A Type-and-Effect System for Asynchronous, Typed Events

Yuheng Long and Hridesh Rajan

Iowa State University, USA
{csgzlong,hridesh} @iastate.edu

Abstract

Implicit concurrency between handlers is important for event
driven systems because it helps simultaneously promote
modularity and scalability. Knowing the side-effect of the
handlers is critical in these systems to avoid concurrency
hazards such as data races. As event systems are dynamic
because statically known and unknown handlers can regis-
ter at almost any time during program execution, static ef-
fect analyses must reconcile over competing goals such as
precision, soundness and modularity. We recently developed
asynchronous, typed events, a system that can analyze the
effects of the handlers at runtime. This mechanism utilizes
runtime information to enable precise effect computation
and greatly improves concurrency between handlers.

In this paper, we present the formal underpinnings of
asynchronous, typed events, and examine the concurrency
safety properties it provides. The technical innovations of
our system include a novel effect system to soundly approx-
imate the dynamism introduced by runtime handlers reg-
istration, a static analysis to precompute the effects and a
dynamic analysis that uses the precomputed effects to im-
prove concurrency. Our design simplifies modular concur-
rency reasoning and avoids concurrency hazards.

Categories and Subject Descriptors D.2.2 [Software Engi-
neering]: Design Tools and Techniques — Modules and in-
terfaces; D.3.3 [Programming Languages]: Language Con-
structs and Features — Concurrent programming structures

Keywords Implicit concurrency, type-and-effect system

1. Introduction

Event-driven systems, or implicit invocation (II) systems, are
popular because of their flexibility and modularity benefits
[12} 27, 131, 136]). In these systems, there are two major sets
of modules: subjects and handlers. Subjects dynamically

[Copyright notice will appear here once ’preprint’ option is removed.]

announce events, and handlers are implicitly invoked when
these events are announced.

Exposing concurrency between handlers in II systems
is important because it helps improve responsiveness and
scalability [24} 33]], but producing it remains a challenge
fraught with perils such as data races [32) 133]]. Data races,
which compromise concurrency safety, happen when two
concurrent handlers access the same memory location and at
least one of them is a write [14]. A type-and-effect system, or
effect system for short, may help understand and avoid these
problems because it provides information that encodes and
approximates the memory accesses of the handlers [26}[37]].

Improving the precision of purely static effect systems is
a worthy direction, but looking forward, we believe that they
are unlikely to benefit II systems. Our belief is shaped by
two insights. First, the configuration of handlers is statically
unknown because the decoupling mechanism in II systems
allows handlers to be oblivious [31]] and typically, IT systems
allow handlers to be dynamically registered [32]. Second,
taking the effects of all handlers as an approximation for
effect analysis could be over-conservative, as a handler will
not execute until after it has registered with the announced
event. Therefore, considering the effect of a handler before
it registers can be imprecise.

1.1 Background

Recently, we developed asynchronous, typed events [24],
ATE in short, a system that can analyze the effects of the
handlers at runtime to compensate for the conservativeness
of static effect analyses. It greatly improves implicit concur-
rency [24]]. To illustrate, consider the following example:

EXAMPLE 1.1 (Effect inspection for implicit concurrency).
In the following program, we would like to decide whether
the handlers of the event Ev can be run concurrently, when
Ev is announced at line 3| In ATE, the announcement at
line |15| triggers the event handling mechanism, which will
run the two handlers r1 and r2 concurrently. The event
announcement at line [I7\will run r1 and r2 concurrently
and, upon termination, execute w. Concurrency is improved
since r1 and r2 are run concurrently. Concurrency safety
is preserved because the conflicting handler w will not run
until r1 and r2 are done.

1 event Ev { Number 1i; }
2 class Number { int val; }
3class S { void s (Number k) { announce Ev(k); } }

---------------- Client ------=-c-ecaca--
4 class Read |
5 void reg() { register this.r with Ev; }
6 int r (Number 1) { return i.val; } // read effect
7}
8 class Write {
9 void reg() { register this.w with Ev; }
10 wvoid w(Number i) { i.val = 1; } // write effect
1}
12S s = new S(); Number k = new Number();
13 Read rl = new Read(); Read r2 = new Read();
4rl.reg(); r2.reg();

15s.s(k); // line announce
16 Writer w = new Write(); w.reg();
17s.s5(k); // line announce

Static effect systems The (tricky) concurrency decision of
whether to run the handlers concurrently at line [3] depends
on the handler configuration, i.e. which handlers are regis-
tered and in what order, and whether their effects conflict.
Due to the following reasons, a static effect system is likely
to execute all the handlers sequentially. First, the handler
configuration may not be known when the announce expres-
sion at line [3]is compiled, due to the decoupling offered by
the event type Ev [31]. Second, even if all the handlers are
known (probably using a whole program analysis, a neme-
sis for modularity), using the effects of all the handlers as
an approximation could be overly conservative for choosing
between a concurrent execution and a serial execution. For
example, the handlers of the event Ev are r1, r2 and w. The
effects of both r1 and r2 are reading i . val and the effect
of w is writing i.val, creating a read-write conflict [14].
Therefore, a serial execution has to be used at line 3]

Asynchronous, typed events The serial execution could be
over-conservative because at line [I5] the conflicting handler
w has not registered yet and nonconflicting handlers r1 and
r2 can be run concurrently. The root cause of the conser-
vativeness is that the concurrency decision depends on the
handler configuration, which is not known until runtime.

This is precisely where ATE is more effective compared
to existing techniques. It can analyze the effects of the han-
dlers at runtime, which enables precise effect computation.

Internally, ATE maintains a handler queue for each event.
The queue will be mutated and expanded with handler reg-
istrations. For instance, before the announcement at line [T}
the handler queue has two handlers, r1 and r2. Upon an-
nouncement, through dynamic typing, ATE computes the ef-
fects of each handler in the queue — gaining highly precise
runtime information. Concurrency decisions are guided by
these effects, i.e., handlers are run concurrently if the effects
do not conflict, e.g., r1 and r2, or else sequentially, e.g., r1
and w. Concurrency is improved with no loss of soundness,
as r1 and r2 are run concurrently and conflicting handler w
will not run until r1 and r2 are done.

1.2 This Paper: Technical Highlights

Our previous work [24] aims at providing an empirical per-
formance evaluation of ATE’s implementation. It has already
provided some evidence that ATE is very useful, and can
be implemented efficiently to achieve concurrency benefits
and has low overhead. However, it did not address important
questions about the semantics and the safety properties of
this system. In particular, questions relating to the safe con-
currency and modularity benefits were not addressed. The
purpose of this paper is to address these questions rigorously
and provide precise answers.

It turns out that it is challenging to integrate dynamic typ-
ing into an event driven system that allows handlers to reg-
ister dynamically. We now explain the technical difficulties.

Intensional effect inspection At the highest level, ATE
shares the philosophy with other dynamic effect systems
[L6} 23]]. However, these systems may not improve the con-
currency for II systems where handlers can register dynam-
ically. The reason is that they do not inspect mutable data
structures (i.e., the mutable handler queue) and thus miss
concurrency opportunities. Mechanically extending these
systems could have undesirable consequences, because of
the long-standing problem in type-and-effect systems: rea-
soning about polymorphic mutable data structures is notori-
ously difficult [29] 37]. Consider the following example:

EXAMPLE 1.2 (Post inspection modification). In the exam-
ple below, right before the event (Ev) announcement at
line[I3] there are two handlers, an instance v of Subtlety
(line[I3) and an instance r of Read (line[[4), in the queue
for Ev. It may be tempting to conclude that r and v can
be run concurrently, because v (lines [HI0) does not have
any (direct) read/write effect. A careful reader may say that
v will announce Ee and its handlers could conflict with r.
Observe that the queue for Ee is still empty. Thus, no regis-
tered handler interferes with r. So intuitively, it is “safe”.

| event Ee { Number i; }

2 class Hide {

3 wvoid reg() { register this.h with Ee; }
4 void h (Number i) { i.val = 1; }

5}

6 class Subtlety {

7 void reg() { register this.v with Ev; }
8 void v (Number 1) |

9 Hide h = new Hide().reg(); // register hidden handler
10 announce Ee (1i);

11 }

12 }

13 Subtlety v = new Subtlety().reg();

14 Read r = new Read().reg();

I15new S().s (new Number());

// write effect

Although tempting, the intuition is unsound. When v
executes, before announcing Ee at line [I0} it registers a
handler h (line 0) for Ee — dynamically modifying the
mutable handlers queue. The announce will now execute
h, which conflicts with r, causing unsafe parallelism. This
contradicts our belief that there is no conflicting handler.

1
2

The root cause of the problem is unsound reasoning about
mutable handler queues and their modification post runtime
effect inspection.

To solve the problem, ATE introduces two kinds of ef-
fects, namely reg for the register expression and ann for
the announce expression. The ann effect approximates the
effects of potential handlers for the to-be-announced event.
The reg effect captures the modification of handler queues
and comes with the (latent) effects [37] of the to-be-register
handler, and is the effect incurred when the handler is in-
voked, i.e., at event announcements. When these two effects
combine, the (latent) effects of potential handlers will also
be included (detailed in §E]), e.g., the combination of the ef-
fects of line[9] and line [I0] will include the effects of h, i.e.,
the effects of v include the reg, ann and the write effect
from h. Now, the effects of v and r conflict and ATE runs
them serially, which is desirable for concurrency safety.

Here ATE’s static and dynamic systems interact in inter-
esting ways. Dynamic typing provides precise effects — ex-
ploiting runtime information — allowing more concurrency
opportunities. Static typing precomputes the effects of the
handlers — avoiding potential expensive effect computation
at runtime — and soundly captures the dynamic modifica-
tion of the queues, via the reg and ann effects, which is
good news for reasoning about mutable queues.

Modular reasoning Next, we show an important modular-
ity benefit of ATE’s design. Modular reasoning about con-
currency could be challenging, due to the well known per-
vasive interference problem [3, 20} 39], defined below.

DEFINITION 1.3. [Pervasive interference] Pervasive inter-
ference in a concurrent Il program means that between any
two consecutive expressions of a handler h, interleaving ex-
pressions of another handler could change the states of h
and influence h’s subsequent behavior.

To illustrate, consider the following program. The han-
dler addThenAnnounce increases the input Number by
1 (line [3] using the standard read-increase-set expressions
[39]) and announces an event with the modified Number.

EXAMPLE 1.4 (Low interference density). Any two con-
secutive reads of the variable j at line [3] could result in
two completely different integers because of the potential in-
terference of other handlers. This problem is manifested by
adding the interference points (%) fo the source program.

int j;
void addThenAnnounce (Number i) {
5 = i% . val; %= 3% + 1; i.val %= %j;
announcelll Ee(i);
} // the less interference points, the better

In ATE, the number of interference points is 1 (1), instead
of 7 (*and 1)), i.e., between every consecutive expressions.
Code that lies within any pair of interference points is a
transaction or an atomic block and thus can be reasoned

about sequentially [39]. With ATE, programmers reap the
benefits of atomicity when reasoning about handlers.

In a naive extension of an II language with concurrency
but without safety guarantees, programmers must consider
all other handlers to determine whether their interleavings
would be harmful at every program point. This is illustrated
by all ¢ interference points which show global reasoning is
required to analyze this program, rather than the modular
reasoning we desire. Thanks to the concurrency safety guar-
antees, ATE controls the interference points [f] to only after
the announce expression, instead of every expression.

1.3 Contributions

In summary, this paper makes the following contributions:

e [t formalizes a novel effect system where effects of han-
dlers are inspected at runtime to improve concurrency.

e It shows the subtleties resulting from the precise han-
dlers’ effect inspection and develops a sound type system
and operational semantics to tackle the problem.

e It proves that our system provides sequential semantics
[6], even though it is implicitly concurrent.

e [t proves that our system can be reasoned about modu-
larly and atomically.

Roadmap: §2|presents ATE’s abstract syntax, §3|presents
its type system, §4]presents its small-step operational seman-
tics, and §5] describes and proves key properties of our ap-
proach. Finally, §6]surveys related work, and §7]concludes.

1.4 Examples

Before we proceed, let us demonstrate the applicability of
ATE in reasoning about refactoring mining and static pro-
gram error detection. Our previous work [24] did not show
the benefits of using a dynamic effect analysis in II systems.
These examples show the benefits of implicit concurrency
between handlers and the power of the dynamic effect anal-
ysis in reaping implicit concurrency.

Refactoring crawler This tool uses crawler handlers to
mine refactorings, shown in Figure [T} such as renaming,
method pullup and pushdown, and changes of method signa-
tures between software versions [[10]]. The driver class reads
and parses two versions of the software, at lineEl], and starts
the mining processes by announcing the event Ev, which in
turn will run the registered crawlers.

The tool provides several predefined crawlers and allows
client users to implement their own crawlers. It also allows
users to selectively register a subset of the crawlers.

It is desirable to execute the crawlers concurrently to
detect refactorings in ultra-large-scale software repositories
[0} [11]. The tricky problem is that the crawlers may not
be known to the tool when it is developed because client
users can provide their own crawlers. Also, crawlers may
conflict with each other, e.g., the move method (Move)

1 event Ev { AST s; AST d; }
2 class Detect {
3 static AST p = null; static AST m = null;
4 void main() {
5 AST s = /* ... */; AST d = /% ... */;
6 announce Ev (s, d);
7 }
8}
-------------- Client -------ec--u---

9 class Move {
10 void reg() { register this.detect with Ev; }
11 void find(AST s, AST d) {

12 if (/» s is move refactoring of d =/

13 && Detect.p == null) m = d;

14 }

15 }

16 class Pull {
17 void reg()
18 void find (AST s,

{ register this.detect with Ev; }
AST d) |

19 if (/» s is pull refactoring of d %/) Detect.p = d;
20 }

21}

22 if (random()) new Move () .reg();

23 if (random()) new Pull() .reg();

Figure 1. Refactoring mining in ATE [10].

crawler checks whether a method is classified as a refac-
toring by some other (conflicting) crawlers (Pull). Worse
still, crawlers may or may not be invoked depending on user
inputs (lines 22}23), which are unknown until runtime.

This is exactly where ATE shines. Our scheduler is able
to solve the problem by leveraging the runtime handler in-
formation to exploit the concurrency between nonconflict-
ing crawlers, e.g., at line [6] ATE inspects the effects of the
handlers and executes nonconflicting handlers concurrently.

FindBugs This famous library [17] uses detector handlers
to find bugs. It provides several predefined detectors but
also allows clients to implement their custom detectors. This
library should be able to leverage parallelism, at line [5
because most of the detectors do not have conflicting effects.

However, the library may not know what the de-
tectors are, nor their effects. These unknown detectors
could be provided by client users. There are also prede-
fined detectors that have conflicting effects. For example,
the predefined detectors FindNoSideEffectMethods
and FindUselessObjects conflict with each other.
One of the steps in the FindUselessObjects de-
tector is to check whether a method invocation expres-
sion has side effects, using the results produced by
FindNoSideEffectMethods.

With dynamic typing, ATE inspects the effects of the
registered handlers to enable precise reasoning at runtime.
Potential concurrency is precisely exploited by scheduling
the nonconflicting detectors.

2.A Calculus with Asynchronous Typed Events

The abstract syntax of our calculus that supports asyn-
chronous, typed events is defined in Figure |3| Our calculus
is built on top of an imperative object-oriented calculus, and

16

-------------- Library - - == === =ccu-u-
event Ev { Class c; }
class FindBugs {
void main() {
Class ¢c = /% ... */;
announce Ev (c);
}
}
-------------- Client - = -=-==-ec-ue--

class FindNoSideEffectMethods {
static Method meth;
void reg() { register this.detect with Ev; }
void detect (Class c) {
if (/* c.m no side effect /)

}

meth = /+ c.m */;

}
class FindUselessObjects {

void reg() { register this.detect with Ev; }
void detect (Class c) |
if (c.m == FindNoSideEffectMethods.meth) /x ... %/

}
}

Figure 2. FindBugs in ATE [17].

Ptolemy [8} 131]. Key language features are highlighted in
blue, which support safe implicit concurrency, and in red,
which are challenging for a concurrent II language.

decl e

prog = program
decl ::= class cextendsd {fld meth} class
| event p {form} event
fld = cfinw field
meth ::= cm()%) {e} method
t = c| void type
form ::= cx, wherex # this parameter
e = form=e;e|x|null |e.m(e) expression
| e.fle.f=e|newc() reference
| yield e cooperation
| register this.m with p registration
| announce p (€) announcement
c,d € C, the set of class names
p € P, the set of event names
f € F, the set of field names
where m € M, the set of method names
x € {this} UV, the set of variable names
w € R, the set of region names

Figure 3. ATE’s abstract syntax. Throughout the paper, no-
tation ® represents a sequence of e elements.

2.1 Expressions

The syntax includes conventional OO expressions. The high-
light of ATE is a few interconnected features:

Dynamic event registration The register expression reg-
isters handlers with events dynamically (e.g., line [5]in Fig-
ure[L.I). As shown in Example[I.2] reasoning about the con-
currency safety of an II language with dynamic event regis-
tration is challenging. The tricky problem is that the concur-

rency safety depends on the configuration of the handlers,
which is not known until event registration at runtime. The
registration-time specialization in §4]solves this problem.

Implicit concurrency via event announcement The an-
nounce expression is the source of implicit concurrency. At
runtime, it inspects the effects of each handler and schedules
nonconflicting handlers to run concurrently. Two handlers
may interfere, referred to as conflicting handlers, if their ef-
fects access the same memory location and at least one of
the accesses is a write [14]. The runtime manages the details
of concurrency to relieve programmers from the burden of
explicitly managing threads and locks.

Modeling concurrency via cooperative handlers To
model concurrency and rigorously prove the properties of
ATE, we introduce the yield expression to simulate coop-
erative handlers [1,139]). It may not be used in source pro-
grams but serves as an intermediate expression in the seman-
tics (§4), which is used to allow other handlers to run, i.e., a
handler can explicitly yield control to other handlers.

The introduction of cooperative handlers could compli-
cate modular reasoning due to the well known pervasive in-
terference problem [3l 20, [39] (see Example[T.4). This prob-
lem is manifested by adding the yield expression (shown as
“in Example , referred to as interference points, to the
source program. We will show in §5.5|that ATE controls and
limits the interference points to only after the announce ex-
pression, instead of every expression.

2.2 Declarations

A program consists of a sequence of declarations followed
by an expression, which can be thought of as the body of a
“main” method.

The event type (event) declaration facilitates the im-
plicit invocation design style [7} 12, |27, 31} 135], whose in-
tention is to provide a named abstraction for a set of events.

Class declarations are standard except that each field is
associated with a region name [15}, 26} 137], a common way
of abstracting memory locations for effect systems to reason
about memory accesses. For the examples where regions are
not explicitly annotated, different region names suffice.

3. Type and Static Effect Computation

We now describe ATE’s type system, which computes pre-
cise effects for handlers. The dynamic semantics (§4) will
use these effects to determine a safe order for handler in-
vocation and to improve concurrency. The highlight is new
effects to approximate the modification of handler queues.

3.1 Effects Reasoning for Mutable Handler Queue

Compared with previous work on static effect reasonings
[6} 126} 37], effects of handlers are constantly changing in
event based systems [25] (Example and [1.2)), due to
runtime event registrations. The handlers of an event are

statically unknown. To tackle the problem, ATE introduces
two new effects, the announce and register effects, expressed
as ann and reg. An ann effect serves as a place holder for
the concrete effects of zero or more registered handlers and
is made concrete during handler registration at runtime (§4).

3.2 Type and Effect Attributes, and Effect Interference

The type attributes used by the type system are defined in
Figure[d] The type attributes for expressions are represented
as (t,0): the type ¢ of an expression and its effect set o.

0 = OK decl type
| 5 ¢tine method type
| t,o expression type

o = € program effect

e == rdw read effect
| wrw write effect
| annp announce effect
| regpo register effect

I == z:t type environment

Figure 4. Type-and-effect attributes.

The interference relation is shown in Figure 5] Read ef-
fects do not conflict with each other. Write effects conflict
with read and write effects accessing the same region. Event
registration register will modify the event queue to append
the new handler and the announce expression will read the
queue to execute the registered handlers. Similar to read-
/write effects, reg conflicts with each other and ann ac-
cessing the same event p.

‘ Noninterfering Effects, ofio:

Vo oo olo” olle’ rd wird o
(c U)o o'to
’ /
w7 w ; w7 w - (regpo/ann p)twr/rd w
rd wiwr w Wr WHWT w
p#p p#p

ann pfann p’

reg p offannp’ reg p ofiregp o’

Figure 5. Effect noninterference.

Notations The notation ¢’ < ¢ means ¢’ is a subtype of ¢.
It is the reflexive-transitive closure of the declared subclass
relationships. We state the type checking rules using a fixed
class table (list of declarations CT" [18]]). The typing rules
for expressions use a type environment, II, which is a finite
partial mapping from variable names z to types .

3.3 Expressions

The rules for expressions are rather conventional, shown in
Figure@ Rules (T-GET) and (T-SET) for store operations pro-
duce the read and write effects, respectively. We highlight

Typing: Il -e: t o

IIke:to

event p {tx} € CT

VtixiEES.t.Hl—eilt;,O'i A t; <1

(T-YIELD) (T-ANNOUNCE)

IIFyielde:t o

II - announce p (€) :void,o Llannp

MEthis:t,0 (c,t”,m ' x) {e},0) = find(t,m) event p {tx} € CT Vtet. t' <t
(T-REGISTER) : - -
I+ register this.m withp : {, regp o
(T-VAR) (T-NEW) (T-DEF)
(x) =t isClass(c) (T-NULL) Ore:cd,o d<ec NUa{x—ctrbe:to
I+ null:c0 - 7
MtEx:t,0 I+ newc():c0 MFcx=ee :t,olo
(T-GET) (T-SET) (T-CALL)
IIke:co Ilke:co type(c,) = (w,t) (c1,t,m (Ex) {epy1},0) = find(co,m) I+ eg: co,00
, il

type(e, f) = (w,t) mEe:t, o <t

(Vtixi etux, Hl—eiZtQ,Ui A\ t; %tl)

MEef:t,oUrdw MEef=¢:t',oUo Uwrw

I+ egm(e) :t,o U

“Latent” Handler Effects and its Realization, o Ll 0 = o :

cUoc' =cUc'U{e|annpcoAregp o’ co’ Adec "}

Figure 6. Type-and-effect rules.

the interesting rules. The (T-YIELD) says that a yield expres-
sion has same type and effect as the expression e.

The (T-REGISTER) says that the effect of a register expres-
sion is a register effect reg associated with the effects of the
to-be-register handler, to model handler queue modification,
e.g., in Example [I.2] the effect of the expression at line [J]is
reg Ee wr w, where wr w is the effect of h.

The (T-ANNOUNCE) says that the effects of the expres-
sion are the union of all the parameters’ effects plus one an-
nouncement effect, ann. This effect serves as a place holder
which will be used by registration-time specialization in §4|
to fill up more precise effect information at runtime.

The communication of the effects from handler registra-
tion to a handler invocation is best viewed in the effect op-
erator LI used in the rules and defined at the bottom of Fig-
ure @ Via the register expression, the effect of a handler is
put inside the reg effect while with the (T-ANNOUNCE) and

L, this embedded effect is extracted from the reg effect
to be exercised at the point of announcement; effects flow
from the points where handlers are registered to the points
where they are invoked, e.g., in Example @ h will run as
the result of 1) its registration at line[9]and 2) the announce
at line[T0] Therefore, the effects of v include the effects of h,
when combining the effects reg Ee wr w and ann Ee. L
can be viewed as a special form of effect set union U, which
will union the effects of its LHS and RHS, a typical way of
merging the effects of subexpressions, e.g., (T-GET).

3.4 Top-Level Declarations

The rules for declarations are standard, shown in Figure

‘ Typings for Declarations: ‘

(T-EVENT)
V(tx) € tx,isClass(t)
F event p {tx} : OK

(T-PROGRAM)
Vdecl € decl, + decl : OK

Fdecle:t,o

Fe:to

override(m, c,t = t) Vt; x; € tx, isClass(t;)
isType(t) (x:t,this:c)lFe:t',o v xt

Ftm@Ex){e}:t > tinc

(T-METHOD)

validF(t f,d) Vmeth € meth, = meth:tinc
F class cextends d {t f inw meth} : OK

(T-CLASS)

‘ Auxiliary Functions: ‘

isClass(t) if class t...eCT
isType(t) if isClass(t) Vt = void
validF (t f,c) if Y(tf)ctf,isClass(t) A f ¢ dom(flds(c))
flds(c) = fs if class cextendsd {¢{ finw ...} € CT
AN fs=flds(d)U f —u t

Valid Method Overriding: override(m, ¢, t =+ t) ‘

override(m, c,t = t) if (¢/,t,m (tx) {e},0’)=find(c,m) A oCo’

‘ Method Lookup: find(c,m) = (c’,t,m(t x){e}, o) ‘

(e, t,m(tx){e}, o) if class c extends d{...metht € CT
find(c,m)= A (t,o,m(tx){e}) € meth
find(d,m) otherwise

‘ Type Lookup for Field: type(c, f) = (w, t) ‘
if class cextends d {field...} € CT

(w,t)
type(c, f) = At finw € field
type(d, f) otherwise

Figure 7. Type-and-effect rules for top level declarations.

The (T-METHOD) uses the function override (Figure [7)
to check overriding, which enforces that the effect of an
overriding method is a subset of the overridden method [15]].

4. Semantics with Effect-Guided Scheduling

Here we give a small-step operational semantics for ATE.
The main novelty is to support precise reasoning of the dy-
namically changing effects of handlers via registration-time
specialization, dynamic typing and the integration of the ef-
fect system with a scheduling algorithm that produces safe
execution, while improving concurrency for II programs.

4.1 Domains

The small steps taken in the semantics are defined as tran-
sitions from one configuration to another. These configura-
tions are shown in Figure [8] A configuration consists of a
task queue 1), a store i, an event map -y and a trace h. Each
reference cell in i records an object c. F, consisting of a class
name c and a field record. A field record f ~,, v maps field
names f to values v in region w. A value v may either be
null or a location /. The map y maps an event p to a con-
figuration. This configuration consists of a (mutable) queue
of handlers [.m and a boolean flag b, indicating whether the
handlers can be run concurrently.

The task queue v consists of an ordered list of task con-
figurations (e, id). Each task configuration (called simply a
task) consists of the task identifier id and an expression e
serving as the remaining evaluation to be done for the task.

A trace h is the “realized effects”. It is defined as a se-
quence of accesses to references, with read/write to regions
and event registration and announcement. Traces are only
needed to demonstrate the soundness (§E]), but are unneces-
sary in the implementation.

ATE uses a call-by-value evaluation strategy. The oper-
ator @ is an overriding operator for finite functions, i.e., if
w = p®{l — o}, then p/(I') = oif I’ = I, otherwise
w (") = p(l’). The rest of this section highlights the rules
for the expressions announce, register and yield.

4.2 Registration-Time Specialization & Dynamic Typing
The (REG) rule appends the new handler to the mutable
queue p +—> <b,m + l.m> for event p. Concurrency de-
cisions can now be made because the previously unknown
handlers become known. If none of the handlers conflicts, in-
dicated by the flag b, they can be run concurrently. Dynamic
typing is used to compute the effect of the new handler.
Dynamic typing provides more precise effects because
of two reasons: 1) at runtime, the variables of the source
expression e will be substituted with values (e.g., (DEF) and
(caLL)), which carries more precise runtime information
[23]; and 2) the previously unknown handlers are known
(registration-time specialization), by inspecting the queue.
Dynamic typing is defined through type derivation
v, 1, IT k5, e : ¢, 0 in Figure |8 which extends static typing,

defined in Figure[6] with one additional rule (v-1) for refer-
ence [value typing. In previous work, effects do not change
at runtime. In ATE, the effects could change due to dynamic
event registration, e.g., the effects of a subject that may an-
nounce p, could change, with more handlers registered with
p. To account for this, dynamic typing inspects the handlers
in the event map ~ (the (y-EVENT) rule) and provides pre-
cise effects for the announce expressions. The (y-EVENT)
checks for event p whether the handlers for p can be run
concurrently, and what the effects of all these handlers are.
Note that the dynamic typing rule may recurse on the events
when checking an announce expression and thus the fixed
point operator is used.

Note that a handler h can register (other) handlers h’ for
an event p when handling an event and later announce the
event p (e.g., v in Example [I.Z). The effects of h should
include the registration, announce effects and the effects of
h’. This scenario is handled by LI (Figure @) An alternative
sound solution will let the effects of h to conservatively be
top, i.e., read/write the entire store [6].

4.3 Event Announcement & Safe Implicit Concurrency

The (aNN) retrieves the handlers registered for the corre-
sponding event p. The dynamic typing used in the register
provides precise effects and analyzes whether the handlers
can be run concurrently. If their effects conflict, each han-
dler has to wait until the completi&nﬁof the previous regis-
tered handler using the expression join(id;_1) to avoid con-
currency errors. Otherwise, the handlers can all be run con-
currently. The announce waits for its handlers to complete.

Note that if any pair of handlers conflict, the formalism
executes the handlers sequentially. A better implementation
is possible, e.g., executing nonconflicting handlers concur-
rently [24] (concurrent read exclusive write) or executing
a handler as soon as all its conflicting handlers are done
[[L6], or executing handlers with less effects before handlers
with more effects to promote modular reasoning [2]. These
schedulings maintain concurrency safety because conflict-
ing handlers can never be run concurrently. There are many
scheduling techniques from which our work can learn, but
the simplification suffices to illustrate the soundness.

The expression join(id) can only process after all the
tasks id are done, i.e., no longer in the queue ¢. The ex-
pression ‘7'071> is joining other handlers and known as a right
mover [14], indicated by the head symbol —. As interference
points only exist after the right mover [39], announce is the
only interference points in ATE (see Example|[T.4).

4.4 Yielding Control & Interference Points

To model concurrency, we use preemptive interleaving [39],
like Abadi and Plotkin [1]], i.e., the running handlers will
relinquish control (interference points) to other handlers at
each step (see the (conT)). We will prove in @ that, in
ATE, this preemptive semantics is equivalent to the cooper-

Definitions:

¥ o (W, 7y,) program configuration
Y = {eyid) task queue

id == 4idad|0|1] ... thread id

pon= L el f ey vl store

v = null|] value

v o= pe <b, m> event map

b = true] false boolean value

h == (id,o) trace

E == —|E.m(e)|v.m(WEe) | E.f| E.f=e|v.f=FE |tx=E;e evaluation context

| announce p(TE) | register E .m with p

Dynamic Typing: v, u,II1H et o

u(l) = [e.f —uw v] I1 - announce p (e) : void, o Yo, Ik p: (b0’
(y-ANNOUNCE) — : :
v, I e, v, 1, I -, announce p (€) : void,o U o

(v-D)

p)=U,lm) b= /\Voi,0; €Tsti+#jstoi#o,
Yi.m € lm dispatch(u, [,m) = m(tx){e} N v,u,x:th [I/thisle:t' o
Y., I, p: (b, UT)

For all other (7-*) rules, each is isomorphic to its counterpart (T-*) rule, except that every occurrence of the judgment
IIF e : t, o in the latter rule should be substituted with v, ui, IT 5, e : ¢, o in the former.

(7-EVENT)

‘ Evaluation Relation: v, u, v, h < ¢/, p/, ', i/

(cont) (Ele],id) +,p,v,h — (Elyield €'],id) + + ', 1/, o', h+ (id, o) if e id,p,y =€, ¢ 1/, 7,0

‘ Local Reduction: e, = €/, v, 1i/,7/, 0, where .= id, j1,y ‘

(reg)register l.m withp_ = 1,0, u,7', reg p o if ,u(l) [e.f = v] A find(e,m) =(...,0)
/\q/ =& {p— (b, lm+lm>}
Ay = = O T |y () = (0 Tl) Ay O, ' (T}
(ann) announce p (V). => e, ¢, 1, v,annp if y(p) = (b, lm) A ¢ = (e,id) A e = M(ﬁ)
dyn(p, l;, m;,7) if b

AV € lomid; = id. fresh() A eiz{m)(mi_l); dyn(ji, L, ms,) if 1b

(join) W(ﬁ)c =e,0, 11,7, join if Pid; € ids.t. (e;,id;) € A e =null

(call) L.m(v). = €,0,1,7,0 if dyn(p, l,m,7) =e

(def) cx=vie, =¢e,0,p,7,0 if ¢/ = [v/xe

(new) newc(). = 1,0,1/,7,0 if | ¢ dom(u) N flds(c) = f ot A /' =p®d{l— [c.f s, null]}
(set) Lf=v.=v,0,0,vwrw ifp =pd(l—c.f—uvd(f o))

(get) Lf.=v,0,py,rdw i p(l) = [c.f = v]

‘ Cooperative Handling: 1, u, v, h < ', i/, ', i’

(yield) ((Elyield ¢],id) + ¥, pu, v, B) — {active(yp + (Ele],id)), i, v, h)
(end) ((v,id) + b, p, v, By = (active(), p, 7,)

Figure 8. Operational semantics. Auxiliary functions are defined in Figure[9]

‘ Dynamic Dispatch, dispatch(u, l,m) = m(tx){e} : ‘
dispatch(u, l,m) = m(t x){e} iful) =lcfrwv]
_ Afind(e,m) = (c’,t,m(ti){e}7a)
dyn(p, l,m,v) = [l/this,v/x]e if dispatch(u,l,m) = m(tx){e}

‘ Cooperative Handlers Management, active(y)) = 1 : ‘
(e, id) + ¥ if e # join(id)

V Fid' € id st (e, id') € 3
active(y+ (e, 7)) otherwise

active((e, id)+1) = {

Figure 9. Auxiliary functions for the semantics.

ative semantics, where the only interference points appear
after the announce expression.

The (YIELD) puts the current handler to the end of the
queue 1) and starts the next active task from this queue. Find-
ing an active task is done by the function active (Figure[9).
It returns the top most task in ¢ that can be run. A task is
@)ﬂy to run if it is not waiting on other tasks, i.e., not a
join expression, or all the tasks it is waiting on are done.

The (END) rule says that the current running task is done
(it evaluates to a single value v), thus it will be removed from
the queue and the next active task will be scheduled.

5. Meta-Theories

We now show the key properties of ATE. The properties in-
clude the standard type soundness (§5.3), liveness (§5.2),
sequential semantics (§5.4) and sparse interference points
(@. In previous works [6} 37]], the exact set of concurrent
tasks that will be spawned are known statically. A technical
challenge for proving the soundness of our work is that con-
current tasks spawned as a result of an event announcement
are unknown statically due to dynamic registration. The de-
tailed proofs can be found in our report [25].

5.1 Preliminary Definitions

Before we proceed, we first give some simple definitions that
will be used for the rest of the section.

DEFINITION 5.1. [Redex configuration] We say X is a re-
dex configuration of program decl e, written e > %, iff
({e,0),0,0,0) < . We say X is a proper redex configura-
tion, written >%., if Je such that - decl e : t,oand e > 3.

DEFINITION 5.2. [Well-typed queue] A queue v is well-
typed in u and v, written v, p & 1, if and only if V (e, id) €
vy, 1,0k e:t,ofor sometand o.

DEFINITION 5.3. [Well-typed event map] A handler l.m is
well-typed in u for event p, written as l.m ~ (u,p), if
(m (t' x) {e})=dispatch(u,l,m), event p {tx} € CT,
(Vit; x; € tx, t, < t;). An event map v is well-typed in p,
written as j = v, if Vp € dom(y) s.t.(y(p) = (b, l.m)) =
(Vi.m € Lm s.t. Lom =~ (p, p)).

DEFINITION 5.4. [Local reduction] Let two configurations
Y= {(e,id) + ¥, p, 7y,) and X' ={{e',id) + V', 1’ , v, I).

A reduction ¥ —* Y/, is called a task local re-
duction, denoted as ¥ — X!, if P st B —*
<<6”,id> +w//’ﬂﬂ7,}///’h//> (_>* E/.

DEFINITION 5.5. [Well-typed configuration] A configura-
tion X = (1, u,v,hy is well-typed, written as = %, if

Yoo b b and p k.
5.2 Livelock Freedom

In the semantics, ATE lets some tasks be inactive, i.e., wait
for conflicting tasks to maintain concurrency safety. We
prove that at any configuration, there exists a task that is ac-
tive and thus can make progress. Intuitively, each task can
only wait for its predecessor handlers, i.e., conflicting han-
dlers that registered earlier and its handlers if it announces
an event. Such waiting relationship forms a tree, not a circle
(circular wait). Therefore, ATE is livelock free.

DEFINITION 5.6. [Blocked configurations] Let a configura-
tion ¥ = (1, u, vy, k). The task (e, id) in ¥ blocks, written 1
(e,id), if e == E[join(id)] and 3 (¢',id') € ¢ s.t. id’ € id.
Otherwise, (e, id) is active, written |{e,id). A configuration
Y blocks, written T X, if V (e, id) € 1,71 (e, id), otherwise,
3 can make progress, written | 3.

THEOREM 5.7. [Liveness] If >3, then | X..

Proof: The proof is by induction on the number of reduction
steps (Figure[8) applied.

5.3 Type Soundness

In this section, we prove the standard type soundness. First
we prove that with more items in the store x and event map
7, the typing of the same expression remain unchanged.

DEFINITION 5.8. [Store enlargement] Let p and ' be two
stores. We write j < 1, if:

1. dom(p) C dom(p');
2. Viedom(u), if p(l)=[c.fr, v], then p'(1)=[c. 4, v'].

LEMMA 5.9. [Store extension] If v, u,II I e :
w<<y, theny, /', Ik e t, 0.

t,o and

Proof: The proof proceeds by structural induction on the
derivation of v, u, Il I e : ¢, 0.

DEFINITION 5.10. [Event map enlargement] Let p be an
event type, y and ' be two event maps. We write y <(p, 1.m)
~', if all the following hold:

1. dom(v) = dom(¥');

2. Vp' edom(), if y(p')=(b, l.m), then~' (p/)=(V/, L.m);
3. ify(p) = (b, L.m), then ~(p) = (', l.m + L.m).
LEMMA 5.11. [Event map extension I] If vy, u, I H; e : ¢, o,
Y <(p.m) V> and annp ¢ o theny', pu, 11, e : t,0.

Proof: The proof proceeds by structural induction on the
derivation of vy, u, II I e : ¢, 0.

‘ Evaluation Relation: v, u, v, h < o', i/, v/, I/

(cont) (Ele],id) + o, pu,v,h =%

(Ele'],id) + ¢+, /.~ b+ (id, o) if e id,p,y = €Y' 1,7 0

‘ Sequential Reduction: e, = €/, ¢, 1’, v, 0 where _=id, j1,~y ‘

(anng) announcep (U). =, ¢€,0,u,v,annp

ify(p) = <b,m> A Ylm; € Lm. dyn(p, b, m;,0) = e;

For all other (*,) rules, each is isomorphic to its counterpart (*) rule, except that every occurrence of the judgment
e. = €, 1’ ,~', o in the latter rule should be substituted with e = €', 1, 1, ¥', o in the former.

Figure 10. Sequential semantics.

LEMMA 5.12. [Event map extension II] If v, u,IT k5 e :

to, v <pimy Vs w(l) = [c.f =], find(c,m) =
(...,0"), and annp € o then~', u, 11k, e : t, post(cUo”).

Proof: The proof proceeds by structural induction on the
derivation of v, u,II I, e : ¢, 0.

Our soundness proof is constructed through standard sub-
ject reduction and progress:

LEMMA 5.13. [Preservation] Let ¥ = (e, id)+1, u, v,).
Ifv,,0k e:t,op X — (¢ id) + ', 1, ~"), then there
is some t' and o' such that ', u',0 e’ :t', 0’ Nt X L.

Proof: The proof proceeds by structural induction on the

derivation of v, 1, IT b, e : t,0, Lemma[5.9[5.12} and[5.12]

LEMMA 5.14. [Progress] Let X = ({e,id) + ¢, p, 7, h). If
v, 1,0 b e : t o, then either e is a value v, or ¥ —
(¢ id) + ', p',).

Proof: By cases on the reduction step applied.

THEOREM 5.15. [Type Soundness] Given an expression e,
0,0,0 &, e:t,o, then either the evaluation of e diverges, or
there exists some ji, v, y and h such that {{e,0) , (0, D, 0) —*

{(0,0) s 7,).
Proof: By Lemmal[5.14and[5.13]

5.4 Sequential Semantics

In this section, we will prove that the execution of an
ATE program (which runs nonconflicting handlers concur-
rently in §4) is behaviorally equivalent to its sequential
counterparts, where every announce expression will execute
the handlers one by one serially. First, let us define relation
h o< o, which says a trace 7 realizes a static effect o:

DEFINITION 5.16. [Static effect contains dynamic effect]
h o o holds iff ¥ (id,o’) € h .o’ Co.

Next, we state and prove that every pair of the handlers in
the queue v do not conflict:

DEFINITION 5.17. [Noninterfering tasks] Two task (e, id)
and {¢',id") are noninterfering in p, v, written v, >

(e,id) # (¢, id'), if:

— _ — _
1. e = join(id) A id' € id; ore’ = join(id) A id € id;
2.0ry,pu, 0k e:ot, v, w0k ¢ ot and o#a’.

DEFINITION 5.18. [Noninterfering queue] A queue
is noninterfering in pu and -y, written v, u > ¥, if
v <ei7 2d1>) <eja Zd]>€’¢) S.1. Z#.]a ey > <6i7 Zdz> # <€ja Zd]>
LEMMA 5.19. [Noninterfering preservation] Let ¥ =
(W, p, v, B), and 5. If v, u >), ¥ — X where ¥/ =
(W' w1, then ', ! B 4.

Proof: By cases on the reduction step and Definition[5.18]

Next, we prove that the trace a handler leaves realizes its
effects given by the dynamic typing:

LEMMA 5.20. [Effect subsumption] Let
Y= ({e,id) , 1,7y, h), and X Ify, u>y), v, 1,0 b, e 1 £, 0,
Y o— Y where ¥ = ((¢/,id) + ', i,y i+ 1), then

(@) ¥, 1,0k ¢ ', 0’ Nt < t)A (0! Co);

(b) h x 0.

Proof: By cases on the reduction step applied.

‘ Prefix, pref (id,id') = b: ‘

ooy true if (id == id’) V (id == id’ .id"’ for some id'")
pref (id, id’) = { false otherwise

‘ Trace Projection, 7 (id, h) = h: ‘

0 ith=10
w(id,h) = ¢ (id',0) + w(id, /) if h = (id’',o) + W' A pref(id,id’)
w(id, k') otherwise

Figure 12. Trace projection.

LEMMA 5.21. [Effect preservation] If X = ({e, id)ﬂ’y, h),
and 5. If 5,1 %, 7,0 b € 1,0, e # Eljom(id)],

¥ —* ({v,id) , 1, ', b') then w(id, k' — h) x o.

Proof: By cases on the reduction step applied.

With the above, we can prove that any ATE program is
race free. There remains a gap between this property and
why one intuitively believes that ATE is sequentially consis-
tent (SC). To rigorously define the more intuitive notion of
SC, let us first introduce the sequential semantics (handlers
run sequentially) of ATE, shown in Figure[I0]

‘ Evaluation Relation: v, p, v, i <, o', /., I/

(cont) (Ele],id) + b, p, v, b=, (E[e'],id) + ¥ + ' 4,y o+ (id, o) if e, id, p,y =, €, 0/~ o

‘ Cooperative Reduction: e, =, €',1, 1, v, 0 where _=1id, j1,~y ‘

(ann,) announcep (7). =, yield e, 1), u,v,annp if announce p (v). = e, v, u,y,annp

For all other (*,) rules, each is isomorphic to its counterpart (*) rule, except that every occurrence of the judgment
e. = €, 1, o in the latter rule should be substituted with e, =, €', 1, i, 7', o in the former.

Figure 11. Cooperative semantics.

We are ready to prove that an ATE program behaves the
same as its sequential counterpart:

THEOREM 5.22. [Sequential Semantics] Given an expres-
sion e, 0,0,0 L e t,o, then either the evalua-
tion of e diverges in both the sequential and the par-
allel semantics, or there exists some u, v, v, h and
I’ such that ((e,0),0,0,0) <—* ((v,0),u,v,h) and
((e,0) ,0,0, 0) = ((v,0), vy, 1)

S
Proof: By Lemma[5.19}[5.20] and[5.21]
5.5 Modular Reasoning

In this section, we will prove that the execution of an
ATE program (which has preemptive semantics, i.e., yield-
ing control to other active handlers at each step in §4) is be-
haviorally equivalent to its cooperative counterparts: a han-
dler will only yield after announcing an event. The coopera-
tive semantics is defined in Figure [T T]

THEOREM 5.23. [Cooperative Semantics] Given an expres-
sion e, 0,0,0 H e t,o, then either the evalua-
tion of e diverges in both the cooperative and the par-
allel semantics, or there exists some u, v, v, h and
I such that ({e,0),0,0,0) <* ({(v,0),u,~,h) and
<<6, 0> 7®7®7 ®> <_>y* <<U7 0> » 75 h/>

Proof: As proven in an ATE program is data race
free. Therefore, reference access is both mover [39]. The
announce expression, which forks concurrent handlers, is
a left mover, and the join expression, which waits for its
children handlers, is a right mover. Interference points only
exist at left movers [39]], i.e., the announce expression.

6. Related Work

Asynchronous typed events are inspired from a large body of
work on events, e.g., [7,19012L113L119}21,127,128,1311135,136]].
This work goes beyond previous work which views events as
a design decoupling mechanisms [[12} 27} 31} 36] to leverage
decoupling for safe concurrency.

There are plenty of works on using static effect systems
to reason about safe concurrency. Earlier work includes Lu-
cassen [26]], and Talpin et al. [37], and more recent examples

such as Task Types [20]] and Bocchino et al. [6]. Compared
with these works, our system uses the effects dynamically.
Effects of the handlers are computed statically by the type
system, and the semantics use these effects to compute a safe
order for handler invocation at runtime.

There are several works on using effects dynamically,
including Intensional Effect Polymorphism [23], TWEJava
[[L6], and Legion [38]]. In these works, effects do not change
at runtime. In ATE, however, effects could change due to
dynamic event registration. ATE introduces a novel type-
and-effect system to reason about mutable handler queue,
which could be challenging for the above systems.

Compared with software transactional memory (STM)
and other related ideas [5] and effect monitoring systems [4],
our system computes the effects of the handlers by the type
system. Concurrency decisions are guided by the effects of
handlers at runtime to gain precision. ATE detects potential
conflicts before executing the handlers, while STM executes
threads speculatively, and detects conflicts afterwards. In
case of conflicts, STM rolls back all the changes.

There is a large body of work on the message-passing,
and the publish/subscribe paradigms in distributed sys-
tems [22] 28] [30L 134]. These works either require program-
mers to manually account for data races, or assume disjoint
address space between concurrent processes [28) [34]. ATE
tackles concurrency problems in shared-memory paradigm.
It eases the burden on the programmer by allowing modular
reasoning and by providing implicit safe concurrency.

7. Conclusion

In this work, we pursue the goal of unifying modular reason-
ing and concurrency in program design. We have developed
the notion of asynchronous, typed events that are helpful
for programs where modules are decoupled using implicit-
invocation design style [27, 28} |36]], and where handlers can
register dynamically. Event announcements provide implicit
concurrency. Registration-time specialization provides pre-
cise effects analyses, which improves safe concurrency for
II programs. Dynamic typing takes into account the handlers
registered to reason about the mutable handler queue. ATE
facilitates modular reasoning about concurrency safety.

Acknowledgments

Tyler Sondag and Sean L. Mooney helped with an ear-
lier version of this work. This work was supported in
part by NSF grants CCF-08-46059, CCF-11-17937 and
CCF-14-23370. Comments and suggestions from Mehdi
Bagherzadeh, Robert Dyer, Steven M. Kautz, Gary T. Leav-
ens, Youssef Hanna, Adam Zimmerman, Cody Hanika, John
L. Singleton, Rex D. Fernando, Zhaotong Zhang and the
anonymous reviewers of Modularity 16 were helpful.

References

[1] Abadi, M., Plotkin, G.: A model of cooperative threads. In:
POPL 09

[2] Bagherzadeh, M., Dyer, R., Fernando, R.D., Sanchez, J., Ra-
jan, H.: Modular reasoning in the presence of event subtyping.
In: MODULARITY 15

[3] Bagherzadeh, M., Rajan, H.: Panini: A concurrent program-
ming model for solving pervasive and oblivious interference.
In: MODULARITY 15

[4] Baiiados, F., Garcia, R., Tanter, E:A theory of gradual effect
systems. In: ICFP *14

[5] Berger, E.D., Yang, T., Liu, T., Novark, G.: Grace: safe multi-
threaded programming for C/C++. In: OOPSLA 09

[6] Bocchino, Jr., R.L., Adve, V.S., Dig, D., Adve, S.V.,
Heumann, S., Komuravelli, R., Overbey, J., Simmons, P.,

Sung, H., Vakilian, M.: A type and effect system for deter-
ministic parallel Java. In: OOPSLA ’99

[7] Bodden, E., Tanter, E., Inostroza, M.: Join point interfaces for
safe and flexible decoupling of aspects. ACM Trans. Softw.
Eng. Methodol. 23(1) (2014)

[8] Clifton, C., Leavens, G.T.: MiniMAO;: Investigating the se-
mantics of proceed. Sci. Comput. Program 63(3) (2006)

[9] Cunningham, R., Kohler, E.: Making events less slippery with

eel. In: HOTOS 05

[10] Dig, D., Comertoglu, C., Marinov, D., Johnson, R.: Auto-
mated detection of refactorings in evolving components. In:
ECOOP *06

[11] Dyer, R., Nguyen, H.A., Rajan, H., Nguyen, T.N.: Boa: A lan-
guage and infrastructure for analyzing ultra-large-scale soft-
ware repositories. In: ICSE *13

[12] Eugster, P., Jayaram, K.R.: EventJava: An extension of Java
for event correlation. In: ECOOP *09

[13] Fischer, J., Majumdar, R., Millstein, T.: Tasks: language sup-
port for event-driven programming. In: PEPM 07

[14] Flanagan, C., Freund, S.N.: Fasttrack: efficient and precise
dynamic race detection. In: PLDI *09

[15] Greenhouse, A., Boyland, J.: An object-oriented effects sys-
tem. In: ECOOP 99

[16] Heumann, S.T., Adve, V.S., Wang, S.: The tasks with effects
model for safe concurrency. In: PPoPP *13

[17] Hovemeyer, D., Pugh, W.: Finding bugs is easy. SIGPLAN
Not. 39(12)

[18] Igarashi, A., Pierce, B., Wadler, P.: Featherweight Java: A
minimal core calculus for Java and GJ. In: OOPSLA °99

[19] Krohn, M., Kohler, E., Kaashoek, M.F.: Events can make
sense. In: USENIX (2007)

[20] Kulkarni, A., Liu, Y.D., Smith, S.F.: Task types for pervasive
atomicity. In: OOPSLA 10

[21] Li, P, Zdancewic, S.: Combining events and threads for
scalable network services implementation and evaluation of
monadic, application-level concurrency primitives. In: PLDI
07

[22] Long, Y., Bagherzadeh, M., Lin, E., Upadhyaya, G., Rajan,
H.: On ordering problems in message passing software. In:
MODULARITY ’16

[23] Long, Y., Liu, Y.D., Rajan, H.: Intensional effect polymor-
phism. In: ECOOP 15

[24] Long, Y., Mooney, S.L., Sondag, T., Rajan, H.: Implicit invo-
cation meets safe, implicit concurrency. In: GPCE 10

[25] Long, Y., Rajan, H.: A type-and-effect system for asyn-
chronous, typed events. Tech. Rep. 09-28b, Iowa State U.,
Dept. of Computer Sc. (2015)

[26] Lucassen, J.M., Gifford, D.K.: Polymorphic effect systems.
In: POPL ’88

[27] Notkin, D., Garlan, D., Griswold, W.G., Sullivan, K.J.:
Adding implicit invocation to languages: Three approaches.
In: JSSST 93

[28] Oki, B., Pfluegl, M., Siegel, A., Skeen, D.: The information

bus: An architecture for extensible distributed systems. In:
SOSP ’93

[29] Pierce, B.C.: Types and Programming Languages. MIT Press
(2002)
[30] Rajan, H.: Capsule-oriented programming. In: ICSE’15

[31] Rajan, H., Leavens, G.T.: Ptolemy: A language with quanti-
fied, typed events. In: ECOOP °08

[32] Raycheyv, V., Vechev, M., Sridharan, M.: Effective race detec-
tion for event-driven programs. In: OOPSLA 13

[33] Safi, G., Shahbazian, A., Halfond, W.G.J., Medvidovic, N.:
Detecting event anomalies in event-based systems. In: FSE
15

[34] Schmidt, D.C.: Reactor: an object behavioral pattern for con-
current event demultiplexing and event handler dispatching.
Pattern languages of program design pp. 529-545 (1995)

[35] Steimann, F., Pawlitzki, T., Apel, S., Késtner, C.: Types and

modularity for implicit invocation with implicit announce-
ment. ACM Trans. Softw. Eng. Methodol. 20(1) (2010)

[36] Sullivan, K.J., Notkin, D.: econciling environment integration
and component independence. SIGSOFT Software Engineer-
ing Notes 15(6), 22-33 (December 1990)

[37] Talpin, J.P., Jouvelot, P.: The type and effect discipline. Inf.
Comput. 111(2) (1994)

[38] Treichler, S., Bauer, M., Aiken, A.: Language support for
dynamic, hierarchical data partitioning. In: OOPSLA 13

[39] Yi, J., Flanagan, C.: Effects for cooperable and serializable
threads. In: TLDI *10

	Introduction
	Background
	This Paper: Technical Highlights
	Contributions
	Examples

	A Calculus with Asynchronous Typed Events
	Expressions
	Declarations

	Type and Static Effect Computation
	Effects Reasoning for Mutable Handler Queue
	Type and Effect Attributes, and Effect Interference
	Expressions
	Top-Level Declarations

	Semantics with Effect-Guided Scheduling
	Domains
	Registration-Time Specialization & Dynamic Typing
	Event Announcement & Safe Implicit Concurrency
	Yielding Control & Interference Points

	Meta-Theories
	Preliminary Definitions
	Livelock Freedom
	Type Soundness
	Sequential Semantics
	Modular Reasoning

	Related Work
	Conclusion

