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1. INTRODUCTION 

1.1 Goals 

Securing information from abuse is a problem that nearly all computer systems 

try to tackle. The problem is aggravated by the building of networks connecting 

different computer systems. As computer system networks become larger, computer 

security becomes harder to design and implement. At the same time, computer 

security becomes more important as more users share and get access to the systems. 

Computer security is crucial to prevent the users from abusing any component system 

in a networked system. 

Computer security has many aspects. In our work, we study multilevel security. 

Multilevel security deals with the problem of controlling the flow of classified informa­

tion. This type of information flow control involves associating security classes with 

all users and stored information. To implement multilevel security, an information 

flow control mechanism prevents the leakage of information from a certain security 

class level into a lower security class level. 

We will present multilevel information flow control mechanisms for distributed 

systems. In addition to checking the security of computational activities within 

individual sites in a network, they are also designed to provide multilevel security for 

communications among the sites. This is done by preventing the circulated messages 
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from causing illegal flows. 

The distributed systems augmented by our security mechanisms are multilevel 

secure. To render them more practical, an important property we require of them is to 

allow different processes to concurrently access shared data. If left uncontrolled, such 

concurrent accesses may introduce intolerable inconsistencies in the shared data. In 

particular, inconsistencies may appear in the security information which the security 

mechanisms rely upon. As a result, uncontrolled concurrency may jeopardize the 

correct behavior of the security mechanisms and allow undetected illegal information 

flows. 

We will present concurrency control mechanisms that ensure the consistency of 

the security information and shared data. The concurrency control techniques are to 

prevent unsafe interferences among parallel processes. 

Finally, we deal with the precision of our mechanisms. If a system employs a 

security mechanism that prevents all illegal flows, then it is said to be secure. If, in 

addition, in no case does it reject any legal flows, it is said to be precise. Because of 

existing theoretically proven facts, it is impossible to build a secure system that is also 

precise. However, we can always seek to increase the precision of our mechanisms. 

We will present schemes to achieve that goal. Those schemes are needed to improve 

upon the practicality of our security mechanisms. 

In the rest of this chapter, we present our assumed computational model. Then, 

we briefly outline the rest of the dissertation. 
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1.2 Assumed Model 

We work under the assumption that a distributed system exists. The networked 

components of the systems may reside at different locations within short or long 

distances from each other. In addition, different networks can communicate through 

gateways giving rise to even larger systems. 

The network may be controlled by a network operating system [33]. Each com­

puter may be running a different local operating system and different protocols are 

adopted to allow those systems to communicate. The user on such a network is gen­

erally not shielded from the details allowing him the use of services of the different 

machines. 

On the other hand, distributed operating systems [33] are designed to render 

the existence of multiple machines transparent. To the user of such a system, the 

networked systems run as one. For example, a distributed operating system will 

support a single system-wide file system accessible from all component machines. 

The user need not concern himself about specific machine details. 

For our purposes, either systems are considered to support computations that 

may involve many different machines and software components. This type of dis­

tributed computing creates a powerful environment for software development and 

other programming needs. We expect that such an environment provides a program­

ming language with the following characteristics and features. 

A data abstraction mechanism and facilities to define classes (or modules) should 

be available. A class is a data type that describes the behavior of a collection of objects 

or class instances. We assume that all physical and program objects in the system 

and their characteristics are modeled by instance objects. The objects encapsulate 
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instances of the data defined in their classes. They respond to requests to execute 

the exported procedures which specify the only permitted ways of access to the 

encapsulated data. The state of an object is the state of its encapsulated data. 

Objects can reside anywhere on the system. However, any one object cannot be 

split between different machines. Objects communicate through exported procedure 

requests or remote procedure calls. Communication between different objects via 

shared memory is excluded. Different objects can be active simultaneously. Each of 

them can have different procedure calls being serviced concurrently. 

We are lead to the conclusion that our purposes are served by a distributed object-

oriented language and environment. Such an environment allows us to abstract the 

aspects of the underlining system and to focus on the behavior of the classes and 

their instances in the system. The system is viewed as a collection or network of 

concurrently running distributed interdependent objects communicating via remote 

procedure calls. 

In summary, for our purposes, we assume the existence of a distributed object-

oriented programming environment. 

1.3 Outline of Dissertation 

First, in Chapters 2 and 3, we briefly survey some of the relevant existing works 

on multilevel security and on concurrency control and recovery techniques. 

In Chapter 4, we present our information flow control mechanisms. Those mech­

anisms provide multilevel security for distributed computer systems. The mechanisms 

are modifications and enhancements of the work found in [27]. For efficiency reasons, 

instead of using a pure run-time security checking approach, the mechanisms combine 



5 

compile-time and run-time checking. 

The flow control mechanisms lack a mechanism for the preservation of the consis­

tency of data in the presence of concurrency. In Chapter 5, we present a concurrency 

control mechanism that uses a locking scheme to prevent any undesirable interferences 

among parallel processes. 

In Chapter 6, we continue to enhance the information flow control mechanism. 

We present a scheme that uses flow graphs to compute the precise security classes 

for dynamically-bound variables. Such a scheme is needed because we avoid using a 

pure run-time approach in which classes are computed at every operation updating 

the variable. The class computing scheme avoids overclassifying variables and also 

renders the mechanism more precise in accepting secure programs. 

In Chapter 7, we briefly discuss an important implementation issue pertaining 

to the proposed mechanism. 

Finally, we conclude our work in Chapter 8 by summarizing the features of our 

system. 
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2. MULTILEVEL SECURITY AND INFORMATION FLOW 

CONTROLS 

In this chapter, we present the concept of multilevel security. Various existing 

information flow control mechanisms are described. 

2.1 Introduction and Definitions 

A program that can retain information can potentially cause security violations. 

It can leak confidential data to which it has access. For example, a service program 

(e.g., a compiler) can retain confidential information passed to it as parameters by 

its caller process. Then, it can leak this information to another untrusted process. 

This is called the confinement •problem [21, 23]. 

One conceptually simple way to deal with this problem is by producing programs 

that are prevented from leaking and retaining any of the information contained in 

their parameters, confidential or not, and thus, they are made memoryless and con­

fined. This way a user of such service programs is assured that none of the confidential 

information that is made available to them can be leaked during their execution or 

after their completion. Note that in this solution, confined programs can only make 

calls to other programs that must also be confined. A system consisting of confined 

service programs is very rigid in allowing modifications of existing services or addi­
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tions of new ones. The situation is worse when dealing with a distributed system. 

Message passing in such systems needs to be severely restricted if programs are to be 

confined and prevented from leaking information through messages. 

More importantly, the scheme suffers from a problem of trust. It is not possible 

for a suspicious user, by relying completely on the above technique, to be assured 

that the service programs he uses are confined and secure. A designer can produce 

a "leaky" program while still advertising it as being confined. The user cannot be 

trustful of programs that are presented to him. At the same time, the owner of 

a service program cannot completely trust the user. He cannot afford to always be 

confident that a user will not steal confidential information contained in the program. 

This is the mutual suspicion problem mentioned in [9]. 

A more flexible solution to the above security problems can be achieved by intro­

ducing a flow policy which specifies the allowed transfers of information or informa­

tion flows. Specifically, the policy should not allow the leakage of confidential data 

to untrusted processes satisfying the security concerns of both users and designers of 

programs. However, a flow policy should not place any unnecessary restrictions on 

the transfers of nonconfidential data. Specifying such a policy is called the selective 

confinement problem [11, 9]. A flow-policy solution of this problem still allows pro­

grams in a system to retain or transfer public or nonconfidential data. So, programs 

are not strictly confined. 

Most flow control mechanisms that enforce flow policies use the concept of a 

security class (as used for military security). A security class associated with a data 

object reflects the sensitivity level of the information it contains [22]. A flow control 

policy can specify a finite set of multilevel security classes that correspond to the 
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different sensitivity levels that can be attached to the various types of information 

in a system. The security classes are used to regulate the flow of information at 

the different levels of sensitivity. For example, information with a security class 

corresponding to a certain sensitivity level should flow only to processes that are 

trusted at that level or at a higher level. 

A simple flow policy [11] may use two security classes: confidential (C) and 

nonconfidential (N). The only prohibited flows in such a policy consist of the flows 

from class C to class N. All other flows are allowed. This simple policy can be used by 

a system to selectively confine service programs: the output channels of the program 

that are not directed to the user of the service are assigned security class N. This way 

the program can output or return confidential data of class C only to the user that 

called the service. Only the leakage of confidential information to other processes 

through the output channels of the program is prevented by the flow policy. Transfer 

of information with class N is not affected. 

2.2 The Bell and LaPadula Model 

Access control policies are used to protect data objects by regulating accesses to 

them [9]. The active entities of a system, the subjects, are given different access rights 

to the protected entities of the system, the objects. Subjects can be protected by also 

classifying them as objects. Access rights typically include read, write, and execute 

rights. An access control policy specifies that subjects can only access objects to 

which they have access rights. Also, they may access these objects only in the way 

the specific rights, which they have, allow. For example, subject S may read file F 

only if it has a read access right for F. 
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Access controls alone cannot regulate the manipulation of the information con­

tained in the objects. As a result, they do not protect against any type of leakage of 

information and cannot solve the selective confinement problem. 

The Bell and LaPadula flow control mechanism is an extension of access control 

mechanisms that can be used to prevent information leaks over legitimate and storage 

channels [21]. (Leaks over covert channels are not handled.) This security model 

designed by Bell and LaPadula is the main model used to build secure military and 

government systems [3, 13]. 

The Bell and LaPadula model assigns a clearance to each subject (such as an 

active process) and a classification to each object (such as a file). Clearances and 

classifications are represented by security classes. 

Military systems [13] employ a multilevel security policy in which security classes 

consist of pairs of the form (A, C) where A is an authority level and C is a category. 

The authority levels are UNCLASSIFIED (U), CONFIDENTIAL (C), SECRET (S), 

and TOPSECRET (T). An order is defined on the authority levels: 

U < C < S < T. 

Given two authority levels, A and B, we write 

A < B 

if and only if A < B or A is the same level as B. 

Categories are subsets of a set of military compartments such as Nuclear, Atomic 

and Nato. The subsets Atomic and Nato, Atomic are examples of categories. 

The set of security classes is partially ordered. For two security classes, (Al, Cl) 

and (A2, C2), we write 
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(Al, Cl) < (A2, C2) 

if and only if Al < A2 and Cl Ç C2. For example, 

(S, {Atomic}) < (T, {Nato, Atomic, Nuclear}) 

is true, but (S, {Atomic}) and (T, {Nato, Nuclear}) are not comparable. 

The Bell and LaPadula model restricts accesses to objects by subjects using the 

following two rules. 

• The simple security rule states that no subject with clearance Cl may read an 

object with classification C2 unless C2 < Cl. 

• The *-property states that no subject may transfer information from an object 

with classification C2 to an object with classification C3 unless C2 < C3. 

The above rules ensure that reading information is allowed only from lower 

classes ("no read up") and writing information is allowed only to higher classes ("no 

write down"). The rules are enforced by giving the subjects the appropriate restricted 

access rights to the objects in the system. 

The Bell and LaPadula Model was found to have problems [22, 11, 27] some of 

which are listed below. 

1. The protection rules do not deal with multilevel objects. They are designed to 

deal with large objects (such as files) as single-level objects. 

2. Many programs that are in fact secure are disallowed by the rules of the model. 

This lead to the addition of the trusted process concept to the model. Trusted 

processes are created to deal with special situation that call for violating the 
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rigid rules. However, the rules determining which processes can be trusted and 

which cannot are not specified by the model. 

3. The model does not take into consideration the internals of individual programs 

and processes. Instead, it relies on external information such as the clearance 

of the subjects on behalf of which processes are running. 

2.3 Information Flow Controls Based on the Lattice Model 

In [7], it was recognized that the security classes along with the imposed partial 

order on them form a multilevel lattice structure that can be exploited to construct 

an information flow policy. An important property of such a policy is that it does 

not impose a set of rules on the access rights a user may have. Instead, the flows are 

restricted solely on the basis of the information transfers that the lattice structure 

allows. The clearance of a subject is not made a factor in deciding which flows are 

permissible; the focus is on the actual flow of information among objects rather than 

on the specific access rights that a subject may acquire. 

The lattice model allows the information flow policy to be more precise. It allows 

for mechanisms that regulate information transfers by directly examining the flows 

among objects at the statement and variable level in the programs. This property is 

lacking in the Bell and LaPadula model which is based on a model that uses access 

rights to protect single-level objects. 

An information flow policy based on the lattice structure can formally be defined 

as a pair, (SC, <), where SC is a finite set of (security) classes and < is a partial 

order binary relation on SC [7]. (SC, <) must also have the property that any two 

security classes in SC have a unique greatest lower hound and a unique least upper 



12 

hound. Thus, the flow policy forms a lattice. (It is argued in [9] that any flow policy 

can be transformed into a lattice). 

We say that there is an information flow from an object x to an object y whenever 

information in x is transferred directly to y or used to derive information transferred 

to y. Basically, after a flow from x to y, new information about x can be derived by 

examining the information in y. 

The partial order < in a flow policy is called a flow relation. It is defined as the 

following relation 

{(A, B) I A, B are security classes and class A information 

is allowed to flow into class B objects}. 

All information flows in a system must obey the flow relation of a flow policy. 

This is the only requirement that should be imposed to render a system secure. A 

flow control mechanism can enforce the policy by rejecting insecure flows. However, 

it is impossible for a mechanism to completely avoid rejecting some secure flows also; 

in this sense, all mechanisms are said to be imprecise. Building a precise mechanism 

that ensures security has been proven to be theoretically impossible [18]. 

Objects in a system are assigned security classes in one of two ways. An object 

can be statically bound to a class. In this case, the class is constant over the lifetime 

of the object. 

On the other hand, the class of an object can vary depending on the contents of 

the object. Thus, allowing objects to be dynamically hound to a variable class. 

In what follows, we introduce some useful notation. 

• The lowest and highest classes in a policy (SO, <) are denoted by LOW and 
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HIGH, respectively. LOW information may flow into any other class. HIGH 

information may only flow into HIGH. 

• The class of an object x is denoted as x. 

• For any two classes A and B, A © B and A (g) B denote the least upper and 

greatest lower bounds of A and B, respectively. 

• A flow from object x to object y is denoted as x => y. 

2.3.1 Explicit and implicit flows 

There are two types of information flows. A flow x => y is explicit if the operations 

causing it do not depend on the information flowing from x. The simplest example of 

an explicit flow is the flow caused by an assignment statement, such as y = x where 

an obvious transfer of information occurs independent of the value of x. 

To illustrate the other type of flow, consider the following statements that include 

a conditional assignment: 

y = 1; 

if (x == 0) then y = 0. 

After execution of the above statements, some information about x can be deduced 

by looking at the value of y. For example, if y has value 0, then the value of x must 

be 0. So, obviously, there is a flow from x to y. This flow exists even if the assignment 

y = 0 is not executed (in which case, x is not 0 and y must be 1). This flow, x =» y, 

exists because the statement that specifies a flow to y is conditioned on x. Flows of 

this type are called implicit. 
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2.4 Various Existing Information Flow Mechanisms 

The lattice structure can be exploited in many ways to simplify the flow control 

mechanisms. We present some examples to illustrate how the properties of lattices 

can be used in such mechanisms [9]. 

Example: Consider the following two assignment statements: 

z = x; 

y = z; 

The statements specify two direct flows, x =» z and z => y, and an indirect flow, x => 

y. To check if the flows are to be permitted, a mechanism need only check that x < 

z and z < y, which imply x ^ y, by transitivity of <. In general, flow mechanisms 

can take advantage of the transitivity of the flow relation, to check the security of a 

sequence of statements by checking individually the security of the statements in the 

sequence. 

The lattice structure guarantees the existence of greatest lower and least upper 

bounds for any group of security classes. This property can be exploited to simplify 

a flow mechanism based on the lattice model. 

Example: The statement 

y = xl * x2 + x3 

specifies the flows xl => y, x2 => y, and x3 =#» y which are permissible if xl < y and 

x2 < y and x3 < y all hold. However, it suffices for a mechanism to check if 

xl © x2 © x3 < y 



15 

where ^ ^ © x3 is the unique least upper bound of the security classes xl, x2 

and x3. 

Example: Finally, consider the conditional statement 

if (x == 0) then 

begin 

yl = 0; 

y2 = 0; 

y3 = 0; 

end 

which specifies the implicit flows x => yl, x y2, and x y3. It suffices to check if 

X < yl ® ^ (gi ^ 

holds, where ^ (g) ^ ® ^ is the unique greatest lower bound of the classes yl, y2, 

and 

Several information flow mechanisms, which are considered to follow and exploit 

the properties of the lattice flow model, have been suggested. Such mechanisms are 

designed to enforce security either at run time or at compile time. Furthermore, they 

can choose to handle program variables that are statically or dynamically bound 

to security classes. In run-time mechanisms, security of the flows is checked as the 

statements that cause them are executed. Statements that result in insecure flows are 

not executed. In compile-time mechanisms, security of the flows is checked before the 

programs execute. Programs that are found to contain flows that may cause security 

violations are rejected. 
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2.4.1 Fenton's run-time mechanism 

The mechanism presented here deals with statically bound variables only. Each 

memory location is assumed to include a tag field that holds a security class. In 

addition, a security class, pc, is associated with the program counter to allow for 

run-time checking of implicit flows. Initially, pc is LOW. 

In the case of static binding of variables to security classes, an assignment state­

ment causing an explicit flow can be verified at run time by making sure that the 

least upper bound class of the right-hand side is allowed to flow into the left-hand 

side. For example, 

y = xl + x2 - x3 

is secure if 

xl @ ^ @ x3 < y 

holds when the assignment is executed. The assignment is skipped or aborted if it 

causes an insecure flow. 

The class of the program counter is computed as the least upper bound of all 

the classes implicitly flowing from conditionals. Implicit flows are handled by using a 

stack to hold the successive classes of the program counter. Whenever a conditional 

statement is executed, the class of the program counter is saved and then updated. 

For example, executing 

if (x == 0) then y = 1 

causes the mechanism to push pc on the stack and update it to hold pc © x. If the 

value of x is 0, in addition to checking the explicit flow into y, the mechanism verifies 

that pc < y. 
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On the other hand, if the value of x is not zero, then the implicit flow need not 

be verified. This check is not necessary, for it is proved in [15] that in the static 

binding case, it is sufficient to check the security of implicit flows at the time of 

explicit assignments only^. 

A major restriction of the mechanism is that attempted security violations may 

not be reported to the user even if the insecure statement is skipped; producing 

an error message may result in leaking classified information [9]. It is extremely 

impractical to keep the user uninformed about unexecuted statements in his program. 

Among other things, this makes his debugging task nearly impossible. 

2.4.2 Denning's compile-time certification mechanism 

In [10], a program certification mechanism is presented. The mechanism assumes 

static binding and can be integrated into a compiler. Programs submitted to such a 

compiler are either certified as secure or rejected. Rejected programs do not always 

result in insecure flows when run; the mechanism is not precise. 

Certification semantic rules are presented for each syntactical language construct. 

Those rules are checked at compile time by examining the flows that a program 

specifies. For example, an assignment statement of the form 

b = f(a]^, ..., a#), 

where f(a]^, ..., a^) represents an expression involving the variables aj through an, 

is certified as secure if the compiler finds that 

a2 0 ... 0 Hfi < b 

^ A more complete discussion on checking implicit flows is included in Chapter 4. 
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holds. Otherwise, the whole program is rejected. 

Additional security conditions are presented for compound, conditional, iterative 

and procedure call statements. 

For procedure calls of the form 

q(ai,...,a77j,,b^,...,b7x ), 

where aj^,...,a7n, are actual input arguments and b^, ...,bn. are actual output param­

eters, the security conditions require that 

1. the body of q (as a compound statement) is secure and 

2. aj < X{ where xj is the formal parameter corresponding to a^ and 

3. y I < bj where y^ is the formal parameter corresponding to b^. 

The mechanism is efficient but it has a major drawback. Since all variables are stat­

ically bound and because of the above procedure certification rule, one copy of some 

procedure can only handle calls with parameters at a specific security level. To be 

generally accessible, any system library function must be duplicated to accommodate 

calls with parameters of different classes. This scheme becomes an impediment to 

code sharing (via inheritance, for example). 

To avoid having multiple copies of the same code, another solution is to always 

assume that each output parameter of a library procedure is a function of all its input 

parameters. Then, the security of procedure calls can be verified independently of 

the classes of the formal parameters. That is by replacing the above second and third 

security conditions by 

a2 © ... © Hji < b^ (Si ... ® b^. 
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However, this solution results in the rejection of many otherwise secure procedure 

calls [27] since the security condition is too strong for most procedure calls. 

2.4.3 Denning's run-time mechanism 

This run-time mechanism allows dynamically bound variables only. It is an ex­

tension of Fenton's work to handle checking implicit flows in the presence of variables 

with varying security classes. 

The idea of using dynamic binding is to allow the class of a variable to vary 

according to the class of its contents. For example, if y is dynamically bound, then 

executing the assignment 

y = f(ai, ..., an) 

also updates the class of y to 

y = ai 0 ... 0 an 0 pc. 

Here, pc is the class of the program counter that represents implicit flows. However, 

this updating mechanism is not sufficient to correctly compute classes of variables 

in the presence of implicit flows, as shown in examples in [9, 15]. Contrary to the 

case when only statically bound variables are allowed, in the presence of dynamic 

binding, it is not sufficient to deal with implicit flows only at explicit assignment 

time. The implicit flows must be included when updating classes of variables even if 

assignments are skipped^. 

In [7], Fenton's run-time mechanism is augmented by a compile-time mechanism 

which starts by analyzing the flows in a program. Then, it inserts instructions to 

^ Again, refer to Chapter 4 for a more elaborate discussion. 



20 

update the class of variables that receive implicit flows. The update consists of 

increasing the class of the variables by pc. The update instructions are executed 

in all cases even if the explicit flow into the variable does not occur. This scheme 

handles the implicit flows even in the case the explicit flows are skipped at run time. 

2.4.4 Andrews' and Reitman's compile-time mechanism 

Andrews and Reitman [2] developed a mechanism based on proof rules in which 

the flow requirements are written as assertions about the values and classes of the 

program variables [9]. 

They also divided implicit flows into two types. Local implicit flows are ones 

that occur as a result of an if-statement or a loop. For example, in the following 

statements 

if (x == 0) then y = 0 else z = 1; 

while (a > 0) do b = b + 1; 

there is are local implicit flows from x to y and z and from a to b. 

Global implicit flows occur as a result of a loop. The global flow is from the 

condition of the loop to the statements that logically may follow the body of the 

loop. For example, in the following statements 

y  =  1 ;  

while (a > 0) do b = b + 1; 

if (x == 0) then y = 0; 
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in addition to the the local implicit flows, there is a global flow from a into y. That is 

because, we can deduce some information about the value of a by checking the value 

of y. For instance, if we know that y is 0, we can deduce that the value of a is less 

than or equal to 0, since otherwise, the control cannot reach the if-statement. 
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3. TRANSACTIONS 

In this chapter, we present the notion of data consistency. We motivate the 

general problem of controlling concurrency to preserve the consistency of data. We 

present the concepts transactions and of nested transactions. 

3.1 Introduction and Definitions 

In our proposed distributed model, modules export procedures that may be called 

by procedures in other modules. Procedure invocations are serviced by independent 

processes within a module. All the processes have shared access to state variables in 

a module since they can run in parallel. As a result of allowing this type of internal 

concurrency, we achieve better performance since invoking exported procedures is the 

only way to access the information the modules encapsulate. 

Two types of information are connected with the state variables of a module: 

their values and their security classifications. Being allowed concurrent access to the 

encapsulated information, different processes may interfere with each other whenever 

they try to access the same state variables. Such interference, if left uncontrolled, 

can cause problems and unexpected behavior with respect to both the values and 

classifications of state variables. We present a classical example to illustrate such 

problems. 
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Assume we have a variable, saving, that can be accessed by the following oper­

ation: 

Deposit(real sum) { 

real t; 

t := Read(saving); 

t := t + sum; 

Write(saving, t); 

} 

Suppose that saving is 1000 before two calls to Deposit, Deposit(500) and De-

posit(200), are made. Two concurrent processes are started to service the calls. 

It is possible that both processes read the value of saving as 1000 before either 

has a chance to update it. Then, after both are finished, the final value of saving will 

be either 1500 or 1200. In either case, the result of only one of the two deposits is 

reflected in the final value. This is obviously an intolerable unexpected result which 

is directly brought about by the uncontrolled sharing of the variable saving between 

two concurrent processes. This type of problem is called the lost updates anomaly 

[4]. 

The inconsistent retrievals anomaly [4] is another problem which we illustrate. 

Assume now that there is another shared variable, checking, and two other operations: 

Transfer (real sum) { 

r e a l  t l ,  t 2 ;  
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t l  : =  R e a d ( c h e c k i n g ) ;  

t 2  : =  R e a d ( s a v i n g ) ;  

t l  : =  t l  -  s u m ;  

t 2  : =  t 2  +  s u m ;  

Write(checking, tl); 

Write(saving, t2); 

} 

PrintTotal () { 

real tl, t2; 

t l  : =  R e a d ( c h e c k i n g ) ;  

t 2  : =  R e a d ( s a v i n g ) ;  

Print(tl + t2); 

} 

Assume that initially saving is 1000 and checking is 500. Suppose a call Trans­

fer (200) is interrupted right after checking is updated to 300 but before saving shows 

a value of 1200. Meanwhile, a call PrintTotal() is made and runs until completion, 

outputing a value of 1300. 

Again, this is another obvious incorrect result produced by operations on shared 
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data. In this case, reading the information before all the relevant updates were made 

results in an inconsistent output. 

One obvious solution to the interference problem is to disallow concurrency by 

allowing no more than one active process within a module. We already rejected this 

solution on the basis of poor performance. 

As another possible solution, one might naively suggest employing any usual 

mutual exclusion technique to individually protect variables from concurrent access. 

For example, use semaphores to protect each single state variable from interference 

by different processes. As the following example shows, this is still an inadequate 

solution. 

By using two binary semaphores, checking-sem and saving-sem, one can rewrite 

Transfer() and PrintTotal() as follows: 

Transfer (real sum) { 

real tl, t2; 

Wait(checking-sem); 

t l  : =  R e a d ( c h e c k i n g ) ;  

t l  : =  t l  -  s u m ;  

Write(checking, tl); 

Signal(checking-sem); 

Wait(saving-s em); 

t 2  : =  R e a d ( s a v i n g ) ;  

t 2  : =  t 2  +  s u m ;  
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Write(saving, t2); 

Signal(saving-sem); 

} 

PrintTotal () { 

real tl, t2; 

Wait(checking-sem); 

t l  : =  R e a d ( c h e c k i n g ) ;  

Signal(checking-sem); 

Wait(saving-sem); 

t 2  : =  R e a d ( s a v i n g ) ;  

Signal(saving-sem); 

Print(tl + t2); 

} 

If the PrintTotal() and Transfer() operations interleave in a certain way, the 

problem of inconsistent retrievals shows up again. It is still possible that PrintTotal() 

computes a total by adding up a new value for checking to an old one for saving, or 

vice versa. 

One problem with the above attempted solution is that Transfer() signals the 

checking semaphore too early allowing PrintTotal() to access checking before saving 
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is credited with the appropriate amount. The early signal causes the connection 

between the values of the two accounts to be lost and thus, leads to the unexpected 

results. 

The connection between the two variables can be stated by a consistency con­

straint that the users who share access to those variables expect to hold. Consistency 

constraints are assertions that the data accessed by users must satisfy [12, 34]. Those 

assertions are usually only implicitly stated since in real systems, they are too nu­

merous. 

For example, the consistency constraint for the above example is that the sum 

of the two account balances is equal to a specific value. In our discussion, we rejected 

solutions to the interference problem on the basis that we implicitly assume that 

this constraint holds. When the constraint is violated we get unexpected and wrong 

results. This kind of erroneous behavior in the example can be fixed with the proper 

placement of the semaphore operations, a topic to be discussed later. 

To produce correct results, Transfer() must be run in a way that does not leave 

the variables in a state violating the consistency constraint, i.e., in an inconsistent 

state. By looking at the code of Transfer(), we see that this is accomplished since the 

sum of checking and saving is left intact. However, during the execution of Transfer(), 

there is a time where the state of the variables is temporarily inconsistent. This 

temporary inconsistency is unavoidable while not harmful [12]. The wrong output is 

actually the result of the early signal operation allowing PrintTotal() access to an 

inconsistent state which is corrected but only when Transfer() ends. 

In summary, we need to require that (completed) operations preserve consistent 

states while tolerating temporary inconsistency during the execution of the opera­



28 

tions. However, we need to make sure concurrent operations run without ever ac­

cessing inconsistent data even if they are temporarily so. In real systems, it is not 

possible to satisfy those requirements by explicitly listing and checking all consistency 

constraints. Instead, we run the operations as transactions. 

A transaction is a sequence of actions (operations) manipulating data objects. 

When executed alone and to completion, each transaction takes a consistent data 

state to another consistent state [12, 34, 5]. 

The concurrency control problem concerns the coordination (or synchronization) 

of the actions of different concurrent transactions so as to preserve consistency. Con­

currency control prevents the intermediate results of actions within a single transac­

tion from being disclosed and used by other transactions. Such property of transac­

tions is called concurrency atomicity oi indivisibility [4]. For all purposes, transactions 

can be treated as executing atomically with no interruption from or interleaving with 

other system events. 

A sequence of interleaved actions from a set of concurrent transactions is called 

a schedule [5]. A schedule is consistent if it specifies the interleaving of actions in a 

way that gives each transaction a consistent view of the state of the data [12]. 

For example, the sequences of operations formed by running the transactions 

serially in any order are all consistent schedules (since each transaction individually 

forms a consistent schedule.) Such sequences are called serial schedules. 

Schedules are used to represent the sequence in which a system executes the 

actions of a set of transactions. If we impose on the system the requirement that the 

effect of following a schedule of actions is equivalent to following some serial schedule 

of the same actions, then consistency is preserved. A schedule which is equivalent 
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to a serial is said to be serializable [12]. The concept of equivalence between two 

schedules is not treated formally here. 

So far in our discussion, we have assumed a failure-free environment and we 

required just the concurrency atomicity property of transactions. Actually, concur­

rency control algorithms cannot guarantee consistency in the presence of failures since 

they may prevent the completion of transactions in execution. Different types of fail­

ures may occur. For example, going back to the Transfer() operation, if the system 

crashes between the updates of the two accounts preventing only one of the balances 

from being written into, the state of the data is left inconsistent. Also, after a flow 

violation is detected, execution of a transaction could be halted in the middle of a 

temporarily inconsistent state, a situation which should be prevented from becoming 

permanent. 

Some error recovery technique must be employed to render the system and con­

currency control resilient in the presence of failures. An all-or-nothing policy should 

be enforced for transaction execution: either all the the effects of the actions of a 

transaction are observed or none of them are, in either case consistency is preserved. 

This is the failure atomicity or recoverability requirement [5]. 

Error recovery techniques are concerned with bringing the system to a consis­

tent state after a failure causes the interruption of the execution of a transaction, 

possibly leaving inconsistent intermediate results. As one option, they can roll back 

to the consistent state existing previous to the start of the transaction, i.e., employ­

ing backward recovery [19]. Alternatively, forward error recovery takes the system 

to a consistent state by modifying and correcting the intermediate inconsistent state 

resulting from the incomplete transaction [19]; it makes use of the partial results 
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already computed. Forward recovery requires exact knowledge about the damage the 

failure caused and the semantics of the interrupted transactions. Exception handling 

is an example technique that recovers forward from software failures. 

Systems can be designed to tolerate certain failures. Failures are divided into two 

categories: tolerable failures and intolerable failures [19]. In short, tolerable failures 

are ones that the recovery system is able to handle. All other failures are intolerable. 

We assume that intolerable failures do not occur or that otherwise, consistency is not 

guaranteed. 

Combining concurrency atomicity with failure atomicity of transactions allows 

the building of systems that maintain the consistency of their data in the presence of 

concurrency and (tolerable) failures. Actually, by preventing intermediate results of 

transactions from being viewed by others, concurrency control halts the propagation 

of results of failed transaction, and thus simplifies the recovery task. Transactions 

that are both concurrency and failure atomic are also called atomic actions. 

Next, we present some well-known concurrency control algorithms and error 

recovery techniques. There is an impressive amount of published material on both 

subjects. We present only the basic works that directly or indirectly influenced our 

thinking and results. 

3.2 Recovery Techniques 

Recovery techniques guarantee the failure atomicity property of transactions. 

Given a started transaction, either all its effects are completely reflected on the data, 

in which case the transaction is said to commit, or all of them are erased, in which 

case the transaction is said to abort. 
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Implementing transactions requires the availability of permanent or stable storage 

media that can survive crashes. Permanent storage provides the usual read and write 

operations. The write operation is always performed atomic ally so as not to leave 

partially updated and corrupted data. Disks can be used to implement permanent 

storage [19]. We only assume that some kind of stable storage exists and that it is 

an intolerable failure for it to behave erroneously or lose its data. 

Permanent storage always contains a consistent state of the objects. However, 

intermediate states can be stored on volatile storage while being manipulated by 

an active transaction. There are basically two general techniques to make use of 

permanent storage for recovery: shadowing and logging. 

We also mention a protocol that allows transactions to commit atomically on 

distributed sites. 

3.2.1 Shadowing 

This technique involves maintaining consistent versions of object states on per­

manent storage. These versions represent the most recent data that was written by 

committed transactions. Any intermediate updates are made to different temporary 

versions of the states; the previous consistent versions are not affected. 

When a transaction is aborted, the temporary inconsistent states are discarded. 

When a transaction is committed, its effects are made permanent by atomically 

replacing the previous consistent state with the new versions. 
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3.2.2 Logging 

Instead of creating new versions of the data, a logging technique makes all up­

dates to the original consistent copy. However, an incremental log of all updates to 

the states is kept. Each log entry represents an update operation and contains enough 

information to allow for the recovery of the previous state. The log is maintained on 

permanent storage. 

When a transaction aborts, the recovery is made by going through the log and 

performing an undo operation for each update entry. Eventually, the original consis­

tent state is recovered. To commit a transaction, the log is simply discarded since 

the changes to the data are already made. 

3.2.3 Distributed atomic commit 

A distributed transaction may manipulate data at different nodes called its co­

horts. Once a decision has been made to abort or commit a transaction, the recovery 

system must guarantee that all cohorts will take the same coordinated actions: either 

discarding all computations made by the transaction or committing them. The two-

phase commit protocol coordinates the commit action among the cohorts [19]. The 

protocol works even if crashes happen while it is being executed. It is implemented 

by a commit coordinator that resides on a single site and can communicate with all 

the cohorts. 
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3.3 Concurrency Control 

3.3.1 Two-phase locking 

Locking is a way to synchronize concurrent access to shared resources. Before 

a transaction is allowed to access a data item, it must obtain a lock on the item. 

Commonly, a transaction can request either read access or write access on a data 

item. Different transactions can concurrently read an item but only one transaction 

should be allowed to write to an item. Accordingly, a common lock convention divides 

locks on items into two types: read locks and write locks. Before reading (writing) 

an item, a transaction must request a read lock (write lock). Only if it obtains the 

requested lock that a transaction is allowed to access the item. 

We denote the operations of reading and writing a data item x by r[x] and 

w[x], respectively. We then can assume that with each data item x, two locks are 

associated: a read lock and a write lock, denoted by rl[x] and wl[x], respectively. 

Write locks are exclusive; if a transaction requests and obtains wl[x] for an item x, 

then no other transaction can obtain or hold a lock (of any type) on x. On the other 

hand, read locks can be shared by reader transactions; any number of transactions 

can hold rl[x] (as long as no transaction is holding wl[x].) 

The above lock properties ensure the one-writer, multiple-reader rules. Lock 

types that are not allowed to be concurrently held on the same item by different 

transactions are said to conflict, otherwise, they are said to be compatible. A trans­

action that requests a lock that conflicts with a lock held by another transaction is 

blocked until the conflicting lock is released (i.e., until the item is unlocked.) 

A compatibility table can be used to summarize lock properties. In Figure 3.1, 
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Figure 3.1: Compatibility table for read and write locks 

we show the compatibility table for read and write locks. A "yes" entry indicates 

that the lock types do not conflict or that they are compatible. 

An important property that needs to be assumed for any locking scheme is that 

all basic operations are implemented atomically. Namely, it is assumed that the 

operations of acquiring and releasing locks and of reading and writing a data item 

are all atomic. The atomicity of the basic operations can be implemented using any 

known mutual exclusion technique such as semaphores. 

A two-phase locking (2PL) transaction is one that obtains all the locks it needs 

before it starts releasing any of them. Such transactions are divided into two phases: 

a growing phase in which locks are requested but none are released and a shrinking 

phase in which locks are released but none are requested. If only 2PL transactions 

are allowed to run in a system, then any resulting schedule is serializable and thus, 

maintains consistency. 

A strict 2PL mechanism requires transactions to release all the locks together 

when the transaction ends. One obvious advantage of such transactions is that there 

is no need to perform any steps to figure out when the shrinking phase should start; 

it always starts when the transaction is done. 

3.3.1.1 Adding new locks We have assumed that the only operations that 

can be performed on a data item are reads and writes. However, new types of 

rl wl 
yes no 
no no 
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operations and corresponding lock types can be added if one follows the following 

rules [5]. 

1. Each new operation is implemented to ensure its atomicity. 

2. A new lock type is defined for each new operation. 

3. A compatibility table is defined that includes all locks. 

The above rules will be used later when we present our locking scheme for our 

system. 

3.4 Moss' Nested Transactions 

So far, we have talked about only single-level atomic transactions. Moss [30, 31] 

developed a nested transaction model in which any transaction can spawn subtrans­

actions. The model is based on locking. Subtransactions run as part of a parent 

transaction but keep their atomicity properties on their own. They introduce con­

currency within a transaction as well as independent recovery properties. 

Any transaction can have child subtransactions which in turn, can have their 

own child subtransactions, and so on. The top-level transaction and its subtransac­

tions form a rooted transaction tree. In this context, we can talk of transactions or 

subtransactions being children, parents, ancestors, descendants, siblings.... 

Subtransactions are allowed to run concurrently but not with their parents. They 

either abort or commit. If a subtransaction aborts, its parent need not also abort. 

However, even if a subtransaction commits, it can still be aborted if its parent aborts. 

In fact, the effects of a multilevel transaction are not made permanent and are hidden 

from other transactions until the top-level (the root) transaction commits. On the 
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other hand, the effects of a committed nested subtransaction are visible to other 

related subtransactions. 

The locking rules for nested transactions are an extension of the usual single-

level locking protocol. They are simplified by the fact that parent transactions are 

not allowed to run concurrently with their children. Any (sub)transaction is assumed 

to be 2PL. The rules are stated as follows. 

1. A transaction may read (write) an item only if it holds the corresponding read 

(write) lock on the item. 

2. A transaction may obtain a read lock on an item only if all holders of write 

locks (if any) on the item are its ancestors. 

3. A transaction may obtain a write lock on an item only if all holders of any 

(read or write) locks (if any) on the item are its ancestors. 

4. If a subtransaction commits, its locks are inherited by the parent. The parent 

becomes the holder of those locks. 

5. If a subtransaction aborts, its locks are discarded. 

These rules ensure serializability within as well as among transactions. 

The rules for recovery are also extensions of the shadow versions technique. They 

are stated as follows. 

1. When a transaction obtains a write lock on an item, a version of the item is 

made. All updates to the item are made to this shadow version. 

2. When a transaction commits, the shadow version is inherited by its parent. If 

the parent already has its own version of the same item, the child's version takes 
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precedence. When the top-level transaction commits, the shadow versions it 

holds are installed on stable storage. 

3. When a transaction fails, its shadow versions are discarded. 

In the first rule, the shadow version is made from the original stable storage copy 

if no other versions of the same item are held within the transaction tree. Otherwise, 

the shadow version is copied from the version held by the youngest (most deeply 

nested) transaction. 

Committing a top-level transaction involves communicating with all the sites 

where a subtransaction run. The committing process must be made atomic. A two-

phase commit protocol is used. The top-level transaction acts as coordinator of the 

protocol. Its committed subtransactions are the participants. 

3.4.1 Implementing remote procedure calls 

One of the interesting applications [26, 24] of the nested transaction model is in 

implementing remote procedure calls with at-most-once semantics in a distributed 

system^. We heavily rely on the following scheme in our model. 

The main idea is to run the RPC at the remote node as a subtransaction of the 

caller. Assume that transaction T at node A issues an RPC to run on node B. 

1. The caller T creates a local child subtransaction Tj^ at node A which is to 

manage the call on behalf of T. Tj^ is called the local call subtransaction of T. 

2. In turn, T^ creates a remote child subtransaction T2, a grandchild of T. T2 

^RPCs with at at-most-once semantics are guaranteed to either run exactly once 
or not at all. 
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runs on B and executes the RFC; it is called the remote call subtransaction of 

T. 

An advantage of having the extra local call subtransaction is to be able to abort 

the remote RFC subtransaction without affecting the caller transaction. To abort 

T2, all is needed is to locally abort Then, T can resume without having to 

worry about Tg since by aborting Tj^, an eventual abort of T2 is certain. Another 

advantage of having Tj^ is to allow the caller to concurrently start a number of RPCs. 

Of course, if the RFC subtransaction commits, it must inform its parent, the 

call subtransaction. In this case, the caller is informed of a successful call. If for any 

reason the call is unsuccessful, the caller can always try another RFC or retry the 

same one; it does not have to abort. 
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4. A MODEL FOR MULTILEVEL SECURITY FOR DISTRIBUTED 

SYSTEMS 

The information flow control mechanisms presented in Chapter 2 are designed 

for centralized systems and are not readily suited for a distributed environment. Also, 

each approach handles either dynamic or static class binding but not both. 

On one hand, the run-time mechanisms require special hardware and incur sub­

stantial overhead at run time. On the other hand, the compile-time mechanisms 

require that any service procedures be verified before they can be called. This is not 

practical in a distributed system where objects and their exported procedures can 

exist on different sites. For our purposes, we need a mechanism in which the verifica­

tion of the software programs can proceed as much as possible locally, independent 

of the software on other sites until remote services are requested. This supports the 

modular approach to software development. 

For efficiency reasons, the security mechanism should rely mostly on compile-

time verification. However, in our environment, it is not possible to avoid run-time 

checking of flows altogether because of the existence of messages passed among the 

sites. 

Finally, supporting both static binding and dynamic binding is a need and allows 

more flexibility. For example, dynamic binding eliminates the need for more than one 
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version of a single procedures with differently classified parameters. On the other 

hand, allowing static binding becomes necessary to classify the users' output devices. 

For example, a terminal may be treated as statically-bound to a class corresponding 

to the user's clearance, as long as the login shell is running. 

In this chapter, we present a mechanism that includes the above features for 

distributed object-oriented systems. First, we introduce a computational model that 

we will assume henceforth. In the last part of the chapter, we discuss some major 

restrictions of the security mechanism. The restrictions will be removed in later 

chapters. 

4.1 The Resource Module Model 

In this section, we introduce a programming model which we will call the Re­

source Module (RM) model. It basically serves as a computational and syntactical 

basis for the rest of this dissertation. However, we note that the RM model is general 

enough to allow any of the subsequently suggested mechanisms to apply to any other 

distributed model. 

In the RM model, it is assumed that data types and their operations are defined 

by RM classes that can be instantiated to produce RM objects or simply RMs. An 

RM is a class instance that encapsulates some data objects, its state variables. The 

state of an RM consists of the current data stored in its state variables. Access to 

the state variables of an RM is allowed only through the exported operations defined 

in the class of that RM (including the inherited operations). 

There are two types of state variables. A dynamic state variable is one whose 

security class is dynamically-bound. A static state variable has a constant statically-
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bound class. Similarly, we define two types of local variables in procedures; dynamic 

local variables and static local variables. Each state variable has two pieces of data 

associated with it: its value and its security class. Accordingly, we can talk about 

the value state and the security state of an RM object. 

In Figure 4.1, we show an example of how RMs are represented. The example 

shows an RM encapsulating four state variables. Dsvl and dsv2 are dynamically-

bound. Ssvl and ssv2 are statically-bound to security classes SECRET and LOW, 

respectively. 

The operation init is a special procedure that runs when the object is created. 

The exported procedure P has three parameters. We use the symbol '|' to separate 

IN parameters which are passed by value from OUT parameters which are by-result. 

Communication of service requests between RMs is made through blocking re­

mote procedure calls (RPCs). An RPC, like a usual procedure call, may include IN 

and OUT actual parameters. In the example, P sends an RPC request to RM M2 

for procedure Q. When an object receives an RPC it creates a process to run the 

corresponding procedure code. Internal object concurrency is allowed. So, different 

RPCs that are received at an RM result in the creation of concurrent processes and 

multiple threads of control within the RM. 

In addition to RPCs, two other types of messages are used for RM communica­

tion: return messages which carry results back to the caller of a procedure and probe 

messages which will be explained in the next section. A return message is sent when 

a procedure ends and causes the termination of the process sending it. A probe, like 

an RPC, causes the suspension of the process sending it. 
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Ml = { 

int dsvl, ssvl(SECRET), dsv2; ! STATE VARIABLES 
real ssv2(L0W); 

initO ! INITIALIZATION PROCEDURE 
{ 

dsvl = 0; 
dsv2 = 0; 

} 

P ( a , b  I  c )  !  E X P O R T E D  P R O C E D U R E  
int a, b(CONFIDENTIAL): 
real c; 
{ int index(LOW), dlv; 

M 2 . q ( d l v  I  s s v l ) ;  

} 

R ( a  I  b )  !  E X P O R T E D  P R O C E D U R E  
int a, b; 
{ 

} 
} 

Figure 4.1: An example representation of an RM object 
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4.2 The Information Flow Control Mechanism 

4.2.1 Overview 

The information flow control mechanism is developed in [27]. It is a combined 

compile-time run-time mechanism with the following features. 

1. At compile time, the internals of individual procedures are certified indepen­

dently. Also, flow and security information that is needed at run time is saved 

in appropriate structures. 

2. At run time, certification of the communications between modules is performed. 

For improved efficiency, run-time certification is invoked only at message passing 

time. 

3. The mechanism allows procedures to have statically-bound and dynamically-

bound local variables and formal parameters. 

4. The mechanism supports statically-bound state variables. 

5. The mechanism can support dynamically-bound variables if concurrent pro­

cesses within a module are not allowed. 

The main task of the compile-time mechanism is to build an information flow 

template for each exported procedure in a class. Templates are instantiated when 

an RFC is received. A template consists of two main parts: security definitions and 

security checks. 

The security definitions are used by the run-time mechanism to compute the 

security classes of various dynamically-bound variables. For example, the class of 



44 

a dynamically-bound state variable must be computed at run time using a security 

definition. The class of this state variable cannot be known at compile time since 

it may depend on, among other things, the class of some dynamically-bound IN 

parameters. 

The security checks of a template contain all the information needed at run time 

or message passing time to verify the security of the possible flows that may be caused 

by an invocation of the procedure. Specifically, for each statically-bound variable that 

is visible and accessed inside the procedure code, there is a security check to express 

the flow into that variable. For instance, before starting the execution of a procedure, 

the security checks are evaluated to determine the possibility of security violations. 

This may require evaluating the classes of the dynamically bound variables that are 

involved in the flow. 

The problem of inter-module implicit flows is handled nicely by including with 

each RFC message the security class on which the call is conditioned. That security 

class is computed at run time using a security definition in the template instance. 

However, since, among other reasons, our model allows the presence of dynamically-

bound variables, implicit flows need to be checked even if the RFC is skipped as a 

result of a conditional. (This is similar to the update operation in Denning's run­

time approach.) This situation is handled by sending a probe message to the called 

module. A probe contains the class on which the call is conditioned to allow the 

called module to verify the security of the implicit flows. It results in the update of 

the classes of dynamic state variables. 

In this section, we present the details of the information flow run-time and 

compile-time mechanisms for distributed systems. The mechanisms are presented 
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with enhancements, clarifications, and notations! modifications from the original 

mechanisms found in [27]. The enhancements remove the original restrictions of 

not allowing internal concurrency and of overclassification of the classes of dynamic 

variables. Further elaborations on the implication of these enhancements will be 

presented later in this section. 

Next, we discuss implicit flows at length. This will help in clarifying the subse­

quent presentation of the run-time and compile-time mechanisms. 

4.2.2 Discussion on checking implicit flows 

The information flow control mechanisms that have been presented in Chapter 

2 follow either of two approaches: the run-time approach where checks are exclu­

sively made at execution time and the compile-time approach where checks are made 

when programs are compiled. Our approach is a combined compile-time run-time^ 

approach. We chose that approach because we wanted to have as much of the flow 

checking done at compile-time for efficiency. However, because of the distributed 

nature of our system we could not completely avoid run-time checking. 

In a mechanism following a compile-time approach, flow violation error messages 

do not convey any information about the values of any variable to a user (subject) 

since offending programs are rejected even before they are run or any values are 

accessed. However, a compile-time approach mechanism may reject programs that if 

run would only cause authorized flows and would not lead to a flow violation. We say 

that such a mechanism is not precise [9]. The imprecision comes from the fact that 

^More specifically, the run-time checks in our approach are made at message pass­
ing time. 
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the actual execution path of the program is not taken into consideration. We present 

an example using Denning's compile-time certification mechanism for programs with 

static variables. 

int X(SECRET), y(LOW); 

P() 

{  . . .  

if (x == 0) then y = 0; 

} 

The above code will not be certified at compile time since it shows an implicit flow 

from X to y which is illegal because it is a flow from SECRET to LOW. Regardless 

of what the value of x would have been at run time, the program is rejected with a 

flow violation error message which does not leak any classified information. 

Now, we consider the same example with a run-time approach. Specifically, we 

consider Fenton's run-time mechanism with static variables. Fenton showed that 

such a mechanism, can be made more precise than the compile-time approach if at 

run time, the actual execution path of the program is considered. He showed that, 

in the absence of dynamic variables, implicit flows need only be checked at explicit 

assignment time. In other words, implicit flows into a static variable are not checked 

if the assignment statement to that variable is skipped. For example, the security of 

the above program is checked as follows. 
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int X(SECRET), y(LOW); 

P() 

{  . . .  

if (x == 0) then 

! security check done at run time 

IF (class(x) <= class(y)) THEN 

y = 0; 

ELSE FLOW VIOLATION IS DETECTED; 

} 

Note how the extra code (if-statement shown in capital letters) for checking the 

implicit flow from x to y is only executed right before executing the assignment 

statement and that it is not executed if x is not 0 (i.e., if the assignment statement 

y = 0 is skipped). This results in a more precise mechanism since if x is not 0, no 

checking is done and the program is not rejected as in the compile-time approach 

mechanism. 

However, with the increased precision, another problem is introduced. Fenton 

discovered that in this mechanism if a flow violation is reported then the error message 

can actually leak classified information to the subject. In the above example, if x is 

0, then the mechanism detects a flow violation since x is strictly greater than y. If 

the user is informed about the flow violation then he can deduce the value of x since 

the security check is only made if x is 0. Moreover, if x is not 0, the absence of a flow 
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error message reveals the class of x. 

To solve the problem, in case a flow violation is detected, Fenton's mechanism 

requires that it is not reported and even, that the offending program is allowed to 

continue running so that no leakage to the user takes place. For example, the above 

program is compiled into the following code. 

int x(SEGRET), y(LOW); 

P() 

{ int x(SECRET). y(LOW); 

if (x == 0) then 

IF (class(x) <= class(y)) THEN 

y = 0; 

ELSE SKIP; ! skip if flow error is detected 

ELSE SKIP; ! also skip if x is not 0 

} 

In this case, if x is 0 and a flow violation is detected before an assignment statement 

is executed, then the program is not allowed to perform the offending statement. 

However, the program continues running by executing the SKIP statement. On the 

other hand, if x is not 0 and no flow violation is detected, SKIP is also executed. 

This way if the user subsequently tests the value of y and finds it not to be 0, then 



49 

he cannot deduce whether that is because x is not 0 or because a flow violation is 

detected. On the other hand, if y is found to be 0, then the user may deduce that 

X is 0. However, this is not a problem since in that case the user must have enough 

clearance to know the value of y and therefore must have enough clearance to know 

the value of x since x < y. 

Note that the code indeed violates the lattice no matter what the value of x is. 

Once the test if x == 0 is reached and evaluated, the implicit flow to y automatically 

occurs. However, the security check is only made when x is 0. The question arises 

on whether this program should be allowed to run at all despite the presence of the 

lattice violating flow. Fenton argues that since the user is left in the dark about the 

way the program runs then no actual harmful flow occurs. However, the program is 

an erroneous one and its practicality is very doubtful. 

As a matter of fact, the major drawback of Fenton's method is that users are 

never sure of the results of their programs and whether they can rely on them. 

Reliable programming becomes impossible in this case. For that reason, we reject this 

type of solution for the run-time part of our mechanism. We do need to inform users of 

any flow violations to have any practical and meaningful programming environment. 

Of course, this should not jeopardies security. 

In [27], Mizuno presents a preferable solution for the problem of the leakage 

of information through flow violation error messages. The idea is not to allow the 

execution of a conditional statement unless it is certified that the user is cleared to 

read the implicit flow caused by the statement. In other words, the user's clearance, 

represented by SUBJECT, is greater or equal to the class of the implicit flow. If it is 

not the case then a flow violation can be reported without leaking information about 
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the implicit flow since the conditional statement does not even get to execute and 

no implicit flow takes place. We present an example showing how the security of the 

program is checked^. 

int X(SECRET), y(LOW); 

P() 

{ 

! check clearance of the subject first 

IF (class(x) <= clearemce(SUBJECT)) THEN 

"C if (x == 0) then 

IF (class(x) <= class(y)) THEN 

y = 0; 

ELSE REPORT FLOW VIOLATION AND ABORT; 

} 

ELSE REPORT NOT ENOUGH CLEARANCE AND ABORT; 

} 

The idea behind introducing the clearance of the user, SUBJECT, is that any 

^The example is only used to explain the mechanism since actually, the above 
program will be rejected first by our compile-time mechanism. The run-time mecha­
nism is not called upon since no messages are passed. However, for simplicity, let us 
assume for now that only a run-time approach is employed. Later, we will generalize 
the example to show RPCs being made causing the run-time mechanism to execute 
at message passing time. 
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output device to which a user has access must be statically classified at his clearance 

level to prevent any higher classified information from being written onto that device. 

For example, a user's terminal can be classified at the user's clearance at login time. 

The terminal classification is static and is not allowed to vary for the duration of the 

login session. 

So, if we think of the flow error message as actually carrying an implicit fiow 

from X, then we can 'classify' the error message at the level of x (SECRET), even 

before testing x. Then, the error message must not be allowed to flow to the user's 

output device unless he is cleared to read x itself. If the user is not cleared for x then 

he should not be able to even test its value and he should be informed that he has 

lower clearance than needed to run the program. 

By going through all possible execution paths in the above code, we show that 

no illegal flow of information can occur. 

Case 1: Assume SUBJECT is strictly less than x. Then, a potential violation is 

detected and the user is informed that he does not have enough clearance to 

run the program. No information about x is compromised and the implicit flow 

from X to y is prevented since the test if x == 0 is not performed. 

Case 2: Assume x is less than or equal to SUBJECT. 

1. If X is 0 then a flow violation is detected when the classes of the variables 

are compared. The user receives a flow violation error message. This 

message actually carries information about x which is SECRET. So, the 

user is able to infer that the value of x is 0. This does not constitute an 

illegal leakage since it has already been established that the user is cleared 
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to read x. 

2. If X is not 0 then no flow violation is reported and the program may 

continue executing. Note however that, as in Fenton's mechanism, since 

the test on x was actually performed, here also the implicit flow to y has 

occurred but again ignored. Later, we will show how this is a problem 

which raises questions about the practicality of allowing the program to 

continue running in such cases. 

Note that in case 2, even a normal termination message can carry information 

about X. For example, assume another user has a clearance, SUBJECT2. lower than 

X, and he knows SUBJECT, x, and y. In other words, the user knows the results of 

the security tests. Then, if he has access to the normal termination message, then 

he can deduce that the value of x is not 0. This is similar to this other user being 

able to deduce that x is 0 if he gets access to the flow violation message. So, it must 

be assumed that no other user with a lower clearance may have access to the output 

device of the user on whose behalf the program is running. In this way no message 

of any type can cause undetected illegal flows. The lower clearance user is prevented 

from having access to the program's termination status. 

Although this scheme in no case produces insecure programs, but as mentioned 

above, this mechanism also violates the lattice structure by ignoring the implicit flow 

from X to y in case x is not 0. This may lead to unexpected results as shown by the 

following code which is a slight modification of our running example. 

int x(SECRET), y(LOW); 

int z(LOtf); 
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PO 

{ 

! check clearance of the subject first 

IF (class(x) <= clearance(SUBJECT)) THEN 

{ if (x == 0) then 

IF (class(x) <= class(y)) THEN 

y = 0; 

ELSE REPORT FLOW VIOLATION AND ABORT 

} 

ELSE REPORT NOT ENOUGH CLEARANCE AND ABORT 

IF (class(y) <= class(z)) THEN 

z = y; 

} 

In the example, we introduced another global variable, z, of class LOW. If x is 

not 0 and there are no flow violations (i.e., x < SUBJECT and x < y), then the 

variable z gets the value of y. Assigning the value of y to z is not detected as a 

violation since they are both LOW. However, y carries a SECRET implicit flow since 

the test X == 0 was indeed reached and executed. It should be expected that the 

assignment does not take place. 
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Although, we have shown that no leakage of information can result since the 

termination status of the program is protected, but here we claim that the program 

is erroneous since it actually allows an illegal flow from x to y and then to z. For that 

reason, we conclude that the implicit flow must be checked even if the assignment 

does not take place. The security checkings should be performed as shown below. 

int X(SECRET), y(LOW); 

int z(LOW); 

P() 

{ 

IF (class(x) <= cleaurance(SUBJECT)) THEN 

if (x == 0) then 

IF (class(x) <= class(y)) THEN 

y = 0; 

ELSE REPORT FLOW VIOLATION AND ABORT 

! check flow even when skipping the assignment 

ELSE IF NOT (class(x) <= class(y)) THEN 

REPORT FLOW VIOLATION AND ABORT 

ELSE REPORT NOT ENOUGH CLEARANCE AND ABORT 

IF (class(y) <= class(z)) THEN 

z = y; 
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} 

The implicit flow is checked under both branches of the if statement. The flow 

violation will be caught regardless of the value of x and z will not receive the value of 

y, as the user would expect. So, the above scheme is not more precise than Denning's 

compile-time approach but a degree of preciseness has to be sacrificed if we want to 

allow a practical programming environment where users can rely on the results from 

their programs. 

Before we continue with the discussion, we need to show, in our system, the 

equivalent code that will actually call upon the run-time flow checking mechanism. 

In Figure 4.2, we show two modules where x, y, and z are static state variables. There 

are no local assignment statements in P, but when it is called the implicit flows to 

M2.W are checked regardless of the value of x. This is done by having the RPC carry 

the class of x into M2.W. If the RPC is skipped, sending a probe carrying the same 

class allows the checking of the implicit flow that occurs even though the assignment 

in M2.W is skipped. In all cases, z is prevented from receiving the value of y from 

the other module since the flow from x to y is not allowed. 

As previously mentioned, probes must update the classes of dynamically-bound 

state variables, in the absence of the actual RPC. As justified by the above example, 

probes need to be sent even in case where state variables are statically bound. Probes 

do need to perform checks of implicit flows into static variables, in addition to their 

task of class updating. 

Since we concluded that implicit flows must be checked in both branches of 

a conditional, one might question the need for still checking the clearance of the 
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Ml = { int x(SECRET); 
int z(LOW); 

M2 = { int y(LOW); 

no assignment statement exists 
implicit flows are checked at 
the procedures that are called 

P ( )  
{ 

IF class(x) <= clearance(SUBJECT) 
THEN 

if (x == 0) then 
M2.W() 

ELSE 
! check implicit flow 
! in skipped call 
send-probe(M2.W); 

ELSE 
REPORT NOT ENOUGH CLEARANCE 
AND ABORT; 

M2.R(z); 

} 

either the probe or the 
RPC carry in implicit 
flows (e.g., class(x)); 
in either case it must 
be checked 

WO 
{ 

IF "implicit" <= class(y) 
THEN 

y =  0 ;  
ELSE 

REPORT FLOW VIOLATION 
AND ABORT; 

} 

! b is dynamic; 
! at run time it gets the 
! class of y (LOW) 
R (  l b )  
{ 

b = y; 
} 

Figure 4.2: Implicit flow checking across modules 
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Ml = { int x(SECRET): 
int z(SECRET): 

! X may flow to subject 
! if cleeirance(subject) 
! is not tested 
P() 
{ 

if (x == 0) then 

M2.R( Iz) 
ELSE 

send-probe(M2.R); 

} 
} 

Figure 4.3: Violation in the absence of checking SUBJECT 

subject. In Figure 4.3, we show an example in which not making that check results 

in an illegal flow. 

In the example, assume that the subject knows x, y, and z. So, he knows that 

that if X is 0, a flow violation occurs when a return is sent back from M2.R and the 

flow from the formal OUT parameter b to z is checked However, if x is not 0, then 

since a value is not returned from M2.R through z, a flow violation is not reported 

and the value of x can be deduced. As a consequence, if the subject is not cleared to 

read y, security is violated unless we prevent the execution from reaching the test x 

== 0. We conclude that checking the subject's clearance is still necessary. 

^As will be explained later in the description of the run-time mechanism, if M2.R 
is called, when it returns, it also sends back the class of its OUT parameter, b. In 
this case, b is TOPSECRET and it flows to the actual OUT parameter, z, which is 
classified SECRET. 

M2 = { int y(TOPSECRET): 

! b gets class of y 
R( lb) 

b = y; 
> 
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As the last topic in this section, we discuss the placement of the subject's clear­

ance checking. Obviously, the earliest it could be performed is right when an RPC is 

received at run time since SUBJECT is not known before then. This may result in 

wrongly rejecting secure programs, as the following code shows. 

! perform all subject clearance checks 

! before execution starts 

IF NOT (class(x) <= class(SUBJECT)) THEN 

REPORT NOT ENOUGH CLEARANCE 

IF NOT (class(y) <= class(SUBJECT)) THEN 

REPORT NOT ENOUGH CLEARANCE 

if (x == 0) then 

if (y == 0) then 

z = 0; 

If X is not 0, there is actually no need to check the subject's clearance against y since 

the test y == 0 is not reached. 

As a consequence, to make the mechanism more precise, we can move the test 

until right before a conditional is executed. That is the latest it can be performed 

since in no way can we afford to have the test after the condition is evaluated. Then, 

the code is transformed as follows. 

! delay subject cleetrance checks as long as possible 
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IF (class(x) <= class(SUBJECT)) THEN 

{ if (x == 0) then 

IF (class(y) <= class(SUBJECT)) THEN 

{ if (y == 0) then 

z = 0; 

} 

ELSE REPORT NOT ENOUGH CLEARANCE 

} 

ELSE REPORT NOT ENOUGH CLEARANCE 

However, it must be noted that the gain in precision is made at the expense 

of violating our requirement that run-time checks are only made at message passing 

time. However, we don't view this as a major deviation from our philosophy since it 

is a relatively simple test to perform during the execution of a procedure and only 

when conditions are checked. Moreover, the gain in preciseness may be substantial. 

Finally, we summarize our conclusions. 

• The subject's clearance must be checked against the implicit flows to avoid 

leaking information through flow violation error message. However, if more 

precision is desired, the system designer may elect to delay the check until right 

before the conditional is executed. 

• The user's output devices are classified at his clearance level at login time. No 

other user with a lower level may read information shown on those devices. This, 
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in turn, has the result of protecting the information regarding the termination 

status of a program (flow error and normal termination errors) by 'classifying' 

them at the level of the clearance of the subject running the program. 

• For users to expect reliable results from their programs, the system must 

check implicit flows even if assignments are skipped. This applies even if only 

statically-bound variables are used. Therefore, in addition to updating the 

classes of dynamically-bound state variables, probes must be given the task of 

checking implicit flows into statically-bound ones. 

Now, we are ready to present in detail both the compile-time and the run-time 

mechanisms. 

4.2.3 The compile-time mechanism 

The compile-time mechanism checks the internal security of procedures. It also 

builds information flow templates, structures that include information necessary for 

the run-time certification mechanism. 

4.2.3.1 Information flow templates Information can flow in and out of 

procedures through different types of variables. Variables that carry information into 

a procedure are called input variables, while output variables are the ones that carry 

information out. 

For a procedure P in a module M (see Figure 4.4), input variables are identified 

as being the actual IN parameters sent to P by its callers, the state variables in M 

whose values are read in P, and the formal OUT parameters of procedures called by 

P. (Constants used by P are always assumed to have LOW classification, so they ate 
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INPUT VARIABLES OUTPUT VARIABLES 

Formal OUT's 

of Callees of P OUTS Formal OUT's OUTS 
of P 

Actual IN's 

of P M.P( ) IMS Actual IN's 

of Callees of P 

State Variables 

of M STATES State Variables 

of M 

Figure 4.4: Input and output variables of a procedure 

not considered.) Output variables are the formal OUT parameters of P, the state 

variables in M that are written in P, and actual IN parameters sent to procedures 

called by P. 

Since, in general, the classes of input variables are not known until run time, the 

compile-time mechanism represents them with security variables or s-variables, for 

short. The classes of static variables are represented by their constant classes. The 

following example illustrates the notation that is used for the different s-variables. 

Assume a procedure P in a module Ml is declared with the heading P(x | y) 

(the symbol '|' separates IN parameters from OUT parameters). Also, assume that P 

makes a call M2.Q(a | b) for a procedure Q in M2. Then, Pjç denotes the s-variable 

representing the class of the input variable corresponding to the actual parameter for 

X. M2.Q.b denotes the s-variable for the class of the value returned to P by the RPC 

to Q. Finally, the class of a dynamically-bound state variable dsv in M is denoted as 



Note that Pjç and M2.Q.b are used to represent the actual class of the informa­

tion carried into the procedure through the corresponding input variables which are 

considered to be the recipients of that information flow. The variables themselves, 

X and b, may actually be statically bound. In that case, we will see later that the 

flows from P.x to x and from M2.Q.b to b must be checked. Otherwise, if x and b are 

dynamically-bound, then they are assigned the classes Pjc and M2.Q.b, respectively. 

In order, to compute the classes of output variables in terms of the s-variables of 

the input variables, security expressions or s-expressions are generated. S-expressions 

represent the least upper bound of some relevant security classes and s-variables. For 

example, 

©(SECRET, TOPSECRET, dsv, z, a) 

is an s-expression that represents the least upper bound of the classes within the 

parentheses, where dsv, z, and a represent s-variables. Note that the example expres­

sion can be simplified and written as 

©(TOPSECRET, dsv, z, a) 

since the least upper bound of the constant classes can be computed at compile time 

and since it is obvious (from the ©-operator) that the operands represent security 

classes. We will usually show only the simplified form of a s-expression. 

The compile-time mechanism uses s-expressions to build information flow tem­

plates for each procedure in a module (including the initialization procedure.) The 

flow templates are formed of two parts. The first part is used to compute (an upper 
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bound on) the security classes of output variables at run time and contains security 

definitions or s-definitions. S-definitions are of the form 

( output variable ) = ( s-expression ). 

The flow template contains an s-definition for each of the output variables. An s-

definition corresponding to a static variable is simply its security class and will not 

be shown in templates. 

As an example, consider the following piece of code. 

int dsv; 

P( a I b); 

int a, b; 

{ int c(SECRET): 

if a then 

b = c; 

else 

b = dsv + 1 ; 

} 

Then, an s-definition for the output variable b can be written as 

b = ©(dsv, Ra, SECRET, LOW) 



64 

or simply, 

b = ©(SECRET, dsv, P.a). 

The dynamically-bound output variable b receives flows from a, c (SECRET), dsv 

and 1 (LOW). The s-deflnition shows an upper bound on the class of b when the 

code is executed. Since the values of some shown s-variables, P.a and dsv, cannot be 

known until run time when P gets called, b cannot be computed before then. 

Since there are three different types of output variables, the s-definitions in a 

template can be further divided into three categories. We refer to those categories 

as OUTS, INS, and STATES s-definitions corresponding to the formal OUT param­

eters, actual IN parameters and state variables, respectively. The above example 

s-definition would be listed under the OUTS category of a template for P. 

The second part of an information flow template is used to verify the security 

of the flows into the static variables that are written into by a procedure; it contains 

security checks or s-checks. For each static variable that is written into by a procedure, 

the compile-time mechanism creates an s-check of the following form 

( static variable ) (( constant security class )) <— ( s-expression ). 

The s-checks show the flow of information into the static variables that may occur 

during the execution of the procedure. 

For example, from the following piece of code 

int sv(SECRET): 
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if a then 

M.P( X I sv); 

else 

sv = 0; 

we can generate the following s-check for sv 

sv(SECRET) <— ©(LOW, a, M.P.sv). 

The s-check is evaluated at run time to verify the flows into sv. Note how the example 

shows how sv and M.P.sv represent different classes. The former is the static class 

SECRET. The latter is the class of the information returned by the call to M.P. 

4.2.3.2 Generating s-expressions for loops To generate s-expressions for 

s-checks or s-definitions for variables that receive flow in a loop, we need some new 

special notations. Here, we will present the way loops are handled in [27]. In Chapter 

6, we present our new scheme to generate s-definitions. However, we note that s-

checks will still be generated in the way presented here. 

Consider the following piece of code containing a while loop. 

a = 0; 

while (exp) do { 

a = b; 

b = c; 

} 

At execution time, during the first iteration of the loop, b flows into a. During the 

second iteration, c also flows into a since at the end of the previous iteration c flows 

into b. 
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When templates are being generated at run-time, it is not known how many 

times the loop will iterate. The s-expressions must be generated so as to allow for all 

possible flows. In [27], a flag (*) is used with certain s-variables in s-expressions to 

indicate that the flow from that variable occur within loops. 

For example, in the above code, if a is a SECRET static variable, then the 

following s-check is generated. 

a(SECRET) ^ e(LOW, b(*)) 

The flag associated with b indicates that b flows into a in a loop, that is, more than 

once. 

Assume that during execution time, the initial classes of b and c are SECRET 

and CONFIDENTIAL, respectively. Then, after the first iteration, the flagged s-

variable causes the class SECRET to appear in the s-expression as follows. 

a(SECRET) ^ ©(LOW, SECRET, b(*)) 

Note that b(*) does not disappear from the s-expression, indicating that b may flow 

into a again. 

If the loop iterates one more time, then again the flagged s-variable causes an­

other class to be added to the s-expression. This time the added class is CONFI­

DENTIAL since c flows into b before the second flow from b to a. Then, we have the 

following s-check. 

a(SECRET) ^ ©(LOW, SECRET, CONFIDENTIAL, b(*)) 

Note how the use of the flag allows the mechanism to check all flows into a that are 

caused by any iteration of the loop. 
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If a flagged s-variable appears in an s-definition, it has a slightly different mean­

ing. For example, assume that a is a dynamically-bound variable. Then, from the 

above code, we get the following s-definition 

a = ©(LOW, b(*)), 

which indicates that b flows into a within a loop. In this case, if the loop iterates 

more than once, there is no need to accumulate the flows. It is enough to just replace 

the previous flows. If b and c have the same initial classes as above, then during the 

first iteration, we have 

a = ©(LOW, SECRET(b(*))), 

which indicates that the new class of a is SECRET. However, b(*) does not disappear 

from the s-expression because a may still change inside the loop. As a matter of fact, 

during the second iteration of the loop, the class of a becomes CONFIDENTIAL and 

we get the following s-definition. 

a = ©(LOW, CONFIDENTIAL(b(*))), 

Note how the class of a after the first iteration is changed since the SECRET infor­

mation is overwritten by the CONFIDENTIAL information in c. 

4.2.3.3 Inter-module implicit flows Inter-module implicit flows are han­

dled by associating a special s-variable, implicit, with each procedure call. An s-

definition for implicit in a template for a procedure P takes the following form 

implicit = ©( EXP, IMP) 
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where EXP is an s-expression representing the class on which the call is conditioned 

and IMP is the class of the incoming implicit flow sent by the caller to P. Implicit 

represents the class of the implicit flow into to the called procedure and is sent along 

with the call message. 

Since implicit flows occur even if the procedure call is skipped at run time, the 

compile-time mechanism must generate statements to send implicit to the skipped 

procedure. This is achieved by adding send-probe statements to conditional procedure 

calls. For example, a statement like 

if (EXP) then M . q ( )  

is compiled into 

if (EXP) then H.QO else send-probe(M.Q) . 

The send-probe statement, if executed, handles sending implicit when an RPC 

is skipped. At the receiving RM the class of the incoming implicit flow is denoted by 

the special s-variable IMP. 

Send-probe statements are also inserted as the first statements following the 

loop. They are needed to handle inter-module global implicit flows. 

4.2.3.4 Updating classes of dynamic state variables Potentially, the 

class of each dynamic state variable in a module must be updated every time a 

message (RPC, probe, or return) is sent by the module. This is done so as to keep 

the class of the dynamic state variables up-to-date while the process that is sending 

the message is suspended (or terminated). This updating is a necessary expense since 



another process may need to access the class of the state variable^. This enhancement 

provides the first step^ in removing the restriction of the original mechanism in [27] 

of not allowing internal concurrency in RMs. 

For each procedure call, the compile-time mechanism generates an s-definition 

for each dynamic state variable that has possibly been written into before a request 

for sending an RFC or return message. This s-definition is used to update the class 

of the state variables before sending that message. We use the s-variable dsvffM.F to 

denote the class of the dynamic state variable dsv before the call (or probe) to M.F. 

The s-definitions in STATES are used to update the classes of the dynamic state 

variables upon returning. 

Similarly, we introduce the s-variable dsvJlM.F to denote the class of a dynamic 

state variable dsv after the call (or probe) to M.F. This type of s-variable is used in 

the s-expressions in s-definitions of variables that receive flow from a dynamic state 

variable after an RFC or probe request. Note that if the dynamic state variable is 

actually an actual OUT parameter than dsvJlM.F is still simply denoted by M.F.dsv 

(which represents the class after the call). However, the new notation is needed since 

the class of a dynamic state variable may be modified by another concurrent process 

starting in the same RM while the caller process is suspended. Therefore, dsv-llM.F 

may actually be different than dsv^M-F even if dsv is not an actual OUT parameter. 

We present two examples to illustrate the above ideas. In the first example 

shown in Figure 4.5, we assume that a call to procedure ML? is received by Ml 

which in turn causes a chain of RPCs to be made. The chain can be represented as 

'^We will see in the next chapter that this other process must belong to the same 
transaction as the suspended or terminated process. 

^The concurrency control mechanism of the next chapter provides the other step. 
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Ml ={ int dsvl; M2 = { 
int ssvl(LOW); 
int ssv2(SECRET); 

R ( )  
initO { 

M3.S(): 
dsvl = ssvl; } 

} 

0  M3 = { 
dsvl = ssv2; 
M2.R(); 

S O  
{  . . .  

0  Ml. q O ;  
} 

ssvl = dsvl; } 

Figure 4.5: An example illustrating module-recursive calls 
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Ml.PO - M2.R() -> M3.S() -> Ml.QO. 

Note how the chain starts and ends in the same module, Ml. The RPC to Ml.P 

(indirectly) results in a call back to a procedure in Ml. Such RPCs, which directly 

or indirectly cause the same module to be called more than once in the RPC chain, 

are called module-recursive RPCs. 

In the example, the class of dsvl is initially LOW when the module is created. 

When the module-recursive call Ml.P is received, dsvl gets SECRET information 

from ssv2. Then, the call to M2.R occurs. Eventually, Ml.Q is called and the s-check 

ssvKLOW) ®(dsvl, IMP) 

from its template is used to check the flow into ssvl. 

Assume the current class of dsvl is not updated before sending the RPC message 

to M2.R from Ml.P (i.e., dsvl remains LOW). Then, substituting LOW for the s-

variable dsvl in the s-check detects no flow violation as the s-check becomes 

ssvl(LOW) ©(LOW, IMP) 

which shows a flow from LOW to LOW. However, it can obviously be seen that 

actually dsvl holds SECRET information (since ssv2 is assigned to dsvl before the 

call to M2.R) and that Ml.Q should not be executed since it would result in an illegal 

flow. 

On the other hand, if the class of dsvl is updated before the RPC is sent then 

the flow violation will be caught. With the current dsvl set to properly to SECRET, 

when Ml.Q is received, its s-check is evaluated to 

ssvl(LOW) ^ ©(SECRET, IMP) 
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resulting in an obvious illegal flow. Therefore, we conclude the necessity to update 

classes of dynamic state variables before a message is sent out if module recursive 

calls are permitted. 

The second example is similar to the first one and is shown in Figure 4.6. The 

chain of calls is the same and the module-recursive call is still Ml.P. Here a flow 

violation occurs after the call to M2.R returns and dsvl is assigned to ssv2. This is 

a result of having Ml.Q assign TOPSECRET information to dsvl whereas ssv2 is a 

SECRET static variable. 

By using the new notation and generating the s-check 

ssvl(LOW) ^ ©(dsvU,lM2.R, IMP) 

the violation is caught when M2.R returns and dsvlJiM2.R is replaced with the class 

of dsvl after the call, which is TOPSECRET. 

The s-check 

ssvl(LQW) ©(dsvl, IMP) 

would not catch the violation since the s-variable dsvl would be replaced by a class 

of dsvl before the call to M2.R. Therefore, we see the need for the new notation. 

4.2.3.5 Ambiguous and unambiguous assignments Statements, which 

assign or may assign a new class to a dynamic state variable dsv, are called secu­

rity assignments or s-assignments. We will say that such statements s-assign dsv. 

Examples are statements that read dsv, procedure calls with dsv as an actual OUT 

parameter and of course, assignment statements. Those are called unambiguous s-

assignments since they with certainty define the class of dsv. 
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Ml ={ int dsvl; M2 = { 
int ssvl(LOW); ... 
int ssv2(SECRET); 
int ssv3(T0PSECRET); R() 

M3.S(): 
P ( )  }  
{ dsvl = ssvl; } 

M2.R(); 
ssv2 = dsvl; M3 = { 

} 

Q() SO 

dsvl = ssvS; Ml.qO; 
} } 

> } 

Figure 4.6: An example illustrating module-recursive calls 

As explained earlier, a procedure call in which dsv does not appear as an actual 

OUT parameter may still result in a change in dsv. This type of s-assignments 

that only possibly modify the class of a dynamic state variable are ambiguous. As 

another example, an assignment through a pointer is also considered an ambiguous 

s-assignment of any dynamic variable dsv if it is possible that the pointer points to 

dsv since at execution time the pointer may not point to dsv at all. 

The example of Figure 4.6 shows how a procedure call, Ml.R, can ambiguously 

assign a new class to a dynamic state variable, dsvl. The use of the s-variable 

dsvlJ|.M2.R implies an ambiguous s-assignment. On the other hand, M2.R.dsvl would 

imply an unambiguous s-assignment caused by dsvl being an actual OUT parameter. 

Finally we note that statements that cause an implicit flow into a dynamic 

variable dsv are said to increment its class. For example, since probes carry only 
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SUBJECT Clearance of the user on whose behalf 
the program is running 

dsv a dynamically-bound state variable 
ssv a statically-bound state variable 
X Class of the variable x, dynamic or static 
P.a Input variable carrying information into P through 

the formal IN parameter, a, of P 
Ra Class of the information in P.a 
M.Q.b Input variable into the caller of M.Q corresponding 

to the actual OUT parameter of Q 
M.Q.b Class of the information in M.Q.b 
implicit Class of the implicit flow sent out by a procedure 

to its callee 
IMP Class of the implicit flow received by a procedure 

from its caller 
dsvffM.Q Class of a dynamically-bound state variable prior 

to the call or probe to M.Q 
dsvJtM.Q Class of a dynamically-bound state variable upon 

returning from the call or probe to M.Q when 
it is not an actual OUT parameter of Q 

Figure 4.7: Summary of notations 

implicit flows, they are s-assignments that increment the classes of dynamic state 

variables. They can only change classes of variables to a higher class. We will say 

that a probe s-increments a dynamic state variable. 

4.2.3.6 Summary of notations In Figure 4.7, we show a summary of the 

notations we will use. 

4.2.3.7 Example In Figure 4.8, we give an example of a simple template to 

illustrate the notations and notions presented in this section. The given template 

is for a procedure R.P with two IN and one OUT parameters. In the s-definition 
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part, under the OUTS category, the s-definition of the OUT parameter c defines its 

security class upon completion of the procedure. The class of c is sent in the return 

message along with the value of c. The s-expression defining ç shows that SECRET 

information flows into c. In addition, two dynamic variables flow into c. Ml.Q.e 

representing the class of the actual OUT parameter from the call to Ml.Q. Also, the 

dynamic state variable dsvl flows into c but the flow occurs after the call to Ml.Q; 

the use of dsvUMl.Q implies that Ml.Q ambiguously defines dsvl which does not 

appear as an actual OUT parameter in the call. Finally, the implicit flow, IMP, 

received by P from its caller, is shown since it flows into all variables that are written 

by P. 

Under the INS s-deflnitions, one procedure call to Ml.Q is listed. The class of 

the actual IN parameter for the call is given by an s-definition. Also, s-definitions for 

implicit and dsvllVMLO are included. Implicit and a are sent with the RPC. Notice 

how a is computed using the class of P.a which is an actual IN parameter to P. Ra 

is determined from the RPC message calling P. The s-definition dsvl^)Ml.Q is used 

to update dsvl before the RPC Ml.Q is sent. 

Under the STATES s-definitions, the final classes of dsvl and dsv2, after the 

execution of P, are given by s-definitions. 

The s-checks part shows that two static variables, b and ssv, receive flow in P. 

These flows must be checked at run time when the values of the s-variables can be 

determined. 

Note that the compile-time mechanism can also use the s-checks to reject a 

procedure if they show an illegal flow. For example, the following s-check can be 

used to immediately reject a procedure at compile time 
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R.PCa.b I c) TEMPLATE 

S-definitions Part 
OUTS 

Ç = ©(SECRET, Ml.Q.e, dsvlJ|Ml.Q, IMP) 
INS 

Ml.q (a I e, dsv2) 
impUcit = ©(CONFIDENTIAL, IMP) 
dsvliYMl.O = ©(SECRET, IMP) 
a = ©(P.a, IMP) 

STATES 
dsvl = ©(CONFIDENTIAL, Ml.Q.dsv2, IMP) 
dsv2 = ©(Ml.Q.dsv2, IMP) 

S-checks Part 
b(CONFIDENTIAL) ^ ©(P.b, IMP) 
ssv(SECRET) ^ ©(SECRET, Ml.Q.e, IMP) 

Figure 4.8: An example information template 
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int ssv(SECRET); !ssv is a SECRET static state var. 
int dsvl, dsv2; !dsvl euid dsv2 are dynamic state vars. 

P(a,b I c) 
int a, b(CONFIDENTIAL): 
real c; 
{ bool e; 

if (b < 0) then { 
dsvl = ssv; 
Ml.q (a I e, dsv2) ; 

} else 
send-probe(Ml. q ) ;  !  inserted by compile-time mechanism 

if (e) then 
c = dsvl * ssv; 

else 
ssv = ssv + e; 

dsvl = b + dsv2; 
} 

Figure 4.9: Code for the example template 

b(CONFIDENTIAL) ^ ©(SECRET, P.b, IMP). 

It shows an illegal flow regardless of what run-time flows occur. 

Notice how we can deduce the information flow caused by the procedure by 

looking only at the template. The template can match many different procedure 

codes. However, we are not interested in the codes but only with flow they cause. 

Most of the times we will only show templates and not the code from which they 

are generated. For illustration purposes, in Figure 4.9, we show a possible procedure 

code for the template in Figure 4.8. 
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4.2.4 The run-time mechanism 

The information flow control run-time mechanism certifies the security of RPCs 

at message passing time. When a procedure is invoked, a flow instance of its flow 

template is created in the called module. When messages are received or sent, the 

mechanism replaces all the s-variables in the flow instance whose values are known 

at that instant by their class values. Then, it proceeds by evaluating the s-checks to 

detect any possible security violations. 

For example, assume a call R.P(x, y, z) is received for the procedure of Figure 4.8, 

where x is SECRET, y is LOW. Also, assume that the call is conditioned on a 

CONFIDENTIAL class (i.e., IMP is CONFIDENTIAL). Then, the template instance 

of the call will be as shown in Figure 4.10. Note that the s-checks show no flow 

violations at this point and the call can proceed. Also note that, in this case, the 

INS s-definitions for Ml.Q can be completely evaluated to show that the call will 

be conditioned on CONFIDENTIAL, that the actual IN parameter is SECRET, and 

that dsvl must be updated to secret before the call (or probe) leaves the module. 

The details of the steps that are taken by the run-time algorithm follow. The 

actions that are taken depend on the type of the message (i.e., RPC, probe, or return) 

and on whether a message is being sent or received. 

4.2.4.1 Handling RPCs When an RPC to M.P is received, a new instance 

of the template of M.P is created, and then, the following steps are taken. 

1. In the flow instance, replace all s-variables corresponding to dynamic state 

variables with their current classes. All these s-variables are of the form dsv: 

the values of the other forms such as the ones corresponding to ambiguous 
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R.P(a.b I c) TEMPLATE INSTANCE 

S-definitions Part 
OUTS 

Ç = ©(SECRET, Ml.Q.e, dsvll|Ml.Q, CONFIDENTIAL) 
INS 

Ml.Q(a I e, dsv2) 
implicit = ©(CONFIDENTIAL, CONFIDENTIAL) 
dsvli>Ml.Q = ©(SECRET, CONFIDENTIAL) 
a = ©(SECRET, CONFIDENTIAL) 

STATES 
dsvl = ©(CONFIDENTIAL, Ml.Q.dsv2, CONFIDENTIAL) 
dsv2 = ©(Ml.Q.dsv2, CONFIDENTIAL) 

S-checks Part 
b(CONFIDENTIAL) ^ ©(LOW, CONFIDENTIAL) 
ssv(SECRET) ^ ©(SECRET, Ml.Q.e, CONFIDENTIAL) 

Figure 4.10: An example flow instance 
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s-assignments (dsvJtM.P) are not known at this point. 

2. In the flow instance, replace all occurrences of IMP by the security class of the 

implicit flow caused and carried by the RPC. 

3. In the flow instance, replace the s-variables for all formal IN parameters (of the 

form P^a) by their value carried in by the RPC. 

4. Evaluate the s-checks; in other words, check for possible flow violations as 

determined by the s-checks. Report any violations to the user and abort. 

5. Check that all implicites in the INS part are bounded by the security clearance 

of the subject on whose behalf the call is running. If it is not the case, report 

low clearance to the user and abort. 

The execution of the call is allowed to proceed only if steps 4 and 5 do not detect 

any potential flow violations. Step 5 is taken so as not to leak any information to 

the subject through flow error messages. As discussed earlier, performing this check 

at this particular point of receiving the RPC does make the mechanism less precise 

than if the check is embedded in the code of the procedure. 

When a procedure P makes an RPC (e.g., M.Q), the following steps are taken. 

1. P is suspended. 

2. All s-deflnitions in the INS part for that call are evaluated. Accordingly, the 

current classes of the dynamic state variables that have been written into are 

updated using the s-deflnitions of s-variables of the form dsv^ïM.O. Also, the 

classes of the actual IN parameters and of implicit are sent along with the RPC 
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message. Those classes are used, as explained above, in the flow instance of the 

procedure receiving the message. 

4.2.4.2 Handling probes In case a probe is being sent, the same actions 

as in sending an RFC are taken except that the part handling the actual parameters 

is skipped. Namely, 

1. the procedure is suspended, 

2. the classes of the dynamic state variables are updated, and 

3. implicit is sent along with the probe message. 

When a module receives a probe for a certain procedure, the way it is handled is 

very similar to the way RPCs are handled. One obvious difference is that there are 

no formal IN parameters to handle. 

Another difference is that probes are propagated to check for the security of the 

implicit flows in further skipped procedure calls and to update the classes of dynamic 

state variables in the objects that they visit. 

There is always an initial probe that triggers this propagation process. We call 

the procedure that sends that initial probe the probe originator. It is the module 

receiving the initial probe that starts propagating it to other modules which in turn, 

must propagate it too. All the modules visited by the probe are simply called probe 

recipients. 

Probe recipients will be identified by the name of the procedure mentioned in 

the probe message they receive. For example, assume a procedure Ml.F executes a 

send-probe(M2.Q) statement. Also, assume that in M2.Q three different procedure 
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Probe Originator | Path 

i 
M2. q\ Initial Probe Recipient 

M5.T) Probe Recipients M3.R M4.S 

Figure 4.11: Example of a probe tree 

calls appear: M3.R, M4.S, and M5.T. Then, Ml.P (the probe originator) initially 

sends the probe to M2.Q (the initial recipient) which in turn propagates the same 

probe carrying the same implicit flow class to M3.R, M4.S, and M5.T (the probe 

recipients). Of course, those probe recipients may still need to propagate the probe 

to other recipients. The path of the propagated probe of this example is shown in 

Figure 4.11. Notice how the path and the visited procedures starting with the initial 

recipient form a tree. We refer to such trees as probe trees. 

Next we present the way incoming probes are handled at run time. First, the 

recipient procedure of the probe checks if it is being revisited by the same probe. If 

it is the first time it receives the probe, a flow instance for the procedure is created. 

Then, the following steps are performed. 

1. The special s-variable IMP is replaced in the s-checks of the template instance 

by the class of the implicit flow carried in by the probe. 
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2. Check that IMP < sv, where sv is a static variable that has an s-check in the 

template, and thus, appears as receiving flow in the procedure code. This step 

is equivalent to evaluating the s-checks since only IMP among the s-variables 

has a known value when a probe and not an actual call is received 

3. If no violations are detected, the probe is propagated to all procedures that 

appear under INS (i.e., that could be called by this procedure). If the INS part 

is empty (i.e., the probe recipient is a leaf in the probe tree), no propagation 

occurs and the following steps are taken. 

(a) S-increment the dynamic state variables that are written into in the pro­

cedure code by the class of the implicit flow carried in by the probe. 

(b) Send a probe-certified message to the sender of the probe. 

(c) Delete the flow instance. 

Upon receiving a probe-certified message from all its children in the probe tree, 

a module, in turn, gets to perform the above three steps. Eventually, if no 

violations are detected, the probe originator receives a special probe-certified 

message, a probe-return, from the initial probe recipient. Only then will the 

originator be unsuspended. 

4. If a flow violations is detected at any point during the propagation of the probes, 

then a message to that effect is propagated to all probe senders upwards trough 

the tree. The originator of the probe is not allowed to proceed and a flow 

violation is reported. 
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If the same probe revisits a procedure, no matter which procedure is its sender, 

there is no need to redo the checking and propagating. The revisited procedure 

simply responds to the revisiting probe the same way it responded to the probe at 

the time of its first visit. 

4.2.4.3 Handling returns In addition to probe-returns, there is another 

type of return messages: RPC-returns. An RPC-retum message is sent when a 

procedure terminates. 

When sending an RPC-return, the s-definitions in OUTS are evaluated and the 

results are sent along with the return. Also, the classes of the dynamic state variables 

are updated according to the s-definitions in STATES. Finally, the flow instance is 

destroyed. 

When a module receives an RPC-return message, the following steps are taken. 

1. The flow instance is updated by replacing all s-variables of the form M.P.dsv 

corresponding to actual OUT parameters of the call. 

2. The s-variables holding the class of dynamic state variables after the call are 

updated. These s-variables are of the form dsvJiM.P in the template and they 

take the value of the current classes of the state variables they represent. An 

s-variable dsvliM.P indicates an ambiguous assignment. 

3. Finally, the s-checks are evaluated and the class of the subject is tested against 

the s-definitions of implicites in INS. This is done because some of the s-variables 

might not have had a known value when flow violation were checked first. 

Only the above latter two steps are taken when a module receives a probe-return 
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Incoming Messages Outgoing Messages 

Information Flow Control 

Component 

Access Component 

Processes 

/security j 
State j 

^ r/alue^ 
""*1 State J 

Figure 4.12: Components of a resource module object 

message for a probe it originated. Obviously, there is no need to handle actual OUT 

parameters when probes return. 

4.3 The Protected Resource Module Model 

The Protected Resource Module (PRM) model is the resource module model 

augmented by the information flow control mechanism. An KM can now be diagra-

matically represented as shown in Figure 4.12. 

The figure shows that each RM can be logically thought of as having two compo­

nents. The information flow control component receives and sends messages, runs the 
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flow control mechanism, and manages the security state of the RM. The access com­

ponent manages the user processes that are created by received RPCs. It manages 

the value state of the RM. 

4.4 Shortcomings of the Flow Model 

4.4.1 Restrictions on concurrency 

In the information flow control mechanism we presented in this chapter, we have 

shown how module-recursive processes can be handled. However, another important 

restriction is that the mechanism does not provide a concurrency control mechanism 

to allow for preserving the consistency of the state of modules in the presence of 

internal module concurrency. Most importantly, we are interested in preserving the 

consistency of the security state of modules with dynamically-bound state variables. 

The mechanism must control concurrent accesses to the classification information of 

the shared variables. Otherwise, if several processes that are running concurrently 

within a module try to access the same state variable, they may get unexpected 

results. Worse yet, they may cause flow violations to go undetected. 

A simple solution is of course not to allow dynamically-bound state variables. 

However, we argue that allowing dynamic static variable adds certain advantages to 

our system. For example, assume an object encapsulates a state variable sv. If sv is 

statically-bound to the class SECRET, then no user with clearance less than SECRET 

may read it. However, sv may actually contain CONFIDENTIAL information, in 

which case preventing a user with a CONFIDENTIAL clearance from reading the 

variable is unnecessary. Obviously, by using a dynamic state variable, the class of 

the variable will reflect the class of the information stored in it and no unnecessary 
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denials of reading requests will occur. 

Also, in the static case, no TOPSECRET information is allowed in sv. This 

necessitates the creation of different instance objects (and may be different classes) 

to encapsulate state variables of different classifications. 

So, we would like to have dynamically-bound state variables, but this will re­

quire the addition of a concurrency control scheme. In Figure 4.13, we show how 

inconsistencies can result in the absence of such scheme. Assume that Ml and M2 

get instantiated and that their RPCs, MS.Read and M3.Write from their init proce­

dures, are received at the same time at MS and two concurrent process are created 

to service those calls. Also, assume that initially dsvl is LOW and that the state­

ment dsvl = a gets executed first. At this point dsvl contains SECRET information 

since the actual IN parameter to the call is x and it is classified at SECRET. Then 

if MS.Write is interrupted before it executes the return, the run-time mechanism is 

not given the chance yet to update the current class of dsvl. 

Now it is obvious that, while MS.Write is suspended, MS.Read can execute and 

return with a return message that carries a LOW class for the formal OUT parameter 

b. Whereas, at the same time, b carries SECRET information from dsvl. Therefore, 

when the return message arrives at Ml, the s-check 

y(LOW) <— ©(MS.Read.y, IMP) 

in the template instance of init is evaluated to 

y(LOW) ^ ©(LOW, IMP) 

and the flow violation is not detected. 
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Ml ={ M3 ={ int dsvl; 

initO 
{ int y(LOW); 

Read( lb) 
int b; 
{ 

M3.Read( I y); 
b = dsvl; 

} 
} 

} Write(a) 
int a; 
{ M 2  = {  . . .  

initO 
{ int x(SECRET); 

dsvl = a; 
} 

} 

M3.Write(x); 
} 

Figure 4.13: Undetected illegal flows in the absence of concurrency control 

The flow violation of the example is present because the security state of the 

RM was left inconsistent as a result of uncontrolled concurrency. Concurrency can 

also lead to an inconsistent value state of an RM. The lost update and inconsistent 

retrieval anomalies of Chapter 3 may occur in the absence of concurrency control. 

Internal module concurrency is an important requirement in our model, but such 

insecure behavior cannot be tolerated. 

In the next chapter, we suggest a concurrency control mechanism to remove the 

restrictions on concurrency to allow dynamically-bound state variables in RMs. 
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4.4.2 Overclassification of dynamically-bound state variables 

When s-definitions are generated for dynamically-bound variables, they show 

all possible flows into the variables. They do not take into consideration the actual 

execution path taken by a process. As a result, when those s-definitions are evalu­

ated, they usually give an upper bound on the class of the information stored in the 

variables rather than the actual class. 

For example, for 

if (el) then dsv = e2 else dsv = e3; 

the following s-definition is generated 

dsv = ©(el, e2, e3, IMP). 

That obviously is an overclassification of dsv since in no case will the statement cause 

both el and e2 to flow into dsv. 

In chapter 6, we develop a new form of s-definitions which allows a more precise 

calculation of the classes of dynamic variables by including information about the 

execution path of the processes. 

The increased precision in the computing of the classes of dynamic variables will 

also result in a more precise flow control mechanism (in the sense that less secure 

programs will be rejected). The reason is that the s-variables of dynamic variables 

in the s-checks will tend to be less overclassified. For example, if the s-check 

ssv(SECRET) ^ ©(dsv, IMP) 

is evaluated, it signals a flow violation if dsv is incorrectly overclassified to TOPSE-

CRET. However, if the actual information in dsv is less than TOPSECRET and 



90 

dsv is computed more precisely to reflect the class of that information, then a flow 

violation does not result and the program is not rejected. 



91 

5. A CONCURRENCY CONTROL MECHANISM FOR THE 

PROTECTED RESOURCE MODULE SYSTEM 

In this chapter, we suggest a concurrency control mechanism based on Moss' 

nested transaction model. The mechanism is run by a concurrency control component 

in the protected RMs. Figure 5.1 shows an RM augmented by the new component. 

Later, we explain how the information flow control and access components use the 

concurrency control component to preserve the consistency of their states. 

5.1 Introduction 

As explained in the previous chapter, an interesting property of our system is 

that we view the state of each RM as composed of two (sub)states: a value state and 

a security state. In other words, each state variable is thought of as encompassing a 

pair: its value and its security class. 

It is obvious that only the consistency of the security states corresponding to 

dynamically-bound state variables is affected by concurrency; the security state cor­

responding to statically-bound variables is constant. So, our discussion will mostly 

concentrate on dynamic variables, noting that the locking mechanisms we develop 

will be able to be applied to the value state of static variables, their only variable 

part. 
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Component 

Information Flow Control 

Component 
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Figure 5.1: An RM object with a concurrency control component 
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To preserve the consistency of RM states, Moss' nested transaction scheme [31] 

was found to be a good starting point for our investigation because of its use of 

locks and its elegant handling of RPCs. However, we found that in its original 

form, using two locks, the scheme may not actually be adequate. The reason is 

that we are concerned with the performance of the system if send-probe operations 

become frequent. Since probes propagate to RM objects in a tree-like fashion, a probe 

initiated at a certain object may actually end up being sent to an exponential number 

of other objects. Moreover, since probes must cause the class of some dynamic state 

variables to be updated, they must lock those variables, preventing other operations 

(and other probes) from accessing the variables. Therefore, a decrease in concurrency 

may occur. 

A couple of major observations about probes were made. First, probes only 

access the class part of a variable in an object; they do not access the value of a 

variable. This may possibly mean that a probe need not prevent other operations 

from accessing the value of a variable. 

For the second and most important observation, we assume that a class increment 

operation using the least-upper-bound operator, ©, can be performed atomically on 

a dynamic state variable. In other words, for a dynamic state variable dsv and a 

security class C, the following class assignment operation 

dsv = dsv © C 

is atomic^. Then, we note that probes access the class of a variable in a very specific 

way: they increment it by using ©; they do not just modify it completely. Because 

^ As explained in Chapter 3, standard mutual exclusion techniques can be used to 
implement atomicity of such a basic operation. 
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of the assumed atomicity of class increment operations and of the associative and 

commutative properties of ©, different probes may freely attempt to increment the 

class of the same variable concurrently. 

To illustrate, assume two probes, carrying implicit flows with classes CI and C2 

respectively, are sent to the object containing dsv. It does not matter which of the 

probes is allowed to go first in updating dsv since © is commutative and associative; 

in other words, 

(dsv © Cl) © C2 

has the same value as 

(dsv © C2) © Cl. 

As a consequence, a nested transaction scheme with a locking mechanism which 

allows probes to execute concurrently and which separates locking the value of a 

variable from locking its class is desirable for better concurrency. The sought locking 

mechanism should relax the constraints on the concurrent execution of probes while 

it should still impose the necessary constraints on the read and write operations of 

classes and values. 

5.2 Overview 

Moss' nested transaction model is employed to run programs as nested transac­

tions and to implement RPCs and probes as subtransactions as described in Chapter 

3. The root of a transaction tree is the initialization procedure of an RM that is 

instantiated by the user. The other (sub)transactions at all other levels of the tree 

are caused by either RPCs or probes. 
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As in Chapter 3, when an RFC is requested, two subtransactions are created 

to service it: a local call transaction at the site of the calling RM and a remote call 

transaction at the site of the called RM. Similarly, we will talk about two transactions 

that service a probe a local probe transaction and a remote probe transaction. 

For example, assume that the following code is being executed as part of a 

transaction T on site A. 

Hl.PO; 

if (a = 0) then 

M2.Q(); 

ELSE 

send-probe(M2.Q) ; 

Also, assume that Ml resides on remote site B and M2 on remote site B, and finally, 

that the value of a is not 0. Then, the transaction subtree with root T is as shown 

in Figure 5.2. 

A local transaction takes care of sending the message while a remote transaction 

handles receiving the message. When the run-time flow control mechanism is called 

upon at message passing time, its actions are included within the local or the remote 

transaction, depending on whether it is invoked as a result of an incoming or an 

outgoing message. 

In the next sections, we first present a locking mechanism that employs five 

types of locks in such a nested transaction model. Explaining the mechanism will 

allow us to present the issues that are involved in adding a locking mechanism to our 



96 

f Calling 

Ô 
Transaction 

Local Call 
Transaction (Ml.P) 

Local Probe 
Transaction (M2.Q) 

Remote Call 
Transaction (Ml.P) 

Remote Probe 
Transaction (M2.Q) 

Site B I I Site C 

Figure 5.2: Tree showing subtransactions handling probes and RPCs 

protected RM model. 

After introducing the locking mechanism, we will be able to suggest further 

modifications to the run-time flow mechanism. The modified fiow mechanism will 

be more precise since it will be able to take into consideration part of the actual 

execution path of procedures when evaluating s-expressions. 

Then, we argue for using a locking mechanism with a reduced number of lock 

types. Reducing the number of lock types cuts down on the overhead of the first 

mechanism, but results in a (not very significant) decrease in the degree concurrency 

among transactions. 
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5.3 An Initial Locking Mechanism 

The idea behind our initial locking mechanism is to allow for the complete de­

coupling of the value and class of the variables so as to permit as much concurrency 

as possible (while preserving consistency, of course). The decoupling is made by cat­

egorizing the operations that can be performed on the dynamic state variables into 

value operations, which deal with the value part of a variable, and class operations 

dealing with the class part. 

For a variable s, there is a total of five basic (assumed atomic) operations that 

can be performed on it. There are two obvious operations on its value: a value-read 

on s (vr[s]) and a value-write on s (vw[s]). Those value operations are performed by 

the processes executing procedures inside (the access component of) the RM objects. 

In addition, there are three possible atomic class operations: a class-read on s 

(cr[s]), a class-write on s (cw[s]) and a class-increment on s (ci[s]). These operation 

are used by the information flow control run-time mechanism. For example, a probe 

performs ci[dsv] operations for all dynamic state variables dsv, such that dsv receives 

a flow in the probed procedure. 

In this section, we consider a mechanism in which each of the above operations 

has a different corresponding lock type. For a variable s, the five lock types are 

denoted as follows: value-read-lock on s (vrl[s]), value-write-lock on s (vwl[s]), class-

read-lock on s (cri[s]), class-write-lock on s (cwl[s]), and class-increment-lock on s 

(cil[s]). 

The two value locks are requested by a user process servicing an RPC request. 

For a state variable s, vrl[s] is requested before a read operation is attempted by a 

process on the variable, while vwl[s] is needed before attempting a write operation. 
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Those value locks are requested for both static and dynamic state variables. For 

example, consider the following procedure that accesses some state variables. 

int ssv(LOW), dsvl, dsv2; 

P ( )  

{ int a ; 

if (dsvl) then 

{ a = dsv2: 

dsv2 = ssv; 

ssv = a; 

} 

} 

If a process is running P in the access component of the RM, then the lock requests 

are as shown in the following code. 

P ( )  

•C int a : 

LOCK-REqUEST(vrl[dsvl] ); 

if (dsvl) then 

•C 

LOCK-REQUEST(vrlCdsv2]); 

a = dsv2; 
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LOCK-REQUEST(vrl[ssv]); 

LOCK-REQUEST(vwl[dsv2]); 

dsv2 = ssv; 

LOCK-REQUEST(vwlCssv]); 

ssv = a; 

} 

} 

The lock requests are passed to the access component that is running the process. 

The requests are finally handled by the concurrency control component. 

The three class locks are used by the information flow run-time mechanism (the 

flow control component) at message passing time. They are exclusively requested for 

dynamic state variables since static state variables have a fixed class. The type of 

lock needed depends on the type of the passed message and whether it is being sent 

or received. 

By looking at the different steps that the run-time flow control mechanism per­

forms for each message type, a very simple way for using the three class lock types 

can be devised. Then, for a dynamic state variable dsv, some simple lock usage rules 

can be listed as follows. 

1. Whenever the mechanism calls for replacing a dsv s-variable of any form (dsv. 

M.Q.dsv or dsvJlM.Q) in the template instance by the current class of dsv, it 

must request crl[dsv] before attempting the cr[dsv] operation. 

2. Whenever the mechanism calls for updating the current class of dsv, it must 

request a cwl[dsv] before attempting the cw[dsv] operation. 
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3. Whenever the mechanism needs to increment the class of dsv as a result of a 

certified probe, it must request a cil [dsv] before attempting the ci [dsv] opera­

tion. 

These simple rules may sometimes result in requesting locks well in advance of 

attempting an operation. That, in turn, results in a decrease in the degree of con­

currency. Allowing transactions to hold locks too early may force other transactions 

to wait longer for the locks that conflict with the held ones. 

For example, the code 

if (a == 0) then 

Ml.PO: 

else 

send-probe(Ml.P); 

if (b == 0) then 

{ 

c = dsv; 

H2. q (c): 

> 

else 

send-probe(M2.Q); 

will result in having the s-definition 

Ç = ©(dsv-lj-Ml.P, b, IMP) 

for the actual IN parameter to the call to M2.Q. Assume the transaction running the 

code is allowed an early hold on the lock crl[dsv] to replace the s-variable dsvJlMl.P 
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by it current value when the RPC is received. Then, in general, other transactions 

will be blocked from performing other class operations on dsv. The blocking may be 

for a long period especially if the call or probe to Ml.P takes a long time. 

Moreover, to make matters worse, b may be nonzero. In that case, the class of 

dsv may not need to be read at all. Then, holding the lock becomes wasteful and 

blocking the other transactions completely unnecessary. 

As a result, we would like to improve on the simple lock usage rules. We next 

explain how the above five locks can be better used at run time. The main idea is to 

request locks only when necessary. 

5.3.1 Lock usage at run time 

Here, we discuss lock usage rules which show at exactly what points each lock 

type is requested. In the rules, the dynamic state variable on which a lock is requested 

depends on the position and form of its s-variable appearing in the template instance 

of the procedure receiving or sending the message. In Figure 5.3, we present a 

general template in which we show all possible positions of an s-variable representing 

a dynamic state variable in a template. 

In the figure, the s-variables are also shown in all their possible forms. DSV 

represents the initial current class of a dynamic state variables when the RPC is 

received and before any code is executed. M.P.DSV represents the class of a dynamic 

state variable as an actual OUT parameter of a called procedure. Finally, DSVJIM.P 

represents the class of a dynamic state variable upon a return from a called procedure 

in which the variable does not appear as an actual OUT parameter. 

We have used DSV to represent a dynamic state variable in general and its differ-
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TEMPLATE 

S-definitions Part 
OUTS 

b = ©(• • -, DSV [!],•••, M.P.DSV DSVilM.Q 0, • • •) 
INS 

M . P ( x ,  . . .  I  . . . ,  D S V )  

implicit = ©(•••, DSV g, ..M.Q.DSV 0, • • DSVJ.LM.R 0, • • •) 
X = ©(• • -, DSV g, M.Q.DSV 0, • • DSVJIM.R 0, • • •) 
DSV1>M.P [T^ = ©(. • -, DSV [n], • • M.Q.DSV DSV#I.R 

STATES 
DSV [1£| = ©(•. -, DSV [J^, • • -, M.P.DSV [l6j, - - -, DSV^jM.Q |17L •••) 

S-checks Part 
sv(SECRET) 4- ©(..., DSV [18 , • • M.RDSV (l^, • • DSVUM.Q 

Figure 5.3: A general template 

ent occurrences throughout the template may or may not refer to the same variable. 

For easy reference, the different positions of DSV are numbered. The numbers will be 

used to explain which locks, in general, are requested for each message. In the general 

case, we may simply assume that differently numbered positions of the s-variable for 

DSV correspond to different dynamic state variables. We will use dsvj to denote the 

dynamic state variable whose s-variable appears in the position marked by [T]. 

5.3.1.1 Lock requests by incoming messages There are three types of 

messages that an RM can receive. When RPCs and probes are received, they are 

serviced respectively by remote call and remote probe transactions. A return message 

is handled as part of the transaction receiving the return. 

The run-time flow mechanism is called upon whenever a message is received. As 
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a result, all steps taken by it become part of the actions of the transaction handling 

the incoming message. The locks that are requested by those transactions depend on 

the type of the message. 

Case 1: Incoming RPC Messages: 

Assume that a remote call transaction, say Tl, is handling the RPC. The possible 

locks that Tl may need to request, when the run-time flow mechanism starts running, 

are 

crl[DSV] for positions 

Those are the locks needed to only evaluate all implicit's and s-checks for de­

tecting any potential flow violations. Also, only those s-variables that appear in the 

form DSV are locked at this point; they need to be replaced by the current class of 

the variable. Since the other forms (M.P.DSV and DSV4|M.P) do not have a value 

yet, a lock is not requested for them. 

The other s-definitions for the output variables are not evaluated because they 

are not needed at this point. So, the positions [T], [7], 111 , and are not locked 

when an RPC is received. A question arises on the effects of not requesting locks for 

the s-variables in those positions, since their values may be needed later, for example, 

when a return is sent. 

Not locking the positions means that another transaction, say T2, is able to 

access the class of their variables. If the access is only for a class read operation, then 

Tl is not affected because it will still be able to obtain its class read lock later. 

On the other hand, T2 may s-assign or s-increment the variables of the unlocked 

positions. For example, assume T2 requests and is granted the lock cilfdsvj] for the 

s-variable in the s-definition of the formal OUT parameter. Then, the class of dsvj 
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may be incremented. So, when T1 gets to evaluate the class of its OUT parameter, 

it will use the new, possibly higher, class and not the class the variable had when T1 

started. That might lead to a flow violation which might not have occurred were T1 

allowed to lock dsv^ at the start. In this case, T1 needs to be aborted. 

It is also possible that T1 finds the new class of dsv^ to be lower. T1 then might 

avoid a flow that could have occurred if T2 does not change the class of the variable. 

This type of situation can exist in any locking scheme. Not allowing early locking 

for transactions may produce different results than if it were allowed. However, no 

inconsistencies are introduced and the gain in the degree of concurrency can be 

substantial^. 

Case 2: Incoming Probe Messages: 

When a probe is received, its remote probe transaction requests the lock 

cil[DSV] for position jjA 

Cil is the only type of lock that is needed since position 14 represents the dynamic 

state variables that receive flow in the code of the probed procedure. Those dynamic 

state variables needs to be s-incremented by the incoming implicit flow in the probe 

message. 

Case 3: Incoming Return Messages: 

When a return is received, it is handled by either a local probe transaction or 

local call transaction depending on whether it is a probe-return or an RPC-return. 

^ One case in which early locking can be useful is if it is known that a transaction 
is 'long' and relatively time consuming and that aborting it is more expensive than 
blocking other transactions. This problem also exists in any transaction system and 
is beyond the scope of our research. Our main concern is increasing the degree of 
allowed concurrency; the subject of determining 'long' transactions is not treated. 
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For an RPC-return, the following lock types are possibly requested: 

crl[DSV] for positions [6j 19 201. 

As when an RFC is received, an incoming RFC-return causes the flow mechanism to 

check for flow violations. For that, the locks that are requested allow the evaluation 

of the s-checks and of the s-definitions of all the implicites in INS of the template 

instance. 

The variables that are class-locked correspond to s-variables that are of the form 

M.P.DSV or DSVJIM.P. assuming that the return is from M.P. Then, after the call 

to M.P, the values of those s-variables can be be determined and plugged in in the 

s-expressions in which they appear. 

Note that positions [4j and 18 have already been locked when the caller of 

M.P started. Also, note that the s-variables of the form M.P.DSV or DSVJiM.P that 

appear in other positions are not locked at this point because they are not needed. 

Finally, in case it is a probe-return, no locks are requested since no evaluation 

in the template instance is performed. As in the case of an RPC-return, s-variables 

of the form DSVJIM.P are not locked at this point. 

5.3.1.2 Lock requests by outgoing messages There are three types of 

messages that an RM can send. When RPCs and returns are being sent, they are 

serviced by local call transactions. Whereas, an outgoing probe message is handled 

as part of a local probe transaction. 

The run-time flow mechanism is called upon whenever a message is being sent. 

As a result, all steps taken by it become part of the actions of the transaction handling 

the outgoing message. The locks that are requested by those transactions depend on 
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the type of the message. 

Case 1; Outgoing RPC Messages: 

In the case where an RPC is being sent by a transaction Tl, the possible types 

of locks that the local call transaction, say T2, requests are connected to the s-

definitions of output variables whose classes need to be sent out with the message 

and to s-definitions of dynamic state variables that need to be updated. In general, 

the requested locks are: 

crl[DSV] for [7] [11] 

and 

crl[DSV] for [8j |12||13 

and 

cwl[DSV] or cil[DSV] for 

Note that position of the form DSV was already locked by Tl when it started. 

Positions [Y] and 1111 also of the form DSV may need to be locked at this point 

since their locking was delayed until they are needed to evaluate the s-definitions in 

which they appear. 

The rest of the read locks deal with s-variables of the form M.Q.DSV and 

DSVJIM.R. Those can be replaced by their values now that they are needed to evalu­

ate the s-definitions. Note that when the procedures or probes that gave them their 

values returned, the scheme postponed their locking. 

Not all those class-read-locks will actually be needed. That is because the actual 

execution path of the code may not have read the values of the the variables whose 

classes are represented by the listed s-variables. 
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To illustrate, we present an example. Consider the following piece of code, where 

dsvl and dsv2 are dynamic state variables. 

a = dsvl; 

M . Q O :  

if (b == 0) then 

a = dsv2; 

M.P(a); 

Then, the s-definition for the actual IN parameter a is 

a = ©(dsvl, b, dsv2JJ.M.Q, IMP). 

If b is not 0, then dsv2 actually does not flow into a. In that case, dsv2 need not 

figure in in a to avoid overclassifying the actual IN parameter. 

We can avoid the overclassification in certain cases by taking advantage of the 

locking system. The way it is done is for the run-time mechanism to inquire if the 

transaction already owns a vrl[dsv] for each dsv for which it is required to request 

crl[dsv]. If the response is negative then the run-time mechanism may remove the 

class of that variable from the s-expression it is trying to evaluate. 

In the example, if it is determined that vrl[dsv2] is not already owned then the 

run-time mechanism does not request crl[dsv2] and the s-definition is evaluated as 

a = ©(dsvl, b, IMP). 

Note that crl[dsvl] is requested in all cases. 
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Not requesting crl[dsv2] when the procedure started executing leads to a higher 

degree of concurrency. Another advantage is that we avoid overclassification in some 

cases in which the class of a dynamic state variable appears in some s-expression. 

The reason why not all overclassification cases can be resolved in the described 

way is illustrated by the following example. 

c = dsv; 

H.q (c): 

if (b == 0) then 

a = dsv: 

M.P(a); 

In this example, when a is being computed, the transaction is always found to already 

own vrl[dsv]. That is because the lock was acquired for a previous operation. As a 

result, even if b is not 0, the run-time mechanism will go ahead and include dsvJlM.Q 

in a. 

Another way for the transaction to be found to already own crl[dsv] is if it 

inherited it from a descendant transaction. 

So, in general, the test whether a crl[dsv] is owned does not always accurately 

indicate if the value of dsv has actually been read by the transaction owning the 

lock. Only if the transaction does not own the lock can we deduce with certainty 

that it did not read the variable. So, the scheme only improves on the precision in 

evaluating s-expressions and does not completely eliminate overclassification. 

To further improve on the situation, the locking system can keep with each lock 
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that is owned by a transaction information on how it was obtained. This way, when 

responding to inquiries about locks, it can inform the flow control mechanism if the 

lock is inherited. If the lock is indeed inherited then the evaluation of the s-expression 

can proceed without including the class in question. 

The last type of requested locks to be discussed is cwl for position 10 . This is 

needed to update the dynamic state variables whose class may have changed before 

the message is sent out. 

Again here, the lock may not be needed if the variable has not been actually 

unambiguously s-assigned. For example, if b is not 0 in the following code 

if (b == 0) then 

dsv = a; 

M . P O :  

then dsv need not be updated before the RPC M.P is sent out. However, it still need 

to be incremented by b. 

We can use a similar test as above to decrease the overclassification of dsv. 

Namely, an inquiry on whether the transaction already owns vwl[dsv] should be sent 

to the concurrency control component, first. If the response is positive than the only 

conclusion that can be drawn is that a write operation has already been performed 

at some point. So, cwl [dsv] must be requested. 

Otherwise, if the transaction does not already own cwl [dsv], then a cil[dsv] is 

requested rather than a cwl [dsv]. This has the result not only to improve the precision 

in computing the classes of dynamic state variables, but also of improving on the 
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degree of concurrency since a cil[dsv] still allows other transactions to s-increment 

dsv unlike a cwl[dsv]. 

The scheme is not always accurate for the same reasons as the previous scheme 

involving crl's. Namely, if a vwl[dsv] is indeed already owned, one cannot make 

definite conclusions on when and how it was acquired. 

Case 2: Outgoing Probe Messages: 

As in the case of Outgoing RPCs, classes of output variables need to be sent out 

and some dynamic state variables need to be updated. The appropriate locks need 

to be requested and they, in general, are as follows. 

crl[DSV] for 1111 

and 

crl[DSV] for 0 0 [IÏ1 [I] 

and 

cwl[DSV] or cil[DSV] for [10 

It could be seen that the only difference from the previous case handling outgoing 

RPCs is that the locks for the actual input parameters are not needed. Otherwise, 

all the lock types and the locked positions in the template are the same. 

The discussion in the outgoing RFC case also applies to outgoing probes and we 

will not repeat it here. 

Case 3: Outgoing Return Messages: 

In this case, the classes of output variables corresponding to the formal OUT 

parameters need to be computed. Also, the final classes, as modified by the returning 

procedure, of the dynamic state variables must be computed and the current classes 

of the corresponding variables must be updated. 
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crl[DSV] for [T] [ig 

and 

crl[DSV] for [Ï] [T^ [T^ 

and 

cwl[DSVl or cilpSV] for [H 

Again, the exact same argument as in the RFC case can be conducted, however, 

on different positions in the template. 

Positions [I] and are read locked now since they were not at the beginning 

of the procedure. 

The classes of the variables in positions [2], [s], 116 |, and are locked only if 

their values have already been locked. 

Finally, a cwl type is requested for variables in position 14 only if a vwl has 

already been acquired for those variables. Otherwise, a cil type is instead requested. 

5.3.1.3 Summary of lock usage To summarize, for each of the five lock 

types, we list the cases in which it is possibly requested. 

Value Read Lock (vrl): Requested by the access component. 

1. A user process attempting to read a state variable while executing a procedure 

in response to an RFC. 

Value Write Lock (vwl): Requested by the access component. 

1. A user process attempting to write a state variable while executing a procedure 

in response to an RFC. 
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Class Read Lock (crl): Requested by the flow control component. 

1. An incoming RPC. 

2. An incoming (RPC or probe) return. 

3. An outgoing RPC if vrl was already acquired. 

4. An outgoing Probe if vrl was already acquired. 

5. An outgoing RPC-return if vrl was already acquired. 

Class Write Lock (owl): Requested by the flow control component. 

1. An outgoing RPC only if vwl was already acquired. 

2. An outgoing probe only if vwl was already acquired. 

3. An outgoing RPC-return only if vwl was already acquired. 

Class Increment Lock (cil): Requested by the flow control component. 

1. An incoming probe. 

2. An outgoing RPC in case cwl is not needed. 

3. An outgoing probe in case cwl is not needed. 

4. An outgoing RPC-return in case cwl is not needed. 

5.3.2 The flow control mechanism revisited 

The flow control mechanism of the previous chapter needs to be modified to take 

advantage of the the presence of the locking system. 
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5.3.2.1 Changes to the compile-time mechanism When evaluating s-

expressions the run-time mechanism needs to be able to differentiate between s-

variables that represent implicit flows and the ones that represent explicit flows. 

Then, when it requests a cil for a dynamic state variable instead of a cwl (in case a 

vwl is not owned already), it will be able to determine the class by which the variable 

must be s-incremented. 

For example, consider the following code. 

int ssv(SECRET); 

int a, b, x, y(CONFIDENTIAL); 

if (x + y =0) then 

dsv = a + b + ssv; 

The s-definition (in its unsimplifled form) for dsv is 

dsv = ©(a, b, SECRET, x, CONFIDENTIAL, IMP), 

where the first three components (a, b and SECRET) of its s-expression correspond 

to explicit flows and the remaining components (x, CONFIDENTIAL, and IMP) 

correspond to implicit flows. 

Assuming that the value of (x+y) is not zero, when class of dsv is about to be 

updated, the run-time mechanism requests cil [dsv] rather than cwl [dsv] since vwl[dsv] 

is not owned by the transaction. Then, it needs to be able to determine that the 

security class by which the class of dsv needs to incremented is 

©(x, CONFIDENTIAL, IMP). 
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For that to be possible, the compile-time mechanism needs to modify the way 

the s-expression are represented to allow the separation of explicit flows from implicit 

flows. Whenever we need to differentiate between explicit flows and implicit flows in 

s-expressions, we will use the following new notation 

®(a, b, SECRET # x, CONFIDENTIAL, IMP). 

The symbol is used to separate the two types of flows. 

Another change in the representation of s-expression is to have the constant 

security classes that correspond to static state variables tagged by the name of the 

variables. This allows the run-time mechanism to first check if the transaction owns 

a vrl on the static state variable appearing in the tag of a constant class before it 

includes it in the evaluation of the s-expression. 

For example, in the following code 

int ssv(SECRET); 

if (a == 0) then 

dsv = ssv; 

the class of ssv may be excluded from the computation of dsv if vrl[ssv] is not owned 

by the transaction. If the s-definition is represented as 

dsv = ©(SECRET # a, IMP), 

there is no way for the mechanism to recognize that the constant security class SE­

CRET appears as a result of the flow from ssv to dsv. 

However, using the following representation of s-expressions in the s-definition 

of dsv 
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dsv = ©(SECRET^^^ # a, IMP), 

enables the run-time mechanism to recognize that the class SECRET corresponds 

to the state variable ssv. Then, it can inquire whether vrl[ssv] is owned by the 

transaction. 

Subsequently, we will not use the new more complicated representations of s-

expressions unless they are needed. 

5.3.2.2 Changes to the run-time mechanism As explained, the run-time 

mechanism can take advantage of the presence of a locking mechanism to improve 

on the accuracy of evaluating s-expressions. This leads to improving the precision of 

the computed classes of various variables and implicit flows. In turn, this may lead 

to an improvement in the precision of the mechanism in rejecting insecure programs 

if the s-expressions in the s-checks become more accurate. 

For incoming messages, the only change to the mechanism is listed below. 

• When an RFC or an RPC-return are received, the only s-variables for dynamic 

state variables that are replaced by their current values are the ones that appear 

in s-expressions in the s-checks and in the implicit's under INS. 

The changes to the mechanism that affect the steps taken to handle outgoing 

messages are as follows. 

1. When an s-expression is being evaluated, for each s-variable, first inquire if a 

vrl on the corresponding variable has already been acquired. If not, then the 

s-variable is not included the computation. 
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2. When an s-expression is being evaluated, for each tagged constant security 

class, first inquire if a vrl on the variable in the tag has already been acquired. 

If not, then the tagged constant security class is not included the computation. 

3. If an s-variable is to be included in an s-expression, then replace it with its 

current value (if one exists). 

4. Whenever the class of a dynamic state variable needs to be updated, first inquire 

that a vwl on the variable has already been acquired. If not, then only the 

implicit flow part of the s-expression need to be evaluated and the result is 

used to s-increment the state variable. 

5.3.3 Lock compatibility 

We need to produce a lock compatibility table for the five lock types. First, 

we analyze all cases in which one lock type on a variable is held by one transaction 

while another transaction requests a lock on the same variable. The analysis explains 

whether the request should be granted or blocked. Then, we will be able to produce 

the lock compatibility table. 

To study the different cases, we assume that a transaction T1 holds a certain 

lock on a variable dsv and that another different transaction T2 is requesting a lock 

on the same variable. 

5.3.3.1 Case 1: Tl holds vrl [dsv]: 

T2 requests vrl [dsv]: GRANTED. 

This case is simple; it follows the usual locking rules. Both transactions are 

reading the value of the variable; they do not affect each other. 
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T2 requests vwl[dsv]: WAIT. 

Again, this case must follow the usual rules: the requested lock conflicts with 

an already acquired lock. 

T2 requests crl[dsv]: GRANTED. 

The two operations, vr[dsv] and cr[dsv], commute: the effect is independent of 

the order in which they execute. 

T2 requests cwl[dsv]: N/A. 

This case is not possible in our scheme. If T1 owns vrl[dsv], then T2 definitely 

does not own vwl[dsv] because the two locks are not compatible. In this case, 

T2 requests cil[dsv] instead since it was determined that T2 did not cause an 

explicit flow to dsv. 

T2 requests cil[dsv]: GRANTED. 

In this case, T1 has read the value of dsv and now T2 is trying to s-increment 

it. We can assume that T1 does not own crl[dsv] (this case is handled later). 

Then, none of the template instance computations for T1 involved the class 

of dsv. As a consequence, T2 should be allowed to s-increment dsv. This of 

course, will cause T1 to block later when it eventually requests crl[dsv]. 

5.3.3.2 Case 2: T1 holds vwl[dsv]: 

T2 requests vwl[dsv]: WAIT. 

Obviously, the request cannot be granted and T2 must be blocked. 

T2 requests crl[dsv]: WAIT. ' 

Here, T1 had caused the value of dsv to change but the run-time mechanism 
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did not have the chance to update the class of dsv accordingly. We can assume 

that T2 does not hold vrl[dsv] because it would conflict with Tl's lock. Then, if 

T2 is handling an outgoing message, our scheme states that T2 does not really 

need to read the class of dsv. 

If T2 is an incoming message, then allowing T2 to read the class of dsv would 

cause the flow checks to be based on a class of dsv that does not accurately 

reflect its value. That might lead to an undetected flow violation; the request 

must not be granted and T2 is blocked. 

T2 requests cwl[dsv]: N/A. 

T2 does not own vwl[dsvj so instead it requests cil[dsv]. 

T2 requests cil[dsv]: GRANTED. 

By granting this request, we force T1 to wait when it requests cwl[dsv] until 

T2 commits and releases the granted lock. When T1 resumes, it eventually 

acquires cwl[dsv] and updates the class of dsv. 

5.3.3.3 Case 3: T1 holds crl[dsv]: 

T2 requests crl[dsv]: GRANTED. 

Two read locks never conflict. 

T2 requests cwl[dsv]: N/A. 

T2 would not make this request unless it already owns vwl[dsv|. However, 

vwl[dsv] and crl[dsv] are conflicting locks and cannot be owned by both T1 and 

T2. Therefore, this case is not possible. 
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T2 requests cil[dsv]; WAIT. 

This a classical case of a conflict between the operations of reading a value and 

modifying a value. The request may not be granted. 

5.3.3.4 Case 4: Tl holds cwl[dsv]: 

T2 requests cwl[dsv]: N/A. 

Tl must already own vwl[dsv] so T2 must not have that lock and this type of 

request is not possible. 

T2 requests cil[dsv]: WAIT. 

This a simple case of conflict between two modification attempts. T2 must be 

blocked. 

5.3.3.5 Case 5: Tl holds cil[dsv]: 

T2 requests cil[dsv]: GRANTED. 

As we have seen, two increment operations commute and the end result does 

not depend on which of the two transactions goes first. Two class increment 

transactions should be allowed to execute concurrently. 

The omitted cases can be analyzed by arguments deduced by symmetry of the 

above cases. So, at this point, we are ready to produce the compatibility table. It is 

shown in Figure 5.4. 

The compatibility table shows that in most cases while one transaction may be 

accessing the value of a dynamic state variable, another transaction may access its 

class. Most importantly, probes are allowed to access the same variable concurrently 

since cil's can be held by different transactions. 
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vrl vwl cri cwl cil 
vrl 
vwl 
crl 
cwl 
cil 

Figure 5.4: Compatibility matrix for class and value locks 

5.4 Reducing the Number of Lock Types 

With the 5-type lock mechanism, more different types of operations may run 

concurrently. However, the next concern is of the overhead created from managing 

five lock types. Does the gain in concurrency justify the inefficiency introduced by 

this overhead? In this section, we argue that the answer to that question is no. Then, 

we show which lock types can be combined. 

The class-increment-lock type is shown in our initial locking mechanism to be 

very useful in two ways. It allows different probes to run concurrently. Also, it is a 

substitute to the class-write-lock type when a transaction is determined not to have 

modified the value of a variable (that is because in that case only the implicit flows 

occur). So, the cil lock type is necessary for our system and must not be eliminated. 

Similarly, the two value locks are obviously needed when user processes in the 

access component read and write state variables. Therefore, the only locks whose 

usefulness is in question and needs to be analyzed are the remaining class lock types, 

the class-write-locks and the class-read-locks. We argue that they can be combined 

with value-write-locks and value-read-locks, respectively. 

yes no yes n/a yes 
no no no n/a yes 
yes no yes n/a no 
n/a n/a n/a n/a no 
yes yes no no yes 
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5.4.1 Combining the write-lock types 

A cwl is requested only by outgoing messages to update the class of a state 

variable. However, the value of the variable must have been modified also. The same 

transaction requesting a cwl must have already acquired a vwl. So, an acquisition of 

a vwl type is always followed by a request for a cwl type on the same variable. That 

is why all but one of the entries of the row of the cwl type in the compatibility table 

are 'n/a'. As a result, it seems possible to combine the cwl and vwl types into one 

write-lock type. 

However, the only remaining entry in the cwl row which is not 'n/a' is 'no'. 

Whereas, the corresponding entry in the row of the vwl type is 'yes'. That says 

that having two separate write locks allows more concurrency since the cil type is 

compatible with one of those locks, namely the vwl type. 

For example, assume a transaction T1 acquires vwl[dsv]. The only increase in 

concurrency that can be gained from having a separate cwl type is by allowing other 

transactions to acquire cil[dsv] before T1 eventually requests cwl[dsv] and while it is 

performing other operations. The question is how long can the gap be between the 

time when T1 acquires vwl[dsv] and the time it requests cwl[dsv]? The request for 

cwl[dsv] is made when any message is sent out. So, the gap is equal to the time it 

takes for the next message sending request to be made. 

If we assume that message sending (RPCs, returns or probes) is frequent in most 

procedures and that operations not involving message passing are considerably less 

time-consuming^, then we can conclude that the gap must actually be short and that 

^In certain systems, it may be found that these assumptions are not valid. In 
such systems, most procedures contain major time-consuming local computations 
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the gain in concurrency is small. As a result, we can eliminate class write locks and 

actually allow the write-locking of the class and the value of a variable using one lock 

type to be requested when the variable is being written into in the access components 

of the RMs. 

5.4.2 Combining the read-lock types 

We also argue that crl's and vrl's can be combined into one lock type without 

incurring a significant loss in concurrency. A similar argument as above can be made. 

When a crl on a variable is requested by an outgoing message, it must have already 

acquired the vrl on the same variable. The elapsed time between the request for the 

class lock and the acquisition of the value lock may be assumed not to be very long. 

Again, here, the only additional concurrency gained from separating crl and vrl 

types is by allowing a cil to be acquired by one transaction while a vrl is held by 

another transaction. If we assume that this gain is not very significant, then in the 

case when vrl's are requested before crl's (when messages are outgoing), we can say 

that the crl type is not needed. 

However, crl's are also requested by incoming messages (RPCs and returns). So, 

a crl request is not always preceded by a vrl acquisition. In certain cases, a crl may 

be requested before a vrl. However, from the entries in the compatibility table, it 

can be seen that crl's are a "stronger" lock type than vrl's are. In other words, by 

holding a crl, a transaction can also be considered as holding the corresponding vrl. 

That is because holding a crl prevents other transactions from accessing the variable 

in the same cases as holding a vrl. This can be seen since there is a 'no' entry in the 

not involving external procedure calls. Then, the system designers may decide to 
keep the 5-type locking scheme to increase concurrency. 
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ri wl il 
ri 
wl 
il 

Figure 5.5: Compatibility matrix for class and value locks 

row of the crl type at each column where a 'no' exists in the row of the vrl type. We 

say vrl can be converted into a crl [5]. 

In summary, we showed that in the case where the crl is acquired first it is as if 

the vrl is also acquired. In the case the vrl is requested first, we can argue as for vwl 

to eliminate crl since the gain in concurrency is not great. We conclude that in both 

cases, the crl type and the vrl type can be combined. Whenever either the class or 

the value of a state variable needs to be read, both are locked. Again, no significant 

loss of concurrency occurs. 

5.4.3 The 3-type lock scheme 

We can settle on using three lock types for our locking mechanism: a read lock 

(rl), a write lock (wl), and an increment lock (il). This is the result of the realization 

that decoupling the class and value gained minimal concurrency in the case of reading 

and writing. However, the increment lock type is absolutely needed to permit greater 

concurrency with the potentially expensive probes. 

The 3-type lock mechanism has the compatibility table that is shown in Fig­

ure 5.5. 

yes no no 
no no no 
no no yes 
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5.4.4 Usage of the three lock types 

The new lock usage rules can be deduced from the lock usage rules for the five 

lock types. We explain the new rules here. 

Read Lock The read lock type is requested by both access and flow control compo­

nents. It is requested if a user process attempts to read the value of a variable 

and if the information flow control mechanism attempts to replace an s-variable 

in a template. 

To still take advantage of the locking mechanism to improve on the precision 

of computing classes of dynamic state variables, the concurrency control mech­

anism must keep a new flag with each held read lock. The flag should indicate 

whether the read lock is held as a result of a request from the flow control 

mechanism rather than from the access component. 

To use the flag, when a message is being sent, the flow control mechanism can 

inquire if a read lock is already held. As usual, if the answer is negative then 

the s-variable for which the lock is being requested can be omitted from the 

computation of the s-expression. 

On the other hand, if the answer is positive, then the new flag is checked. If the 

flag indicates that the access component is not responsible for the acquisition 

of the lock, then it can again be deduced that the variable has not been read 

in and that its s-variable can be omitted. Otherwise, the s-variable must be 

included in the computations. 

Increment Lock This lock is exclusively requested by the flow control mechanism 

when it needs to s-increment a dynamic state variable. S-increments are per­
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formed as a result of an incoming probe. Alternatively, they are performed 

when an outgoing message is being sent and it is determined that the transac­

tion does not already hold the write lock. 

Write Lock The write lock type is only requested by the access component on behalf 

of user processes that need to write a variable. The flow control component does 

not use this lock since if it does not already own it, it requests the increment 

lock. 

5.4.5 Locking and recovery rules for nested transactions 

The following locking rules extend or modify Moss' locking rules for nested trans­

actions to include the new type of lock. 

1. A transaction may obtain a read lock on an item only if all holders of write or 

increment locks (if any) on the item are its ancestors. 

2. A transaction may obtain a write lock on an item only if all holders of any 

(read, write or increment) locks (if any) on the item are its ancestors. 

3. A transaction may obtain an increment lock on an item only if all holders of 

any read or write locks are its ancestors. 

The recovery rules for the three lock scheme are as follows. They are simple 

extensions of the rules stated in Chapter 3. 

1. When a transaction obtains a write lock on an item, a version of the item is 

made. All updates to the item are made to this shadow version. 
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2. When a transaction obtains an increment lock on an item, a version of the item 

is made. All class increments to the item are made to this shadow version. 

3. When a transaction commits, the shadow version is inherited by its parent. If 

the parent already has its own version of the same item, the child's version takes 

precedence. When the top-level transaction commits, the shadow versions it 

holds are installed on stable storage. 

4. When a transaction fails, its shadow versions are discarded. 
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6. PRECISE CALCULATIONS OF CLASSES OF DYNAMIC 

VARIABLES 

In the previous chapter, we took advantage of the presence of a locking mech­

anism to increase the precision of the class computing mechanism. We also argued 

that that increase in precision leads to an increase in the precision of the information 

flow control mechanism. Since locks are only requested for state variables, comput­

ing the classes of dynamic local variables is not affected and still involves significant 

overclassifications. That in turn leads to overclassifying dynamic state variables. 

For example, consider the following code in which dsv is a dynamic state variable 

and dv is a dynamic local variable. 

dv = expl; 

if (a == 0) then 

dv = exp2; 

dsv = dv; 

If ^ is overclassified as 

©(expl, exp2, a, IMP) 

then dsv will be overclassified also. The locking mechanism cannot help in computing 

a more precise class for dv. 
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In this chapter, we present a new class computing mechanism for updating classes 

of dynamic state variables. The new mechanism can be used to precisely compute 

classes of any dynamic variables. Our presentation will deal with dynamic state vari­

ables. However, it should be remembered that the scheme applies to local variables 

also. 

6.1 Introduction 

The way the class of a dynamic state variable is updated is by evaluating an 

s-definition and the result is used to update the current class of the variable. In the 

original class updating mechanism of Chapter 4, an s-definition represents the upper 

bound on the value of the class that a variable can reach by executing the code of 

a procedure. An s-definition does not take into consideration conditional executions 

in which the actual update to the variable may not occur. As a result, s-definitions 

may not reflect the actual class of the information contained in a variable. The class 

updating mechanism is imprecise and overclassifies dynamic state variables. 

In theory, through the continuous updating and incrementing of the classes of 

dynamic variables, a system may reach a stage in which the encapsulated informa­

tion inside objects is all classified at the highest class (e.g., TOPSECRET). At this 

point, we know of no way that automatically declassifies information. The process of 

bringing down the classes of information can only be done by a trusted information 

manager. The larger the system is the more costly and slow this process becomes. 

The imprecision of the class updating mechanism which overclassifies state vari­

ables worsens the above problem by unnecessarily accelerating the upward move of 

the classes of state variables. We have developed a new form for s-definitions which 
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takes into account the actual execution path taken within processes. By doing that, 

the new s-definitions can be used to compute a precise class to be assigned to dy­

namic variables. The precise class reflects the actual classification of the information 

contained in the variables^. 

Before we present the details of the new scheme, we illustrate the problem and 

our solution with a simple example. Assume a procedure contains the following code: 

dsv = expl; 

if (El) 

dsv = @xp2; 

where is a boolean expression, expj and exp2 are expressions of the appropriate 

type and dsv represents a dynamic state variable to which the procedure has access. 

Upon completion of the procedure, the class of dsv must be updated. In the orig­

inal mechanism, the new class is determined by evaluating the following s-definition: 

dsv = ©(expj, exp2, Ej^, IMP). 

The possible overclassification is obvious since in no way can both expressions, exp^ 

and exp2, affect the class of dsv at the same time. 

Unlike s-definitions in their new form, the above s-definition does not allow the 

class updating mechanism to consider whether at execution time Ej^ evaluates to true 

or false. For the above example code, the new s-definition is generated from a flow 

graph that is built at compile time. The nodes of the flow graph are basic blocks of 

code which have one entry point and one exit point. 

^It should be remembered that our scheme updates classes of dynamic variables 
only at message passing time. This makes the updating mechanism more efficient 
than a pure run-time approach which performs the updates after each s-assignment. 
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dsv = expl 

dsv = exp2 return 

if (El) goto B2 

Figure 6.1: A flow graph 

The flow graph is shown in Fig 6.1. It shows four basic blocks: Bj (the initial 

basic block), B2, Bp (the final basic block). The arcs show the possible flows of 

control. Each arc is labeled by the class of the implicit flow into the basic block. For 

example, the class of the implicit flow into basic block B2 is represented by IMP2 

and is equal to © (E^, IMP). 

The new s-definition for dsv generated from the example flow graph is: 

dsv = B2[©(exp2, Ej, IMP)] V -iB2[©(expo, E^, IMP)]. 

This s-definition can be evaluated as follows. If basic block B2 is entered at run time 

then the value of the s-definition is the value of the s-expression enclosed between the 

square brackets that are marked by B2, ©(exp2, E^, IMP); otherwise, the computed 

class is the s-expression marked by -1B2, ©(expQ, Ej, IMP). The overclassification is 

avoided since only one of the s-variables expg or expj is included in computing the 
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new dsv. 

In the next sections, we present the details of the new scheme. We start by 

defining basic blocks and flow graphs and presenting their relevant properties. The 

basic definitions and properties are all adapted from Chapters 9 and 10 in [1]. 

6.2 Basic Blocks and Flow Graphs in the PRM System 

6.2.1 Procedure syntax 

We assume the following statement syntax for the procedures in our PRM model. 

S id = E I RFC I probe | S ; S | 

if (E) then S | 

if (E) then S else S | 

while (E) do S 

E ^id + id I id 

RFC and probe stand for a remote procedure call request and a send-probe 

instruction, respectively. We have chosen a simplified form of expressions where the 

operator '+' is representative of all other operators. 

6.2.2 Basic blocks 

The code of a procedure is divided into basic blocks. A basic block, denoted Bj, 

is a sequence of statements with one entry point (the beginning of the block) and one 
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exit point (the end of the block). Within a basic block, flow of control does not halt 

or branch except at the end of the block 

For a procedure, We denote its first basic block by and its last basic block 

by B^. We assume that B^^ of any procedure consists of a return statement. 

RPC and probe statements are assumed to form their own basic blocks that 

contain no other statements. 

For example, the following code is divided into two basic blocks, B^ and B2. 

B1 : dsvl = expl; 

b = ssv; 

ssv = dsvl; 

B2 : M.P(a I dsv2); 

For each basic block B^, we associate a security class, IMP^, which represents 

the class of the implicit flow into Bj. In the above example, IMPj^ flows into B^, 

IMP2 flows into B2 and IMPj^ and IMP2 represent the same security class. 

In our discussions, basic blocks are represented in either of two ways, as shown 

in Figure 6.2 which shows block B^ of the example. The diff'erence between the two 

representations is that the one on the right does not show the code of the basic block. 

The arcs going into the basic blocks are labeled by the implicit flow. 

The code in a basic block may s-assign dynamic variables that appear as receiving 

flow in it. For a basic block Bj and a dynamic state variable dsv, dsv-j-^ and dsvj^-

are s-variables used to denote the classes of dsv before control enters Bj and after it 

exits Bj, respectively. For example, dsv-j-j is the class of dsv prior to the execution of 

^Loops are not treated until flow graphs are introduced later. Until then, we will 
assume that the basic blocks are not included within loops. 
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IMPl 
B1 

dsvl = Gxpl; 

b = ssv; 

ssv = dsvl; 

" 1  
© 

Figure 6.2; Representations of basic blocks 

the first basic block of a procedure, i.e., before a procedure is executed. Also, dsvjj? 

represents the class of dsv upon the completion of a procedure. 

Going back to the basic blocks and B2 of the above example, assume that 

dsvl is LOW and that dsv2 is SECRET immediately prior to the beginning of Bj. 

Then, we have the following s-variables with their values. 

dsvl = ©(LOW) 

dsvl|i = ©(expi, IMPl) 

dsv2i-j = ©(SECRET) 

dsv2|i = @(dsv2-|-j^) 

dsvljo = ©(dsvl ji) 

dsvl|2 = ©(dsvlJj-M.P) 

1 = ©(dsv2|i) 

dsv2jo = ©(M.P.dsv2) 

We define dsv basic blocks as basic blocks whose codes s-assign dsv. In general, 

for each dynamic state variable dsv, we can divide dsv basic blocks into two cate­
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gories: ones that contain ambiguous dsv s-assignments and ones that only contain 

unambiguous dsv s-assignments. The basic blocks in the first category will be called 

ambiguous dsv basic blocks. Similarly, the second category basic blocks will be called 

unambiguous dsv basic blocks. 

For a dynamic state variable dsv, an ambiguous dsv basic block Bj can be in 

one of two types. If the Bj code consists of a probe statement, then we will call it 

a probe ambiguous dsv basic block. Otherwise, if it consists of an RPC statement in 

which dsv does not appear as actual OUT parameter, then it will be called a call 

ambiguous dsv basic block. 

There are also two types of unambiguous dsv basic blocks. A call unambiguous 

dsv basic block is one that consists of an RPC in which dsv does appear as an actual 

OUT parameter. An assignment unambiguous dsv basic block is one whose code shows 

dsv on the L.H.S. of at least one assignment statement. 

If B^ is an assignment unambiguous dsv basic block, we will denote by dsv-exp^ 

the the class of the expression that appears on the R.H.S. of the last assignment 

statement in Bj that s-assigns dsv. For example, if the following code forms one 

basic block B^ 

Bl; dsv = x; 

dsv = y; 

dsv = z; 

then dsv-expj will be used to denote z in B]^. 
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In Figure 6.3, we show examples of the different types of basic blocks that s-

assign a dynamic state variable. 

For a dynamic state variable dsv, the s-variable dsv^^ has a different value de­

pending on the type of the basic block B^. If Bj is not a dsv basic block, then dsvj^ 

is defined as 

= Bj©(dsv|j)]. 

If B^ is a call unambiguous dsv basic block consisting of an RFC to M.P, then we 

have 

dsvj^j = Bj[©(M.P.dsv, IMP;)]. 

If B^ is an assignment unambiguous dsv basic block, then we have 

dsv|^- = B^-[©(dsv-exp^-, IMP J]. 

If Bj is any (call or probe) ambiguous dsv basic block consisting of a probe or an 

RFC to M.F, then we have 

dsv|^ = B^-[©(dsvJJ.M.P)]. 

The use of the notation B J-• •] in the above indicates that the included s-

expression is to be evaluated only if B^ is entered at run time. Since it is the in­

formation flow control component of an RM that evaluates s-definitions, it needs for 

the access component to communicate to it at message passing time whether each 

basic block is executed or not. This can be accomplished if we assume the existence 

of a flag for each basic block in a procedure. This flag should be set by the access 

component if control enters its basic block. For a basic block Bj, the flag will be also 
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IMPi IMPi 
Bi Bi 

dsv = dsv-expi M . P ( . . . I  d s v )  

Assignment Unambiguous Call Unambiguous 

IMPi IMPi 
Bi Bi 

M . P ( . . . )  sendprobe(M.P) 

Call Ambiguous Probe Ambiguous 

Figure 6.3: The four types of dsv basic blocks 

denoted by context will allow for the differentiation between the two notations. 

For any basic block we will assume that its first statement is as follows. 

Bi: Set Flag Bi 

< Bi code > 

6.2.3 Flow graphs 

6.2.3.1 Definitions A (control) flow graph of a procedure is a directed graph 

whose nodes are the basic blocks of the procedure and whose arcs represent the 

execution paths traced by all possible flows of control. The initial node of a flow 

graph is always Bj, which is the entry point to the procedure. 

one-bit flag is enough only if the basic block is not contained in a loop. Oth­
erwise, more bits are needed as we will see later. 
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An edge in the graph from to B j  is denoted by B^, and B^ is called its 

tail and Bj is its head. 

If there is a path in the flow graph from B^ to B j ,  we say that B^ is a predecessor 

of Bj and that Bj is a successor of B^. 

A node B^ dominates a node Bj in the flow graph if every path from Bj to Bj 

goes through B^. 

A hack edge is an edge in the flow graph whose head dominates its tail. 

6.2.3.2 Regions of flow graphs A region 5 is a portion of a flow graph 

that corresponds to a (compound) statement (as defined in the given syntax), S, in 

the code of the procedure. The nodes of a region SI include a header basic block, 

denoted B^^^, which dominates all the other nodes in the region. When control 

enters a region, it flows to its header. When control leaves a region, it can flow to 

just one block. 

For regions, we will use similar notations as we used for basic blocks. For ex­

ample, IMP^j denotes the the implicit flow into the region Si. is defined as 

the implicit flow into the header of Si. As another example, the s-variable 

dsvjgj denotes the class of dsv after exiting the region Si. 

6.2.3.3 Building flow graphs For our assumed procedure syntax, the flow 

graph for each of the statements can be simply generated. In Figure 6.4, we show 

the flow graphs associated with the statements^. Si and 82 represent regions in the 

^The flow graphs in Figure 6.4 are shown using more primitive control structures 
than our assumed procedure syntax. Namely, the flow of control is shown to be 
directed through conditional branches (goto statements) which form basic blocks. 
This was done to simplify the graphical representation of basic blocks. However, 
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flow graphs which may be composed of one or more basic blocks. 

As shown in the flow graphs, we associate one more expression with a basic block 

that contains a conditional branch. We denote by the boolean expression whose 

value determines the successor of Bj in the flow graph. The classes of the E^'s will 

figure in the computation of the implicit flows into basic blocks. Ej- is assumed to 

be LOW if Ej does not exist, i.e., the basic block does not contain any conditional 

jumps. 

6.2.3.4 Loops in flow graphs The assumed procedure syntax uses struc­

tured control statements. As a result, the generated flow graphs have the property 

that loops that occur in them are easily identifiable. 

To find all loops, we start by identifying the back edges in a flow graph. Each 

back edge Bj B^ gives rise to a set of nodes forming a loop defined as B^ plus all 

nodes that can reach Bj- without going through Bj. B^ is called the header of the 

loop and it dominates all nodes in the loop. 

6.2.3.5 An example flow graph In Figure 6.5, we show a complete flow 

graph for a procedure. We use this example flow graph to illustrate the definitions 

and notions we presented above. Note that we have labeled each E^ by the type of 

control structure to which it corresponds. 

As an example of a loop, consider the back edge B^g —> B4 in which its head, 

B4, dominates its tail, B]^2- This back edge determines the loop with header B4 

consisting of the nodes B4, B5 through Bg, and B^q through Bj2' 

these control structures in the flow graphs are still consistent with and equivalent to 
the procedure syntax we presented. 
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JL 
51 

T 
52 

SI ; S2 

Bi 

Ei if (E) goto SI 

^1 
if (E) then SI 

Bi 

Ei if (E) goto SI 

_/ \ 

SI S2 

Bi 
Ei 

if (E) goto SI 

SI 

o 
if (E) then SI else S2 while (E) do SI 

Figure 6.4: Flow graphs of the various statements 
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BI 

EO (while) 

BO 

El (if-then) 

Bl 

B2 B3 

E4 (while) 

B4 

E5 (if-then-else) BIS 

B5 

B6 BIO 

(while) 
B7 

B9 Bll 

B12 

Figure 6.5: An example flow graph 
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The other loops in the graph have headers BJ and BY and correspond to the 

back edges BG —> BY and B^g —> Bj. Note that the boolean expressions Ej, B4, and 

BY are associated with the nodes corresponding to headers of loops. 

Below, we show the possible control structures that correspond to the example 

flow graph in Figure 6.5. We divide the code into the basic blocks that are suggested 

by the flow graph. 

B I :  . . .  

BO: while (EO) do 

B l :  i f  ( E l )  t h e n  

B 2  :  . . .  

B 3 :  . . .  

B4: while (E4) do 

B5: if (E5) then 

B 6 :  . . .  

B7; while (E7) do 

B 8 :  . . .  

B9 : 

else 

B I O :  . . .  

B l l :  . . .  

B 1 2 :  . . .  

B 1 3 :  . . .  

BF: return 

The basic blocks that are left unspecified contain no conditional branches. For in­
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stance, B2, B12, and could consist of the following pieces of code. 

B2: M.P(a, b I d s v ) ;  

B12: a = b; 

dsv = c - a; 

goto B4; 

B13: goto BO; 

As an example of a region, consider the region with header B^. It includes basic 

blocks B]^, B2, and B3 and corresponds to an if-then-statement as can be seen from 

the edges between those basic blocks. Exiting this region can be only through B4. 

As another example, B4 through 8^2 form a region corresponding to a while-

statement. The only way into this region is B4 and thus, its header is B4. Control 

must leave the region through B^g. Note also that B4 dominates all the blocks in 

the region. 

6.2.4 Summary of notations 

In Figure 6.6, we show a summary of the notations we have introduced. 

6.3 Determining Implicit Flows into Basic Blocks 

First, we need to explain how to compute the classes of the implicit flows into 

individual basic blocks of a given flow graph of a procedure. For any basic block B^ in 

the flow graph, IMP^- is defined as the least upper bound of the security classes that 



143 

Bi Basic block number i or 
Flag indicating if control reached basic block B^ 

Si Statement number i or 
Region in the flow graph corresponding to statement Si 

B/ Initial basic block in a flow graph 

Initial basic block in region Si 

Bf Final basic block (return) in a flow graph 

IMP,: Implicit flow into basic block B^ 
IMP5^- Implicit flow into region Si; same as IMPj^. 

Ei Condition associated with basic block Bj 
that determines the flow of control 

dsV|- Class of variable dsv upon entering basic block Bj 

dsv^ Si Class of variable dsv upon entering region Si 

dsvj- Class of variable dsv upon exiting basic block B^ 

Class of variable dsv upon exiting region Si 

dsv-expj Expression assigned to dsv by assignment 
unambiguous dsv basic block Bj 

Bj[©((s-expr))] Enclosed s-expression is relevant only if 
flag B^ is true 

-'Bi[©((s-expr))] Enclosed s-expression is relevant only if 
flag Bj is false 

Figure 6.6: Summary of flow graph notations 
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are computed as explained in the following rules. The rules are meant to respectively 

handle the propagation of local and global implicit flows within a procedure (as 

explained in Chapter 2), the propagation of implicit flows among successive basic 

blocks and the propagation of interprocedural implicit flows. 

1. Include in IMPj all Ej^'s, such that corresponds to the conditional expression 

of an if-then-statement and is the immediate leftmost child (corresponding 

to the body of the statement) of 

2. Include in IMP^ all E^'s, such that E^ corresponds to the conditional expression 

of an if-then-else-statement and is an immediate child of B^, 

3. Include in IMPj all Ern's, such that Em corresponds to the conditional expres­

sion of a while-loop and Bj is a successor of B^-

4. Include in IMPj all IMP^'s, such that B^ is an immediate parent and a domi-

nator of Bj. 

5. Include in IMPj the class of the incoming implicit flow sent by the caller of the 

procedure, IMP. 

The first rule takes care of the case of an if-then-statement. In this case, the 

class of the condition in the statement forms a local implicit flow into the first basic 

block of the body of the if-then-statement, i.e., the leftmost child of the basic block 

that contains the conditional jump. (The fourth rule handles propagating this flow 

beyond the first block of the statement body.) For instance, in the example flow 

graph of Figure 6.5, IMP2 includes Ej^. 
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The second rule is similar to the first rule except that it deals with an if-then-

else-statement. In this case, the class of the condition must flow into the first basic 

blocks of both bodies of code: the else-part and the then-part. In the example, E5 

must figure in the computation of both IMPg and IMPy. 

The third rule handles including global implicit flows from the conditions of 

while-statements. Since the classes of those conditions implicitly flow into each state­

ment that logically follow the while-loop (see Chapter 2), they must be included into 

any IMPj of any that can be reached from the basic block that tests the con­

ditions. For example, EQ must figure in the computation of all IMP^-'s in the flow 

graph of Figure 6.5 except IMPj, which cannot be reached from BQ. Similarly, E4 

and E7 flow into all basic blocks except B^. 

The fourth rule in the computation of IMPj includes the class of an implicit flow 

going into Bj- as a result of it first going into a predecessor basic block, B^-, and of not 

having any intermediate blocks between By and B^ that could increment or change 

that implicit flow. In this case, control unconditionally flows from By to Bj and the 

implicit flow must be propagated from Bj to B^. However, Bj must dominate B^ for 

IMPj to be included in IMP^. Otherwise, the implicit flows into basic blocks that 

follow conditional statements would be wrongly overclassified. 

For instance, in the example flow graph, IMPj^ must be included in IMP2 and 

IMPg. However, IMP2 should not be included in IMPg since to reach Bg, control 

can flow through Bj while skipping Bg. Similarly, IMPg and IMP^Q should flgure in 

IMP^ since Bg and Bj^q do not dominate Bi2-

Finally, the last rule for the computation of a basic block implicit flow includes 

the implicit flow that is received from external procedures. 
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Below, we apply the above rules to list the values of the basic block implicit 

flows in the example flow graph. 

I M F  J  =  ©(IMP) 

IMPq = ©(EQ, E4, E7, IMP;, IMP) 

IMPi = ©(Eg, E4, Ej, IMPq, IMP) 

IMP2 = ®(Eq, E4, Ey, E]^, IMPj, IMP) 

IMP3 = ©(Eg, E4, E7, IMPi, IMP) 

IMP4 = ©(Eg, E4, E7, IMP3, IMP) 

IMP5 = @(Eq, E4, E7, IMP4, IMP) 

IMPg = ©(Eg, E4, E7, E5, IMP5, IMP) 

IMP7 = ©(Eg, E4, E7, IMPg, IMP) 

IMPg = ©(Eg, E4, E7, IMP7, IMP) 

IMPg = ©(Eg, E4, E7, IMP7, IMP) 

IMP]^g = ©(Eg, E4, E7, Eg, IMP5, IMP) 

IMP^^ = ©(Eg, E4, E7, IMP) 

Note that there is some redundancy in the computation of the implicit flows; some 

security classes get to be included more than once. For example, in IMPg, IMP is 

included twice since IMP/ is equal to IMP. However, this is does not introduce any 

overclassification since © is idempotent. 

Also, note how E5 is propagated to IMP7 by including IMPg in IMP7 as stated 

in rule 4. However, E5 is not propagated to IMPj]^ since neither IMPg nor IMPj^g 

are included in IMP^j^. 
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6.4 Generating Flow Graph S-Definitions 

In this section, we present the new s-definitions with their new forms which allow 

taking execution paths of procedures into consideration. The new s-definitions will 

be called flow graph s-definitions. 

We have already shown (in Section 6.2) the flow graph s-definitions for dsv 

basic blocks. The algorithm for generating flow graph s-definitions for a complete 

procedure is presented by explaining how they are generated in case of each of the 

control structures in our procedure syntax. 

The rules for generating the new s-definitions are inductive. The basis of the 

induction is when a statement is a single basic block. The rules for the basis case, as 

presented in Section 6.2, state that the formation of the s-definition depends on the 

type of the dsv basic block (see Figure 6.4), 

Next, we explain the rules for the formation of the flow graph s-definitions for 

an entire region, S, in a flow graph. The rules are stated in terms of the component 

regions of S, such as Si and S2. 

6.4.1 Compound statements 

Assume that the flow graph of a compound statement, S, includes two regions 

Si and S2. (See Figure 6.4.) Then for any dynamic state variable dsv, the flow graph 

s-definition for dsv^g is as follows. 

dsv|5 = ©(dsv|52) 

In other words, the class of dsv upon exiting from S is defined as the class of dsv 

upon exiting from S2. 
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For example, consider the following code. 

S : SI : B1: dsv = x; 

dsv = dsv + 1; 

S 2 :  S 3 :  B 2 :  M 1 . P ( ) ;  

S4: S5: B3: M2.q( I dsv); 

S6; B4; x = 0; 

Region Si consists ofB^ and region 82 consists of Bg, Bg, and B4. We have 

dsv|5 = ©(dsv|52)-

We can apply the same rule again until dsv^^^ can be defined as an induction base 

case. Assume that S2 is a compound of S3 (B2) and 84 (B3 and B4) and also that 

84 is a compound of 85 (B5) and 86 (Bg). Then, we have 

à§viS2 = ®(dsv|54), 

^i54 = and 

^156 = ©(dsv|4). 

Since 86 consists of one block, B4, then dsvj^^g is dsv|| which can be defined as 

dsv|4 = @(dsv^4) 

because B4 is not a dsv basic block. In turn, we have 

dsv|| = ©(dsv|3) and 

dsvjg = ©(M2.Q.dsv, IMP3) 

since Bg is a call unambiguous dsv basic block (see Section 6.2). 80, we finally obtain 

the following s-definition: 
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dsvjg = ©(M2.Q.dsv, IMP3). 

Of course, IMP3 can be defined further as explain previously. For example, if no 

statements precede S in the procedure, we have 

IMP3 = ©(IMP). 

6.4.2 If-then statements 

Assume that the flow graph of an if-then statement, S, includes a conditional 

branch block, B^, and a region Si for the code of the body. (See Figure 6.4.) Then 

for any dynamic state variable dsv, we generate an s-definition as follows. 

Case 1: If Si includes at least one dsv unambiguous block, then dsv ^g. the 

class of dsv upon exit from region S, is defined as 

^15 - B/5i[®(^svi5l)l V ^Bj^^[©(dsvi-j, IMPj, Ej)]. 

The flow graph s-definition can be read as follows. If the first block (B^^^ ) of region 

Si is entered during the execution of the procedure then the the class of dsv after 

the execution of the if-statement (S) is 

dsv^S = ©(dsv|5i) 

i.e., the class of dsv upon exiting from region Sl^. On the other hand, if B^^^ is not 

entered, then the class of dsv is 

dsv|5 = ©(dsv|^, IMPj-, Ej). 

^The s-variable dsv|^]^ is defined by induction. It already includes the implicit 

flows coming into region Si. 
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i.e., the class of dsv upon entering the conditional branch basic blocks Bj incremented 

by the implicit flows IMPj- and Ej. The reason the implicit flows need to be included 

is that we have assumed that there exists an unambiguous s-assignment of dsv in SI. 

As explained, in Chapters 2 and 4, implicit flows occur even if explicit assignment 

are skipped. 

As an example, consider the following code. 

B 4 :  . . .  

S: B5: if (E5) then 

SI : B6: dsv = x; 

37: M.P(): 

B8: M.q(); 

Region S consists of B5 and region SI consists of Eg (its header) and By. The flow 

graph s-deflnition for dsv^g is 

^15 = B6[©(dsv|5i)] V -iBe[©(dsv|5, IMP5, E5)]. 

The implicit flows IMP5 and E5 are included in the case of skipping SI. However, 

they need not be included in the other case since dsv^^j^ already includes them. 

We can further define dsv^gj^ as dsv^y. the class of dsv upon exiting By, which, 

in turn, is defined (by the rules of the basis of the induction in Section 6.2) as 

dsv|Y = ©(dsvJj-M.P). 

Note that the s-definition for dsv^^ also defines dsv-j-g and dsvfl-M.Q. The latter 

s-variable is the one that appears in the template of the procedure under the INS 

part for the M.Q RPC. We finally have 
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dsvi'fM.Q = B0[©(dsvJj.M.P)] V -'Bg[@(dsv^g, IMPg, E5)]. 

Of course, dsv|g and IMP5 need to be further defined depending on the code pre­

ceding B5. 

Case 2: Implicit flows need not be included if there are no unambiguous s-

assignments of dsv and if Si is skipped. So, if SI does not include any dsv unam­

biguous block, then dsv^^g is defined as 

As example, consider the following code. 

B 4 :  . . .  

S: B5: if (E5) then 

S I :  B 6 :  a  =  b ;  

37: M.P(); 

B8: M . q O ;  

In this case. Eg is not a dsv basic block anymore and there are no unambiguous dsv 

s-assignment in SI. Therefore, the implicit flows need not be included since only 

ambiguous flows appear. Then, the flow graph s-definition for d^|^ is 

às^is = B6[©(dsv|5i)] V ^B6[©(dsv|5)]. 

6.4.3 If-then-else statements 

Assume that the flow graph of an if-then-else statement, S, includes a conditional 

branch block, B^, and a region SI for the code under the then-part and a region S2 for 
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the code under the else-part. (See Figure 6.4.) Then for any dynamic state variable 

dsv, we generate an s-definition as follows. 

Case 1: If neither Si nor S2 include any dsv unambiguous block, then dsv^g is 

defined as 

^15 = Bj^^[©(dsv|5i)] V B/gg[@(dsv^g2)i-

In this case. Si and S2 either contain ambiguous dsv s-assignments or do not contain 

dsv s-assignments at all. Implicit flows need not be explicitly included since no 

unambiguous flows occur in either Si or S2. 

Case 2: If only SI includes at least one dsv unambiguous block while S2 does 

not, then dsvj^g is defined as 

^iS - V B;^^[$(dsvj^_y2' IMPp EJ]. 

If S2 is visited, it must mean that control has skipped Si. In that case, since SI is 

assumed to contain an unambiguous dsv s-assignment, the implicit flows occur and 

must be included. So, the implicit flows are included in the bracket because of 

the unambiguous s-assignment in SI, regardless of what S2 contains. 

As an example, consider the following piece of code. 

B 4 :  . . .  

S: B5: if (E5) then 

S I :  B 6 :  d s v  =  x ;  

else 

S 2 :  B 7 :  H . P ( ) ;  

Region S consists of Bg and Si (Bg) and S2 (By). We have 
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= B0[©(dsv|5i)] V B7[©(dsv|52> IMP5, E5)], 

dsv|5i = ©(dsv|6), 

dsv|g = ©(x, IMPg), 

IMPg = ©(Eg, IMP5), 

dsvj^^2 = ®(dsv|7), and 

dsv IY = ®(dsvl].M.P). 

So, finally, we can write 

—iS = E5, IMP5)] V By[©(dsv^jM.P, IMP5, Eg)]. 

Note how the implicit flows Eg and IMP5 into the Bg bracket ended up being included 

because they were included in dsvj^^- Also, the implicit flows must be included in 

the By bracket. Otherwise, in case Bg is skipped and M.P does not s-assign dsv, dsv 

would be underclassified to a class that does not reflect the implicit flows resulting 

from the conditional explicit assignment in Bg. 

Case 3: The reverse of the above case is treated similarly. If only 82 includes 

at least one dsv unambiguous block while Si does not, then dsv|^ is defined as 

= B;g^[©(dsv^gi, IMP^, Ej)] V Bfgg[©(dsv^g2)]-

Case 4; Next, we treat the last possible case. Namely, if both Si and S2 each 

include at least one dsv unambiguous block, then dsv|_g is defined as 

IMP^, E^)] V B/gg[e(dsvjg2, IMP^, Ef)]. 

The implicit flows IMP^- and E^ are included in all cases since both Si and S2 un­

ambiguously s-assign dsv. The inclusion of IMP^ and E^ in the B^^^ bracket is 
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because of the unambiguous flow in S2. Similarly, the inclusion of IMP^- and Ej in 

the bracket is because of the unambiguous flow in Si. However, since dsvj^^j^ 

and dsvj^^go already include those implicit flows, to avoid including redundant classes, 

the s-definition can be simplified to 

^iS = V B/^g[@(dsv|^2)]. 

Note that this s-definition is the same as the one generated in case neither Si nor S2 

contain unambiguous flows. 

As an example, consider the following piece of code. 

B 4 :  . . .  

S: B5: if (E5) then 

S I :  B 6 :  d s v  =  x ;  

else 

S 2 :  3 7 :  H . P (  I d s v ) ;  

Region S consists of Bg and SI (Bg) and S2 (By). Both Bg and By are dsv unam­

biguous basic blocks. We have 

= Bg[©(dsv|5i)] V By[©(dsv|52)]. 

dsv|5i = ©(dsv|g), 

d^|6 = ©(x, IMPg), 

IMPg = ©(Eg, IMPg), 

—152 - ©(dsvj.?)' 

dsv|y = ©(M.P.dsv, IMPy), and 

IMPy = ©(Eg, IMPg). 
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So, finally, we can write 

dsv|5 = Be[©(x, IMP5, E5)] V By[@(M.P.dsv, IMP5, E5)]. 

Note how the implicit flows E5 and IMP5 ended up being included because they 

were already included in dsvand dsv|^^2 which contain unambiguous dsv blocks. 

There was no need to include them in the original s-definition. 

6.4.4 While statements 

Among the types of statements, loops are the most complicated to handle. The 

basic idea that we will follow is to assume that a while statement consists of a 

succession of if-then statements. This way we simulate the iterations of the while 

loop. Then, we generate a dsv s-definition for each of those if-statements as explained 

above. The questions are how many s-definition is it necessary to generate and are 

there an infinite number of them? 

Mizuno in [27] proves that for any loop, there is always only a finite number 

of s-definitions to be generated. The idea of the proof is simple: there is always a 

finite number of constant security classes and of s-variables that could possibly be 

included in an s-definition. Therefore, after a certain number, say n, of generated 

s-definitions, no new s-variables or constant classes can be added to the (n 1)®* 

s-definition. Thus, the process of generating s-definitions can terminate when it is 

found that no new classes are being added to a previously generated s-definition. 

Nesting loops also introduces complications. As a result, our treatment of loops 

is divided into two cases. First, we treat the simplest case, that is, we consider loops 

that are not nested in any other loops. Those loops will be called level-1 loops. The 

handling of level-1 loops is a generalization of of the handling of if-then statements. 
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Second, we treat loops that may be nested at any level n, level-n loops. The 

handling of level-n loops is a generalization of the handling of level-1 loops. 

6.4.4.1 Level-1 loops We will need to introduce some new notations. First 

however, as for the previous control structures, we assume that the flow graph of a 

level-1 while statement, S, includes a conditional branch block, B^, and-a region SI for 

the code of the body of the loop. (See Figure 6.4.) At the end of Si there must be an 

unconditional jump to Bj. However, to simulate while statements as a succession of 

if-then statements, we will assume that the unconditional jump statement is omitted 

from the code bodies of the if-then statements. We will explain how to generate a 

(finite) series of s-definitions for any dynamic state variable dsv. 

In Figure 6.7, we show a flow graph for a level-1 while statement as a succession 

of if-then statements. The k^^ if-then in the sequence of a while statement, S, will 

be denoted by s(^). We introduce the notations for S(^) in Figure 6.8. They are 

similar to our previously established notations except that a superscript is included 

to identify the number of the iteration. 

We also denote, by dsv^^. the class of dsv if the level-1 loop is skipped (i.e., 

iterated 0 times). Then, we have the following flow graph s-deflnitions for dsv. If SI 

contains at least one unambiguous dsv basic block then we have 

dsv^^J = @(dsv(|), IMpM, E(l)). 

This means that if the loop is completely skipped (i.e., SlX^) is not entered), then 

the class of dsv is equal to its class before the loop, incremented by the implicit flows 

since Si contains an unambiguous dsv s-assignment. 

If Si does not contain any unambiguous dsv basic blocks, the we have 
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\ Bi (1) 

. ( 1 )  
Ei 

SI 

Ei 

(2) 

Bi 

Ei 

SI 

if (E) goto SI 

if (E) goto SI 

if (E) goto SI 

Figure 6.7: A while statement as a succession of if-then statements 
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B(^' 
l Basic block Bj of s(^) or 

the flag associated with B^ in the loop. 

E'.*' l The condition appearing in basic block B^^^ 

SiW The region of the body of s(^). 

The implicit flow into basic block Blj^^ 

The implicit flow into region Sl(^). 

®^S1 
The header of region Sl(^). 

Mi' The class of dsv upon entering basic block B^^^. 

Mi' The class of dsv upon exiting basic block b|^\ 

The class of dsv upon entering region Sl(^). 

dsyW The class of dsv upon exiting region Sl(^). 

Figure 6.8: Notations for while loops 
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—15 -

which omits the implicit flows. 

Assume now that the body of the loop is entered at least once. Then, after 

iteration k, the flow graph s-definition for dsv is 

— I S  = 

In other words, the class of dsv after iteration k of the loop is defined to be the class 

of dsv upon exiting the region Sl(^), the k^^ if-then in the sequence. The implicit 

flows are not included since they are included in the computation of dsv^^j^. 

As an example, consider the following code. 

B4: ... 

S: B5: while (E5: dsvl > 0) do 

SI: B6: dsvl = dsv2; 

dsv2 = dsv3; 

Region S consists of Bg and Bg and region Si consists of Bg. The condition Eg is 

(dsvl > 0). The series of flow graph s-definitions for dsvl^g is as follows. Note that 

Si contains an unambiguous dsvl basic block. 

Case 1; No iterations. 

dsvlj^^ = e(dsvlj.g), 

dsvl^l^ = ©(dsvl-|-^) 

= ©(IMP5) 

Eg ^ = ©(dsvl-j-gi) 

Finally, we get 
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dsvl^j^ = ©(dsvl-j-^ç, IMP5). 

Case 2: One iteration. 

dsvlj^^ = ©(dsvliy^) 

dsvlj^y^ = ©(dsv2|g\ 

dsv2|.y = ©(dsv2|g^) 

dsvg^g^ = ©(dsv2|y) 

dsv2^y = ©(dsv2|_5') 

= ©(IMP^^), 

IMP^^) = ©(IMP5) 

E5 ^ = ffi(dsvl|g^) 

dsvl^y = ©(dsvl|_ç) 

Finally, we get 

dsvlj^j = ©(dsv2i-^, IMP^, dsvl|^). 

Case 3: Two iterations. 

dsvlj^j = ©(dsvlj^^^) 

dsvl|^^ = ©(dsv2^g\ IMP^^)) 

dsv2|.g^ = ©(dsv2|^^^) 

dsv2|r^ = ©(dsv2|g^) 

dsv2^g^ = ©(dsv2j^g^) 

dsv2|g^ = ©(dsvsjg^) 

dsvsj-g^ = ©(dsvS-j-^j) 
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IMP^^) = e(IMP^^\ E^^)) 

IMP^^) = ©(IMP5) 

Eg ^ = ©(dsvlj-^) 

^ = @(dsvl(^)) 

dsvl I = ©(dsvl^^j^) 

Finally, we get 

(2) 
dsvl IJ = ©(dsvSi^, IMP5, dsvl-j.^, dsv2-|.g). 

Case 4: Three iterations. 

dsvlj^ = ©(dsvlj^^j^) 

dsvl^5\ H @(dsv2(g), IMP^^h 

dsv2j.g^ = ©(dsv2|g^) 

dsv2|^g^ = ©(dsv2|g^) 

dsv2|g^ = ©(dsv2|g^) 

dsv^ig^ = ©(dsv3|g^) 

dsv3|g^ = ©(dsv3|g^) 

dsvgj^^^ = ©(dsv3|g^) 

dsv3|g^ = ©(dsv3jg^) 

dsv3^g^ = ©(dsv3-|-^) 

IMP^^) = ©(IMP^^\ E^^)) 

IMP^^) = ©(IMP^^\ 

IMP^^) = ©(IMP^^\ E^^)) 
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= ©(IMP5) 

Eg ^ = 0(dsvl-j-_g') 

= ©(dsvlj^y^) 

^ = ©(dsvl^g^) 

dsvl^g^ = ©(dsvlj^^j^) 

dsvl|5^ = ©(dsvll^j^) 

Finally, we get 

dsvl|= ©(dsvSi^, IMP^, dsvl|-J, dsv2 j-^). 

So, after simulating three iterations, we find that dsvl^^ and dsvlj^^ have 

equivalent s-definitions and the process of generating s-definitions can halt. If at 

run-time the loop is found to have run 0, 1, or 2 times, then to compute the class 

of dsvl, the run-time mechanism uses dsvljj. dsvl^^. and dsvlj^^. respectively. If 

(2)  .  
the loop executes 3 or more times, dsvl^ X is also used. 

( k )  
In general, the dsv^j s-definitions are generated for 

k = 0, 1, . . . ,Tl — 1,71, 

where the s-definitions for dsv^ and dsvj are equivalent. If at run-time it is 

found that the loop iterated k times and if k < n, then the run-time mechanism uses 

the dsV| s-definition to compute the dsv. On the other hand, if k > n, then the 

dsV| s-definition is used. 

At run-time, for each loop, S, with body code, SI, a counter is maintained to 

indicate the number of times the loop is executed. In other words, it counts the 

number of times is entered. We will denote the counter, for a while statement 

S, by S also. 
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6.4.4.2 Level-n loops To generate s-definitions for a level-1 loop, we gen­

eralized the if-then statement case and we introduced a (one-dimensional) super­

script, say k, in our notations to indicate the number of the iteration. To generate 

s-definitions for a level-n loop, S, we further generalize the level-1 case and allow 

the superscript in our notations to stand for an n-dimensional vector of n counters 

(n-tuple). The vector represents the number of iterations of the various loops that 

contain the loop S. 

For a vector k  =  (^2,. . .  , k n ) ,  k ^  i s  &  counter that represents the number of 

iterations of the most outer loop (a level-1 loop) containing the level-n loop S, k2 

represents the number of iterations for the level-2 loop containing S, and so on.... 

The counter kn represents the number of iterations of S itself. 

For example, for a level-3 loop, S, represents the if-then statement sim­

ulating S on one S iteration of the fourth directly containing loop iteration on second 

iteration of the most outer loop. Associated with are a conditional branch 

block, a condition, and so on.... 

It is assumed that for a loop vector, if one of its components is 0 then all the 

succeeding components are 0. That is obvious since if a level-i loop does not execute 

then a contained level-(i-M) loop does not execute either. 

We denote the 0 vector by 0 and we use (fcj_i,zzî) to denote the vector whose 

components are different than m, except for the i^^ and beyond positions. 

We define the following s-definitions for a level-n loop, S, with body code. Si, 

and conditional branch block B^. For 0 iteration of S, dsv^ n ' ' \ the class 

of dsv after 0 iterations of S and ki,k2,... and k^_i iterations of its respective 

containing loops, is 
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dsv||^''" = ffi( ), 

if the loop contains unambiguous dsv s-assignments, or 

, (^'n—1'*^) , , (^n—1'^) . 
dsvj^^; = ©( dsv^^ ), 

if there are no dsv unambiguous s-assignments. 

For kn iterations of S, we have 

dsv|^^ = ©(dsv|^^^). 

As an example, consider the following code. 

S: B3: while (E3: dsvl > 0) do 

SI: B4: dsvl = dsv4; 

S2: B5: while (E5: dsvl > 0) do 

S3: B6: dsvl = dsv2; 

dsv2 = dsv3; 

B7: dsv4 = dsvl; 

Region S is a a level-1 loop that consists of Bg, B4, B5, Bg, and By. Region S2 is a 

level-2 loop consisting of Bg and Bg. Note that S2 is a loop identical to the loop in 

the example we gave for level-1 loops. 

We use the level-1 s-definitions to derive the following s-definitions for dsvlj^j. 

Avl^^ = @(dsvl|g), 

dsvlj.g^ = ©(dsvl|^) 

= ©(IMP5) 

Eg ^ = ©(dsvl-j-^) 
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Finally, we get 

dsvl^l^j = ©(dsvl-j-^, IMP5). 

Again, we use the level-1 s-definitions to derive the following s-definitions for one 

iteration of S. 

dsvlj^j = @(dsvlj^^) 

dsvlj^^^ = ©(dsvlj^y^) 

dsvlj^y^ = ©(dsvl^y^) 

dsvl|y^ = ©(dsvl^^g) 

Since S2 is a level-2 loop, we need to use the level-2 s-definitions to produce a series 

of s-definitions for d s v l j ^ ( 1  i t e r a t i o n  o f  S  a n d  0  i t e r a t i o n s  o f  S 2 ) ,  dsvl( (1 

( 1 2 ) . .  
iteration of S and 1 iteration of S2), d s v l ( 1  i t e r a t i o n  o f  S  a n d  2  i t e r a t i o n s  o f  

32), and so on.... The s-definition for dsvlj^jg^ is derived as follows. 

dsvil^g) = @(dsvl(g'°), 

dsvlj.1'^^ = ©(dsvlj-^g) 

dsvlj.^2 = ©(dsvlj^^) 

dsvl|^^ s @(dsv4(^), IMP^^)) 

dsv4|y = @(dsv4^g^) 

dsv4|.g^ = ©(dsv4^g) 

= ©(dsvl|5,IMP5) 

= ©(dsvl|5, IMP5) 

= ©(dsvl(^)) 
U4 

Finally, we get 
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^svl|J2^ = ©(dsv4|5', dsvli^, IMPg). 

We also have the following s-definitions. 

Finally, we get 

= ©(dsvl|^3^) 

dsvl|^g) = @(dsv2lg'^\ 

dsv2|g^^ = e(dsv2j.g'^)) 

dsv2|.g'^^ = ©(dsv2|.y) 

dsvgj.^^ = ©(dsv2|2^) 

dsv2|j^ = @(dsv2|^) 

= ©(dsvl(^)) 

dsvl|^^ = @(dsv4-|-^, dsvl-j-^, IMP^) 

= ©(dsvl(.y)) 

dsvl^r'^^ = ©(dsvlj-jgg) 

dsvl|52 - @(dsvl|^^^) 

dsvl|j2^ = ©(dsv2|^, dsv4i-_5', dsvl-j-^, IMP5). 

We similarly get 

( 1  2 )  
dsvljjg = ©(dsvS-j-g, dsv2-|-^, dsv4i-^, dsvl|^, IMP5). 

Now, we derive the following s-definitions for two iterations of S. 

dsvl^^ = ©(dsvlj^^^) 
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dsvlj^j]^ = ©(dsvl|y^) 

dsvl|y^ = ©(dsvl|y^) 

dsvl^j^ = ©(dsvlj^^g) 

Once again, we need to derive s-definitions for the level-2 loop, S: dsvl(^g\ dsvl(^^P, 

(2  2)  
dsvl|^2 ) so on.... We obtain the following s-definitions after a lengthy deriva­

tion. 

dsvl^^g) = ©(dsv4'^y, dsvl(^^,IMP^)) 

dsvl|j2^ = ©(dsv2j^, dsv4^|^y, dsvlj^^, 

d s v l j =  © ( d s v s j y ,  d s v 2 j ^ y ,  d s v 4 | y ,  d s v l ^ ^ ,  I M F ^ " ^ )  

Each of the above s-definitions gives rise to three s-definitions since dsvl| j is defined 

in terms of three s-definitions depending on how many times S2 iterated during the 

( 2 )  
first iteration of S. So, the total number of s-definitions for dsvl j j (for two iterations 

of S) is nine. 

6.4.5 Run-time support for evaluating s-definitions 

At compile-time, while templates are being built for the procedures of an RM, 

the new flow graph s-definitions need to be generated from the flow graphs of the 

procedures. To evaluate these s-deflnition, some run-time support in the access com­

ponent of an RM is needed. 

Let a basic block, Bj, in a procedure, P, be a header of a region that is condi­

tionally entered and that is not included in a loop. We require the access component 

to maintain a one-bit flag, also denoted by Bj, to indicate whether the region headed 

by Bj is entered during the execution of P. Then, when any s-deflnition in which 
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an s-expression is enclosed in brackets marked by or the run-time flow con­

trol mechanism checks the flag Bj and decides whether to evaluate the enclosed 

s-expression or not. 

For a level-1 loop, S, a one-dimensional counter is needed to inform the run­

time flow control mechanism about the execution path taken at run-time. The one-

dimensional counter, also denoted S, is maintained to indicate the number of times 

that the body of S is entered. Then, it is checked at run-time to decide which s-

deflnition, among the series of s-deflnitions associated with the loop, to evaluate. For 

a basic block, B^ in P, that is included in the loop S, a series of one-bit flags, 

must be maintained to indicate if B^ is entered at iteration k of S. 

When loops are nested, a series of vectors needs to be maintained to indicate 

the number of iterations at each level of nesting. For a level-n loop, Sn, a series of 

n-dimensional vectors whose components are counters are needed. Each vector is of 

the form 

h = 

where indicates the number of iterations of the level-i loop containing Sn. For a 

basic block, B^ in P, that is included in a level-n loop, S, a series of one-bit flags, 

b|~^, must be maintained to indicate if B^ is entered at iteration kn of S, during the 

iteration of the enclosing level-(n-1) loop, etc.... 

The reason a series of vectors is needed rather than just one is that in general, 

for a given value for a k^, there are more than one associated value for For 

example, for a 2-dimensional loop counter vector whose first component is m, for m 

= 1, 2, 3,... , we can associate the vectors 

(m, 0), (m, 1), (m, 2), etc... 
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depending on the number of times the level-2 loop iterates. As a result, a question 

about the number of times that the level-2 loop iterated during a certain iteration of 

the containing level-1 loop cannot be answered unless all the vectors are maintained. 

The maintained series of vectors serves as a history of execution for a loop. 

Through that history, the run-time flow control mechanism can choose the right 

s-definitions to evaluate. 

There is a certain overhead cost associated with maintaining a history of execu­

tion for a level-n loop. To avoid such a cost, we can instead require that an updating 

of the s-assigned dynamic variables to take place at the time control exits from a 

loop. By doing that, all loops can be treated as level-1 loops and thus, only one-

dimensional counters would be needed. That is because by updating the classes at 

the end of each loop, the results of the loop iterations are saved and a history for 

future reference is not needed. 

Updating classes at the end of loops not only eliminates the overhead of main­

taining n-dimensional counters, but it also cuts down on the number of s-definitions 

that needs to be stored in each template. The reason is again that all loops can be 

treated as level-1 loops. As a consequence, the only s-definitions that are generated 

are the ones that deal directly with the loop in question regardless of the nesting of 

other loops. 

For example, assume that in our previous example, we include some update 

instructions at the end of loop S2. That is, assume we have the following code. 

S: B3: while (E3; dsvl > 0} do 

SI: B4: dsvl = dsv4; 

S2: 55: while (E5: dsvl > 0) do 



170 

S3: B6: dsvl = dsv2; 

dsv2 = dsv3; 

UPDATE(dsvl, dsv2); 

B7: dsv4 = dsvl; 

Then, the following s-definitions 

dsvlj^y = @(dsvl|^^2) 

dsvl IJ = ^(dsvlj^g) 

need not be expanded further (as we did earlier) to take care of all possible number 

of iterations for S2. By performing the updating after S2, the current class of dsvl 

reflects its correct class regardless of how many iteration of S2 are executed. Then, 

the current class of dsvl can be substituted for dsvl and dsvlthe time 

of the evaluation of the s-definitions. 

By including updates at the end of each loop, we avoid the cost of maintaining 

the vectors of counters. However, we incur the cost of the extra updates. Also, 

we violate the property of our system that states that class updates are part of the 

information flow control mechanism which is called upon only at message passing 

time. 

As a result, the decision of which scheme to adopt depends, in a given imple­

mentation, on how the efficiency of one scheme compares with the efficiency of the 

other. Thus, we leave the option of the choice of schemes to the implementor. 
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6.5 Examples 

In this section, we present some examples in which the new flow graph s-

definitions are used in generated templates. 

6.5.1 Example 1 

The first example is shown in Figure 6.9. It does not contain any loops. We have 

labeled the basic blocks in the code, and they are shown in the flow graphs of M LP 

and M2.Q in Figure 6.10. The templates of the procedures are shown in Figure 6.11. 

Next, we generate s-definitions for some of the s-variables that are shown in the 

templates. We assume that in Ml.P, the nested if-statement is region S2 (B2, B3, 

and B4) and the outer if-statement is SI (B]^, S2, and Bg). 

In the template of Ml.P, we need to expand the s-definitions for dsvLj-j7. and 

dsv2-|- p. 

dsv2-j- jr = ©(dsv2|0) 

dsv2|0 = ©(dsv2-|-g) 

dsv2-|-g = @(dsv2 ) 

^5V2|5i = B2[©(dsv2|52)] V Bg[@(dsv2^g)] 

dsv2|g2 = B3[©(dsv2|3)] V B4[ffi(dsv2|4)] 

d s v 2 =  © ( d s v 2 | 2 )  I M P 3 )  

dsv2|2 = ©(dsv2^) 

dsv2^2 = ©(dsv2|'j) 

IMP3 = ©(dsvl^, P.a, IMP) 

dsvl^ = ©(dsvljj) 
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Ml ={ int dsvl; M2 = { int dsv3; 
int dsv2; int dsv4; 
int ssvl(CONF); int ssv2(SECRET) ; 

P(a 1 b) 
int a, b(SECRET); 

BI: dsvl = ssvl; 
B1 : if (a == 0) then 
B2: if (dsvl == 0) then 
B3: dsvl = dsv2; 

else 
B4: dsv2 = dsvl; 

else 
B5: dsv2 = a; 
B6: b = dsv2; 

} 

QO 
{ 

BI: if (ssv2 > 0) then 
{ 

BI: M1.P( dsvS I dsv4); 
B2: dsv3 = ssv2; 

> 

else 
B3: sendprobe(M.P); 

Figure 6.9; Example 1 
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Ml.P 

SI 

B2 B5 

B3 B4 

B6 

BF 

M2.Q 

V 

BI 

© 
Figure 6.10: Flow graphs for example 1 
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Ml.P(a I b) TEMPLATE 

S-definitions Part 
OUTS 

b = ©(SECRET) 
INS 

<empty> 
STATES 

dsvl = ©(dsvl|^) 

dsv2 — @(dsv2-|- p )  

S-checks Part 
b(SECRET) ^ ©(P.a, SECRET, IMP) 

M2.Q() TEMPLATE 

S-definitions Part 
OUTS 

<empty> 
INS 

Ml.P(dsv3 I dsv4) 
implicit = ©(SECRET, IMP) 
dsvSfl-Ml.P = ©(dsv3-[-]^) 
dsv4l>Ml.P = ©(dsv4-|-]^) 

STATES 
dsv3 = ©(dsv3-|-jr) 

dsv4 = ©(dsv4i- p) 

S-checks Part 
<empty> 

Figure 6.11: Templates for example 1 



175 

dsvl|/ = ©(SECRET, IMP) 

dsv2|4 = ©(dsvl [-4, IMP4) 

dsvl|4 = ©(dsvl|2) 

dsvl 1^2 = ©(dsvljj) 

IMP4 = ©(dsvlji, P.a, IMP) 

dsv2|5 = ©(P.a, IMP5) 

IMP5 = ©(P.a, IMP) 

We finally get 

dsv2-|-j? = B2[©(dsv2|_5'2)] V Bg[©( P.a, IMP)] 

where 

dsv2|52 - B3[©(dsv2|j, P.a, SECRET, IMP)] V B4[©(P.a, SECRET, IMP)]. 

Next, we derive dsvl-j-jr. 

dsvl-j- p = ©(dsvl 

^151 = B2[©(dsvl|52)] V B5[©(dsvl^g, IMP5)] 

^^152 = B3[®(dsvl|3)] V B4[©(dsvl|4)] 

dsvl|3 = ©(dsv2i-3, IMP3) 

dsv2j^3 = ©(dsv2-j-^) 

IMP3 = ©(SECRET, P.a, IMP) 

dsvl|4 = ©(dsvl^4, IMP4) 

dsvl|4 = ©(SECRET, IMP, P.a) 

dsvl|5 = ©(dsvl|5) 

dsvl-j-g = ©(dsvljj) 
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dsvl|l = ©(SECRET, IMP) 

We finally get 

dsvl|^ = B2[©(dsvlj_5'2)] V Bg[©(P.a, SECRET, IMP)] 

where 

dsvl|52 = B3[©(dsv2|j, P.a, SECRET, IMP)] V B4[©(P.a, SECRET, IMP)]. 

In the template of M2.Q, we need to expand the s-definitions for dsv3-j-]^. dsv4 ̂ , 

dsv3|jT, and dsv4-|-p. The first two s-definitions are simple. 

dsv3|-]^ = ©(dsv3-|-j) 

dsv4^1 = ©(dsv4|j) 

The s-definitions for the final class of dsv3 is more involved. 

d s v 3 | =  B ] ^ [ © ( d s v 3 | 2 ) ]  V  B g [ © ( d s v 3 j ^ g ) ]  

dsv3|2 = ©(SECRET, IMP2) 

IMP2 = ©(SECRET, IMP) 

dsv3p = ©(dsv3&M.P) 

We finally get 

dsv3|^ = Bi[©(SECRET, IMP)] V B3[@(dsv3(lM.P)]. 

The s-definitions for the final class of dsv4 is as follows. 

dsv4jp = Bi[©(dsv4|2)] V B3[©(dsv4|3)] 

dsv4|2 = ©(dsv4i-2) 
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dsv4-j-2 = @(dsv4^) 

dsv4|]^ = ©(M.P.dsv4, IMPj) 

IMPi = ©(SECRET, IMP) 

dsv4|3 = ©(dsv3JJ-M.P) 

We finally get 

dsvijjT H Bi[©(M.P.dsv4, SECRET, IMP)] V B3[©(dsv4J|M.P)]. 

Assume that M2.Q is executing under an implicit flow of LOW. Assume also 

that ssv2 is greater than 0, and that dsv3 and dsv4 have classes CONFIDENTIAL 

and TOPSECRET, respectively. 

When Ml.P is called, the outgoing implicit flow is evaluated to SECRET. The 

class of the actual IN parameter is evaluated to CONFIDENTIAL. Finally, since 

neither dsv3 nor dsv4 were modified before the call, then there is no need to update 

them. (Actually, the run-time information flow control mechanism checks that no 

write-locks are acquired for dsvS or dsv4.) 

When the RPC Ml.P is received at Ml, an instance of the template is generated, 

P.a is replaced by CONFIDENTIAL and the s-check is evaluated. No flow violations 

are detected and the execution of M2.Q begins. Note that the s-check still checks for 

the worst case of flows into b. The s-expressions in the s-checks have not changed. 

Any program that has a potential of being insecure is rejected, regardless of the actual 

execution path. 

The classes of dsvl and dsv2 are updated at the end of the procedure. The new 

classes depend on the execution path that is taken in M.P. For example, assume that 

a and dsvl are found to be 0. Then, 
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dsvl|^2 = B3[©(dsv2|j, P.a, SECRET, IMP)] V B4[©(P.a, SECRET, IMP)], 

evaluates to 

dsvl|g2 - 0(dsv2^j, P.a, SECRET, IMP) 

which is 

dsvl|g2 = ©(CONFIDENTIAL, SECRET, CONFIDENTIAL) 

assuming that dsv2-j-j is LOW. This results in 

dsvljj? = B2[©(dsvl|_ç2)] V Bg[©(P.a, SECRET, IMP)] 

evaluating to 

dsvl-j-j? = ©(dsvl|52)' 

dsvlj^go = ©(SECRET). 

Thus, the final class of dsvl is SECRET. 

6.5.2 Example 2 

The second example is shown in Figure 6.12. The procedure Ml.P contains a 

loop. The templates of all the procedures are in Figure 6.13. The flow graph of 

procedure Ml.P is shown in Figure 6.14. The other flow graphs are trivial. 

Next, we expand the s-deflnitions that appear in the templates. We assume 

that in Ml.P, the while-statement and the if-statement form regions SI and S2, 

respectively. In the template of Ml.P, we need to expand the s-deflnitions for dsvl 

dsv2|2^. dsv2^g\ dsvl|ji. and dsv2-|-p. We start with dsvlj.^^. The case of no 
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iterations of SI is not handled, since then neither the call nor the probe to M2.Q 

sent anyway. 

Case 1; One iteration of SI. 

dsvl^y = ©(dsvl^j^) 

dsvlj.^^ = ©(dsvl|j) 

Case 2: Two iterations of SI. 

dsvl^g^ = ©(dsvl^y^) 

dsvlj^y^ = @(dsv2j.g^) 

dsv2jy = ©(dsvUJ-M.Q) 

Case 3: Three iterations of Si. 

dsvl^g^ = ©(dsvl^^^) 

dsvlj^j^ = ©(dsvlJIM.Q) 

We expand only dsv2|2^) noting that dsv2|g^ has the same s-definition. 

Case 1: One iteration of SI. 

d^v^^y = ©(dsv2|^^) 

dsv2^^^ = ©(dsv2^) 

dsv2|i = ©(LOW, IMP) 

Case 2; Two iterations in SI. 

dsv2^2^ = ©(dsv2^yj^) 

^^J.51 ^ @(dsv2jg^) 
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Ml ={ int dsvl; R(a) /* Ml.R */ 
int dsv2; int a; 
int ssvl(CONF); { 

. . .  B I :  i f  ( a  < >  0 )  t h e n  
Bl: dsvl = a; 

P() } 
{ int i(LOW): } /* Ml */ 

BI: i = 0; 
dsv2 = 0; 

Bl: while (i <= 1) do { 
B2: if (dsv2 == 0) then 
B3: M2.Q(); 

else 
B4: sendprobe(H2.Q); 
B5: dsv2 = ssvl; 

ssvl = dsvl; 
i++; } 

} /* P */ 

M2 = { int dsv3; 
int ssv2(SECRET); 

q ( )  
{ 
BI: Ml.R(dsv3); 
Bl: dsv3 = ssv2; 

} 
} /* M2 */ 

Figure 6.12: Example 2 
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Ml.PO TEMPLATE 

S-definitions Part 
INS 

M2.Q() 

implicit = ©(dsv2f^2^, LOW, IMP) 

dsvlfrM2.Q = ©(dsvll^^) 

dsv2frM2.Q = e(dsv2lg)) 

STATES 
dsvl = ©(dsvlj^) 
dsv2 = ©(dsv2|^) 

S-checks Part 
i(LOW) 4- ©(LOW, IMP) 
ssvl(CONFIDENTIAL) ^ ©(dsvl(lM2.Q(*), LOW, IMP) 

Ml.RO TEMPLATE 

S-definitions Part 
STATES 

dsvl = ©(R.a, IMP) 

M2. q ( )  T E M P L A T E  

S-definitions Part 
INS 

Ml.R(dsv3) 
implicit — ©(IMP) 
dsv3f[-Ml.R = ©(dsYS-j-j) 

STATES 
dsv3 = ©(SECRET, IMP) 

Figure 6.13: Example 2 templates (omitted parts are empty) 
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Ml.P 

SI (while) 
r 

82 (if) 

B2 

B3 B4 

B5 

Figure 6.14: Flow graphs for example 
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dsv2^y = ©(CONFIDENTIAL, IMP^^^) 

IMP^^^ = @(IMP^)) 

IMP^) = ©(LOW, IMP) 

Finally, we get 

dsvl^g) = ©(CONFIDENTIAL, IMP). 

Case 3: Three iterations of Si. 

dsv2|2^ = ©(dsv2|^^^) 

dsv2j^^^ = ©(dsv2j^^) 

dsv2^^) H ©(CONFIDENTIAL, impn52) 

IMP^^) = ©(LOW, IMP) 

Finally, we get 

dsvg^g) = ©(CONFIDENTIAL, IMP). 

We similarly expand dsvl|ji and dsYg-j. with the following results, 

dsvl-j-ji = ©(dsvlj^^^) and 

dsv2|j7 = ©(dsv2|^^^), 

where we have 

dsvl|^i^ = ©(dsvl-j-j) and 

dsv2% = ©(LOW, IMP). 



184 

Now, assume that Ml.P is called under an implicit flow of LOW. Also, assume, 

in module Ml, that dsv2 has an initial class of LOW and a value of 0, that dsvl has 

class LOW, and that ssvl has a nonzero value. In module M2, assume that dsv3 is 

nonzero with class CONFIDENTIAL. 

When the s-check in Ml.P is evaluated, it shows a flow from LOW to CON­

FIDENTIAL, and the call is allowed to proceed. When M2.Q is called from Ml.P 

during the first iteration of Si, the s-definitions with superscript (1) are evaluated. 

The class of dsv2 is updated to LOW and the class of dsvl is unchanged and remains 

LOW. Also, implicit is evaluated to LOW. 

M2.Q has no s-checks and proceeds to call MLR. The implicit flow sent into 

Ml.R is LOW and dsv3 is unchanged and remains CONFIDENTIAL. Dsv3 is also 

the actual parameter. 

Ml.R also does not have any s-checks. The value of a is nonzero and R.a is CON­

FIDENTIAL. The call proceeds and writes into dsvl. Upon returning, it updates 

the class of dsvl to CONFIDENTIAL. 

Note that the call Ml.P is module-recursive since it resulted in the call Ml.R 

which is to the same module. Actually, Ml.R does indeed modify dsvl which is also 

accessed by Ml.P. 

When control returns to M2.Q, dsv2 is modified and its class updated to SE­

CRET. Then, a return to Ml.P is performed. Upon receiving the return message the 

s-check in Ml.P is evaluated from 

ssvl(CONFIDENTIAL) ^ ©(dsvlJ|M2.Q(*)) 

to 

ssvl(CONFIDENTIAL) ^ ©(dsvl^M2.Q(*), CONFIDENTIAL). 
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The s-expression reflects the change in dsvl after the call to M2.Q. No flow violations 

are detected and the execution of the procedure continues at basic block B5. 

At the second iteration of Si, the call to M2.Q is not made since dsv2 becomes 

nonzero after the assignment in B5. However, the probe is sent to M2.Q with an 

implicit flow of 

implicit = ©(dsv2^2^, LOW, IMP) 

which evaluates to CONFIDENTIAL according to the s-definition of dsv2|2^. 

When the probe is received at M2.Q, dsv3 is s-incremented by CONFIDENTIAL, 

but remains SECRET. Then, the probe is propagated to Ml.R where dsvl is s-

incremented and also remains CONFIDENTIAL. Finally, a probe-return is sent to 

Ml.P. Since dsvl is still CONFIDENTIAL, the s-check in Ml.P detects no violations 

and the procedure is allowed to resume. Finally, upon returning, Ml.P updates the 

class of dsv2 to CONFIDENTIAL. 

In the above scenario, no flow violations were detected. However, with a simple 

modification of the assumptions, we show an example in which execution of Ml.P 

must halt because of a violation. 

Instead of assuming that the initial value of ssvl is nonzero, let us assume that 

it is zero. That causes M2.Q to be called during the second iteration of SI. 

When M2.Q executes, it calls M2.R with an actual parameter that has class 

SECRET. M2.R updates the class of dsvl according to the class of the parameter, 

resulting in dsvl being SECRET. 

When eventually a return is sent to Ml.P, the s-check 

ssvi(CONFIDENTIAL) ^ ©(dsvlJ|M2.Q(*), CONFIDENTIAL) 
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is evaluated to 

ssvl(CONFIDENTIAL) ^ ©(dsvl4M2.Q(*), SECRET, CONFIDENTIAL). 

That is a clear flow violation which causes the execution of the process to halt. 

6.6 Summary 

In this section, we summarize the new scheme to compute classes of dynamic 

variables by revisiting the compile-time information flow control mechanism. 

As explained in Chapter 4, the main task of the compile-time mechanism is to 

produce a template for each procedure in an RM. The changes that are made in this 

chapter are confined to the generation of s-definitions in the templates; they do not 

affect the generation of s-checks. The changes are summarized as follows. 

We assume that the compile-time mechanism is producing a template for a proce­

dure M.P. The compile-time mechanism starts by dividing the code into basic blocks. 

Any message-sending instruction is assumed to form a basic block by itself. Then, 

the mechanism proceeds by generating a flow graph for M.P®. 

For a dynamic variable dsv, a dsv basic block is one that s-assigns or may s-

assign dsv. Dsv basic blocks could be of any of four types: assignment unambiguous, 

call unambiguous, call ambiguous, or probe unambiguous. 

For each dynamic variable dsv, the compile-time mechanism needs to generate 

an s-definition that gives dsv right prior to the execution of a message-sending in­

struction. In other words, for a message-sending basic block B^, the mechanism is to 

®Note that these first steps must also taken by many optimizing compilers. The 
various algorithms to generate flow graphs and to determine loops are presented in 
[1]. 
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generate an s-definition for dsv-j-j,-. The s-definition is placed in the template in the 

INS, OUTS, or STATES part, depending on whether the message is a call, a probe, 

or a return. 

The form of the generated s-definition for dsv-j-^- depends on the position of Bj 

in the flow graph. We define the s-definition by structural induction on the type of 

statements that can logically precede The statements that precede Bj are the 

ones that potentially define the class of dsv. Assume that those statements form a 

region S. Then, we have 

dsv-j-,^- = @(dsvj^). 

The basis of the induction is when B^ is preceded by S which consists of a single 

basic block Bj. Then, we have the following cases. 

1. If Bj is not a dsv basic block, then we have 

—Ij - ©(dsv|j). 

2. If Bj is an assignment dsv basic block, then we have 

dsvjj = ©(dsv-expj, IMPj), 

where dsv-expj is an s-variable representing the class of the last expression 

assigned to dsv in Bj. 

3. If Bj is a call unambiguous dsv basic block, then we have 

dsv|j = ©(M.Q.dsv, IMPj) 
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where M.Q is the procedure being called in B^ . 

4. If Bj is a call or probe ambiguous dsv basic block, then we have 

dsv|j = ©(dsvlfM.Q) 

where M.Q is the procedure being called or probed in By. 

In the induction step, S can be any one of the control structures in our assumed 

syntax: compound, if-then, if-then-else and while statements. Then, we have the 

following cases. 

1. If S is a compound statement (Si; S2) then we have 

dsv|5 = ©(dsv|52)-

2. If S is an if-then statement, whose body of code forms statement SI with header 

Bj^l and whose condition is E^, then we have 

^15 = V -Bj^^[©(dsv|5i)] 

or 

^15 = V -B/^j[©(dsv|5i, IMP5, Ej)] 

depending on whether SI contains any unambiguous dsv basic blocks. 

3. If S is an if-then-else statement, whose bodies of code form statements Si and 

S2 and whose condition is E;, then we have 

^[S = V Bjgg[e(dsv^g2)i 
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or 

^is - V Bfgg[@(dsvj^g2, IMP5, E^)) 

or 

^,15 = BJ5i[®(^®^,L51' IMP5, Ef)] V Bj^^[®{dsvf^g2)] 

depending on whether Si or S2 contain any unambiguous dsv basic blocks. 

4. If S is a level-n while statement, then S is treated as a series of if-then state­

ments, s(-). Each s(-) has a body of code Sl(-) with header Br~^ and a 
•'51 

condition e|~\ We have 

dsv|"j = ©(dsvj'^^j). 

When simulating iterations of a loop, S, to generate s-definitions, the algorithm 

halts when a generated s-definition is equivalent to a previously generated one. The 

following theorem is proven in [27] and it puts an upper bound on the number of 

needed simulations. 

Theorem; The number of needed simulations of iterations for S has a finite bound 

which is a function of the number of dynamic and static variables that receive di­

rect flows in S, the number of s-variables in the procedure being processed, and the 

maximum path length of the security lattice. 

6.7 Precision of the Modified Flow Control Mechanism 

In this section, we prove some properties of the new flow control mechanism. 

First, we show that the new scheme for updating dynamic state variables is precise. 
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In other words, whenever the current class of a dynamic state variable is updated 

at message-sending time, the new class reflects the precise class of the information 

contained in the variable. 

Second, we show that the new precision in updating classes of dynamic state 

variable, leads to a more precise security mechanism. In other words, the flow control 

mechanism rejects less secure programs than without the new class updating scheme. 

6.7.1 Precision of the class updating scheme 

Let dsv be a dynamic state variable in an RM M. Assume that a procedure M.P 

is called and that its template is instantiated. Assume that at some point during the 

execution of P, the current class of dsv, dsv. is updated by the run-time information 

flow control mechanism, which uses the new flow graph s-definitions and has the 

access component providing the run-time support for evaluating those s-definitions. 

Theorem: 

After the updating, dsv reflects the precise security class of the information 

contained in dsv. In other words, dsv is neither underclassified nor overclassified. 

Proof (by construction): 

The proof is by induction. It is also very simple and obvious at this point since 

it follows exactly the construction of the flow graph s-definitions in Section 6.4. The 

construction is also summarized in the previous section. Here, we will not repeat the 

details that appeared in those sections. 

• 
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F 

Bold 

Enew 

Figure 6.15: Precision of our security mechanism 

6.7.2 Precision of the security mechanism 

We define the concept of precision as defined in [9]. Let F be the set of all possible 

information flows in a system striped from an information flow control mechanism. 

Let P be the F subset of all information flows that are allowed by our flow policy: all 

flows that follow the lattice structure of the security classes. Let NEWSYS denote 

our system which includes the flow control mechanism with the new class updating 

mechanism that uses the flow graph s-definitions and let Enew be the set of all 

allowable flows in NEWSYS. Finally, let OLDSYS denote a system that uses the old 

form of s-definitions and let E^^j be the set of all allowable flows in OLDSYS. In 

Figure 6.15, we show the diagrams for the various sets. 

Since the new class updating mechanism does not affect the way s-checks are 

generated or evaluated, it may be surprising that the figure shows that E^^j is strictly 

included in Enew- It would be expected that NEWSYS and OLDSYS have the same 

degree of precision since the same s-checks are being evaluated in both systems. 
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However, we claim that NEWSYS is strictly more precise than OLDSYS. We prove 

that fact in the following theorem. The main idea is that since NEWSYS avoids 

overclassifying dynamic state variables that may appear in s-expression of s-checks, 

then more programs are accepted by NEWSYS than by OLDSYS. 

Theorem: E^^j C Eneiu-

Proof: 

First, we show that all flows that are allowed by OLDSYS are also allowed by 

NEWSYS. For a flow to be allowed by either of the two systems, there must be a 

collection of s-checks that do not detect any flow violations when evaluated. Let 

sv(SC) ©(s-exp) 

be such an s-check, where SC is a security class and s-expr is an s-expression. Let 

s-expr^ and s-expr" be the class values of s-expr if evaluated by NEWSYS and 

OLDSYS, respectively. 

If s-expr does not contain any dynamic variables, then it must be the case that 

s-expr^ and s-expr^ represent the same security class. Therefore, if OLDSYS allows 

the flow represented by the s-check (i.e., it finds s-exp < SC), NEWSYS must allow 

it too. 

If s-expr contains a dynamic state variable, dsv, then it must be the case that 

s-expr" < s-expr" 

since the current class of dsv is always precise in NEWSYS and may be overclassifled 

in OLDSYS. Therefore, again in this case, if OLDSYS allows the flow represented by 

the s-check, NEWSYS must allow it too. 
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We conclude that any flow allowed by OLDSYS is also allowed by NEWSYS and 

that Eg^^ Ç ^new-

Next, we show, by a simple example, that there are flows that are allowed by 

NEWSYS but not allowed by OLDSYS. Consider the following piece of code. 

int dsv; 

int ssvl(LOW); 

int ssv2(T0PSECRET); 

dsv = 0; 

if (dsv == 0) then 

B3: dsv = ssvl; 

else 

B4: dsv = ssv2; 

M . q O :  

ssvl = dsv; 

Note that ssv2 never flows into dsv. The OLDSYS s-deflnition for dsvffM.Q is 

dsvfrM.Q = ©(LOW, TOPSECRET, IMP). 

When M.Q is called, the current class of dsv is overclassified to TOPSECRET. As­

suming that M.Q does not cause an s-assignment of dsv, when the call returns, the 

s-check 

ssvl(LOW) «— ©(dsvJJ-M.Q, IMP). 
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is evaluated. A flow violation is detected when dsvJiM.Q is replaced with TOPSE-

CRET. 

On the other hand, the NEWSYS s-definition is 

dsvfrM.Q = B3[©(L0W, IMP)] V B4[©(T0PSECRET, IMP)]. 

Since B4 is never entered, the class of dsv is updated to LOW (assuming IMP is 

LOW). When the call returns, the same above s-check is evaluated and no flow 

violations are detected. 

We conclude that the flows specified by the above code are in Enew but not in 

^old- Therefore, Enew ^ E^^. 

Since we already proved that E^^j Ç Enewi we conclude that 

^old Eneiv-

• 

Figure 6.15 makes some other claims also. In it, we claim that our information 

flow control mechanism is secure. In other words, we have 

Enew C P. 

A formal proof of this claim is well beyond the scope of this research. However, we 

argue that we have constructed the s-checks so as to show all possible flows into a 

static variable. Therefore, by evaluating them, the mechanism can check all the flows 

and reject any that are potentially insecure. 

Another claim is that our mechanism is not precise. In other words, we have 

Enew ^ P • 
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This is obvious since the s-expression in the s-checks represent all possible flows into 

a static variable and not just the ones that actually occur during run time. For an 

example of a program which is in Enew but not in P, consider the code of the previous 

example but with the call to M.Q omitted. Then, the s-check is as follows 

ssvl(LOW) ©(LOW, TOPSECRET, IMP). 

The flow is rejected in NEWSYS, even though, the flow from ssv2 to dsvl does not 

occur. 

We should note that it has been proven that it is theoretically impossible to have 

a secure mechanism that is also precise [9, 18]. 
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7. PROBE IMPLEMENTATION ISSUES 

In this chapter, we discuss implementation issues that pertain to probes and 

their efficiency. 

7.1 Analysis of Probe Performance 

When we discussed our locking system, we explained that the efficiency of probes 

was a major concern. For that reason, our locking scheme was designed specifically to 

improve the performance of probes. We allowed (through the probe-locks) different 

probes to execute concurrently within the same RM. 

However, depending on how busy, wide and large a system is, probes may still 

cause the overall performance of the system to decrease. Probes involve sending 

messages and they may be numerous. 

In the worst case, if a system contains n objects, a single probe may end up 

visiting each one of those n objects. That may become intolerable if several probes 

are active under worst case scenarios. 

In practice, it may be rare to find objects that call upon all other objects. 

However, it may be common for objects to call upon several distant objects. 

We have developed some ideas that may help in further improving the perfor­

mance of probes. In the rest of this chapter, we present two such ideas. 
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7.2 Parallel Sending of Probes 

In many cases, a single procedure may need to send several probes. For example, 

consider the following code. 

while (e) do { 

Hl.PO ; 

M 2 . q ( ) ;  

H3.R(); 

} 

sendprobeCMl.P) ; 

sendprobe(M2.Q) ; 

sendprobe(M3.R); 

There are several probes that need to be sent at the time control exits the loop. 

Instead of sending the probes in a synchronous manner one at a time, the sendprobe 

instructions can be implemented so as to allow successive probes to be sent concur­

rently. Such a scheme would take full advantage of the locking mechanism allowing 

probes to execute concurrently. 

7.3 Probe Tree Computation 

In Chapter 4, we observed that the path of a propagated probe and the proce­

dures of objects it visits form a probe tree. The root of a probe tree is the initial 

probe recipient. The descendants of the root are probe recipients to which the probe 

is propagated. 
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Probe trees are determined by their root. That is because, once an initial probe 

recipient receives a probe, it always propagates it to the same modules and proce­

dures. Those modules are determined by the INS part of the template of the initial 

probe recipient. Unless that INS part changes, the paths taken by all probes propa­

gated by a given initial probe recipient are the same. 

For a given probe and initial probe recipient, the probe tree is traced when the 

probe is sent the first time. For that reason, we suggest to implement probes so as 

to compute the probe tree when it is traced the first time. The result of the probe 

tree computation should be stored with its root. 

A probe checks the implicit flow it carries against all static variables that receive 

flow in a probe recipient. Also, a probe s-increments dynamic state variables in the 

module of the probe recipient. Therefore, computing the probe tree involves storing 

several pieces of information with the initial probe recipient: 

1. All the probe recipients that form the tree, 

2. the classes of all the static variables in the probe recipients that need to be 

checked, and 

3. all the dynamic state variables that need to be s-incremented in the probe 

recipients. 

Assume that the information of the probe tree of a given initial probe recipient, 

IR, is computed and stored after the first probe is propagated by IR. Then, once a 

subsequent probe is received by IR, it can locally perform all flow checks that the 

probe needs to perform at various probe recipients. 
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If a flow violation is detected, the probe is sent with a violation message to the 

probe originator. In that case, we have saved the step of propagating the probes that 

in any case, would have resulted in a flow violation. 

If no flow violations are detected, IR needs to send s-increment messages to have 

the dynamic state variables (of which it keeps a list) s-incremented. Those messages 

need only be sent to the modules of the probe recipients that contain dynamic state 

variables that need to be s-incremented. After a successful completion of the s-

incrementing step, a probe-certified message may be sent to the probe originator 

which can resume execution. 

The above scheme works fine unless the probe tree information that is stored 

becomes outdated. If a change occurs in a template of any probe recipient, the 

s-checks that need to be evaluated and the dynamic state variables that need to be s-

incremented may change also. For the above scheme to continue to perform correctly 

even in case probe tree information is modified, the keeper of such information needs 

to be informed when a change occurs in any of the templates of the procedures that 

form the probe tree. Once a change is detected, the initial probe recipient cannot 

rely on the its stored information to correctly check a probe locally. The old probe 

tree needs to be discarded and a new probe tree needs to be computed next time a 

probe is sent. 

In the worst case, the whole of the probe tree needs to be recomputed. However, 

in certain cases, recomputing the probe tree may not involve updating all of its stored 

information. The only updates that need to be performed are to the descendant of the 

probe recipient whose template changes and causes the recomputation of of the probe 

tree. The other parts of the tree that are not connected to the modified recipient 
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need not be affected. 

The next problem to tackle is explaining how the initial probe tree recipient is 

informed of a change in a template in its probe tree. It cannot be the responsibility 

of the modified recipient to inform all of its callers about the change. That is simply 

because it may not know about all of its callers. Even if it does (if it keeps record 

of all the modules that were sent any probe tree information), its callers may be too 

numerous; It may be too inefficient to individually inform them of the change. 

A better solution is to have the keeper of the probe tree information responsible 

for making sure that that information is still valid before it is used. That check can 

be done at the time the probe is sent. 

One way to implement this solution is to assume the existence of a distributed 

database that is used to look up procedure names and bind them to a remote RM [6]. 

Then, for each procedure in the database, we associate a monotonically increasing 

version number. Whenever a procedure template is modified, the version number is 

incremented in the database. 

A keeper of probe tree information can use the version number as follows. It 

keeps the version number along with the probe tree information. The kept version 

number corresponds to the number found in the database at the time the stored 

probe tree is computed. Any time the probe tree information is to be used, the initial 

probe tree recipient must compare the stored version number against the current one 

that appears in the database. Only if the two version numbers differ, does the initial 

recipient decide to rebuild the tree. Otherwise, it can safely use the probe information 

knowing that it is current. 

The above solution may not be the best one. By keeping a version number for 
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a procedure, we are binding the caller to a certain version of the callee. That runs 

contrary to keeping all name resolution and binding dynamic. However, at this point, 

we know of no other solution to solve the problem of template modification after a 

probe tree is built. 

7.4 Example 

To end this chapter, we look at an example. Consider the code in Figure 7.1. 

Assume that the first probe from Ml.P (the probe originator) to M2.Q (the initial 

probe recipient) is sent. That first probe is propagated to other recipients as follows; 

from M2.Q to M3.R and M4.S, and from M3.R to M5.T. During the message ex­

change caused by that first probe, the respective modules send back the probe tree 

information to M2.Q (the root). 

The probe tree information consists of the three other probe recipients that form 

the descendants of the tree root. Along with each of those descendants, the following 

information are stored with M2.Q. 

1. Recipient M3.R: 

(a) Static variables that receive flow in the procedure: ssvl(SECRET). 

(b) Dynamic state variables that need to be s-incremented: dsvl. 

2. Recipient M4.S: 

(a) Static variables that receive flow in the procedure: none. 

(b) Dynamic state variables that need to be s-incremented: dsv2. 

3. Recipient M5.T: 
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Ml ={ ... 

PO 
{ 

if (a) then 
M2. q ( )  

else 
send.probe(M2. q )  ;  

} 
} 

M2 ={ ... 

q() 
{ 

M3.R(); 
M4.S(); 

} 
} 

M3 = { int dsvl; 
int ssvl(SECRET); 

R() 
•C 

M5.T(); 
dsvl = ...; 
ssvl = ...; 

} 
} 

M4 = { int dsv2; 

SO 
{ 

dsv2 = ... ; 
} 

} 

H5 = { int ssv2(L0W); 

TO 
•C 

ssv2 = ...; 
} 

} 

Figure 7.1: Example for computing a probe tree 
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Probe Originator 

fvi2. q\ Initial Probe Recipient 

Recipient 

M3.R : 

ssvl (SECRET) 

dsvl 

Recipient , 

M5.T : 

ssv2 (LOW) 

Recipient 

M4.S : 

dsv2 

Probe tree information stored at M2.Q 
I I 

Figure 7.2: Example probe tree information 

(a) Static variables that receive flow in the procedure: ssv2(L0W). 

(b) Dynamic state variables that need to be s-incremented: none. 

Figure 7.2 summarizes the probe tree information that is kept at the initial probe 

recipient. 

Now, assume that M2.Q receives a subsequent probe that is carrying an implicit 

How, IMP. Then, M2.Q retrieves its probe tree information and performs the following 

steps. 
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1. Locally, check for flow violations by checking that 

IMP < ssvl(SECRET) and IMP < ssv2(L0W). 

2. If no flow violations are detected, send s-increment messages for dsvl in M3.R 

and for dsv2 in M4.S. 

3. If a flow violation is detected, reject the probe and inform the probe originator. 

No messages to the recipients are needed. 

Notice the savings in sending messages. In case of no violations, s-increment 

messages are not sent to all recipients. In case of a violation, no message are sent to 

the recipients. The only extra cost that was incurred is of building and storing the 

probe tree information. 

As long as the probe tree information is not changed, M2.Q can keep using it 

and avoiding the expensive probe propagation process. Once M2.Q learns of a change 

in the template of any of the probe recipients (M3.R, M4.S, and M5.T), it needs to 

recompute the probe tree. 
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8. CONCLUSION 

8.1 Summary 

In this dissertation, we started by assuming the existence of a general distributed 

computing environment. In such an environment, we assumed that all objects are 

modeled by data type instances. An instance, called a resource module (RM), encap­

sulates some data items (the state variables of the RM) and their operations (pro­

cedures to access the state). RMs in the system may reside on different networked 

sites and machines. The means of communication between RMs is through message 

passing. Remote procedure calls (RPCs) are used to request operations on the state 

of an RM. Processes within an RM service RPC requests. Multiple processes in an 

RM are allowed to run concurrently. 

We, next, suggested an information flow control mechanism to provide multilevel 

security for the RM system. We called the multilevel secure system the protected 

resource module (PRM) system. In such a system, users and data items are assigned 

military-type security classes. The classes are partially ordered and form a lattice. 

The security requirement of the system is that no information from a class can flow 

into a lower class. 

The information flow control mechanism of the PRM system is a combined 

compile-time run-time mechanism. (A pure run-time mechanism is rejected on the 
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basis of its inefficiency.) At compile time, the security of a procedure in a PRM in­

stance is checked. However, since the system is distributed, some run-time checking 

is also required. So, the compile-time mechanism also builds the necessary structures 

(the information flow templates) to allow for the needed run-time checks. In addi­

tion, if dynamically-bound state variables (variables with security classes that may 

change at run-time) are allowed, the templates must also contain enough information 

to allow for computing the classes of those variables. 

The run-time flow control mechanism is designed to perform the needed run-time 

checks and to compute the classes of dynamically-bound variables. The performing 

of the steps of the run-time mechanism is restricted to only message passing time, 

again, for efficiency reasons. 

By allowing dynamically-bound state variables, we gained flexibility in the sense 

that a single RM instance and its procedures are able to handle information of various 

classes. However, we introduce the problem of preserving the consistency of the 

security information in an RM in the presence of concurrent processes accessing such 

information. Another problem is that since classes are updated at message passing 

time only, the computed classes used in those updates may not be precise. In other 

words, they may not reflect the precise security level of the information contained in 

the dynamically-bound variables. 

We solved the first problem by introducing a concurrency control mechanism 

for the PRM system. The mechanism is based on a nested transaction model that 

employs locking techniques to synchronize processes. We actually presented two such 

concurrency control mechanisms. The first employs five lock types that correspond 

to all the operations that can be performed on dynamically-bound variable. Two 
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locks types are value-locks that handle synchronizing access to the value part of a 

state variables. The other three lock types are class-locks that handle access to the 

variable class part of a dynamically-bound variable. By separating locks this way, 

we maximized concurrency by giving processes independent accesses to values and 

classes. For example, one process is allowed to read the value of a variable while 

another is incrementing the class of the variable. 

The second locking mechanism is similar but cuts down on overhead by combin­

ing some of the five locks. It uses three lock types instead of five, however, we lose 

some degree of concurrency. 

The second problem introduced by the presence of dynamically-bound variables 

deals with the precision of the computed security classes. One scheme is to simply 

compute the class of a variable as an upper-bound on the class of the information 

that possibly flows into the variable. In most of the cases in which information flows 

only conditionally, such a scheme overclassifies variables. 

We solved the overclassification problem by designing a scheme that starts by 

building a flow graph for each procedure. With the help of the flow graph, the scheme 

generates, at compile time, some security definitions. A security definition can be 

used, at run time, to precisely compute the class of the information that flows into a 

variable. Correctly evaluating security definitions depends on the path taken during 

the execution of a procedure. As a consequence, some run time support must be 

available to permit such correct evaluations. 

The last contribution of our work deals with the messages (probes) that are sent 

and propagated, at run time, to RMs to check for inter-module implicit flows that 

are caused by skipping the execution of procedure calls. Our concern is that probes 
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may become too numerous in a large system and adversely affect the performance of 

such a system. 

To increase the efficiency of probes, we first, through the design of our locking 

schemes, allowed them to run concurrently within the same RM. Second, we observed 

that probes that are propagated to RMs trace a tree structure (probe tree). We 

devised a scheme in which, for each probe, a probe tree is computed and stored after 

the first time the probe is sent. Subsequent sending of the same probe can use the 

probe tree information to check implicit flows without actually having to propagate 

the probe. In that way, we substantially decreased the probe traffic. 

In summary, our system provides multilevel security for a distributed program­

ming environment. The system allows concurrent access to shared data and precisely 

computes classes of dynamically-bound variables. It also provides for ways to improve 

the efficiency of inter-module implicit flow checking. 

8.2 Areas for Future Research 

In this section, we present the areas that were left for future research. 

8.2.1 Improvement of the precision of the security mechanisms 

In chapter 6, we showed how the precision in checking flows of the security 

mechanism is improved by precisely computing the classes of dynamic variables using 

the flow graph s-definitions. Flow graph s-definitions are used to compute the precise 

flow into dynamically bound variables. 

On the other hand, the s-checks in the templates still compute an upper bound 

on the flow into statically bound variables. This fact implies an overclassification 
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of flows into statically bound variables and introduces imprecision into the security 

mechanism. 

One area for future work is to investigate the possibility of decreasing the over-

classification in s-checks also. To achieve that goal, the s-checks need to be built 

so as to allow the taking into consideration of the actual execution path. A scheme 

similar to the one used for s-definitions may be possible. However, the scheme need 

to carefully handle implicit flows and not allow security to be jeopardized by the 

reporting of flow violation errors. 

8.2.2 The locking mechanism 

We presented two locking mechanisms: one using five lock types and the other 

using three lock types. An investigation needs to be conducted on which of the 

two schemes is more appropriate in different situations. That also depends on the 

distributed computational model that is used. 

8.2.3 Different concurrency control methods 

Locking is the most common way to implement transactions and atomic actions. 

There are two other ways whose usefulness for our security model can be investigated: 

timestamping [16, 17, 32] and optimistic [20] methods. 

Each of the methods has some advantages. For example, in a concurrency con­

trol mechanism using timestamps, deadlocks cannot occur since no transactions are 

blocked. In an optimistic concurrency control mechanism, more concurrency is al­

lowed since all transactions are under the initial assumption that they do not interfere 

with each other. 
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