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ABSTRACT 

Artificial neural networks (ANN), due to their inherent parallelism, potential for fault 

tolerance, and adaptation through learning, offer an attractive computational paradigm for a 

variety of applications in computer science and engineering, artificial intelligence, robotics, and 

cognitive modeling. Despite the success in the application of ANN to a broad range of numeric 

tasks in pattern classification, control, function approximation, and system identification, the 

integration of ANN and symbolic computing is only beginning to be explored. This disserta­

tion explores to integrate ANN and some essential symbolic computations for content-based 

associative symbolic processing. This offers an opportunity to explore the potential benefits of 

ANN's inherent parallelism in the design of high performance computing systems for real time 

content-based symbolic processing applications. We develop methods to systematically design 

massively parallel architectures for pattern-directed symbol processing using neural associative 

memories as key components. In particular, we propose neural architectures for content-based 

as well as address-based data storage and recall, information retrieval and database query 

processing, elementary logical inference, sequence processing, and syntax analysis. Their po­

tential advantages over conventional serial computer implementations of the same functions 

are examined in the dissertation. 
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1 INTRODUCTION 

The goal of artificial intelligence (AI), broadly interpreted, is to understand and engineer 

intelligent systems. It is often suggested that traditionally serial symbol processing systems of 

AI and inherently massively parallel artificial neural networks (ANN) offer two radically, per­

haps even irreconcilably different paradigms for modelling minds and brains — both artificial 

as well as natural [130, 160]. AI has been successful in applications such as theorem proving, 

knowledge-based expert systems, mathematical reasoning, syntax analysis, and related appli­

cations which mainly involve systematic symbol manipulation. On the other hand, ANN have 

been particularly successful in applications such as pattern recognition, function approxima­

tion, and nonlinear control [60, 150] which involve primarily numeric computation. Meyerowitz 

has suggested that the design of neural architectures capable of supporting dynamic represen­

tations for symbol manipulation is one of the grand challenges of neural network research [113]. 

As shown by Church, Kleene, McCulloch, Post, Turing, and others through their work on the 

theory of Computation [117. 100], both AI and .A.NN represent particular realizations of a 

universal (Turing-equivalent) model of computation [185]. Thus, despite assertions by some 

to the contrary, any task that can be realized by one can, in principle, be accomplished by 

the other. However, most AI systems have been traxiitionally programmed in languages that 

were influenced by Von Neumann's design of a serial stored program computer. ANN systems 

on the other hand, have been inspired by (albeit overly simplified) models of biological neural 

networks. They represent different commitments regarding the architecture and the primitive 

building blocks used to implement the necessary computations. Thus they occupy different 

regions characterized by possibly different cost-performance traxdeoffs in a much larger space of 

potentially interesting designs for intelligent systems. Recently, several researchers have begun 
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to explore previously unexplored parts of this design space. 

Given the reliance of both traditional AI and ANN on essentially equivalent formal models 

of computation, a central issue in design and analysis of intelligent systems has to do with 

the identification and implementation, under a variety of design, cost, and performance con­

straints, of a suitable subset of Turing-computable functions that adequately model the desired 

behaviors. Today's AI and ANN systems each demonstrate at least one way of performing a 

certain task (e.g., logical inference, pattern recognition, syntax analysis) naturally and thus 

pose the interesting problem for the other of doing the same task, perhaps more elegantly, 

efficiently, robustly, or cost-effectively than the other. In this context, it is beneficial to crit­

ically examine the often implicit and unstated assumptions on which current AI and ANN 

systems are based and to identify alternative (and potentially better) approaches to design­

ing such systems. Massively parallel symbol processing architectures for AI systems or highly 

structured (as opposed to homogeneous, fully connected) ANN are just two examples of a 

wide range of approaches to designing intelligent systems [185, 72, 73]. Of particular interest 

are alternative designs (including synergistic hybrids of ANN and AI designs) for intelligent 

systems [47, 65, 70, 72, 73, 99, 136, 172, 179, 185]. Examples of such systems include: neu­

ral architectures for information retrieval and database query processing [23, 24], generation 

of context-free languages [187], rule-based inference [5, 31. 141, 167, 176], computer vision 

[11. 119]. natural language processing [14, 32], learning [46, 69, 168], and knowledge-based 

systems [94, 145]. We strongly believe that a judicious and systematic exploration of the de­

sign space of such systems is essential for understanding the nature of key cost-performance 

tradeoffs in the synthesis of intelligent systems. 

This dissertation explores to integrate ANN and some essential symbolic computations 

for content-based associative symbolic processing. This offers an opportunity to explore the 

potential benefits of ANN's inherent parallelism in the design of high performance computing 

systems for real time content-based symbolic processing applications. 
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1.1 Artificial Neural Networks 

ANN are biologically inspired by the neural systems of human brain which are massively 

parallel interconnected networks of hierarchically organized nerve cells (neurons). ANN are 

extremely simplified models of biological neuraJ systems in many aspects such as the structure 

of basic computational units, the mechanism for information processing, network architecture, 

etc. Compared to most current digitai computer systems, ANN are particularly well-suited for 

pattern-directed problems - pattern completion, pattern classification and pattern association 

[29] which arise frequently in applications such as language processing, speech recognition, and 

pattern recognition. 

It is worth mentioning that the primary goal of ANN research (unlike neural modelling 

or computational neuroscience research) is not to discover a computational model for the 

detailed processes of human brain but to technologically pursue a computing paradigm which 

can effectively realize and efficiently perform high-level intelligent processes. 

1.1.1 Artificial neural units 

A typical computing unit (node) in an ANN has n input and m output connections, each of 

which has an associated weight. The node computes the weighted sum on the inputs, compares 

the sum to its node threshold, and produces its output based on an activation function. 

commonly used activation function is threshold function. The resulting output is sent along 

the output connections to other nodes. The output of such a node used in this dissertation is 

defined by 

where i, is the value of input i, Wi is the associated weight on input connection z, 6 is the 

node threshold, y is the output value, and / is the activation function. Figure 1.1 shows such 

a node. 

n 

(1.1)  
1=1 



X, X, 

Figure 1.1 A typical computing unit of an ANN 

1.1.2 Activation functions 

The types of activation functions used by an ANN affect its expressiveness, computational 

capabilities, and performance. Several typical activation functions are linear, binary sigmoidal, 

bipolar sigmoidal, binary hardlimiter, bipolar hardlimiter, gaussian, and ramp [56, 102] defined 

as follows: 

linear: /l(s) = cs, where s = Ya-i WiXi - 0 and c> 0 

binary sigmoidal: /s(s) = 7:^7=^7, where s = t«,i, - 6 and c> 0 

bipolar sigmoidal: fs{s) = where s = u?,x, - 6 and c > 0 

binary hardlimiter: 
0 otherwise 

1 if s > 0 
, where s = X2"=i ~ ^ 

+1 if s > 0 
bipolar hardlimiter: /H(S) = < , where s = ̂ "=1 — 9 

— 1 otherwise 
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gaussian: /G(S) = EI^, where s = Yli=oi'"^i - ̂ i) 

ramp: 

+1 if cs > +1 

fnis) = < cs if (cs| < 1 > where s = to.-z, - 9 and c> 0 

— 1 if cs < -1 

In above equations, c is activation gain. Note that most of the activation functions produce 

output in the range of [0,1] for binary signals, and [—1,1] for bipolar signals. 

This dissertation uses two types of threshold functions: binary hardlimiter and bipolar 

hardlimiter. Their simplicity allows simple and efficient hardware implementation of such 

threshold functions. 

1.1.3 Types of artificial neural networks and their computational capabilities 

ANN can be mainly classified into three basic categories: feedforward networks, feedback 

networks and recurrent networks [28, 56, 131] according to their architectures, functionalities, 

and signal propagation direction of their connections. The output of a feedforward network is 

a function of current input, and its connections are unidirectional. The output of a feedback 

network is a function of current input (and past inputs in some cases), and its connections 

are not necessarily unidirectional. The output of a recurrent network is a function of current 

and past inputs, and its connections are unidirectional. Architecturally, a recurrent network is 

a feedforward networks with recurrent connections, but it is a feedback network functionally. 

Since the output of both feedback networks and recurrent networks can be a function of past 

inputs, and thus they are suitable for sequence processing. Mathematically, the computing 

of feedforward networks approximates a function mapping, and that of feedback networks 

approximates finite state machines, pushdown automata, or Turing machines. 

Typically, a feedforward network and a recurrent network has a layer of input neurons to 

receive input, a layer of output neurons to produce output, and often layers of hidden neurons 

to extend the computing capability of the network. Usually, the neurons of a feedback net­
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work are classified into input, hidden, and output neurons functionally but not architecturaJly. 

Perceptrons [155] and multi-layer Perceptron [156] are two examples of feedforward networks. 

Elman network [33] and Jordan network [81] are two examples of recurrent networks. Hopfield 

networks [75] and BAM [90] two examples of feedback networks. 

1.1.4 Implementation of artificial neural networks 

Due to the computations required by enormous neural nodes to calculate their thresholded 

activation and weighted sum on the inputs from their associated input connections in an 

ANN, ANN systems generally require more intensive computational power but simpler types 

of computations than current computer systems do. There are many technologies available 

for implementing ANN, mainly including software simulation which is the most widely used 

due to the fact that digital computer systems are highly available for writing and testing the 

simulation programs, electronic hardware (digital VLSI, analog VLSI, hybrid of digital and 

analog VLSI, etc.) realization which potentially owns both the benefits of high performance and 

cost-effectiveness currently due to the fact that VLSI provides relatively high performance and 

is extensively used in current computer systems, optical computing which potentially has the 

highest performance because it computes at the speed of light, and biological implementation 

which is biologically closer to biological nervous systems. 

1.2 A Brief Review of ArtificieJ Neural Networks 

Since the resurgence of research on ANN in 1980s, ANN have attracted much interest of 

many researchers from various science and engineering disciplines, which is shown by the ex­

plosive amount of applications and published technical papers on ANN in 1980s and 1990s. It 

is beyond the scope of this dissertation to review in detail the rich literature in every research 

area of ANN. Instead, this section will only briefly review up to late 1980s several representa­

tive concepts and landmarks on the common research ground of ANN. Reviewed in much more 

detail in the related chapters is the literature specific to the research topics covered by this 
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dissertation which explores methods for systematically designing neural architectures for asso­

ciative memories, database query processing, elementary logical inference, sequence processing, 

and syntax analysis. The reference book [189] which provides more than 4000 references is a 

good source of research material for facilitating a general and in-depth understanding of ANN 

research. 

Two of ANN research problem domains for which few conventional computing solutions 

exist are 

• associative memories which are anticipated to provide the same advantageous capability 

as human memory does and are currently mainly used in the applications of pattern 

classification based on their capability for best match and partial match, and 

• learning which is anticipated to be used as an efficient and cost-effective alternative to 

knowledge engineering for automated knowledge acquisition without intensive program­

ming. 

Following brief review on ANN literature mainly proceeds along these two intermingled 

themes which have driven the development of new ANN architectures, models, and algorithms 

for information processing. The development of formal mathematical models for ANN can 

be traced back to the early 1940s in the work by McCulIoch and Pitts [108], which showed 

that any logical proposition can be represented by a network of interconnected neurons of two 

states if enough neurons are provided. The computational capability of McCulloch-Pitts neural 

networks was proved to be equivalent to Turing machines [183] which are the essential model 

of symbolic computation and can perform any computation that can be described by a finite 

program in any general purpose language [26]. 

In 1949, Hebb proposed the first learning rule for neurons [63]. In the late 1950s and 

early 1960s, Rosenblatt introduced a class of neural networks [155], called perceptrons, which 

can learn to classify patterns through supervised learning. Rosenblatt's work helped produce a 

large amount of research activities in this early ANN research era. In 1969, Minsky and Papert 

showed in their landmark book Perceptrons that the computational power of perceptron's 

single-layer learning algorithm is only able to solve linearly separable problem but not a large 
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class of other problems [118]. With the misinterpretation of such a result, research funding and 

interest in ANN drastically dropped in the following 1970s. In the dark ages of the 1970s, the 

dedicated and everlasting efforts of Amari [7, 8, 9], Anderson [10], Fukushima [39], Grossberg 

[51, 52, 53], Kohonen [84, 85], and many other researchers ultimately brought in the renascence 

of ANN in 1980s. 

The tremendous resurgence of ANN research interest in 1980s was mainly due to the in­

vention of Hopfield networks [75] which can serve as content-addressable memory or solve 

combinatorial optimization problems [76], and the introduction of Backpropagation learning 

algorithm [156] which overcomes the limitation of perceptron's single-layer learning algorithm 

in linearly separable problems and can be exploited to train multi-layer perceptron to solve 

nonlinearly separable problems. Since then, Backpropagation multi-layer perceptron has been 

successfully applied in a variety of applications and has became the most widely used neural 

network paradigm. The Backpropagation learning algorithm were independently derived by 

Werbos [193], Parker [138, 139], and LeCun [98], but its popularity was mainly due to the 

effort of Rumelhart, McClelland, and the PDP Group. Other representative ANN models in 

the bright 1980s, to name a few, include Hinton, Sejnowski, and Ackley's Boltzmann machine 

model [1, 67] which can be used to find the global optimum solution for a given problem; 

Kohonen's Self-Organizing Feature Map [86] which can be trained without supervision to find 

the organization of relationships among training patterns; Kosko's BAM [89, 90] which can 

serve as hetero-associative memory and temporal associative memory; Carpenter and Gross-

berg's ART networks [16, 17, 18] which can be typically used to cluster training patterns via 

unsupervised training; Radial Basis Function method [114, 146, 147] which was originally used 

for function interpolation and was also applied to other applications [128, 149]; Hecht-Nielsen's 

Counterpropagation network [64] which has both supervised as well as unsupervised training 

stages and can be trained to perform pattern mapping, data compression and associative re­

call; Fukushima, Miyake, and Ito's Neocognitron [40, 41] which can be trained with supervision 

to recognize handwritten characters; and recurrent neural networks [33, 81, 144] which allow 

recursive processing on input string of variable length. A more detailed taxonomy of most 
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neural network architectures and learning algorithms can be found in [56, 102, 112]. 

1.3 An Overview of the Dissertation 

Artificial neural networks, due to their inherent parallelism, potential for fault tolerance, 

and adaptation through learning, offer an attractive computational paradigm for a variety 

of applications in computer science and engineering, artificial intelligence, robotics, and cog­

nitive modeling. Despite the success in the application of ANN to a broad range of nu­

meric tasks in pattern classification, control, function approximation, and system identifi­

cation, the integration of ANN and symbolic computing is only beginning to be explored 

[22, 23, 47, 70, 72, 73, 99, 145, 172, 179, 185] and is currently viewed as one of important 

research goals in massively parallel computing and artificial intelligence [65]. 

Pattern-directed associative processing relies on associative pattern matching and retrieval, 

is central to many problem solving paradigms in AI (e.g., knowledge based expert systems, 

case based reasoning) as well as computer science (e.g., database query processing, information 

retrieval) [54, 97, 181], and dominates the computational requirements of many applications 

in AI and computer science [55. 97, 127]. This dissertation proposes methods to system­

atically design massively parallel architectures for pattern-directed symbol processing using 

neural associative memories as key components. In particular, we propose neural architectures 

for content-based as well as address-based data storage and recall, database query processing, 

elementary logical inference, sequence processing, and syntax analysis. Their potential advan­

tages over conventional serial computer implementations of the same functions are examined 

in the dissertation. 

Chapter 2 proposes an approach for the design of a neural memory which supports both 

content-based (associative) and address-based data storage and retrieval. The proposed neu­

ral associative memory allows efficient access of stored data by way of massively parallel best 

match, partial match and exact match. When used as a content-addressed memory, the pro­

posed neural memory supports recall from partial input patterns, (sequential) multiple recalls, 

fault-tolerance, precision control and sorted extraction of all stored memory patterns. When 
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used as an address-based memory, the memory module can provide working space for dynamic 

representations for symbol processing and shared message-passing among neural network mod­

ules within an integrated neural network system. It also provides for real-time update of 

memory contents by one-shot learning without interference with other stored patterns. 

The pattern matching and retrieval process in the proposed neural associative memory 

which provides massive communication bandwidth and processing units respectively via its 

massive connections and nodes to match a given pattern with all stored patterns in parallel 

within one step can be far more efficient (in terms of computation time) than that in a key-based 

organization of the sort used in conventional computer systems. Chapter 3 takes advantage 

of this fact to explore the potential benefits of the proposed neural associative memory in 

the implementation of efficient, noise-tolerant information retrieval and query module in large 

database systems. 

Since most of current digital computer systems store data using address-based memories 

which are accessed via shared buses, the retrieval of a desired data item satisfying certain crite­

ria (patterns) from a set of candidate data items stored in the memories is inherently sequential 

and requires certain data organization, which is manipulated and interpreted by a relatively 

complex program(s), to provide appropriate performance. Although parallel pattern matching 

can be achieved by current digital computer systems when the systems are provided with mul­

tiple processors and memory buses, it would not be cost effective to dedicate such systems to 

applications which mainly involve intensive pattern matching. The proposed neural associative 

memory is a cost effective SIMD computer dedicated to pattern association. Therefore, such 

SIMD capability of the proposed neural associative memory is further explored for relational 

database queries. The potential merits of ANN's inherent parallelism and noise-tolerance for 

database query processing are demonstrated by comparing the estimated performance of the 

proposed neural architecture with that of other techniques commonly used in conventional 

computer systems for database query processing. 

Chapter 4 explores how neural architectures for binary pattern recognition can be extended 

for elementary logical inference. The proposed neural assemblies for propositional logic are 
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based on geometrical/mathematical analysis. Logical operations such as AND and OR are realized 

by neural assemblies for the recognition of binary subpatterns. It is known that any proposition 

(or equivalently a Boolean function) can be represented in DNF, and hence can be realized 

by a 2-layer neural architecture assembled using the proposed AMD and OR neural assemblies. 

Since logical AND, logical OR, as well as DNF representation are essential to logical inference 

and Boolean functions are basic to many applications in science and engineering, we expect the 

proposed neural assemblies would find use in the construction of modular neural networks for 

a variety of applications. For instance. Chapter 5 illustrates their use in an neural architecture 

for sequence processing. 

Chapter 5 proposes methods for systematic design of neural architectures for sequence 

processing, which are used as building blocks to systematically assemble neural architectures 

for syntax analysis in Chapter 6. Basically, memories and sequence processing mechanisms 

(with flow control capability) compose current digital computer systems which are driven by 

sequences of binary codes which are translated from sequences of symbolic program repre­

sentation that humans can efficiently and effectively read, write, and reason on. Therefore, a 

computing system integrated from the proposed neural architectures for memories and sequence 

processing is expected to possess computation capability corresponding to that of current dig­

ital computer systems. 

Chapter 6 explores the advantages of ANN's inherent parallelism and associative processing 

capability in the design of modular neural architectures for syntax analysis using a pre-specified 

grammar — a prototypical symbol processing task. A more general goal of this chapter is to 

explore the systematical design of massively parallel architectures for symbol processing using 

the neural associative memory proposed in Chapter 2 and the neural architectures for sequence 

processing proposed in Chapter 5 as key components. 

Since each component in the proposed neural architectures for syntax analysis computes 

a well-defined symbolic function, it facilitates the systematic synthesis as well as analysis 

of the resulting symbolic computation at a fairly abstract (symbolic) level. This facilitates 

rapid design and test of other provably correct prototypes of modular neural architectures for 
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complex symbolic processing using simpler building blocks by way of recursion, composition of 

elementary symbolic functions, and data representation manipulated by them. The elementary 

symbolic functions are represented in terms of binary mappings which are realized provably 

correctly by basic neural modules using one-shot learning. 

Chapter 6 concludes with a summary of the key contributions of this dissertation. 
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2 A NEURAL MEMORY FOR CONTENT AS WELL AS 

ADDRESS-BASED STORAGE AND RECALL 

2.1 Introduction 

This chapter presents an approach to design of a neural architecture for both associative 

(content-addressed) and address-based memories. Several interesting properties of the memo­

ries are mathematically analyzed in detail such that it is known that by systematically adjusting 

the node thresholds and connection weights, the same proposed neural architecture can serve as 

memories with precision control to perform best match, exact match and partial match which 

are main knowledge retrieval techniques extensively used in numerous artificial intelligence sys­

tems [191]. When used as an associative memory, the proposed neural architecture supports 

recall from partial input patterns, (sequential) multiple recalls and fault tolerance. When used 

as an address-based memory, the memory can provide working spax:e for dynamic representa­

tions for symbol processing and shared message-passing among neural network modules within 

an integrated neural network system. It also provides for real-time update of memory contents 

by one-shot learning without interference with other stored patterns. 

It is generally agreed that artificial neural networks (ANN) have demonstrated success in 

/ou;-/et;e/perceptual tasks (e.g., signal processing, pattern recognition) [62, 93, 111, 113]. How­

ever, despite their generality (as computational models) and despite the potential advantages 

of using them as components in general-purpose artificial intelligence systems which usually in­

volve content-based or memory-based knowledge storing and retrieving [47, 70, 72, 73, 99, 173, 

179], detailed design and performance tradeoffs in integrated systems of this sort are yet to be 

fully understood and working prototypes of such systems are only beginning to be developed. 

Towards this end, an innovative design and careful analysis of neural associative memories with 
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emphasis on problems and prospects of integrating them into larger systems that combine the 

advantages of both traditionai symbol processing and neural network approaches to artificial 

intelligence is needed. 

A particular class of neural memories built from threshold logic units (Perceptrons or 

McCulloch-Pitts neurons) is explored from a geometrical/mathematical perspective in this 

chapter. This analysis provides mathematical foundations for understanding several interesting 

properties of such memories including; auto as well as hetero-associative recall from partially 

specified patterns, (sequential) sorted recall of multiple stored patterns with different degrees of 

match with an input pattern, incremental learning, fault tolerance, and address-based storage 

and recall (mimicking the behavior of memories used in conventional digital computers). The 

mathematical analysis also suggests efficient hardware realizations of such memories. This 

chapter is organized as follows: 

• Section 2.1 reviews associative memory, address-based memory, and key properties of 

multi-layer Perceptrons which form the basis of the proposed neural memories. 

• Section 2.2 develops the theoretical foundations and examines the storage capacity of the 

proposed binary/bipolar neural memories through an investigation of the spatial distri­

bution and linear separability of vertices in binary/bipolar hypercubes from a geometric 

perspective. 

• Section 2.3 explores several interesting properties of the proposed memory modules in­

cluding: recall from partially specified input patterns, (sequential) multiple recalls, and 

fault tolerance by examining and extending the physical meanings of the settings of 

connection weights and neuron thresholds in the proposed neural memories. 

• Section 2.4 concludes with a summary of the chapter and a brief discussion of related 

researches. 

2.1.1 Information retrieval and binary mapping 

In general, most classification and information retrieval problems using discrete input/output 

values can be viewed in terms of a binary random mapping //, where // is rigidly defined from 
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a set U  o f  k  distinct binary input vectors ui, Uk of dimension n to a set V o i  k  binary output 

vectors vi, Vk of dimension m such that fj :U V and 

/f(«t) = Vi for 1 < i < k (2.1) 

Note that // is a partial function. 

2.1.2 Associative memory (Content-addressed memory) 

Since the resurgence of ANN in 1980s, ANN have been applied in many science and engi­

neering disciplines. This is shown by the explosive growth in the number of published technical 

papers on ANN in 1980s and 1990s. In particular, neural architectures for associative memo­

ries have been the subject of considerable research, because of their potential applications in 

several areas of artificial intelligence, computer science, and cognitive modelling. 

The term associative memory (AM) or content-addressed memory refers to a memory sys­

tem where recall of a stored pattern is accomplished by providing a noisy or partially specified 

input pattern. Examples of such memory models include Hopfield networks [75], correlation 

matrix memories [84], bidirectional associative memories [90], among others [9, 59, 91, 125]. A 

precise definition of binary/bipolar associative memories follows: 

Let D f } ( u , u ' )  denote the Hamming distance between binary (bipolar) vectors u  and u  . 

Hamming distance is the number of bits that differ between two binary (bipolar) vectors. 

Suppose we are given a set U of k binary input vectors Ui, ..., Uk of dimension n and a set V 

of k desired binary output vectors Vi, ..., Vk of dimension m. Then the task is to design an 

associative memory that can store each of the input-output pattern pairs. 

In many applications, it is useful to be able to control the degree of mismatch that is 

tolerated during information retrieval. This is accomplished by introducing the concept of 

precision control in associative memory as follows: Define U^ipi) = {u\u 6 B " & Dh{u, Ui) < 

Pi}' 1 < I S is the set of n-dimensional binary vectors which have Hamming 

distance less than or equal to p, away from the given n-dimensional binary vector u,, where 

B" is the universe of n-dimensional binary vectors, and p,- is called allowable precision level 

and is an adjustable integer parameter. 
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Information retrieval in a binary associative memory can be specified in terms of a binary 

associative mapping fA'-U^-^Vas follows: 

/4(x) = u.- if X 6 Ur^ipi), l<i<k (2.2) 

where = U*_iC/,"(p,) = C/i"(pi)UC/2 (P2) • • -^U^iPn) and conventionally = 0 

for i  ̂  j ,  I  <  t , j  <  k -  For example, if such a memory is used to store and recall uppercase 

English characters, then U = V and u,- = u,-, 1 < i < 26. Suppose the allowable precision 

levels (i.e., all of the p,s) are set equal to (Hamming distance) 4. Then in Figure 2.1, the noisy 

input patterns 1 and 2 would result in the recall of the stored memory pattern T. Multiple 

recalls are possible in the proposed neural memory when 7^ j such that Uf^ipi) H U^{pj) ^ 0 

in which case Ja is a one-to-many mapping. Most conventional associative memory models 

seldom tackle the problem of multiple recalls. 

Note that // C Ja if functions // (expression 2.1) and Ja are viewed as sets of input-output 

ordered pairs of the functions // and Ja respectively. That is, 

/ /  =  { { x j l { x ) ) \ x  6 U }  

f A  =  { [ x j A { x ) ) \ x € U ^ }  

The partial function /a may be extended to a full function /^ : B" -> (V U {< 0"* >}) for 

binary associative (information retrieval) memory as follows: 

f A ( x )  = 
fA(x) if I e f/" 

(2.3) 
<0'"> ifi € (B'^-C/") 

where <0'"> is the m-dimensional binary vector of all zeros and denotes a value which is 

undefined. 

Content-addressed memories can be divided into two categories: auto-associative memories 

(used primarily for reconstructing a pattern from a noisy or partially specified pattern) and 

hetero-associative memories which can be used to store associated pattern pairs so that when an 

input pattern is provided, the associated pattern is retrieved. The types of pattern associations 

that can be stored in neural associative memories depend on various factors such as: the choice 

of neural network architecture, the choice of activation functions computed by the neurons. 
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Figure 2.1 Examples of memory pattern, noisy patterns, and partial pat­
tern 

and the algorithm used to set up the parameters (thresholds and weights) associated with 

the neurons and connections. Thus, a linear associative memory with n input neurons can 

store and recall perfectly at most n pattern associations. Similar storage capacity results are 

known for several content-addressed memory models such as the Hopfield network [75, 109], 

bi-directional associative memories [90], correlation matrix memories [84], etc. A variety of 

associative memory models are discussed in [62, 93]. As already pointed out, many simple 

content-addressed memory models studied in the literature are incapable of stable storage 

and recall of associations between arbitrary pairs of patterns (except under certain restricted 

circumstances). In such models, whether a pattern can be associated with another critically 

depends on how the two patterns are coded as bit vectors as well as on all the other pattern 

associations that have already been stored in memory. The ability to reliably store and recall 

associations between arbitrary patterns is regarded by many to be a prerequisite for higher 

level cognitive activity (e.g., logical inference) [35]. The associative memory model proposed 

in this chapter is designed to reliably store and recall associations between arbitrary pairs of 

patterns. 
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2.1.3 Address-based memory 

Address-based memory is extensively used for storing both data as well as programs in 

current computer systems. In cognitive models and artificial intelligence programs based on 

Von Neumann model of computation, i.e., models within the so-called symbolic paradigm 

[126], axldress-based memory often serves as the working memory (or scratch-pad) for storing 

intermediate results during the execution of a program. On the surface, storage and recall of 

patterns using axldresses appear to be very different in spirit from the recall of patterns based 

on their content (as judged by its similarity to a stored pattern). Indeed, many authors have 

suggested this to be a primary difference between neural networks (or connectionist models) 

and traditional artificial intelligence systems. However, this perceived difference is rather 

superficial given the demonstrable Turing-equivalence of suflBciently powerful neural network 

models [69, 70]. Therefore, it is rather straightforward to design neural memories capable of 

address-based storage and recall of patterns as the following discussion illustrates. 

A mathematical model for information retrieval in address-based memory can be formulated 

in terms of a binary random mapping // (expression 2.1) by extending the partial function // 

to a full function // : (F U {<0'">}) for address-based (information retrieval) memory 

as follows: 

f l i x ]  if X € t/" 
fl{x) = (2.4) 

<0'"> if X G (B" - U) 

f[ maps from the set of n-bit binary addresses to the set of m-bit binary values. The retrieved 

value (or content of a memory address) is undefined if no pattern has been stored at the 

corresponding address. 

It is well known (in the literature on the design of memory systems for digital computers) 

that this approach to address-based memory design is not necessarily the most efficient for 

large address spaces. In this case, hierarchical memory organization using multiple levels of 

address decoding and multiple memory modules of the type specified above is a more practical 

alternative [171]. 
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2.1.4 Perceptrons 

A 1-layer Perceptron has n input neurons, m output neurons and one layer of connection 

weights. The output y,- of output neuron i is given by y,- = WijXj — Oi). Wij denotes 

the weight on the link from input neuron j to output neuron i, 0{ is the threshold of output 

neuron xj is input value at input neuron j, and fff is binary hardlimiter function, where 

{1 if X > 0 
(2.5) 

0 otherwise 

It is well known that such a 1-layer Perceptron can implement only linearly separable functions 

from R" to {0,1}"* [118]. We can see the connection weight vector W{ =< wn,..., Win and 

the node threshold 0,- as defining a linear hyperplane Hi which partitions the n-dimensional 

pattern spzice into two half-spaces, where [-j^ denotes the transpose of a vector or a matrix. 

A 2-layer Perceptron has one layer of k hidden neurons (and hence two layers of connection 

weights with each hidden neuron being connected to every input neuron as well as every output 

neuron). In this chapter, we use 2-layer Perceptron in which each hidden neuron uses binary 

hardlimiter function ffj as activation function. The output of output neuron i is given by 

yi = f{Y^i=iWiizi — 1); where zi is the output of hidden neuron /, / is binary hardlimiter 

function ffj in the model using binary output, and / is bipolar hardlimiter function Jh in the 

model using bipolar output. (The thresholds of all output neurons are set to 1). The bipolar 

hardlimiter function fn is defined as 

f n i x )  = 

1 if X > 0 
(2.6) 

— 1 otherwise 

2.2 Multi-layer Perceptrons as Neural Memories 

This section describes the synthesis of a binary address-based memory or a binary asso­

ciative memory using a 2-layer Perceptron. The binary address-based memory has a stor­

age capacity of A'^ = 2" while the binary associative memory has a storage capacity N = 
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[2"/^f_oC(n, z)J, where n is the number of input neurons and p is the adjustable precision 

level (allowable noise level) measured in terms of Hamming distance. A hidden neuron is used 

for each stored associative pair of input and output patterns. The numbers of input and out­

put neurons are fixed in these models. In the case of associative memory, this amounts to 

fixing the dimensionality of input and output patterns; while in the address based memory, it 

is tantamount to fixing the majcimum size of the address space and the dimensionality of the 

patterns stored in memory. 

2.2.1 The application of linear sepeirability of binary vertices in pattern 

classification 

Note that every n-dimensional binary vector is a binary vertex of an n-dimensional hy-

percube. Hereafter, we will use the terms binary vertex and binary vector interchangeably. 

The following theorem and its proof facilitate the systematic synthesis of the proposed neural 

memories. 

Theorem 2.1: Let u be a binary vector of dimension n, i.e., u =< ui,...,u„ where 

Ui € {0,1} for I < i < n. Let u =< ui, be the complement of the binary vector 

u. That is, u, + If, = 1 for 1 < e < n. Let u — u = =< ,..., >^. Note that 

^re/u g for 1 < i < n. Let us call the reference vector. Let be the set of n-

dimensional binary vertices which are at a Hamming distance p away from vertex u, 0 < p < ra. 

Then every binary vertex x 6 5p falls on an n-dimensional linear hyperplane which is 

perpendicular to the reference vector Furthermore, if /f"*" = < p < n}, the 

n-dimensional linear hyperplanes in i/"'" are mutually parallel. 

Proof: Let z be a binary vertex in Sp, x — u — =< and be the 

length of the projection of onto the reference vector Note that = 0 or 1 

if = 1, and = 0 or — 1 if = — 1 for 1 < i < n. Note also that there are p 

components of x'''^-^" such that x"*^" = 0 and (n — p) components x"-^" of x'"®-'^" such that 

= 1 or - 1, where 1 < i, j < n. Let || • || denote the length of a vector. Then 

r  = ( 1 1 \  
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1 ( "f „-/.<•/.) (2.9) 
" " ^;'f-=lor-l r-^-=0 

^ (71 -p) (2.10) ||ure/„!| 

= -L("-P) (2-11) 
y / n  

Thus, Vi € 5p, the length of the projection of onto the reference vector is 

(n — p)ly/n. That is, all binary vertices in lie on the same n-dimensional linear hyperplane 

H p ' ^  w h i c h  i s  p e r p e n d i c u l a r  t o  t h e  r e f e r e n c e  v e c t o r  a n d  l o c a t e d  a t  a  d i s t a n c e  o f  i n — p ) f y / n  

from the vertex u, that is, a distance ply/n to vertex u. Hence, every hyperplane i?p*" G 

0 < p < ra, is parallel to every other hyperplane in ZT"-". There are n+1 such mutually parallel 

linear hyperplanes /fp*"'s (Figure 2.2). Among them, u is on fTo'" and u is on /T"'". The 

hyperplanes have same normal vector (u — u)/v/n. 0 

The expression defining the n-dimensional linear hyperplane /fp'", 0 < p < n, is 

- l)a:t) - (X] Ui - p) = 0 (2.12) 
:=l 1=1 

which can be derived as follows. Let x be a binary vertex on hyperplane /fp where 0 < p < ra. 

From expressions 2.7 and 2.11. we have: 

~  ^  = - ^ ( u  -  u ) ^ ( x  ~  u )  = - ^ { n  -  p )  (2.13) 

Thus. 

{ u - u ) ^ { x - u )  =  [ n  —  p )  (2.14) 

So the defining expression of the hyperplane i/p 0 < p < n, is given by: 

/ f p ' "  =  [ u  ~ u ) ^ { x - u )  =  { n  -  p )  (2.15) 

= (u — u)'^x — (u — u)^u — (n — p) = 0, note ti^H = 0 (2.16) 

= (u - u)^x - (n - ||iZ||^-p) = 0, note ||uip + ||M||^ = n (2.17) 

= (u - u)"^! - (||u||^ - p) = 0 (2.18) 
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= (til - "l)xi + ... 4- («n - Un)Xn - (||u|P " P) = 0 

= {2ui - l)ii -I-... -f- (2u„ - l)x„ - (||u|p - p) = 0 

= (^(2u,- - l)x,) - (||u|p - p) = 0 
:=1 
n 

= - l)x.) - "«• - p) = 0 
i=l 

(2.19) 

(2.20) 

(2.21) 

(2.22) 
1=1 

|2 _ Vn Note that |(u|p = X)"=i "t since u is a binary vector. From above, it is known that the 

expressions defining the n+l n-dimensionaJ mutually parallel linear hyperplanes /fp'^'s, 0 < 

p < n, have same coefficients but different constant terms. Every hyperplane ifp'". where 

0 < p < n, can serve as a linear separating hyperplane to partition all n-dimensional binary 

vertices into two sets. Such a linear separating hyperplane can be efficiently implemented for 

2-class pattern classification by a l-iayer Perceptron with one output neuron. The output 

neuron has a threshold of u, — p and the connection weight on the link from input neuron 

1 is given by 2u,- — 1(= u, - u,) for 1 < t < n, where n is the number of input neurons. 

When the separating hyperplane ffp •" is realized by a 1-layer, 1-output Perceptron, the 

value of 2u{ — 1 is either 1 or —1, x, is either 1 or 0, and (2u, — l)i, can therefore be 1, 0 or 

-1; and u,- is integer. Also note that the majcimum activation of the 1-layer Perceptron 
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is p and minimum value is —(n — p); since the separating hyperplane ffp'" is defined as (u — 

tr)(i — u)^ — (n — p) = 0, the maximum value of (u — u)(x — u)^ is n when x = u. and the 

m i n i m u m  v a l u e  o f  ( u  —  u ) { x  —  u ) ^  i s  0  w h e n  x  =  u .  

2.2.2 Best match: pattern classification with precision control 

Since each binary vertex of dimension n on hyperplane Hp is Hamming distance p away 

from vertex u, there are Np = C(n,p) = (n-^')!p! binary vertices of dimension n on 

hyperplane where 0 < p < n. The separating hyperplane partitions all the binary 

vertices of a binary n-hypercube into two sets. One set contains 0 

binary vertices that are at a Hamming distance less than or equal to p away from vertex u, and 

the other contains IVb = HiUp+i = Jl?=p+i C{n, i) binary vertices that are at a Hamming 

distance more than p away from vertex u. Let us call the former partition the associative 

partition (denoted by a'^) of u, the vertex u the center of that associative partition, and p the 

radius of the associative partition. Note that both and are defined by the given binary 

exemplar pattern u and its precision level p. 

In theory, an n-hypercube can be almost equally partitioned by = [2"/^f_o CCn, i)J 

such associative partitions as Ofp with each associative partition containing 

dimensional binary vertices which are all at a Hamming distance less than or equal to p away 

from their corresponding partition center. The partition centers correspond to the given binary 

exemplar patterns. 

We say that an associative partition ap| is not isolated from another associative partition 

7^ j) if Qfpl ckpj / 0- Thus, if two associative partitions are not isolated from each 

other, they overlap and as a result, there is at least one binary vector that is a member of 

both partitions. The separating hyperplanes (or equivalently, associative partitions) can be 

implemented in a 1-layer Perceptron with N output neurons to recognize N patterns with 

precision level (allowable noise level) up to Hamming distance p,- for exemplar pattern i/,, 

1 < z < A^, provided the precision levels (p,s) are chosen to ensure that each associative 

partition is isolated from every other. When x e 0;^; is fed into the l-layer Perceptron, the 
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output neuron that corresponds to the separating hyperplane -ffp;"' is activated to produce an 

output of 1. In order to ensure that the associative partitions corresponding to two exemplar 

p a t t e r n s  i / i  a n d  u j  a r e  i s o l a t e d  f r o m  e a c h  o t h e r ,  D n { u { , u j )  h a s  t o  b e  g r e a t e r  t h a n  ( p , -  - h  p j )  

where p,- and pj are the allowable precision levels. Otherwise, the associative partitions of i/i 

and i/j would overlap with each other, and when an input pattern i, where Dff{x, f,) < pi and 

< pj, is fed into the 1-layer Perceptron, the output neurons for the two exemplar 

patterns Ui and i/j will produce 1 as their outputs. In this case, the input pattern x cannot be 

unambiguously classified as it falls in the region of overlap between the associative partitions 

and apj. 

2.2.3 Storage capacity 

Suppose input patterns are 10x10 arrays of binary pixels (see Figure 2.1). Then 100 input 

neurons are required to implement such a 1-layer Perceptron for pattern classification. The 

number of possible input patterns is 2^°° « 10^°. An output neuron is needed for each distinct 

exemplar pattern. Table 2.1 shows the corresponding maximal storage capacity of the 1-layer 

Perceptrons designed for a range of different allowable noise levels. Table 2.1 also suggests 

that a l-layer Perceptron with n input neurons has very high storage capacity for classifying 

binary patterns and that the allowable precision (noise) levels of less than 30% are desirable 

for reliable classification. 

2.2.4 Synthesis of associative and address-based memories 

Given a set U of k distinct binary input vectors Ui, ..., Uk of dimension n, where u,- =< 

"ii, —1 u,n and Uig 6 {0,1} for 1 < i < A: &: 1 < 5 < n; and a set V of k desired binary 

(bipolar) output vectors uj, ..., Vk of dimension m, where u,- =< u,i,..., u.m and Vih 6 {0,1} 

(or {-1,1}) for 1 < i < fc & 1 < /i < m. Assume the Hamming distance between any two 

binary vectors in U is at least 2p+1, where p 6 N. This ensures that all associative partitions 

would be isolated with the precision level being set at p. 

We can now design a neural architecture for information retrieval using axldress-based 
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Table 2.1 The corresponding maximal storage capacity of a 1-layer Per-
ceptron with 100 input neurons for classifying binary patterns 
for a range of allowable noise levels 

allowable noise maximal capacity 
0% N = [2i°°/El:^'"'C'(100,i)J a 1.0 X 10^ 

10% N - .  = [2i«'/5:f^'^o-^C(100, i)J « 5.0 X 10^® 
20% N = i)J % 1.4 X 10^ 
30% N = L2^°°/El™''°"^C(100, i)J % 2.4 X 10" 
40% N = [2^°o/i:|°O''O-''C(100,z)J w 38 
50% 

(M II 

memory, denoted by function // (defined by expression 2.4), or associative memory, denoted 

by function /a (defined by expression 2.3). For this purpose, a memory module of a 2-layer 

Perceptron can be synthesized using the 1-layer Perceptrons, proposed for pattern classification 

in Section 2.2.1. as follows: 

The memory module (using binary input) has n input, k hidden, and m output neurons. 

For each associative ordered pair (u,-, u,), where 1 < t < A:, we create a hidden neuron i with 

threshold ~ Pi (see Figure 2.3), where p,- 6 N and p,- < p is the adjustable precision 

level for that associative pair. The connection weight from input neuron g to hidden neuron i is 

'2uig — l (= Uig—Uig) aud that from hidden neuron i to output neuron h is Vih- The threshold for 

each of the output neurons is set to 1. The activation functions at hidden neurons are binary 

hardlimiter function ///, The activation functions at output neurons are binary hardlimiter 

function fn (expression 2.5) if the desired output of output neurons is binary. The activation 

functions at output neurons are bipolar hardlimiter function /// (expression 2.6) if the desired 

output of output neurons is binary. 

Since input is binary, the weights in the Ist-layer connections of the memory module are 

either 1 or -1. A bit of an input pattern that is wrongly on (with respect to a stored pattern), 

contributes -1 to the activation of the corresponding hidden neuron and a bit of an input 

pattern that is rightly on (with respect to a stored pattern) contributes +1 to the activation 

of the corresponding hidden neuron. A bit of an input pattern that is (rightly or wrongly) 

off (with respect to a stored pattern) contributes 0 to the activation of the corresponding 
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Figure 2.3 The setting of connection weights and hidden node threshold in 
the proposed neural memory (a 2-layer Perceptron with binary 
input) for a given associated memory pair 

hidden neuron. Each hidden neuron sums up the contributions to its activation from its 1st-

layer connections, compares the result with its threshold (which equals the number of 1 in the 

stored memory pattern minus its desired precision level), and produces output value 1 if its 

activation exceeds or equals its threshold. If one of the hidden neurons is turned on, one of the 

stored memory patterns will be recalled by that hidden neuron, i^ote that an input pattern is 

matched against all the stored memory patterns in parallel. If the time delay for computing 

the activation at a neuron is fixed, the time complexity for such a pattern matching process is 

0(1). Note that this is attained at the cost of a hidden neuron (and its connections) for each 

stored association. 

Since all the associative partitions are isolated from each other, when the memory module 

is presented with a binary input vector x 6 only the hidden neuron i produces an output 

of 1 and the output values from all other hidden neurons are 0. So the value at output neuron 

j is Vij, and hence the output binary vector will be < Utii-MUim >^= U{. Since for each 

memory association pair a hidden neuron is created and its creation or deletion is independent 

Vi, V. im 

hidden neuron i 
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of other stored associative pairs, this particular design of associative memory lends itself to 

rapid one-shot incremental learning with no interference with previously stored associations. 

It is also worth pointing out that exactly the same network architecture can be used to 

realize both associative as well as address-based memory. If p,- is set as 0, | j = 1 and 

the memory module functions as an address-based memory when 2" hidden neurons are used 

to resolve all possible addresses; and if 1 < pi < p, | | > 1 and it can be used as an 

associative memory with adjustable precision control. (| A | denotes the cardinality of a 

set A). Address-based memory, extensively used in current computer system, can serve as 

working spcice of dynamic representations for symbol processing and shared message-passing 

space among neural network modules in an integrated neural network system. As working space 

for symbol manipulation, neural memories have to allow run-time update without learning and 

do not degrade when the number of stored memory patterns increases. Note that the proposed 

neural address-based memory has these two properties. 

2.2.5 Exact match: binary mapping Perceptron (BMP) module 

Let £/• be a set of k distinct binary input vectors Ui, ..., Uk of dimension n, where u,- =< 

u,i,..., and 6 {0,1} for 1 < i < fc & 1 < < n: and V be a set of k desired binary 

output vectors VI, .... Vk of dimension M, where U,- =< u,I,..., u.m and I;,A € {0,1} for 

l<i<kLl<H<m. Consider a binary mapping function /BMP : B" —(V U {<0'">}) 

defined as follows: 

V i  if X = U i ,  I  <  i  <  n  
SBMP{X) = (2.23) 

<0'"> if X 6 (B" -C/) 

where B" is the n-dimensional binary space. A BMP module for the binary mapping function 

IBMP can be synthesized using a 2-layer Perceptron as follows: The BMP module (see Figure 

2.4) has n input, k hidden and m output neurons. For each binary mapping ordered pair 

(u,, Ui), where 1 < i < fc, we create a hidden neuron i with threshold u,j. The connection 

weight from input neuron g to hidden neuron i is 2uig — 1 (= Uig — Uig) and that from hidden 

neuron i to output neuron h is u,/,. The threshold for each of the output neurons is set to 1. 

The activation functions at hidden and output neurons are binary hardlimiter function ///. 
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Figure 2.4 The settings of connection weights and hidden node threshold 
in the proposed BMP module for an associated binary mapping 
ordered pair 

Note that for the binary input vector w,-, only the hidden neuron i outputs a 1, and the 

rest of the hidden neurons output 0. Thus the output of the ^h output neuron is Vij, and so 

the binary output vector is < u,i, >= u,-. While for an input vector x 0 {/. no hidden 

neuron is activated and the output is <0'">. 

2.2.6 Conversion between memory models using bipoleir and binziry inputs 

Much of the analysis in previous subsections assumed binary input patterns. It turns out 

that the use of bipolar instead of binary inputs simplifies the implementation of the proposed 

associative memory design especially when recaJl from partially specified input patterns is 

desired (see Section 2 for details). This subsection explores the relationship between memory 

models using binary and bipolar inputs and the conversion between the two. 

The spatial distribution and geometrical characteristics of bipolar vertices in a bipolar 

hypercube is very similar to those of binary vertices in a binary hypercube, except that the 

distance between any two bipolar vertices is 2 times of that between their corresponding binary 

V:, 

V. Vi, im 

hidden neuron i 
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vertices. Given a bipolar vertex u, there also exist n+1 mutuaJly parallel linear hyperplanes 

which have similar features described in Theorem 2.1. The expression defining in an 

n-dimensional bipolar hypercube is 

n 

•" = - (n - 2p) = 0 (2.24) 
1=1 

which will be derived in the following. All notations here are same as those in Section 2.2.4, 

with one exception: bipolar vector (vertex) is used in place of binary vector (vertex). In this 

case Ui 6 {—1,1} ; u,- + u, = 0 ; 6 {2, —2} ; = 0 or 2 if = 2, and = 0 

or -2 if = —2 ; there are p components of such that = 0, and (n — p) 

components of such that x^^" =2 or — 2. Then 

(2-25) 

= "f <'7'-'7''+ t (2-27) 
' " r;'=^''=2or-2 x,'"'=^>*=0 

^ X 4(71 - p) (2.28) 

From expressions 2.25 and 2.30 we have: 

(2.26) 

||tire/u 

= (2.30) 

(2.31) 

Thus, 

(u - ir)^(i - u) = 4(71 - p) (2.32) 

So the hyperplane •" is given by 

Hp'" = (u - u)^(x - u) = 4(71 - p) (2.33) 

= (u - u^)i - (« - u)^u - 4(n - p) = 0 (2.34) 

=  (u —  u ) ^ x  —  ( u ^ u  —  ||u|p + 471 — 4p) = 0, note vTu = —n (2.35) 



30 

(ti — u)^x — (—n — n + 4n — 4p) = 0 

(u — u)^x — (2n — 4p) = 0 

(til -ui)xi + — + (u„ - u„)i„ - (2n - 4p) =0 

2tfiXi + ... + 2unXn — (2n — 4p) = 0 (2.39) 

(2.38) 

(2.37) 

(2.36) 

UiXi + ... + UnXn - (n - 2p) = 0 (2.40) 
n 

(^ u.z.) - (n - 2p) = 0 (2.41) 
:=1 

Every hyperplane where 0 < p < n, can serve as a linear separating hyperplane to 

partition all n-dimensional bipolar vertices into two sets. Such a linear separating hyperplane 

can be efficiently implemented for pattern classification by a l-layer Perceptron with one output 

neuron. The output neuron has a threshold of n — 2p and the connection weight on the link 

from input neuron i is given by u, for 1 < i < n, where n is the number of input neurons. 

Since input is bipolar, the connection weight in the l-layer Perceptron is either 1 or — 1. 

The connection weight of 1 matches the corresponding bit of an input pattern if it is on while a 

connection weight of -1 matches the corresponding bit of an input pattern if it is off. A match 

contributes 1 unit to the activation of the corresponding hidden neuron while a mismatch 

contributes —1 unit. Each hidden neuron sums up the contributions to its activation from 

each of its input links, compares it with its threshold and activates the corresponding output 

neuron if the degree of match (similarity measurement) for the entire pattern exceeds or equals 

the threshold. 

Note that the value passed from each connection is either 1 or —1 , compared to the 

three values {l.O, —1} in the binary model. This property can further simplify the hardware 

implementation requirement for a l-layer Perceptron using bipolar (as opposed to binary) 

input. 

Based on this l-layer Perceptron and the method described in previous subsections for 

setting the weights of the second layer connections, the synthesis of a memory module (using 

bipolar input, see Figure 2.5) of 2-layer Perceptron is rather straightforward given a set of 

desired pattern associations. 
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The memory module (using bipolar input) has n input, k hidden, and m output neurons. 

For each associative ordered pair (u,-, u,), where 1 < i < A;, we create a hidden neuron j with 

threshold n -2p,-, where p,- G N and p,- < n is the adjustable precision level for that associative 

pair. The connection weight from input neuron g to hidden neuron i is and that from 

hidden neuron i to output neuron h is o,/,. The threshold for each of the output neurons is 

set to 1. The activation functions at hidden neurons are binary hardlimiter function fn- The 

activation functions at output neurons are binary hardlimiter function fn if the desired output 

of output neurons is binary. The activation functions at output neurons are bipolar hardlimiter 

function Jh if the desired output of output neurons is binary. 

It is worth pointing out that the bipolar associative neural memory model derived here 

turns out to be exactly equivalent to the memory model proposed by [59] which uses real-value 

neuron thresholds and proves the eifectiveness of the bipolar memory model by algebra based 

on using Hamming distance as difference measurement between input pattern and memory 

patterns. In this subsection, the spatial distribution and linear separability of bipolar vertices 

in a bipolar hypercube is examined from a geometrical perspective to locate a set of mutually 

parallel linear hyperplanes which respectively separate nicely all the bipolar vertices into two 

sets to facilitate the design of bipolar neural memories. The linear separating hyperplanes 

can be efficiently implemented in a 1-layer Perceptron with connection v/eights and neuron 

thresholds of integer values. 

Some notable differences between the binary and bipolar associative memory models de­

veloped above are: 

• The binary model uses binary hardlimiter as the activation function at both hidden and 

output neurons, so does the bipolar model if the associated output is binary. If the 

associated output is bipolar, binary and bipolar hardlimiters (respectively) are used as 

activation functions at hidden and output neurons. 

• Threshold setting for a hidden neuron in the binary model equals the number of on 

bits of the corresponding memory pattern minus the desired precision level (measured 

in Hamming distance), which is not independent of the corresponding memory pattern; 
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output layer 

hidden layer 
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Figure 2.5 The setting of connection weights and hidden node threshold in 
the proposed neural memory (a 2-layer Perceptron with bipolar 
input) for a given associated memory pair. 

whereas threshold setting for a hidden neuron in the bipolar model equals the number of 

input neurons minus twice the value of the desired precision level, which is independent 

of all the memory patterns. This has a special advantage when the associative memory 

is used to recall a pattern based on a partially specified input (see Section 2 for details). 

2.3 Properties of the Proposed Neural Associative Memory 

The following three subsections explore and develop mathematical models for several in­

teresting properties of the proposed bipolar neural associative memory including: recall from 

p a r t i a l l y  s p e c i f i e d  i n p u t  p a t t e r n s ,  ( s e q u e n t i a l )  m u l t i p l e  r e c a l l s ,  a n d  f a u l t  t o l e r a n c e .  A  s e t  U  

of k bipolar input vectors Ui, Ufc of dimension n and a set V of k desired binary/bipolar 

output vectors vi, ..., of dimension m are given. In the discussion that follows, we assume 

that the m-dimensional null pattern (a vector of all Os in the binary case or a vector of all —Is 

i n  t h e  b i p o l a r  c a s e )  i s  e x c l u d e d  f r o m  V .  

yi Vb Ym 

im 

hidden neuron i 

Xn 
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2.3.1 Partial match: associative recall from a partiaUy specified input 

This subsection examines the problem of recall from a partially specified bipolar input 

pattern. The analysis that follows assumes that the unavailable components of a bipolar partial 

input pattern have a default value of 0. Thus, a bipolar partial input pattern is completed by 

filling in a 0 for each of the unavailable components (the Os as a whole also can serve as noise 

mask or filter). This makes it possible to handle the problem of associative recall from partially 

specified input pattern in a manner that is analogous to that of recall from completely specified 

input pattern. The Ist-layer connections of the neural memory module perform similarity 

measurements on the available components of a partial input pattern, ignore the similarity 

measurements on the unavailable components, and pass the similarity measurements to the 

corresponding hidden neurons to decide whether to activate a corresponding hidden neuron. 

Let u be a partially specified n-dimensional bipolar pattern with the values of some of its 

components being unknown. Define 

• bits{u): a function which counts the number of components with known values (+1 or 

-1) of bipolar partial pattern ii 

• parfO(u): a function which pads the unavailable bits of bipolar partial pattern ii with Os 

• u © u; a binary predicate which tests whether "u is a partial pattern of v", where "u is 

a partial pattern of i'" means that the values of available components of u are same as 

those of their corresponding components in v 

For example, let u =<?, — 1,1,1, ? > be a 5-dimensional partial pattern whose first and 

fifth components have unspecified values. Then bits{u) = 3, padO[u) =<0, —1,1,1,0> and 

u G <1, -1,1,1,1> is true. (Note that this definition of a partial pattern respects the positions 

of the components and does not accommodate shifts or translation). 

Let D f f { u , v )  denote the Hamming distance between two bipolar partial patterns u and v  

which have same corresponding unavailable components. If bits{ii) = j, padO{it) is a padded 

j - b i t  p a r t i a l  p a t t e r n  d e r i v e d  f r o m  p a r t i a l l y  s p e c i f i e d  p a t t e r n  i i .  D e f i n e  U j i -  =  { «  |  b i t s { u )  =  

j & uQui}, l<j<nkl<i<k. i.e.. Up- is the set of partial patterns, with j available bits, 
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of a bipolar pattern u,. Define C/p,(p,) = { p a d Q { u )  | 3«, u  € U p ^  & D f f { u , u )  <  [ j / n \  x  p i } ,  

1 ^ J £ " ̂  ^ i-®M Up^{pi) is the set of padded >bit partiaJ patterns which are at 

Hamming distance less than or equal to \_j/n\ x p,- to any one of the j-bit partial patterns of 

full pattern Ui. 

Practical applications may place limits on the range of usable settings of p, (allowable noise 

level) (see Section 2 for details). It may also be necessary to limit recall from partial input 

pattern to cases in which a sufficiently large number of bits in the input pattern, say j > c, 

have available values. For instance, when dealing with patterns of 10x10 pixels, we may set 

Pi = 0.3 x 100 = 30 and require that at least 40% of the pixels be available in the input pattern. 

To simplify matters in what follows, we use the same precision level p for each stored 

pattern. That is, p,- = p,l < i < k. However, note that particular applications may require 

the use of different values of p, under different circumstances. For example, punctuation 

symbols and letters of the alphabet may need different values of p,- for successful recognition 

in recognizing printed English characters. 

Let Uf,TiP) = and = uLiC/|>r(P)- Let fp : ^ienote 

the function of recall from padded bipolar partial pattern. Then fp is defined as follows: 

f p [ x )  =  u,-: if z € U^'^ip), l<i<k (2.42) 

fp is a partial function and is extended to a function fp : 3*^^" —> (V U {< ( —1)™ >}) for 

recall from padded bipolar partial pattern using associative memory as follows; 

/P(X)= 
f p { x )  i f x e t / r ' ^ C p )  

(2-43) 
<(-!)'"> if X 6 -C;^~"(p)) 

where is the universe of n-dimensional vectors each of whose components is 1, 0. or —1 

and which have at least c non-zero components (corresponding to the available bits) and thus 

at most (n — c) zeros for the unavailable bits (as a result of padding). 

It is easy to see that if the Ist-layer connection weights in the bipolar neural memory 

(described in Section 2) were set up using only a part of a complete memory pattern, the con­

nection weights set for the available components of its partial pattern would be same as those 
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that would have been obtained if the complete memory pattern were used in establishing the 

weights. The threshold setting for a hidden neuron in the bipolar memory equals the number 

of input neurons minus twice the value of the desired precision level, which is independent of 

all stored memory patterns but depends on the dimensionality of input pattern. Hence the 

bipolar neural memory module designed for recall from a fully specified input pattern can be 

used for associative recall from a partially specified input pattern by only adjusting the thresh­

olds of the hidden neurons as follows: multiply the threshold of each hidden neuron by the ratio 

of the number of available components of a partial input pattern to that of a complete pattern. 

That is, reduce the threshold of each hidden neuron i from (n —2p,) to (n —2p,) x Ua/n, where 

Ua < n is the number of the available bits of a partial input pattern. 

Note that p,- is the precision level for memory pattern i in the problem of recall from full 

pattern and (n — 2p,) x Ua/n = Ua — 2(p. x Ua/n) is the new threshold for recall from a partial 

pattern. The expression for the new threshold is similar to that for old threshold. In the new 

threshold equals the number of available bits of a partial input pattern and pi x Ua/n is 

the new precision level. In the interest of efficiency of a hardware realization, it is desirable to 

use \pi X Ua/n'] or [p,- x Ua/n] as the new precision level, where [•] and [-J respectively denote 

the integer ceiling and floor of a real value. 

2.3.2 Multiple associative recalls 

The memory retrieval process in the neural memory described in Section 2 can be viewed 

as a two-stage process: identification and recall. During identification of an input pattern, the 

Ist-layer connections perform similarity measurements and sufficiently activate zero or more 

hidden neurons so that they produce outputs of 1. The actual choice of hidden neurons to be 

turned on is a function of the Ist-layer weights, the input pattern, and the threshold settings 

of the hidden neurons. During recall, if only one hidden neuron is turned on, one of the 

stored memory patterns will be recalled by that hidden neuron along with its associated 2nd-

layer connections. Without any additional control, if multiple hidden neurons are enabled, the 

corresponding output pattern will be a superposition of the output patterns associated with 
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each of the activated hidden neurons. With the addition of appropriate control circuitry, this 

behavior can be modified to yield sequential recall of more than one stored pattern. This has 

a number of practical applications such as information retrieval, database query processing 

[23, 24] (see Chapter 3), knowledge-based diagnosis systems, etc. This has the effect of 

searching through memory for patterns that are sufficiently close to a given input pattern and 

then recaJl them one after another. 

Multiple recalls are possible if some of the associative partitions realized in the memory 

module are not isolated (see Section 2 for details). An input pattern (a bipolar vertex) located 

in a region of overlap among several partitions is close enough to the corresponding partition 

centers (stored memory patterns) at the same time and hence can turn on more than one 

hidden neuron. The following explores this phenomenon in more detail. 

Define i/"(p,) = {w | u 6 B" & D h {u , U i )  < p,}, 1 < i < A:, where B" is the universe of 

n-dimensional bipolar vectors; i.e., U^{pi) to be the set of n-dimensionaJ bipolar vectors which 

have Hamming distance less than or equal to p,- away from the given n-dimensional bipolar 

vector u, , where p,- is a specified precision level. Let p,- = p, 1 < z < A:. 

Define /A/ : U^{p) [2^ — 0) as follows: 

f M { x )  =  { v , - 1 X e iliip)-, 1 < z < A:} (2.44) 

where L / ^ { p )  =  U y { p )  U U ^ i p )  • • • U U ^ i p ) ,  Ui{ p )  n Uj[ p )  ^  0 for some i  j .  and 2^ is the 

power set of V (i.e., the set of all subsets of V). The output of f\j is a set of bipolar vectors 

that correspond to the set of patterns that should be recalled given the bipolar input vector x. 

Jm is a partial function and is extended to a full function Jm - (2'^u{< (—l)"* >} — 0) 

to describe multiple recall in the neural associative memory as follows: 

f M { x )  = 
fxfix) ifx6C/"(p) 

(2.45) 
[{<(-!)'">} ifi6(B"-t/"(p)) 

Recall of multiple patterns is likely to be all the more useful when the input pattern is only 

partially specified. The following extends the mathematical model for multiple recall outlined 

above to deal with recall from a partially specified bipolar input pattern. 
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Let Jmp '• U^{p) —y (2^ — 0) be a function defined as follows: 

/ m p ( x )  =  { v i  I X  e  i / p 7 " ( p } ,  1  <  I  <  * : }  (2.46) 

where £/p,-(p) N U p j i p )  7^ 0 for some /I's and i  ̂  j's, c  <  h  <  n  and 1 < i. j  <  k .  /A/P is 

a partial function and is extended to a function f^p : —> (2^ U {< (—1)"* >} — 0) for 

multiple recalls from padded bipolar partial patterns in associative memory as follows: 

Another interesting property of the proposed ANN memory is that it allows sorted multiple 

reca//described as follows: If the input pattern is held constant and the thresholds of all hidden 

neurons are decremented at each time step, then gradually more and more hidden neurons will 

be turned on. Decrementing the threshold of a hidden neuron results in an enlargement of the 

corresponding associative partition in a geometrical sense, and hence more and more partitions 

will overlap at the input vector (vertex) from iteration to iteration. In the absence of any other 

control circuits, the recalled pattern will be a superposition of the outputs resulting from all 

of the hidden neurons that are enabled at any time step. However, in many applications, 

we need different patterns to be recalled individually. This can be accomplished by adding a 

habituation mechanism that forces a hidden neuron to turn itself off automatically after it has 

been on for one time step unless a new input pattern is presented. This results in a serialized 

or sequential recall of patterns in increasing order of dissimilarity (as measured by Hamming 

distance) from the input pattern. Alternatively, one can perform a set difference operation 

on the hidden neuron outputs from every pair of consecutive time steps before allowing the 

hidden neurons to influence the 2nd-layer connections and the output neurons. It is rather 

straightforward to implement such set-theoretic operations using neural networks [25]. 

As already pointed out, the ability to perform multiple recalls is more likely to be useful 

when dealing with partially specified input patterns. Such information retrieval applications 

of practical interest include: database lookup using keywords, diagnosis of diseases or faults 

from a partially specified set of symptoms or test results, and DNA sequence recognition from 

available DNA segments. 

f M p { x )  = < 
fMp{x) ifxeC/p~"(p) 

< (-I)'" > if a: € (B^~" - t/^~"(p)) 
(2.47) 
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2.3.3 Fault tolerance 

This section discusses the performance of the proposed neural memory in the presence of 

two basic types of faults — connection fault and neuron fault. In the discussion that follows, 

it is assumed that: 

• When a connection fails and stops passing a value, it is assumed that default value 0 is 

passed from that faulty connection. 

• When an input or hidden neuron fails and stops functioning, it is assumed that default 

value 0 is passed along each of its outgoing connections. 

• When an output neuron fails, it is assumed that default value —1 (or 0 for binary output) 

is produced by that output neuron. 

2.3.3.1 Connection fault 

First we note that a single fault in a Ist-layer connection has less deleterious effect on the 

performance of the memory than that caused by a noisy bit in an input pattern. This is because 

a faulty Ist-layer connection will adversely affect only one of the similarity measurements 

between the input pattern and the stored memory patterns whereas a noisy bit of an input 

pattern affects all the similarity measurements. 

For example, assume u,- =< 1,-1,1,-1,1 and Uj =< 1,1,1,1,1 are two of the 

memory patterns stored by hidden neurons i, j and their respective connections in an auto-

associative memory. Note that Uj) = 2. Let wj denote the weight vector of the Ist-layer 

connections connected to hidden neuron i. Suppose the precision levels p,- = pj = 1. Then 

w} =<1, —1,1, —1,1>^, Wj =<1,1,1,1,1>^, and the thresholds at hidden neurons i and j 

are = dj = 3 in the neural memory according to expression 2.41. Suppose a noisy input 

pattern x =<1, -1,1,1,1>^ is fed into the neural memory module. Then both hidden neurons 

i and j are activated and as a result, the output is a superposition of memory patterns tt,- and 

Uj. Suppose the connection from the second input neuron to hidden neuron i is faulty, which 

causes wl =<1,0,1, -1,1>^ equivalently. Assumes that wj is unaffected by the connection 
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fault. When the noisy input pattern x is fed into the neural memory module, the summation 

values at hidden neuron i and j are —1 and 0 respectively. Only hidden neuron j is activated 

and memory pattern Uj is recalled. 

Since each of the 2nd-layer connections emanating from a hidden unit stores 1 bit of the 

corresponding stored memory pattern, a faulty 2nd-layer connection corrupts at most 1 bit 

of the recalled memory pattern. Suppose the connection from hidden neuron j to the third 

output neuron is faulty. When only hidden neuron j is activated to recall memory pattern Uj, 

a default value 0 is passed from that faulty connection to the third output neuron under the 

assumption of connection fault. The recalled output is <1,1, -1,1,1>^ which is one Hamming 

distance from memory pattern Uj. When only hidden neuron i is activated to recall memory 

pattern u, with a connection fault from hidden neuron i to the second output neuron, the 

recalled output is <1, —1,1, — 1,1>^ which equals Ui 

2.3.3.2 Neuron fault 

A fault in one of the input neurons has less of an adverse effect on the performance of the 

memory than 1 bit of noise in the input pattern. However, it is easy to see that an input 

neuron fault is more serious than a fault in a single Ist-layer connection. This is because a 

fault in one of the input neuron adversely affects each of the stored memory patterns. For 

example, suppose u,, Uj and x are as before. Let us consider following three cases: 

• Case 1: one of the first, third, or fifth input neurons is faulty. When x is fed into the 

neural memory module, the summation values at hidden neurons i and j are both —1. 

No memory pattern is recalled. 

• Case 2: the second input neuron is faulty. Then the summation values at hidden neuron 

i and j are —1 and 1 respectively. The hidden neuron j is activated to recall memory 

pattern Uj. 

• Case 3: the fourth input neuron is faulty. Then the summation values at hidden neuron 

i and j are 1 and -1 respectively. The hidden neuron i is activated to recall memory 

pattern u,-. 
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If a hidden neuron is faulty, the memory pattern associated with that hidden neuron can not 

be recalled. If an output neuron is faulty, the corresponding bit of all recalled memory patterns 

will have value —1. So the recalled memory patterns having value 1 at that corresponding bit 

are corrupted by one bit of noise. 

2.4 Summary and Discussion 

This chapter has discussed the analysis and synthesis of a neural memory for both address-

based as well as associative (content-based) storage and recall of patterns. When used as 

content-addressed memory, the proposed ANN memory allows adjustable precision and sorted 

extraction of all stored memory patterns, has high potential storage capacity, and exhibits 

several interesting properties: recall from partial pattern, multiple recall and fault tolerance. 

It also lends itself to one-shot incremental learning without interference with previously mem­

orized patterns. A detailed mathematical analysis of the properties of the proposed neural 

memory architecture is presented. Address-based memory can serve as working space of dy­

namic representations for symbol processing and shared message-passing space among neural 

network modules in an integrated neural network system. It provides for reliable content 

modification in real time, a necessary feature for symbol processing applications. 

The pattern matching process of the proposed content-addressed memory in which data 

parallelism is achieved and all memory patterns are compared with input pattern in parallel 

within one step can be far more efficient (in terms of computation time) than searching for 

data in a key-based organization of the sort commonly used in conventional computer systems 

[23]. With the need for real-time response in language translation and with the increased 

number of users as well as increased use of large networked databases over the Internet, efficient 

architectures for high-speed table lookup, message routing and database query processing have 

assumed great practical significance. Extensions of the proposed ANN memory architecture 

for efficiently handling database queries and syntax analysis are proposed in Chapters 3 and 

6 (also see [22, 23]) respectively. 
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It is worth mentioning that the proposed neural memory supports realization of many-to-

one binary random mappings which is extensively used in the design of digital logic devices 

such as logic circuitries of AND/OR (or NAHD/NQR) gates. The design and optimization of such 

circuitry has always been one of the key research problems in the VLSI research community 

and industry. The hardware realization of the proposed neural architecture provides same 

flexibility as PLA (programmable logic array) and thus higher abstraction level than AND/OR 

gates for logic functions (many-to-one binary mappings). The anticipated performance of 

hardware realizations of the proposed memory architecture is evaluated in Section 3.2.1.1. 

If the hardware realization provides for run-time loading of connection weights and neuron 

thresholds under software control, it provides for an efficient, time-saving, and error-preventing 

alternative to the implementation of PLA and combinational circuitry of AND/OR gates for logic 

circuitry. 
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3 NEURAL ARCHITECTURES FOR INFORMATION RETRIEVAL 

AND DATABASE QUERY PROCESSING 

3.1 Introduction 

This chapter explores the application of neural associative memory to efficient implementa­

tion of noise-tolerant information retrieval and query module in large database systems. Based 

on the neural associative memory proposed in Chapter 2, a library query system and a query 

system for text-based machine-readable lexicon are explored respectively by exploiting the ca­

pability of neural associative memory for massively parallel associative pattern matching and 

retrieval. The performance of the ANN-based database query module is analyzed and com­

pared with other techniques commonly used in current computer systems. The results of this 

analysis suggest that the proposed ANN design olFers an attractive approach for the realiza­

tion of query modules in large database and knowledge base systems, especially for information 

retrieval based on partial matches. 

Artificial neural networks offer an attractive computational model for a variety of ap­

plications in pattern classification, language processing, complex systems modelling, control, 

optimization, prediction and automated reasoning for a variety of reasons including; poten­

tial for massively parallel, high-speed processing, resilience in the presence of faults (failure of 

components) and noise. Despite a large number of successful applications of ANN in aforemen­

tioned areas, their use in complex symbolic computing tasks (including storage and retrieval 

of records in large databases, and inference in deductive knowledge bases) is only beginning to 

be explored [21, 22, 23, 24, 47, 72, 99, 179]. 

Database query entails a process of content-based table lookup (associative search and re­

trieval) which is used in a wide variety of computing applications. Examples of such lookup 
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tables include: routing tables used in routing of messages in communication networks, symbol 

tables used in compiling computer programs written in high level languages, knowledge bases 

which store facts and rules in relational form, fact and rule tables used in unification process of 

logic programming systems, keyword tables (inverted and signature files) used in information 

retrieval applications [37], and machine-readable lexicons, dictionary as well as varieties of ta­

bles used in memory-based parsing [82] for natural language processing. In such tables, every 

table entry is an associated input-output ordered pair. As the number of table entries and 

the occurrence of partially specified inputs increase, the delay of locating an associative table 

entry can become a severe bottleneck in large-scale information processing tasks which involve 

extensive associative table lookup. Therefore, many researchers have explored to augment con­

ventional database systems with subsystems which effectively exploit associative processing to 

enhance the performance of the systems [30, 101, 121, 135, 157, 162, 196]. Many applications 

require associative table lookup mechanism or query processing system to be capable of re­

trieving items based on partial matches (some features of the input are noisy or missing) or 

retrieval of multiple records matching the specified query criteria. This capability is compu­

tationally rather expensive in many current computer systems. The ANN-based approach to 

database query processing that is proposed in this chapter exploits the fact that an associative 

table lookup task can be viewed at an abstract level in terms of associative pattern matching 

and retrieval which can be efficiently realized using neural associative memories. The rest of 

the chapter is organized as follows: 

• The rest of Section 3.1 briefly discusses how to represent symbolic information in terms 

of binary codings to facilitate symbolic information manipulation on the proposed neural 

associative memory which operates on bipolar/binary values. 

• Section 3.2 explores information retrieval and query processing using neural associative 

memory. ANN designs are developed respectively for a library query system and a query 

system for text-based machine-readable lexicon by taking advantage of the capability 

of the proposed neural associative memory for massively parallel pattern matching and 

retrieval. 
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• Section 3.3 compares the performance of the proposed ANN-based query processing sys­

tem with that of several commonly used techniques. 

• Section 3.4 concludes with a summary. 

3.1.1 Information retrieval in neural associative memories 

Most database systems store (symbolic) data in the form of structured records. When a 

query is made, the database system searches and retrieves records that match the user's query 

criteria which typically only partially specify the contents of records to be retrieved. Also, 

there are usually multiple records that match a query (e.g., books written by a particular 

author in a library or the lexical specifications of the words matching the partially specified 

input pattern ma?e in a machine-readable lexicon, where the symbol ? means the English 

letter at that position is unavailable). Thus, query processing in a database can be viewed as 

an instance of the task of recall of multiple stored patterns given a partial specification of the 

patterns to be recalled. The proposed neural associative memory which is capable of massively 

parallel best match, exact match, and partial match and recall of binary (bipolar) patterns 

can serve to efficiently handle information retrieval and query processing in large database 

systems. 

The proposed neural associative memory operates on binary (bipolar) values. Since humans 

find it difficult to work with binary codes, we use symbolic representations when the neural 

associative memory is used for information storage and retrieval. The translation from symbolic 

representations to binary codings can be done automatically and is not discussed here. 

In general, symbolic information retrieval (lookup) from a table can be viewed in terms of 

a binary random mapping fi :U V, defined in expression 2.1. A binary vector u, E U can 

be used to represent an ordered set of r binary-coded symbols from symbol sets Fi, r2, • • - , Tr 

respectively (i.e., 3ai € Fi,..., Oir € Fr s.t. Ui = ai •a2-.•••ocr, where • denotes the concatenation 

of two binary codes), and a binary vector u,- £ V can be used to represent an ordered set of 

t symbols from symbol sets Ai,A2, respectively, where 1 < i < A:. In the context 

of Section 3, every F,- denotes the set of ASCII-coded English letters, r is the length (in 
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number of English letters) of the input, i = 1, and Ai is the set of A/-bit record pointers, 

where 1 < i < r. Let \U\ = |ri|ir2| ---irrl. Then, // defines a symbolic mapping function 

/s : Ti X r2 • • • X Tr —»• Ai X Aj • • • X At. In this case, the I/O mapping of symbolic function fs 

(information retrieval from a symbolic table, given a query criterion) can be viewed in terms 

of the binary (bipolar) mapping operations of // which is realized by the proposed neural 

associative memory. 

3.2 Query Processing Using Neural Associative Memories 

This section describes the use of the neural associative memory described in Chapter 2 

to implement high-speed database query systems. An ANN-based library query system and 

an ANN-based query system for a text-based machine-readable lexicon for natural language 

processing (NLP) are presented respectively to illustrate the key concepts. As the quantity of 

entries (records) of a database increases, the cost of locating an entry can become a significant 

cost for real-time, large-scale machine processing of text and for a library system with huge 

stored volumes and large users. For example, the library at Iowa State University has over 2 

million volumes, and the number of words a native English speaker knows is estimated to be 

between 50,000 and 250,000 [4]. In the proposed ANN-based query systems, such a cost can be 

reduced significantly by taking advantage of the capability of the proposed neural associative 

memory for massively parallel associative pattern matching and retrieval. 

3.2.1 Realization of lexical access for a machine-readable lexicon using a neural 

associative memory 

In the analysis, interpretation, and generation of natural languages, the lexicon is one of the 

central components of many NLP applications. Basically, the lexical specification for a word 

in a lexicon contains phonological, morpho-syntactic, syntactic, semantic, and other fields [58]. 

Each field may contain several sub-fields. In a lexical database which realizes a machine-

readable lexicon for real-time NLP, the lengths of the fields and sub-fields are usually fixed to 

allow efficient random access to them. This is where a computational lexicon is distinguished 
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from a dictionary in which the format of lexical entries is mostly irregular and hence the access 

of the lexical fields for a word (lexeme) is sequential. Typically, a dictionary contains much 

free text including definitions, examples, cross-reference words, and others. 

Generally, there are two basic conceptions about the form of the items which serve as access 

keys in a lexicon. One is minimal listing hypothesis [15] which only lists lexemes and results 

in a root lexicon. A lexeme may have several variants, e.g., in English, the words: produces, 

produced, producing, producer, productive and production are variants of the lexeme 

produce, and the words: shorter, shortest and shortly are variants of the lexeme short. 

The other is full listing hypothesis which lists all possible words of a language and results in 

a full-form lexicon. A root lexicon is more compact and requires a rule system to process 

the variants of lexemes, while a full-form lexicon is more computationally efficient in terms of 

lexical access and more user-friendly in terms of lexicon editing and extension [58]. Therefore, a 

hybrid of the two conceptions is often adopted in many computational lexicon applications. In 

the following, the term access key is used to stand for either word or lexeme in a computational 

lexicon no matter whether it is a root or full-form lexicon. 

There are several models of lexical access in a computational lexicon. Our ANN-based 

query system for NLP lexicon is based on the search model of lexical access (indirect access) 

[36, 58]. In such a model, a text-based computational lexicon which associates every access key 

with its lexical specification contains two organizations: one is called master file which stores 

entries of lexical specifications, and the other is called access file which consists of pairs of 

(<access key>, <lexical pointer>). The access keys are organized to allow location of desired 

access keys and their associated lexical pointers efficiently. The lexical pointers point to the 

lexical specifications of their corresponding entries in the master file. The process of lexical 

access in the search model is similar to that of locating a book in a library. To locate a book 

from a collection of shelves (the master file) in a library, the book catalog (the access file) is 

searched using author name(s) and/or book title to find the call number (a pointer indicating 

the location) of a desired book. 
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A noise-tolerant neural associative memory which can efficiently support the process of 

search and retrieval of desired lexical pointers for a text-based machine-readable English lexicon 

is designed as follows. Suppose English letters of the lexicon are represented using 8-bit ASCII 

codes (extended to 8 bits by padding each 7-bit ASCII code with a leading 0). Assume the 

maximal length of an English word is L letters. Since each letter is represented by an 8-bit 

ASCII code, SL input neurons are used in the ANN memory. Each binary bit of the ASCII 

input is converted into a bipolar bit ip by expression Xp = 2x6 — 1 before it is fed into the 

ANN memory to execute a query. (This is motivated by the relative efficiency of the hardware 

implementations of binary and bipolar neural associative memories - see Chapter 2 for details). 

Let the output (the lexical pointer) be represented as an A/-bit binary vector which can access 

at most 2^ lexical specifications in the lexical database. So, the ANN memory uses M output 

neurons. 

For every associative ordered pair of an access key and a lexical pointer, a hidden neuron 

is used in the ANN memory. Suppose there are k such pairs. Then, the ANN memory uses 

k hidden neurons. Every access key is represented by padding its corresponding English word 

with trailing spaces and each binary bit xj of every access key is converted into a bipolar bit 

Xp by expression Xp = 2z(, — 1 to be stored in the ANN memory. For example, if an English 

word has j letters {j < L), then the first j letters of its corresponding access key are from the 

English word and the last L — j letters of the access key art paces. The reason for such 

padding will become obvious in the coming examples. The ASCII code for the special symbol 

space is 20i6 = 0010 OOOO2. During storage of an associated pair, the connection weights 

are set as explained in Section 2.2.6. Note that the input and output of an associated pair are 

represented in bipolar and binary values respectively. During recall, the thresholds of hidden 

neurons are adjusted for each query as outlined in Section 2.3.1 (where for each query, the 

value of Ua can be set either by centralized check on the number of letters of the input access 

key, or distributed circuitry embedded in input neurons). The precision level p is set at 0 for 

this associative ANN memory. 
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3.2.1.1 Examples of query processing in tiie neural lexicon 

The following examples illustrate how the proposed ANN memory for NLP lexicon retrieves 

desired lexical pointers by processing a query which may contain a partially specified input 

(target access key). 

• Example 1 (exact match): Suppose the lexical pointer of the word product is to be 

retrieved from the ANN memory. Then, the first 7 letters of the target access key to be 

searched are p, r, o, d, u, c and t, and the last L — 7 letters are spaces. In this 

case, no letter of the target access key is unavailable. Therefore, in the ANN memory, 

the threshold set at all hidden neurons is L x 8 = 8L. Suppose a hidden neuron i is 

used for the association of this access key and its associated lexical pointer. When the 

target access key is presented to the ANN memory, only hidden neuron i has net input 

of 0 and other hidden neurons have net input less than 0 (see Section 2 for details). So, 

hidden neuron i is activated to recall the desired lexical pointer using the weights on the 

2nd-layer connections associated with hidden neuron i. 

• Example 2 (prefix match): Suppose the lexical pointer(s) of the word(s) matching the 

pattern product* is to be retrieved from the ANN memory, where the symbol * means 

the trailing English letters starting from that position are unavailable. In this case, 

the last L — 7 letters of the target access key are viewed as unavailable, only the first 

7 letters are available, and its first 7 letters are p, r, o, d, u, c and t. Therefore, 

in the ANN memory, only the first 7 x 8 = 56 input neurons have input value either 

1 or -1, the other input neurons are fed with 0, and the threshold set at all hidden 

neurons is 7 x 8 = 56. Suppose, in the lexicon, product, production, productive, 

productively, productiveness and productivity are the words the first 7 letters of 

which match the pattern product*. In this case, six hidden neurons are used for the 

associations of these six access keys and their lexical pointers respectively in the ANN 

memory. When the partially specified target access key is presented to the ANN memory, 

only these six hidden neurons have net input of 0 and other hidden neurons have net input 
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less than 0. So, these six hidden neurons get activated one at a time to sequentially recall 

the associated lexical pointers using the weights on the 2nd-layer connections respectively 

associated with these six hidden neurons. 

• Example 3 (partial match); Suppose the lexical pointer(s) of a noisy 7-letter word 

pro??ct is to be retrieved from the ANN memory, where the symbol ? means the 

English letter at that position is unavailable. In this case, 2 of the letters (the 4th and 

5th letters) of the target access key are viewed as unavailable, its first 3, 6th and 7th 

letters are p, r, o, c and t respectively, and the last L—7 letters are spaces. Therefore, 

in the ANN memory, the input neurons representing the 4th and 5th input letters are 

fed with 0, other input neurons have input value either 1 or -1, and the threshold set at 

all hidden neurons is (L — 2) x 8 = 8{L — 2). Suppose, in the lexicon, product, project, 

and protect are the only 7-letter words which match the pattern pro??ct. Therefore, 

three hidden neurons are used for the associations of these three access keys and their 

lexical pointers respectively in the ANN memory. When the partially specified target 

access key is presented to the ANN memory, only these three hidden neurons have net 

input of 0 and other hidden neurons have net input less than 0. So, these three hidden 

neurons get activated one at a time to sequentially recall the associated lexical pointers 

using the weights on the 2nd-layer connections respectively associated with them. 

The large number of hidden neurons in such an ANN module poses a problem for hardware 

realization because of the large fan-out for input neurons and large fan-in for output neurons. 

One solution to this problem is to divide the whole module into several sub-modules which 

contain same number of input, hidden, and output neurons. These sub-modules are linked 

together by shared input and output bus (see Figure 3.1). Such a bus topology also makes 

it possible to easily expand the size of the ANN memory. The /-dimensional array structure 

shown in Figure 3.1 can be easily extended to 2 or ^dimensional array structures. 
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Figure 3.1 A modular design of tiie proposed ANN memory for easy expan­
sion. This 1-dimensionaI array structure can be easily extended 
to 2 or S-dimensional array structures. 

3.2.2 Realization of a library query system using a neural associative memory 

A neural associative memory that can be used to support a library system queried by name 

can be designed as follows: Suppose the input is a name (provided in a format with last name 

followed by first name) of an author, and characters that appear in the name are represented 

using 8-bit ASCII codes. Assume the length of both last and first name are truncated to at 

most L characters each. Since each ASCII code consists of 8 binary bits, 16L input neurons 

are used in the ANN memory. The first 8L input neurons are for last name and the last SL 

neurons for first name. Each binary bit xi, of the ASCII input is converted into a bipolar bit Xp 

by expression Xp = 2xb — 1 before it is fed into the .ANN memory module for database queries. 

Let output be a M-dimensional binary vector pointing to a record in the library database 

that contains information about a volume (or the binary vector can encode information about 

a volume directly). The output binary vector in turn can therefore be used to locate the 

title, author, call number and other relevant information about a volume. Using M output 

neurons, we can access at most 2^^ records from the library database. Each hidden neuron in 
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the associative memory module is used to realize an ordered pair associating an author's name 

with an M-bit pointer that points to a record which contains information about a corresponding 

volume. The last and first names of an author of an associated pair are represented by padding 

the names with trailing spaces and each binary bit xg of the padded names is converted into 

a bipolar bit Zp by expression x-p = 2x6 — 1 to be stored in the ANN memory. For example, 

if Smith John is the name part of an associated pair, the first 5 letters for the last name part 

of the associated pair are Smith and the other L — 5 letters are spaces, and the first 4 letters 

for the first name part of the associated pair are John and the other L — 4 letters are spaces. 

During storage of an associated pair, the connection weights are set as explained in Section 

2.2.6. Note that the input and output of an associated pair are represented in bipolar and 

binary values respectively. During recall, the thresholds of hidden neurons are adjusted for 

each query as outlined in Section 2.3.1. The precision level p is set at 0 for this associative 

ANN memory module. 

The following cases illustrate how the ANN-based library query system retrieves desired 

record pointers by processing a query which may contain a partially specified input. 

• Case 1: Suppose a user enters Smith *" to search for the books written by authors with 

last name Smith. In this case, that part of input for first name is viewed as unavailable, 

the first 5 letters for the part of input for last name are S, m, i, t, and h. and the 

other L — o letters are spaces. Therefore, in the ANN memory, the first 8 x £ = 8L input 

neurons have input value either 1 or -1, the last 8x L = 8L input neurons which together 

represent the part of input for first name are fed with 0, and the threshold set at all 

hidden neurons is 8 x L = SL. Suppose the library database contains k volumes written 

by authors with last name Smith. In this case, the ANN memory module contains k 

hidden neurons for these k volumes (one for each volume written by an author whose 

last name is Smith). During the recall process all these hidden neurons will have net input 

of 0 and other hidden neurons have net input less than 0 (see Chapter 2 for details). The 

neurons with non-negative net input get activated one at a time to sequentially recall 

the desired M-bit pointers pointing to the books written by authors with the specified 
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last name. 

• Case 2: suppose a user enters "» JohrT to search for the books written by authors with 

first name John. In this case, that part of input for last name is viewed as unavailable, 

the first 4 letters for the part of input for first name are J, o, h, and n, and the other 

L — 4 letters are spaces. Therefore, in the ANN memory, the last 8 x L = 81- input 

neurons have input value either 1 or-1, the first 8xL = 8L input neurons which together 

represent the part of input for last name are fed with 0, and the threshold set at all hidden 

neurons is 8 x L = 8L. The recall of the associated pointers proceeds as in Case 1. 

• Case 3: Suppose a user enters ""Smith J*" to search for the books written by authors 

with last name called Smith and first name beginning with a J. In this case, the rest of 

the letters of first name is viewed as unavailable, the first 5 letters for the part of input 

for last name are S, m, i, t, and h, and the other L — b letters are spaces. Therefore, 

in the ANN memory, the first 8 x (L + 1) = 8(L + 1) input neurons have input vaJue 

either 1 or -1, the last 8 x (L - 1) = 8(L — 1) input neurons are fed with 0, and the 

threshold set at all hidden neurons is 8 x (L + 1) = 8{L -f 1). The recall of the associated 

pointers proceeds as in Case 1. 

3.2.3 The implementation of case insensitive pattern matching 

It is rather straightforward to modify the proposed ANN-based query system to make it 

case-insensitive. The following shows ASCII codes of English letters, which are denoted in 

hexadecimal and binary codes. 

A = 41I6 = 0100 OOOI2, ... , Z = 5.4I6 = 0101 IOIO2 

a = 6I16 = 0110 OOOI2, ... , 2 = 7Ai6 = 0111 IOIO2 

The binary codes for the capital case and small case of every same English letter only 

differ at the 3rd bit counted from left hand side. If that bit is viewed as "'don't care" (or 

unavailable), this query system will be case insensitive. This effect can be achieved by treating 

the corresponding input value as though it was unavailable. 
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3.3 Comparison with Other Database Query Processing Techniques 

This section compares the anticipated performance of the proposed neural architecture for 

database query processing with other approaches that are widely used in current computer 

systems. Such a comparison takes into account the performance of hardware used in these 

systems and the process used for locating data items. It is assumed that the systems have 

comparable I/O characteristics which are not discussed here. First, the performance of the 

proposed neural network is estimated, based on current CMOS technology for realizing neu­

ral networks. Next, the operation of conventional database systems is examined, and their 

performance is estimated and compared to that of the proposed neural architecture. 

3.3.1 Performance of current electronic realization for neural networks 

Electronic hardware realizations of ANN have been explored by several authors [49, 50, 

57, 103, 106, 107, 120, 152, 184, 190]. Such implementations typically employ CMOS analog, 

digital, or hybrid (analog/digital) electronic circuits. Analog circuits typically consist of pro­

cessing elements for multiplication, summation and thresholding. Analog CMOS technology 

is attractive for realization of ANN because it can yield compact circuits that are capable of 

high-speed asynchronous operation [48]. [184] reports a measured propagation delay of 104ns 

in a digital circuit with each synapse containing an 8-bit memory, an 8-bit subtractor and an 

8-bit adder. [50] reports throughput at the rate of lOMHz (or equivalently, delay of 100ns) in 

a Hamming Net pattern classifier using analog circuits. [106] describes a hybrid analog-digital 

design with 5-bit (4 bits -f- sign) binary synapse weight values and current-summing circuits 

that is used to realize a 2-layer feed-forward ANN with a network computation delay of less 

than 20ns. 

The Ist-layer and 2nd-layer subnetworks of the proposed neural architecture for database 

query processing are very similar to the Ist-layer subnetwork of a Hamming Net respectively, 

and the neural architecture with 2 connection layers in the proposed ANN is exactly same 

as that implemented by [106] except [106] uses discretized inputs, 5-bit synaptic weights, and 

sigmoid-like activation function. The proposed ANN uses bipolar inputs, weights in { — 1,0,1} 
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and binary hardlimiter as activation function. Hence the computation delay of the proposed 

ANN can be expected to be at worst of the order of 100 ns and at best 20 ns given the current 

CMOS technology for realizing ANN. 

The development of specialized hardware for implementation of ANN is still in its early 

stages. Conventional CMOS technology that is currently the main technology for VLSI im­

plementation of ANN is known to be slow [92, 104]. Other technologies, such as BiCMOS. 

NCMOS [92], pseudo-NMOS logic, standard N-P domino logic, and quasi N-P domino logic 

[104], may provide better performance for the realization of ANN. Thus, the performance of 

the hardware implementation of ANN is likely to improve with technological advances in VLSI. 

3.3.2 Analysis of query processing in conventional computer systems 

Accessing information based on a key is central to information retrieval systems [37, 157, 

158] and database systems [186]. In relational database systems implemented on conventional 

computer systems, given the value for a key, a record is located efficiently by using key-based 

organizations including hashing, index-sequential access files and B-trees [186]. Such a key-

based organization usually contains two data structures: index files(s) and master file. In an 

index file, every key is organized and usually associated with a record pointer which points to 

a corresponding record in the master file which is typically stored in secondary storage devices 

like hard disks for large databases. Conventionally, estimated cost of locating a record is based 

on the number of physical block accesses of secondary storage devices [186] since the access 

latency with current cost-effective disk systems is around 5~10 ms {millisecond) and every one 

of the repetitive search steps which together facilitate locating a desired record pointer from 

index files (loaded into the main memory) takes only several CPU clock cycles. The clock 

cycle of current cost-effective CPUs is around 2~10 ns. With the large number of entries in 

index files of large databases and with the low price of current memory chips, master files of 

databases for real-time applications tend to be loaded into the main memory to avoid accessing 

records from low-speed secondary storage devices (compared to memory chips) and thus the 

cost of locating a desired record pointer can become a dominant cost for record retrieval in 
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large databases. 

The following compares the anticipated performance of the proposed neural associative 

memory with other approaches that are widely used in current computer systems for locating 

a record pointer associated with a given key. In the following analysis, it is assumed that all 

program and index files for processing queries using current computer systems are pre-loaded 

into the main memory. The effect of data dependency among instructions which offsets pipeline 

and superscalar effects and thus much reduces the average performance of current computer 

systems is not considered here. 

To simplify the comparison, it is assumed that each instruction on a conventional computer 

takes r ns on an average. For instance, on a relatively cost-effective 100 MIPS processor, a 

typiczd instruction would take 10 ns (The MIPS measure for speed combines clock speed, effect 

of caching, pipelining and superscalar design into a single figure for speed of a microprocessor). 

Similarly, we will assume that a single identification and recall operation cycle by a neural 

associative memory takes a ns. Assuming hardware implementation based on current CMOS 

VLSI technology, a is around 20~100 ns. Table 3.1 summarizes from following analysis 

the estimated performance of the proposed neural associative memory and other techniques 

commonly used in conventional computer systems for locating a desired record pointer. The 

summary assumes that the value of the key is given, the data structures and programs are 

loaded into the main memory of the computer systems used, index search occurs in a balanced 

binary tree of (2^ — 1) records, and partial match occurs in a k-d-tree of N records. L is the 

total number of bytes of a key, n is the data bus width of the computer systems used, h is 

the average number of executed instructions in a hashing cycle, r is the average time delay 

for executing an instruction, b is the average number of executed instructions in a comparison 

cycle for every n bits in a binary search cycle, ce is the time delay of the proposed neural 

memory, K is the number of index fields used in the k-d-tree, and J is the number of index 

fields specified in a query criterion. Table 3.2 summarizes the capabilities of the proposed 

neural associative memory and other techniques commonly used in conventional computer 
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Table 3.1 A comparison of the estimated performance of the proposed neu­
ral associative memory with that of other techniques commonly 
used in conventional computer systems for locating a record 
pointer in key-based organizations 

Method Estimated time (ns) 
hashing [SZ/n] h T 

index search { M  - l ) \ A L / n ] b T  
ANN memory a 

k-d-tree (partial match) 0 ( f ^ ( K - J ) I K )  

Table 3.2 A comparison of the capabilities of the proposed neural asso­
ciative memory with those of other techniques commonly used 
in conventional computer systems for exact match and partial 
match 

Method Exact match Prefix match Partial match 
hashing efficient unable unable 

index search efficient efficient inefficient 
.A.NN memory efficient efficient efficient 

k-d-tree satisfactory satisfactory inefficient 

systems for exact match, prefix match and partial match mentioned in Section 3.2.1. 

3.3.2.1 Analysis of locating a record pointer using hashing functions 

Hashing structure is the fastest of all key-based searching techniques for locating a record 

pointer for a single record. However, although it is effective in locating a single record by 

exact match (e.g., example 1 of Section 3.2.1), it is inefficient at or incapable of locating 

related records in response to a partially specified input (e.g., examples 2 and 3 of Section 

3.2.1). Let us consider the time needed for locating a record pointer using a hash function 

in current computer systems. Commonly used hash functions are based on multiplication, 

division and addition operations [87, 163]. In hardware implementation addition is faster than 

multiplication which in turn is far faster than division. Assume that computing a hashing 

function on a key with a length of L bytes (characters) takes [8L/n] cycles using a processor 

with an ra-bit data bus and every cycle takes h instructions. Then, the estimated computation 

time for locating a record pointer is fS/z/n] h r . Other overheads in computing a hashing 
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function in such systems include the time for handling the potential problem of collisions in 

hash functions. If a single-CPU 100 MIPS processor with a 32-bit data bus is used, it is 

expected that the total computation time for locating a record pointer will typically be in 

excess of 100ns (If L = 15 and h = 5, the total computation time is [8 x 15/32] x 5 x 10 as = 

[120/32] x50 ns= 200 ns). 

3.3.2.2 Analysis of locating a record pointer using index search 

A perfectly balanced binary search tree is another popular, efficient data structure used 

in conventional database systems to locate a single record by exact match (e.g., example 1 of 

Section 3.2.1) or several related records by partial match (e.g., example 2 but not example 3 

of Section 3.2.1). Assume every non-terminal node in a perfectly baJanced binary search tree 

links two child subtrees and there are (2^ — 1) nodes in the tree. Assume the length of the 

index key is L bytes (characters). The average number of nodes visited for locating a desired 

key would be ^ 2^1« M — 1. On an average, every visit takes SL)/n\ = f4L/n] 

comparison cycles for a processor with an n-bit data bus. Suppose every comparison cycle 

takes b instructions. Then, the estimated computation time for locating a desired record 

pointer is [M — l)[4L/n] 6 r. If L = 15, and a 100 MIPS processor with a 32-bit data bus 

is used, the comparison cycle for every 32 bits takes 5 instructions on average, and there are 

2^® — 1 = 65.535 records (the number of words a native English speaker knows is estimated 

to be between 50,000 and 250,000 [4]), then the overhead for locating a desired record pointer 

is about (16 — 1) X [4 X 15/32] x 5 x 10 ns = 1500 ns which compares unfavorably with 100 

ns. Note that this is only the cost of locating a record pointer for a single record. The cost 

of locating several record pointers of related records using user-entered data in an index file 

containing multiple index fields is examined in next section. 

3.3.2.3 The cost of partial-match queries 

One of the most commonly used data structures for processing partial-match queries on 

multiple index fields is k-d-tree [12]. It can provide approximately satisfactory performance 
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for locating a single record by exact match or several related records by partial match. In the 

worst case, the number of visited nodes in an ideal k-d-tree of N nodes (one for each record 

stored) for locating the desired record pointers for a partial-match query is 

~ - 1] w (3.1) 

where K is the number of index fields used to construct the k-d-tree, and J out of K index fields 

are explicitly specified by a user query. For typical values of N, K, and J, the performance of 

such systems is far worse than that of the proposed ANN based model according to expression 

3.1. 

3.4 Summary and Discussion 

Artificial neural networks, due to their inherent parallelism and potential for noise toler­

ance, offer an attractive paradigm for efficient implementations of a broad range of information 

processing tasks. In this chapter, we have explored the use of artificial neural networks for 

pattern-based (key-based) query processing in large databases. The use of the proposed af>-

proach was demonstrated using the examples of a library query system and a query system for 

text-based machine-readable lexicon used in natural language processing. The performance of 

a CMOS hardware realization of the proposed neural associative memory for database query 

processing system was estimated and compared with that of other approaches which are widely 

used in conventional databases implemented on current computer systems. The comparison 

shows that ANN architectures for query processing offer an attractive alternative to conven­

tional approaches, especially for dealing with partial-match queries in large databases. With 

the need for real-time response in language translation and with the explosive growth of the 

Internet as well as increased use of large networked databases over the Internet, efficient ar­

chitectures for high-speed information retrieval, associative table lookup, message routing and 

database query processing have assumed great practical significance. 
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4 NEURAL ARCHITECTURES FOR ELEMENTARY LOGICAL 

INFERENCE 

4.1 Introduction 

Inference often involves tasks which look for interesting patterns in the input or memory 

to solve questions such as "^What is the most likely answer?", "Is there sufficient evidence to 

adopt a conclusion or is more evidence needed?" [42, 61, 191], etc. Such tasks are important for 

inference from partial information, and they generally involve a process of pattern recognition 

by way of best, partial, and/or exact matches. Artificial neural networks, due to their inherent 

massive parallelism, potential for fault tolerance and adaptation capability through learning, 

have attracted extensive interest for robust and efficient implementations of logical inference 

systems. Many of the systems proposed in the literature are motivated by the need for mas­

sively parallel architecture for AI applications, and some of them are proposed to model human 

cognitive processes robustly. In particular, they explore neural mechanisms for variable binding 

to facilitate complex reasoning based on predicate logic [5. 31. 95, 175, 176]; and connectionist 

realizations of production system [182], expert systems [42, 43], hybrid knowledge processing 

systems [136], semantic networks [68, 167], frame representation [79], planning [145, 188], non­

monotonic reasoning [142], legal reasoning [148], commonsense reasoning [177, 178], and logical 

theorem proving [141]. This chapter explores how neural architectures for binary partial pat­

tern recognition can be extended for elementary logical inference based on propositional logic. 

The proposed neural architectures, like the ones proposed in Chapters 2 and 3 for associa­

tive memory and query processing, exploit the massively parallel computational capability of 

artificial neural networks. 
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Prepositional logic, which typically operates on propositions and logical connectives: AND. 

OR, as well as negation, is basic to logical inference. For this reason, it is customary to use 

propositional logic for demonstrating the feasibility of new tools for logical inference. This 

chapter proposes a method based on geometrical/mathematical analysis to systematically de­

sign neural architectures for realizing logical ANDs, logical ORs, and DNF (Disjunctive Normal 

Form) propositions (sum of products). A DNF proposition is a disjunction of conjunctions. 

The evaluation of a conjunction corresponds to that of a logical AND function, and the evalua­

tion of a disjunction corresponds to that of a logical OR function. The evaluation of logical AND 

and OR functions can be respectively realized by the AND and OR neural assemblies proposed in 

this chapter through a process of pattern recognition. It is known that any proposition can be 

represented in DNF. Therefore, any proposition can be realized by a 2-layer neural architecture 

assembled from an OR neural assembly and a fixed number of AND neural assemblies. The rest 

of the chapter is organized as follows: 

• Section 4.2 develops two types of neural assemblies for the recognition of binary partial 

patterns. 

• Section 4.3 develops a general AND neural assembly which can be used to realize any 

arbitrary logical AND function of a finite number of Boolean variables. 

• Section 4.4 develops a general OR neural assembly which can be used to realize any 

arbitrary logical OR function of a finite number of Boolean variables. Then, a monotone 

OR neural assembly is derived. 

• Section 4.5 discusses how to use AND and OR neural assemblies to realize arbitrary Boolean 

functions. 

• Section 4.6 concludes with a summary of the chapter and a brief discussion. 

4.2 Neural Assemblies for the Recognition of Partial Patterns 

This section develops two types of neural assemblies for the recognition of binary partial 

patterns. One of them is used for the recognition of patterns which contain a specific sub-
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pattern, and the other is used for the recognition of patterns which don't contain a specific 

sub-pattern. Let us call the former the neural assembly for inclusive pattern recognition, and 

the latter, the neural assembly for exclusive pattern recognition. The two assemblies are used 

to build the AND neural assembly proposed in Section 4 and the OR neural assembly proposed 

in Section 4 respectively. 

4.2.1 A neural assembly for inclusive pattern recognition 

Let u =< ui,...,u„ > be a binary vertex (vector) of dimension n, where u, G {0,1} 

for 1 < j < n. Let ifj'" be an n-dimensional separating hyperplane which can be used 

to implement a I-layer Perceptron to distinguish the vertex u from all other n-dimensional 

vertices. According to expression 2.12, among a set of possible expressions for we 

choose: 

fl's " = ^ u,- = 0 (4.1) 
t=i i=i 

Therefore, in the n-input, 1-output Perceptron implemented to recognize the vertex u 
n 

• the threshold of the output neuron is set as and 
i=l 

• the connection weight from the ith input neuron to the output neuron is set as 2u, — 1. 

Now consider a binary vector u of dimension m, where m > n. Suppose, in a system of 

m variables, only the values of n of m components of vector u are of interest. For two given 

binary vectors u and -u of dimensions n and m respectively, only whether uy, = = 

u,,.... Uj„ = u„ are concerned, where 1 < n < m and 1 < ji < j2 < • • • < jn < "i. Let us call 

=  { J 1 J 2 ,  — J n }  the interest set J'^, and ti(J") =< > the partial vector 

of the binary vector u. Note that several interest sets could be defined concurrently for a given 

problem in an m-dimensional binary space. In the following, the expression for the separating 

hyperplane (expression 4.1) in an n-dimensional binary space is re-defined as a separating 

hyperplane in an m-dimensional binary space to implement a 1-layer Perceptron to 

recognize all the m-dimensional binary vectors whose J"-set partial vectors equal the 
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given n-dimensionai binary vector u = =< uy,, , uy„ >=< u\,U2,: 

m  m  n  

^ ^ (2tt. - 1)1,, + 5;; 0 • X. - 5; Ufc = 0 (4.2) 
ji^J" k 

Let Wi be the connection weight from the ith input neuron to the output neuron and 9 be 

the threshold of the output neuron in a 1-layer, 1-output Perceptron. Then, in the m-input, 

1-output Perceptron, 

• Vj,- e y" & 1 < z < n, W j ^  = 2u, — 1, 

• Vi ^ J" & 1 < I < m, Wi = 0, and 

n  

• e = Y^uk. 
k=l 

The values from those input neurons which are not in the interest set J" will not affect the 

net input of the output neuron since the weights on the connections from those input neurons 

are set as 0. These connections together act as a don't-care filter. 

For example, suppose one wants to use a 1-layer Perceptron to recognize all the 5-dimensional 

binary vertices whose 1st, 3rd, and 5th components are 1, 0, and 1 respectively. Then, the 

corresponding interest set would be = {1,3,5}, and the implemented Perceptron is shown 

in Figure 4.1. 

4.2.2 A neurad assembly for exclusive pattern recognition 

For a given n-dimensional binary vertex u =< uj,..., Un >, all n-dimensional binary vertices 

can be partitioned into n +1 parallel layers according to their Hamming distance p to the given 

binary vertex u (Theorem 2.1). Those R + 1 layers are respectively on n + 1 mutually parallel 

n-dimensional hyperplanes Hp'^'s (expression 2.12), 0 < p < ra, where 

- 1)1, - (^ Ui - p) = 0 
t=i t=i 

and u is the only vertex of the first layer which is on where 

^0-  1 )1. -  ̂  Ui =  0  (4.3) 
t=i i=i 
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y 

e = 2  

X ,  X j  X 3  * 4  * 5  

Figure 4.1 A 1-layer Perceptron which recognizes all the 5-<iimensional 
binary patterns that contain the partial pattern 
where f denotes don't care 

Let II =< ¥I,...,IZTI > be the complement vertex of binary vertex u, i.e., Ui + u, = 1 for 

I < i < n. Then u is the only vertex of the (n+l)th layer which is on where 

/ r r  =  ^ ( 2 « . - l ) x . - ( f ; ; u . - r z ) = 0  ( 4 . 4 )  
1=1 t=I 

The hyperplane which is defined as 

^n-i = - l)x.- - (2^ ti,- - ra + 1) = 0 (4.5) 
t=l i=l 

can be used to implement a 1-layer Perceptron to distinguish the binary vertex u from all 

other n-dimensional binary vertices (i.e. the Perceptron recognizes all the n-dimensional binary 

vertices which are not u) by setting 
n 

• the threshold of the output neuron as ^ u, — n + 1, and 
t=i 

• the connection weight from the ith input neuron to the output neuron as 2u, — 1 

in the n-input, 1-output Perceptron. 

Now consider a binary vector u of dimension m, where m> n. Suppose, only the values of 

n of m components of vector u are of interest and an interest set 7" = {ji, ja, —,jn} is defined. 

The expression for the hyperplane H^'^i in an n-dimensional binary space is re-defined as a 

hyperplane in an m-dimensional binary space to implement a 1-layer Perceptron to 

recognize all the 2"*"" m-dimensional binary vectors whose J"-set partial vectors don't equal 
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the n-dimensional binary vector u. Then, 

m  m  71 

{2ui - l)ij. + 0 • X, - (53 Ufc - n + 1) = 0 (4.6) 
ji€J" k 

and, in the 1-layer, m-input, 1-output Perceptron, 

• Vji 6 J" & 1 < I < n, Wj, = 2u, — 1, 

• Vi ^ y" & 1 < I < m, Wi = 0, and 

71 

• g = — ra + 1. 
k=l 

For example, suppose one wants to use a l-layer Perceptron to recognize all the 5-dimensional 

binary vertices whose 1st, 3rd, and 5th components are not 1, 0, and 1 respectively. Then, the 

in Figure 4.2. 

4.3 A Neural Assembly for Executing a Logical AND (AND Neural Assembly) 

This section develops an AND neural assembly which can realize any arbitrary logical AMD 

function of a finite number of Boolean variables. First, we develop notations to represent 

Boolean variables (atomic propositionaJ variables) and logical AND expressions to facilitate 

such a realization. Let -"U, be the negation of the Boolean variable u,. Further, let -ivi be 

denoted by v°, and U,- by vj. Then a logical expression UI A -1U2 A V3 (a conjunction of three 

Boolean variables) can be denoted as v} A U" A U3. Let v =< vi,..., Vn > and R =< 21,..., >, 

where u,, r, 6 {0,1} for 1 < i < n. Then, for a logical AND function denoted by C*'*(u) = 

I7J' A UJ' • • • A v^", we have 

0 if u is any other n-dimensional binary vertex 

The evaluation of the logical AND function C"''(v) can be viewed as a process of binary 

pattern recognition. Thus, it can be realized by a 1-layer Perceptron that implements the 

corresponding interest set would be J® = {1,3,5}, and the implemented Perceptron is shown 

1 if V 
C"-'(r;) = (4.7) 
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Figure 4.2 A 1-layer Perceptron which recognizes all the 5-dimen-
sional binary patterns that don't contain the partial pattern 
<1,?,0,?,1>, where ? denotes don't care 

hyperplane to recognize the binary vertex z. Let be used for H^'^. Then, according 

to expression 4.1 and its associated Perceptron implementation, 

Bmd = nr = - 1)1. - E •-. = 0 
t= l  t= l  

(4.8) 

and the logical AND function can be realized by a 1-layer Perceptron with n input 

neurons and one output neuron. The corresponding Perceptron has 

n 

• the threshold of the output neuron set to ^ Zi, and 
1=1 

• the connection weight from the ith input neuron to the output neuron set to 2r, — 1. 

For example, suppose v =< Ui. uj, U3 > and C(u) = uj A -<V2 A U3 = t7i A u® A U3. Then, we 

have 
/ 

1 ifu=<1.0,1> 
(4.9) 

0 if t; is any other n-dimensional binary vertex 

and the corresponding Pe r c e p tron which realizes the logical AND function C(v) is shown in 

Figure 4.3. 

In order to be able to realize all possible logical AND functions in a system of m Boolean 

variables using their corresponding 1-layer Perceptrons, the expression for the separating hy­

perplane extended from an n-dimensional binary space to an m-dimensional binary 

space to recognize all the m-dimensional binary patterns whose partial patterns equal the 

C ( v )  =  
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Figure 4.3 An AND neural assembly which realizes the logical AND function 
C(vj 

n-dimensionaJ binary vector r for certain interest set y's, where m > n. Suppose v =< 

ui, U2. —1 i>m > is a binary vertex of dimension m. We define an interest set J" = {ji, j2i —i in}. 

1 < ii < Y2 < • • • < in < m. Let (u) = Vj^ A • A . Then 

(4.10) 
1 ift;(J")=z 

0 if v ( J " ' )  is any other n-dimensional binary vector 

The logical AND function (u) can be realized by a 1-layer Perceptron that implements 

the hyperplane to recognize all the m-dimensional binary vectors whose J"-set partial 

vectors equal to the n-dimensional binary vector r. Let • Then, 

according to expression 4.2 and its associated Perceptron implementation, 

H AND (4.11) 
IX&J" IT J" K 

and the logical AND function = V j ^  A UJ" can be realized by a 1-layer 

Perceptron with m input neurons and one output neuron. In the Perceptron, 

• Vj: € J" & 1 < t < 71, TWj, = 2zi — 1. 

• Vi ^ J" & 1 < z < m, Wi = 0, and 

• ̂  = ^ Z k -
k=l 
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Such an AND neural assembly will be used as a building block to assemble the neural archi­

tectures for realizing Boolean functions represented in DNF representation (see Section 4). 

Examples of such a neural assembly will be shown in Section 4 to assemble a neural architecture 

which realizes a given DNF Boolean function. 

4.4 Neural Assemblies for Executing Logic ORs (OR Neural Assemblies) 

This section develops OR neural assemblies which can realize any arbitrary logical OR func­

tions of a finite number of Boolean variables. First, a general OR neural assembly is described. 

The assembly will be used a building block to assemble the neurai architecture proposed in 

Section 4 for realizing DNF Boolean functions. Then, a monotone OR neural assembly is de­

rived from the general OR neural assembly. The monotone OR neural assembly will be used as 

a building block to assemble the neural architecture proposed in Section 5.4.2.4 for realizing 

4.4.1 A general OR neurzil sissembly 

This subsection investigates how a l-layer Perceptron can realize a general logical OR func­

tion which contains negated Boolean variables. The notations used here follows that in Section 

4. Let DQ"(V) = L'l' V VP • • -VV^", where V is a logical connective OR, i;, "s are Boolean variables, 

V =< vi,..., Vn >, 2 =< 2i,.... Zn >, and u,, Zi £ {0,1} for 1 < i < n. Then, we have 

The logical OR function DQ'{V) can be realized by a l-layer Perceptron that implements 

the hyperplane to recognize all n-dimensional binary vertices which are not z. Let 

Hq^ be used for Then, according to expression 4.5 and its associated Perceptron 

implementation, 

NFA. 

0 i f  V = <  Z i , Z 2 , . . . , Z n >  

1 if u is any other n-dimensional binary vertex 
(4.12) 

n n 

f f S i  3  =  ^ ( 2 r . - l ) l i - ( 5 ; 2 i - n + l ) = 0  (4.13) 
:=1 t=l 

and, in the n-input, 1-output Perceptron which realizes DQ''{V), 
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the threshold of the output neuron is set to ^ z,- — n + 1, and 
«=i 

• the connection weight from the ith input neuron to the output neuron is set to 2zi — 1. 

For example, suppose v  =< ui, V 2 ,  V 3  >  and D ( v )  = uj V -tV2 V U3 = uj V u" V Then, we 

have 

0 if u =< 1,0,1 > 
D { v )  =  (4.14) 

1 if u is any other n-dimensional binary vertex 

and the corresponding Perceptron which realizes the logical OR function D ( v )  is shown in Figure 

4.4. 

In order to be able to realize all the possible logical OR functions in a system of m Boolean 

variables using their corresponding 1-layer Perceptron implementations, the expression for 

the separating hyperplane is extended from an n-dimensional binary space to an m-

dimensional binary space to recognize aJl the m-dimensional binary patterns whose partial 

patterns don't equal the n-dimensional binary vector J for certain interest set J"s, where 

m > n. Suppose v =< ui, uj,..., i;m > is a binary (Boolean) vertex of dimension vn. We 

define an interest set 7" = —lin}, 1 < ii < i2 < • • • < Jn < Let £)^'""^"(i5) = 

V • V Then 
J l  J2 I n  

f 0 i f  v { J ^ )  =  z  
(^) = \ . (4.15) 

[ 1 if v ( J ^ )  is any other n-dimensional binary vector 

The logical OR function [ V )  can be realized by a 1-layer Perceptron that implements 

the hyperplane to recognize the m-dimensional binary vectors whose J"-set partial 

vectors don't equal to the n-dimensional binary vector z. Let be used for 

Then, according to expression 4.6 and its associated Perceptron implementation. 

=  f i  (22. - l ) x j ,  + ^ 0 • Xi - (f; 2jt - n -M) = 0 (4.16) 
J. 6 J" iiJ" k 

and, in the m-input, 1-output Perceptron which realizes (U), 

• Vj, € 7" & 1 < z < n, Wj, = 2zi — 1, 

• Vi ^ J" & 1 < I < m, Wi = 0, and 
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Figure 4.4 An OR neural assembly which realizes the logical OR function 
D(v) 

k=l 

Figure 4.2 is a corresponding Perceptron implementation which realize the logical OR 

function y = D{x) = -•xi V 13 V -1X5 = 1° V x^ V x° in a. system which contains Boolean 

variables xi,  X2, 1 3 ,  X4, and 15: where x =< Xi, . . . , 1 5  > .  

4.4.2 A monotone OR neursd assembly 

Consider an n-variable Boolean expression represented as a monotone disjunction: 

uj V uo • • • V (4.17) 

where i;,'s are Boolean variables. Monotone disjunctions are simply disjunctions which don't 

contain negated Boolean variables. For example, viV V2 is a monotone disjunction, but ->viV U2 

is not a monotone disjunction. Let v =< ui,..., v„ > and D^{v) = v} V vj • • - V v^- Then, we 

have 

0 if u =< T" > 

1 if u is any other n-dimensional binary vertex 

The logical monotone OR function D^(v} is a special case of a general logical OR function 

^G*(") s =< 1" >. Then, according to the Perceptron implementation for Dq'{V) 

(which corresponds to expression 4.13), the logical monotone OR function D^{v) can be 

DM = (4.18) 
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realized by an n-input, 1-output Perceptron with the threshold of the output neuron being set 

as 1, and the connection weight from every input neuron to the output neuron being set as 1. 

In order to be able to realize all the possible logical monotone OR functions in a system of m 

Boolean variables using their corresponding 1-layer Perceptron implementations, where m > n. 

The logical monotone OR function D^{v) is extended from an n-dimensional Boolean space to 

an m-dimensional Boolean space, where m > n. Suppose u =< vi, V2,Vm > is a Boolean 

v e c t o r  o f  d i m e n s i o n  m .  A s s u m e  a n  i n t e r e s t  s e t  J "  =  { j i , j 2 ,  — , J n } ,  1  <  J i  <  7 2  <  •  •  •  <  J n  <  

is defined. Define (v) = V uj^ • V vj^. Then 

0 ifv(J")=<r> 
(4.19) 

1 if is any other n-dimensional binary vector 

• 771 4/** — \ The logical monotone OR function (v) is a special case of a general logical OR function 

(v) with 2 =< 1" >. Then, according to the Perceptron implementation for 

(which corresponds to expression 4.16), the logical monotone OR function Z3)J^"^"(t;) can be 

realized by an m-input, 1-output Perceptron with 

• E J" &: 1 <{< n, Wj^ = 1, 

• Vi ^ J" 1 < 1 < m, Wi = 0. and 

•  e  =  i .  

Such a general OR neural assembly will be used as a building block to assemble the neural 

architectures for realizing NFA in Section 5.4.2.4. 

4.5 A Neural Architecture for Realizing DNF Boolean Functions 

Let ->C, be the negation of the conjunction C,. Further, let -iC, be denoted by (C,)°, and 

C, by (C,)^ Let v =< ui,..., Vm > and C,- be defined on u for 1 < i < n. Then, a DNF Boolean 

function = Cf V . v can be realized by a 2-layer Perceptron. The first 

layer of the Perceptron consists of n m-input AND neural assemblies defined by expression 

4.11, and the second layer is an n-input OR neural assembly defined by expression 4.13. Each 

of the n AND neural assemblies is used to realize a conjunction C,, where 1 < i < n. 
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For example, let v =< ui, U2, vz, v^, vs >, Jf = {1,2,3}, and = {3,4,5}. Then, 

B ( v )  =  (ui A->t;2 A U3) V-"(ua A t;4 A Us) (4.20) 

=  ( u j  A u 5 A t ; ^ ) W ( t ; ^ A t ; ]  A t ; ^ ) °  ( 4 . 2 1 )  

^ v(c5.<i.i.i>.-^l(u))0 (4.22) 

where (O) = vi A ->U2 A V3 and C®''^^'^'^^"'2(U) = U3 A U4 A U5. The corresponding 

2-layer Perceptron which realize the DNF Boolean function B ( v )  is shown in Figure 4.5. 

4.6 Summary and Discussion 

Artificial neural networks, due to their inherent massive parallelism, potential fault tol­

erance and adaptation capability through learning, offer an alternative paradigm for robust 

and efficient implementations of logical inference systems. In this chapter, a method based 

on geometrical/mathematical analysis has been proposed for systematically designing neural 

architectures for elementary logical inference. Particularly, neural architectures for realizing 

logical ANDs, logical ORs, and DNF propositions have been synthesized by way of binary pattern 

recognition. 

The input to a Boolean function can be represented as a binary (bipolar) code. Therefore, 

the e\'aluation of a Boolean function can be viewed as a process of binary (bipolar) pattern 

recognition. It is known that every Boolean function can be represented as a DNF expression 

[43]. A DNF expression is a disjunction of conjunctions. The evaluations of conjunction and 

disjunction can be realized by the proposed AND and OR neural assemblies respectively. Hence, 

any Boolean function (except the constant 0) can be realized by a 2-layer neural architec­

ture (Perceptron) assembled from a fixed number of AND and OR neural assemblies. Besides, 

Perceptrons have space and speed advantages over DNF representations for representing and 

evaluating Boolean functions (see [43] for details). Since logical AND, logical OR, as well as 

DNF representation are essential to logical inference and Boolean functions are basic to many 

applications in science and engineering, we expect the proposed neural assemblies would find 

use in the construction of modular neural networks for a variety of applications. But, in or­
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E(v) 

0 = 0 

0 = = 3 (Two AND Assemblies) 

(An OR assembly) 

V2 ^3 Vj 

Figure 4.5 An neural architecture which realizes the DNF Boolean function 
E(v) 

der to apply neural networks to applications involving more complex logical inference, neural 

networks would need to be able to do variable binding, logical proof, unification, resolution, 

etc. 

It is worth pointing out that the derivation of AND and OR neural assemblies which operate 

on bipolar values is straightforward given the methods proposed in this chapter and the method 

proposed in Section 2.2.6 for the conversion between models using bipolar and binary inputs. 

We expect that the resulting bipolar AND and OR neural assemblies will be exactly equivalent 

to those proposed in [43]. Since an input value 0 can be used to stand for unknown in bipolar 

model which denotes true by 1 and false by -1, bipolar model is more flexible than binary 

model which denotes true by 1 and false by 0. 
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5 NEURAL ARCHITECTURES FOR SEQUENCE PROCESSING 

5.1 Introduction 

Artificial neural networks (ANN), due to their inherent parallelism, offer an attractive 

paradigm for efficient implementations of functional modules for symbol processing. This 

chapter focuses on systematic designs for neural network architectures for sequence processing 

which is essential to many practical applications involving symbol processing in computer 

science, linguistics, systems modeling and control, artificial intelligence, and structural pattern 

recognition. 

The capabilities of neural network models (in particular, recurrent networks of threshold 

logic units or McCulloch-Pitts neurons) in processing and generating sequences (strings defined 

over some finite alphabet) and hence their formal equivalence with finite state automata or 

regular language generators/recognizers have been known for several decades [83, 108, 117]. 

More recently, recurrent neural network realizations of finite state automata for recognition 

and learning of finite state (regular) languages have been explored by numerous authors [6, 20. 

33. 38, 45, 44, 77, 122, 129, 132, 133, 134, 159, 166, 192]. There has been considerable work 

on extending the computational capabilities of recurrent neural network models by providing 

some form of external memory in the form of a tape [194] or a stack [13, 27, 66, 116, 123, 144, 

161. 169, 174, 197]. To the best of our knowledge, to date, most of the research on neural 

architectures for sequence processing has focused on the investigation of neural networks that 

are designed to leam to handle sequence processing. 

This chapter presents designs of several modular ANN modules for basic sequence process­

ing. The ANN modules which are used as building blocks for the neural architectures proposed 

in Chapter 6 for syntax analysis include neural network architectures for realizing determin­
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istic finite automata, stacks, and deterministic pushdown automata. These ANN modules are 

systematically synthesized from the BMP modules proposed in Section 2. Besides, neural 

network architecture for realizing nondeterministic finite automata is proposed to explore the 

potential benefits of ANN in the design of high performance systems for parallel symbolic 

computing applications. The rest of the chapter is organized as follows: 

• The rest of Section 5.1 briefly discusses how to represent symbolic functions in terms of 

binary mappings to facilitate symbolic information manipulation via the proposed BMP 

module which operates on binary values. 

• Sections 5.2, 5.3, 5.4 and 5.5 respectively explore the systematic synthesis of neural 

network architectures for realizing deterministic finite automata, deterministic pushdown 

automata, stack and nondeterministic finite automata. 

• Section 5.6 concludes with a summary and a brief discussion. 

5.1.1 Symbolic functions and binary mappings 

In general, most of simple, non-recursive symbolic functions and table lookup functions can 

be viewed in terms of a binary random mapping fi : U V (expression 2.1). For example, // 

may define a symbolic mapping function /s : Fi x r2 • • • x Fr Ai x A2 • • • x Aj as described 

in Section 3.1.1. In this case, the operations of fs on its associated symbols can be viewed in 

terms of the binary mapping operations of // which in turn can be realized by a BMP module 

proposed in Section 2.2.5. 

Therefore, modular neural network modules for complex symbol processing can be syn­

thesized through a composition of appropriate primitive symbolic functions which are directly 

realized by suitable BMP modules. Two of basic ways of recursively composing composite 

symbolic functions from component symbolic functions (which may themselves be composite 

functions or primitive functions) are discussed here. Let / and g be two symbolic functions 

defined as follows: 

/:RI X R2 — x T p — > A i  X A2 — X As (5.1) 
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g :Ai X • - • X Aj —»• Ai X • • • X At (5.2) 

The composition of / and g is denoted by go f such that 

^ o / : Ti X • • • X Tr ->• Ai X • • • X Af (5.3) 

and for every (ai, • • •, Qp) in Fi x • • • x Fr 

5o/(Qi,---,ar) =5(/(oi.---.ar)) (5.4) 

Suppose fi is a symbolic function such that 

/, : Fj X - • - X Fr —)• A," for 1 < J < s (5.5) 

The composition c of symbolic functions g, /i, ..., /, is defined as: 

c : Fi X • • • X Fr -> Ai X • • • X Af (5.6) 

and for every (oi, • • •, Qr) in Fi x • • • x Fr 

C(Q;I, • • •, TTR) = g{Mai, •  -  • ,  O r ) ,  •  •  / , ( q i ,  •  •  • ,  Q r ) )  (5.7) 

The recursive processing of input strings of variable length (of the sort needed in lexical 

analysis and parsing) can be handled by composite functions / : F* —)• A", ^ ; A x F" —>• A. 

and c : A X F" -r A X A' which are respectively realized by the modular recurrent neural 

architectures proposed in this chapter and Chapter 6, where F" (A") denotes the set of all 

strings over the alphabet F (A). Here, function / denotes the recursive processing of input 

strings of variable length by a parser or a lexical analyzer (see Chapter 6); function g denotes 

the recursive evaluation of input strings of variable length by the extended transition function 

of a DFA (see Section 5); and function c denotes the recursive parsing of syntactically tagged 

input tokens by the extended transition function of an LR(1) parser (see Chapter 6). The 

functions /, g, and c that process input strings of variable length can be composed using 

symbolic functions /, g, c, output selector function, and string concatenation function by 

recursion on the length of the input string (See Section 5 for an example). Other recursive 

symbolic functions can also be composed using composition and recursion [140, 154, 195]. 
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The operation of a desired composite function on its symbolic input (string) can be fully 

characterized anal3rtically in terms of its component symbolic functions on their respective 

symbolic inputs and outputs. The component symbolic functions are either composite functions 

of other symbolic functions or primitive symbolic functions which are realized directly by 

appropriate BMP modules. This makes it possible to systematically (and provably correctly) 

synthesize any desired symbolic function using BMP modules. (Such designs often require 

recurrent links for realizing recursive functions such as the extended transition function (j of a 

DFA or a more complex recursive function as we shall see later and in Chapter 6). 

5.2 Neural Network Design for Deterministic Finite Automata (NN DFA) 

Deterministic finite automata (finite state machines) are a basic computing model which 

is essential to many science and engineering applications involving sequence processing. This 

section first briefly reviews the symbolic computing model for deterministic finite automata 

and then presents a method to systematically design neural network architectures for realizing 

deterministic finite automata [20]. 

5.2.1 Deterministic finite automata (DFA) 

A deterministic finite automaton is a 5-tuple M^FA = {QS^S,qo, F) [74], where Q is a 

finite non-empty set of states, F is a finite non-empty input alphabet, qo ^ Q is the initial state, 

F C Q IS the set of final or accepting states, and 5 : Q xV Q is the transition function. A 

finite automaton is deterministic if there is at most one transition that is applicable for each 

pair of state and input symbol. 

The extended transition function ^ of a DFA with transition function 5 is a mapping from 

Q X V to Q defined by recursion on the length of the input string as follows; 

• Basis; S{qi, c) = g,, where e is empty string. 

• Recursive step; S{q i ,  ua )  =  S{S(q i ,  u ) , a )  for all input symbols c € T and strings u  E F". 

The computation of the machine MQFA in state g,- with string w halts in state 6{q { ,w) .  

The evaluation of the function S(qQ,w) simulates the repeated application of the transition 



77 

function S required to process the string w from initial state qo. A string w is accepted by 

MDFA if ^(90. W) € F; otherwise it is rejected. The set of strings accepted by MDFA is denoted 

as L{MDFA) = € F}, called the language of MDFA-

A Mealy machine is a DFA augmented with an output function. It is defined by a 6-tuple 

Mufeaiy = (Qi T, A, J, A,9o) [74], where Q, T, 5, and qo are as in the DFA Mdfai A is a finite 

non-empty output alphabet, and A is output function mapping from Q x T to A. X{q, a) is the 

output associated with the transition from state q on input symbol a. The output of MMeaiy 

responding to input string aia2---an is output string A(9o,ai)A(gi,a2) •• •A(gn_i,an)i where 

9o, 9i, —, 9n is the sequence of states such that a,) = qi for 1 < z < n. 

5.2.2 Architecture of NN DFA 

A partially recurrent neural network architecture can be used to realize a DFA as shown in 

[20]. Its central concept is to use a BMP module to realize the transition function of a DFA. 

The neural representation in the BMP module is described as follows. 

• The input neurons are divided into two groups. One group of input neurons has no 

recurrent connections and receives the binary coded current input symbol. There are 

n = |'log2 |r|] such input neurons. The second group has m = [log2(|Q| + 1)] input 

neurons and holds the current state (coded in binary). Each input neuron in this group 

has a recurrent connection from the corresponding output neuron. 

• The output neurons together hold the next state (coded in binary). There are m = 

[log2(lQl + 1)] output neurons. 

• Every transition is represented as an ordered pair of binary codes. For each such ordered 

pair, a hidden neuron and its associated connections are used to realize the ordered pair 

in terms of binary mapping. Thus the number of required hidden neurons equals the 

number of valid transitions in the transition function. For example, suppose p,q E Q,a € 

r,5{p,a) = q is a. valid transition, and p, q as well as a are encoded as binary codes such 

that p=< >,q =< qi,...,qm > and a =< ai,...,a„ > where pi,qi,aj € {0,1} 

for 1 < t < m and I < j < n. Then the transition S{p, a) = 9 is represented as a binary 
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mapping ordered pair (< pi, ...,an >, < 91 ,—,  9m >) implemented by a BMP 

module (See Section 2). 

• An explicit synchronization mechanism is used to support the repetitive evaluation of 

the transition function 8 on input string of variable length. 

The transition function of a DFA can be represented as a 2-dimensional table with current 

state and current input symbol as indices. The operation of such a DFA involves repetitive 

lookup of the value for next state from the table using current state and current input symbol 

at each move until an error state or an accepting state is reached. Such a repetitive table 

lookup process involves content-based pattern matching and retrieval wherein the indices of 

the table are used as input patterns to retrieve the next state. This process can exploit the 

massively parallel associative processing capabilities of the neural associative memory proposed 

in Chapter 2. 

Figure 5.1 shows the neural network architecture for realizing a DFA. Let 0, 1, 2, ..., t 

denote a succession of points along the discrete time line. The current and next states are 

denoted by state{t) and state{t + 1) respectively. The current input symbol is denoted by 

input{t). This NN DFA module consists of two BMP modules, one accepting state trapping 

module (AST module) and three buffers. One buffer stores current state state{t), another 

stores input symbol input{t), and the other stores next state stalest -1- 1) which exists only 

logically but not physically. The first two buffers operate under synchronization control which 

enforces discrete time 0, 1, ..., t. The reset link resets the NN DFA to initial state. 

BMP module 1, called NN DFA transition module, realizes the transition function of a DFA. 

BMP module 2 is optional, and it allows the output of the NN DFA to be remapped from the 

output of BMP module 1. The AST module is optional and can be implemented by a BMP 

module. It enables BMP module 2 to produce an output only when the NN DFA goes into an 

accepting state. A connection from the AST module to upper-layer control would be needed 

to alert it when the AST module traps a rejecting state, i.e., when this NN DFA goes into a 

rejecting state. Let < 0"* > denote the encoded binary value of dead state {garbage state), a 

state which is not a final state and has transitions to itself on all input symbols. Note that any 
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unspecified transition will automatically have the next state coded as < 0"* > as a consequence 

of our design of a BMP module (see Section 2.2.5). This simplifies the implementation of a 

DFA, since any transition to rejecting state does not need to be implemented using a hidden 

neuron in the NN DFA transition module. 

5.3 Neural Network Design for Deterministic Pushdown Automata (NN 

DPDA) 

The capability of DFA is limited to recognition and production of the set of regular lan­

guages, the simplest class of languages in Chomsky hierarchy [74]. The capability of DFA can 

be extended by adding a stack. The resulting automata can recognize the set of determin­

istic context-free languages (DCFL), a more complex and widely used class of languages in 

Chomsky hierarchy [74]. This section describes a method to systematically synthesize neural 

network architectures for deterministic pushdown finite automata [20]. 

5.3.1 Deterministic pushdown automata (DPDA) 

A pushdown automaton MPQA is a- 7-tuple (Q, F, A, S, qo, ±, F) [74], where Q is a finite set 

of states, r is a finite input alphabet, A is a finite stack alphabet, go € Q is the initial state, 

A is a particular stack symbol called stack start symbol, FCQ is the set of final states, and 

5 is the transition function mapping from Q x (Pu {c}) xAtoQx A'. A pushdown automaton 

is deterministic if there is at most one transition that is applicable for each combination of 

state, input symbol and stack top symbol. We denote a DPDA by MDPDA- An input string is 

accepted if the automaton processes the entire string and ends in an accepting state with an 

empty stack. 

For the need of implementing a DPDA in a neural network, we let 5 map from Q x (T U 

{e}) xAtoQx {pop, push, noop} x (Au{*}) to allow stack operation being expressed explicitly 

during the computation of a DPDA, where * denotes a don't ceure value, {pop, push, noop} 

is the set of possible stack operations, and noop denotes no operation. 
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5.3.2 Architecture of NN DPDA 

A partially recurrent neural network architecture can be used to realize a DPDA as shown 

in [20]. Its central concept is to use a BMP module to realize the transition function of a 

DPDA. The neural representation in the BMP module is described as follows. 

• The input neurons are divided into three groups. The first group has m = [logjdQl + l)] 

neurons and holds the binary-coded current state. Each input neuron in this set has a 

recurrent connection from the corresponding output neuron. The second group receives 

the binary coded current input symbol and has n = flog2 |r| -t- 1] neurons. The third 

group receives the binary coded stack top symbol and has k = [log2 |A| + 1] neurons. 

The last two groups have no recurrent connections. 

• The output neurons are divided into three groups. The first group represents the binary-

coded next state and has m = [1052(1^1 +1)1 neurons. The second group has two neurons 

and represents the binary-coded stack operation. The third group has k = [log2 |A|-{-1] 

neurons and represents the binary-coded stack symbol to be pushed into the stack or a 

don't care (denoted as *) when the stack action to be performed is a pop. 

• Every transition is represented as an ordered pair of binary codes. For each such ordered 

pair, a hidden neuron and its associated connections are used to realize the ordered 

pair in terms of binary mapping. Thus the number of required hidden neurons equals 

the number of valid transitions in the transition function. For example, suppose p,q £ 

Q,a£ (ru{e}),a,/? 6 A,s € {pop.push.,noop},^(p,a,a) = {q,s,/3) is a valid transition, 

and p, q, a, q, 0 and s are encoded into binary vectors such that p =< pi,..., Pm >, 9 =< 

>, a. =< ai,....an >, a =< Q;i,...,afc >,/3 =< > and s =< Si,S2 >, 

where Pi,quaj,ai,0i,si,s2 € {0,1} for 1 < z < m, 1 < j < n, and I < I < k. Note 

that our representation of a transition of a DPDA is different from the conventional 

representation in that we express stack pop/push action explicitly. Stack push, pop, and 

noop actions are denoted by s =< 0,1 >, s =< 1,0 >, and s =< 0,0 > respectively. 

Then the transition 6(p, o, a) = (q, s, /3) is represented as the binary mapping ordered pair 
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(<Pi,...,p„i,ai,...,an,Q;i,...,Q:fc>,< Qi, Qm, Si, S2,0i,0k >] to be implemented by 

a BMP module (See Section 2.2.5). 

• An explicit synchronization mechanism is used to support the repetitive evaluation of 

the transition function on input string of variable length. 

The transition function of a DPDA can be represented as a 3-dimensional table with current 

state, current input symbol, and stzLck top symbol as indices. The operation of such a DPDA 

involves repetitive lookup of the value for next state from the table using current state, current 

input symbol and stack top symbol at ezich move until an error state or an accepting state is 

reached. Such a repetitive table lookup process involves content-based pattern matching and 

retrieval wherein the indices of the table are used as input patterns to retrieve the next state. 

This process can exploit the massively parallel associative processing capabilities of the neural 

associative memory proposed in Chapter 2. 

Figure 5.2 shows the proposed modular neural network architecture for realizing a DPDA. 

The current and next states are denoted by state{t) and state{t + 1) respectively. This NN 

DPDA module consists of three BMP modules, one AST module, one stack mechanism mod­

ule and four buffers. One buffer stores current state state{t), one stores current input symbol 

input(t), another stores stack top symbol stacktop^ and the other stores next state state{t -|-1) 

which exists only logicaily but not physically. The first three buffers operate under synchro­

nization control which enforces discrete time 0, 1, ..., t. The reset link resets the NN DPDA 

to Initial state. 

BMP module 1, called NN DPDA transition module, realizes the transition function of a 

DPDA. Each state transition is coded as an ordered pair of binary mapping codes. There 

are two push/pop connections from the NN DPDA transition module to the stack mechanism 

module. These links inform the stack mechanism module whether to pop or push. The AST 

module is optional and can be implemented by a BMP module. It enables BMP module 2 to 

produce output only when the NN DPDA goes into an accepting state. A connection from 

the AST module to upper-layer control would be needed to alert it when the AST module 

traps a rejecting state, i.e., when this NN DPDA goes into a rejecting state. BMP module 2 
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is optional, and it allows the output from the NN DPDA to be remapped from the output of 

the NN DPDA transition module. BMP module 3 is optional and provides remapping of stack 

symbol produced from the NN DPDA transition module. Note that any unspecified transition 

will have the next state < 0*" > given our implementation of a BMP module. 

5.4 Neural Network Design for Stack (NN Stack) 

This section first briefly discuss the symbolic computing model for stack and then presents 

a method to systematically design neural network architectures for realizing stacks [22]. 

5.4.1 Symbolic representation of stack 

A stack can be coded as a string over a stack alphabet, with its top element at one end 

of the string and its bottom element at the other end. Pop and push are the main actions of 

a stack. In the implementation of a stack, these actions can be performed by a DFA which 

is augmented with memory to store stack symbols which are accessed sequentially using a 

stack top pointer (SP) which points to the top symbol of the stack. The stack top pointer is 

maintained by the current state of the DFA, and the current action of the stack by the input 

to the DFA. Let A = { pop, push, noop } be the set of possible stack actions, C the set of 

possible stack configurations (contents), S the set of stack symbols. P = {0,1,2,.... n} the set 

of possible positions of stack top pointer, and n the maximal depth (capacity) of a given stack. 

Let X be stack bottom symbol and c - s denote the stack configuration after a stack symbol s is 

pushed onto the stack configuration c. Note that C = {a | a 61 -5' and | a |< n}, where | a [ 

denotes the number of stack symbols in the stack configuration a. Assume that the value of 

stack top pointer doesn't change on a noop action, and it is incremented on a push action and 

decremented on a pop action. The operation of a stack and the retrieval of stack top symbol 

f r o m  a  s t a c k  c a n  b e  c h a r a c t e r i z e d  b y  t h e  s y m b o l i c  f u n c t i o n s  f s t a c k  l A x S x C x P - i - C x P  

and frop : C x P —> 5 U {J.} respectively. They are defined as follows. 
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/stacit (push, S, C , p )  =  

/5tocit(noop, *,c,p) = 

/stacJk(pop. * , C ,p) = < 

(c-s,p+l) if s € 5, c e C, 

p € F, and p < n — 1 

arror otherwise 

(c', p - 1) if c 6 C and c = c' • s for 

some s e 5 and some c € C; 

and p £ P and p > 1 

error 

fTopic, p) = ^ 

where * stands for a don't care. 

otherwise 

(5.8) 

(5.9) 

(c, p) if c € C and p £ P 

error otherwise 

± if c =± and p = 0 

s if c € C and c = c' • s for some s G S 

and some c 6 C; and p E P and | c |= p 

error otherwise 

(5.10) 

(5.11) 

5.4.2 Architecture of NN Stack 

This subsection discusses the neural network realization of a stack in terms of symbolic 

functions fstack and fxap- A. design for NN Stack obtained by adding a write control module to 

an .NN DFA is shown in Figure 5.3. (The use of such a circuit might be considered by some to 

be somewhat unconventional given the implicit assumption of lack of explicit control in many 

neural network models. However, the operation of most existing neural networks implicitly 

assume at least some form of control. Given the rich panoply of controls found in biological 

neural networks, there is no reason not to build in a variety of control and coordination 

structures into neural networks whenever it is beneficial to do so [71]). NN Stack has an n-bit 

binary output corresponding to the element popped from the stack, and four sets of binary 

inputs: 
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• Reset which is a 1-bit signal which resets pointer{i) (current SP) to point to the bottom 

of the stack at the beginning. 

• Synchronization control which is a 1-bit signaJ that synchronizes NN Stack with the 

discrete time line, denoted by 0,1, • • •, t -|-1, • • 

• Action which is a 2-bit binary code so that 

— 01 denotes push. 

— 10 denotes pop. 

— 00 denotes no action. 

• Input stack symbol which is an n-bit binary code for the symbol to be pushed onto the 

stack during a stack operation. 

An NN Stack consists of a pointer control module, a stack memory module, a write con­

trol module and two buffers. The first buffer stores current SP value {pointer[t)) and the 

second stores the current stack action {push/pop). In Figure 5.3, the dotted box labeled 

with pomfer(t4-l) exists only logically but not physically, and pointer{t) and pointer ( t+l )  

respectively denote SP before and after a stack action. SP is coded into an m-bit binary 

number. 

5.4.2.1 Pointer control module 

The pointer control module (BMP module 1) realizes a symbolic function fpcontroi  ' •  A  x  

P —¥ P and controls the movement of SP which is incremented on a push and decremented on 

a pop. The pointer control module uses m + 2 input, 3x2'" hidden, and m output neurons. 

m of the input neurons represent pointer{t) (current SP value), and the remaining 2 input 

neurons encodes the stack action. There are 2*" possible SP values. The m output neurons 

represent pointer[t+l) (the SP value after a stack action). Each change in SP value can be 

realized by a binary mapping (with one hidden neuron per change). Since noop (no action) is 

one of legal stack actions, 3x2"* hidden neurons are used in the pointer control module. 
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5.4.2.2 Stack memory module 

The stack memory module (BMP module 2) realizes the symbolic function frop- It uses 

m input neurons, n output neurons, and 2"* hidden neurons which together allow storage of 

2"* stack symbols at 2"* SP positions. The stack symbols stored in stack memory module are 

accessed through pointer{t+l) (the output of the pointer control module). Note that the BMP 

module 2 uses its 2nd-layer connections associated with a hidden neuron to store a symbol (see 

Chapter 2). 

5.4.2.3 Write control module 

The write control module (plus stack memory module) realizes a symbolic function fswrite '• 

AxSxCxP—i^C. Physically, it receives m binary inputs from the buffer labeled with 

pointer[t) (denoting current SP), 1 binary input from the second output line of the buffer 

labeled with push/pop (denoting current stack action), and n binary inputs (denoting the 

stack symbol to be pushed onto the stack) from environment. Stack memory module is used 

to store current stack configuration. The module does nothing when a pop is performed. The 

n dotted output lines from the write control module write the n-bit binary-coded stack symbol 

into n of the 2nd-layer connections associated with a corresponding hidden neuron in the 

stack memory module when a push is performed. The hidden neuron and its n associated 

connections are located by using current SP value {pointer{X.)). (The processing of stack 

overflow and underflow is not discussed here. It has to be taken care of by appropriate error 

handling mechanisms). 

5.4.2.4 Timing considerations 

The proposed design for NN Stack shown in Figure 5.3 is based on the assumption that 

the write control module finishes updating the 2nd-layer connection weights associated with 

a hidden neuron of stack memory module before the signals from pointer control module are 

passed to stack memory module during a push stack action. If this assumption fails to hold, 

the original design needs to be modified by adding: n links from input stack symbol (buffer) 
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to output stack symbol (buffer); an inhibition latch, which is activated by the leftmost output 

line of the push/pop buffer, on the links to inhibit signal passing from input stack symbol 

(buffer) to output stack symbol (buffer) at a pop operation; a second inhibition latch, which is 

activated by the rightmost output line of the push/pop buffer between pointer control module 

and stack memory module to inhibit signal transmission between these two modules at a push 

operation. 

5.4.3 NN Stack in action 

This subsection symbolically illustrates how the modules of NN Stack together realize a 

stack by considering several successive stack actions. Symbolic function fstack is a compo­

sition of symbolic functions Jpcontroi and fswriu such that V(a, s, c, p) € A x S x C x P, 

fstack{o-,s,c,p) = ifsWrite(0'^s,c,p),fpcontroliO'iP))- Consider the following sequence of stack 

operations: 

1. At time = fi, suppose the vaJue of stack top pointer (current SP value) is 4 and the 

stack action to be performed is a push on a stack symbol a. Let c^, be current stack 

configuration. At this time step, NN Stack computes /54acjb(push,a,Q,,4) = (c£, - a,5) 

and fTopiCii • a, 5) = a. i.e., 

• the pointer control module computes /pconJro/(push, 4) = 5, 

• the write control module (plus stack memory module) computes /5vvrjfe(push. a. Ct,.4) = 

Ct^ - a, and 

• the stack memory module computes fTopi^ti * a, 5) = a. 

2. At time = -f 1, suppose the stack action to be performed is a push on a stack symbol 

b. At this time step, NN Stack computes fstack{p^sh,h,Cl^ • a, 5) = (cj, • a • b, 6) and 

/rop(Cf, •a-b,6) = b, i.e.. 

• the pointer control module computes /pcon<ro/(push,5) = 6, 

• the write control module (plus stack memory module) computes /sw'rt<e(piish,b, c^, • 

a, 5) = Ct, • a • b, and 



90 

• the stack memory module computes fropicti • a • b, 6) = b. 

3. At time =  t i  + 2 ,  suppose the stack ciction to be performed is a pop. At this time step, 

NN Stack computes fstack{pop, *, C(, • a • b, 6) = (ci^ • a, 5) and fropicti • a, 5) = a, i.e., 

• the pointer control module computes fpcon.trol{V°'Vi^) — 5, 

• the write control module does nothing, and 

• the stack memory module computes fropicti • a, 5) = a. 

5.5 Neural Network Design for Nondeterministic Finite Automata (NN 

NFA) 

This section explores how to exploit the inherent parallelism and versatile representation 

in ANN to reduce the operational and implementational time overhead of nondeterministic 

finite automata (NFA) which are a basic model of symbolic computing in computer science 

and provide a typical model suitable for the exploration of parallel symbolic computing via 

ANN. A recurrent neural network (RNN) is systematically synthesized to concurrently track 

all the possible nondeterministic computations of a given NFA. Such a concurrent breadth-first 

tracking is facilitated by two types of parallel symbolic computations executed by the proposed 

RNN. One of the types is parallel content-based pattern matching, and the other is parallel 

union operations of sets. The RNN acts like a cost-effective SIMD computer system dedicated 

to the two types of parallel symbolic computations. The proposed RNN is provably correctly 

assembled from two kinds of neural assemblies. One of the neural assemblies computes a logical 

AND, and the other computes a logical OR. 

Although the concept of nondeterministicism embedded in NFA provides an elegantly sim­

ple and intuitive description for sequence processing, it results in much computational and 

implementational overhead in single-CPU computer systems. Thus the concept of nondeter­

ministicism in NFA, which plays a central role in both the theory of languages and the theory 

of computation [74], provides a typical model suitable for the exploration of parallel symbolic 
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computing via neural networks. The reduced operation time complexity of NFA realized by 

the proposed RNN is due to the parallel operations of the neural assemblies in the RNN. 

It is well known that DFA and NFA are equivalent, and every NFA can be converted into 

its equivalent DFA [74]. NFA seem to be of no practical interest in direct application imple­

mentations since they are embedded with nondeterministicism and don't correspond naturally 

to deterministic algorithms. But, NFA have a variety of practical applications in computer sci­

ence, linguistics, systems modeling and control, and artificial intelligence; and NFA are simpler 

and more intuitive to design than their equivalent DFA for a given task due to the powerful 

concept of nondeterministicism embedded in NFA, especiaJly for pattern matching [195]. NFA 

are rarely directly implemented in conventional computer systems because the nondeterminis­

ticism in NFA causes operational and implementational overhead. Usually, they are converted 

into their equivalent DFA for implementation. So, for syntax analysis on regular languages, 

an NFA could be constructed for a given language first, and then its equivalent DFA is imple­

mented to recognize the language. The direct construction of an NFA is as simple as that of a 

DFA using the proposed RNN in which the power of nondeterministicism in NFA is retained, 

and there is no need to convert an NFA into its equivalent DFA before its construction. Note 

also that every DFA is an NFA. Therefore, the proposed RNN can be used as a general neural 

architecture for realizing finite automata including DFA and NFA. 

5.5.1 Nondeterministic finite automata (NFA) 

A nondeterministic finite automaton is a 5-tuple [74], where Q, P. 

qo, and F have same meaning as for a DFA, but S' is a mapping from QxF to 2^. Note that 

2'^ is the power set of Q, and S'{q^a) is the set of all states p such that there is a transition, 

denoted as (q, a, p), from g to p on an input symbol a. Also note that there could be more than 

one transition which is applicable for each combination of state and input symbol in an NFA, 

and |5'(9, a)| is bounded by \Q\, where |i4| denotes the cardinality of set A. An input string is 

accepted by MNFA 'f there is a computation on the input string by M^FA which processes the 

entire input string and halts in an accepting state; otherwise it is rejected. The set of strings 
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accepted by MNFA in F* is denoted as L(MNFA)I called the language accepted by MNFA. 

5.5.1.1 Advantages of NFA for applications 

It is well known that NFA and DFA are equivalent [74]. Two automata are said equivalent 

if they accept the same language. Any language accepted by an NFA can also be accepted 

by a DFA, and every NFA can be converted into an equivalent DFA [74]. However, an NFA 

is usually simpler and more intuitive to design than its equivalent DFA for a given language 

due to the powerful concept of nondeterministicism inherent in NFA. Figures 5.4 and 5.5 

respectively show the state diagrams of an NFA and its equivalent DFA. Both of them accept 

input strings that contain the sub-string abaa [195]. These two automata are equivalent, but 

apparently the language the NFA accepts is much easier to understand. The state diagram of 

an NFA or a DFA is a labeled directed graph in which the nodes denote the states of the NFA 

or DFA, and the arcs are obtained from their transition functions. An arc from node g,- to qj 

is  labeled a i f  S{q i ,a)  = q j  for  a  DFA or  q j  € 6{q i ,a)  for  an NFA, and the t ransi t ion {q i ,a , q j )  

is a fan-in transition for state qj on input symbol a. Note that if an NFA has Q states, then 

the number of possible states of its equivalent DFA could be as large as 2'^' and the number 

of possible transitions in the DFA could also be the same order. 

5.5.2 Model for concurrently tracking all the possible nondeterministic moves 

in the operation of an NFA using RNN 

The deterministic and linear-time operation of a given NFA which is realized by the pro­

posed RNN can be modeled conventionally by its equivalent DFA which is constructed ac­

cording to Subset Construction algorithm [195]. The main idea of Subset Construction is to 

concurrently track all the possible states that can be reached at each step of an NFA. In the 

computation of an NFA, tracking all the reachable states at each step induces much overhead in 

single-CPU computer systems, whereas the proposed RNN efficiently computes in parallel, all 

the reachable states at each step by exploiting the parallelism of ANN. In Subset Construction, 

for a given NFA MNFA = {Q, F, S', QO, F), a DFA = (2^^, F, 5", QQ, F") is defined from 
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a 

b 

Figure 5.4 The state diagram of an NFA that accepts any input string 
containing the sub-string abaa 

b 

b a 

Figure 5.5 The state diagram of a DFA that accepts any input string con­
taining the sub-string abaa 

such that L{MNFA) = where QQ = {90}, F" = {K | A' CQ K K N F 0}, 

and S" : 2'̂  X R —>• 2*^ is defined by 

Qj = ̂  a), if Qj  = Li(,^Q, S ' {q ,  a) for all Q,-  C  Q  &:  a  e f (5.12) 

One main problem with Subset Construction, which views every Qi as an individual state in 

implementation, is the exponential increase in the number of states ((9(21'^')) and the number 

of possible transitions defined in transition function S" (0(2^''^'x (r|)). This situation can often 

be somewhat alleviated by Iterative Subset Construction [195] which only includes the states 

that can be reached from initial state qo. Let = (Q'Sy5',QQ,F') be defined from 

MNFA according to Iterative Subset Construction such that L{MNPA) = ^{^DFA)- Since 

Iterative Subset Construction eliminates the states which can not be reached from initial state 

90t ^DFA smaller than M^pj^ in terms of the number of defined states and transitions. 

The major drawback of both subset algorithms is the bookkeeping overhead associated with 

maintaining S", F", Q', S', and F', which are derived from MNFA- The direct realization of a 
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given NFA by the proposed RNN avoids this problem since the transition function module of 

the proposed NN NFA captures the regularity of S " in expression 5.12 via S' without actually 

knowing in advance the legal transitions defined by Such simplification is partly facilitated 

by representationally viewing every Qi as an individual set of states denoted by localist neural 

representation. The transition module of the proposed NN NFA realizes not only 8" but also 

S'. Since the proposed RNN always starts from initial state go for any input string, the states 

which can not be reached from qo will not appear in the transition module of the proposed NN 

NFA during input processing, i.e., only the states in Q' will appear in the proposed transition 

module during input processing. Hereafter, we only discuss instead of 

Let 0, 1, ..., t, t+l, ... denote a succession of points along the discrete time line. Then, 

for an NFA, let us call QactW = Qo the initial set of active states, Qactii) the current set of 

active states which corresponds to the set of reachable states from qo by MNFA {^DFA) 

time t (current time), and Qact{t +1) the next set of active states which corresponds to the set 

of reachable states from qo at time f + 1. Qact{t) and Qactit + 1) are derived recursively from 

Qact(O) by expression Qact{t+ 1) = a) during the processing of the input string, 

where a is input symbol at time t. Qact{t) is bounded in a way that Qact(i} C Q for f > 0, 

i.e., all the sets of reachable states from initial state during the processing of the input string 

are bounded by a same set of states, the number of reachable states at each step does not 

proliferate indefinitely or exponentially during the processing of the input string, and thus the 

nondeterministicism shown during the processing of the input string is globally hounded. The 

proposed RNN directly constructs a given NFA MMFA without the need to convert the given 

NFA into its equivalent DFA M^p^. It concurrently tracks all the possible moves during the 

processing of the input string in the NFA by simulating the deterministic move of the M^p^. 

According to Iterative Subset Construction and expression 5.12, the transition function 5' 

and every move of M^jp^ can be characterized by 

Va G rVf > 0 [Qact[ t  + 1) = (5.13) 

where Qact(O) = {go} and Qact{t + 1) = U,6Q„,(f)(J'(g, a) 
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For an input string, the recursive evaluation of Qact{i + 1) along the moves of 

{MI^FA) involves two kinds of repetitive symbolic computations, one of which computes the 

sets of reachable states from every state in Qact(0 and the other of which computes the union 

of the sets of the reachable states. In the proposed NN NFA, the former is computed by the 

first layer of the transition module of the proposed NN NFA by parallel content-based pattern 

matching and the later by the second layer by parallel logical QR operations. In applications 

of realizing an NFA by the proposed RNN, a special symbol $ ^ T might need to be appended 

at the end of the input string to acknowledge the end of input. When the $ is encountered, 

the RNN terminates input processing and tests the acceptance of the input string. 

5.5.3 Architecture of NN NFA 

This subsection describes the symbolic and neural representations in the proposed NN 

NFA, and presents a method for assembling the proposed NN NFA using the neural assemblies 

proposed in Chapter 4 

Figure 5.6 shows the partially recurrent neural network architecture for concurrently track­

ing all the nondeterministic computations of a given NFA. The entire architecture essentially 

consists of one IVIV NFA transition module, one acceptance testing module, one end-of-input 

testing module which is not shown In the figure, three buffers, and recurrent links from the 

output neurons of the .NN NFA transition module to the buffer storing Qact{t) (which could 

be part of the input neurons of the NN NF.A. transition module, depending on the applications 

implemented). One buffer stores current set of active states Qact{.t), another buffer (which 

could also be part of the input neurons of the NN NFA transition module, depending on ap>-

plicatlons implemented) stores current input symbol a(i). and the other buffer (which exists 

only logically but not physically) represents the next set of active states Qacti^ + !)• The first 

two buffers are under centralized synchronization control which enforces discrete time 0, 1, ..., 

t, t+1, .... The link "reset" resets the NN NFA to its initial set of active states. 
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a(t) act 

Acceptance testing 
module 

BMP module 
NN NFA transition module 

synchronization 
control 

reset input 

Figure 5.6 The proposed recurrent neural network architecture for concur­
rently tracking all the nondeterministic computations of a given 
NFA 
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5.5.3.1 Symbolic representation in the NN NFA transition module 

The realization of the symbolic function S' by the NN NFA transition module is central to 

the construction of the proposed NN NFA. The notations used here follow those described in 

previous subsections. The symbolic representations of the NN NFA transition module which 

is a 2-layer Perceptron are described as follows. 

• The output from every neuron and the input to every input neuron are binary value. 

• Every transition defined by the transition function S' (expression 5.13) is represented 

as an ordered binary mapping pair < Qact{t) X + 1) > stored in the NN NFA 

transition module. 

• The input neurons together denote Qact{t) x a(0 and are divided into two groups. One 

group uses a distributed representation and the other uses a local representation. The 

former group has no recurrent connection and denotes the binary-coded current input 

symbol a(f). There are [log(| F j +1)] such input neurons. The latter group has recurrent 

connections and denotes the current set of active states Qact{t)- There are | Q | such 

input neurons, the zth neuron of which denotes whether state g,_i is in Qact{t)- If the 

value at the zth neuron of this group is 1, then state g,_i is in Qact{t)- Otherwise state 

q,-i is not in Qactit)- In this group, the zth input neuron has a recurrent link from the 

ith output neuron. 

• The hidden neurons along with their associated Ist-Iayer connections are used to concur­

rently recognize all the applicable transitions for the states in the current set of active 

states on current input symbol. The hidden layer uses a local representation, and one 

hidden neuron is used for one uniquely defined transition. The number of activated hid­

den neurons at each step of the proposed NN NFA equals ^qeQacdt) I I- The 

activated hidden neurons in turn activate some of the output neurons which together 

denote the next set of active states. 
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• The output layer uses a local representation, and the output neurons together denote 

the next set of active states Qact[t + !)• There are 1 Q | output neurons, the zth neuron 

of which denotes whether state g,_i is in Qact{t+ 1)- If the value at the ith neuron is 1, 

then state is in Qact{t + 1)- Otherwise state 9,_i is not in Qact{t + 1)- The output 

neurons along with their associated 2nd-layer connections (which get their input from 

the hidden neurons) operate together to compute the next set of active states according 

to expression Qact{t + 1) = o) (the union of the sets of reachable states 

reached by the states in the current set of active states on current input symbol). 

• The recurrent connections from the output neurons to part of the input neurons facilitate 

the continuous execution of the proposed NN NFA. 

5.5.3.2 Neural representation in the NN NFA transition module 

Let riT = Il,gQEagr I <^'(9, a) I, = pogd ^ I +1)1» and ua =\  Q \  be respectively 

the total number of defined transitions of a given NFA, the number of input neurons used 

for denoting current input symbol, and the number of input neurons used for denoting the 

current set of active states in the NN NFA transition module. Then the NN NFA transition 

module has {UA + ra/) input neurons, NR hidden neurons, and UA output neurons. The hidden 

neurons along with their associated Ist-layer connections are used to identify all the transitions 

applicable for the states in the current set of active states on current input symbol. One hidden 

neuron is used for one uniquely defined transition in the given NFA. The NN NFA transition 

module is constructed directly from the transition function S' of the given NFA MMFA-

Let binary vectors u =< ui,> and u =< ui,...,u„^ > respectively denote the 

ordered values at input neurons and output neurons in the NN NFA transition module. The 

first Ua components of vector u, being < Ui,..., >, together represent Qact{t)'i and the 

last n/ components of vector u, being < Un^i+i, "n^+n/ >, together represent current input 

symbol a. The vectors u and v respectively represent Qact(t) x a and Qact{t-\-1) for the given 

NFA. Let = {i + l,nA + 1, ua + 2,..., ua + be an interest set for 0 < j — 1. 

Totally UA interest sets are defined. Let current input symbol a be 
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encoded as a binary vector < ai,>, where ak € {0,1} for 1 < A: < n/. If u,+i = 1, then 

(fi is in Qactij') s-nd "(«/,• ^ i "-i ^ !• flii •••1 '^iif ^ denotes •{(j'tj x o., 

where 0 < f < — 1. 

5.5.3.3 Pfirallel symbolic computations in the NN NFA transition module 

The realization of every move (the move from Qact{t) to QactiP + 1)) of MQP^ in the NN 

NFA transition module can be reasoned in two steps. The first step is computed by the hidden 

neurons which serve as parallel recognizers of multiple input sub-patterns, and the second step 

is computed by the output layer which serves as a parallel union operator of sets. 

1. The hidden layer consists of a fixed number of neural assemblies which operate in parallel 

and independently of each other. Thus the hidden neurons serve as parallel recognizers 

of multiple sub-patterns contained in the input. Such a neural assembly (equivalent 

to an AND neural assembly) for partial pattern recognition is proposed in Section 4. 

Each hidden neuron h and its associated Ist-layer connections serve as a neural assembly 

for recognizing a certain J"^"^^-set partial input pattern. Each such neural assembly 

checks for a certain transition {qi,a,qj) (0 < i,j < — 1) whether current input 

vector u contains the J"'"^^-set partial pattern =< l,ai,...,a„^ > (denoting 

{g,} X a. and qi 6 Qadii}] according to e.xpression 4.2. If it is, the hidden neuron h is 

activated by the partial input pattern {9,} x a at time t and the transition {qi,a,qj) is 

applied. Totally there are nj such neural assemblies operating in parallel to identify all 

the possible transitions which are applicable for the states in Qact{t) on current input 

symbol, and thus they operate together like a simplified, cost-effective SIMD computer 

system dedicated to parallel partial pattern matching. 

2. The output layer consists of a fixed number of the monotone OR neural assemblies pro­

posed in 4. Each of the assemblies computes a logical OR operation in paraJlel with each 

other on shared inputs. Each output neuron and its associated 2nd-layer connections 

compose such a neural assembly. Each such neural assembly is used to check for a cer­

tain s tate  qj  whether any of i ts  fan-in transi t ions is  applicable for  the states in Qact{ t )  
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on current input symbol a .  If it is, then output neuron j + 1 is activated and q j  is in 

Qact{t + !)• Totally there are UA such neural assemblies (output neurons) which share 

their input, and operate in parallel to compute the next set of active states Qact{t + 1) 

according to expression Qactit + 1) = a). Such neural assemblies operate 

together to compute Qactit + 1) like a simplified, cost-effective SIMD computer system 

dedicated to parallel union computations of sets. 

When the representations of Qact{t) and Qact{t + i) are viewed locaJly (i.e., each of them is 

viewed as a set of states), the NN NFA transition module realizes the transition function S' of 

the given NFA MI^FA if it is restricted that | Qact(i) I = 1- Note that 6' maps from Q x T to 2^. 

Such local representations facilitate the parallel recognition of all the transitions applicable for 

the states in Qact{i) on current input symbol even if | Qactii) I > 1- Thus the representations 

facilitate the concurrent tracking of all the possible nondeterministic paths at each move of an 

NFA. When the representations of Qactit) and Qactit-i-1) are viewed distributedly (i.e., each 

of them is viewed as a state), the NN NFA transition module realizes the transition function 

S' of It means that the NN NFA transition module concurrently realizes the transition 

functions S and S'. Such a concurrent realization facilitates not only the direct construction 

of the NN NFA transition module from the transition function 5' but also the linear operation 

time complexity of the proposed NN NFA for the processing of input strings. 

5.5.3.4 Settings of connection weights and thresholds in the NN NFA tran­

sition module 

Note that every transition defined by expression 5.13 is represented as an ordered binary 

mapping pair < Qactit) x ait),Qactit + 1) > at the input and output layers of the NN NFA 

transition module, and such mappings are achieved by capturing the regularity in expression 

Qactit + 1) = using a 2-layer Perceptron. 

Suppose 9,, € Q, a 6 F, and 6 <J'(g,-, a), where 0 < z, j < UA —1- In order to identify the 

transition (?,•, a, qj) which is applicable on an input containing the partial input pattern {gj} xa 

in the NN NFA transition module, the interest set = {i + 1, n.^ + 1, + 2,..., riA + nj} 
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is used for the identiiication of the J"'^"'"^-set partial input vector =< l,ai On, > 

which denotes {7,} x a .  

According to expressions 4.2, 4.16 and their corresponding Perceptron implementation, a 

hidden neuron h is created, and its associated connection weights as well as threshold are set 

for every transition (9,-, a, qj) of the given NFA MNPA in the NN NFA transition module as 

follows: 

1. In the Ist-layer connections, according to expression 4.2, 

• the connection weight from the (z + l)th input neuron to the hidden neuron h is set 

to 1, 

• the connection weight from the [UA +A:)th input neuron to the hidden neuron is set 

to 2afc — 1 for 1 < A: < 71/, and 

• the connection weights from other input neurons (which are not in to the 

hidden neuron are set to 0. 

2. The threshold of the hidden neuron is set to + 1-

3. In the 2nd-layer connections, 

• the connection weight from the hidden neuron to the { j  + l)th output neuron is set 

to 1, and 

• the connection weights from the hidden neuron to other output neurons are set to 

0. 

4. The thresholds of all output neurons are set to 1 in the NN NFA transition module. 

Therefore, if q i  6 Qact{ t )  and a  is current input symbol; then u,+i = 1, = at for 

1 < A: < n/ at time t ,  an input containing sub-pattern =< 1, oi,..., > is identified 

by hidden neuron h and its associated Ist-layer connections, the hidden neuron h is activated, 

and in turn the {j -f- l)th output neuron is activated (i.e., Vj+i = 1 at time f 4- 1, and thus 

€ Qact{t -F 1)) according to above settings. So, the transition {qi,a,qj) is applied in the NN 

NFA transition module. 
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5.5.3.5 Settings of connection weights and thresholds in the acceptance 

testing module 

The acceptance testing module of the proposed NN NFA tests whether an input string is 

accepted by the NN NFA at the end of input processing. It is a l-layer Perceptron which has 

UA input neurons and an output neuron. 

The output neuron tests whether Qact{i + 1) € F' by checking whether any state of F is 

in Qactit + 1) at the end of input processing. Such a test can be characterized by a monotone 

logical OR operation (expression 4.17) on the values of the neurons denoting accepting states, 

and hence it can be realized by a Perceptron according to expression 4.16 with w,- denoting 

whether state g,_i is in F. The connection weights and threshold of the accepting neuron are 

set as follows: 

• If qi G F, then the connection weight from the {i + l)th input neuron to the output 

neuron is set to 1 for 0 < f < — 1. Otherwise it is set to 0. 

• The threshold of the output neuron is set to 1. 

5.5.3.6 The end-of-input testing module 

In the proposed NN NFA, an end-of-input testing module is used to test the end of input 

string. The end-of-input testing module is a neural assembly (a l-Iayer/l-output Perceptron) 

which recognizes the end-of-input symbol S that is encoded as binary vector < 1"' >. By 

expression 4.1 and its corresponding Perceptron implementation, all connection weights are 

set to 1 and the threshold at output neuron is set to n/ in the l-layer/1-output Perceptron to 

recognize $. The end-of-input testing module is not shown in Figure 5.6. 

5.5.3.7 Operation time complexity of the proposed NN NFA 

The time complexity of processing an input string of length n by an NFA directly im­

plemented in single-processor computer systems is 0[m^n) [163], where m is the number of 

states in the NFA. The proposed NN NFA concurrently tracks all the possible nondeterministic 
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transitions during the processing of an input string for a given NFA by exploiting the inher­

ent parallelism in ANN. In such a computation, the proposed NN NFA retains the powerful 

concept of nondeterministicism of NFA, and it also has the advantage of DFA which run in 

linear time proportional to the length of the input string. Since the NN NFA transition module 

realizes both the transition functions S' and 5', the time complexity of processing an input 

string by such a parallel and deterministic computation in the proposed NN NFA is linearly 

proportional to the length of the input string, i.e., for an input string of length n the processing 

time complexity in the proposed NN NFA is 0{n). Therefore the computational overhead of 

input processing due to the nondeterministicism in NFA can be eliminated by taking advantage 

of the inherent parallelism of ANN as shown by the proposed NN NFA. 

5.5.4 Proof of correctness 

This subsection proves the correctness in the construction of the proposed NN NFA for a 

given NFA. 

Theorem 5.1: The proposed NN NFA can correctly realize a given NFA Mnfa = (<3- T, 5' ,  qo ,  F) .  

Proof; The theorem is proved by showing that the NN NFA transition module of the proposed 

NN NFA correctly realizes the transition function S' of which is re-defined from the 

given NFA MI^FA according to Iterative Subset Construction (please refer to [195] for the proof 

of equivalence between a given NFA MNFA and its equivalent DFA Note that every 

transition defined by the transition function S'  is represented as an ordered binary mapping 

pair < Qactit) X 1) > 3-^ the input and output layers of the NN NFA transition 

module. The mappings are implemented in the NN NFA transition module without knowing 

in advance every possible mapping pair (legal transition) in transition function S'. Instead, 

they are realized by capturing the regularity in expression Qact{t + 1) = a(f)) 

using a 2-layer Perceptron, the first layer of which consists of AND neural assemblies and the 

second layer of which consists of OR neural assemblies. 
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All the notations and representations here follow previous subsections. The transition 

function S' is defined by expression 5.13 as follows: 

Va G rV« > 0 [Qactit + 1) = 5'{Qactit),a)] 

where Qact{0) = {?o} and Qaa{t  + 1) = U,e<j„,(()5'(g,a). Since Qact{t  +• 1) >s computed from 

Qactii) and a, the above expression can be denoted as following; 

Va € r Vt > 0 [Q a c t{t + 1) = [q, a) = {qj \ qj € S (g,-, a) & qi 6 Q a c t{t)}] (5.14) 

where Qact{0) = {^o}- Expression 5.14 is equivalent to 

Va € r Vi > 0 [Vz Vj g,- 6 Qact{t) &: qj € S'{qi, a) => qj € Qact{t + 1) ] (5.15) 

where QactiO) = {9o}- We want to show that the NN NFA transition module realizes the 

transition function 6' of by proving that expression 5.15 is preserved by the NN NFA 

transition module. 

The NN NFA transition module is represented in such a way (see Section 5.5.3) that 

the conditions a € T and 0 < t,j < - 1 always hold in expression 5.15. Let u =< 

ui,.... Un^+Tif > and v =< > be respectively the binary input value and output 

value of the NN NFA transition module, and a 6 T be current input symbol encoded as a 

binary value < ai,.,.,a„, >. where Ok G {0,1} for 1 < Ar < nr. Let wjj., 0^. and 

respectively denote the Ist-layer connection weight from input neuron i to hidden neuron k, 

the 2nd-layer connection weight from hidden neuron k to output neuron j, the threshold of 

hidden neuron k, and the threshold of output neuron j in the NN NFA transition module, 

where 1 < z < n>i + nf, I < k < nr and 1 < J < 

For all i  and j  (0 < i , j  < — 1), if qj € [qi, a), a hidden neuron h with an interest set 

= {i + 1, Ryi + 1, TIA + 2,..., TIA + n/} should have been created by the proposed method 

presented in Section 5.5.3 for the transition (qi, a, qj) for recognizing the Jf^'*'^-set partial input 

value ^(7"'"^^) =< l,ai,...,a„^ >, denoting {^i} x a, by following settings: 

• 
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• ^A,k = 0 for 1 < k < tia ^ k ^ (i + 1) (where k ^ 

• ^h,k = 2ajk — 1 for n>i + 1 < A: < + n/ (where k e 

• 0] = 1, 

• ^m.h = 0 for 1 < m < riyi & m ^ (j + 1). 

For any moment f > 0, if ?,• € Q a c t ( t }  (i-e. u,+i = 1), the J"'^"*'^-set partial input vector 

=< l.fli, ...,ani >, denoting {9,} x a, is recognized and hidden neuron h is activated 

when the input u denoting Qact{i) x a is fed into the NN NFA transition module. The hidden 

neuron h in turn activates output neuron j + 1. So vj+i = 1 at time ^ + 1, and thus qj 6 

Qact{t + !)• Therefore expression 5.15, i.e., expression 5.13, is preserved by the NN NFA 

transition module <0> 

5.5.5 NN NFA in Action 

This subsection constructs an NN NFA transition module of the proposed NN NFA for the 

NFA defined in Figure 5.4 (see Section 5.5.1). In the NFA, Q = {90,91,927 93, 94}, 9o is initial 

state, r = {a, b}, and F = {94}. The transitions defined in the NFA are (90,0,̂ 0). (QQ.B.QO). 

(9o,a,gi), (91,6,^2), (92,1,93), (93,1,94), (94,1,94), and (94,6,94). Then nr = 8, n/ =2, and 

TIA = 5. The NN NFA transition module has 7 input, 8 hidden, and 5 output neurons. Let 

wl i, respectively denote the Ist-layer connection weight from input neuron i 

to hidden neuron k, the 2nd-layer connection weight from hidden neuron k to output neuron 

j. the threshold of hidden neuron k, and the threshold of output neuron j in the NN NFA 

transition module, where 1^J<7, 1<A:<8 and 1 < j < 5. Let input symbol a be encoded 

as < 0,0 > and b as < 0,1 >. Then the connection weights and neuron thresholds of the NN 

NFA transition module are set as follows: 

= 1, ^1.1 = 1, "'i.2 = 0, W.3 = 0, ^1,4 = 0, wi s = 0, w} e = -1, to} - = -1, 

= 2, wh = 1, WI2 = 0, wis = 0, wl^ = 0, wis = 0, wle = -1, u'i? = 1, 
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= 1, U7^ 1 = 1, W^ 2 = 0' = 0' ^^4 = 0' ^is = 0' "'is = -li ̂ ^7 = -1' 

EL = 2, = 0, W{^2 = 1' ̂ \,Z = Oi "'4,4 = 0, W\^S = 0^ "'is = -1' = 1' 

= 1, u;| 1 = 0, u;^,2 = 0' "'is = 1- "'^4 = 0- "'is = 0^ "'is = "l- "'i? = -1' 

= 1, wl i = 0, U7^,2 = 0' "'is = OT «'i4 = 1. wis = 0' "'is = -1^ "'i? = -1^ 

d\ = 1, w\ i = 0, toij = 0, U7^_3 = 0, w\^ = 0, u;^_5 = 1, = -I, w^~ = -1, 

^8 = 2, W'ii = 0, W8,2 = 0' "'8.3 = Oi ^8A = 0' "'is = 1' "'S.S = "1' "'8,7 = 

0j = I {OT 1 < j < 5, 

toll = 1, wf 2 = 1, "'1.3 = 0' "'1.4 = 0' "'l.S = 0' "'l.S = 0' "'1.7 = Oi "'1.8 = 0' 

wj i = 0, = 0, t^'2.3 = 1' ^2A = 0' "'2,5 = 0' "'2.6 = 0^ "'1,7 = 0' "'2.8 = 0' 

u?| 1 = 0, wl ^ = 0, wl^ = 0, u;| 4 = 1, u;§ 5 = 0, q = 0, «;§ - = 0, u;§ g = 0, 

wl i = 0, u;^ 2 = 0> "'I3 = 0, t«4,4 = 0, U!|,5 = 1, t«4,6 = 0, wlj = 0, wis = 0' 

ti7 2 1 = 0, u;f 2 = 0, «;|,3 = 0, K;| 4 = 0, wl^ = 0, g = 1. "'5.7 = 1' "'5.8 = 1-

Note that this NN NFA starts from initial state Q a c t { 0 )  =  {90} which is encoded as < 

1 . 0 , 0 , 0 , 0 > .  

5.6 Summary and Discussion 

In conventional computer systems, computer programs for real world applications are usu­

ally large and complex. They are typically built from a set of pre-defined modules (or ob­

jects/classes in object-oriented paradigms). Such modules allow code reuse and rapid imple­

mentation with fewer errors. We advocate a similar approach to the construction of complex 

neural networks. In this chapter, we have constructed a given DFA using an RNN which in 

turn is assembled from BMP modules and recurrent links: a stack using an RNN which is as­

sembled from BMP modules, recurrent links and a write control module; a given DPDA using 

an RNN which is assembled from BMP modules, an NN Stack and recurrent links; and a given 

NFA using an RNN which is assembled from basic neural assemblies that realize logical AND 

and OR operations on Boolean variables. The proposed NN NFA demonstrates the potential 

benefits of ANN in the design of high performance systems for parallel symbolic computing 

applications. Our other attempts for more complex symbolic processing includes neural net­
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works designed respectively for simple database query processing (see Chapter 3) and syntax 

analysis (see Chapter 6). We expect a similar approach to be applicable in the construction 

of neural networks for a variety of important applications. 
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6 NEURAL ARCHITECTURES FOR SYNTAX ANALYSIS 

6.1 Introduction 

This chapter explores the synthesis of neural architectures for syntax analysis using pre-

specified grammars — a prototypical symbol processing task with applications in interactive 

programming environments (using interpreted languages such as LISP and JAVA), analysis 

of symbolic expressions (e.g., in real-time knowledge based systems and database query pro­

cessing), and high-performance compilers. This chapter does not address machine learning of 

unknown grammars (which finds applications in tasks such as natural language acquisition). 

A more general goal of this chapter is to explore the design of massively parallel archi­

tectures for symbol processing using the neural associative memories proposed in Chapter 2 

as key components. Pattern-directed associative inference is an essential part of most AI sys­

tems [54, 97, 181] and dominates the computational requirements of many AI applications 

[55, 97, 127]. 

The proposed high performance neural architectures for syntajc analysis are systematically 

(and provably correctly) synthesized through composition of the necessary symbolic functions 

using a set of component symbolic functions each of which is realized using a neural associative 

processor (memory). It takes advantage of massively parallel pattern matching and retrieval 

capabilities of neural associative processors (memories) to speed up syntax analysis for real­

time applications. The rest of the chapter is organized as follows: 

• The remainder of Section 6.1 reviews related research on neural architectures for syntax 

analysis. 
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• Sections 6.2 and 6.3 respectively develop modular neural network architectures for lexical 

anaiysis and parsing. 

• Section 6.4 compares the estimated performance of the proposed neural architectures for 

syntax analysis (based on current CMOS VLSI technology) with that of commonly used 

approaches to syntax analysis in conventional computer systems that rely on inherently 

sequential index or matrix structure for pattern matching. 

• Section 6.5 concludes with a summary and discussion. 

6.1.1 Review of related reseeirch on neural architectures for syntax analysis 

To the best of our knowledge, to date, most of the research on neural architectures for syn­

tax analysis has focused on the investigation of neural networks that are designed to leam to 

parse particular classes of syntactic structures (e.g., strings from deterministic context-free lan­

guages (DCFL) or natural language sentences constructed using limited vocabulary). Notable 

exceptions are: connectionist realizations of Turing Machines (wherein a stack is simulated 

using binary representation of a fractional number) [143, 169]; a few neural architectures de­

signed for parsing based on a known grammar [34, 164]; and neural network realizations of finite 

state automata [20. 134]. Nevertheless, it is informative to e.xamine the various proposals for 

neural architectures for syntax analysis (regardless of whether the grammar is preprogrammed 

or learned). The remainder of this subsection explores some of the proposed architectures in 

the literature for syntajc analysis in terms of how each of them addresses the key subtasks of 

syntax analysis. 

[34] proposes a neural network to parse input strings of fixed maximum length for known 

context-free grammars (CFG). The whole input string is presented at one time to the neural 

parser which is a layered network of logical AND and OR nodes with connections set by an 

algorithm based on CYK algorithm [74]. 

PARSEC [80] is a modular neural parser consisting of six neural network modules. It 

transforms a semantically rich and therefore fairly complex English sentence into three output 

representations produced by its respective output modules. The three output modules are 
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role labeler which associates case-role labels with each phrase block in each clause, interclause 

labeler which indicates subordinate and relative clause relationships, and mood labeler which 

indicates the overall sentence mood (declarative or interrogative). Each neural module is 

trained individually by a variation of Backpropagation algorithm. The input is a sequence 

of syntactically as well as semantically tagged words in the form of binary vectors and is 

sequentiaJly presented to PARSEC, one word at a time. PARSEC exploits generalization as 

well as noise tolerance capabilities of neural networks to reportedly attain 78% correct labeling 

on a test set of 117 sentences when trained with a training set of 240 sentences. Both the test 

and training sets were based on conference registration dialogs from a vocabulary of about 400 

words. 

SPEC [116] is a modular neural parser which parses variable-length sentences with em­

bedded clauses and produces case-role representations as output. SPEC consists of a parser 

which is a simple recurrent network, a stack which is realized using a recursive auto-associative 

memory (RAAM) [144], and a segmenter which controls the push/pop operations of the stack 

using a 2-layer Perceptron. 

RAAM has been used by several researchers to implement stacks in connectionist designs 

for parsers [13, 66, 116]. A RAAM is a 2-layer Perceptron with recurrent links from hidden 

neurons to part of input neurons and from part of output neurons to hidden neurons. The 

performance of a RAAM stack is known to degrade substantially with increase in depth of the 

stack, and the number of hidden neurons needed for encoding a stack of a given depth has to 

be determined through a process of trial and error [116]. A RAAM stack has to be trained for 

each application. Other drawbacks associated with the use of RAAM as a stack are discussed 

in [174]. 

Each module of SPEC is trained individually using Backpropagation algorithm to approx­

imate a mapping function as follows: Let Q be a finite non-empty set of states, V a finite 

non-empty input alphabet, VCRV a finite non-empty set of case-role vectors, A = {output, 

push, pop) the set of stack actions, and Vatack the set of compressed stack representations at 

the hidden layer of a RAAM. Then the first and second connection layers of the parser ap­
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proximate the transition function of a DFA (see Section 5) f p i  i F  x  Q  Q  and a symbolic 

mapping function fp2 : Q VcRV respectively; the segmenter approximates a symbolic func­

tion fs'.TxQ-^QxA; and the first and second connection layers of the RAAM approximate 

the push function fpuah • Vstack x (J -»• Vstack and the pop function /pop : Vstack ->• Ktack xQ of 

a RAAM stack respectively. The input string is sequentially presented to SPEC and is a se­

quence of syntactically untagged English words represented as fixed-length distributive vectors 

of gray-scaJe values between 0 and 1. The emphasis of SPEC was on exploring the generaliza­

tion as well as noise tolerance capabilities of a neural parser. SPEC uses implicit central control 

to integrate its different modules and reportedly achieves 100% generalization performance on 

a whole test set of 98100 English relative clause sentences with up to 4 clauses. Since the 

words (terminals) in the CFG which generates the test sentences are not pre-translated by a 

lexical analyzer into syntactically tagged tokens, the number of production rules and terminals 

tend to increase linearly with the size of the vocabulary in the CFG. Augmenting SPEC with 

a lexical analyzer offers a way around this problem. 

[27, 174, 197] propose higher-order recurrent neural network equipped with an external 

stack to learn to recognize deterministic CFG, i.e., to learn to simulate a deterministic push­

down automata (DPDA). [27, 174] use an analog network coupled with a continuous stack and 

use a variant of a real time recurrent network learning algorithm to train the network. [197] 

uses a discrete network coupled with a discrete stack and employs a pseudo-gradient learning 

method to train the network. The input to the network is a sequentially presented, unary-

coded string of variable length. Let Q be a. finite non-empty set of states, T a finite non-empty 

input alphabet, A a finite non-empty stack alphabet, A = {push, pop, no-operation} the set of 

stack actions, and Boolean the set {false, true}. These recurrent neural networks approximate 

the transition function of a DPDA, i.e., JDPDA -.QXTXA-^QXAX A. The networks 

are trained to approximate a language recognizer function //, : F" -v Boolean. Strings gener­

ated from CFG including balanced parenthesis grammar, a'^b^, a^b^cb^a^, postfix 

grammar, and/or palindrome grammar were used to evaluate the generalization performance 

of the proposed networks. 
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The proposed neural architecture for syntax analysis is composed of neural network mod­

ules for stack, lexical analysis, parsing, and parse tree construction. It differs from most of 

the neural network realizations of parsers in that it is systematically assembled using neural 

associative processors (memories) as primary building blocks. It is able to exploit massively 

parallel content-based pattern matching and retrieval capabilities of neural associative pro­

cessors (memories). This offers an opportunity to explore the potential benefits of massively 

parallel pattern matching in the design of high performance computing systems for real time 

symbol processing applications. 

6.2 Neural Network Design for a Lexical Analyzer (NNLexAn) 

A lexical analyzer is defined by a recursive symbolic function fLexAn • T'S A'$. F is 

the input alphabet, $ is a special symbol denoting " end of inpuf, and A is the set of lexical 

tokens. F'S (or A'$) denotes the set of strings obtained by Eidding the suffix $ to each of 

the strings over the alphabet F (or A). The conventional approach to implementing a lexical 

analyzer using a DFA (in particular, a Mealy machine) can be realized quite simply using an 

NN DFA [20]. However, a major drawback of this approach is that all legal transitions have 

to be exhaustively specified in the DFA. For example. Figure 6.1 shows a simplified state 

diagram without all legal transitions specified for a lexical analyzer which recognizes keywords 

of a programming language: begin, and, if, then, and else. 

Suppose the lexical analyzer is in a state that corresponds to the end of a keyword. Then 

its current state would be state 7, 11, 15, 18, or 23. If the next input character is 6, there 

should be legal transitions defined from those states to state 2. That is the same for states 

8, 16 and 19 in order to handle the next input characters e, i, and t. Thus, this extremely 

simple lexical analyzer with 22 explicitly defined legal transitions has 20 unspecified transitions. 

The realization of such a simple 5-word (23-state) lexical analyzer by an NN DFA requires 

20+22=42 hidden neurons. Additional transitions have to be defined in order to allow multiple 

blanks between two consecutive words in the input stream, and for error handling. These 

drawbacks are further exacerbated in applications involving languages with large vocabularies. 
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blank 

blank 

blank 

Figure 6.1 The simplified state diagram of a DFA which recognizes key­
words: begin, end, if, then, and else 

A better alternative is to use a Dictionary (or a database) to serve as a lexicon. The 

proposed design for NNLexAn consists of a word segmenter for carving an input stream of 

characters into a stream of words, and a word lookup table for translating the carved words 

of variable length into syntactically tagged tokens of fixed length. The syntactically tagged 

tokens of fixed length are to be used as single logical units in parsing. Such a translation can 

be realized by a simple query to a database using a key. Such database query processing can 

be efficiently implemented using neural associative memories (see Chapter 2). 

6.2.1 Neural network design for a word segmenter (NNSeg) 

In program translation, the primary function of a word segmenter is to identify illegal 

words and to group input stream into legal words including ke5rwords, identifiers, constants, 

operators, and punctuation symbols. A word segmenter can be defined by a recursive symbolic 

function fwordSeg • T'S A"S, where F is the input aiphabet, $ is a special symbol denoting 

''end of inpuf, and A is the set of legal words. F'S (or A'$) denotes the set of strings obtained 

by adding the suffix S to each of the strings over the alphabet F (or A). 

Figure 6.2 shows the state diagram of a DFA simulating a simple word segmenter which 

carves continuous input stream of characters into integer constants, keywords, and identifiers. 
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a ~ z  
A - Z  

a ~ z, A - Z 
blank 

/ a -  z  
A ~ Z  blank 

blank 

blank 
a ~ z, A - Z 
0 - 9  

blank 

blank 
0 - 9  

a - z 
A - Z  1 - 9  

Figure 6.2 The state diagram of a DFA which simulates a simple word 
segmenter carving continuous input stream of characters into 
words including integer constants, keywords and identifiers 

Both the keywords and identifiers are defined as strings of English characters. For simplicity, 

the handling of end-of-input is not shown in the figure. The word segmenter terminates pro­

cessing upon encountering the end-of-input symbol $. Each time when the word segmenter 

goes into an accepting state, it instructs the word lookup table to look up a word that has 

been extracted from the input stream and stored in a buffer. 

Since syntax error handling is not discussed here, it may be assumed that any illegal word 

is discarded by the word segmenter and is also discarded from the buffer which temporarily 

stores the illegal word being extracted from the input stream. Such a word segmenter can 

also be realized by an NN DFA. Since any undefined (un-implemented) transition moves into 

a binary-coded state of all zeros automatically in an NN DFA, it would be expedient to en­

code the garbage state (state G in Figure 6.2) using a string of all zeros. Although the most 

straightforward implementation of NN DFA (see Section 5) uses one hidden neuron per tran­

sition, one can do better. In Figure 6.2 the 10 transitions from state 4 on ASCII-coded input 

symbols 0,1,...,9 can be realized by only two hidden neurons in an NN DFA using partial pat-
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tem recognition (see Chapters 2 and 3). Other transitions on input symbols 0,1,...,9, a,b,...,z, 

and can be handled in a similar fashion. 

6.2.2 Neural network design for a word lookup table (NNLTab) 

During lexical analysis in program compilation or similar applications, each word of variable 

length (extracted by the word segmenter) is translated into a token of fixed length. Each such 

token is treated as a single logical entity: an identifier, a keyword, a constant, an operator 

or a punctuation symbol. Such a translation can be defined by a simple symbolic function 

fwordTran • Au{$} —)• Au{$}. Here, A, $, and A denote the same entities as in the definitions 

of fwordSeg and fiexAn above. Note that fwordTran can be realized by a BMP module. In 

other lexical analysis applications, a word may be translated into a token having two sub­

parts: category code denoting the syntactic category of a word, and feature code denoting the 

syntactic features of a word. 

Conventional approach to doing such translation (dictionary lookup) is to perform a simple 

query on a suitably organized database (with the segmented word being used as the key). This 

content-based pattern matching and retrieval process can be efficiently and effectively realized 

by neural associative memories. Database query processing using neural associative memories 

is discussed in detail in Chapter 3 and is summarized briefly in what follows. Each word and 

its corresponding token are stored as an association pair in a neural associative memory. Each 

such association is implemented by a hidden neuron and its associated connections. A query is 

processed in two steps: identification and recall. During the identification step, a given word is 

compared to all stored words in parallel by the hidden neurons and their associated Ist-layer 

connections in the memory. Once a match is found, one of the hidden neurons is activated to 

recall the corresponding token using the 2nd-layer connections associated with the activated 

hidden neuron. The time required for processing such a query is of the order of 20 ns (at best) 

to 100 ns (at worst) given the current CMOS technology for implementation of artificial neural 

networks (see Section 3.2.1.1). 
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6.3 A Modular Neural Architecture for LR Parser (NNLR Parser) 

LR(A:) grammars generate the so-called deterministic context-free languages which can be 

accepted by deterministic push-down automata [74]. Such grammars find extensive applications 

in programming languages and compilers. LR parsing is a linear time table-driven algorithm 

which is widely used for syntax analysis of computer programs [2, 19, 170]. This aJgorithm 

involves extensive pattern matching which suggests the consideration of a neural network 

implementation using associative memories. This section proposes a modular neural network 

architecture for parsing LR(1) grammars. LR(Ar) parsers scan input from left to right and 

produce a rightmost derivation tree by using lookahead of k unscanned input symbols. Since 

any LR(k) grammar for k > 1 can be transformed into an LR(1) grammar [170], LR(1) parsers 

are sufficient for practical applications [74]. 

An LR(1) grammar can be defined as GIR(I) = (V, T, T, 0) [74], where V and T are finite 

sets of variables (nonterminals) and terminals respectively, T is a finite set of production rules, 

and 0 G V is a special variable called the start symbol. V and T are disjoint. Each production 

rule is of the form A a, where A £ V and a £ {V uT)*. An LR(1) parser can be defined by 

a recursive symbolic function fLRParser '• A*S -*• T', where A (A = T" in the context), $, and 

A' are as in fLex An, and T' denotes the set of all sequences of production rules over the rule 

alphabet T. Although fiRPaaer corresponds in form to the recursive symbolic function fuxAn 

in Section 6, it can not be realized simply by a Mealy machine which implements fLexAn- This 

is due to the fact that the one-to-one mapping relationship between every input symbol of the 

input string and the output symbol of the output string at corresponding position in a Mealy 

machine does not hold for fLRParser- A stack is required to store intermediate results of the 

parsing process in order to realize an LR(1) parser which is characterized by fLRParser-

6.3.1 Representation of parse table 

Logically, an LR parser consists of two parts; a driver routine which is the same for all LR 

parsers and a parse table which is grammar-dependent [2]. LR parsing algorithm pre-compiles 

an LR grammar into a parse table which is referred by the driver routine for deterministically 
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parsing input string of lexical tokens by shift/reduce moves [2,19]. Such a parsing mechanism 

can be simulated by a DPDA (deterministic pushdown automata) with e-moves [74]. An e-move 

does not consume the input symbol, and the input head is not advanced after the move. This 

enables a DPDA to manipulate a stack without reading input symbols. The neural network 

architecture for DPDA (NN DPDA) proposed in Section 5, augmented with an NN Stack 

(see Section 5), is able to parse DCFL. However, the proposed NN DPDA architecture cannot 

efficiently handle 6-moves because of the need to check for the possibility of an €-move at every 

state. Therefore, a modified design for LR(1) parsing is discussed below. 

Parse table and stack are two main components of an LR(1) parser. The access of parse 

table can be defined by the symbolic function fparseTable : Q x (AU VU {$}) A x Q U {*} x 

Tu{#} X N \J {*} X V U{*} X Z in terms of binary mapping. Here, Q is the finite set of 

states; A, V, $, and T have the same meaning as in the definition of and fLRParaer 

given above; A = {shift, reduce} is the set of parsing actions; * denotes a don't care; N 

is the set of natural numbers; and Z = {error, in-progress, accept} is the set of possible 

parsing status values. 

A parse table can be realized using a BMP module as described in Section 2.2.5 in terms 

of binary mapping. The next move of the parsing automaton is determined by current input 

symbol a and the state q that is stored at the top of the stack. It is given by the parse 

table entry corresponding to [9,0]. Each such 2-dimensional parse table entry action[q,a] is 

implemented as a 6-tuple binary code < action, state, rule, length, Ihs, status > in the BMP 

module for parse table where 

• action is a 2-bit binary code denoting one of two possible actions, 01 (shift) or 10 

(reduce); 

• state is an 5-bit binary number denoting " the next state"; 

• ru/e is an i?-bit binary number denoting the grammar production rule r to be applied if 

the consulted action is a reduce; 
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• length is an L-bit binary number denoting the length of the right hand side of the grammar 

production rule r to be applied if the consulted action is a reduce; 

• Ihs is an H-hit binary code encoding the grammar nonterminal symbol at the left hand 

side of the grammar production rule r to be applied if the consulted action is a reduce 

and 

• status is a 2-bit binary code denoting one of three possible parsing status codes, 00: 

error, 01: in progress, or 10: accept (used by higher-level control to acknowledge the 

success or failure of a parsing). 

Note that the order of the tuple's elements arranged in Figure 6.3 is different from above. 

A canonical LR(1) parse table is relatively large and would typically have several thousand 

states for a programming language like C. SLR(l) and LALR(l) tables, which are far smaller 

than LR(1) table, typically have several hundreds of states for the same size of language, and 

they always have the same number of states for a given grammar [3] (The differences among 

LR, SLR, and LALR parsers are discussed in [19]). The number of states in the parse table 

of LALR(l) parsers for most programming languages is between about 200 and 450, and the 

number of symbols (lexical tokens) is around 50 [19], i.e., the number of table entries is between 

about 10000 and 22500. 

Typically a parse table is realized as a 2-dimensional array in current computer systems. 

Memory is allocated for every entry of the parse table, and the access of an entry is via its offset 

in the memory, which is computed efficiently by the size of the fixed memory space for each 

entry and the indices of an entry in the array. However, it is much more natural to retrieve an 

entry in a table using content-based pattern matching on the indices of the entry. As described 

in Section 2.2.5, a BMP module can effectively and efficiently realize such content-based table 

lookup. 

LR grammars used in practical applications typically produce parse tables with between 

80% and 95% undefined error entries [19]. The size of the table is reduced by using lists which 

can result in a significant performance penalty. The use of a BMP for such table lookup help 
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Figure 6.3 The proposed neural network architecture for LR(1) parser 
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overcome this problem since undefined mappings are naturally realized by a BMP module 

without the need for extra space and without incurring any performance penalties. Thus, 

LALR(l) parsing (which is generally the technique of choice for parsing computer programs) 

table can be realized using at most about 22500 x 20% = 4500 hidden neurons. 

6.3.2 Representation of parsing moves and parse trees 

A configuration of an LR parser is an ordered pair whose first component corresponds to 

the stack contents and whose second component is the part of the input that remains to be 

parsed. A configuration can be denoted by (go9i o-jo-j+i where 9, is the state 

on top of the stack, qo is the stack bottom symbol, Oj is current input symbol, and $ is a 

special symbol denoting "'end of inpuf. The initial configuration is [qo, OiOj Let 0^ 

be a A:-bit binary number (code) of all zeros denoting a value of don't care for > 1. In 

the proposed NNLR Parser, the configurations resulting from one of four types of moves on 

parsing an input lexical token are as follows: 

• If action[qi, Uj] =< 01,9,0^,0^,0^,01 >, the parser performs a shift move and en­

ters the configuration {qoqi •••qiq, o^j+i •••anS)- Such a shift move is realized in one 

operation cycle in the proposed NNLR Parser. 

• If action[qi,aj] =< 10,0'^, r,/,/i,01 >, the parser performs a reduce by producing a 

binary number r (which denotes a grammar production rule A 0 being applied, 

where the grammar nonterminal A is denoted by the binary code h, and I Is the num­

ber of non-empty grammar symbols in 0) as part of the parse tree, popping / sym­

bols off the stack, consulting parse table entry [9,-/, /i] and entering the configuration 

(qofi • ••qi-iq, o-j • • -anS) where action[qi-i, h] =< 01, q, 0^, 0^, O'', 01 >. Such a reduce 

move is reaJized in two operation cycles in the proposed NNLR Parser since the parse 

table is consulted twice for simulating the move. 

• If action{qi, aj] =< 0^, 0^, O'^, 0^, 0^, 10 >, parsing is completed. 
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• If action\qi,aj] =< 0^,0*^,0^,0^,0^,00 >, an error is discovered and the parser stop>s. 

Note that such an entry is a binary code of all zeros. (We do not discuss error handling 

any further in this chapter). 

An LR parser scans input string from left to right and performs bottom-up parsing which 

results in a rightmost derivation tree in reverse. Thus, a stack can be used to store the parse 

tree (derivation tree) which is a sequence of grammar production rules (in reverse order) applied 

in the derivation of the scanned input string. The rule on top of the final stack which stores 

a successfully parsed derivation tree is a grammar production rule with the stari symbol of 

an LR grammar at its left hand side. Note that each rule is represented by an R-hit binary 

number and the mapping from a binary-coded rule to the rule itself can be realized by a BMP 

module. 

6.3.3 Architecture of NNLR parser 

Figure 6.3 shows the architecture of a modular neural network design for an LR(1) parser 

which takes axivantage of the efficient shift/reduce technique. The NNLR Parser uses an 

optional queue handler module and an NN stack which stores the parse tree (derivation tree). 

The queue handler stores lexical tokens extracted by the NN lexical analyzer described in 

Section 6 and facilitates the operation of lexical analyzer and parser in parallel. To extract 

the binary-coded grammar production rules in derivation order sequentially out of the NN stack 

which stores parse tree, the next processing unit connected to the NN stack sends binary-coded 

stack pop actions to the stack in an appropriate order. 

6.3.3.1 Modules of NNLR Peirser 

The proposed NNLR Parser consists of a BMP module implementing the parse table, an 

NN shift/reduce stack storing states during shift/reduce simulation, a buffer (stateCt)) 

storing the current state (from the top of the NN shift/reduce stack), and a buffer (input (t)) 

storing either current input lexical token or a grammar nonterminal symbol produced by last 

consulted parsing action which is a reduce. When the last consulted parsing action is a reduce 
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encoded as 10; the grammar production rule to be reduced is pushed onto the stack for parse 

tree, the transmission of input (t) is from the latched buffer Ihs, and the input from the queue 

mechanism is inhibited by the leftmost bit of the binary-coded reduce action. When the last 

consulted parsing action is a shift encoded as 01, the transmission of input (t) is from the 

queue mechanism and the input from the latched buffer Ihs is inhibited by the rightmost bit 

of the binary-coded shift action. 

Parsing is initiated by reset signals to the NN shif t/reduce stack and the NN stack storing 

parse tree. The signals reset the SPs of these two stacks to stack bottom and hence state (t) 

is reset to initial state. To avoid clutter, the reset signal lines are not shown in Figure 6.3. The 

current state buffer state(t) and the current input buffer input (t) need to be synchronized 

but the necessary synchronization circuit is omitted from Figure 6.3. 

The operations of an LR parser can be viewed in terms of a sequence of transitions from an 

initial configuration to a final configuration. The transition from one configuration to another 

can be divided into two steps: the first involves consulting the parse table for next action using 

current input symbol and current state on top of the stack; the second step involves execution 

of the action — either a shift or a reduce — as specified by the parse table. In the NNLR 

Parser, the first step is realized by a BMP module which implements the parse table lookup; 

and the second step is executed by a combination of an NN shift/reduce stack which stores 

states, and an NN stack which stores the parse tree (and the BMP module when the next 

action is a reduce). 

6.3.3.2 Complexity of the BMP module for p£irse table 

Let M be the number of defined action entries in the parse table. All grammar symbols are 

encoded into i/-bit binary codes. The BMP module for parse table uses S + H input neurons, 

M hidden neurons, and 4 + S + R + L + H output neurons. Note that the BMP module 

produces a binary output of all zeros, denoting a parsing error (see previous description of 

parsing status code in an action entry of the parse table), for any undefined action entry in 

the parse table. The i?-bit binary-coded grammar production rule is used as the stack symbol 
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for the NN stack which stores the parse tree. 

6.3.3.3 Complexity of the NN Stack for parse tree 

Assume the pointer control module of the NN stack for parse tree use nip bits to encode 

its SP values. Then the pointer control module of the NN stack for parse tree uses nip + 2 

input neurons, 3 x 2^^ hidden neurons, and rrip output neurons. The stack memory module 

uses nip input neurons, 2"*^ hidden neurons, and R output neurons. The write control module 

receives nip + l binary inputs (the stack pointer + push/pop signal) and R binary inputs (the 

grammar production rule). 

6.3.3.4 Complexity of the Shift/Reduce NN Stack 

To efficiently implement the raduce action in LR parsing, the NN shift/reduce stack can 

be slightly modified from the NN stack described in Section 5 to allow multiple stack pops 

in one operation cycle of the NNLR Parser. The number of pops is coded as an L-bit binary 

number and equals the number of non-empty grammar symbols at the right hand side of the 

grammar production rule being reduced. It is used as input to the pointer control module 

and write control module in the NN shift/reduce stack. Thus, each of the modules use L 

additional input neurons in the NN shift/reduce stack as compared to the NN stack proposed 

in Section 5. The output from the NN parse table, namely, the 5-bit binary code for state, 

is used as the stack symbol to the NN shift/reduce stack. Let the maximum number of 

non-empty grammar symbols that appear in the right hand side of a production rule in the LR 

grammar being parsed be Lm- Then k multiple pops are implemented in the NN shift/reduce 

stack in a manner similar to a single pop in the NN stack proposed in Section 5 except that 

the SP value is decreased by k instead of 1, 1 < A: < Hence for each SP value, Z-m - 1 

additional hidden neurons are required to allow multiple pops in the pointer control module. 
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6.3.4 NNLR Parser in action 

This subsection illustrates the operation of the proposed NNLR Parser for a given LR(1) 

grammar. The example of LR(1) grammar (Gi) used here is taken from [3]. The BNF (Backus-

Naur Form) description of the grammar Gi is as follows: 

expression —)• expression + term j term 

term —y term x factor | factor 

factor —>• ( expression ) | identifier 

Using E, T, F, and I to denote expression, term, factor, and identifier (respectively), these 

rules can be rewritten in the form of production rules pi through pe'. 

Production rule Pi E —>• E + T 

Production rule P2 E -¥ T 

Production rule P3 T —>• T X F 

Production rule P4 T ->• F 

Production rule P5 F —Y ( E )  

Production rule P6 F —¥ 1 

Then { I, +, x, (, ) } is the set of terminals (i.e. the set of possible lexical tokens from the 

lexical analyzer), { E, T, F } is the set of nonterminals, { pi, p2, p3, p4, ps, pe } is the set of 

production rules, and E is the start symbol of the grammar Gi. 

The operation of the parser is shown in terms of symbolic codes (instead of the binary codes 

used by the NN implementation) to make it easy to understand. Note however that the trans­

formation of symbolic codes into binary form used by NNLR Parser is rather straightforward 

and has been explained in the preceding sections. 

Let s and r denote the parsing actions shift and reduce and a, e, and i the parsing 

statuses accept, error, and in-progress respectively. The parse table of the LR(1) parser 

(more specifically, SLR(l) parser) for grammar Gi is shown in Table 6.1. 

The implementation and operations of the NN shift/reduce stack and the NN stax:k for 

parse tree follow the discussion and examples in Section 5 and they are not discussed here. 



125 

State 

Table 6.1 The parse table of the LR(1) parser for grammar Gi 

r + X ( ) 
9o (s,94,*,*,*,i) 

9i 
92 (r,*,p2,l,E,i) (r,*,p2,l,E,i) 

93 (r,*,p4,l,T,i) (r,*,p4,l,T,i) (r,*,p4,l,T,i) 

94 (s,95,*,*,*,i) (S,94,*,*,*,i) 
95 (r,*,p6,l,F,i) (r,*,p6,l,F,i) (r,*,p6,l,F,i) 

96 (s,95,*,*,*,i) (s,94,*,*,*,i) 
97 (S,94,*,*,*,i) 
98 (s,9ii,*,*,*,i) 

99 (r,#,pi,3,E,i) (s,97,*,»,*,i) (r,*,pi,3,E,i) 

9io (r,*,p3,3,T,i) (r,*,p3,3,T,i) (r,*,p3,3,T.i) 

911 (r,*,p5,3,F,i) (r,*,p5,3,F,i) (r,*,p5,3,F,i) 

State $ E T F 

90 (s,93,*i*,*,i) 
9i a) 

92 (r,*,p2,l,E,i) 

93 (r.*,P4,l,T,i) 

94 
95 (r,*,p6,l,F.i) 

96 
97 (s,9iOi*,*,*,i) 
98 
99 (r,*,pi,3,E,i) 

9io (r,*,p3,3,T,i) 

9u (r,*,p5,3,F,i) 
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The parse table can be represented by a binary mapping which in turn can be easily realized by 

a BMP module (see Section 2.2.5 for details). Following the notation introduced in Section 6 

for the NN realization of the parse table, we have: M = 45 since there are 45 defined entries 

in the parse table; S = \log2i2] = 4 since there are 12 states; H = \log2{S + 2)] =4 since 

there are 8 grammar symbols plus a null symbol e and an additional end-of-string symbol $; 

R = {log^Gi] = 3 since there are 6 production rules; and L = f/o^23] = 2 since the maximum 

number of non-empty grammar symbols that appear in the right hand side of a production 

rule in the LR grammar G\ is 3. Therefore, the BMP for parse table of Gi has S + H = ^ 

input, 45 hidden, and 4: + S+R + L + H = ll output neurons. 

Assume every identifier I is translated from a string of lower case English characters. The 

lexical analyzer Li which translates input strings of +, x, (, ), $, blank, and lower case 

English characters into strings of lexical tokens can be realized by an NN DFA. Figure 6.4 

shows the state diagram of the DFA Mi,^ for Li. Note that additional machinery needed for 

error handling is not included in the DFA ; and when the DFA sees a S. it stops the 

processing of the input string and appends a $ at the end of the output string. 

The transition function 6ci of the DFA is shown in Table 6.2. This function can be 

expressed as a binary mapping which in turn can be easily realized by a BMP module (see 

Section 2.2.5 for details). In the NN DFA, BMP module 1 realizes the transition function 

Sli : Q X r Q and BMP module 2 reaJizes a translation function A' : Q -> A s.t. A'(72) = 

I, A (94) = +, A (^e) = -^'(^S) = (, -^'(910) =). and A'(g) = e (null symbol, which is 

discarded) for other Q eQ, where Q = {go, 9i, ?2,93,94,95, 96,97,98,99,9io} is the set of states, 

R = {a,6, ...,2,+, X, (, ),$, blank} is the input alphabet, and A = {I,+, x, (,)} is the output 

alphabet (i.e., the set of lexical tokens). The symbolic functions SL^ and A' can be expressed as 

binary mappings which in turn can be realized by BMP modules (see Section 2.2.5 for details). 

Let us now consider the operation of the LR(1) parser when it is presented with the input 

string aa X bb + cc. This string is first translated by the lexical analyzer L\ into a string 

of lexical tokens Ixl+I which is then provided to the LR(1) parser. This translation is quite 

straightforward, given the state diagram and transition function (Table 6.2) of and 
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a~z 
blank 

a-z 

blank 

blank 

blank blank 

blank 

blank 

blank 

blank 

blank 

Figure 6.4 The state diagram of the DFA Ml,^ for the lexical analyzer Li 

Table 6.2 The transition function of the DFA 

State a, b, z + X ( ) blank S 

9o 9i 93 95 97 99 90 90 

9i 9i 92 92 

92 9i 93 95 97 99 90 9o 

93 94 94 

1A 9i 93 95 97 99 90 9o 

95 96 96 

96 91 93 95 97 99 90 90 

97 98 98 

98 9i 93 95 97 99 90 9o 

99 9io 9io 

9io 91 93 95 97 99 90 9o 
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its translation function A'. Note that there is a space between each p^r of consecutive words 

in the input character string, and there is no space token between each pair of consecutive 

lexical tokens in the string of lexical tokens. 

The string of lexical tokens is parsed by the LR(1) parser whose moves are shown in 

Table 6.3. At step 1, the parse table entry corresponding to (^o, I) is consulted. Its value is 

(s, 95, i). This results in shifting I and pushing state qs onto the shift/reduce stack. 

At step 2, the table entry corresponding to (gs, x) is consulted first. Its value is (r, * , p e ,  1, F, i) 

which indicates a reduce on production rule pe- Therefore, state qs is popped off the stack, 

and table entry corresponding to (go, F) is consulted next. The entry is (s, 93, *, *, »,i) which 

means shifting F and pushing state qz onto the stack. The remaining steps are executed in 

a similar fashion. At the end of the moves (step 14), the sequence of production rules stored 

in the stack for parse tree can be applied in reverse order to derive the string Ixl+I from 

grammar start symbol E. 

6.4 Performance Analysis 

This section explores potential performance advantages of the proposed neural network 

architecture for syntax analysis in comparison with that of current computer systems that 

employ inherently sequential index or matrix structure for information matching and retrieval. 

The performance estimates for the NNLR Parser assume hardware realization based on current 

CMOS VLSI technology. In the analysis that follows, it is assumed that the two systems have 

comparable I/O performance and error handling capabilities. 

To simplify the comparison, it is assumed that each instruction on a conventional computer 

takes T ns (nanoseconds) on an average. For instance, on a relatively cost-effective 100 MIPS 

processor, a typical instruction would take 10 ns to complete. (The MIPS measure for speed 

combines clock speed, eflFect of caching, pipelining and superscalar design into a single figure 

for speed of a microprocessor). Similarly, we will assume that a single identification and recall 

operation by a neural associative memory takes a ns. Assuming hardware implementation 

based on current CMOS VLSI technology, a = 20 ns (see Section 3.2.1.1). 
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Table 6.3 Moves of the LR(1) parser for grammar G\ on input string Ix I+I 

Step Content of Remaining Referred entries Content of 
shift/reduce stack input of parse table parse tree stack 

(1) 90 (90.1) X 
(2) 9095 X1-1-1$ (95,X), (go,F) 
(3) 9o93 xl-i-l$ (93,X), (90,T) -Lpe 
(4) 9o92 xH-I$ (92, x) -LP6P4 
(5) 909297 1-1-1$ (97,1) -1-P6P4 
(6) 90929795 +1$ (95,+), (97,F) -LP6P4 
(7) 9o92979io +1$ (910,+), (90rT) -1-P6P4P6 
(8) 9o92 +1$ (92,+), (90,E) -1-P6P4P6P3 
(9) 9o9i +n (91,+) -1-P6P4P6P3P2 

(10) 9O9I96 1$ (96,1) -LP6P4P6P3P2 
(11) 9O9I9695 $ (95,$), (96,F) J-P6P4P6P3P2 
(12) 9O9I9693 $ (93,$), (96,T) -I-P6P4P6P3P2P6 
(13) 9O9I9699 $ (99,$), (90,E) -1-P6P4P6P3P2P6P4 
(14) 9o9i $ (9i,$) -LP6P4P6P3P2P6P4P1 

Syntax analysis in a conventional computer typically involves; lexical analysis, grammar 

parsing, parse tree construction and error handling. These four processes are generally coded 

into two modules [2]. Error handling is usually embedded in grammar parsing and lexical 

analysis respectively, and parse tree construction is often embedded in grammar parsing. The 

procedure for grammar parsing is the main module. In single-CPU computer systems, even 

assuming negligible overhead for parameter passing, a procedure call entails, at the very min­

imum, (1) saving the context of the caller procedure and activation of the callee procedure 

which typically requires 6 instructions [105]; and (2) context restoration and resumption of 

caller procedure upon the return (exit) of the callee procedure, which typically requires at 

least 3 instructions [105]). Thus, a procedure call entails a penalty of 9 instructions or about 

9r ns. 

6.4.1 Performance anfdysis of lexical analyzer 

Lexical analysis can be performed by a DFA whose transition function can be represented as 

a 2-dimensional table with current state and current input symbol as indices. The continuous 

transition moves of such a DFA involve repetitive lookup of its next state from the table using 
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current state and current input symbol at each move until an error state or an accepting state is 

reached. Such a repetitive table lookup involves content-based pattern matching and retrieval 

which can be performed potentially more efficiently by neural associative memories. 

Each entry of the DFA transition table implemented on conventional computers usually 

contains three parts: the next state; a code for whether the next state is an accepting state, 

an error state, or neither; and the lexical token to use if the next state is an accepting state. 

Implementing such a repetitive table lookup on conventional computers requires, at a minimum, 

six instructions; one (or two) multiplication and one addition to compute the offset in the 

transition table (to access the location where the next state is stored), one memory access to 

fetch the next state from the table, one addition to compute the offset of the second part in the 

transition table (based on the known offset of the first part), one memory access to fetch the 

second part from the table, and one branch-on-comparison instruction to jump back to the first 

instruction of the loop if the ne.xt state is neither an error state nor an accepting state. (Note 

that this analysis ignores I/O processing requirements). Thus, each state transition takes 6 

instructions or 6r ns. 

In contrast, the proposed NN architecture for lexical analyzer computes the next state 

using associative (content-addressed) pattern matching-and-retrieval in a single identification-

and-recall cycle of a BMP module. In the 2-dimensional table, the values of the two indices 

for an entry provide a unique pattern - the index pattern, for accessing the table entry. In the 

BMP module, each index pattern and the corresponding entry are stored as an association pair 

by a hidden neuron and its associated connections. The BMP performs a table lookup in two 

steps: identification and recall. In the identification step, a given index pattern is compared 

to all stored index patterns in parallel by the hidden neurons and their associated Ist-layer 

connections. Once a match is found, one of the hidden neurons is ax:tivated to recall the 

associated entry value using the 2nd-layer connections associated with the activated hidden 

neuron. 

In program compilation, a segmented word is translated into a syntactically tagged token 

when the DFA for lexical analysis enters an accepting state. On conventional computers, this 
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translation step costs, at the very minimum, three instructions (or 3r ns): one addition to 

compute the offset of the third part in the transition table (based on the known offset of 

the first part), one memory arcess to fetch the lexical token from the table, and one branch 

instruction to jump back to the first instruction of the loop for carving next word. 

In other syntax analysis applications that involve large vocabularies, a database lookup is 

typically used to translate a word into a syntactically tagged token. In this case, depending on 

the size of the vocabulary and the organization of the database, it would generally take more 

than 10 instructions to perform this translation. (See Chapter 3 for a comparison of database 

query processing using neural associative memories as opposed to conventional computers). 

A BMP module is capable of translating a carved word into a token as described in Section 

2.2.5 in a single cycle of ideniification-and-recall with a time delay of a ns. Note that this step 

can be pipelined (see the NNLR Parser in action in Section 6). 

In summary, if we assume the average length of words in input string being W symbols and 

we ignore I/O, error handling and the overhead associated with procedure calls, it would take 

{6W + 3)r ns on average to perform lexical analysis of a word on a conventional computer. 

In contrast, it would take [W + l)a ns using the proposed NN lexical analyzer. This analysis 

ignores I/O and error handling. For example, assuming a 100 MIPS conventional computer 

(r = 10 ns), and current CMOS VLSI implementation of neural associative memories (a = 20 

nsj, with M'' = 5, then the former takes 330 ns and the latter 120 ns. 

6.4.2 Performance analysis of LR parser 

LR parsing also involves repetitive table lookup which can be performed efficiently by neural 

associative memories. LR parser is driven by a 2-dimensional table (parse table) with current 

state and current input symbol as indices. Once a next state is retrieved, it is stored on a stack 

and is used as the current state for the next move. Parsing involves repetitive application of 

a sequence of shift and reduce moves. A shift move would take at least 6 instructions, 

or equivalently 6r ns on a conventional computer. This includes 3 instructions to consult the 

parse table, 1 instruction to push the next state onto the stack, 1 instruction to increment the 
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stack pointer, and 1 instruction to go back to the first instruction of the repetitive loop for 

next move. A typical reduce move involves a parse table lookup, a pop of the state stack, a 

push to store a rule into the stack for parse tree, and a shift: move. Thus, a typical reduce 

would take at least 3 + 1 + 2 + 6 = 12 instructions, or equivalently 12r ns, on a conventional 

computer. 

In the proposed NNLR Parser, the computation delay consists of the delays contributed 

by the operation of the two NN Stacks and the BMP which stores the parse table. An NN 

StZLck consists of two BMP modules, one of which is augmented with a write control module. 

Assuming that the computation delay of an NN stack is roughly equal to that of two sequentially 

linked BMPs (2a ns), a shift move (which takes one operation cycle of the NNLR Parser) and 

a typical reduce move (which takes two operation cycles of the NNLR Parser) would consume 

3a ns and 6a ns respectively. (This analysis ignores the effect of queuing between the NNLR 

Parser and the NN lexical analyzer). 

Assuming that the average length of words in input string be W symbols, and ignoring 

I/O, error handling and the overhead associated with procedure calls, parsing a word (a word 

has to be translated into a lexical token by lexical analysis first) by shift and reduce moves 

would take {QW + 9)r ns and {&W + 15)r ns respectively on a conventional computer. 

In contrast, because the NNLR Parser and NN lexical analyzer can operate in parallel, 

shift and reduce moves take 3q ns or (W^ + l)a ns (whichever is larger) and 6a ns or 

(W + l)a ns (whichever is larger) respectively on the NNLR Parser. 

Thus, as shown in Table 6.4, for typical values of a, r and W, the proposed NNLR Parser 

offers a potentially attractive alternative to conventional computers for syntax analysis. 

It should be noted that the preceding performance comparison has not considered alter­

native hardware realizations of syntax analyzers. These include hardware implementations of 

parsers using conventional building blocks used for building today's serial computers. We are 

not aware of any such implementations although clearly, they can be built. In this context 

it is worth noting that the neural architecture for syntax analysis proposed in this chapter 

makes extensive use of massively parallel processing capabilities of neural associative proces-
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Table 6.4 A comparison of the estimated performance of the proposed 
NNLR Parser with that of convention^ computer systems for 
syntax anzdysis 

Type of overhead NNLR Parser Conventional computers 
time for lexical analysis of a word 
time for a shift move of parsing 
time for a reduce move of parsing 

(ly-f-l)Qr 
max [3a, {W + l)a] 
max [6q, {W -|- l)a] 

(6fF + 3)r 
{6W + 9)T 

{%W -1- 15)r 

sors (memories). It is quite possible that other paraJlel (possibly non neural network) hard­

ware realizations of syntax analyzers offer performance that compares favorably with that of 

the proposed neural network reaiization. We can only speculate as to why there appears to 

have been little research on parallel architectures for syntax analysis. Historically, research in 

high performance computing has focused primarily on speeding up the execution of numeric 

computations, typically performed by programs written in compiled languages such as C and 

FORTRAN. In such applications, syntax analysis is done during program compilation which is 

relatively infrequently compared to program execution. The situation is quite different in sym­

bol processing (e.g., knowledge based systems of AI, analysis of mathematical expressions in 

software designed for symbolic integration, algebraic simplification, theorem proving) and in­

teractive programming environments based on interpreted programming languages (e.g., LISP, 

J.WA). Massively parallel architectures for such tasks are only beginning to be explored. 

6.5 Summary and Discussion 

This chapter has explored the design of a neural architecture for syntax analysis of lan­

guages with known (a-priori specified) grammars. Syntax analysis is a prototypical symbol 

processing task with a diverse range of applications in artificial intelligence, cognitive mod­

elling, and computer science. Examples of such applications include: language interpreters for 

interactive programming environments using interpreted languages (e.g., LISP, JAVA), parsing 

of symbolic expressions (e.g., in real-time knowledge based systems, database query processing, 

and mathematical problem solving environments), syntactic or structural analysis of large col­

lections of data (e.g., molecular structures, engineering drawings, etc.), and high-performance 
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compilers for program compilation and behavior-based robotics. Indeed, one would be hard-

pressed to find a computing application that does not rely on syntax analysis at some level. 

The need for syntax analysis in real time calls for novel solutions that can deliver the desired 

performance at an affordable cost. Artificial neural networks, due to their potential advantages 

for real-time applications on account of their inherent parallelism, offer an attractive approach 

to the design of high performance syntax analyzers. 

The proposed neural architecture for syntax analysis is obtained through systematic and 

provably correct composition of a suitable set of component symbolic functions which are ulti­

mately realized using neural associative processor (memory) modules. The neural associative 

processor (memory) is essentially a 2-layer perceptron which can store and retrieve arbitrary 

binary pattern associations [21]. It is a cost-effective SIMD (single instruction, multiple data) 

computer system for massively parallel pattern matching and retrieval. Since each component 

in the proposed neural architecture computes a well-defined symbolic function, it facilitates 

the systematic synthesis as well as analysis of the desired computation at a fairly abstract 

(symbolic) level. Realization of the component symbolic functions using neural associative 

processors (memories) allows one to exploit massive parallelism to support applications that 

require syntax analysis to be performed in real time. 

The proposed neural network for syntax analysis is capable of handling sequentially pre­

sented character strings of variable length, and it is assembled from neural network modules 

for lexical analysis, stack processing, parsing, and parse tree construction. The neural network 

stack can realize stacks of arbitrary depths (limited only by the number of neurons available). 

The parser outputs the parse tree resulting from syntax analysis of strings from widely used 

subsets of deterministic context-free languages (i.e., those generated by LR grammars). Since 

logically an LR parser consists of two parts, a driver routine which is the same for all LR 

parsers, and a parse table which varies from one application to the next [3], the proposed 

NNLR Parser can be used as a general-purpose neural architecture for LR parsing. 

It is relatively straightforward to estimate the cost and performance of the proposed neu­

ral architecture for syntajc analysis based on the known computation delays associated with 
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the component modules (using known facts or a suitable set of assumptions regarding current 

VLSI technology for implementing the component modules). Our estimates suggest that the 

proposed system offers a systematic and provably correct approach to designing cost-effective 

high-performance syntajc analyzers for real-time syntax analysis using known (a-priori speci­

fied) grammars. 

The choice of the neural associative processors (memories) as the primary building blocks 

for the synthesis of the proposed neural architecture for syntajc analysis was influenced, among 

other things, by the fact that they find use in a wide range of systems in computer science, 

artificial intelligence, and cognitive modelling. This is because associative pattern matching 

and recaJl is central to pattern-directed processing which is at the heart of many problem 

solving paradigms in AI (e.g., knowledge based expert systems, case based reasoning) as well 

as computer science (e.g., database query processing, information retrieval). As a result, design, 

VLSI implementation, and applications of associative processors have been studied extensively 

in the literature [21, 23, 68, 78, 88, 97, 110, 124,127, 151,153]. The neural network architecture 

proposed in this chapter for syntax analysis demonstrates the versatility of neural associative 

processors (memories) as generic building blocks for systematic synthesis of modular massively 

parallel architectures for symbol processing applications. 

It should be noted that the primary focus of this chapter was on taking advantage of massive 

parallelism and associative pattern storage, matching, and recall properties of a particular class 

of neural associative memories in designing high performance syntax analyzers for a-priori 

specified grammars. Consequently, it has not addressed several other potential advantages 

of neural network architectures for intelligent systems. Notable among these are inductive 

learning and fault tolerance. 

Machine learning of grammars or grammar inference is a major research topic which has 

been, and continues to be, the subject of investigation by a large number of researchers in 

artificial intelligence, machine learning, syntactic pattern recognition, neural networks, com­

putational learning theory, natural language processing, and related areas. The surveys of 

grammar inference in general can be found in [69, 96, 115, 137], and the recent results on 
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grammar inference using neural networks can be found in [6, 13, 27, 38, 45, 44, 66, 77, 80, 116, 

122, 123, 129, 159, 161, 166, 174, 192, 194, 197]. 

Fault tolerance capabilities of neural architectures under different fault models (neuron 

faults, connection faults, etc) has been the topic of considerable research [21, 165, 180] and is 

beyond the scope of this chapter. However, it is worth noting that the proposed neural network 

design for syntax analysis inherits some of the fault tolerance capabilities of its primary building 

block, the neural associative processor (memory) (see Section 2.3.3 for details). 
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r CONCLUSION 

TraditionaJ symbol processing models of AI and ANN have been viewed by many as radi­

cally (and perhaps even irreconcilably) different paradigms for the design of intelligent systems. 

But given the fact that they are essentially equivalent in terms of their computing capabilities, 

a more reasonable view is that they each represent different architectural commitments and 

hence different cost-performance tradeoffs within the space of possible designs for intelligent 

systems. This latter viewpoint argues for a somewhat systematic exploration of this design 

space in search of novel and efficient computational architectures for such systems. This dis­

sertation takes a few small steps in this direction and adds to the growing body of literature 

[47, 72, 99, 179] that demonstrates the potential benefits of integrated neural-symbolic archi­

tectures that overcome some of the limitations of today's ANN and AI systems. 

More specifically, this dissertation develops the theory and implementation of a neural 

architecture for associative memory which is capable of massively parallel best match, exact 

match, and partial match. It also demonstrates systematic, provably correct synthesis of effi­

cient neural architectures respectively for information retrieval and database query processing, 

elementary logical inference, sequence processing, and syntax analysis using neural associative 

memories as the primary building blocks for massively parallel pattern-directed symbol pro­

cessing. This facilitates the systematic analysis of the resulting computation performed by the 

resulting neural systems at a fairly abstract (symbolic) level. 
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APPENDIX. ACRONYMS 

AI: Artificial Intelligence 

AM: Associative Memory 

ANN; Artificial Neural Networks 

BiCMOS: Bipolar Complementary Metal Oxide Semiconductor 

BMP: Binary Mapping Perceptron 

BNF: Backus-Naur Form 

CFG: Context-Free Grammars 

CFL: Context-Free Languages 

CMOS: Complementary Metal Oxide Semiconductor 

DCFL: Deterministic Context-Free Languages 

DFA: Deterministic Finite Automata 

DNF: Disjunctive Normal Form 

DPDA: Deterministic Pushdown Automata 

MIPS: Million Instructions Per Second 

NFA: Nondeterministic Finite Automata 

NLP: Natural Language Processing 

NN DFA: Neural Network for Deterministic Finite Automata 

NN DPDA: Neural Network for Deterministic Pushdown Automata 

NN NFA: Neural Network for Nondeterministic Finite Automata 

NN Stack: Neural Network for Stack 

NNLR Parser: Neural Network for LR(1) Parser 

PLA: Programmable Logic Array 
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RAAM: Recursive Auto-Associative Memory 

RNN: Recurrent Neural Networks 

SIMD: Single Instruction Multiple Data 

VLSI: Very Large Scale Integration 
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