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Abstract
This paper discusses the importance of memory access optimizations which are shown to be highly effec-
tive on the MasPar architecture. The study is based on two MasPar machines, a 16K–processor MP–1 and
a 4K–processor MP–2. A software pipelining technique overlaps memory accesses with computation and/
or communication. Another optimization, called the register window technique reduces the number of
loads in a loop.  These techniques are evaluated using three parallel matrix multiplication algorithms on
both the MasPar machines. The matrix multiplication study shows that for a highly computation intensive
problem, reducing the interprocessor communication can become a secondary issue compared to memory
access optimization.  Also, it is shown that memory access optimizations can play  a more important role
than the choice of a superior parallel algorithm.
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1  Introduction

This paper discusses the importance of memory access optimizations to achieve high perform-

ance on the MasPar architecture.  The study is based on two MasPar machines, a 16K–processor

MP–1 and a 4K–processor MP–2. 

On MasPar computers, the local memory at a processing element (PE) is slow, so memory ac-

cess time can cause a significant performance loss.  We describe memory access optimization

techniques that minimize such performance loss.  The main optimization technique is called soft-

ware pipelining.  It reduces the average cost of a memory access.  The technique can be effec-

tively applied to computation loops containing floating point operations along with memory ac-

cesses.  It is also applicable to communication loops that move a block of data from the local

memory of one PE to another PE.  In software pipelining, the loops are programmed to pipeline

the computation (or communication) operations of one iteration with the memory accesses to

load the data for the computation (or communication) of the next iteration of the loop.  Being

overlapped with other useful operations, memory accesses are partly hidden, thus reducing the

overall time for the execution of a program.  

The register window technique is another important optimization.  It is used to reduce the num-

ber of loads in a loop.  The technique involves reprogramming a loop so that a set of W registers,

called a register window, covers a block of W elements of an array.  A new inner block  is added

to the loop to perform computations of W elements  in the register window.  In an example of

matrix multiplication C = A*B,  this technique is used to modify the loop for multiplying subma-

trices at a PE.  By using a register window to cover W elements of C from a row, the number of

memory accesses for loading the matrix A is reduced by a factor of W.

As a part of this study, three parallel matrix multiplication algorithms were implemented on two

MasPar machines.  The first algorithm uses a parallel prefix addition.  The second algorithm is a

systolic algorithm using nearest neighbor communication.  The third is an algorithm requiring
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broadcasting, which is slower than nearest–neighbor communication on MasPar.  For the multi-

plication of two NxN matrices on an NxN processor array, the execution times of the systolic

and the broadcast algorithms are both of order N and the execution time of the parallel prefix

algorithm is of order N log N.  We show that on MasPar machines memory access optimizations

can play a more important role than the choice of a superior parallel algorithm.  An interesting

result is that a software pipelined implementation  of the parallel prefix algorithm outperforms a

plain implementation  of the superior systolic algorithm.  However, after memory access optimi-

zations are applied the systolic algorithm is the best, as expected.

A detailed performance analysis provides insights into the impact of memory access optimiza-

tion techniques, performance of parallel matrix multiplication algorithms on the MasPar archi-

tecture, and the relative performance of MP–1 and MP–2 computers on a highly computation

intensive problem such as matrix multiplication.  Interprocessor communication turns out to be a

secondary issue compared to memory access optimization.  Optimization techniques described

in this paper are shown to provide substantial performance improvements beyond improvements

possible through compiler optimization.  Section 2 is a brief description of MasPar computers,

section 3 describes three parallel matrix multiplication algorithms used in this study, section 4

describes optimization techniques, section 5 provides the performance analysis, and conclusions

are presented in section 6.

2  MasPar MP–1 and MP–2
The MasPar MP–1 and MP–2 computers are based on a single–instruction stream, multiple data

stream (SIMD) architecture with processing elements (PEs) arranged in a 2D toroidal grid.  A

parallel program runs on the array control unit (ACU) which broadcasts instructions to the PEs.

Each PE can communicate with any of its 8 nearest neighbors using fast xnet communication,

and arbitrary communication patterns can be implemented using the slower router communica-

tion.

The MP–1 and MP–2 can have from 1K to 16K processors.  Both machines have a clock rate of



3

12.5 MHz, and the same instruction set.  However, the MP–1 uses 4–bit processors while the

MP–2 uses 32–bit processors.  The MP–2 can perform floating point operations four to five

times faster than the MP–1.  Measured cycle times for several instructions are shown in Table 1.

MP–1 Cycles MP–2 Cycles

Load/Store

Xnet

Floating Point Multiply

Floating Point Add

70 35

50

225

127

Table 1:  MasPar instruction cycle times for 32–bit operations

41

26

Operation

43

The PEs have no cache memory, but have forty 32–bit registers each. Memory accesses on each

PE’s local memory are done only through explicit load and store instructions.  Other instruc-

tions, including interprocessor communication, are register based.  The number of cycles for a

memory operation is significant compared to other operations.  The MasPar architecture includes

a buffering mechanism which allows up to four pending memory accesses.  The memory ac-

cesses can be overlapped with either computation or communication.  Thus, the performance

loss due to memory accesses can be minimized because the memory access time is ‘‘hidden’’

behind useful computation or communication and not seen as additional overhead.

This study used a 16K–PE MP–1 and a 4K–PE MP–2.  The MP–1 has 16K bytes of local

memory per processor compared to 64K bytes per processor for the MP–2.  Thus, the total PE

memory is the same on both the computers.  The MP–2 used in this study has a higher raw float-

ing point speed than the MP–1, since it has one–fourth as many PEs, each four to five times fast-

er depending on floating point operations.



4

3  Matrix Multiplication Algorithms

Three parallel algorithms are described to calculate the product C of matrices A and B, each of

size NxN.  The processor array is assumed to be of size PxP.  For simplicity, the algorithms are

illustrated using a hypothetical 4x4 PE array, and for 4x4 A, B, and C matrices.  Multiplication

of matrices with length a multiple of the length of the PE array is performed using block decom-

position.  The algorithms remain the same except that on each processor, instead of scalar addi-

tion and multiplication, matrix addition and multiplication is performed on submatrices.

3.1  Algorithm 1: Parallel Prefix Sum

This algorithm requires loading the A matrix in normal order and the B matrix transposed.  It

produces the C matrix in normal order as shown in Figure 1.  In each iteration, the algorithm

computes N values of C.  Notice that the parallel prefix sum requires log2 N communication

steps and as many addition steps.  Communication hops of up to N/2 processors are required.

a00b00

c00

a01b10

c01

a02b20

c02

a03b30

c03

a10b01

c10

a11b11

c11

a12b21

c12

a13b31

c13

a20b02

c20

a21b12

c21

a22b22

c22

a23b32

c23

a30b03

c30

a31b13

c31

a32b23

c32

a33b33

c33

Figure 1: Illustration of matrix multiplication using parallel prefix sum
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(a) Initial layout (b) Parallel prefix sum (c) B array shifted north

The algorithm is shown below:

For i = 0 to P – 1

STEP 1 (Multiplication): ctemp = a * b

STEP 2 (Parallel Prefix Sum): Sum ctemp in row j  into c in column (i+j ) mod P

STEP 3 (Communication): Shift each b one processor north
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In each iteration, the algorithm calculates nxproc values of C.  On the 0th iteration the diagonal

elements of C are calculated, on first iteration the elements one to the right of the diagonal are

calculated, and so on.

3.2  Algorithm 2: Systolic Processing

This algorithm requires that the matrices A and B be initially loaded in a shifted order.  Each row

of A is shifted east until each diagonal element aii  is on the eastmost edge of the processor array.

Similarly, each column of B is shifted south until each diagonal element is on the southmost

edge, as shown in Figure 2.

Starting from the initial layout, successive layouts are shown after each communication step in

the first iteration of the loop.  The value cij  is computed on processor Pij .  For example, c00 is

computed by calculating the products a01b10, a02b20, a03b30, and a00b00 and accumulating the

sum in four successive iterations of the loop on processor P00.
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Figure 2:  Illustration of matrix multiplication using the systolic method

(a) Initial data layout (b) A matrix shifted west (c) B matrix shifted north
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The algorithm is shown below:

For i = 0 to P–1

STEP 1 (Multiplication): ctemp = a * b

STEP 2 (Addition): c = c + ctemp
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STEP 3 (Communication): Shift each a one processor west

STEP 4 (Communication): Shift each b one processor north

This and other such systolic algorithms can be designed using the method described in [2].

3.3  Algorithm 3: Broadcast 

This algorithm, reported by Fox [1], begins with matrices A, B, and C all stored in normal order.

As in algorithms 1 and 2, cij  is computed on processor Pij .  For example, c00 is computed by cal-

culating the products a00b00, a01b10, and a02b20, and a03b30 and accumulating the sum in 4

successive iterations, as described in the algorithm below and illustrated in figure 3.

For i = 0 to P–1

STEP 1: (Broadcast) Broadcast a from column (i + j ) mod P into atemp 

across each row j  of processors

STEP 2: (Multiplication) ctemp = atemp * b

STEP 3: (Addition) c = c + ctemp

STEP 4: (Communication) Shift each b north one row
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Figure 3: Illustration of matrix multiplication using broadcast

(a) Initial data layout (b) Broadcast of A matrix (c) B matrix shifted north
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4    Memory Access Optimizations
As shown in Table 1, a PE memory access is an especially expensive operation on MasPar ma-

chines.  Memory accesses are incurred in accessing data items for computation as well as for

memory–to–memory  communication between PEs.  The total cost of memory accesses in a par-

allel program can be minimized by reducing  the number of memory accesses and/or the average

cost of each access. In this section we describe memory access optimization techniques which go

beyond compiler optimization and require special programming.  All of the psuedocode in this

section represents operations performed simultaneously on all PEs, for submatrix multiplication.

4.1  Software Pipelining –– Reducing the  Cost of Each Access

The cost of memory accesses can be reduced by ‘‘hiding’’ it behind other  computation or com-

munication operation; that is, by overlapping memory operations with other computation or

communication using software pipelining.  On the MasPar, if a PE memory load or store is fol-

lowed by another operation that does not use the registers involved in the load or store, then the

second operation can begin before the memory operation finishes.  Consider the code fragment

in Figure 4:

register a, b, c;

for i = 0 to M–1
for j = 0 to M–1

begin
c = C(i,j)
for k = 0 to M–1

begin
a = A(i,k)
b = B(k,j)
c += a * b
end

C(i, j) = c
end

Figure 4: Basic submatrix multiply

Elements of the A and B arrays are used in floating point operations immediately after they are

accessed, so the floating point operations cannot start until the memory accesses are complete. 
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But by suitable reprogramming of the loop, each fetch can be started some time before the data

is actually needed, as shown in Figure 5:

register a0, a1, b0, b1, c;

for i = 0 to M–1
begin
for j = 0 to M–1

begin
c = C(i, j)
a0 = A(i,0)
b0 = B(0,j)
for k = 0 to M–2 by 2

begin
a1 = A(i,k+1)
b1 = B(k+1,j)
c += a0 * b0
a0 = A(i,k+2)
b0 = B(k+2,j)
c += a1 * b1
end

a1 = A(i,M–1)
b1 = B(M–1,j)
c += a0 * b0
c += a1 * b1
C(i, j) = c
end

end

Figure 5:  Submatrix multiply with software pipelining

The second loop executes faster on the MasPar for two reasons.  The main reason is that

memory accesses are overlapped with floating point computations.  The computations for c +=

a*b can be started while the immediately preceding accesses of arrays A and B are still in prog-

ress.  Another relatively small gain is made because the inner loop is unrolled to a depth of 2,

thus saving some loop overhead.  In practice, code should be written so that four memory ac-

cesses are started at a time, since the MasPar architecture allows that many pending memory op-

erations.
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4.2  Register  Window  Technique – Reducing the Number of Accesses

The register window programming technique is used to reduce the number of memory accesses. 

We will describe the technique using the same example of submatrix multiplication C = A*B.

As shown in the basic loop (Figure 4), ordinarily a register is assigned to an element of C which

is accessed in all iterations of the inner loop.  In this technique, a register window slides over the

C matrix, keeping  the first W  elements from the row in registers, then the next set of W ele-

ments in registers, and so on.

The advantage of the register window technique comes from the fact that it allows the use of one

load in place of W loads.  In the basic  matrix multiplication loop, one element of the C matrix

is completely calculated at a time requiring accesses to  elememts of the A matrix  across a row

and elements of the B matrix  down a column. Using the register window technique, once an ele-

ment of the A matrix  is loaded into a register, it is used W times in computations of the W ele-

ments of the C matrix stored in the register window.  Thus, having W elements of the C matrix

in a register window reduces the number of loads for elements of the A matrix by a factor of W.

A rearranged loop using a register window of size W is shown in Figure 6.  To simplify the illus-

tration, a set of registers for the register window is treated as an array c().
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register a, b, c(W);

for i = 0 to M–1
begin
for j = 0 to M/W–1

begin
for p = 0 to W–1

c(p) = C(i, j*W+p)
for k = 0 to M–1

begin
a = A(i, k)
for p = 0 to W–1

begin
b = B(j*w+l, k)
c(p) += a * b
end

end
for p = 0 to W–1

C(i, j*W+p) = c(p)
end

end
Figure 6:  Submatrix multiplication with register window technique

4.3  Reducing  Memory  Access Overhead  for  Communication

There is another way to reduce the number of memory operations in all of the parallel algorithms

described above.  Each algorithm performs some computations with the elements of A, B, and C

on each processor, and then communicates A, B, or both in some direction.  For example, the

systolic algorithm computes C += A*B on each processor, and them moves the A submatrix

each one processor to the west, and the B submatrix each one processor to the north.

For each element of a submatrix, there is a last computation involving the element.  Immediately

after that computation, the element is still in a register, and may be sent to the appropriate neigh-

boring processor.  Following this strategy makes it unnecessary to again fetch the element from

memory later when it must be communicated.  The receiving processor still must perform a store

operation to store the element in memory.
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5    Performance Analysis

The following formulas for the execution time of the three algorithms are useful in analyzing the

performance of the algorithms and the effectiveness of optimizations.

T1 =  P [M3(Tm + Ta + 2Ts) + M2((log P)(Ta + Tc) + Tx + 3Ts) ]

T2 = P [M3(Tm + Ta + 2Ts) + M2(2Tx + 6Ts) ]

T3 = P [M3(Tm + Ta + 2Ts) + M2(Tc + Tx + 6Ts)] 

where

N : length of the matrices A, B, and C

P : length of the PE array

M : length of a submatrix on a PE (N/P)

Tm : time for floating point multiply

Ta : time for floating point add

Ts : time for memory load or store

Tx : time for nearest–neighbor communication

Tc : time for non–nearest–neighbor communication

These approximate formulas follow from the algorithm descriptions from section 3, but a few

comments will make them clearer.  The M3 terms in each formula comes from the cubic opera-

tion of submatrix multiplication.  The 2Ts associated with M3 in each formula comes from load-

ing elements of the A and B submatrix.  The Ts associated with M2 comes from loading and stor-

ing elements of the C submatrix, and the fact that communicating a matrix element from one

processor to another requires a load at the source and a store at the destination.
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Notice that the parallel prefix sum in algorithm 1 takes logarithmic time in the length of the PE

array, not the length of the matrix multiplied.  For any real machine, the log term becomes a con-

stant (6 or 7 in this study).  On a fixed–size machine, the behavior of the three algorithms is

asymtotically identical as problem size grows.  Indeed, any reasonable parallel algorithm based

on normal serial matrix multiplication (i.e. not based on methods such as those proposed by

Strassen, Winograd, etc. [3]) will have an execution time of order N3.  Reducing execution time

becomes a problem of reducing constants.

It turns out that reducing the execution time spent on memory accesses is crucial.  A memory

access takes a significant fraction of the time required for a floating point operation, and the for-

mulas above show that memory access times appear with the cubed terms. Table 2 shows the

percentage of execution time saved by applying software pipelining and also the cumulative sav-

ings by applying all three optimizations to algorithm 2 for a variety of problem sizes on the

MP–1 and MP–2.

Pipelining (MP–1)

Pipelining (MP–2)

512 1024 1536 2048 2560 3072 3584 4096
Matrix Size

Optimizations

40.8 42.4 43.8 44.034.6 43.2 44.3 44.5

Table 2:  Percentage Reduction of Execution Time from Optimizations (Alg 2)

   All (MP–1)

   All (MP–2) 44.2 48.6 49.1 49.4 49.6 49.7 49.8 49.8

28.3 26.1 25.2 24.8

15.1 17.9 18.9 20.119.7 20.3 20.6 20.7

––– ––– ––– –––

Another interesting observation, as shown in Graph 1, is that minimizing memory access time on

the MasPar can be even more important than the choice of a superior parallel algorithm.  The

formulas suggest that algorithms 2 and 3 should outperform algorithm 1, the parallel prefix algo-

rithm, and they do if the same level of optimization is used.  However, the software pipelined

version of algorithm 1 has a significantly lower execution time than the normal versions of the
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other two algorithms for large problems.
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The effects of the interleaved communication and register window technique (in addition to soft-

ware pipelining) are not as big, but still significant.  The percentage effects of each diminish as

problem size increases.  For interleaved communication, this is because it affects only the

squared terms of the execution time.  For the register window technique, this is because it re-

duces only the loads of elements of A by a constant factor.  The loads of B still increase as a cu-

bic function.
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Interprocessor communication plays a secondary role and affects performance only slightly in

any of the three algorithms.  Tables 3 and 4 show the percentage of execution time spent on in-

terprocessor communication for the three algorithms on the MP–1 and MP–2, respectively.  The

fully optimized version of each was used for algorithms 2 and 3; only software pipelining was

applied to algorithm 1.  Where memory accesses were necessary for communication, they were

counted as communication overhead.  The systolic communication pattern of algorithm 2 is

clearly the least costly for all problem sizes.  Incidentally, the broadcast algorithm uses more

memory to store a copy of the A submatrix.

Algorithm 1

Algorithm 2

1024 2048 3072 4096Matrix Size 
Algorithm

Table 3:  Communication as Percentage of Execution Time (MP–1)

Algorithm 3 *

31.7 21.2 15.9 12.7

5.4 2.7 1.8 1.4

10.0 5.3 3.6

Alg 1

Alg 2

512 1024 1536 2048 2560 3072 3584 4096
Matrix
   SizeAlgorithm

Table 4:  Communication as Percentage of Execution Time (MP–2)

Alg 3

13.1 10.0 6.9 5.2 4.3 3.6 3.1 2.7

39.7 33.0 26.6 22.6 19.0 17.1 15.5 13.4

23.6 16.0 11.8 9.4 7.9 7.0 6.1 *

* Not enough memory was available to run a problem of this size.

Finally, Graph 2 shows the performance in Mflops for the fastest algorithm (systolic) on the

MP–1 and MP–2.  Mflops were calculated from the execution time and the number of floating

point operations required to calculate the matrix product.  



15

L

L

L

L

L

L
L

L

M

M

M
M

600

800

1000

1200

0 1024 2048 3072 4096

♦ – MP–1

M
flo

ps

Matrix Size

+ – MP–2

Graph 2:  Performance of Fully Optimized Algorithm 2



16

6    Conclusions
This paper describes memory access optimization techniques that are highly effective on MasPar

machines.   A software pipelining technique makes use of a buffering mechanism which allows

pending memory accesses.  The software pipelining technique overlaps memory access with

computation or communication and thus reduces the overall execution time of the program.

Another optimization called the register window technique can be applied  to reduce the number

loads in a loop.  A buffering mechanism for pending memory accesses and a large number of

registers are becoming commonplace in modern parallel computers based on load/store proces-

sors and we expect that techniques such as described here will have increasing importance for

high performance computing.  It is shown that for a highly computation intensive problem like

matrix multiplication, the interprocessor communication can become a secondary issue com-

pared to memory access optimization.  

In a parallel computer the problem size can be expected to grow far beyond the number of pro-

cessors.  As this happens, the parallel complexity of an algorithm, where the number of proces-

sors is assumed to grow with the problem size, can lose its significance. The paper shows an in-

teresting result where a software pipelined implementation of an order N log N algorithm out-

performs a plain implementation of a superior algorithm of order N.  

A detailed performance analysis of matrix multiplication is provided on MasPar MP–1 and

MP–2 machines. Using the example of matrix multiplication, it is shown that  the memory ac-

cess optimization techniques provide  substantial improvements beyond what is possible through

compiler optimization.
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