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CHAPTER 1. INTRODUCTION

Let M,(¢) be the ring of n x n matrices with entries from a field ¢. In
a paper published in 1950, Amitsur and Levitzki [5] showed that Sp.(z1,...,2s)
= YreSy, 890(7).[T1.@2...T2n|x vanishes for any choice of My,..., My, € My(9).
This ‘multilinear identity’ is known as the standard identitiy of the n x n matrices.

On June 6-8, 1956 a conference on linear algebra was held in Long Island, New
York by the Division of Mathematics of the National Academy of Sciences-National
Research Conference. In this conference, Kaplansky [11] proposed twelve problems
in the theory of rings. One of the mentioned problems was the following: “Let A,
denote the n x n total matrix algebra over a field. Does there exist a polynomial
which always takes values in the center of A, without being identically zero?”
The problem was stated carelessly since the constant polynomial or the constant
polynomial added to the standard polynomial provides an answer to the problem.
Moreover, the well known polynomial (zy — y:z:)2 solves the problem for n = 2.

To avoid the above mentioned trivial cases, Kaplansky [12] rephrased the problem
in 1970 as follows: “Let A, denote the m x n total matrix algebra over a field,
n > 3. Does there exist a homogeneous multilinear polynomial of positive degree
which always takes values in the center of A, without being identically zero?” The

same problem was also brought up in the 10-th All-Union Algebra Colloquium,



which took place on September 20, 1969 in Novosibirsk, Russia. In July 1972,
Formanek [7] showed that the answer to the Kaplansky’s problem is positive by
constructing a central identity of degree n(n+1) for each algebra Mu(¢). In
December of the same year, Razmyslov [16] found a ‘finite generating set’ for the
identities of Mj(¢), i.e., the identities of the matrix algebra of the second order over
a field of characteristic zero. In 1973, Razmyslov {17] also constructed a new central
identity of degree 3n? — 1.

However, despite all the above and other attempts, the problem of describing
all the identities and central identities of M,(¢) for n > 3 has remained an open
problem for many years. In this paper, we will describe a powerful method which
enables us to find an ‘independent generating set’ for all the identities and central
identities of degree m < 9 of the algebra Mj3(¢), where ¢ is a field of characteristic
zeroor p > m.

The method requires knowledge of the group representation theory and relies
heavily on computational techniques. It is worth mentioning that the method was
first used to find a set of independent multilinear identities of the M,(@) algebra,
where @ is the field of rationals, and then the result was checked by comparing the

identities with Razmyslov’s identities.



CHAPTER 2. PROCEDURE

Basic Definitions and Concepts

Let ¢ be an associative and commutative ring with identity element 1. A

¢-algebra is a ring R with identity element 1z such that:

(z) (R,+) isa unitary ¢-module (2.1)

(11) a(rs) = (ar)s = r(as) forall a€¢ and rs € R (2.2)

Let X ={ z, } be an arbitrary set of symbols. we shall refer to the elements
of X as variables. Now, we use juxtaposition on the elements of X to build up all
possible finite sequences of the elements of X. We add parentheses to the sequences
to make them admissible for a binary multiplication. Two sequences are equal if
they are the same in every way. For example, the sequences (z1z;)za, ©i(®2z3),
and (z,%z3)zs are all distinct. Such admissible sequences may be referred to as
nonassociative sequences or words. Let W[X] be the set of all finite nonassociative
words created from the set X and @[X] be the set of all linear combinations of
elements of W[X] with coefficients from ¢. The elements of W[X] and ¢[X] are
respectively called the nonassociative monomials and the nonassociative polynomials

from the set X.

The degree of z; € X' in a monomial f is the number of times z; appears in



f. The degree of f is defined to be the sum of the degrees of all the variables that
appear in f. If f is a monomial in n variables z;,...,2,, and the degree of «;
in f is ki, then we say that f has type [ki,...,kn). For example, the monomial
f(z1, 22, 23,24) = (@1(z324))z1 has type [2,3,0,1]. The degree of a nonassociative
polynomial is the maximum degree of the degrees of all the monomials that appear in
the polynomial. For example, the degree of f(z1,22,23) = (ziz2)zs + 2} + z3(ziz))
is 5. A multilinear monomial is a monomial of the type [ki, ..., kn], where & < 1
for i=l,...,n.

A polynomial is said to be homogeneous in z; if z; has the same degree in all
of the monomials appearing in the polynomial. A polynomial is called homogeneous
if it is homogeneous in each variable. A homogeneous polynomial in which every
monomial is multilinear is referred to as a multilinear polynomial. One can always
express a polynomial f in the form f = f; + fo + ... + fx, where each f; is
homogeneous. Each f; is called a homogeneous component of f. If f =3 ou;
and g = ¥ Biv; are any two elements of @[X], the sum of f and g is obtained by

adding coefficients of identical terms, and their product is given by:

fg = Y aiBi(ui)(v;) (2.3)

The ring @[X] is called the free nonassociative algebra on the set X over ¢. Recall
that the center C(R) of a nonassociative ring R is the set of all elements ¢ € R

satisfying the following conditions for all a,b € R:
(1) ca=ac (2.4)
(17) (ca)b= c(ab) (2.5)
(72) (ac)b= a(ch) (2.6)



() (ab)c = a(bc) (2.7)

Now suppose f = f(z1,...,2s) is a polynomial in n variables. f is said to be
an identity of the ¢-algebra R if f(zy,..,2,) =0 for any choice of z,...,z, € R.
We may also say that R satisfies the polynomial f. f is called a central identity
of the ¢-algebra R if f is not an identity, and f(=z4,..,2,) € C(R) for all
TyyeeyZn € R,

Let A ={fi1,..., fr} be a set of polynomials of @#[X]. The T-ideal generated
by A is the ideal of ¢[X] generated by {fi(y1,..,¥n;) | 2 = 1,...,k and y; €
#[X] for j =1,..,n;}. The elements in the T-ideal generated by A are called
the identities implied by A. An identity of a ¢-algebra R is said to be minimal if
it is not implied by a set of identities of R of lower degrees. Two identities f and
g are said to be equivalent if f implies ¢ and vice versa. Similarly, we can define
minimality and equivalence for the central identities.

In this chapter, we will give a complete procedure which enables us to find all
the multilinear identities and the multilinear central identities of degree n < 8 or
perhaps higher of the ¢-algebra Ms(¢), where ¢ is the field of rationals or Zp;
p is any prime greater than 7 and M3(Q) is the ring of all 3x3 matrices with
entries from ¢. In chapter 4, we will prove that every identity or central identity of
the above algebra is implied by the set of multilinear identities or central identities
computeci by the procedure. Consequently, it is sufficient to find only the multilinear
identities and central identities.

The concepts related to the group representation theory of the symmetric group
of n objects S, play a very important role in the theory behind our procedure.

The detailed proofs of all of the theorems are given in the last chapter. But before



we state the procedure, we need a few basic definitions and concepts from the group

representation theory.

A frame of degree n consists of n  boxes arranged in such a way that
my > my > ... > m,, where m; denotes the length of the i-th row for ¢t =1,...,

Thus for a frame with r rows and n boxes, we have:
m+..4+m = n (2.8)

We shall refer to such a frame by (mg,...,m,). Suppose two frames F' and F' are
respectively given by (my,...,m,) and (mi,...,m}). Then we say that F' > F' if the
first nonzero m; —m! is positive. The frames of a given degree n are always listed

in decreasing order. Below, we have listed all the frames Fyirqt, ..., Flase of degree 5:

Fy: I [ | T

P S

F32 [

Fq! [

,__,
—_——
—_—
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A tableau of degree n is created by putting the numbers 1 to n into the
n boxes of a frame. A standard tableau is a tableau in which the numbers are
increasing in every row from left to right and in every column from top to bottom.
We only need to number the standard tableaus for the theory of group representation.
We shall enumerate the standard tableaus in the ‘systematic’ or ‘dictionary’ order.
The ‘nonstandard’ tableaus are not numbered. As an example, we have listed all

the standard tableaus T7,...,T of the (3,2) frame.

h: [L][2](3]
[4][5]

Tyt [1][2][4]
[31(5]

Ty [112][5]

[3](4]



Ty: [1]{3][4]
[2](5]
Ty : [1][3](5]

[2][4]

A permutation 7 € S, applied to a tableau T is simply a renumbering of the
boxes in T and is denoted by #T. For example, let T; be the same as in the

above example. Then the tableau (1 2 4)T is given by:

[2][3](5]
[4](1]

A permutation is said to be a horizontal permutation or operation for a tableau
T if it interchanges only the numbers of each row amongst themselves. We may
also say that such permutation is a ‘p’ for T. Similarly, we can define a vertical
permutation ‘q’ for T. The set of all horizontal permutations of a tableau T' forms
a group which we shall refer to by P. The same fact holds for the set of all vertical
permutations of T which is referred to by @. Obviously, the only permutation

which is both a ‘p’ and a ‘g’ for a given tableau is the identity permutation, i.e.,
PNnQ ={I} (2.9)

One may observe that if a permutation r moves a number from the (ij)-th position

( i.e., the intersection of the i-th row and the j-th column) of a tableau T to

1

the (kl)-th position, then the permutation 7rw~! moves whatever number is at



the (z7)-th position of 7T to the (kl)-th position. Thus we have the following

result:

Theorem 2.1. If 7 is a horizontal (vertical) permutation for a tableau T, then the

permutation 7rm~! is a horizontal (vertical) permutation for the tableau 7.

For a tableau T construct:

P =>p and Q = ) sgn(q).q (2.10)

q
The sums are taken over all horizontal and vertical permutations of T respectively.
Now we define:
e = PQ = ) sgn(q)-pq (2.11)
rq
The sum is taken over all permutations of the form ‘pg’. For instance, for the

tableau

T, = , we have:

[1][3]
[2](4]
o= {1+(13)+(24)+(13)24) }{I-(12)-(34)+(12)(34)}

One should also note that a permutation can be expressed at most in one way

in the form ‘pq’ since pyq; = pzq2 implies that p;~'p; = goq:7!, and it follows

from (2.9) that py =p, and ¢ = g,.
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Theorem 2.2. Let T be a tableau with corresponding groups P and @. Then
(1): pP=Pp=P and (2): Qg=4qQ = sgn(q)Q-

Proof. (1): For any p € P, themap f: P — P given by f(p') = pp' is
one to one and onto. This implies that pP = P. Similarly, we have Pp = P.
(2): Let g € Q. Asin above, we can show that ¢@Q and Qg reproduce all the

vertical permutations. Then

Q@ = q sgn(q)q
q'e@

> sgn(q')ag’

Similarly, we have Qg = sgn(q)Q.

We can combine Theorems 2.1 and 2.2 to prove the following result.

Corollary 2.3. Let T be a tableau of degree n and 7 € S,. Then P' = #nPr7!,
Q' = 7Qn~! and € = wer~!, where P',Q@’', and € correspond to the tableau

T =nT.

Remark 2.4. pgqT means first apply a vertical permutation ¢ to the tableau
T and then apply p to ¢T. Obviously, p may not correspond to a horizontal op-

eration for the tableau ¢T'. It is, however, correct to say that pqT is obtained from
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T by first applying a horizontal permutation and then applying a vertical permuta-
tion. By Theorem 2.1, pgp~! is a vertical permutation for the tableau pT. Thus
the tableau pgT' may be obtained by first applying a horizontal permutation p to

T and then applying the vertical permutation pgp~! to pT, i.e., pgT = (pgp~*)pT.

Let F' be a fixed frame of degree n and T; and T; be any two standard
tableaus belonging to F. The permutation that takes T; to T; is denoted by Si;

or S;;. In other words:

S5iT; = To (2.12)
The inverse of S;; is denoted by S;;~!, and we obviously have:

Sy~ = Sy (2.13)
Corollary 2.3 gives us the following useful formula:

& = 5i&5;i (2.14)
Multiplying both sides of the above on the right by S;;, we get:

€5 = SiE; (2.15)

Of course, the above relations remain valid if we replace € and € by ce; and cgj
respectively, where ¢ is any nonzero constant. For reasons which will be mentioned

in future we take ¢ = where d is the dimension of the left ideal generated by

Ei)
e, and n is the degree of the frame. Now, for a tableau T; define:

e = %= (2.16)
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Then equations (2.14) and (2.15) can be rewritten as follows:
e = Sije;Sji (2.17)

e,'S,-,- = S.'jej (2.18)

Sometimes we may use a superscript to differentiate between the e;5;;’s be-
longing to the standard tableaus of different frames. For example, e;*S; L belongs
to the k-th frame. If we are working with the standard tableaus of a certain frame,
then for simplicity the superscript may be omitted from the notation.

In chapter 5, we will show that all the e;S;;'s of the standard tableaus of all the
frames of a given degree n are linearly independent, and therefore, it is reasonable to

express the multilinear identities and the central identities in terms of these elements.

General Approach

Our ultimate goal is to give a procedure that will enable us to find all the
multilinear identities and the multilinear central identities of degree n < 9 of
the Q@-algebra Ms(@). The field of rationals  may be replaced by any field of
characteristic p > 7. In this chapter, we will use ‘¢’ to refer to @ or Z,.

As we mentioned in the previous section, and we shall prove in chapter 4, it is
sufficient to find only the multilinear identities and the multilinear central identities.
Also, since the matrix rings are associative, we can drop the parentheses in the con-
struction of the polynomials of the identities. A multilinear identity or a multilinear

central identity of degree n is a polynomial of the form:

Z Qr[T1.Z2...Tn)r for some a,’'s € ¢ (2.19)
TESR

.o
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or equivalently:

E a,r[w,r—l(l).w,r—l(z) m.,,-x(n)] (2.20)
WeSn

The above multilinear polynomial identity can be represented by the following:

> anw (2.21)

TESn

If I(zy,..,z,) is an identity of degree =, then so is Im(zy,..,2n) =
I(@r-1(1); sy Tx-1(n)) for any permutation m € S,. If g is a linear combination
of permutations, i.e., it is of the form g = 3 s a,m for some a,'s € ¢, then
Ig(zy,.oy@n) = Yres, Ond(ZTr-1(1), oy Te-1(n)) I8 also an identity. We say that
a set of multilinear identities Ii(x1,...,2n), ..., I(1,...,@n) is independent under
substitution if for any choice of g¢i,...,gx of linear combinations of permutations of
Sny, hig1(z1y ey Tn) + oo + Iege(z1, ...y n) = 0 would imply that Iigi(z1,...,2n) =
. = Ligi(z1, ..., zn) = 0. A set of multilinear identities which is independent under
substitution and generates all the multilinear identities of degree n 1is called an
independent generating set for all the multilinear identities of degree n. Similarly,
we can define an independent generating set for all the multilinear central identities
of degree n.

When we speak of the identities of a given frame, we mean all the multilinear
identities of the form (2.21) which can be written as a linear combination of the
€;Si;’s of all the standard tableaus of that frame. In the last chapter, we will prove
that all the multilinear identities of all of the frames of a given degree n together can
generate all the multilinear identities of degree n. Furthermore, we will show that
identities computed by the procedure are independent under substitution, and they

do indeed form an independent generating set for all of the identities of degree n. We
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will also show that the same argument holds for the multilinear central identities. In
this section, we will discuss a general method of finding all the multilinear identities
of a fixed frame. The method is analyzed in more detail in the next section.

Let F be a fixed frame of degree n with f standard tableaus T3,...,TY.
Define:

Ey = exSn k= Lo f (2'22)

In chapter 5, we will show that every multilinear identity or central identity of
a frame F may be expressed as a linear combination of the E}’s of that frame.
If g = Yres, @nm, then by [zy..2,)g, we mean 3 .cs. ar[z1.2..Tn]x. Then a
multilinear identity of the given frame is of the following form:

f
I(@1, y@a) = D axley...aalm, (2.23)
k=1
which is satsfied by any choice of n 3x3 matrices My,..., M,. We may also refer

to an identity of the form (2.23) by i, axBr. Now let:
hi(My, ..., My) = [My...M]g, (2.24)

Thus we want to find coeflicients aj,...,n € ¢ not all zero such that the

following relation holds for any choice of n random matrices M,..., M, € Ms(¢).
f
Y ophe(My, .. My) = 0 (2.25)
k=1

Our process requires several choices of sets of 3 x 3 matrices, {My, ..., Mn},
{My,..,M'}, ... . For brevity, we will refer to Ax(Ma,..., M,) by hi, where 1

is an integer that refers to the i-th choice set of n random matrices. Thus hy
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is the evaluation of [z;...zn|g, for a fixed set of n 3x3 matrices, and Ay is the
evaluation of the same polynomial for a different set of n 3 x 3 matrices.

We note that (2.25) gives us a system of nine equations; that is, one equation
for each entry of the 3 x 3 matrix. Because of this, it is reasonable to consider the

3x3 matrices as 9 X 1 column vectors. In general, we let

mi2
mi3

my1 My My3 mMay

ma2 (2.26)

iR

mp1 M2z Ma3

M3y M3z Ma3a3 Ma3

mai

maz

m33

Returning to (2.25), our problem simplifies to finding the solution [y, ..., af]"

of the following system, where [...]T denotes the transpose of [. . .].
hu hlf (24] O
= (2.27)
hei v heg ajf 0

Solving the above system of equations is equivalent to finding the nullspace of
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the following matrix:

(2.28)

Each row of the matrix of (2.28) is evaluated for a set of n 3 x 3 random
matrices, and therefore, it represents nine equations. As a result, for all practical
purposes, it is regarded as a (9r) x f matrix. The number r is the number of
trials, and it should be chosen large enough to make sure that the defined matrix has

reached its maximum rank.

Procedure to Find All the Multilinear Identities of Degree N

As one may expect, the procedure involves extremely tedious and time consum-
ing computations. Therefore, the only practical way of handling the problem is by
computer. The procedure is originally designed to find an independent generating
set for all of the multilinear identities of the Q-algebra M;3(Q). Unfortunately,
the numbers get larger as the degree of the identities gets larger. In general, one
may encounter roundoff error or some type of numerical problem when the degree n
becomes larger than 7. However, since the procedure is valid for any field Z, where
p is a prime greater than 7, one is advised to first excecute the procedure for several
primes and find all the identities of their corresponding fields. Once all the multi-

linear identities of several of the Z,-algebras of the ring M3(Z,) are known, one
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can compare them to find all the multilinear identities of the Q-algebra of M3(Q).
Finally, it should be mentioned that some of the steps given in the procedure may

be combined together, and some others may be divided into several substeps. Here

is the procedure.

Step 1
In this step, we create the first frame of degree n. Recall that the frames are
always listed in the decreasing order. Therefore, the first frame F is the ‘horizontal’

frame or the frame [ ][ |...[ ]. This step initiates the procedure and is excecuted

only once.

Step 2

Given a frame of degree n, we create the next frame of that degree. In general,
one has to execute steps 3 to 9 to find all independent multilinear the identities of
a fixed frame. Then one needs to create the next frame and find all the independent

multilinear identities of the new frame and so on.

Step 3
We create all the standard tableaus of a given frame. In order to keep track of

all the standard tableaus, one should create them in the dictionary order and then

store them in T3,...,T}.

The next step is the most complicated of all the steps, and therefore, it should be

treated with tremendous care. The following lemma is used to justify the calculations
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involved in the next step of the procedure.

Lemma 2.5. T, . 597(9k)PkqkSk1 = Yres, QnT, Where an = sgn(qe) if =Ty
can be obtained from T, by applying a row operation followed by a column oper-
ation, and o, is zero otherwise. p, and ¢ respectively denote horizontal and

vertical permutations for Tk.

Proof. Given 7 € S,, we have:

7 is of the form piqrSi1
= peqpStTy =Ty
= prqely =Ty

o peqepr peTk = T4

Thus 7 is of the form prqrSk if and only if #T; can be obtained from T} by a
row followed by a column operation. If 7Ty can not be obtained from =T} by a
row followed by a column operation, then 7 is not of the form prqSk1;s0 ar =0.
Otherwise a, = sgn(qx) = sgn(di), where (gi) is the unique column permutation

for 7T} which moves numbers to the same row they occupy in T.

Step 4
For a frame with f standard tableaus, we create E; = e, Sk for each

k=1,..f Recall that ex =3, sgn(qx).Peqe. Thus for each k =1,...,f, we
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have:

Ep = Y sgn(qk).prgk-Sk (2:29)

Ak _

The sum is taken over all permutations pq of the tableau Tj. According to Lemma
2.5, E;, can be expressed as Y ,¢s, 0T, where a, is either zero or sgn(gi) as
given in Lemma 2.5. A reasonable outline to compute Ej is given below. In
order to carry out this outline, one needs to write a program which creates all the
permutations of S,. More precisely, given a permutation of Sy, the program should
create the ‘next permutation’ of S,. The permutations should be created in some
logical order to avoid any repetition. One also needs a program that compares any
two tableaus T; and T} of a given frame. This program should determine whether
or not T; can be obtained from T; by applying a row followed by a column operation,
and if so, then it should determine the sgn of the column operation or sgn(di).

- (4 - 1) Create the tableau 7T} for a given 7 € Sp.

- (4 -ii) Determineif wT; is obtained from T by arow operation p followed
by a column operation gi. If so, determine sgn(di) and let a, = sgn(dk);
otherwise let a = 0.

- (4 - iii) Store the result in sgn(gi)m.

- (4 - iv) Repeat steps (4 -1) to (4 -1iii) for each 7 € Sy.

- (4 - v) Repeat steps (4-1) to (4-iv)tofind E, foreach k=1,..,f.

Step 5
In this step, we create n 3x3 random matrices. As mentioned before, it is

preferred to express each matrix as a column vector.



20

Step 6

Evaluate FE,,...,E; for the random matrices created in step 5. This is the same
as evaluating hi1, ..., hif, and therefore, it initiates the matrix given by (2.28). In
order to achieve this, one obviously needs a program which multiplies the n random
matrices in any order, i.e., a program which evaluates [My-1(1)Mp-1(2)... My-1(y] for

any T € Sn.

Step 7

Find the row canonical form of the matrix of (2.28). The objective, of course,
is to find the nullspace of the mentioned matrix for a reasonable number of trials.
The first time that the procedure is excecuted for a fixed frame, the matrix whose
row canonical form is to be computed will be the same as the one that is initiated in
step 6. The row canonical form is stored in some matrix. After that, every time
that the procedure is excecuted, the new vectors Ay, ..., h;y of step 6 are placed at
the bottom of the stored matrix, and the row canonical form of the resulting matrix

is computed.

Step 8
We return to step 5. Steps 5,6 and 7 are repeated until we are convinced

that the row canonical matrix of step 7 has reached its maximum rank.

Step 9
We find the nullspace of the final matrix. This will give us all the possible set
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of coefficients aj,...,af of FEj,..., By, and therefore a set of linearly independent
identities for the given frame. This is the only step which may not require intensive
computer calculations since the matrix obtained from step 8 is already in the row

canonical form,

Step 10

Now that a set of linearly independent multilinear identities of a given frame is
known, we can go back to the second step and repeat the procedure to find a set of
linearly independent identities of the next frame. This process is continued frame

by frame until we find all the multilinear identities.

Procedure to Find All the Multilinear Central Identities of Degree N

By definition, I(z1,...,Zn) = E£=1 [@1...zn)E, is a central identity of a given
frame if I(zq,...,zn) € C(Ma(¢)) for all @,...,2n € M3(¢) and is nonzero for
some choice of i,...,2, € M3(@$). Also it is well known that the center of a matrix
ring consists of all scalar multiples of the identity matrix. Therefore, I(z1,...,2n)
is a central identity of the ¢-algebra Mj(@) if it is not an identity and for any choice
of My,.., M, € Mj(¢), there exists a constant ¢ € ¢ such that:

I(Ally"':Mﬂ) = C'I3x3 (230)
which is the same as the following according to the notation (2.26).

I(My,..M,) = (c000c000 c)T (2.31)
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One should also keep in mind that a central identity may be expressed as a linear
combination of other identities and central identities. Let hy(My,...,M,) and hi
for a frame F be defined as before. Then a multilinear central identity of the given

frame must satisfy:

S awhi(Ms, .y My) € C(M(4)) (232)
k=1

for any choice of random matrices M,...,M, € Mj(¢). Furthermore, the left
hand side of (2.32) must be nonzero for some choice of n random 3 x 3 matri-

ces. Now, let h;(l) denote the [-th entry of the column vector hi(M,..., M,), i.e.,

hix(1)
hig = k=1,..,f (2.33)
hik(9)

If I(zy,...,2z,) is a multilinear central identity, then the following relation must

be satisfied for some ¢ € ¢:

= c.laxa (2.34)

or equivalently:



ha(l
hia (2
haa(3
hia(4
hi(5) — hia(1)
hir(6)
hit (7)
his (8)
| haa(9) = ha(1)

)
)
)
)
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hif(1)
hif(2)
hif(3)
hif(4)
hi(8) — hag(1)
hif(6)
hig(7)
hif(8)
hig(9) — hig(1)

ay

af

¥
(== o o [e=] <o <o o o

(v}

(2.35)

Obviously, any multilinear identity or central identity satisfies the last 8 equa-

tions of the above system. In fact, for ¢ = 0, the above system is equivalent to the

9 equations of the first row of the system given by (2.27). Define

ik

i h;k(g) — h.‘k(l) ]

(2.36)
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Now, consider the following system of equations:

g3 o 57 || @ 0
= (2.37)
g1 Orf Qg 0

where, as before, » is the number of trials. This system is obviously equivalent to
the system given by (2.27). Therefore, the nullspace of the left hand side matrix in
the above equation gives us all of the multilinear identities of the given frame. Let

dy be the nullity of the matrix [g;], i.e., the number of the identities and

0 0
Fik(2) hix(2)
gk (3) hir(3)
gin(4) hik(4)
gx = | gw®) | = | ha(5) — ha(1) (2.38)
ik (6) hix(6)
Gik(7) hi(7)
7(8) hik(8)
| 7(9) | hik(9) — hir(1)

From the previous remarks we know that if [e; ... a4]T is a solution of the
following system, then it could represent the coefficients of either an identity or a

central identity. Of course, once the coefficients are known, one can easily determine
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whether the polynomial is an identity or a central identity by simply evaluating the

polynomial for a few different sets of n random 3x3 matrices.

gun - g1y o 0
= : (2.39)

grr ** Orf af 0

If ey,..,a7 are coefficients of a multilinear central identity of frame F, then
they must satisfy the above system. The same same is true for any multilinear iden-
tity of frame F, i.e., any solution of (2.37) is also a solution of (2.39). Thusif d;
is the nullspace of the matrix [g;;], then we may say that there are exactly d; —d,
many ‘new’ multilinear central identities of frame F. That means all the other mul-
tilinear central identities of the given frame can be obtained from the independent
multilinear identities and the new multilinear central identities. For this reason, we
may refer to the set of all independent multilinear identities and the new multilinear
central identities of a given frame as a generating set for all of the multilinear cen-
tral identities of that frame. Of course, the ‘new’ multilinear central identities are
not unique, but one has to choose exactly d; —d; many of them, and make sure
that they are linearly independent. Now, let us summarize the procedure to find an

independent generating set for all of the multilinear central identities of a given frame.

Step 1
Use the procedure given in the previous section to find an independent generat-

ing set for all the multilinear identities of a given frame of degree =.
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Step 2
In a separate file or directory, modify the previous procedure to find the nullspace

of the following matrix for each frame.

(2.40)

gr1 ' Grf

As before, the number of trials r should be chosen sufficiently large to ensure that

the above matrix has reached its maximum rank.

Step 3

Let d be the nullity of the matrix of (2.40) less the number of independent
multilinear identities found in step 1 for a given frame. Choose d many independent
central identities from step 2. These together with the independent identities of
step 1 form an independent generating set for all of the multilinear central identities

of the given frame.
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CHAPTER 3. MULTILINEAR IDENTITIES AND CENTRAL
IDENTITIES OF DEGREE N < 8

Preliminaries

We have used the procedure described in the previous chapter to obtain an
independent generating set for all the multilinear identities and the multilinear central
identities of each frame of degree n < 9 of the Q-algebra M;3(Q) in terms of the
e;Si;’s of the given frame. In other words, we will express the multilinear identities

and central identities of a frame F, with f standard tableaus in the form:
f
Y o B (3.1)
k=1

where aj,..,a; € @, and E = ex*Si?.  For brevity, we will drop the
superscript A. Then one should remember that e;S5;;'s of different frames are
different. Furthermore, since in general, the e;’s are rather difficult to compute,
we have used the relation €;S;; = Sje; to rewrite the multilinear identities and
central identities as linear combination of the Sjje;’s of the given frame. Although
it is preferred to express a multilinear identity or central identity in the more familiar
form 3,5, axm, it is not always easy to do so. In general, this becomes a time
consuming task for the multilinear identities and central identities of degree n > 7

in which the number of terms in each e; is relatively large. In short, we will
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express the resulting multilinear identities and new multilinear central identities of
each frame in the form:
f
;aisuel (3.2)
In chapter 5, we will show that the union of the independent generating sets
of the multilinear identities of all of the frames of degree n form an independent

generating set for all of the multilinear identities of degree n.

Degree 6

There are no multilinear identities or multilinear central identities of degree
n < 6. The first multilinear identity appears in degree six. This identity, which is

given by (3.3), belongs to the eleventh representation, i.e., to the frame

Fll

[ S Y S

and is given by:

I = 5'1181 (33)

Sy is the same as the identity permutation. So the above identity can be
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rewritten in the in the simplified form ¥,cs, sgn(m)T and is a well known identity.

There are no central identities of degree 6.

Degree 7

There are six independent multilinear identities of degree 7 which together
form an independent generating set for all of the multilinear identities of degree 7.
Each of these identities can be obtained by expanding the identity (3.3) of degree
6. There are no multilinear central identities of degree 7. Below, we have listed the
identities of degree 7 in the increasing frame order. The first of the independent

identities belongs to the frame

Fll

and is given by:

I = [-3511 + 3531 + 4541 — 3561 — 4561 + 35101 + 35111 + S121 + 38131 +
S1ag —4S1sa]-e1 (3.4)

The second independent multilinear identity of degree 7 belongs to the thir-

teenth representation, i.e., the frame:
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Fia

This identity is given by:

I = [48 + 582 + 683 — 5851 + 4861 + 5Sa1 + S101 — S111 + 5121 —
S131 — 4S5u,).e (3.5)

The next three identities belong to the frame

Fig [ ]

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

and are as follows:

I = [521 -+ 541].81 (36)
I = [Su -+ 531 + 551].61 (37)
I = 56181 (3.8)

The last independent multilinear identity of degree 7 belongs to the frame:
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——— s —— ——— — —

and is given by:

I = Sne (3.9)

Degree 8

Identities

There are exactly 43 independent multilinear identities of degree 8. However,
due to the length and number of these identities, we have decided to list only two of
them. These two identities together with a new multilinear central identity which
is mentioned later in this section form an independent generating set for all of the

multilinear central identities of the representation 15, i.e., the frame

Fis

The two identities are given below by (3.10) and (3.11).
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I = [-22481; — 42255 + 1325 — 25254 + 55Ss; — 4408s ~ 2805y —
20153 — 24S¢1 + 135101 + 208111 — 246515 — 313S1a; — 6054y + 1438151 +
2235161 — 205171 + 2495181 + 525101 + 1155301 — 378311 — 49521 — 2155501 +
1945501 — 75251 — 2195561 + 72527, + 965281 + 815301 + 1885301 — 67Sars +
175321 — 158331 — 7585341 + 508351 + 107531 + 37Sar1 + 301531 + 413539, +
34401 + 2038411 — 745421 — 885431 + 435441 + 405451 + 425461 + 1205471 +
29151, + 304541 + 3295501 — 768511 — 3145y + 91Sss: — 14Sses +
545551 + 2905%6,1 — 145571 — T5Sssy + 76Ssen1 + 87Se01 + 718611 + 3Se2,1 +
328631 — 378641 + 34Ses,1 + 20Ses,1 — 91Se7,1 — 106Ses1 — 54.5e9,1].€1

(3.10)

I = [-1725; — 1365y — 13283 — 12654 — 19551 — 118561 — 8057, —
69581 — 30891 + 775101 + 435111 — 245121 — 475131 + 65141 + 375151 + 29516,1 +
565171 + 755181 + 38S51s,1 — 255201 — 538211 — 955231 — 735231 — 68524, —
49S555,1 — 515261 — 185271 +125281 + 27529,1 + 46S530,1 + 31531,1 + Saz,1 + 155331 +
215341 + 225351 + 195361 — Sarg + 595381 + 915391 + 565401 + 85541 +
25421 — 565431 —TSaa — 45451 + 125461 + 425471 + 335481 + 565491 + 13Sk0,1 —
148511 — 28552,1 — Ss3n — 45541 — 2556,1 — 45571 — 335581 — 405591 — 33560,1 +
Se1,1 — 57Se2,1 — 685631 — 535641 + 2S65,1 + 52566,1 + Se7,1 + 165681 — 54570,1].€1

(3.11)

The remaining multilinear identities, which are not mentioned here, are obtained
by the exact same procedure as the other identities in this paper. Further compu-

tations show that all of these identities are consequences of the standard identity of



33

degree 6. Thus every identity of degree < 9 is implied by Se(z1,...,zs).

Central Identities

The multilinear central identities appear for the first time in degree 8. The first
two multilinear central identities belong to the representation 14, i.e., to the frame

Fi4 or:

,_,_.
——

—— ey — —y

These two central identities are given below by (3.12) and (3.13), and together
they form an independent generating set for all the multilinear central identities of

the frame Fj4 of degree 8.

I = [-4078, — 5185y — 8145, + 444Ss + 2595y — 22255 -
2595s; + 4448101 + 407511y + 259512, + 3335131 — 481S14; — 22255, +
1115161 + 629517, + 11105181 + 37S101 — 9995201 — 555521, — 1488y, +
370531 — 518Sp41 — 259Sy1 — 8145261 — 5925571 — 481Sm1 + 259Ss01 —
1488304 — 296531, — 1858331 — 481533y + 1858a41 — 629535, — 14853, -+
40754374 _ 11478351 — 9255301 + 2225401 — 5555411 + 8335421 + 2595451 —
148544, — 10735451 — 1858461 — 6665471 — 96254 + 3335401 — 4445501 +
TT7Ss11 + 5188521 — 2968531 — 9255541 — 370Ss51).e1 (3.12)
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I. =2 [-1245y — 3183 — 12553 + 6754 — 8555 — 26286 — 23257 +
3158 — 23501 — 1728101 — 246511, — 2225121 — 149131 — 42S1a; + 31Sis1 +
875161 — 222517,1 — 3555181 — 515101 + 272520, + 255521,1 — 115221 — 145531 +
945324,1 + 125351 + 1525326,1 + 1015271 + 135281 — 675201 — 1365301 + 73531 +
25532,1 + 135331 — 955341 + 175361 — 3153631 — 465371 + 1965381 + 1605391 —
91540, — 405411 — 104545, — 112543, — 1154471 + 2095451 — 225471 + 1115451 —
164540, + 125501 — 2418511 — 209552, — 225531 + 220541 — 185Ssea].ex

(3.13)

There are three independent multilinear central idetities in the fifteenth repre-

sentation of degree 8, i.e., the frame:

However, since there are two independent identities in the frame Fs, according
to the procedure, there is only one new multilinear central identity in the mentioned
frame. Therefore, we state only one of the central identities of this frame. This new
central id‘entity, which is given by (3.14), together with the identities (3.10) and
(3.11) forms an independent generating set for all of the multilinear central identities

of the frame Fjs of degree 8.

I. = (32281 + 34053 + 43883 + 61284 + 169Ss; — 3805, — 1657 —



35

3Sa1 + 426801 — 175101 — 2295111 + 65121 + 2935131 + 665141 + 1915151 +
495101 — 140S17; + 330S: — 1225101 + 211801 + 118mi + 14353 +
078331 + 4405541 + 555m1 — 660S:6: — 2525y — 84Sm: + 351501 +
1825301 — 37Ss11 — 97Sm1 — 378S:a: — 471S3: — 136Sws: + 47Sse1 +
050371 — 535351 — 1335301 + 4545401 — 4695411 + 225421 + 3565431 + 3154a1 —
3148451 — 305451 + 848471 + 935481 + 4005491 + 1978501 — 1545511 — 3085521 +
435531 — 3685541 + 865561 — 98557, + 15Sss. + 46501 + 285860, + 2275611 +
4535651 + T10Ses: + 119Sses — 410Ses: — 238Sees — 43Se7, — 634Sens)-en

(3.14)

The last independent new central identity belongs to the frame Fjg or:

and is given by:

I. = [4S11 + 218y + 1283 + 2184 + 7Ss1 + 2186 + 8571 + 215s +
22591 + 85101 + 7S111 + 85121 + 125131 + 38Su4.).€1 (3.15)

As we shall prove in chapter 5, all the multilinear central identities of all of the
frames of a given degree form an independent generating set for all the multilinear

central identities of that degree. Therefore, the central identities (3.12)-(3.15)
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together with the identities (3.10) and (3.11) form an independent generating set

for all of the multilinear central identities of degree 8.
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CHAPTER 4. COMPLETE MULTILINEARIZATION

In this chapter, through the process of complete multilinearization we will prove
that every identity of degree n of the ¢-algebra M;(¢) is implied by a set of
multilinear identities, where ¢ is a field of characteristic zero or p > 7. We will also
prove a similar result for the multilinear central identities. The concept of lineariza-
tion and some of the major theorems of this chapter may also be found in “the Rings

that are Nearly Associative” by Zhevlakov, Slin’ko, Shestakov and Shirshov [20].

Recall from linear algebra that the Vandermonde determinant is defined by:

1 a + o™
1 a  ap™?

V, = ’ ’ (4.1)
1 a, -+ a,™!

One can show by induction that the Vandermonde determinant of (4.1) sim-

plifies to the following product:

Vn = H(aj - a;) (4.2)
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Theorem 4.1. Let f = f(z1,...,2,,) € ¢[X] be an identity of degree n of the
¢-algebra R, where ¢ is a field of characteristic zero or prime p > n. Then every

homogeneous component of f is also an identity of the ¢-algebra R.

Proof. Let f = fo+ ...+ fr, where each f; is of degree ¢ in z;. Then &
is the degree of z; in f, and we have & <n. Let r,..,r, be arbitrary elements
of the ring R. Since ¢ has characteristic zero or greater than n, we can choose k+1
distinct elements ai,...,cx41 from ¢. For brevity, we let fi(r) = fi(r1, ..., m).

Then for each 7 =1,...,k+ 1, we have:
f(Ol,‘T‘l,T‘g,...,T‘m) = fO(r) + aifl(r) + aisz(r) + .+ aikfk(r)= 0

Hence:

- - - r -
1 Q1 O!lk fo(’i‘) 0
1 Qg agk fl('l") 0
1 app o0 apprt 11 Ji(r) ] ] 0 |

Let the matrix to the left be denoted by [A], and the middle matrix be denoted by

[F(r)]. Then we have:
[A] [F5(r)] = [0]

The determinant of [A] is the Vandermonde determinant Viy; which can be

simplified using equation (4.1). Since aj,..., k41 are all distinct, this determinant
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is nonzero. Therefore, the matrix [A] is nonsingular. Multiplying both sides of

the above equation by [A4]™!, we get:
[Fy(r)] = 0

Therefore, f;(r1,...,7m) = 0 for any choice of ry,...,7m € R and for each j =0, ..., k.
This implies that each f; is an identity of the ¢-algebrs R. Now we repeat the
same process for the identities fg,..., fr with z,, etc.. In the end, we have shown
that every fragment which is homogeneous in each of the variables is an identity.

Therefore, every homogeneous component of f is an identity.

We can modify the above theorem for central identities. But first we need the

following lemma:

Lemma 4.2. Let c¢i,...,cx € C(R). Then any linear combination of ¢y, ...,cr is also

in C(R).

Proof. Let «i,..,ar be arbitrary elements of ¢, and z € R. Then we need
to show that ajc; + ... + age, satisfies the conditions (2.4)-(2.7). Using equation

(2.2), distributivity, and the fact that c1,...,ck € C(R), we get:

(arc1 + ... +agee)e = (ancr)z+ ... + (ke )z
= ai(az)+ ... + ar(ckz)
= oy(zer) + ... + ax(zer)

= z(aicr) + ... + z(okck)
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= z(aycy) + ... + opcr)

So ajey + ... + akcr satisfies the condition (2.4). Similarly, we can show that the

associativity conditions (2.5), (2.6), and (2.7) are satisfied.

Theorem 4.3. Let f = f(z1,..,2m) € @#[X] be a central identity of degree
n of the ¢-algebra R, where ¢ is a field of characteristic zero or prime p > n.
Then every homogeneous component of f is either an identity or a central identity
of the ¢-algebra R. Furthermore, at least one of the homogeneous components must

be a central identity.

Proof. The proof is very similar to the proof of Theorem 4.1. As before, we
break f into the sum of polynomials f,..., fi, where the degree of z; in f; is 1.
Let ay,..., k41 be distinct elements of ¢. Then for arbitrary ry,...,7m € R and

for each 1 =1,...,k + 1, we have:
f(aiTI)TZa "')rm) = f(T‘) + aifl(r) + aisz(r) T+t aikfk(r) € C(R)

Thus the following holds for some co,...,cx € C(R):

1 (25 B alk - (fo(T')- -Co

1 Qg azk fl(T‘) (51

1 Qgpr 0 gpr” fk("')J K3
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[AllFy(r)] = [co ... il

Since, as in Theorem 4.1, [A] is nonsingular, we can multiply both sides of the above

system by [A]™! to get:
[F5(r)] = [A]7Yeo - c]”

By Lemma 4.2 a linear combination of elements of C(R) is also in the center
of R. Therefore, f;(r) € C(R) for j =0,..,k. Since r;’s are arbitrary, the
above equation implies that each f; is either an identity or a central identity. As
in Theorem 4.1, we continue the process to get the result. Obviously, at least one
of the homogeneous components must be a central identity. Otherwise, f is an

identity which is a contradiction.

Let f = f(z1,...,Zm) € J[X]| be a nonassociative polynomial and yi,...,yx €
X —{z1,...,em}. Then for each i =1,...,m we define a polynomial fL¥ e ¢[X]
by the following formula. The notation Z; indicates that the coefficient of z; 1is

zero, i.e., Z; = 0.z; = 0.

FLE(z1, oy @ict, Y1,¥2 5 o0 Yks Biddy ooy Trm)

= f(@1, 0y ie1, Y1 + Y2 + oo + Yk, Tit1y oory Tm)

— Xk A e @ion Y1 e T et Y Big, ey T

+ Cicas ack (@10 Ticty, Y1+ o+ T + o+ Tgg + o+ Yhy Bigt, o Em)
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+(_1)k_1 Zk=1 f(ml, vooy Limty Ygqy Tigly oeey mm)
(43)

Obviously, if f is an identity of the ¢-algebra R, then sois fL¥. It also

follows from the definition that L¥ is a linear operator, i.e.,

(fi+ f)Lf = ALY+ fLE

Lemma 4.4. Let ¢ : R X RX R X ..Xx R be afunction on n variables defined
for a ¢-algebra R. Suppose g is linear on each of its components. Then for any

r1,...,7k € R, where n < k, we have:

glri+ra+ o+ regegritrat o+ )

—Yk gt AT e Ty g TL R Ty )

+ Cicagack (Mo HFg + o T o F Tk T AT T o Ta)
+...

4 (=1)k Tk g(rg, gy ey Tq)

Z(il...in)esng(riuriz’"')rin) f n=k

0 if n <k

Proof. Because of the linearity of the function g, the left side of the equality
to be proved can be rewritten as a linear combination of the elements of the form

9(7j -y 7j,) with integer coefficients. Let s be the numberof r;’s in g(ri,,...,7i,)
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which are different. Then the coefficient for g¢(r;,,...,7;.) is

() () e )

We consider the following two cases for each element g(r;,,...,7;,).

Case 1: Suppose n < k. Since s < mn, we must have s < k, and by binomial

k—s

theorem the above alternating sumis (1 —1) which is zero.

Case 2: Suppose n = k. If s < k, then the coefficient of g is zero as we showed

in the first case. Otherwise, we have s = n = k in which case the coefficient of g

is obviously 1.

The following theorem establishes an easy way of computing fL¥ for a nonas-

sociative polynomial f.

Theorem 4.5. Let f(z1,...,zn) be a monomial of degree n in z; and ¢ =
9(Z1, oy iz, Y1,Y2y ooy Yy Tit1y .oy Tm) be @ monomial linear in y1,...,yn € X —

{z1,...,2m} such that
f(z1, s @m) = g(@1y ooy Tic1y Tiy @iy oeey Tiy Tidkly ooey Trm)

Then the following relation holds:

fL{F(CD], ey i, Y1y o Yk oy Tiddy eony mm)

Z(i‘,..‘,i")es" 9(311, oy Ti=1y Yigy ooy Yin Tidly ooy fvm) if =k

0 if n<kék
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Proof. We fix z;,...,%i-1,%i41,..s2m In g. Then g can be considered as a
monomial in n variables. Since by the hypothesis g 1is linear in each of its com-
ponents, the conclusion of Lemma 4.4 should hold for g. But since by assumption
of the thorem f(#1,...,Zm) = g(@1, ..., iz1, Ti) Tiy .s) Tiy Tit1y .., Tm) , the right side

of the equation equals fL¥ by the definition of the fL¥ operator and Lemma 4.4.
O

Example. Let f =[xz2%(ziz2) Jzs®. Then:
fI2 = 0 |
fLL = [ z*(yi2:) |za®

fLILE = [(2122)(y123) |za® + [ (2221)(y123) |23
+ [(z123)(3122) |za® + [ (2321)(¥122) Jea?
+ [(z223)(y121) Jma® + [ (2322)(3121) J2a®
and

FLILLY = [(z122)(y123) J(wava) + [ (2221)(123) J(urue)
+ [(2123)(v122) [(wauz) + [(2321)(y122) l(uau2)
+ [(2223)(y121) J(waue) + [(2322)(y121) J(u1u2)
+ [(2122)(y123) J(vow1) + [ (2221)(y123) |(u2w1)
+ [(2123)(y122) |(vows) + [ (2321)(y122) J(v2w1)
+ [(z2z3)(1121) [(w2m1) + [ (2az2)(y121) J(uows)

If f is a homogeneous polynomial of the type [ki,..., k], then the multilinear

polynomial fL¥ L. Lt~ is called the complete multilinearization of the polyno-
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mial f. For instance, The multilinear polynomial fLiL3L3 in the above example
is the compléte multilinearization of the polynomial f = [ z2%(z1%;) Jz3®. Now, we
shall prove that under certain conditions every homogeneous identity f(z1,...,Zm)

of the type [ky,...,km] is equivalent to the multilinear identity fL¥ Lk, Lkm,

Theorem 4.6. Let ¢ be a field of characteristic zero or p > n, and f =
f(z,...,zm) € ¢[X] be a homogeneous identity of degree < n of the ¢-algebra

R. Then f is equivalent to a multilinear identity of degree n.

Proof. Suppose f has the type [ki,...,km]. Then we completely linearize f

by inductively constructing g = fL% L’{’...Lf‘n'" as follows:

fol(ylh ey Ylkys T2y oeey mm)

kiTk
lelez(yll) vy Y1k Y21, 000y Y2ko» T3, "')mm)

k
lel“'Lfnm(ylh vy Yikyy ooy Ymi, "‘)ymkm)

We know that the complete linearization of f which is given by g is a multilinear
identity. To show that g implies f, welet y;; =x;in g for j =1,...,k and each

1 < m. Then we get the following identity:
(kl'kglkm!)f(ml, ceey .'Dm)

Since the characteristic of ¢ is a prime p>n and n > k; for ¢t =1,....m, p
does not divide ki!,...,kn!. Thus the product k! k;!...k,! is not a multipleof p

and is a nonzero element of the field ¢, and therefore, it is invertible. Now, we can
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multiply g by the inverse of kyl...k,! to get f. Hence g also implies f, and

therefore, the two identities are equivalent.

If we replace ‘identity’ by ‘central identity’ in the proof of the above theorem,
all the statements remain valid. Therefore, we have the foliowing important result

for the central identities:

Theorem 4.7. Let ¢ be field of characteristic p > n,and f = (z1,...,2m) € J[X]
be a homogeneous central identity of degree < n of the ¢-algebra R. Then f is

equivalent to a multilinear central identity of degree n.

Now, we are ready to state and prove two theorems which are extremely im-
portant to our method of computing the identities and central identities used in the

procedures mentioned in the first chapter.

Theorem 4.8. Let ¢ be a field of characteristic zero or p > n, and f =
f(z1,..yzm) € ¢[X] be an identity of degree < n of the ¢-algebra R. Then f

is implied by a set of multilinear identities.

Proof. Let fy,...,fr be the homogeneous components of f. Since the charac-
teristic of ¢ is zero or greater than p, by Theorem 4.1, f; is an identity of the
¢ -algebra R for each 7 = 1,...,k. On the other hand, by Theorem 4.6, every

homogeneous component of f is equivalent to a multilinear identity. It follows by
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definition that f is implied by these multilinear identities.

Similarly, we can use Theorems 4.3 and 4.7 to obtain the following important

theorem for the central identities:

Theorem 4.9 Let ¢ be a field of characteristic p > n, and f = f(x1,...,2m)
€ ¢[X] be a central identity of degree < n of the ¢-algebra R. Then f is

implied by a set consisting of multilinear identities and central identities.

Now, let us sum up the results of this chapter by relating the last two theorems
to the procedures described in the second chapter. As we shall prove in the next
chapter, the procedures give us a method of computing all the multilinear identities
and central identities of degree no greater than 8 of the ¢-algebra Mj(¢), where
¢ is either the field of all rationals or Z, with prime p > 7. But according to the
above theorems, every identity ( central identity) of the ¢-algebra M;s(¢) is implied
by a set of multilinear identities (multilinear central identities). So it is sufficient to
find only the multilinear identities and the multilinear central identities, and that is
exactly what the procedure does. In fact, as one may notice, the procedure is valid
for identities and central identities of higher degrees. However, as we mentioned

before, this may be too much computation for current computers.
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CHAPTER 5. PROOF OF THE PROCEDURE

Fundamental Theorems for Tableaus

Let S, be the group of all permutations on a set with n objects and F bea
field of characteristic zero or p > n. Consider all the sums of the form:

a = Y os)s = Y sos) (5.1)
SESK 3ESn
with arbitrary numerical coefficients a(s) € ¢.

The collection of all sums of the form (5.1) is called the group ring or the group
algebra over the symmetric group S, and is denoted by Og, or simply O. By
definition, the group elements commute with the numbers and form a basis for the
group ring. An element a of the group ring is called idempotent if a®> = a. The

2

element a of the group ring is called essentially idempotent if a? = Aa for some

nonzero constant A. If a is essentially idempotent, then S s idempotent. The

A

multiplication of the group ring elements is defined by:
{5 a(s).s}{> a(x)r} = Y a(s)a(r).sw (5.2)
3€Sn TESK 3,TESn
The ultimate goal is to express the group ring O as a direct sum of subrings
My, ..., My, where each M; is isomorphic to a full matrix ring over ¢. Indeed, for

the purpose of this paper, we only need to find an appropriate basis for the group
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ring. This is achieved by breaking the group ring into subrings using tableaus. Most
of the elementary tableau theorems proved in this section were originally developed
by Young and his students. Some of these theorems may also be found in “Rep-
resentation of the Groups” by Herman Boerner [6]. Throughout the rest of this
section, we assume that the tableau T belongs to the frame F' and the tableau T"

belongs to the frame F".

Theorem 5.1. Let T and T" be two tableaus of the same degree but differ-
ent frames. If F > F', then there exist two numbers in one row of T that appear

in one column of T".

Proof. Let T bea (my,..,m,) and T' bea (my,..,m') tableau. Sup-
pose no two numbers in the first row of T occur in one column of T". This implies
that m; < my'. Since F' > F', we must have m; = m;’. One may note that since no
two numbers in one row of T occur in one column of 7", the fact remains the same
if any column operation is applied to T'. Thus we can apply a column operation to
T' to move all the numbers occuring in the first row of T to the first row of T".
Now, we can show that m,; = m,’ and so on. Therefore, we have F = F' which

is a contradiction.

Theorem 5.1 may be rephrased as follows.

Corollary 5.2. Let T and T’ be two tableaus of the same degree such that
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F < F', Then there exist two numbers in one column of T that appear in one row

of T'.

Theorem 5.3. Let T and T’ be two tableaus of degree n from different

frames. Then . = 0.

Proof. We have to show that PQ.P'Q’' = 0. We consider two cases. If F < F', we
show that the inner pair makes the product zero because QP’ is zero. If F > F/,
we show that the outer pair makes the product zero because PrQ’ is zero Vmw € S,,.
Case 1: Assume F < F'. Then by Corollary 5.2, there exist two numbers in
one column of T that occur in one row of T'. Let t be the transposition that
interchanges these two numbers. Then ¢ is simultaneously a vertical permutation

for T and a horizontal permutation for 7”. Using Theorem 2.2 and the fact that

t? = I, we get:

ge = PQ.P(Q
= PQ.I.PQ
= PQ.t2P'Q
= PQt.tP'Q’
= —PQ.P'Q

—e.e

il

Therefore, we have:

of
@ |
Il

o
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Case 2: Assume F > F'. Given any permutation 7 € S, we have:

PrQ' = PrQ . 'z

= PaQ'n '

By Corollary 2.3, 7@Q'w~! is another Q" for a tableau T belonging to the same

frame. Let wQ'w~! = @". Then:
Pr@Q'" = PQ'"r

T" belongs to the frame F', and by assumption F > F'. Therefore, by Theorem
5.1, there exist two numbers in one row of T that occur in one column of 7. Once

again, let ¢ be the transposition that interchanges these two numbers. Therefore,

for any 7 € S,, we have:

Pr@Q' = PQ"r
= PI1.Q"rn
= Pt2.Q"n
= PtiQ"n
= —-PQ"w
= —PrQ’

The above implies that Pr@Q’' = 0 Vw € S,. On the other hand, we know that

QP =¥ .¢cs, A\xm for some coefficients Ar € ¢. Consequently, we have:

o

e.e

= PQ.P'Q
P.QPI.QI
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= P{Y_ Am}Q’

‘"'e Sn

= Y A A{PrQ}

‘II'ESn
= 0

Theovem 5.4. If pqT = T, then no two numbers in one row of T occur in

one column of 7.

Proof As we mentioned in chapter 2, T' can be obtained by first applying a
horizontal permutation p to T, and then applying a vertical permutation pgp~!
to the tableau pT. Let z; and z, be any two numbers in one row of 7. Then
p leaves z; and =z, in the same row. Since pgp~! is a vertical permutation for
pT, it leaves these two numbers in their respective columns. Therefore, they appear

in different columns of the tableau pqT.

Theorem 5.5. Suppose no two numbers which occur in one row of T occur

in one column of 7#T. Then =7 isa pqg for T.

Proof. The numbers in the first column of 7T appear in different rows of T.
Thus we can apply a horizontal permutation to T' move them to the first column.,
Keeping the first column of this new tableau fixed, we can apply another horizontal

permutation to the resulting tableau to move the numbers of the second column of
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7T to the second column of the new tableau and so on. So we can apply a horizontal
permutation p to T' to move all the numbers to their correct columns in #7'. Then

we can apply a column operation to move them to their appropriate boxes. Thus =7

isa pg for T.

Similarly, we can prove the following theorem:

Theorem 5.6 Suppose no two numbers which occur in one column of T ap-

pear in one row of 7T. Then 7 isa gp for T.

Theorem 5.7 Let T; and T; be any two standard tableaus from the same
frame such that 7 > j. Then there exist two numbers in one column of T; that

occur in one row of Tj.

Proof. Suppose the two tableaus are different for the first time at the intersec-
tion of the k-th row and the r-th column, i.e., at the position (k, r). Let z
and y be the two numbers occupying the (k, r)-th position of the tableaus T;
and T; respectively. Since T; > Tj, we must have z > y. We note that since the
numbers in the first column of a standard tableau are uniquely determined by the
numbers in the previous positions, and both tableaus are identical prior to the (k
, r)-th position, we must have r > 1. Now, we like to determine the position of
y in T;. Suppose y occupies the position (m , n) in T;. Since (k, r) is the

first position at which the two tableaus are different, our choices are restricted to the
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positions of the form (m =4k, n>r) and (m >k, n). Furthermore, since T; is
a standard tableau and z > y, the first choice is out of question, and for the second
choice we must have n < r. Hence the only possiblities are the positions of the form
(m >k, n <r), ie., to the left and below (k, r). Thus we have the following

picture for the two tableaus T; and Tj:

[ 10 ]l ] [.] (10 ]

ko [ ]-[2] [fl ko [.] (2] [y]

m: [ ][y] [i]'“ m: [ ][ ][]
T, Tj

Since the first time the two tableaus are different is at the (k, 7)-th position, they
must have the same number at the (k, n)-th position. This is indicated by letter
z in the above diagram. Therefore, the two numbers y and z that appear in the

n-th column of T; occur in one row of the tableau T}, namely the k-th row.

Corollary 5.8. Let T; and T; be standard tableaus from the same frame such

that 2> j. Then &€; =0.

Proof. By Theorem 5.7, there exists two numbers in one column of T; that

occur in one row of Tj. Then the transposition ¢ that interchanges these two
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numbers is simultaneously a ‘¢’ for T; and a ‘p’ for T;. So we have:
&€, = PQiPQ;
= PQil.PQ;
= PiQit’.P;Q;
= P.Qi.tP;.Q;
= —PQ:F;Q;

= —&§€;

Therefore, €€; = 0.

Theorem 5.9. (Van Neumann). Let & = ¥, sgn(q).pg for a given tableau.

Then €* = X for some constant .

Proof. Using Theorem 2.2, we get:

pe’q = pPQPQq
= sgn(q).PQPQ
= sgn(q)e? Vpe P, g€ @
Now, let. 8 = Y ,cs, @(s).s. We want to find the coefficient of each permutation
m € S, in the summation. We consider the following two cases.
Case 1: Suppose 7 = pq. Multiplying & on the left by p and on the right by gq,

we get:

pe’q = p{d_ o(s).s}q
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or:

sgn(q) Y _a(s).s = Y a(s).psq

s s
We note that each element of S,, appears exactly once on each side. Therefore, to
find the coefficient of pq we may let s = pq on the left side and s = I on the
right. Then we get sgn(q).a(pq) = a(I) or a(pg) = sgn(q).a(l).
Case 2: 7 isnot a pq. Then by Theorem 5.4, there exist two numbers in one row
of T' that occur in one column of 7T. Let ¢ be the transposition that interchanges
these two numbers. Then ¢ is a row operation for T' and = !i7 is a column

operation for T.Let p=1¢ and q = 7~ ltr, we get:

Y a(s)tsxrlr = sgn(r~ltn) Y afs).s

s a

To find the coefficient of 7, welet s = 7 in the above. Then:
a(m)r = sgn(q)a(m)r

which implies that a(r) = —a(r) or a(r) = 0.

Putting the results of the first and the second case together, we get:

g = Y ofs)s

I
0
Q
8
2
A
=
3
o0

Now & = Xe for A= a(l).

Theorem 5.10. Let € = X, sgn(q).pq belong to a tableau T. Then & is
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essentially idempotent.

Proof. In the previous theorem, we showed that &2 = )&, where ) is the co-
efficient of the identity permutation in €%, i.e.,, A = (I). So it remains to show
that A # 0. The group ring O is a vectorspace with nl! basis elements, say
7 = I, Ta,..., Tn. Let 7 act as a linear transformation on O by right multipli-
cation. Then the trace of the identity transformation is Tr(I) = nl, and the trace
of any other permutation is 0. Now, we pick a basis for Og, say mg, ..., 74, where
d is the degree of O&. Extend this basis to a basis of O. Let & act as a linear
transformation on the right. Taking advantage of the fact that trace is invariant

under the change of basis, we get:

Tr(e) = Tr{d_sgn(q).rqe}

= 3 sgn(q).Tr(pq)

rq

= sgn(l)Tr(I)
= Tr(I)
= nl

On the other hand, since by Theorem 5.9, m&® = Amg for :=1,...,d, we have:
Tr(e) = M

Therfore, Ad = n! which implies that A is nonzero and X =

!
E.

d
Remark 5.11. Given & = Y, sgn(q)pg for a tableau T;, then e = mé
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is obviously an idempotent element of the groupring. This is a very important result
which is used repeatedly in the remaining of this paper. Furthermore, since e; is
just a nonzero scalar multiple of €;, Theorem 5.3 and Corallory 5.8 are also valid

if € is replaced by e;.

Multiplication of the Group Ring Elements

In this section, we will introduce a very useful and simple way of multiplying
the group ring elements which belong to the same frame. The method computes the
product of two groupring elements a = ,f"f o;je;8;; and b = Z‘-f"jf BijeiSij, where
e;Sij's belong to the same frame, using the multiplication of matrices. Note that the
idempotency of the e;’s and equation (2.17) are frequently used throughout the
rest of this chapter. With the help of the following two theorems we can multiply

the €;5;; ’'s and e;’s of the same frame.

Theorem 5.12. Let T; and T; belong to the same frame. Then eje; = ¢;;e:5i;,

where
sgn(q) i  Si = gp (for Ty)

0 otherwise
Proof. We consider two cases.

Case 1: The permutation Sj; that takes T; to T; isa gp for T;. Then we have:

ee; = e,'.Sjge,-S,-J-

= PiQi.qpP:iQ;.5;;
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= P.Qiq.pPi.QiSi;

= sgn(q).PiQ:PiQ:.5i;

= sgn(q)efSy;

= sgn(g)e:Si
Case 2: The permutation Sj is not a qp for T;. Then by theorem 5.6, there
exist two numbers in one column of T; that occur in one row of T;. Let ¢ be

the transposition that interchanges these two numbers. ¢ is obviously a vertical

permutation for T; and a horizontal permutation for T;. So we have:

eie; = e;.l.gj
= e;.tz.ej
= PiQittP;Q;
= -FQ:PQ;
= —e€j

Therefore, if S;; is not a qp for T}, then e;e; = 0 which completes the proof.
O

Corollary 5.13. Let T; and T; belong to the same frame. Then e;5;;.xSu =

€jkeiSi.

Proof. The result is directly obtained using the product rule established in the

previous theorem:

e,-S;j.ekSkz = Sijej-ekskl
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= Sij.ejer.Sk
= S{j.&jkeijk.Skl
= €jk.5ij€5.5k Skt
= Ejk.€iSi;. S5k Skl
= €;1€;.5i;5j1

= €;re;Sq

According to the above corollary, the product of elements of the form ¥ a,-je,-’\S;-’\
is of the same form. Therefore, the set of all the elements of the group ring that can
be expressed as a linear combination of the e;5;;'s of a fixed frame are closed under

the group ring multiplication. We state this in the following theorem.

Theorem 5.14. Given a frame F), all the elements of the form Za,-,~e,-"5'g~'\

form a subring of the group ring O. We call this subring F*.

Multiplication Rule

We will now show that the subrings F* are matrix like rings. Since we will be

dealing with products of matrices and simultaneously with the products of F?* as

¢ )

* ' as the multiplication in F*.

subrings of the group ring, we will use
Let A = [a;];,, be a matrix with entries from the field ¢, and Fy be a fixed
frame with f standard tableaus. We map A to A = Z{,’jf a;jeiSi; € FA So

the ij-th entry of the matrix A is the coeflicient of €;5;; in A. Thus we map
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the matrix A to a group ring element A. Alsolet E;; be the unit matrix with a

1 at the ij-th position and zeros elsewhere. Using Corollary 5.13, we get:

Eii » By = e;Sij.exSki
= €jreiSi

= By (€;5) Eu

where the 2j-th entry of the fx f matrix (e;;) is simply e;;. Therefore, we have:

A x B=A(e;) B (5.3)

We usually refer to (e;;) by A;. One should note that on the left side we have the
product of the elements of the group ring, while A (g;;) B refers to the multiplication
of matrices and is easily computed.

If T; and T} are two standard tableaus from the same frame such that i > j,
then by Theorem 5.7 there exists two numbers in one column of T; that occur in
one row of T;. Thus by argument given in Theorem §.12, ¢;; = 0. This implies
that the matrix A; is an upper triangular matrix with 1’s on the diagonal. So we

have the following important result:

Corollary 5.15. The matrix A; = (e;;) is invertible.

Basis for the Group Ring

In this section, we will use the results of the previous two sections to prove the

important fact that all the e;S;;'s of all the standard tableaus of all the frames
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together form a basis for the group ring,

Theorem 5.16. All the ;*S;;*’s belonging to the standard tableaus of all the
frames of a given degree n are linearly independent. A refers to the corresponding

frame.

Proof. Let %k be the number of the frames of degree n. Then any linear de-

pendence relation among the e;*S;;* can be expressed as

A+ o A+ A =0

Multiply the above equation on the left by E;" A;~! and on the right by A;~! E;;",
where Ay is (i) matrix for the frame F,. By Theorem 5.3, the e;’s of the

tableaus of the different frames annihilate each other. Therefore, we get:

Ei" Al AT A AT AP BT = 0
or:
ETAET = 0
or:
aii'e’Sim =0

Since e;;"S;;" # 0, we must have «;;" =0 for any choice of 7, j, and r. Therefore,

e;"S;;" are linearly independent.
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Thus for a fixed frame Fy with fy standard tableaus, we have fy? linearly
independent elements which by definition span the subring F*. So we have the

following result:

Corollary 5.17. All the e5i;;*’s of the frame F) form a basis for the sub-

ring F*, which then has dimension fy2.

We have also proved the following important theorem:

Theorem 5.18. The sum of the subrings F' 4+ ...+ F* for a degree n with

k frames is a direct sum. The dimension of this subring is Z§=1 fit.

In order to show that this direct sum is indeed the group ring O, we need to
show that Zf=1 f;® equals the dimension of the group ring which is n!. But first
we need to state a few definitions and lemmas.

Let F be a frame of type (my,...,m,) with r rows and n boxes. Then
we let f = f(my,..,m,) be the number of the standard tableaus of F. We can
create a new structure F}; by removing the last box of the i-th row of F' for each
¢ = 1,...,7. This new structure is a frame if and only if m; > m;;;. For the frame

F,we can extend the definition of f(mi,...,m,) to the following:

f[‘] = f(mh'")mi—l;mi—1,mi+1,...,m,.)
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0 if my = Mi41

number of the standard tableaus of Fjj if m;> miy
(5.4)

Similarly, we can create a new structure FU! by adding a new box to the end of
the j-th row of F' for j =1,...,74 1. This new structure is a frame if and only if

m;j < mj.;. Thus we can define:

f9 = fmay e mimgmg 4 Lmgg, e me)

0 if mj=mj_

number of the standard tableaus of FUU if mj;<m,_,
(5.5)

Lemma 5.19. f(mq,..,m;) =3I, Jap

Proof. On the right side, we have the number of the standard tableaus of the
frame F which belongs to the group S,. The largest number appearing in a box
of a standard tableau is n, and it must occur in the last box of somerow 72 < r
such that m; > miyy. 1f we keep n fixed, then we get a frame which belongs to
the group S,.;, and we can create all the standard tableaus of this frame using the
numbers 1,...,n — 1. The number of the standard tableaus of this frame is given by
fty which appears on the right side of the equality. So the left side is less than or

equal to the right side. The remaining terms of the right side are all zero since they
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refer to the structures for which m; = my+,. Therefore, the two sides are equal.

The definitions of f(my,...,m,), fi}, and f ) may be generalized to any structure
F of the type (my,...,m,). If F is a frame, then f, fy), and fUl are all well
defined. If F is not a frame, then we define f(ma,...,m,), fiy, and fU all to
be zero, even if f; or fW is a frame. Then (F[j])[,-] refers to the structure
created by removing the last box of the i-th row of FU! and (f(j])[,-] denotes
the number of the standard tableaus of the mentioned structure provided that both
Fll and (FUl); are frames, and it is zero otherwise. Similarly, we can define
(F)l! and (fy)¥. Although (Fyy)! and (FU)y are the exact same structures,
(fipl! and (fM)y may be different. For instance, for the frame of the type
(1,1), (fup™ = 0 while (f)y = 1. Throughout the remaining of this section,

we assume that F' is a structure of the type (my,...,m,) with n boxesand r rows.

Lemma 5.20. Let F be a frame. Then the following results follow directly
from Lemma 5.19 and the previous comments:

(1) (Fr* gy = f

(2) 9 =z (MW

(3) St = TRy

Lemma 5.21. Let F be a frame. If FU! is not a frame and 7 # j, then
(W = (fi) = 0.
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Proof. Since F is a frame and FU is not, we must have m; = mj_; for
the frame F. Thus the j-th row of the structure FU! is one box longer than
its (j — 1)-th row. The structure (FUl); is created by removing the last box of
the i-th row of FUl Since ¢ # j, no box is removed from the j-th row of this
structure. Therefore, the j-th row of the structure (F[j])[i] or (F[,-])U] is longer

than its (j—1)-th row. Henceit is not a frame, and we have (f[j])[;] = (fph! = 0.
a

Lemma 5.22. Let F be a frame. If both FU and (FUl); are frames and
i # j, then (fW)y = (fig)¥l,

Proof. Since both (FUl); and (Fj)¥! lead to the same structure, we only
need to show that Fj; is a frame. Assume on the contrary that Fj; is not a frame.
Then we must have m; = m;y; for the frame F. The frame FUl is created by
adding a box to the end of the j-th row of the frame F which is different from the
i-th row. So the length of the i-th row of FU is less than or equal to the length of
its (i+1)-th row. Now, we construct (FU); by removing the last box of the i-th
row of FUl, Therefore, the i-th row of the structure (F“])[,-] is shorter than its

(¢ + 1)-th row. This means that (FUl);; is not a frame which is a contradiction.

O

Let F be a frame of the type (m4,..,m,). Then &k consecutive rows
Tiy.yTitk—1 Of F' form a block if:

(1)3 m; = Mif1 = 0 = Myqk-1
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(2): if 1>1,then m; <mi_y

(3): if Pipp—1 <7, then mipe_y > mik

For instance, a tableau of type (4, 3, 3, 3, 2, 2) has three blocks. The first
block includes the first row only; the second block includes the second to the forth

row, and the third block includes the last two rows.

Lemma 5.23. Suppose the rows ..., 74k-1 form a block for the frame F.

Then T (f)y = SR = f.

Proof. We consider two cases: either k=1 or k> 1.

Case I: If k=1, then mi;.; < m; < m;_,. Hence both FUl and Fj; are frames.
We also have (FU)y = (Fjg)t! = F. These imply that (f) = (fi)¥ = £.

Case 2: Assume that k& > 1. First, we show that Z;:?—I(f[j])[j] = f. Since
mj=mj_; for j =i+1,..,i4 k— 1, none of the strucrtures FU+1 Fli+k-1] g

a frame. So we have:

(f[i+1])["+1] = .. = (f[i+k—1])[l'+k"1] =0

On the other hand, fl! is a frame since either m; < m;_; or =; is the first row of

the frame F. Hence:

i+h=1 _
S (M = (Mg = f
=t

Now, we show that Z;i’f“l(f[j])[j] = f.Since m; =mjy1 for j=1,.,i4+ k-2,

none of the structures Fj), ..., Fliyk—~o) is a frame. The structure Fj; 4..1), however, is
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a frame since 7;.x-1 is either the last row of the frame or we have myk—1 > mips.

Therefore, we have:

i+k—1 _ _
> (i = (frey)iH4H = f
=i
O
Lemma 5.24. If F' is a frame with r rows, then ¥7_,(f)y = 0., (f)t
Proof. Applying Lemma 5.23, we get:
(M = 3o(f)?
i=1 i=1
= b.f
where b is the number of the blocks of F.
O

Lemma 5.25. If F is a frame with r rows, then (n +1)f = 371} ful,

Proof. The proof is by induction. By definition of fl9, we hve E;:i flal = Z;:i ful
for any [ > 1. Clearly, the equality holds for n = 1. Now, we assume that it holds
for any frame with n — 1 boxes. In particular, we assume that it holds for any
frame created by removing the last box of the i-th row of the frame F. Therefore,
the induction hypothesis implies that:

41

nfy = 2 (fu) for i=1,..,r

i=1



69

By Lemma 5.19, we have:

r+1 r41

Zf“' = 3 2 (MM
j=1 i=1
Hence:
r+1 . r+l1 r
Zlf[J] = Zl Zl f[J] + (f[r+1])[r+1]
= i= =
= Zl lf[’] + (Y
1= J=
r r41 r41 .
=2 { X (Ma + ZUu} + G ey
1=1 j=1,s¢#7 Jj=1

It follows from Lemmas 5.21 and 5.22 that (f[j])[,-] = (fy)? if i+#j Lemma
5.24 implies that Z;=1(f[j])[j] = §=1(f[j])[j], and finally, by Lemma 5.20, we have
(fT* ) 1) = f. Therefore, the equality simplifies into the following:

41 r r+1 ,

S = TS G + U+ f

j=1 1=1 j=1,i#j j=1

or:

r r4l )
Zf[” = 2 2w + f

j=1 =1 j=1
Applying the induction hypothesis to the right side of the above equality, we get:

r+41

Zf[]] = an[t] + f

1=1
By Lemma 5.19, 37, fij = f. Therefore:

r+41

Y= nftf
= (n+1)f
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Theorem 5.26. Let Fy,..., Fi, be all the frames of degree n, then Y%, f;* = nl,

where f; is the number of the standard tableaus of the frame F;.

Proof. The proof is by induction on the degree n. Clearly, the equality to be

proved holds for n = 1. Assume that the equality holds for n. Then we have:

Let Gi,...,Gm be all the frames of degree n+1; g; be the number of the standard
tableaus of Gj, and (g;) be the number of the standard tableaus of (G;)y if

(Gj)) is a frame and zero otherwise. Then we need to show that:

Y g = (n+1)
j=1
Consider the number S = Y g.f,, where the sum is taken over all possible pairs

of numbers g, and f, for which the frame G, can be obtained by adding a box
to F,. Clearly, each g; and each f; appears at least once in the summation. We
simplify the number S in two different ways. In the first approach, we remove
boxes from the G;’s and then apply Lemma 5.19. Let »; denote the number of

the rows of the frame G;. Then we have:

S = Zgufu
= 3¢ g,-._;'“l(g,-)[,.,}
= igiz
=1

In the second approach, we add boxes to the F;'s. Then we apply Lemma 5.25, and

finally, we use the induction hypothesis. Let s; denote the number of the rows of
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the frame F;. Then we have:

S = Zgufv

ko a;41

= YA ()" s

=1 j=1

k
= ;{(n+ Dfi}-fi

= (n+ 1)éf=‘2
= (n+ 1)n!

= (n+41)!

So we have shown that S = YT, ¢® = (n+ 1)!, which concludes the induction

step and proves the theorem.

We can conclude this section with the following theorem which is crucial to the

approach we have ued in our procedure.

Theorem 5.27. All the e;5;; of all the frames of degree n form a basis for
the group ring. Furthermore, we have Og, ~ F! @ .. @ F*, where k is the

number of the frames of degree n, and F* is the subring generated by the e;"S,-j’\’s.

Proof. By Theorem 5.16 all the €,5;; of all the frames are linearly indepen-
dent. The total number of all the e;S;;'s for a given frame is Y%, f;%, which by
Theorem 5.26 is n!. We have n! linearly independent elements in a vector space

Os,, of dimension n!l. So they form a basis for the group ring. We then know
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that Os, = F!'+ F*+ ...+ F*. Since all the ¢;5;; of all the frames are linearly

independent, the sum is direct.

Independent Generating Set for the Multilinear Identities and Central

Identities

In this section, we will show that the multilinear identities and central identities
of degree n found by the procedure described in the second chapter form an indepen-
dent generating set for all the multilinear identities and central identities of degree
n. Since the argument for the multilinear central identities is very similar to that of
the multilinear identities, we will state the proofs only for the multilinear identities.
Also, in the rest of this section, an identity always means a degree n identity of the
¢- algebra Mj(@), where ¢ is a field of characteristic zero or greater than n. In
chapter 4, we showed that every such identity is implied by a set of multilinear iden-
tities. We will now show that all the multilinear identities found by the procedure
form an independent generating set. We will show that all the identities of degree
n < 9 can be obtained from these identities. This shows that we have found all the
identities of degree < 9. As mentioned before, a multilinear identity of degree n
is an identity of the form I(xy,...,Zn) = Y res, Or[T1, ., Tnjr, for some ag’s € 4.
We may refer to this multilinear polynomial identity by the element Y ,cs, a7 of
the group ring. Also in the rest of this section, we let Fy,..., Fi be all the frames of

degree n and fy be the number of the standard tableaus of F). Then an identity
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of the frame Fy is of the form:
Iafa
@1,y @a) = Y. cijeiSi;? (5.6)
1=1,5=1
The procedure, on the other hand, computes all the identities of the form:
£
I(wl,...,mn) = Zaue,"\Sﬂ'\ (5.7)

i=1

The matrix representation of an identity of the form (5.7) is given by:

Q11 0 0
0 (5.8)
apy 0 -0 O

We also know that if I(zy,..,2z,) is an identity, then so is Iw(zy,...,zn) =
I(Tp-11y.00y Ty-1y) for any permutation 7 € S, Furthermore, if g = X s, @xm,
then Ig(z1,...,2n) = Lres, @nlm(21,...,Tn) is a linear combination of identities, and
therefore, it is also an identity. In order to show that the procedure computes all of
the identities of a given frame F), we need to show that every identity of the form
(5.6) can be obtained from all the identities of the form (5.7). Before we show this,
we need to prove two lemmas. In the first lemma, we will show that if I(zy,...,%n)

is an identity with the following matrix representation

11 0 Qlfy

1577% BN 23 7Y Y
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then for each j = 1,..., f3, the group ring element with the following matrix repre-

sentation is also an identity:

0 -+ 0 aj 0 «+- 0

0 - 0 a; 0 -+ 0

In the second lemma, we will show that if Ij(z,,...,2,) is an identity of the frame

Fy  with the following matrix representation:

{~th column

l

0 -+ 0 af, 0 -+ 0

then for each m = 1,..., f, the group ring element represented by the following

matrix is also an identity:

m~th column
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Lemma 5.28. If I(zy,...,2,) = Z,fi'lf;_l a,_,e,'\S.-j’\ is an identity of the frame F,

then so is I;(%1,...,Tn) = 2, cujeS;* for each j =1,..., fy.

Proof. Let A = [a;;] be the matrix representation of I(zi,...,z,), and g =
Ar~! Ejj, where A is the (e;;) matrix for the frame F), and E;; is the unit
matrix with a 1 entry at the jj-th position and zeros elsewhere. Then A x g

is also an identity. According to the multiplication rule given in section 2 of this

chapter, we have:

RS

x g = A x A]_IEJ'J'

= A A; Al_l EJ'J‘
= AL

a U
= > oije S
=1

Thus Y, aije)Si;*  ia also an identity.

Lemma 5.29. If [i(zq,..,2,) = f*l aiei* Sy is an identity of the frame Fy ,

then so is Ip,(z1,...,Tn) = Z‘_l ageSim? forall m=1,.., fa.

Proof. Let A be the matrix with only one nonzero column such that A =
I(zy,...,z,) and g = A;"'Ey, , where A; is the (g;;) is the matrix for the F

frame, and Ej, is the unit matrix with a 1 entry at the /m-th position and zeros
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elsewhere. Then Ig(zy,...,2,) or A*g is also an identity, and we have:

Axg = A x A[—lE[m

= AA; At Eis
= AElm

£ \ \
= 3 cuei*Sim

i=1

This means that the latter is an identity.

Theorem 5.30. If I(zy,..,z,) is an identity of the frame F, , then for some
gm's € O, we have I(zy,...,z,) = TP, Lngm(®y, ..., zn), where each Lpy(z1, ..., Tn)

is an identity of the form Z,f-f_.l Birei*Si® for some (i, s Brp € &

Proof. The strategy is to show that if I(z1,..., ) = [a;;] is an identity of the frame
F,, then each column of I itself is an identity. The location of these individual
coulmns is immaterial. So we can represent each of them by putting the nonzero
column first. In other words, I(zy,...,z,) is equivalent to the identities represented

by the following set of matrices
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j—th column

0 -+ 0 ap; 0 -+ 0

which in turn is equivalent to the identities represented by the following set of matrices

first column

l
a” 0 . 0

0 J7=1,. afA
OLA”' g .. 0

Now, we rigorously prove the theorem. We have:

fl»fl A
I(z1,.yzn) = Z a;jeg’\S,'j
i=1,j=1

Li(zy, o zn) + o+ I, oy 0) + oo+ Iy (20, 00y 80)

Il

where In(z1,..,2n) = 2 Aime*Sim® for m=1,..., f». By Lemma 5.28, each
Im(z1,...,%,) is an identity. Then by Lemma 5.29, Lm(21,...,Zn) = Z{;I Qimei* S
is an identity for each m. Now, let gm = A 'Eim and Lp(zi,...,2,) = I. Then

for each @ =1,..., fa, we have:

Lm(a:l)"')mn) * gm = F * AI—-lElm
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£
= 3 Cimei*Sim’
i=1
= Im(mly ceey mn)
Therefore, we have:
I(wlv ey mn) = Z Lm(wly “'ymn) *gIm

where Ly = T, cimei®Sim .

The above theorem implies that every identity of the frame F\ is implied by the
set of all the identities of the form 2{;1 ai1e;* 8. Thus the identities computed by
the procedure imply all the identities of the given frame. Now, we need to show that

every multilinear identity is implied by the set of all the identities of all of the frames.

Theorem 5.31. If I(zy,..,2zn) is a multilinear identity of degree n, then
I(z1,....,zn) = Li(z1, ...y @n) + oo + Tk(Z1, ..y 20), where Inm(zy,...,z,) is an identity

of the frame F,, foreach m=1,... k.

Proof. First, notice that in this proof I, refersto the whole m-th summand which
is different from the notation used in theorem 5.30. By Theorem 5.27, I(zy, ..., n)

can be expressed in the form

fifo fmifm furSn k k k
1,1 1

D eSSt 4+ Y auTe™Sm 4+ Y aietS;

1=1,7=1 1=1,j=1 i=1,j=1

for some coefficients «;;™ € ¢; m =1,...,k. Let

fmifm
Im(ml,...,:z:,,) = Z a,-,-"‘ei"‘Sij'" for m= 1,...,10
1=1,j=1
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We need to show that each In(zi,...,2,) is an identity. Since I(zy,...,z,) is
an identity, then so is Ig(zi,...,z,) for any g € O. In particular, let g = ZT‘—I,
where A; = (&) for the frame F,,. Also let A,, be the matrix such that
Am = I(2y, ..., z,). Then the identity I is represented by (Aj+...+Apm+...+Ax),
and the identity Ig is represented by (A; + ...+ Ay + ...+ Ag) * Ar~T. Using the

multiplication rule, we get:

Ig(zyy.eytn) = (Aj 4.4 Ap4 .. +Ap) * Af?

Therefore, In(z1,...,2Zn) is also an identity for each m =1,..., k.

So far we have shown that the procedure gives us all of the multilinear identities
of degree n. Now, we need to show that these identities are independent under sub-
stitution, which in turn implies that they form an independent generating set for all
of the multilinear identities of degree n. First, we will prove that the independent
identities of the form 5.7 for a frame F) computed by the procedure form an

independent generating set for all of the identities of that frame.

Lemma 5.32. A set of linearly independent identities of the form {2, aie*Sin?

for a given frame F) is also independent under substitution.
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Proof. Let Ii(z1,...,%n), ..., Ir(z1,...,2n) be a set of linearly independent iden-
tities of the form Z."\=1 ai1e*Sy? for a frame Fy, where 7 is the number of the
independent identities in the set, and let the matrix representation of the identity

Im(z1,...,zn) be given by:

Am = : e for m=1,..,71

arpy™ 0 -+ 0
Assume on the contrary that the given identities are not independent under substi-
tution. Then there exist nonzero elements g¢y,...,g-» € O such that
]191(371, very mn) + ...+ Imgm(ml, ooy mn) + o+ I'rg'r(mly cony wn) =0

Since O = F'+ ..+ Fk for m=1,...,7 we have gm = (gm)1+ ...+ (gm)e for

some (gm)i € F'. Then for each m =1,...,7, we have:
Imgm(z1, .0y @n) = Im(gm)1(@1y 00y Bn) + oo+ In(gm k(@1 ..., )
Since the €;5;; of different frames annihilate one another, we get:
Ingm(z1, ..y @n) = Im(gm)a(z1,..., Tn) for m=1,..,7
Hence:
Lgi)a(z1, ooy @n) + oo + Tn(gm)a(@1y ooy Tn) + oo + Le(ge)a (@1, 00y n) = 0

Let the matrix representation of (gm)x be given by (Gn)a and let A;(Gm)a be

given by the following matrix, where A; is the (e;;) matrix for the frame F).
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Bu™ o B
Al(Gm)y = : : for m=1,..,7

IBAflm v ﬂh/l,m

Then:

Imgm(wh'“awn) = Im(ml;"')wn) * (gm)A

= Am. * (gm))\
Am. AI (Gm)A

Then the matrix representation of Ingm(z1,...,2,) foreach i =1,...,7 is given by:
PuTan™ - P, Tan™

PuTara™ o P, Tara™

We have assumed that Igm(z1,...,2n) # 0 for some m. Let [ be a nonzero
column for the matrix representation of Imgm(z1,...,2n). Then By™ # 0 since
every entry of the (-th column of the matrix of Ingm(®1,...,2,) is a multiple of
Bu™. If we multiply both sides of Iigi(z1,..., Zn) + ... + Lrgr(Z1,...,za) = 0 on the

right by "A;~'Ep, we get:
{Z Ingm(zy, ..., zn)} * A7'Ey = 0
m=1

or:

ZAmA[(Gm),\*AI—IE“ = 0

m=1
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or:

> AnAi(Gu)rEn = 0
m=1

But:

an"‘ O e 0 ,Bum 0 LU O
AmAI(Gm)Ell =
ay1™ 0 -+ 0 ,B,\‘,zm 0 -« 0
= :BﬂmAm

Therefore, we have
,Blllfl(wly seey wn) + ..+ ,Bllm-[m(wlg veey mn) +..+ ,BllTIr(mla '--,mn) =0

which implies that I (zy,...,2n),..., Is(21,...,z,) are linearly dependent, and that is

a contradiction.

Recall that all the identities chosen for a fixed frame using the procedure are lin-
early independent. In fact, the number of these identities equals the nullity of the
matrix given by the matrix of 2.28. Thus according to the above theorem all of the
identities of a frame F) found by the procedure form an independent generating set
for all of the identities of that frame. Now, we need to show that all of the identities
of all of the frames given by the procedure form an independent generating set for

all of the multilinear identities of degree n. This is accomplished by the following
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theorem which concludes this chapter.

Theorem 5.33. Let each H) be a set of linearly independent identities of the
form E:\=’1 o ter Sy foreach A =1, ..y k, where k is the number of the frames of

degree n. Then the set U%_,H» is independent under substitution.

Proof. Let all the identities of the set H, be given by Il’\,...,I,A'\ where 7y
denotes the cardinality of the set Hy for each A =1,...,k. Assume on the contrary
that the elements of the set U%_, Hy are not linearly independent under substitution.

Then there exist nonzero elements gn,* of the group ring such that:

k L2y
Z Z ImAgm'\(:z:l, ey Tn) = 0
A=1 m=1
The linear independence of all of the €;5;;’s of all of the frames implies that:

T
Z Im'\gm'\(ml, vy Tn) =0 for A=1,...,k
m=1

In other words, the linearly independent identities of each set H, are also indepen-

dent under substitution which contradicts Lemma 5.32.
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