homology between S gene of TGEV 

isolate VMRI 5170 and that of other TGEV isolates. 

% homology with S gene of TGEV isolate VMRI 5170 

Virus Strains Nucleic Acid Homology Amino Acid Homology 

Miller 97% 97% 

FS772 97% 97% 

NEB72 96% 96% 

Purdue 96% 96% 

TFl 97% 97% 

In addition, the ORF 3/3.1 genes of VMRI 5170 and NVSL 5170 isolates were 

compared with those of other PRCV isolates as depicted in Figure 7. The ORF 3 of TGEV 

isolate VMRI 5170 and PRCV isolate NVSL 5170 were comprised of 219 bases while ORF 

3.1 had 736 bases including start and stop codons. Like other coronaviruses, the ORF 3/3.1 

genes of TGEV isolate VMRI 5170 and PRCV isolate NVSL 5170 had an intergenic sequence, 

of CUAAAC, upstream of the start codon. The base compositions within the ORF 3 of VMRI 

5170 and NVSL 5170 isolates were completely identical, whereas ORF 3 .1 had only 2 

nucleotide differences. The first nucleotide difference within the 3 .1 gene of NVSL 5170 

isolate was T instead of C. Therefore, it created a stop codon which may have resulted in a 

truncated product of ORF 3.1 in NVSL 5170 isolate. The ORF 3/3.1 genes of TGEV isolate 

VMRI 5170 and PRCV isolate NVSL 5170 were shown to be similar to those of other PRCV 

isolates except that the ORF 3 of TGEV isolate VMRI 5170 and PRCV isolate NVSL 5170 

were intact (Figure 7). 
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Figure 6: Pairwise alignment of S genes of TGEV isolate, Miller strain and VMRI 5170, 
PRCV isolate NVSL 5170 and other PRCV' s S genes. 
Note: The sequences begin with the start codons and are shown as underlined bases. The 
position having identical nucleotides are presented as dots and the positions of deleted 
nucleotides are exhibited as dashes. The 5 bases that are diferent between TGEV isolate VMRI 
5170 and PRCV isolate NVSL 5170 are presented as bold letters. 
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C .. G ..... -

C •• G ••••• -

C .. G ..... -

T .. T ..... . .. A ...... . 

C .. T ..... . . .c ...... . 
YAAKTTTCCT TGTTCTAAAT TGACTAATAG AACTATAGGT AAMCATTGGA 

T ..... T ... A ............. C ...... C ....... . 

A ..... C ... C ............. T ...... T ....... . 

ATCTCATTGA WACCTTYCTT MTAAATTATA GTAGYAGGTT AYCACCTAAT 

TCAGATGTGG TGTTAGGTGA TTATTTTCCT ACTGTACAAC CTTGGTTTAA 

... T ......... G ....... C ....... . 

... C ......... A ....... T ........................... . 

TTGYATTCGC AATRATAGTA AYGACCTTTA TGTTACATTG GAAAATCTTA 

...... G ... . ..... AG ........... G 

...... T ... . ..... GA ........... T 
AAGCATKGTA TTGGGATTAT GCTACARRAA ATATCACTTK GAATCACAAG 

GACCAACGGT TAAACGTAGT CGTTAATGGA TACCCATACT CCATCACAGT 

Figure 6: (continued) 

59 
59 
59 
100 
27 
100 
100 

59 
59 
59 
150 
27 
150 
150 

59 
59 
59 
200 
27 
200 
200 

59 
59 
59 
250 
27 
250 
250 

59 
59 
59 
300 
27 
299 
300 

59 
59 
59 
350 
27 
347 
350 

59 
59 
59 
400 
27 



Miller S 
Consensus 

86/137004 s 
HOL87 S 
RM4 S 
VMRI S 

NVSL S 
Miller S 
Consensus 

86/137004 s 
HOL87 S 

RM4 S 

VMRI S 

NVSL S 
Miller S 
Consensus 

86/137004 s 
HOL87 S 
RM4 S 
VMRI S 

NVSL S 
Miller S 
Consensus 

86/137004 s 
HOL87 S 

RM4 S 

VMRI S 

NVSL S 
Miller S 
Consensus 

86/137004 s 
HOL87 S 

RM4 S 

VMRI S 

NVSL S 
Miller S 
Consensus 

86/137004 s 
HOL87 S 
RM4 S 

VMRI S 

NVSL S 
Miller S 
Consensus 

86/137004 s 
HOL87 S 

54 

TACAACAACC CGCAATTTTA ATTCTGCTGA AGGTGCTATT ATATGCATTT 

........ C .. G .. . .... . 

............................ A .. A . ... ............. . 

GCAAGGGCTC ACCACCTACT ACCACCACMG ARTCTAGTTT GACTTGCAAT 

...... c ... 

...... T ... 

TGGGGTAGTG AGTGCAGGTT AAACCAYAAG TTCCCTATAT GTCCTTCTAA 

..... T .... C ........ . 

..... C .... T ........ . 

TTCAGAGGCA AATTGTGGTA ATATGYTGTA YGGCCTACAA TGGTTTGCAG 

ATGCGGTTGT TGCTTATTTA CATGGTGCTA GTTACCGTAT TAGTTTTGAA 

.. c ...... . . ... . .. G . . 

.. T ..... . . . ...... A .. 

AAYCAATGGT CTGGCACTGT TACACTTGGT GATATGCGTG CGACTACRTT 

.C ............ T .... . ......... c 

.G ............ C .... . . ........ T 
ASAAACCGCT GGCAYGCTTG TAGACCTTTG GTGGTTTAAY CCTGTTTATG 

---------- ---------- ---------- ---- .... T. 
---------- ---------- - --------- ---- .... T. 

Figure 6: (continued) 
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...... A.C. 
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. ........ T 
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TACAYTTTGT TTTGAAGGTG CTGRCTTTGA TCAATGTAAT GGTSCTGTYT 

....... C ... .. ... C ..... T ..... T. 

....... C ........ C ..... T . .... C. 
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....... T ........ T ..... C ..... T. 
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TAAATAAYAC TGTAGAYGTC ATYAGGTTYA ACCTTAATTT TACTACAAAT 

Figure 6: (continued) 
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TGTCACTCTT GAAATCTCAT GTTATAATGA TACAGTGAGT GAYTCGAGYT 
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TTTCCAGTTA CGGTGAAATK CCKTTCGGCG TRACTRATGG ACCACGGTAC 
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Figure 6: (continued) 
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..... C ..... T ........... T ......................... . 

TTGACYACTG GYGATAGTGA CGTYTTCTGG ACAATAGCTT ACACATCGTA 

......... A 
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......... A ................................ G ...... . 

CACTGAAGCR TTAGTACAAG TTGAAAACAC AGCTATTACA AAKGTGACGT 
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ATTGTAATAG TTAYGTTAAT AACATTAAAT GCTCTCAACT TACTGCTAAT 
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........ TAC .. A ..... . 
TAAGAGTGTW GTGTTACTAC CTAGCTTTYW SACRCATACC ATTGTTAACA 

......... G 

......... G 

......... G 

......... A 

........ . G 

......... G 

TAACTATTGR TCTTGGTATG AAGCGTAGTG GTTATGGTCA ACCCATAGCC 

..... GC .. . . .. c ..... . 

..... GC .. . . .. c ..... . 

..... GC .. . . .. A ..... . 

..... TC .. . . .. c ..... . 

..... TC .. . ... c ..... . 

..... AT .................................... C ..... . 
TCAACDYTAA GTAACATTAC ACTACCAATG CAGGATAACA ACAMCGATGT 
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Figure 6: (continued) 
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. ....... c . 

........ T . 
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. ..... .. c . 
GTACTGTRTT CGTTCTGAYC AATTTTCAGT TTATGTTCAT TCTACTTGYA 

.... . GC . . . 

.. ... GC .. . 

. .. . . GT .. . 

..... GC . . . 

..... GC .. . 

..... TC .. . 
AAAGTKYTTT ATGGGACAAT GTTTTTAAGC GAAACTGCAC GGACGTTTTA 

GATGCCACAG CTGTTATAAA AACTGGTACT TGTCCTTTCT CATTTGATAA 

. T ...... . . ... .. . G . ... . ..... . T . 

. T ....... . ... .. . G ......... . . T . 

. T ....... . . .. ... G ... . . .. . .. . C . 

.c ....... . . .. ... T .. ......... T. 
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AYTGAACAAT TACTTAACTT TTAACAAGTT CTGTTTKTCG TTGAGTCCYG 
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....... T ......... A . ........ .. T 
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TTGGTGCTAA TTGTAAGTTT GATGTAGYTG CCCGTACMAG AACCAATGAK 
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CAGKTTGTTA GAAGTTTGTA TGTAATATAT GAAGAAGGAG ACARCATAGT 
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A .............. C .... ... .... G .. 

A ..... .. .. ..... C ....... .. .. G .. 
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DGGTGTACCG TCTGAYAATA GTGGTTTRCA CGATTTGTCA GTGCTACACC 

Figure 6: (continued) 
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TAGATTCVTG CACAGATTAC AATATATATG GTAGAACTGG TGTTGGTATT 

GC ....... . 
GC ....... . 
GA .•••...• 

AC .... ... . 
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ATTAGACAAA CTAACAGGAC RMTACTTAGT GGCTTATATT ACACATCACT 
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... T ..... . .. . A ..... . A.T ..... . . 
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ATCWGGTGAT TTGTTAGGTT TTAMAAATGT TAGTGATGGT RTYATCTACT 
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ATAGTTGGGG CTATCACTTC YATTAACAGT GAAYTGTTAG STCTAACRCA 
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Figure 6: (continued) 
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...... G .. C .......... G ...... A ....... G.T .... A ...... . 
ATGATARGAY TCGTGGCACT SCAATTGRCA GTAATSAYGT TGRTTGTGAA 

........ T. 
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Figure 6: (continued) 
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Table 8: Percent homology of nucleotide and deduced amino acid of S gene of PRCV isolate 

NVSL 5170 compared to that of other PRCV isolates. 

% homology with S gene of PRCV isolate NVSL 5170 

Virus Strains Nucleic Acid Homology Amino Acid Homology 

871137004 96% 96% 

Hol87 96% 96% 

RM4 96% 96% 

Table 9: The deletion positions and number of deleted nucleotides within S genes of PRCV 

isolates when compared to S gene of TGEV isolate VMRI 5170. 

PRCV Strains 

NVSL 5170 

87/137004 

Hol87 

RM4 

NVSL5170 (3681-4824) 
VMRI5170 (4418-5561) 
PRCV-IA1894 (24-1138) 
PRCV-LEPP (24-1165) 
PRCV-AR310 (24-1165) 
PRCV-ISUl (24-876) 
Consensus 

NVSL5170 (3681-4824) 
VMRI5170 (4418-5561) 
PRCV-IA1894 (24-1138) 
PRCV-LEPP (24-1165) 
PRCV-AR310 (24-1165) 
PRCV-ISUl (24-876) 

Consensus 

Number of deleted nucleotides with in S Base Range of 

genes of PRCV Deletion 

714 28 - 741 

675 60 - 734 

675 60 - 734 

675 60 - 734 

...... A . . .... . T . . . . . 
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. . . A .. .. . . 

.. . A .. .. . . 

... A .... . . 

. . . T .. . .. . 
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••••• 
ATGATGAATA AAGTCCTTAA GAACTAAACT TTCWGGTCAT TACAGGTCCT 

3780 
4517 
123 
123 
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53 

100 

Figure 7: Comparison of the nucleotide sequences of the ORF 3/3.1 region of the TGEV 
isolate, VMRI 5170, the PRCV isolate, NVSL 5170, and other PRCV isolates. 

Note : The positions of intergenic sequences are underlined and marked with the symbol •. 
The start codons and stop codons of each ORF are underlined and labeled with 1--> and <--1, 
respectively. The positions having identical nucleotides are presented as dots and the positions 
of deleted nucleotides are marked by dashes. The 2 different nucleotides among VMRI 5170 
and NVSL 5170 isolates are bold letters. 
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Consensus 

NVSL5170 (3681-4824) 
VMR.!5170 (4418-5561) 
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GGGRTAAAGC ATATGCTAAG CTTGGTCTCG CCACTATTGA AGAAGTAAAC 

stop ORF3 <--1 
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........ A. 
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........ G. 

........ G. 
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1--> start ORF3.1 
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Figure 7: (continued) 
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PRCV-IA1894 (24-1138) 
PRCV-LEPP (24-1165) 
PRCV-AR310 (24-1165) 
PRCV-ISUl (24-876) 
Consensus CTTAATACTC TGAGTTTKGT AATTGTTAGT AACCATTCTA TTGTTAATAA 

NVSL5170 (3681-4824) c . .... ... . . .... c . . c. . . . T .. . . G. 

VMRI5170 (4418-5561) C .............. C .. C. . . . C .. . . G. 

PRCV-IA1894 (24-1138) T .............. T .. T. ... C .... T. 

PRCV-LEPP (24-1165) C .............. T .. T. . .. C .... G. 
C ............. . T .. T. ... C .... G. 

C ... ........ ... T .. T. 

PRCV-AR310 (24-1165) 
PRCV-ISUl (24-876) 
Consensus YACAGCAAAT GTGCAYCAYA CACAACAAGA CCGTGTTATA GTAYAACAKC 

NVSL5170 (3681-4824) . .... ... G. A .......... ... C .. . G . 
VMRI5170 (4418-5561) .. . ..... G. A ............. C .. . T. 
PRCV-IA1894 (24- 1138) ........ A. G ............. T ... G. 

PRCV-LEPP (24-1165) ........ G. A ........ ..... C ... G. 

PRCV-AR310 (24-1165) . ....... G. A ............. C ... G. 

PRCV-ISUl (24-876) ----------
Consensus ATCAGGTTRT TAGTGCTAGA RCACAAAATT ATTAYCCAKA GTTCAGCATC 

CT ...... . T ..... T ... A 
CT ....... T ..... T ... A 
TC ....... G ..... C ... C 
CC ....... G . ... . T ... A 
CC ....... G ..... T ... A 

NVSL5170 (3681-4824) 
VMRI5170 (4418-5561) 
PRCV-IA1894 (24-1138) 
PRCV-LEPP (24-1165) 
PRCV-AR310 (24-1165) 
PRCV-ISUl (24-876) 
Consensus GCTGTACTTT TTGTATCTTT YYTAGCTTTK TACCGYAGTM CAAACTTTAA 

NVSL5170 (3681-4824) 
VMRI5170 (4418-5561) 
PRCV-IA1894 (24-1138) 
PRCV-LEPP (24-1165) 
PRCV-AR310 (24-1165) 
PRCV-ISUl (24-876) 
Consensus 

NVSL5170 (3681- 4824) 
VMRI5170 (4418-5561) 
PRCV-IA1894 (24-1138) 
PRCV-LEPP (24-1165) 
PRCV-AR310 (24-1165) 
PRCV-ISUl (24-876) 
Consensus 

NVSL5170 (3681-4824) 

GACGTGTGTC GGTATCTTAA TGTTTAAGAT TTTATCAATG ACACTTTTAG 

GACCTATGCT TATAGTATAT GGTTACTACA TTGATGGCAT TGTTACAACA 

••. G ..•.•. 

VMRI5170 (4418-5561) ... G ..... . 
PRCV-IA1894 (24-1138) ... G ..... . 
PRCV-LEPP (24-1165) ... G ..... . 
PRCV-AR310 (24-1165) . . . G ..... . 
PRCV- ISUl (24- 876) . .. T ..... . 
Consensus ACTKTCTTAT CTTTAAGATT CGCCTACTTA GCATACTTTT GGTATGTTAA 

Figure 7: (continued) 
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NVSL5170 (3681-4824) 
VMRI5170 (4418-5561) 

c ........ . 
c . ..... .. . 

PRCV-IA1894 (24-1138) T ........ . 
T ..... ... . 
T .... .... . 

T .... .... . 
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PRCV-LEPP (24-1165) 
PRCV-AR310 (24-1165) 
PRCV-ISUl (24-876) 
Consensus YAGTAGGTTT GAATTTATTT TATACAACAC AACGACACTC ATGTTTGTAC 

NVSL5170 (3681-4824) 
VMRI5170 (4418-5561) 
PRCV-IA1894 (24-1138) 
PRCV-LEPP (24-1165) 
PRCV-AR310 (24-1165) 

PRCV-ISUl (24-876) 
Consensus ATGGCAGAGC TGCACCGTTT AAGAGAAGTT CTCACAGCTC TATTTATGTC 

NVSL5170 (3681-4824) ..... A . . . . . ........ c ... c ..... . 
VMRI5170 (4418-5561) ..... A ... . ......... c ... c .... . . 
PRCV-IA1894 (24-1138) ..... G ... . . ........ c .. . c . .... . 

.... . A ... . . ........ c ... c ..... . 

..... A ... . ......... c .. . c ..... . 

. .... A ... . . ........ T ... T ..... . 

PRCV-LEPP (24-1165) 
PRCV-AR310 (24-1165) 
PRCV-ISUl (24-876) 
Consensus ACATTRTATG GTGGCATAAA TTATATGTTT GTGAATGACY TCAYGTTGCA 

... AA .... . 

... AA .... . 

.. . GC . . .. . 

.. . AC .... . 

.. . AC .. .. . 

... AC . ... . 

NVSL5170 (3681-4824) 
VMRI5170 (4418-5561) 
PRCV-IA1894 (24-1138) 
PRCV-LEPP (24-1165) 
PRCV-AR310 (24-1165) 
PRCV- ISUl (24-876) 
Consensus TTTTGTAGAC CCTATGCTTG TAAGCATAGC AATACGTGGC TTARMTCATG 

NVSL5170 (3681-4824) 
VMRI5170 (4418-5561) 
PRCV-IA1894 (24-1138) 
PRCV-LEPP (24-1165) 
PRCV-AR310 (24-1165) 
PRCV-ISUl (24- 876) 
Consensus CTGATCTAAC TGTAGTTAGA GCAGTTGAAC TTCTCAATGG TGATTTTATT 

....... GC. C ..... C .. . 

. ... ... GC. C ..... C .. . 

.... ... TT. T ..... T .. . 

.... .. . GC. C .. ... C .. . 

....... GC. C .... . C . . . 

....... GC. C ..... C .. . 

NVSL5170 (3681-4824) 
VMRI5170 (4418-5561) 
PRCV-IA1894 (24-1138) 
PRCV- LEPP (24- 1165) 
PRCV-AR310 (24-1165) 
PRCV-ISUl (24-876) 
Consensus TATATATTTT CACAGGAKYC YGTAGTYGGT GTTTACAATG CAGCCTTTTC 

NVSL5170 (3681-4824) 
VMRI5170 (4418-5561) 

...... G .. . 

.... .. G .. . 

PRCV-IA1894 (24-1138) ...... A .. . 
PRCV-LEPP (24-1165) ...... G .. . 

Figure 7: (continued) 
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PRCV-AR310 (24-1165) ...... G .............................. G.. . . . . . . . . . . 1122 
PRCV-ISUl (24-876) ...... G .............................. G.. . . . . . . . . . . 833 
Consensus TCAGGCRGTT CTAAACGAAA TI'GACTTAAA AGAAGAARAG GGAGACCGTA 1100 

NVSL5170 (3681-4824) . . . . . . . . . . . . . . . . . . . . .......... ...... c .. c 4824 

VMRI5170 (4418-5561) .......... . . . . . . . . . . . . . . . . . . . . ...... c .. c 5561 
PRCV-IA1894 (24-1138) .......... . . . . - . . . . . . . . . . . . . . . ...... T .. C 1138 

PRCV-LEPP (24-1165) .......... . . . . - . . . . . . . . . . . . . . . ...... T .. C 1165 
PRCV-AR310 (24-1165) .......... . . . . - . . . . . . . . . . . . . . . ...... T .. C 1165 

PRCV-ISUl (24-876) .......... . . . . - . . . . . . . . . . . . . . . ...... T .. T 876 

stop ORF3.l <--1 
Consensus CCTATGACGT TTCCCTAGGG CATTGACTGT CATAGAYGAY AATG 1144 

Figure 7: (continued) 
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5. DISCUSSION AND CONCLUSIONS 

In this study we have shown that PRCV isolate NVSL 5170 differed from TGEV 

VMRI 5170 isolate and the standard Miller strain of TGEV. The VMRI 5170 strain was similar 

to the Miller strain of TGEV in growth characteristics and protein profiles. However, there was 

some degree of genetic and antigenic diversity when compared to other TGEV strains. 

It has been indirectly proven that the TGEV variant, PRCV, has evolved from TGEV 

by a deletion mutation of the S gene (Rasschaert et al., 1990; Wesley et al. , 1990; Wesley et 

al., 1991 ). This study presents strong evidence that the PRCV isolate NVSL 5170 is a 

truncated version of the TGEV isolate VMRI 5170 by a single deletion of the S gene. It should 

be noted that both viruses were isolated from the same TGE outbreak in a swine herd (Halbur 

et al., 1995). Furthermore, the pairwise alignment of the S gene and ORF 3/3.1 regions of 

both isolates when compared with other TGEV and PRCV isolates showed that VMRI 5170 

and NVSL 5170 isolates are highly identical. With the exception of the large deletion, the 

homology of these regions is more than 99 %. Interestingly, the 714 nucleotide deletion of the 

NVSL 5170 isolate was the largest single deletion of all published sequences among PRCV 

isolates. Deletions in all other PRCV isolates to date range from 672 - 681 nucleotides (Laude 

et al. , 1993; Vaughn et al. , 1995). 

The ORF 3/3.1 region of TGEV and PRCV isolates is normally diverse. The number of 

deleted bases and the positions of deletions vary among PRCV isolates (Rasschaert et al., 

1990; Britton et al., 1991; Wesley et al., 1991; Vaughn et al., 1995). Some of the PRCV 

isolates, AR310 and LEPP, have complete ORF 3/3.1 region (Vaughn et al., 1995). Likewise, 

the PRCV isolate NVSL 5170 had intact ORF 3/3.1 region including the perfect IS elements 

and start codons. However, the first substituted nucleotide within the ORF 3.1 of the NVSL 

5170 isolate created a stop codon which may have resulted in a truncated 3.1 gene product. 

These diversities could be a consequence of that as each PRCV isolate originates from a 

different TGEV ancestor. For instance, the European PRCV and the USA PRCV arose 

independently from different strains of TGEV (Laude et al., 1993). In this case, the TGEV 

isolate, VMRI 5170, seemed to be the ancestor of the PRCV isolate NVSL 5170, because their 

genomic sequences within the S gene and ORF 3/3.1 regions were much more alike than those 

of other TGEV or PRCV isolates. 

The one step growth curves depict the multiplication of the three viruses in cell culture. 

The growth curve of VMRI 5170 and NVSL 5170 isolates were similar to that of the Miller 

strain of TGEV. There were differences in the plaque sizes of the TGEV and PRCV isolates. 
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The PRCV isolate NVSL 5170 had an average plaque size that was significantly smaller than 

that of VMRI and the Miller strain of TGEV. The small plaque size is possibly associated with 

the mutation within the S gene or the ORF 3/3.1 gene. It is believed that the small plaque size 

variants are due to the mutation within the S gene (Holmes and Lai, 1996) or the ORF 3/3.1 

regions (Wesley et al., 1990; Vaughn et al., 1995). Thus, it is possible that the deletion within 

the S gene of NVSL 5170 isolate or the truncated 3.1 gene products may contribute to the small 

plaque size of the NVSL 5170 isolate. 

Antigenic diversity among TGEV and PRCV has been demonstrated using a viral 

neutralization (VN) test (Kemedy, 1967; Vaughn and Paul, 1993). However, only one 

serotype of TGEV is recognized. In this study, the three viruses were neutralized by 

hyperimmune sera and monoclonal antibodies raised against the Miller strain of TGEV with 

different VN titers. Callebaut et al. (1988), also reported the antigenic differences between 

TGEV and PRCV. In addition, there are alterations of amino acid residues within the antigenic 

sites which arose from changes of nucleotides within the S gene of TGEV and PRCV, and the 

residues within antigenic sites A and D show a high number of amino acid changes (Gebauer et 

al., 1991; Sanchez et al., 1992). The Miller strain reacted with hyperimmune sera and MAb 

3Hl 1and5A5 with high VN titers, with the exception of the reaction between VMRI 5170 and 

MAb 5A5. This is possibly due to the substitution or deletion of nucleotides within the S genes 

of the VMRI 5170 and NVSL 5170 isolates. However, the alterations of the residues in the S 

glycoprotein of VMRI 5170 isolate that react with MAb 5A5 may increase the affinity of 

antigenic sites on the S gene of VMRI 5170 and MAb 5A5. Thus, the reaction between VMRI 

5170 and MAb 5A5 gives very high VN titers. 

Radioimmunoprecipitation assay (RIP) provides information on the major structural 

proteins, S, Mand N, of TGEV and PRCV. Our data confirms that the S glycoprotein of 

PRCV is smaller than that of TGEV and is caused by the large deletion within the S gene 

(Rasschaert et al., 1990). 

This study presented strong evidence that the PRCV isolate NVSL 5170 originated 

from the TGEV isolate VMRI 5170 caused by a single deletion within the 5' half of the S gene, 

resulting in a truncated S glycoprotein. The deletion mutation within the S gene of PRCV 

isolate NVSL 5170 may be the result of genetic recombination as reported for mouse hepatitis 

virus and other coronaviruses because the repeated IS elements along the genomic RNA could 

facilitate genetic recombination during RNA synthesis using a copy - choice mechanism (Lai, 

1992). Therefore, deletion mutation and genetic recombination tend to play an important role in 

the evolution of coronaviruses and other plus - stranded RNA viruses. 
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